492 research outputs found

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    Deep learning for clinical decision support in oncology

    Get PDF
    In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computertomographie (CT) zu einem unersetzbaren Werkzeug moderner Medizin geworden, welche eine zeitnahe, nicht-invasive Begutachtung von Organen und Geweben ermöglichen. Die Menge an anfallenden Daten ist dabei rapide gestiegen, allein innerhalb der letzten Jahre um den Faktor 15, und aktuell verantwortlich für 30 % des weltweiten Datenvolumens. Die Anzahl ausgebildeter Radiologen ist weitestgehend stabil, wodurch die medizinische Bildanalyse, angesiedelt zwischen Medizin und Ingenieurwissenschaften, zu einem schnell wachsenden Feld geworden ist. Eine erfolgreiche Anwendung verspricht Zeitersparnisse, und kann zu einer höheren diagnostischen Qualität beitragen. Viele Arbeiten fokussieren sich auf „Radiomics“, die Extraktion und Analyse von manuell konstruierten Features. Diese sind jedoch anfällig gegenüber externen Faktoren wie dem Bildgebungsprotokoll, woraus Implikationen für Reproduzierbarkeit und klinische Anwendbarkeit resultieren. In jüngster Zeit sind Methoden des „Deep Learning“ zu einer häufig verwendeten Lösung algorithmischer Problemstellungen geworden. Durch Anwendungen in Bereichen wie Robotik, Physik, Mathematik und Wirtschaft, wurde die Forschung im Bereich maschinellen Lernens wesentlich verändert. Ein Kriterium für den Erfolg stellt die Verfügbarkeit großer Datenmengen dar. Diese sind im medizinischen Bereich rar, da die Bilddaten strengen Anforderungen bezüglich Datenschutz und Datensicherheit unterliegen, und oft heterogene Qualität, sowie ungleichmäßige oder fehlerhafte Annotationen aufweisen, wodurch ein bedeutender Teil der Methoden keine Anwendung finden kann. Angesiedelt im Bereich onkologischer Bildgebung zeigt diese Arbeit Wege zur erfolgreichen Nutzung von Deep Learning für medizinische Bilddaten auf. Mittels neuer Methoden für klinisch relevante Anwendungen wie die Schätzung von Läsionswachtum, Überleben, und Entscheidungkonfidenz, sowie Meta-Learning, Klassifikator-Ensembling, und Entscheidungsvisualisierung, werden Wege zur Verbesserungen gegenüber State-of-the-Art-Algorithmen aufgezeigt, welche ein breites Anwendungsfeld haben. Hierdurch leistet die Arbeit einen wesentlichen Beitrag in Richtung einer klinischen Anwendung von Deep Learning, zielt auf eine verbesserte Diagnose, und damit letztlich eine verbesserte Gesundheitsversorgung insgesamt.Over the last decades, medical imaging methods, such as computed tomography (CT), have become an indispensable tool of modern medicine, allowing for a fast, non-invasive inspection of organs and tissue. Thus, the amount of acquired healthcare data has rapidly grown, increased 15-fold within the last years, and accounts for more than 30 % of the world's generated data volume. In contrast, the number of trained radiologists remains largely stable. Thus, medical image analysis, settled between medicine and engineering, has become a rapidly growing research field. Its successful application may result in remarkable time savings and lead to a significantly improved diagnostic performance. Many of the work within medical image analysis focuses on radiomics, i. e. the extraction and analysis of hand-crafted imaging features. Radiomics, however, has been shown to be highly sensitive to external factors, such as the acquisition protocol, having major implications for reproducibility and clinical applicability. Lately, deep learning has become one of the most employed methods for solving computational problems. With successful applications in diverse fields, such as robotics, physics, mathematics, and economy, deep learning has revolutionized the process of machine learning research. Having large amounts of training data is a key criterion for its successful application. These data, however, are rare within medicine, as medical imaging is subject to a variety of data security and data privacy regulations. Moreover, medical imaging data often suffer from heterogeneous quality, label imbalance, and label noise, rendering a considerable fraction of deep learning-based algorithms inapplicable. Settled in the field of CT oncology, this work addresses these issues, showing up ways to successfully handle medical imaging data using deep learning. It proposes novel methods for clinically relevant tasks, such as lesion growth and patient survival prediction, confidence estimation, meta-learning and classifier ensembling, and finally deep decision explanation, yielding superior performance in comparison to state-of-the-art approaches, and being applicable to a wide variety of applications. With this, the work contributes towards a clinical translation of deep learning-based algorithms, aiming for an improved diagnosis, and ultimately overall improved patient healthcare

    Activity Report 2022

    Get PDF

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Analyse et détection des trajectoires d'approches atypiques des aéronefs à l'aide de l'analyse de données fonctionnelles et de l'apprentissage automatique

    Get PDF
    L'amélioration de la sécurité aérienne implique généralement l'identification, la détection et la gestion des événements indésirables qui peuvent conduire à des événements finaux mortels. De précédentes études menées par la DSAC, l'autorité de surveillance française, ont permis d'identifier les approches non-conformes présentant des déviations par rapport aux procédures standards comme des événements indésirables. Cette thèse vise à explorer les techniques de l'analyse de données fonctionnelles et d'apprentissage automatique afin de fournir des algorithmes permettant la détection et l'analyse de trajectoires atypiques en approche à partir de données sol. Quatre axes de recherche sont abordés. Le premier axe vise à développer un algorithme d'analyse post-opérationnel basé sur des techniques d'analyse de données fonctionnelles et d'apprentissage non-supervisé pour la détection de comportements atypiques en approche. Le modèle sera confronté à l'analyse des bureaux de sécurité des vols des compagnies aériennes, et sera appliqué dans le contexte particulier de la période COVID-19 pour illustrer son utilisation potentielle alors que le système global ATM est confronté à une crise. Le deuxième axe de recherche s'intéresse plus particulièrement à la génération et à l'extraction d'informations à partir de données radar à l'aide de nouvelles techniques telles que l'apprentissage automatique. Ces méthodologies permettent d'améliorer la compréhension et l'analyse des trajectoires, par exemple dans le cas de l'estimation des paramètres embarqués à partir des paramètres radar. Le troisième axe, propose de nouvelles techniques de manipulation et de génération de données en utilisant le cadre de l'analyse de données fonctionnelles. Enfin, le quatrième axe se concentre sur l'extension en temps réel de l'algorithme post-opérationnel grâce à l'utilisation de techniques de contrôle optimal, donnant des pistes vers de nouveaux systèmes d'alerte permettant une meilleure conscience de la situation.Improving aviation safety generally involves identifying, detecting and managing undesirable events that can lead to final events with fatalities. Previous studies conducted by the French National Supervisory Authority have led to the identification of non-compliant approaches presenting deviation from standard procedures as undesirable events. This thesis aims to explore functional data analysis and machine learning techniques in order to provide algorithms for the detection and analysis of atypical trajectories in approach from ground side. Four research directions are being investigated. The first axis aims to develop a post-op analysis algorithm based on functional data analysis techniques and unsupervised learning for the detection of atypical behaviours in approach. The model is confronted with the analysis of airline flight safety offices, and is applied in the particular context of the COVID-19 crisis to illustrate its potential use while the global ATM system is facing a standstill. The second axis of research addresses the generation and extraction of information from radar data using new techniques such as Machine Learning. These methodologies allow to \mbox{improve} the understanding and the analysis of trajectories, for example in the case of the estimation of on-board parameters from radar parameters. The third axis proposes novel data manipulation and generation techniques using the functional data analysis framework. Finally, the fourth axis focuses on extending the post-operational algorithm into real time with the use of optimal control techniques, giving directions to new situation awareness alerting systems

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin

    Air Force Institute of Technology Research Report 2013

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 2018

    Get PDF
    This Research Report presents the FY18 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document
    corecore