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Abstract

Over the last decades, medical imaging methods, such as computed tomography (CT),
have become an indispensable tool of modern medicine, allowing for a fast, non-invasive
inspection of organs and tissue. Thus, the amount of acquired healthcare data has rapidly
grown, increased 15-fold within the last years, and accounts for more than 30 % of the
world’s generated data volume. In contrast, the number of trained radiologists remains
largely stable. Thus, medical image analysis, settled between medicine and engineering,
has become a rapidly growing research field. Its successful application may result in
remarkable time savings and lead to a significantly improved diagnostic performance.
Many of the work within medical image analysis focuses on radiomics, i. e. the extraction
and analysis of hand-crafted imaging features. Radiomics, however, has been shown to
be highly sensitive to external factors, such as the acquisition protocol, having major
implications for reproducibility and clinical applicability.

Lately, deep learning has become one of the most employed methods for solving
computational problems. With successful applications in diverse fields, such as robotics,
physics, mathematics, and economy, deep learning has revolutionized the process of
machine learning research. Having large amounts of training data is a key criterion for its
successful application. These data, however, are rare within medicine, as medical imaging
is subject to a variety of data security and data privacy regulations. Moreover, medical
imaging data often suffer from heterogeneous quality, label imbalance, and label noise,
rendering a considerable fraction of deep learning-based algorithms inapplicable.

Settled in the field of CT oncology, this work addresses these issues, showing up
ways to successfully handle medical imaging data using deep learning. It proposes novel
methods for clinically relevant tasks, such as lesion growth and patient survival prediction,
confidence estimation, meta-learning and classifier ensembling, and finally deep decision
explanation, yielding superior performance in comparison to state-of-the-art approaches,
and being applicable to a wide variety of applications. With this, the work contributes
towards a clinical translation of deep learning-based algorithms, aiming for an improved
diagnosis, and ultimately overall improved patient healthcare.






Zusammenfassung

In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computerto-
mographie (CT) zu einem unersetzbaren Werkzeug moderner Medizin geworden, welche
eine zeitnahe, nicht-invasive Begutachtung von Organen und Geweben ermdéglichen. Die
Menge an anfallenden Daten ist dabei rapide gestiegen, allein innerhalb der letzten Jahre
um den Faktor 15, und aktuell verantwortlich fiir 30 % des weltweiten Datenvolumens.
Die Anzahl ausgebildeter Radiologen ist weitestgehend stabil, wodurch die medizinische
Bildanalyse, angesiedelt zwischen Medizin und Ingenieurwissenschaften, zu einem schnell
wachsenden Feld geworden ist. Eine erfolgreiche Anwendung verspricht Zeitersparnisse,
und kann zu einer hoheren diagnostischen Qualitit beitragen. Viele Arbeiten fokussieren
sich auf "Radiomics", die Extraktion und Analyse von manuell konstruierten Features.
Diese sind jedoch anfillig gegeniiber externen Faktoren wie dem Bildgebungsprotokoll,
woraus Implikationen fiir Reproduzierbarkeit und klinische Anwendbarkeit resultieren.

In jiingster Zeit sind Methoden des “Deep Learning” zu einer hédufig verwendeten
Losung algorithmischer Problemstellungen geworden. Durch Anwendungen in Bere-
ichen wie Robotik, Physik, Mathematik und Wirtschaft, wurde die Forschung im Bereich
maschinellen Lernens wesentlich verdndert. Ein Kriterium fiir den Erfolg stellt die Verfiig-
barkeit groer Datenmengen dar. Diese sind im medizinischen Bereich rar, da die Bilddaten
strengen Anforderungen beziiglich Datenschutz und Datensicherheit unterliegen, und oft
heterogene Qualitit, sowie ungleichmiBige oder fehlerhafte Annotationen aufweisen,
wodurch ein bedeutender Teil der Methoden keine Anwendung finden kann.

Angesiedelt im Bereich onkologischer Bildgebung zeigt diese Arbeit Wege zur er-
folgreichen Nutzung von Deep Learning fiir medizinische Bilddaten auf. Mittels neuer
Methoden fiir klinisch relevante Anwendungen wie die Schitzung von Lisionswachtum,
Uberleben, und Entscheidungkonfidenz, sowie Meta-Learning, Klassifikator-Ensembling,
und Entscheidungsvisualisierung, werden Wege zur Verbesserungen gegeniiber State-of-
the-Art-Algorithmen aufgezeigt, welche ein breites Anwendungsfeld haben. Hierdurch
leistet die Arbeit einen wesentlichen Beitrag in Richtung einer klinischen Anwendung von
Deep Learning, zielt auf eine verbesserte Diagnose, und damit letztlich eine verbesserte
Gesundheitsversorgung insgesamt.
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A Preface To Be Carefully Read

The following dissertation analyses the application of artificial intelligence and deep
learning to medical image analysis and clinical decision support. Within the last years,
artificial intelligence for clinical decision support has been a topic of steadily growing
research interest. The applications range from lung cancer analysis, over cardiac and
stroke assessment. This work is therefore dedicated to an assessment of the current state of
knowledge on this area.

Background / Context

Artificial agents play an important role in many areas such as medical images and health
(i.e. healthcare) [1], information retrieval or diagnosis [2]. However, it remains unclear
which problems are best solved by such applications [3]. The reason behind the lack
of good solutions lies primarily with computational complexity: it is difficult to find
algorithms that can tackle many real-world problems successfully [4]-with the notable
exception of medical image evaluation [5]. In the case of medical image processing, there
exist only a handful of robust methods used within the field [6]. Most of these methods
have proven effective in the past but still fall far short of what would be needed for efficient
use in practical tasks [7].

It was found that the problem could be overcome through new approaches to statistical
learning, based on deep neural networks. With these methods, the system learns to
distinguish various classes (e. g. brain lesions or tumors) by building models of individual
features from sparse and sparsely labeled data sets. These “feature architectures” can
then give an approximate representation of the target feature space via deep feedforward
circuits without training.

Because it does not require extensive preprocessing of images, these models do not re-
quire additional memory for intermediate values between the image and previous ones and
thus do not require more computational power compared to existing techniques. Another
benefit is that while classification systems require extensive memory for small datasets,
deep networks also scale up well to large datasets. The author developed several systems
under different optimization parameters using various learning algorithms. As the number
of training examples grows, these models converge at an adequate level of performance.
These results suggest that deep learning is a promising tool for biomedical imaging classi-
fication.

The above lines have been written by the Generative Pre-trained Transformer archi-
tecture GPT-2 [Radford et al. 2019], including paragraphing and references. GPT-2 is
a natural language processing model for text generation and prediction. It was given the
beginning of the first paragraph and continued with a well-structured text demonstrating a
profound knowledge of the subject as well as scientific writing. Obviously, this is an im-
pressive example of what current artificial intelligence' is already able to achieve, leading
us to the highly important question of how this potential can be leveraged for improving
human life. While within the scope of this thesis it will not be possible to fully fathom out
every single aspect, this work aims for giving at least a part of the answer to this highly
important and valuable question by focussing on the subfield of medical image analysis.

'The used model only had 1.5 billion parameters, with its successor GPT-3 already having 175 billion
(117x) and the currently largest model Wu Dao 2.0 being at 1.75 trillion parameters (1,167x).
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Deep Learning has become one of the most employed methods for solving computational
problems of any kind. At the latest with the high-profile successes in image recognition
[Krizhevsky et al. 2012], Computer Chess and Computer Go [Silver et al. 2016, 2017,
2018], convolutional neural networks have become a topic of steadily growing interest
and were applied to a variety of applications, including complex board [Anthony et al.
2020] and video games [Torrado et al. 2018], face recognition [Sun et al. 2015], person
detection [Eisenbach et al. 2016] and re-identification [Ahmed et al. 2015], e-commerce
[Shankar et al. 2017], fluid dynamic simulation [Wang et al. 2020], and even exoplanet
[Shallue et al. 2018] & galaxy discovery [Gonzdlez et al. 2018] as well as planetary defense
[NVIDIA Corporation 2016]. While some approaches are mostly academic, deep learning
is applied to a number of very interesting daily, as well as highly specialized engineering
environments. It is employed for automated solutions in fields previously considered
non-automatable, thus steadily redefining this term [Jumper et al. 2021; Rao et al. 2018;
Santos et al. 2021].

This work aims to shed some light on recent applications of machine learning in
one of the most challenging, while interesting, fields of application. While known to be
traditionally conservative!, in recent years deep learning has evenly found its way into
this domain. Thankfully, it is a field that can strongly benefit from it, while creating a
significant and highly valuable contribution to human wellbeing. With a special focus
on exemplary applications, this work aims to demonstrate some of the most outstanding
opportunities of Deep Learning in Medical Image Analysis.

"Medicine requires high standards for the introduction of new methods. E.g. is any kind of human
trial, including the use of automated decision systems for diagnosis, internationally subject to a variety of
highly-strict regulations. The Helsinki declaration, the ethical codex of the World Medical Association
(WMA), explicitly demands to not do any medical research with humans in case of non-predictable risks or
unsure benefits. [World Medical Association 2013]
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Motivation

Medical image analysis has become one of the most rapidly growing fields in medicine.
Medical imaging allows the practitioner to inspect organs and tissue, 1. €. the inner workings
of the body, while simultaneously being only minimally invasive. Over the last century,
medical imaging has become an indispensable tool in modern medicine. The amount of
acquired healthcare data has grown from 153 exabytes in 2013 to 2,314 exabytes by 2020,
1.e. 15-fold ([Statista 2021], cf. Chapter 2.2), currently being responsible for around 30 %
of the world’s generated data volume, and having an estimated annual growth of 36 %
[RBC Capital Markets 2021]. Simultaneously, the number of trained radiologists who are
needed for clinical interpretation has remained largely stable. As a result of this imbalance,
medical image analysis has become more and more important for the automation of the
clinical reading process, specifically taking care of simple and repetitive tasks, which in
turn allows the radiologist to focus on the assessment of clinical manifestations which are
less simple to automate.

As was shown by Cowan et al. [2013], the median reading times for abdominal
computed tomography scans, although typically containing multiple hundreds of image
slices, currently lie as low as only 14 minutes, including the creation of a clinical reading
report. 25 % of all clinical pelvis/abdomen scans are read and reported in less than only 9
minutes®. As is demonstrated by these low turnaround times, an automated case preparation
by the means of medical image analysis, e. g. by segmenting clinically relevant findings,
highlighting suspicious image regions, or even triaging cases by urgency, can significantly
help radiologists to save valuable time, resulting in lower error rates, higher throughput
and ultimately improved patient healthcare.

With the rise of increasing computational capabilities, the role of medical image
analysis in clinical assessment has become significantly larger and is now involved in many
clinical imaging tasks. Still, most clinical decision support software is based on static
algorithms, using the fixed parameterizations which proved to be valuable during their
implementation and evaluation process.

In contrast, this work will emphasize the role and potential of data-driven clinical
decision support using deep neural networks (DNNs). Using purely data-driven approaches,
such as deep neural networks, allows for a variety of highly interesting advantages, taking
into account the current technological developments, such as the continuous capability
of using steadily growing data pools, scalability with respect to the available hardware, a
known tolerance against missing and incomplete data in case of sufficiently large datasets,
and finally: the possibility of learning problems without any need for hand-crafted problem
engineering [Shen et al. 2017].

Unfortunately, medical imaging data is often sparse due to data privacy, data security,
and regulatory issues. Thus, due to the enormous amount of model parameters in data-
driven approaches, many of the above-mentioned advantages do only partly apply, or
can even turn around, which may ultimately lead to an unknown result quality. This is
especially true if classes are irregularly (label imbalance) or only weakly (small data)
represented, or if the provided labels are sparse or contain errors (label noise). Although
medical imaging datasets often suffer from these problems, the outstanding prospects of a
clinical application clearly overweigh. This work will therefore specifically address these

2 Assuming a slice thickness of 1 mm over a range of approximately 50 cm, this is equal to the assessment
of around one full image per second, not including the time for reporting.
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issues and will aim to show up ways for researchers to handle typical issues with medical
imaging data. Moreover, it will present approaches for confidence estimation and decision
explanation, being integral components for a translation into clinical practice. Although
a concluding analysis of all possible approaches would be far beyond the scope of this
work, this thesis will aim to highlight the outstanding importance of the field, as well as its
potential for improving the wellbeing of millions of people all over the world, encouraging
current and future researchers to engage in exploring and illuminating this highly important
topic.

Outline

This work is structured in five parts (I-V), each of them tackling a specific segment of
the above-mentioned points. While each part will illuminate the general topic from a
different perspective, they are organized in such a way that it is possible to read each of
them independently, and refer to each other where adequate:

e Part I will be a general introduction into the topic. It will give an overview, point
out the innovative contributions of this thesis, and lists the relevant work that was
published during its creation, and which was fundamental for the contents of this
thesis.

» Part II dives into the concrete field of application. It specifically gives an introduc-
tion to relevant clinical terms in the field of CT oncology and the clinical workflow,
as well as an outline of the field of classical radiomics based on multivariate statistics,
and the application of deep neural networks to medical imaging.

e Parts III-IV cover the methodological contributions of this thesis and thus will be
the main part of this work (see Fig. 1.1 for an outline of the discussed applications
within this thesis).

— More specifically, Part III introduces algorithms for lesion growth and one-
year survival prediction, as well as a novel architecture for deep survival
regression. All algorithms are analyzed and discussed thoroughly regarding
performance, limitations, and applicability in a clinical environment.

— Part I'V will tackle the specific issues which arise from an application of deep
learning on medical imaging data, such as the few data and unknown-certainty
issues which were briefly discussed in the previous section. First, a method for
confidence estimation is proposed, which can be used to improve training on
small- to medium-sized datasets. Secondly, model ensembling techniques are
discussed, resulting in an algorithm for significantly improved performance on
small to medium-sized data sets by utilizing ideas from the well-known random
forest classifier architecture. Third, a novel approach for decision explanation
on medical imaging data is proposed and compared to various state-of-the-art
algorithms, showing the superiority of the approach for medical imaging data
in comparison to existing methods.
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* Finally, Part V contains a critical evaluation of the achievements of this work. In
particular, it will be discussed to which extent open issues in current research could
successfully be addressed, where it was possible to make a significant contribution,
and which issues could not yet be satisfactorily covered, and thus need further
investigation. Finally, the ethical implications of an application of neural networks
to clinical decision support are examined, aiming to conclude with a preliminary
answer to the question of what can be expected in this highly interesting field of
research within the near future, and how the work presented in this thesis may
actively contribute to it.
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Figure 1.1: Overview on the topics of this thesis. First, a variety of deep learning-based
methods for clinical decision support is presented (top-right), including methods for lesion
growth and patient survival prediction. Subsequently, this work discusses meta-methods
and advanced architectures (bottom-right), yielding improved classifier performance as
well as relevant additional information in medical imaging scenarios. Finally, this work
will present a method for classifier decision explanation (bottom-middle), being a key
component towards a better comprehensibility of deep learning-based solutions in clinical
decision support.
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Innovative Contributions

The main scientific contributions of this work comprise:

* A successful application of deep learning-based methods for lesion growth and
one-year survival prediction in metastatic colorectal cancer patients, being amongst
the first realized solutions within this direction (see Chapters 5 and 6),

* A method for non-proportional hazards-based deep survival regression (Chapter
7) building on the results of the previous method,

* A successful application of confidence estimation of deep image classifiers in
medical imaging few-data scenarios, and a demonstration of how it can be used
for curriculum learning schedules for improved test time performance (Chapter 8),

* An innovative combination of meta-classifier methods and deep neural net-
works for efficient classification, regression and survival time estimation in few-data
scenarios with enhanced accuracy (Chapter 9),

* A novel method for the high-quality visualization of classifier decisions in few-
data scenarios by using cycle-consistent activation maximization (Chapter 10).

Publications

Some of the ideas discussed in this work have been presented in international journal and
conference contributions, comprising:

* Katzmann, A., Miihlberg, A., Siihling, M., Norenberg, D., Holch, J. W., &
GroB, H. M. (2018, July). TumorEncode - Deep Convolutional Autoencoder for
Computed Tomography Tumor Treatment Assessment. In 2018 International
Joint Conference on Neural Networks (IJICNN) (pp. 1-8). IEEE.

= This paper analyzes the application of deep convolutional autoencoders for
liver lesion growth prediction (Chapter 5).

o Katzmann, A., Muehlberg, A., Siihling, M., Noerenberg, D., Holch, J. W., Heine-
mann, V., & Grof}, H. M. (2018). Predicting lesion growth and patient survival
in colorectal cancer patients using deep neural networks. In 2018 International
Conference on Medical Imaging with Deep Learning.

= This publication extends the former ideas to an application for patient overall
survival prediction (Chapter 6).

« Katzmann, A., Miihlberg, A., Siihling, M., Norenberg, D., Maurus, S., Holch,
J. W, ... & Grof, H. M. (2019, October). Computed Tomography Image-
Based Deep Survival Regression for Metastatic Colorectal Cancer Using a
Non-proportional Hazards Model. In International Workshop on PRedictive Intel-
ligence In MEdicine (pp. 73-80). Springer, Cham.

= Within this paper an implementation of a fully deep convolutional survival
estimator is analyzed, which extends on the ideas of the commonly employed
Cox proportional hazards model (Chapter 7).
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» Katzmann, A., Miihlberg, A., Siihling, M., Norenberg, D., & Gro8, H. M. (2019,
April). Deep Metamemory-A Generic Framework for Stabilized One-Shot Con-
fidence Estimation in Deep Neural Networks and its Application on Colorectal
Cancer Liver Metastases Growth Prediction. In 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019) (pp. 1298-1302). IEEE.

= In this publication an application of confidence estimation in medical imaging
scenarios is discussed, demonstrating the potential to be used for curriculum
learning-inspired training schedules for improved test time performance (Chap-
ter 8).

* Katzmann, A., Muehlberg, A., Suehling, M., Norenberg, D., Holch, J. W., &
Gross, H. M. (2020, April). Deep Random Forests for Small Sample Size Predic-
tion with Medical Imaging Data. In 2020 IEEE 17th International Symposium on
Biomedical Imaging (ISBI) (pp. 1543-1547). 1EEE.

= Within this publication, a novel meta-training framework for handling small
and medium-sized datasets is presented, showing wide applicability across

multiple medical imaging scenarios, which is going to be discussed in Chapter
9.

* Katzmann, A., Taubmann, O., Ahmad, S., Miihlberg, A., Siihling, M., & GroB,
H. M. (2021). Explaining clinical decision support systems in medical imaging

using cycle-consistent activation maximization. In Neurocomputing, 458, 141-
156.

= This paper proposes a novel framework for medical decision explanation based
on Cycle-Consistent Activation Maximization, and will be further explained in
Chapter 10.

Clinical evaluations of the above results have been presented at international conferences,
including:

e Norenberg, D., Huber, T., Maurus, S., Jager, N., Katzmann, A., Miihlberg, A.,
Moltz, J., Heinemann, V. & Holch, J.. (2019). Deep learning based radiomics
and its usage in prediction for metastatic colorectal cancer. European Congress
on Radiology (ECR) 2019.

e Norenberg, D., Huber, T., Maurus, S., Kazmierczak, P., Jiger, N., Katzmann,
A., Moltz, J., Ricke, J., Heinemann, V. & Holch, J.. (2018). Deep Learning
Based Radiomics and Its Usage in Prediction for Metastatic Colorectal Cancer.
Annual Meeting of the Radiologic Association of North America (RSNA) 2018.
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Throughout this work, it was furthermore possible to file patents for some of the imple-
mented systems, including?:

* Feature-Enhanced Computed Tomography for Deep Learning yielding Quanti-
tative Imaging Biomarkers. Muehlberg, A., Kaergel, R., Katzmann, A., Suehling,
M., EP 3570288, US 2019/0355114. Published: 20.11.2019

» Sparse Lung Nodule Characterization for Differential Diagnosis from CT im-
ages. Katzmann, A., Kratzke, L. Muehlberg, A., Suehling, M., EP 3576020, US
2019-0370969. Published: 04.12.2019

* Dispersion-based Tumor Analytics System. Muehlberg, A., Katzmann, A., Durlak,
F., Suehling, M., EP 3792871, US 2021/0082569. Published: 17.03.2021

* Geometric Deep Learning-based Whole Tumor Burden Analytics System. Muehl-
berg, A., Taubman, O., Katzmann, A., Suehling, M., EP 3836157, US 2021/0183514.
Published: 16.06.2021

While this thesis has a focus on deep learning-based methods for medical image processing,
more classical machine learning-based techniques can and have been similarly applied
to the medical imaging datasets found in this work. They typically have specific pros
and cons, which will be discussed in more detail in Chapter 3. While these works have
strong interconnections with the work discussed in this thesis or do even include parts
of it, the contributions below either have a more classical and/or medical, rather than
methodological focus than this work and therefore can not be covered in detail within this
thesis. Notable work which was created in parallel to this thesis includes:

* Muehlberg, A., Katzmann, A., Heinemann, V., Kaergel, R., Wels, M., Taub-
mann, O., ... & Rémy-Jardin, M. (2020). The Technome - A Predictive Internal
Calibration Approach for Quantitative Imaging Biomarker Research. Scientific
Reports 10(1) (Nature Publishing Group), 1-15.

= Within this work, a novel system for automated biomarker calibration is pre-
sented, taking into account application-specific external factors which are
compensated, leading to a higher reproducability

e Miihlberg, A., Holch, J.W., Heinemann, V., Huber, T., Moltz, J., Maurus, S.,
Jager, N., Liu, L., Froelich, ML.F., Katzmann, A. and Gresser, E., 2021. The
relevance of CT-based geometric and radiomics analysis of whole liver tumor

burden to predict survival of patients with metastatic colorectal cancer. Euro-
pean Radiology, 31(2), pp.834-846.

= This paper proposes new biomarkers and highlights the role of geometric ra-
diomics features for the prediction of patient survival in metastatic colorectal
cancer patients.

3 Additional patents have been filed for work with relation to this thesis (3 US, 3 EP, and 1 CN), but at the
time of this publication have not yet been published.
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* Muehlberg, A., Kaergel, R., Katzmann, A., Suehling, M., et al. (2021) Unrav-
eling the Interplay of Image Formation, Data Representation and Learning
in CT-based COPD Phenotyping Automation: The Need for a Meta-Strategy.
Medical Physics

= Within this paper, state-of-the-art approaches for COPD phenotyping are ana-
lyzed and complemented by novel classical, as well as deep learning-guided
methods.
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“The science dealing with the preserving of health and with preventing and treating
disease or injury” — according to the Cambridge Online Dictionary, this definition consti-
tutes a comprehensive specification of the term medicine [Cambridge Online Dictionary
2021]. Evidently, if taking this wide definition, there is an overwhelming amount of
potential medical applications which could be the subject of a doctoral thesis on medical
image analysis. Although none of them can be quantified as more or less important, this
work should aim for a clinical scenario that addresses as many people as possible, while
having the potential of a large positive impact on their life quality.

With more than 17 million cases and over 9.5 million deaths per year, cancer currently
poses the second leading cause of death after cardiovascular diseases, by 2040 is expected
to even have a total number of 27.5 million cases and over 16.3 million deaths yearly.
In 2018, the estimated years of life lost due to cancer were estimated to be as high as
15.3 years per case, and can cause treatment costs of as high as 150,000 USD per patient,
contributing to overall healthcare costs of more than four times the amount of any other
common health condition [AARP 2021; American Cancer Society 2021a; NIH-NCI 2021].
As clearly demonstrated by these numbers, a successful early-stage treatment of cancer
would not only result in significant growth in life expectancy and quality of millions of
people but could also reduce the consequential health costs by up to hundreds of billions
of dollars globally, which in turn would be available for fighting other diseases.

From a medical image analysis perspective, cancer-related diseases are a rather promis-
ing target: Most cancer forms are routinely monitored by continious and fine-granular
applications of non-invasive imaging techniques, such as ultrasound (US), and magnetic
resonance (MRI), or computed tomography (CT) imaging. Furthermore, imaging data is
routinely archived, and the strongly normed clinical treatment protocols require compre-
hensive documentation of the treatment process, which in turn can be used as information
for the estimation of clinically relevant variables through classification and regression.
Although utilizing a different physical mechanism, and in contrast to US imaging, MRI
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Figure 2.1: This figure shows the basic concept of CT imaging. The patient is slowly
moved through a ring construction, called gantry, holding X-ray source and detectors, being
opposed to each other. The gantry, and thus X-ray source and detectors, are revolving
around the patient, yielding linewise attenuation curves which are concatenated to a
sinogram. After collecting multiple sinograms, they can be transformed into a volumetric
array, 1.e. the final CT image, by using an image reconstruction technique, such as the
Radon transform [TOFT 1996], the filtered backprojection [Brooks et al. 1975] or the
iterative reconstruction [Willemink et al. 2013a,b]. Source: [FDA 2018]

and CT both yield volumetric images by slice-wise scanning of the patient (cf. Fig. 2.1).
If available, volumetric data is generally to be preferred, due to the significantly larger
amount of usable information. Amongst these two, computed tomography is particularly
promising, as CT images are normed to a common scale called “Hounsfield Units”, or HU
values'. HU values are a measure of radiodensity and are normed in such a way that an
HU value of -1000 represents the attenuation of air, and O represents the attenuation of
distilled water at standard pressure and temperature (i. e. 273.15 K at an absolute pressure
of 1 bar). In contrast to other imaging techniques, such as US or MRI, CT images can
thus be interpreted as absolute, neglecting the influence of patient position and geometry,
measurement apparatus positioning, the imaging device or scanning parameterization, etc.,
i.e. the scanning protocol>. While MRI in direct comparison generally provides better
soft-tissue contrast, devices are significantly more costly, and thus generally less affordable
and available in smaller clinics, rural areas, or emerging and developing countries. US
imaging, on the other hand, being rather inexpensive, is subject to strong variations across

"Hounsfield units are named after Sir Godfrey Hounsfield who suggested the scale, and who for develop-
ing the computed tomography imaging technique together with Allan MacLeod Cormack received a Nobel
Prize for Physiology or Medicine. He was later honored as a Commander of the Order of the British Empire
(CBE) and a Fellow of the Royal Society (FRS) of London.

2In fact, the scanning protocol is important for the finally measured HU values to a relevant degree, as was
demonstrated by Muehlberg, Katzmann, et al. [Miihlberg et al. 2020]. However, especially in comparison to
other scanning modalities, such as MRI or US, these variations are rather low, and within a wide range of
applications can be neglected.



2.1

2.1.1

2.1 Cancer Statistics 15

views, such as beam width, side lobe, reverberation, and comet tail artifacts [Feldman et al.
2009], generally non-quantitative, and thus less suitable for an automated image analysis
process. Thus, in the course of this work, CT imaging data is used. However, most of the
approaches discussed in this work can likely be transferred to other imaging modalities,
too.

In the following chapters, various methods will be proposed for a mostly automated
clinical decision support, leading to estimates and diagnoses regarding cancer growth,
treatment response and recovery chances, and even patient survival expectations. Clearly,
these methods are currently far off from an actual clinical application. Next to the ethical
implications (see Chapter 11) it would be possible to list a vast variety of reasons for this,
but the two most prominent, also being the strongest market barriers, are the unsolved
questions of:

(a) the consequences of potentially resulting treatment errors, and,
(b) the questions of liability in case of such an event.

In clinically approved products, a common way to combat this is to provide multiple
proposals, but require the clinician to actively take the final decision, e. g. by choosing
specific presentation styles which enforce this. While the automation of non-diagnosis-
related tasks, such as simple measurements or contouring, is less strictly regulated and
thus can be seen as state of the art already, the legal framework for more sophisticated
solutions, slowly follows the state of the art, reflected by the FDA Artificial Intelligence
and Machine Learning-based Software as a Medical Device (SaMD) Action Plan [Food
et al. 2021]. However, quality is a highly important factor: There are demonstrated cases of
deep learning-based systems clearly outperforming even experienced practitioners, which
have consequently received FDA approval [Benjamens et al. 2020].

It has to be noted that any diagnostic proposal might finally influence the clinician’s
decision and may thus have the potential of inducing harm to the patient. Within the context
of this work therefore all evaluations have been conducted on retrospectively acquired data
for which an ethical council approval was given in advance.

Cancer Statistics

Amongst the various tumor entities, lung and colorectal cancer (CRC) are of particular
interest, as they are the two leading causes of cancer-related deaths in modern societies.
In the U.S. alone, lung and colorectal cancer were responsible for more than 140,000
and 50,000 deaths, respectively, in 2019 only [American Cancer Society 2017a]. Both,
lung and colorectal cancer, tend to show significantly reduced survival rates especially
if distant metastases are present. Commonly metastases can be found in the lung, brain,
and liver, where they may lead to organ compression, organ failure, and ultimately death
[Holch et al. 2017; Misiakos et al. 2011]. Both clinical entities go hand in hand with a
significantly reduced patient lifetime, 1. e. 14.9 and 15.6 years of life lost on average for
lung and colorectal cancer, respectively [NIH-NCI 2021].

Lung Cancer

Lung cancer can be clinically categorized into multiple sub-classes. The most important
classification is small-cell (SCLC) vs. non-small-cell lung cancer (NSCLC), as the
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Figure 2.2: Left: Incidence of lung cancer per 100,000 inhabitants for man, women and
both over time, averaged over 175 countries for which data was available. As can be clearly
seen, the lung cancer incidence steadily drops for men and rises for women, both being
directly linked to smoking behavior. Right: Prevalence of colorectal cancer cases over
time, evidently showing a significant increase globally. Data from [Roser et al. 2015].

clinical treatment between both differs. Due to its much higher prevalence, NSCLC is the
clinically most relevant form, accounting for 80-85 % of all lung cancers, in contrast to
only 10-15 % with SCLC. SCLC, however, is significantly more deadly. While the average
S-year survival rate for localized NSCLC lies at around 61%, it reduces to only 27%
for localized SCLC. More than that, SCLC tends to metastasize early, i. e. becomes non-
localized, leading to an average S-year survival rate over all stages of only 7 %, compared
to 25 % percent for NSCLC [American Cancer Society 2021b,c,d,e]. Globally lung cancer
numbers remain mostly stable, although incidence on average starts to decrease with a
strong imbalance between male and female persons, largely due to a change in the number
of smoked cigarettes ([Flanders et al. 2003], cf. Fig. 2.2). Within this work, automated
lung cancer assessment is mostly discussed in the Chapters 9 and 10.2.

Colorectal Cancer

In contrast to lung cancer, localized colorectal cancer (CRC) can typically be treated
very successfully. This is usually done by a full resection of the primarius. Unfortunately,
however, only 39% of all colorectal cancer patients are diagnosed at an early, non-metastatic
stage, as at the beginning of the disease colorectal cancer tends to show only a few
unspecific or even no symptoms at all.

For metastatic colorectal cancer (mCRC), i. e. if distant metastases are present, these
can typically be found in organs such as the liver, brain, and lung, leading to a significantly
reduced life expectancy. This is clearly expressed by numbers: While the average 5-year
survival for localized CRC lies at around 90 %, it drops to 71 % if locally spreading, and
to only 14 % if distant metastases are present [Clinical Oncology 2021]. Globally, the
amount of colorectal cancer cases is steadily increasing (see Fig. 2.2). While multiple
authors suggest a link to changed lifestyle (e.g. [Hausen 2012; Thanikachalam et al.
2019]) for which recent research also implies an influence on the treatment outcome after
diagnosis (cf. [Zutphen et al. 2017]), other reasons also include a significant increase in
life expectancy, as well as larger screening efforts and a better diagnosis. Within this work,
colorectal cancer data will in particular be used in Chapters 5, 6, 7, 8 and 9.
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Figure 2.3: Number of active radiologists in the U.S. (blue) and amount of acquired
healthcare data (red) per year. Notably, while the number of trained radiologists remains
largely stable, the amount of healthcare data is rapidly increasing, clearly creating a need
for algorithmically supporting and automating tasks for increasing the clinical throughput,
while simultaneously ensuring an equal or even improved level of treatment quality. Data
from [AAMC 2021; RBC Capital Markets 2021]

Clinical Workflow

Depending on the tumor entity, the clinical workflow may differ. For both, lung and
colorectal cancer, the disease is regularly monitored via computed tomography imaging,
with typical intervals being 8 to 12 weeks between two subsequent scans. For colorectal
cancer, whenever possible the first step of treatment is the full resection of the primarius.
However, as mentioned above, over 60 % of all CRC patients already have metastases at
the date of first diagnosis (IDOFD). The most common site of mCRC metastases is the
liver, being particularly susceptible as the main filter organ of the human body, followed by
the lung and brain. Around 50 % of all CRC patients develop liver metastases in contrast
to 15-20 % with lung and only 1-4 % with brain metastases [Damiens et al. 2012; Mongan
et al. 2009]. As a result, treating colorectal cancer typically involves at least half-year
scans over three years even if resection was successful and if no metastases are present.
As liver metastases are common, a fine-granular assessment of the liver is obligatory.
If metastases are present, these are usually treated by local or systemic chemotherapy,
radiation, or resection, if possible. Advanced therapy options may include hyperthermia,
radiofrequency ablation, or cryotherapy.

Similarly, the primary treatment for non-small-cell lung cancer is the resection of the
primarius and infiltrated tissue, although an interventional resection is significantly less
likely, which is clearly reflected by the statistics above. Generally, treatment of lung cancer
is more difficult and typically involves less surgical, but instead systemic treatment.

For both entities, all lesions are monitored in regular follow-ups. This includes the
scanning, measurement, registration, and re-identification of each lesion. Each of these
tasks provides considerable potential for automation, which is currently only partly lever-
aged. The subsequent clinical assessment involves an estimate of future progression, which
— although being based on treatment protocols and clinical experience — is qualitative in its
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nature, meaning that similar to the previous processes it may significantly vary in interpre-
tation, reliability, and quality. This was for example underlined by De Vries et al. [2014],
demonstrating that the clinical outcome of cancer patients is significantly influenced by
the practitioner’s psychological constitution, and Waite et al. [2019], demonstrating that
radiologists mostly automatically focus on relevant regions in medical images by using
video-oculography and that this process was faster, more precise and more accurate for
experienced radiologists.

As shown in Fig. 2.3, the amount of medical imaging data is steadily increasing, and
clearly surpasses the amount of newly trained radiologists. As was discussed in Sec. 1.1,
a typical radiological assessment for a CT scan comprising multiple hundred images on
average is conducted in less than 15 minutes. Thus, as already pointed out at the beginning
of Chapter 1, both throughput and quality could strongly benefit from an automated case
preparation which independently composes a diagnostic draft by the means of computer
vision and deep learning. With the automation of clinical tasks, these algorithms have the
potential to significantly improve healthcare by enabling the radiologist to spend more
time on the actual case assessment, with broad automation especially due to the increasing
amount of data becoming more and more needed.

As discussed initially, deep learning has had its largest successes when trained on
equally large amounts of well-structured training data. In contrast to this, the amount of
publicly available and especially well-structured data in medical imaging is typically scarce,
as these data are difficult to obtain, and often have heterogeneous quality (cf. Chapter 1.1).
Therefore, this work will focus on the successful implementation of deep learning-based
solutions for medical imaging when only a few data are available. It will propose novel
architectures for working with this data, analyze their strengths and shortcomings, and
finally demonstrate how to even get a deeper insight into highly complex decision-making
processes if only small datasets are available.



While this work will focus on deep learning-based systems, it has to be noted that espe-
cially in the field of radiomics' has given a new thrust to the research in medical image
analysis, and will at multiple times serve as a comparison within this work. The term
“radiomics” was originally introduced by Kumar and Aerts [Kumar et al. 2012]. Radiomics
is a neologism built upon “radiology” and “-omics”, chosen in analogy to other disciplines
such as genomics and proteomics, and expressing the systematic analysis of radiological
imaging data. While the impact was only limited at that time, after the later “Nature
Communications” publication [Aerts et al. 2014], radiomics became one of the most active
fields in medical research. In a nutshell, as depicted in Fig. 3.1, given a set of images X,
radiomics is characterized by the successive application of:

1. Filtering - Apply a set of predefined preprocessing operations P independently to
each input image (typically image filters),

2. Feature extraction - For each image and each filter, extract a set of predefined
image features F, using an image mask if given,

3. Feature selection - Select several features based on a predefined selection criterion,
or by systematically varying selection criteria,

4. Predictor training - Train a predictor based on the selected subset of the |P| X |F|
features of the | X | images, either using a predefined machine learning model or by
systematically varying models.

"While often the term is written with a capital letter (“Radiomics”), with becoming more widespread the
capital is typically omitted and the word is written in lowercase only. In the following, the lowercase writing
will be used.
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Figure 3.1: Overview on the basic radiomics process, consisting of the systematic applica-
tion of image filtering, feature extraction, feature selection and finally predictor training.

Radiomics is thus not a novel methodology itself, but instead describes relevant tools
for the process of a systematic analysis, rather than case-to-case feature design, selection,
and classifier training. Radiomics provides a variety of benefits, most prominently, the
possibility of a combination of hand-crafted, potentially meaningful features on one side,
and a simple and easily-understandable machine learning model, e. g. logistic regression,
on the other. Such a combination allows for analysis with strong human comprehensibility,
thus being a striking advantage over deep learning-based classifiers, which tend to be
difficult to explain and understand. In many cases, the combination of simple features
can yield a comparable or even equally good quality?. Similarly, with a small known
and successfully reproduced feature set, such as the 4-feature Aerts signature [Aerts et al.
2014], radiomics can be applied to very small datasets for which deep learning might be
infeasible, too.

Although radiomics captivates with an easier understanding and comprehensibility, the
adequacy of the chosen features remains unsure yet. First, there is no general guarantee
that radiomics features are sensible for the problem at hand. In contrast to pure, data-driven
methods, radiomics features are extracted in advance, thus important information might
have been erased in the feature extraction step already. Secondly, radiomics typically
comprises a large amount of hundreds or even thousands of features, many of them highly
correlated, making the model prone to false discovery, and unstable model parameters
(cf. multicollinearity?), and overfitting. If region-based features are used*, the region
annotation itself may pose a major source of variance. In summary, radiomics results have
shown to vary strongly, depending on the used modality, the scanning protocol, the patient

2 A prominent example for this is the so-called Apgar-Score for health assessment in newborn [Apgar
1952]. For radiology, similar approaches exist, such as the LA950 threshold for lung emphysema detection
[Hueper et al. 2015].

3Multicollinearity describes the situation that multiple predictor variables are strongly correlated and
thus can predict each other. As a result, model parameters are unstable, as an indefinite number of model
parameterizations would yield similar results.

“Radiomics is often applied to a particular region-of-interest (ROI) within the image, which is typically
defined by a binary mask and allows to infer features such as the compactness or sphericity, with the former
also being part of the 4-feature signature from Aerts et al. [2014].



2]

geometry, and many more factors [Moltz 2019; Miihlberg et al. 2020, 2021b], and were
often found to be non-reproducible. This is underlined by meta-studies demonstrating
that positive results are highlighted and negative findings downplayed in as high as 97.8 %
of the published work on radiomics [Song et al. 2020]. Lastly, in contrast to the above-
mentioned advantage, the comprehensibility problem is mainly redirected towards the
feature construction process. Especially for more advanced but often used features, such
as the Haralick gray level co-occurrence matrix (GLCM) or the neighboring gray level
dependence matrix (NGLDM), an intuitive understanding of the features is not necessarily
given. This especially becomes relevant when radiomics is not only used for feature
candidate exploration but when a larger amount of features is combined for classification,
yielding a model complexity that can become evenly difficult to understand like other
machine learning models such as deep neural networks.

In summary, radiomics has been demonstrated to be a powerful toolbox for the auto-
mated analysis of medical imaging data. Its advantages especially lie in the comparatively
higher comprehensibility and its potential for simple and feasible clinical application when
only a few features are used and few data are available. Radiomics has successfully demon-
strated its applicability to a large variety of medical imaging scenarios and even clinical
products. It has indisputably given an enormous new impetus to the field of medical image
analysis.

A major downside of radiomics is its very strong sensitivity to environmental parame-
ters, such as the used acquisition protocol, the scanner physics, the patient geometry, and
similar [Miihlberg et al. 2020]. Its comprehensibility only stays high as long as the number
of used features stays low. As radiomics uses pre-defined hand-crafted features, however,
the features do not necessarily represent the full, clinically important image variance, often
making the use of a larger number of features obligatory, and thus the applicability to
small datasets more difficult. Finally, radiomics mostly represent the classical machine
learning domain. In the last years, however, deep learning has started to become the state
of the art in most machine learning applications, with a demonstrably higher performance
on a variety of problems. In accordance, the increase in publication numbers on deep
learning for medical image analysis has clearly surpassed that of radiomics, with over
90 % of submissions on the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCALI), the largest conference in the field, being about
deep learning since 2020.






In recent years, as for example pointed out in [Katzmann et al. 2018b], Deep Neural
Networks (DNNs) have been employed for a variety of medical imaging applications, such
as tumor [Havaei et al. 2017], multiple sclerosis [Brosch et al. 2015] and whole-organ
segmentation [Roth et al. 2015], vessel tracking [Wu et al. 2016], and many more. Some of
the proposed architectures even found a larger distribution outside of the medical domain,
such as the well-known U-Net from [Ronneberger et al. 2015], now being a standard
approach for image segmentation in very different fields, such as robotics. As emphasized
in Part I, most breakthroughs in the field of artificial intelligence in the last decade can
be attributed to deep learning-based approaches. Notably, its power to infer meaningful
latent variables in a pure, data-driven fashion allows it to extract relevant information from
images by constructing the most informative features itself, which in direct comparison
to radiomics is likely the largest advantage, as it can leverage arbitrary information, and
may ultimately lead to a significantly improved estimation accuracy (cf. [Miihlberg et al.
2020]).

On the other hand, training DNNs comes with some disadvantages, most of them being
a result of model complexity. DNNs typically contain hundreds of thousands, millions,
or even billions [Radford et al. 2019] of parameters that have to be trained prior to a
successful prediction by the model. In classical statistics, the so-called “One in ten rule”
[Harrell Jr et al. 1984] states that the number of samples should be typically at least ten
times the number of parameters that are to be estimated from the distribution at hand — a
requirement which in the deep learning domain is rarely met in practice. While datasets
in some computer vision domains contain at least some thousands of samples, acquiring
these amounts for medical scenarios is rather difficult. Even in medical specialization
centers the amount of patients with a specific medical condition does rarely exceed the
number of hundreds per year, typically with only a subset of these patients being eligible
for the question at hand (cf. Chapters 5 and 6). As described in Chapter 1.1, further
reasons include data security, data regulation, and data privacy issues, which — although
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having outstandingly relevant reasons — are an obstacle to the collection of large and
freely accessible multicentric medical imaging databases from a data scientist’s point of
view, reinforcing the problem of finding optimal model parameters, from a mathematical
perspective being an underdetermined problem. In turn, the model provides no guarantee
that solutions are optimal or even near to being optimal. In fact, recent studies have
emphasized that deeper networks tend to generalize better than shallow networks with
comparable parameter amounts (e. g. [Szegedy et al. 2015]), and, for the particular case of
natural language processing architectures, it could be shown that models with an extremely
large parameter space even perform well in few-shot learning environments (e. g. [Brown
et al. 2020]). However, while this can reduce the issue at hand, it still needs explicit
addressing. As a result, many of the algorithms presented in this work either directly
address (cf. Chapters 5 and 6) or even explicitly focus (cf. Chapter 8) on the trainability of
DNNs with only small datasets.

As pointed out above, one of the largest issues for the application of DNNs in medical
applications is the overall low comprehensibility. While many applications do not necessar-
ily require an in-depth understanding of the actual processing as long as possible mistakes
are limited in their consequences, this is clearly not the case in a medical scenario, in
which wrong decisions can easily lead to a significantly shortened patient survival or death.
In fact, even the top-5 strongest research university hospitals in the US do not employ
a single fully-automatic machine learning-based system in clinical practice, particularly
mentioning skepticism as a reason [Sennaar 2021]. Thus, creating comprehensible systems
is therefore seen as a major goal toward a market transition of DNN-based algorithms into
the daily clinical workflow (cf. explainable artificial intelligence, XAl [Linardatos et al.
2021]). For this reason, multiple chapters within this work will explicitly take into account
algorithmic comprehensibility. Finally, with Chapter 10, a whole section is specifically
dedicated to this highly important issue.
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In Chapter 2, we have already discussed a variety of reasons that oncological image
classification is one of the most promising targets for medical image analysis (cf. Chapter
2), e. g. as data is quantitative, and major parts of the clinical assessment can be automated,
such as lesion measurement and re-identification. The latter arguments both aim at patient
throughput. While turnaround times are a clinically highly relevant factor, however, quality
is even more important. As already discussed in Chapter 2.2, the clinical expertise across
practitioners may vary. For example, shown in a study from Moltz et al. [2011], manual
liver lesion delineation in CT images can easily result in a high inter-observer variability,
showing volume differences of up to 35 % across annotators. Recent research has further
demonstrated that both accuracy and performance in complex human decision-making
processes can depend on a variety of highly non-related factors, such as daytime, shift,
fatigue, and even the presence or absence of the expectation of a full meal (cf. [Alshabibi
et al. 2020; Cowley et al. 1997; Danziger et al. 2011]). Thus, as pointed out in [Katzmann
et al. 2018b], a reliable estimation based on deep neural networks “may enable better
therapy planning, deeper insight into tumor growth dynamics, [and] a greater patient
turnover”. Taken together, there is a clear need for an automated, quantitative and deter-
ministic assessment. The following part will therefore cover multiple applications of deep
neural networks for automated treatment outcome prediction in oncology using computed
tomography imaging data.

Like also pointed out in [Katzmann et al. 2018b], it should be noted that within a
clinical workflow, as emphasized by Glimelius et al. [2013] and Van Cutsem et al. [2016],
a radiological assessment amongst other information typically includes an evaluation of:

* visual lesion appearance (e. g. shape, size, density),

* a histopathological assessment,

* oncologically relevant blood values and biomarkers, such as haemoglobin, antibodies,
tumor markers (CA19.9, ...), etc.,

* the patient’s demographic data (age, gender, ...),

* the patient’s medical history.

The design of a clinical treatment plan comprises the collection of these and other
information, as each may strongly influence the treatment plan. Thus, besides ethical
arguments (cf. Part 1), a thorough, prospective, clinical evaluation cannot be contained
within this work, as a full, clinical assessment of an oncological disease requires the strong,
continuous, multidisciplinary expertise of various clinical specialties.

In contrast, the following part is dedicated to the identification of opportunities for using
relevant image information which previously had been unused. As the visual assessment is
a key criterion for the creation of the treatment plan and its adaption over the course of
the disease, the following chapters will analyze how medical image analysis through deep
neural networks can be used in a clinical few data scenario to extract relevant diagnostic
information, such as an estimate on future tumor growth and overall patient survival by
leveraging yet unused image information through a data-driven approach.






5.1

First, this chapter will analyze the prediction of lesion progression. More specifically, the
scenario of liver lesion growth prediction for patients with metastatic colorectal cancer
(mCRC, cf. Chapter 2.1.2) is chosen. As discussed in Chapter 2.2, a fine-granular assess-
ment of liver lesions is obligatory for mCRC patients, as, while the primarius can often be
resected, liver metastases pose a significant risk to life.

Recent research has shown clear correlations between the visual tumor appearance
in medical imaging data, the future disease progression, and the overall patient survival
(e.g. [Aerts et al. 2014], cf. Chapter 3). For leveraging this potential in a data-driven
fashion, with [Katzmann et al. 2018b] a novel algorithm is proposed, using structural
image information for tumor treatment response prediction, and being able to predict liver
lesion growth with high reliability, thus having the potential to be a relevant step towards a
semi-automatic oncological estimation of future disease progression.

Introduction

The clinical manual for the radiological assessment of liver lesions is the so-called Response
Evaluation Criteria in Solid Tumors (RECIST, [Eisenhauer et al. 2009]). RECIST contains
multiple criteria and allows for an overall patient assessment over the course of the disease.
Within this work, the so-called RECIST lesion assessment for single lesions will be most
important, is based on the maximum 2D lesion diameter, also called RECIST diameter,
within one slice!. An example is depicted in Fig. 5.1. The single lesion assessment defines
the lesion status by setting the current measurement in contrast to previous time points.
The possible results and their criteria are depicted in Tab. 5.1.

In the clinical assessment, RECIST serves as an indispensable tool. Still, it has several
shortcomings. First, it can be subject to large inter-observer variabilities [Rothe et al.

'RECIST was created to be available for various imaging modalities. As some of these, e. g. X-ray,
generate only 2D images, the RECIST diameter is defined in such a way that it uses a 2D instead of a 3D
measure. It thus assumes isotropic growth of lesions, which typically is approximately given for liver lesions.
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Lesion status Status Code Criterion
Complete Response CR Dissappearance of lesion
Partial Response PR Shrinkage of at least 30%
Stable disease SD Neither significant growth nor shrinkage
Progressive disease PD Growth of at least 20%

Table 5.1: RECIST single lesion assessment criteria and status codes based on a comparison
of the RECIST diameter between two successive timepoints.

Figure 5.1: Liver lesion with manually delineated outline and RECIST lesion diameter.
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2013]. Secondly, being a fully shape-based measure, it cannot leverage structural image
information, such as the lesion heterogeneity, although being a known sign of biological
activity (cf. [Ganeshan et al. 2013]). Finally, it poorly aligns with specific therapies,
such as immuno-oncological treatments, which may show initial growth after treatment
(cf. [Seymour et al. 2017]).

Finally, the RECIST assessment is a purely retrospective measure. Clinically, however,
an estimate of future progression would be highly beneficial, as it would allow for an
anticipatory escalation or de-escalation of the tumor therapy?, by yielding a so-called early
assessment. Therefore, this work will focus on a prediction of future lesion growth, as
indicated by the RECIST lesion status, by using two subsequent time points-.

Like mentioned in Chapter 3, with the work from Aerts et al. [2014], Kumar et al.
[2012], and Lambin et al. [2012], automated tumor assessment using radiomics has become
a highly active research field (e. g. [Bogowicz et al. 2017; Gillies et al. 2015; Leijenaar
et al. 2013; Yip et al. 2016]). As was pointed in Chapter 4, while radiomics focuses on a
combination of hand-crafted image features, deep neural networks, in contrast, can learn
meaningful features in a purely data-driven fashion. Therefore, their value for liver lesion
growth prediction will be assessed in the following.

At the time of its publication (cf. [Katzmann et al. 2018b]), the proposed algorithm
was among the first to predict longitudinal liver lesion progression, presenting:

1. A novel approach for CRC liver lesion growth prediction from single-slice CT
images of two separate time points (before- and within-treatment),

2. A successful demonstration of the applicability for pre-treatment assessment by
using a single time-point only, and finally

3. A thorough evaluation showing superiority over other radiological assessment
measures on the given data, such as the RECIST lesion diameter and volume.

Methods

Limited data poses a relevant obstacle to successful training. In [Katzmann et al. 2018b]
therefore a two-step approach has been used. First, a convolutional sparse auto-encoder
(cf. [Hinton et al. 2006; Krizhevsky et al. 2011, 2012; Ng et al. 2011]) has been trained for
conditioning the network to create a sparse representation from the dataset. Secondly, the
sparse representation is used for the actual classification task.

Autoencoder Network Architecture

A common way to combat overfitting, which might occur as a result of the imbalance
between the number of model parameters and training data, is data augmentation, i. e. the

ZEscalation or de-escalation in terms of tumor treatment describes the intensity of medication or treatment.
The decision about escalation or de-escalation involves a tradeoff between estimated response and patient
life quality. Notably, an oncological treatment plan typically involves an expertise-guided estimate of future
response, naturally taking into account the RECIST measurements.

31t should be noted that subsequent time points may contain information on an actually observed
progression, and thus that on this basis an extrapolation of future progress may partly be possible. The work
in this and the following chapter, therefore, focuses on the additional, rather than absolute value, in the direct
comparison. An in-depth analysis focussing on single-timepoint-based assessment is found in Chapter 8.
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Figure 5.2: Autoencoder used for a training of sparse liver lesion representations. One slice
of baseline and followup images are given as an input, with the model trying to reconstruct
it at the output layer. Source: [Katzmann et al. 2018b] © 2018 IEEE

use of modifications such as image transformations to create virtually new data points. As
discussed in [Katzmann et al. 2018b], the amount to which it can be applied is limited:
“When having classification tasks, especially image transformations like varying rotation,
shear, jittering, etc. can be used. However, even when combined with dropout [Hinton
et al. 2012], batch normalization [loffe et al. 2015], 2D or 3D image augmentation, the
degree to which augmentation results in additional performance is limited, as images
are still highly correlated. The limit to data augmentation especially holds true for our
task, as the underlying theory claims that phenotypical manifestations (e. g. specific tissue
structure, size and shape of central necrosis, etc.) correlate with image structures and/or
noise patterns. As these manifestations are currently a field of active research, it can not
be said whether larger transformations are realistic in these terms, too. This reduces the
amount to which image transformations can be done, so augmentation does not fully solve
the problem of few data. Therefore, a main goal of the proposed approach was to keep the
number of parameters as low as possible.”

For this reason, in the following a 2D approach is employed, using axial slices (cf. Ap-
pendix A) in order to keep the amount of model parameters low*. As already pointed
out above, the sparse autoencoder approach from Ng et al. [2011] is used for creating
a meaningful latent space representation despite the low amount of available data. The
autoencoder model architecture consisted of a simple ConvNet (cf. Chapter 9 Fig. 9.2),
downsampling the input using leaky ReLLU activation [Maas et al. 2013] and batch nor-
malization [loffe et al. 2015], followed by a 20-neuron dense layer, 1. e. the later sparse
representation, and finally deconvolutional and upsampling layers in the reverse order to
the initial convolutions. The overall architecture is depicted in Fig. 5.2, details can be
found in the Appendix Tab. B.1.

Predictor Network Architecture

The above autoencoder is trained to create meaningful, low-dimensional representations
of the input-space information. After its training, a second neural network, having only
a very low parameter amount, is appended. Therefore, a very simple, empirically de-
signed 2-layered network architecture is added after the low-dimensional representation
of the autoencoder, which consists of 8 dense neurons followed by a two-neuron softmax
output layer, corresponding to the possible predicted outcomes (growth/non-growth, see
Sec. 5.3.1). This results in a total number of 218 parameters to be trained after autoencoder

4As the longitudinal resolution of CT scans is typically lower than the sagittal and coronal resolutions,
amongst the possible projections using axial slices retains the largest amount of image information.
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pretraining. While more complex architectures of the predictor network have also been
tried, they did not result in a significant advantage over this simple architecture. Possible
reasons for this include a) the low amount of training data (see Sec. 5.3.1), and b) a loss of
information in the encoder part of the autoencoder network. The full predictor network
architecture can be found in the Appendix Tab. B.2.

Experiments

The above architecture has been trained on a liver lesion dataset of mCRC patients
(Sec. 5.3.1). As a comparison to the presented approach, multiple reference classifiers have
been trained (Sec. 5.3.2-5.3.3), and were finally compared against each other (Sec. 5.3.4).

Dataset

The used dataset consisted of 321 volumetric CT scans from 135 patients, scanned between
12/2009 and 02/2017. It contained a total of 460 unique liver lesions with fully volumetric
segmentations at an average of 2,38 time points per patient. In total, 1,344 liver lesion
volumes were available, of which after pairing (¢, 1, ti+2)5, 805 samples remained. 419
samples have been used for training and validation (325 positive, 94 negative) and 386
(304/82) for testing. The splits have been chosen randomly using a grouped split, such
that all samples from the same patient are contained in either the train, the validation,
or the test dataset. The data was acquired within the BMBF project PANTHER® and
was continuously extended throughout the project. The PANTHER data will also used in
Chapters 6, 7 and 8. As the data was acquired retrospectively, no unified scan protocol has
been used. Thus, the acquired images suffer from a high level of heterogeneity, including
variation in contrast enhancement, noise level, and voxel resolution.

For unification, the dataset has been resampled to an isotropic voxel size of 1x1x1 mm
using cubic interpolation. As mentioned in Sec. 5.1, a 2D approach was used to keep the pa-
rameter amount low’. As most lesion diameters @) were in the interval [(DPr(@)go.l , QPr(@)SO.g]
[11.3mm,53.3mm]|, a window of 80mm x 80mm centered around the lesion center of mass
has been extracted (cf. [Nibali et al. 2017]), using a resolution of 256x256 pixels to assure
that no image information is lost®. To reduce the influence of different contrast enhance-
ments due to non-unified contrast phases, all images underwent a histogram equalization.
An example lesion at two timepoints and their histogram equalized counterpart is depicted
in Fig. 5.3.

In accordance with the RECIST guideline, tumor diameter was measured as the longest
diameter within one slice. The data was labeled according to RECIST lesion assessment
criteria to discriminate lesion progression (PD) from non-progression (CR/PR/SD), i. e.:

1 ifdiyq1/diy > 1.2

;= 5.1
Y 0 otherwise -1

>The method uses two time points for the prediction of future growth, which is derived using a third time
point.

%The PANTHER project was a BMBF project conducted between 2016 and 2020 by a consortium formed
of MeVis Breastcare, the Fraunhofer MEVIS, the KUM Munich, and Siemens Healthineers, with PANTHER
being an acronym for “Patientenorientierte onkologische Therapieunterstiitzung”, engl. patient-oriented
oncological therapy support.

"Lately Perslev et al. [2019] proposed a method for semi-3D processing with similar benefits.

8Later approaches, such as [Katzmann et al. 2018a], have used smaller image resolutions (see Chapter 6).
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Figure 5.3: Histogram equalization for a lesion baseline (12/2015, left) and followup
(0472016, right) pair (top) with its respective histogram equalized variant (bottom). Source:
[Katzmann et al. 2018b] © 2018 IEEE

for lesion diameters d;; of lesions i at timepoint ¢. As the study at hand aimed for an
assessment relative to the current time point, in contrast to the standard RECIST criterion,
the current timepoint has been taken as the reference ¢ for label assignment, rather than the
time point of the best response 7pr (cf. [Eisenhauer et al. 2009]).

Classifier Baseline

Treatment response prediction is a relatively new field, and as pointed out in Chapter 1.1.
Therefore, only a few works have yet taken into account tumor disease prognosis using
machine learning, with no system to the time of this study to estimate the per-lesion
progression of liver metastases. Relevant work with respect to the task at hand conducted
a longitudinal analysis of lesions using radiomics features of volumetric CT data [Aerts
et al. 2014], and was discussed in Chapter 3. It aimed, however, at non-small-cell lung
cancer instead of mCRC?. Within this study therefore the clinical RECIST measure has
been used to provide a baseline comparison. As some recent work (cf. [Hayes et al. 2016;
Rothe et al. 2013; Xiao et al. 2015]), has identified lesion volume, rather than diameter, as
more predictive, additionally lesion volume is compared. For each predictor, raw and delta
features are provided based on input sets X, for measures m, with x,;; € X, as:

Myt
Myit—1

(5.2)

Xrit =
” Myjr — Myit—1

it
Myjt—1

with m,.;; being the measure r (RECIST diameter or lesion volume) for sample i at
timepoint ¢. For each dataset X, one classifier was trained. Hyperparameter optimization
was done using 100 iterations of randomized search cross-validation with inner nested
10-fold grouped cross validation. Train-test split was done using an outer 10-fold grouped
cross-validation using the patient identifier as the grouping parameter.

?A thorough comparison to the radiomics approach can later be found in Chapter 6.
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Deep Network Training

The deep network was trained on an NVIDIA DGX-1 using Keras and Tensorflow [Chollet
et al. 2015; Martin Abadi et al. 2015]. The data was divided into distinct datasets using
label stratification to ensure a comparable label distribution between the training and test
set. The sparse autoencoder for lesion representation was trained using mean absolute error.
Afterward, the actual classification network was appended and trained using categorical
crossentropy. For optimization, the NAdam optimizer!? [Dozat 2016] was used. The
learning rate 7); was annealed exponentially as a function of the current epoch i:

= "o- % (5.3)

with the initial learning rate set to 1o = 3 - 10™%, and the target learning rate 1,,_; =
1-1077, the number of epochs n and ¥ = 1.2 being the learning rate exponent. For both,
autoencoder and classifier training, adversarial training was used for regularization and
test time performance enhancement as described in [Goodfellow et al. 2014]. Stratified
sampling has been used to account for the faced label imbalance. Thus, for each sample i a
sampling probability p; with m = 2 classes has been assigned as:

1

pi= ——2) (5.4)

Y=o Pro=m)

Inputs and outputs were scaled to the interval [—.5,.5] using tanh activation to ensure a
well-defined gradient. Additionally, mean image subtraction was used. Further, a modified
version of the exact importance sampling from [Katharopoulos et al. 2017] was employed,
multiplying the above sampling probabilities with the norm of the error gradient!!.

The autoencoder architecture was trained for 1,000 epochs. Due to the low dimen-
sionality of the bottleneck layer, after training, the bias and variance errors did not differ
remarkably. An example of a baseline-followup-pair before and after autoencoder pre-
processing is given in Fig. 5.4. As depicted there, the autoencoder reconstruction quality as
a result of the strong compression may be seen as rather low, implying that the autoencoder
was not able to fully represent the original training data. However, as noted before, a
rather coarse representation was in fact intended to avoid overfitting. As depending on
the time point of treatment not necessarily two CT scans have been acquired already,
two different classification networks have been trained. The first network is based on
the low-dimensional representations of baseline/follow-up pairs as proposed above. The
second network is trained analogously but feeds the duplicated baseline image as the input,
1. e. serving as both baseline and follow-up to the autoencoder simultaneously.

Due to the low amount of available data, the training process of both networks con-
verged after only a few epochs. The autoencoder layers were not fixed during training to
allow for an adaption of network weights for the concrete training goal. Fixing the layers
resulted in a lower performance [Katzmann et al. 2018b].

10NAdam combines the Adam optimizer from Kingma et al. [2014] with a Nesterov momentum.

"'The multiplication results in the more frequent sampling of difficult samples, and in [Katzmann et al.
2018b] empirically resulted in improved performance. However, as the improvement was only marginal, this
step has later on been dropped.
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Figure 5.4: Baseline (top) and followup images (bottom) prior to (left) and after (right)
autoencoder preprocessing. Source: [Katzmann et al. 2018b] © 2018 IEEE

Results

All trained classifiers were evaluated using F1-score, informedness (IFD), markedness
(MKD), Matthews correlation coefficient (MCC), and area under the curve (AUC)'213, see
Tab. 5.2. Significance was tested using 5,000 iterations of bootstrapping'*.

As was emphasized in [Katzmann et al. 2018b], the results show nearly equal values
for RECIST- and volume-based prediction. Both were signficantly correlated with the
ground-truth labels as stated by the F'1, MCC and AUC values, having bootstrapped 95 %
confidence intervals of [.402,.486], [.235,.328], and [.671,.726] for RECIST-based, and
[.398,.482], [.220,.323], and [.652,.714] with volume-based prediction for F1, MCC and
AUC, respectively, with all p < .001 (two-tailed z-test).

When having a look on the deep classifiers, with an F1 of .596, CI 95 % [.450,.726],
an MCC of .520 [.356,.694], and an AUC of .814 [.721,.896], the two-timepoint classifier
clearly outperformed the RECIST diameter- and volume-based approaches. The single-
timepoint classifier performed slightly worse, but still yielded superior results with .581
[.455,.693], .423 [.283,.540], and .787 [.694,.865] for F 1, MCC and AUC, respectively.
The receiver operating characteristics (ROC) on the test data for the one- and two-timepoint
classifiers are depicted in Fig. 5.5.

Discussion

As demonstrated by these results, both classifiers performed superior to, or on par with,
the RECIST-based assessment, implying that lesion images may contain relevant visual
information for the prediction of future tumor growth. Further, the results clearly demon-
strate that structural image information might have additional value for estimating tumor
treatment response over pure diameter- or volume-based assessment.

12The metrics are described in more detail in the Appendix in Tab. C.1.

131n the original study, also true positive and true negative rate, as well as positive and negative predictive
value have been reported. However, due to the label imbalance, these metrics have only limited value for the
concrete scenario and are omitted here.

4For a more detailed discussion on the bootstrapping methodology please refer to Chapter 9.1.
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Classifier (BL+FU) Classifier (single) RECIST Volume

F 596 581 444 440
IFD 436 486 250 267
MKD .622 368 224 212
McCC 520 423 282 271
AUC 814 187 .698 .683

Table 5.2: Performance of the proposed approaches on the mCRC dataset in direct compar-
ison to the predictors based on the radiological measurements. The highest result for each
metric is marked bold. Source: [Katzmann et al. 2018b] © 2018 IEEE

Receiver Operating Characteristic Receiver Operating Characteristic

-
ROC curve (area = 0.81) 17 ROC curve (area = 0.79)

Figure 5.5: Receiver operating characteristics on the test set using the sparse autoencoder-
based predictor with baseline and followup (left) and single-timepoint (right). Source:
[Katzmann et al. 2018b] © 2018 IEEE
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The study, however, also has multiple limitations which have to be noted at this point.
First, this includes the limited amount of data. While the dataset in total consisted of
1,344 samples, these included only 460 different liver lesions stemming from only 135
patients. As a result, the numbers of independent training and test set samples were rather
low. While for the baseline approach a thorough nested cross validation was conducted,
the neural networks were trained using a fixed train/val/test split due to memory and time
consumption, and thus should be repeated on larger datasets'>. The need for this procedure,
in particular, becomes clear when having a look at the size of the confidence intervals,
spanning up to 35 % for MCC, and thus strongly relativizing the observed effects, in
particular when taking into account the single-timepoint-based classifier results'®. Further,
the used dataset may have limited representativeness, as it was acquired by only one clinic,
and amongst the acquired data only high-quality, thin-slice images have been included. In
clinical practice, however, data may have lower quality, depending on the available scanner
platforms and similar restrictions. Regarding the training procedure, it should be noted
that with some of the meanwhile published works, such as BYOL [Grill et al. 2020] and
PAWS [Assran et al. 2021], effective alternatives for classifier pretraining were proposed,
whose value for the medical imaging domain should be analyzed in further studies.

Future work should make use of the available clinical and demographic data, such as
blood values, age, and similar. Regarding the network architecture, it would be interesting
to see the results of a fully-volumetric assessment. While not feasible within this study
due to the amount of available data, a 3D assessment could include relevant additional
information. However, as pointed out in [Katzmann et al. 2018b], as the extraction of
2D-slices is rather simple and segmentation can easily be done, a 2D-approach might well
constitute an advantage if no fully-automated volumetric assessment is available, as it is
only marginally more time-consuming than RECIST, but might yield significantly better
performance in comparison to pure radiological assessment.

Conclusion

Treatment response prediction is an important part of early assessment, being a requirement
for fast therapy adaption, which reduces costs and results in a patient-tailored treatment.
Therefore, opening up an additional source of information by taking into account structural
image information might be of considerable clinical value with respect to the highly
important field of precision medicine'’. While tumor size is known to be a relevant
predictor of patient survival, having a diagnostic utility that allows for a prediction of
tumor growth might in turn allow for an estimate of patient survival. However, patient
survival is influenced by multiple clinical factors, too, such as age, fatigue, overall patient
condition, comorbidities, etc. Thus, the direct link between both has yet to be established.

3This was done in later studies, and will be discussed in the following chapters.

16While with slightly lower performance, later studies have similarly demonstrated that single timepoints
may allow for a proper estimate of future progression, cf. Chapter 8.

7Precision medicine denotes a medical treatment paradigm, aiming at a case-specific disease treatment,
instead of a unified therapy, based on an in-depth anamnesis as well as thorough diagnostic testing.
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As demonstrated in Chapter 5, structural image information can be used to predict tumor
treatment response and might allow giving an estimate of the probability of future liver
lesion growth. While treatment response in terms of lesion growth is an interesting
outcome variable in itself, this chapter analyzes whether the structural information can
further be used for predicting patient one-year survival, assuming that the visual lesion
phenotype contains information on the underlying tumor genotype', and thus is associated
with a specific treatment outcome. In contrast to lesion growth, the one-year survival
chance immediately quantifies the impact of a tumor disease on the estimated lifetime and,
thus, constitutes a complementary source of information for treatment planning, which
may be decisive for the therapy choice or even category, i. e. curative, (neo-)adjuvant or
palliative?. Therefore, its estimation is highly important for life quality and expectancy
and is demonstrated in the following chapter based on [Katzmann et al. 2018a], presented
at the International Conference on Medical Imaging with Deep Learning (MIDL) 2018.

Infroduction

As was demonstrated in Chapter 5, image information can be used for predicting the
treatment response, as measured by lesion growth. However, clinically it could be even
more important to directly assess the expected effects of the disease on the patient survival
time, rather than quantifying the growth or shrinkage of single lesions. In fact, depending on

"Tumor phenotype denotes the visual appearance of the tumor. In contrast, tumor genotype denotes
the genome of the tumor, typically being analyzed as part of the tumor treatment process, as specific gene
expressions have been shown to correlate with growth patterns.

2Curative therapy includes forms of therapy which aim to cure an underlying disease, such as surgical
resection. Adjuvant therapy includes forms of systemic treatment which reduce the risk of progression or
recurrence. Neoadjuvant therapy is conducted before the main treatment, e. g. systemic therapy to reduce
tumor size before surgery. Palliative care, in contrast, aims to improve life quality, prolong life expectancy,
and reduce suffering, but accepts death as the treatment outcome.
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its localization and the patient’s overall status, a singular lesion’s growth is not necessarily
correlated with a lower overall survival rate, while for the underlying tumor genotype a
number of very marked correlations could be verified [Popat et al. 2005; Stoehlmacher
et al. 2002; Teng et al. 2012]. The effect can be observed when taking into account specific
treatments, such as immuno-oncological therapies, which are linked to a pattern called
pseudoprogression and describes a process marked by the temporary growth of a lesion
under treatment response [Chiou et al. 2015]. As pointed out in [Katzmann et al. 2018a]
“[...] Oxnard et al. [2012] conclude that current criteria for progression may not adequately
capture disease biology. Thus, having a high precision early lesion estimate on future
growth would be of high clinical value, allowing to prematurely double-check, and thus
potentially even prepone treatment decisions.”.

In alignment with other work, such as [Aerts et al. 2014], within this work, it is assumed
that the tumor phenotype contains additional information on the underlying tumor genotype,
and therefore might be suitable for the identification of high-risk patients, associated with
lower overall survival rates. Currently, estimating patient survival requires comprehensive
clinical expertise and includes a high level of uncertainty. Therefore, the herein proposed
method might be a relevant step towards a quantitative, better-substantiated estimate. While
there has been recent work on patient survival prediction using deep learning, such as
the work from Nie et al. [2016] and Yao et al. [2016, 2017], they were either trained on
different modalities [Nie et al. 2016], or used histological data [Yao et al. 2016, 2017], and
often employed a combination of deep learning and classical approaches. None of them
has yet covered the assessment of mCRC lesions.

In the following sections thus a novel approach for CT liver lesion assessment is
presented, and compared to the prediction using RECIST lesion diameter-based, as well
as classical radiomics-based prediction. As in the prior study, liver lesion growth will be
predicted, further amending the dataset by linking it to the respective clinical survival data.
As aresult, this study allows for an assessment of the performance of deep neural networks
not only for tumor growth but also for patient one-year survival prediction by using a
unified framework, demonstrating its superiority over other methods, such as radiomics- or
RECIST lesion diameter-based prediction?.

Methods

As pointed out earlier, both analyzed tasks are not yet near use in the clinical routine (see
Chapter 2). Currently, only a few, non-applicable approaches in this direction exist (see
Sec. 6.1). Thus, analogously to Chapter 5, a RECIST-based classifier will be trained. As
no superiority of volume-based prediction could be shown in the previous study, it will be
omitted herein. Further, a radiomics-based approach was added as proposed by Aerts et al.
[2014] to better reflect the capabilities of state-of-the-art image analysis methods.

Preprocessing

The dataset in [Katzmann et al. 2018a] was first unified to reduce the data heterogeneity.
Therefore, isotropic resampling was applied using cubic interpolation to ensure a homo-

3The original study also covered the use of saliency maps for the visual identification of relevant tumor
growth patterns, potentially allowing for new insights in radiological image assessment. To the end of better
consistency, however, decision explanation will instead be discussed in more detail in Chapter 10.
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Figure 6.1: Example lesion (left) with applied histogram equalization (right). Clearly the
image contrast is strongly enhanced, allowing the network to easier identify important
structures while reducing data heterogeneity. Source: [Katzmann et al. 2018a].

geneous voxel size. This is especially important as the underlying hypothesis assumes
specific structures to be predictive of specific outcomes. However, as CNN filter sizes are
static, they always represent same-sized structures in the input space, and additional filters
would have to be learned to represent scale invariance. Hence, heterogeneous voxel sizes
are detrimental to efficient learning if only a few data are available. To this end, the same
preprocessing as in [Katzmann et al. 2018b] was applied, i. e. extracting windows of 80 x
80 mm and segmenting the lesion to reduce the heterogeneity induced by the surrounding
tissue, and final histogram equalization. An exemplary sample is depicted in Fig. 6.1.

Baseline Classifier Design

The baseline classification was conducted using a standard radiomics pipeline (cf. Chap-
ter 3), consisting of feature z-normalization, ANOVA k-best feature selection and subse-
quent classification through a random forest. All hyperparameters have been extensively
optimized by using 10,000 iterations of a randomized search cross validation on the training
data. The pipeline was finally fit using the optimal parameter set and evaluated on the yet
unseen testing data. This pipeline design allows for a wide variety of feature definitions,
and is equally applicable to the RECIST- as well as the radiomics-based approach.

For the RECIST-based classification, the feature definition from Eq. 5.2 was re-used.
The radiomics-based classification was constructed analogously to [Aerts et al. 2014] and
employed the publicly available PyRadiomics reference implementation from [Griethuysen
et al. 2017]. The radiomics features were extracted from the fully-volumetrically segmented
lesions using the datasets A.2 and C.2 for tumor growth prediction and survival estimation,
respectively. For each volume, the library extracted 1,209 features. Using the definition
for delta-features from Eq. 5.2, this leads to a total of 4,836 features per lesion for each
longitudinal pairing.

Sparse Characterization

Again, parameter amount stays an important issue. Thus, a first step was to drastically
reduce the image dimensionality by employing a sparse convolutional neural autoencoder
[Hinton et al. 2006; Krizhevsky et al. 2011, 2012; Ng et al. 2011] as was already done in
Chapter 5. As the first timepoint of each pairing within this study always was a baseline
image before therapy, the images are expected to differ significantly. Therefore, a two-lane
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Figure 6.2: Architecture of the autoencoder network used in [Katzmann et al. 2018a].
Further details can be found in the Appendix in Tab. B.3.

design has been used, encoding the first and the second time point separately, but sharing
a common sparse representation. Again a 2D representation has been chosen. Batch
normalization [loffe et al. 2015] was applied after each convolution to accelerate the
training process and preserve a better generalization performance. A structural graphic
of the autoencoder can be found in Fig. 6.2. The complete architecture is depicted in the
Appendix in Tabs. B.3-B.4. After autoencoder pretraining, analogously to [Katzmann et al.
2018b], the network was cut off after the sparse representation layer and a simple neural
network was appended. As in the previous work, a 2-layer network with 8 and 2 neurons,
introducing 218 parameters has been used, as it demonstrated to be reasonable for both
outcome prediction tasks while providing a good generalization performance.

Experiments

Dataset

Within this study, two datasets have been merged to receive a dataset with both, (A)
radiological images, as well as (B) clinical outcome parameters. As clinical data was
not available for all radiological images and vice versa, the merged datasets (C/C.1/C.2)
were significantly smaller than the original datasets. Analogously to the approach from
[Katzmann et al. 2018b], two successive time points were used to predict the outcome
variable. In contrast to [Katzmann et al. 2018b], only baseline scans, i.e. timepoint f,
have been used as the first samples of each longitudinal pairing, significantly reducing
the heterogeneity which results from timepoints #; being either before or within therapy,
and thus allowing for better reliability. To further reduce variance, only scans with a slice
thickness of <3 mm have been used. A detailed overview of the employed datasets is given
in Tab. 6.1.

The labels for tumor growth were assigned analogously to Chapter 5. One-year survival
labels were extracted from the clinical data relative to the radiological scan date. Due to the
one-year survival rate for colorectal cancer being at around 75% [Joachim et al. 2019], the
resulting label distribution was rather imbalanced. An overview of the label distributions
of the final datasets can be seen in Tab. 6.2.
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Dataset Description N Njygiens timepoints lesions
A Radiological Data (¢;) 1235 116 315 458
A.l Radiological Data (¢, ;) 777 94 198 360
A2 Radiological Data (#g,t1,t,) 417 55 104 218
B Clinical Data 135 135 - -
C Combined (7;) 800 78 211 304
C.1 Combined (ty,11) 496 61 132 231
C.2 Combined (ty,11,1) 302 33 78 131

Table 6.1: Overview on the used datasets. Tumor growth prediction was conducted on
dataset A.2, overall survival prediction on C.2. Pairing the radiological with the clinical
data notably reduces the amount of available samples. Source: [Katzmann et al. 2018a]

Dataset N Positive Negative
Tumor Growth 417 63 354
One-Year Survival 302 124 178

Table 6.2: Label distribution for tumor growth and one-year survival prediction datasets.
Source: [Katzmann et al. 2018a]

Network Training

The network was trained using the Adam-optimizer with Nesterov momentum [Dozat 2016]
using a batch size of 128 samples. For combatting the label imbalance, the importance
sampling from [Katzmann et al. 2018b] has been used. The network was trained using
a 4-fold cross validation grouped by the patient ID to ensure that all samples of a single
patient are either contained in the train or test set. For each fold, a validation set containing
a third of the training data was randomly split off.

Results

All classifiers were evaluated using a variety of informed and non-informed metrics*. The
results for tumor growth and one-year survival prediction are depicted in Tabs. 6.3 and 6.4.
Rows with a significant superiority of the deep learning-based classifier with respect to
the best available reference classifier are separately highlighted (*; p < 0.05; two-tailed
z-test). Empirical confidence intervals were computed as proposed by Efron [1987] using
10,000 iterations of bootstrapping”. The receiver operating characteristics for growth and
survival prediction are visualized in Fig. 6.3.

As seen in Tab. 6.3, the proposed approach significantly outperformed the other tested
approaches in the tumor growth prediction task for TPR, NPV, F1, IFD, and MCC with
p < .05, and did further provide the best AUC (.784, Clys = [.735,.833], n.s.). While the
radiomics-based prediction achieved a significantly higher TNR, this seems to be a result
of the class weighting, as implied by the other metrics. Differences in PPV, MKD, and

4The differentiation of informed and non-informed metrics stems from [Powers 2011]. A detailed
description of each used metric can be found in the Appendix C.
>The bootstrapping methodology will be discussed in more detail in Chapter 9.1.
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DL RECIST Radiomics sig.
u CI195 u CI195 u CI95

TPR .743 [.648,.831] .430 [.302,.552
TNR 768 [.730,.806] .864 [.827,.901
PPV 366 [.292,439] .359 [.250,.468] .425 [.292,.560
NPV 944 [918,965] .894 [.861,.926] .890 [.858,.922

] 363 [.245,.483]
] |
] |
| ]
FI 490 [.412,.561] .390 [.280,.490] .390 [.268,.505]
] |
] ]
| |
| ]

912 [.881,.940

IFD .511 [.405,.606] .296 [.167,.425] .277 [.153,.404
MKD 311 [.239,.390] .258 [.148,.383] .318 [.183,.452
MCC .400 [.314,.480] .273 [.159,.400] .294 [.166,.420
AUC 784 [.735,833] .744 [.674,.810] .737 [.669,.803

Table 6.3: Results on tumor growth prediction using the deep learning (DL) approach as
proposed in [Katzmann et al. 2018a] in comparison to RECIST diameter- and radiomics-
based prediction. Results are highlighted in bold if they are significantly better than both
other approaches. Significant superiority of the DL approach is depicted as * (p < .05,
two-tailed z-test). Source: [Katzmann et al. 2018a]

DL RECIST Radiomics sig.
u C195 u CI95 u CI95

TPR 462 [.368,547] .717 [.593,.638] .566 [.482,.648]
TNR .927 [.882,963] .612 [.538,.683] .620 [.550,.689]
PPV 815 [.721,902] .561 [.482,.646] .507 [.425,.592]
NPV 712 [.655,.768] .756 [.684,.830] .670 [.599,.739]

F1 586 [.497,.667] .630 [.557,.695] .534 [.459,.608]
IFD 387 [.290,.484] .332 [.225,.434] .182 [.072,.288]
MKD .528 [.419,.634] .321 [.218,426] .178 [.069,.277]
MCC 449 [.344,541] .321 [.219,423] .180 [.063,.288]
AUC 710 [.645,773] .688 [.629,.740] .568 [.504,.628]

Table 6.4: Results on one-year patient survival prediction using the deep learning (DL)
approach as proposed in [Katzmann et al. 2018a] in comparison to RECIST diameter- and
radiomics-based prediction. Results are highlighted in bold if they are significantly better
than both other approaches. Significant superiority of the DL approach is depicted as *
(p < .05, two-tailed z-test). Source: [Katzmann et al. 2018a]
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Figure 6.3: Receiver Operating Characteristic for tumor growth (left) and survival predic-
tion (right) with the proposed deep learning approach. The shapes imply that both tasks
contain samples of strongly different difficulties.

AUC were non-significant. Both, RECIST and Radiomics achieved comparable MCC and
AUC values with .273/.294 for MCC and .744/.737 for AUC, respectively.

Similar results could be observed for the one-year survival prediction task, with signifi-
cant superiority of the deep learning-based approach for TNR, PPV, MKD, and MCC, each
with p < .05. Further, the method again provided the highest AUC (AUC = .710,Clo5 =
[.645,.773], n.s.), and had a significantly higher informedness than the radiomics-based
approach. Both, DL- and RECIST-based predictions clearly outperformed the Radiomics-
based approach in terms of IFD, MKD, MCC, and AUC with p < .05.

Discussion

As demonstrated by the results in Sec. 6.3.2, the proposed method performed clearly best
for both tumor growth and one-year survival prediction. While significant superiority could
be shown for both target variables in terms of MCC, it was not possible to demonstrate
a significantly higher AUC, which might be caused by the low amount of available data.
However, the significance could be shown for a variety of metrics on both datasets.

Regarding the radiomics approach, it achieved a reasonable performance for lesion
growth prediction, being on par with RECIST diameter-based performance, but was clearly
inferior to RECIST- or DL-based prediction for one-year survival prediction. Although
shown to be beneficial for a variety of tasks (cf. [Aerts et al. 2014; Huang et al. 2016; Li
et al. 2016]), the results were rather unsatisfactorily. However, this might have been a result
of the limited amount of training data, too, as the number of features M was significantly
higher than the number of available samples N (M >> N, cf. multicollinearity), making a
successful feature selection significantly more difficult. Generally, the radiomics approach
would be expected to perform at least on par with RECIST-based assessment, as, as
pointed out in [Katzmann et al. 2018a], the 2D lesion diameter, being equal to the RECIST
diameter, is part of the feature set, and has, in fact, had the highest feature importance
in each of the trained RF classifiers. Radiomics, however, was also shown to be highly
influenced by different scanning protocols, across vendors, and even across models (see
Chapter 3, cf. [Leijenaar et al. 2013; Mackin et al. 2015; Miihlberg et al. 2020]).

The study at hand has some limitations which should be pointed out. First, it suffers
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from a high amount of heterogeneity, including different scanners and scan protocols,
as well as the different therapies, e. g. SFU, FOLFOX, XELOX, and various surgical
interventions, possibly interfering with both feature-based as well as deep learning-based
approaches. Repeating the study on a more homogeneous and/or significantly larger dataset
therefore might go hand in hand with major improvements in the quality of estimates.

A more general problem of the application of deep neural networks for medical image
classification lies in the low transparency of the decision-making process, being an issue
which is covered in more detail in Chapter 10.

It can be noticed that the achieved performance is slightly lower than in Chapter 5.
This results from multiple factors: First, in this study, it was decided that only baseline
scans and their successor serve as a prediction base. This is relevant as it a) reduces
the amount of available data, and b) might come with a worse baseline quality, as the
follow-up data stems from specialized clinics and thus generally has a higher quality than
the baseline data, which often stems from resident radiologists. Secondly, the limitation
of maximum slice thickness has been added, also reducing the amount of available data.
Both decisions, however, come with a significantly improved reliability of the results, as
they enforce a clearer environment in which the algorithm might be applied. Additionally,
the first study was conducted using a single test set, while the results in this Chapter are
based on cross-validation, and are thus clearly more representative. The shortcomings of a
slightly lower performance are therefore acceptable, as they come with significantly higher
reliability.

Conclusion

Within this chapter, a method has been proposed which has demonstrated that not only
the growth pattern of liver lesions can be assessed using structural image information, but
that furthermore a direct link to the overall patient survival can be established. It is well
known that lesion growth goes hand in hand with effects such as organ compression and
therefore on average leads to a reduced patient survival (cf. Chapter 2). However, the
results demonstrated that additional criteria over actual growth are involved, too, as pure
size-based measures such as those included in the radiomics feature set or the RECIST
diameter-based assessment are clearly outperformed by the deep learning-based approach.

As concluded in [Katzmann et al. 2018a]: “The results for our proposed deep learning
approach imply that the radiological tumor phenotype itself encodes information beneficial
for predicting tumor progress as well as the patient’s final outcome. [...] It is rather of
clinical value to understand which structural specifics actually are predictive for tumor
growth or the final outcome, and how to practically acquire and interpret these values
within the clinical workflow.” Especially when combined with recent work in the field of
decision explanation (cf. Chapter 10), the proposed work could clearly contribute towards
an automated deduction of visually identifiable biomarkers, e. g. in an educational setting,
and might allow practitioners to apply a patient-centric, specifically tailored medical
treatment. It thus well aligns with the paradigm of precision medicine and could help to
improve oncological healthcare.



In the last chapters, we have seen that structural image information can be used to predict
lesion growth and one-year survival for liver metastases in colorectal cancer patients.
While such a prediction might allow for better treatment planning and an earlier therapy
adjustment, especially the granularity of the yet proposed method has room for improve-
ment. Although being used in a variety of other studies (cf. [Miihlberg et al. 2020, 2021a],
the threshold of one-year survival in fact is mostly arbitrary and introduces an artificial
binarization of the continuous problem. Even if assuming a perfect one-year survival
classification, it would not be possible to differentiate between patient survival times of
only a few days or multiple months. Thus, for fine-granular risk stratification, a continuous
approach is needed.

When using deep networks, the architecture could be modified in such a way that
it represents continuous values, e. g. by using a linear output neuron or some arbitrary
kind of fuzzification, and combining it with a regression loss function, e. g. mean squared
error (MSE). If used on small data, deep regressors tend to show poor performance if not
additionally constrained, choosing one of the two trivial loss-minimizing solutions to either
a) perfectly predict each training sample without generalization (low bias/high variance),
or b) to significantly over-smoothen the outputs, mostly predicting the distribution’s mean
(high bias/high variance).

In classical machine learning, typically, parameterized quantitative models are used
for survival estimation, most notably the so called Cox proportional hazards model (CPH,
[Cox 1972]) for predicting patient survival expectations based on time-dependent hazard
probabilities. Until today this model can be seen as the state-of-the-art for survival
estimation. The CPH models survival times as a result of hazard probabilities A(¢|X),
consisting of a time-dependent, but covariate-independent base hazard probability hy,
which is multiplied by a time-independent, but covariate-dependent exponential term

exp(BX):
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h(11X) = ho(t) - exp(Buxi, - Bua) = ho(t) -exp(B - X) 1)

for a patient at time 7 with features X and feature weights . For fitting the model, this term
is decomponized by first fitting the feature weights 3, maximizing the rank concordance!
of survival times, and afterwards fitting the base hazard probability .

Although providing a practical method for risk stratification, due to this procedure the
CPH does not always provide a good fit for absolute valued predictions. Some of the CPH
assumptions, particularly the non-time-dependence of covariates [Desquilbet et al. 2005]
and the multiplicativity of the hazard term [Aalen 1989], were shown to not be granted in
the general case. Especially to address the latter issue, Aalen [1989] proposed a modified
version of the approach by using an additive hazard term:

h(t1X) = ho(t) + hy (£)x1 + ...+ (), (7.2)

In contrast to the CPH, Aalen’s approach took into account that covariates might constitute
time-dependent hazard distributions. However, both the CPH as well as Aalen’s model
require hand-crafted feature design, and provide poor generalization performance if the
number of features is high in comparison to the number of samples, being a result of multi-
collinearity. To this end, in [Katzmann et al. 2019b] an image-based architecture for deep
survival regression has been proposed, which particularly addresses the aforementioned

issues?.

Medical Background

When describing patient survival in a clinical environment, there are typically two main
measures of interest, which are a) the overall patient survival (OS), describing the time span
a patient survives, and b) the progression-free survival (PFS), describing the time-span
until a significant disease progression can be observed [American Cancer Society 2017b;
Cohen et al. 2008]. Depending on the used definition, both refer to the time span after the
date of the first diagnosis (DOFD) or after the date of the first treatment (DOFT) [Cohen
et al. 2008; NIH-NCI 2019].

While the PFS better describes the course of the disease and is therefore clinically
more relevant, it typically suffers from a coarser granularity, as the monitoring needed for
progression diagnosis is not frequent enough to allow for a determination to the day.

In contrast, the OS can typically be determined to the day due to the certifiable events
which define it. OS, however, is less closely related to the actual disease than PFS, as
various reasons other than described by the data can cause an event of death, amongst
others, including comorbidities, medication, external factors, and non-disease-related organ
failure, or simply dying of old age. Still, in the following the OS will be used, as only a
few data were available and therefore no additional variance should be induced by using

!Concordance denotes the correctness of the order of the estimated survival times with respect to the
ground truth. It is discussed in more detail in the Appendix C.

2An interesting alternative to the mentioned approaches are the so-called Random Survival Forests
proposed by Ishwaran et. al [Ishwaran et al. 2008] working with handcrafted features, too. However, as this
model is based on the fundamentally different concept of bootstrap aggregation, it will, later on, be covered
in the metamethods part in Chapter 9.3.
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coarse measures such as the PFS. For both, OS and PFS, usually, a cut-off value (often
5 years) is defined, which at best represents the time point at which the disease is likely
not related to a potential event of death anymore. Often, however, practical considerations,
such as the length of the observation period influence the choice of the cut-off value.

Related Work

Recent work has already addressed the use of deep neural networks for survival prediction,
with the algorithms from Katzman et al. [2016] and Haarburger et al. [2018]® providing
well-founded deep learning-based variants of the CPH model. In contrast to the classical
method, both approaches are usable with imaging data, and therefore do not require hand-
crafted feature design. Both, however, are also built upon the CPH assumptions, and thus
inherit their shortcomings regarding hazard probabilities (see above). As already pointed
out in [Katzmann et al. 2019b], the definition of the hazard probability as an exponential
term:

h(t|X) = ho(t) -exp(Bix1, ..., Buxn) = ho(t) -exp(P - X)

implies several limitations:

* The base hazard probability A is shared across all individuals. Thus, it is independent
of a-priori differences between subjects, e. g. different timepoints of therapy begin
after the DOFD, etc.,

* The covariates x1, ..., x,, affect the base probability as additive exponential factors.
Thus, they cannot have direct interactions,

» Covariates X are applied to the base hazard probability as time-independent, propor-
tional exponential factors, meaning they affect the base hazard probability equally at
every timepoint.

A similar algorithm from Lee et al. [2018] with a comparable intention is built upon a loss
definition focussing on relative event-time order. While not inheriting the above-mentioned
issues, it is therefore comparably prone to large errors when predicting survival times on
an absolute time scale. In contrast, the following approach is explicitly modeled to take
into account both, the event order as well as the absolute time scale, by directly predicting
a patient-specific hazard ratio over time from image data. The predicted hazard ratio can
subsequently be used to predict the expected OS, as will be demonstrated in Chapter 7.4.

Methods

The approach is motivated by the above-mentioned CPH. As pointed out in [Cox 1972],
the CPH is fitted using a partial likelihood function L;(f) for individuals with index i, state
vectors (i. e. features) z;, and observation times o; as:

3In their work, Haarburger et al. also proposed a method which is based on over-median survival
classification, using output activations as an indicator of survival times. Using classificational output
activations as regressional values, however, can be highly problematic, as will be discussed in more detail
in Chapter 8. Although being an interesting contribution, the method was finally not able to outperform
CoxPH-based prediction and will thus not further be taken into account within this chapter.
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h(oizi) holoj)exp(ziB)  exp(zf)

Li(B) = — _
(ﬁ) Zj:OjZOih(0i|Zj) ZjZOjZO,‘ hO(Oi)eXp(Zj) Zj:OjZOi eXp(Zjﬁ)

(7.3)

Using this partial likelihood definition it is possible to derive feature weights B without
taking into account the base hazard probability 4¢. In a second step, sy can be estimated
using standard optimization techniques to minimize the difference between observed and
estimated survival times. In contrast to this, the approach is based on an end-to-end
optimization process to estimate the patient-specific hazard function k(z|z;) for patient i,
allowing for direct inference of features without hand-crafted feature design. No further
assumptions are made regarding the distribution of the hazard function. Especially, the
hazard proportionality assumption is dropped, as it is not capable of representing time-
dependent, interacting, or non-proportional hazards which are often present in real-world
data [Katzmann et al. 2019b; Schemper 1992].

Network Architecture

The framework does not depend on a specific architecture and can therefore be combined
with various models like ConvNets [LeCun et al. 1989], ResNets [He et al. 2016] or even
more complex architectures such as attention-gated networks [Schlemper et al. 2019].
However, as a necessary restriction the output layer has to consist of exactly K output
neurons using sigmoidal activation, analogously to the work from Lee et. al [Lee et al.
2018], with each representing an equally sized discrete timestep. The number of outputs
should be chosen on the basis of the observation period and the desired granularity. K is
thus a metaparameter and specific to the target application scenario. Based on this, first the
event observation times o; with cut-off value v4y, Vi : 0; < vy are normalized using

0j

Vi = (K—1) (7.4)

Vimax

Hazard probabilities at the discretized timepoint k are represented stationary, 1. €. time-
independent, assuming survival until k. It has to be noted that individuals might drop
out of the data with no event observed for reasons such as movement, changes in the
clinical institution, or simply due to the incompleteness of the available data. Therefore
an observation variable ®; € {0, 1} for patient i is introduced, indicating whether an event
has (@w; = 1) or has not been observed (w; = 0) within the observation period (so-called
right-censoring).

Loss Definition

As pointed out in [Katzmann et al. 2019b], the model is trained using a combination of
two loss functions L; and L,. While L; minimizes the error between the estimated and the
observed events of death, L, ensures that non-observed deaths can be reasonably explained
with the estimated data distribution. Model parameters ® are optimized according to

argminL? + L3 (7.5)
0

taking into account that stronger errors in each of the loss functions should be penalized
stronger than smaller errors. First, the estimated complementary hazard function describing
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the chance of no event at time k for patient i is defined as

—_ A

h(z) = 1 —h(z) (7.6)

based on the estimated hazard function /(z;), i. e. the network output. The estimated
non-stationary probability h(k|z;), i. e. the probability of observing an event exactly within
timestep k (including the whole observation period until k) can now be derived as:

h(klzi) =h(z) [ h(klz) (7.7)
ji0<j<k

Based on this, the expected survival y; for patient i in case of an observed event ®; can
be derived as:

23y = Zico k()
I\&1) — 17

Yiso h(k|z)
Now, y; and y; are normalized by dividing by K — 1, resulting in normalized values

y; and y7 which can be inserted into the binary cross entropy function multiplied by the
observation indicator @; for deriving the expectation difference loss § given by:

(7.8)

6 (vi,Jilon) = —ay (i log (7)) + (1 —y;)log (1= 57)) (7.9)

Concordance amongst samples is constrained by adding a concordance term %

Coi o)=Y ) {(w’ ) (537 lfy”—yf} (7.10)

i0<i<n—1 ji<j<n 0 else
which penalizes non-concordant samples and finally leads to L; given by:

Li= Y 8059 o) +C0;5 ) (7.11)

i:0<i<n

For the definition of L,, covering non-observed events, i. e. censored data, the estimation
of observing an event within the observation period y; of sample i can be treated as the
loss itself, yielding:

Ly=—(1-w)log(1— Y. h(ilz)) (7.12)

i:0<i<y;

Experiments

In [Katzmann et al. 2019b], the model was evaluated using three different datasets, com-
prising:

1. The SEER Incidence database - an online database of cancer incidence data with
more than 10 million cases in total. According to the focus of this work, the
evaluation was conducted using the colorectal cancer subset, containing a total of
554,687 samples,
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2. The Rossi Criminal Recidivism dataset - a dataset describing the criminal recidivism
of individuals based on a small study population of 432 cases. The dataset is publicly
available, often used as a benchmark dataset, and is employed as a proof-of-concept
for small sample size applicability,

3. mCRC dataset - the dataset used in Chapters 5 and 6, including the patient metadata,
such as patient demographics, histology and laboratory values (see below).

For the SEER incidence and the Criminal Recidivism datasets, the model was directly
compared with a Cox proportional hazards model. The mCRC dataset, in turn, was
used to assess the incremental value of using an image-based prediction in addition to the
available clinical data. The CPH model was fit using the publicly available lifelines package
[Davidson-Pilon 2019]. Each dataset was evaluated using the concordance index* (CI), the
mean absolute error (MAE) and the median absolute error (MedAE). Confidence intervals
were calculated using bootstrapping® until convergence with € < 1073, as proposed in
[Efron 1987].

Datasets
SEER incidence dataset

The Surveillance, Epidemiology, and End Results Program (SEER) is a study conducted by
the U.S. National Cancer Institute of the National Institute of Health (NIH NCI), collecting
cancer incidence data from population-based cancer registries, covering approximately
34.6 percent of the U.S. population. It covers patient demographics, €. g. gender and
age, and disease data, such as primary location, morphology, and staging, and precisely
determines the following patient survival. In total, it covers more than 10 million datasets
with approximately 130 variables per patient [NIH-NCI 2017; Ries et al. 1999]. For
matching the final application scenario, the colorectal cancer subset is used, containing
554,687 samples.

Notably, the SEER incidence dataset does not cover any imaging modality but is rather
a collection of various demographic and disease-related information, i. e. consists of scalar
data. While a variety of architectures can perform well in this scenario, it was decided
to use an 8-layer feed-forward fully-connected network, adding residual connections to
improve the gradient flow (cf. [He et al. 2016; Orhan et al. 2018]). The final input consisted
of patient age, sex, year of birth, date of diagnosis, race, tumor laterality, and TNM-staging
based on the TNM staging system [Brierley et al. 2016; Katzmann et al. 2019b] widely
used in oncology.

The mean sojourn time® for colorectal cancer is approximated with 3 years [Zauber
et al. 2012]. As 5-year survival is a widely employed measure in oncology, too, two
experiments were conducted with 3-year and 5-year thresholds, respectively. In both cases,
the method is compared to the Cox PH model given the same input.

Based on empirical analysis, the model output granularity was set to k = 60 neurons, as
based on the loss formulation from Sec. 7.3.2, the overall performance is expected to only

4The formula for the concordance index as well as a discussion on its interpretation can be found in
Appendix C.

SFor a more detailed discussion on bootstrapping, please refer to Chapter 9.1

The term “mean sojourn time” denotes the time span until a positive outcome can be expected, i. e. as
other causes of death will be dominant again.
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CI MAE MedAE

Cox PH 3-y .689 [.689,.690] 11.8
Deep Model 3-y .653 [.652, .654] 8.49
Cox PH 5-y .682 [.681,.684] 18.2
Deep Model 5-y .660 [.659,.660] 13.3

11.7,11.8] 9.00 [9.00,9.00
8.46,8.51] 7.28[7.25,7.31
18.1,18.3] 13.6[13.0,14.0
13.3,13.4] 11.8[11.8,11.9

— ———
e | e

Table 7.1: Results on SEER incidence dataset with 95% confidence intervals (errors in
months)

slightly depend on k as long as it is chosen reasonably high to cover the desired granularity.
k should generally be chosen in such a way that the expected prediction standard error is
higher than the chosen output granularity so that no additional variance is introduced ’.

Rossi Criminal Recidivism dataset

As pointed out in Sec. 7.4, the criminal recidivism dataset describes the criminal recidivism
of individuals based on a study population of 432 cases. As it is publicly available and
often employed for event time prediction benchmarking (cf. [Fox et al. 2002]), it is used
as a proof of concept for small sample size applicability. More than that, it is also a
good example of sparse observations, as only 26.3% of the data have an observed event
(i. e. criminal recidivism). Each sample has a total of 9 variables, including the observation
interval, the event indicator (i. €. O=no event; 1=event within the observation interval), as
well as 7 additional covariates, including age, race, level of education, employment status,
work experience, marriage status, and financial aid. All variables were z-normalized.
Training and testing were done analogously to Sec. 7.4.1 and used the same network
architecture.

mCRC dataset

Finally, the model was evaluated using the mCRC dataset C from Chapter 65. As it was
already demonstrated that the lesion phenotype can be predictive for patient survival [Aerts
et al. 2014; Katzmann et al. 2018a,b], baseline/followup-pairs of single lesions have been
used to predict the overall patient survival in days after the first diagnosis. An example of
such a pair was depicted in Fig. 5.4. The lesions were extracted in accordance with the
already presented work (see Chapters 5-6).

The 