1,006 research outputs found

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    Cycle-accurate evaluation of reconfigurable photonic networks-on-chip

    Get PDF
    There is little doubt that the most important limiting factors of the performance of next-generation Chip Multiprocessors (CMPs) will be the power efficiency and the available communication speed between cores. Photonic Networks-on-Chip (NoCs) have been suggested as a viable route to relieve the off- and on-chip interconnection bottleneck. Low-loss integrated optical waveguides can transport very high-speed data signals over longer distances as compared to on-chip electrical signaling. In addition, with the development of silicon microrings, photonic switches can be integrated to route signals in a data-transparent way. Although several photonic NoC proposals exist, their use is often limited to the communication of large data messages due to a relatively long set-up time of the photonic channels. In this work, we evaluate a reconfigurable photonic NoC in which the topology is adapted automatically (on a microsecond scale) to the evolving traffic situation by use of silicon microrings. To evaluate this system's performance, the proposed architecture has been implemented in a detailed full-system cycle-accurate simulator which is capable of generating realistic workloads and traffic patterns. In addition, a model was developed to estimate the power consumption of the full interconnection network which was compared with other photonic and electrical NoC solutions. We find that our proposed network architecture significantly lowers the average memory access latency (35% reduction) while only generating a modest increase in power consumption (20%), compared to a conventional concentrated mesh electrical signaling approach. When comparing our solution to high-speed circuit-switched photonic NoCs, long photonic channel set-up times can be tolerated which makes our approach directly applicable to current shared-memory CMPs

    An Energy-Efficient Reconfigurable Circuit Switched Network-on-Chip

    Get PDF
    Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture for multi-tile System-on-Chip (SoC) architectures. The SoC architecture, including its run-time software, can replace inflexible ASICs for future ambient systems. These ambient systems have to be flexible as well as energy-efficient. To find an energy-efficient solution for the communication network we analyze three wireless applications. Based on their communication requirements we observe that revisiting of the circuit switching techniques is beneficial. In this paper we propose a new energy-efficient reconfigurable circuit-switched Network-on-Chip. By physically separating the concurrent data streams we reduce the overall energy consumption. The circuit-switched router has been synthesized and analyzed for its power consumption in 0.13 ¿m technology. A 5-port circuit-switched router has an area of 0.05 mm2 and runs at 1075 MHz. The proposed architecture consumes 3.5 times less energy compared to its packet-switched equivalen

    Energy-Efficient NoC for Best-Effort Communication

    Get PDF
    A Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture forMulti-Processor System-on-Chip (MPSoC) architectures. In an earlier paper we proposed a energy-efficient reconfigurable circuit-switched NoC to reduce the energy consumption compared to a packetswitched NoC. In this paper we investigate a chordal slotted ring and a bus architecture that can be used to handle the best-effort traffic in the system and configure the circuitswitched network. Both architectures are compared on their latency behavior and power consumption. At the same clock frequency, the chordal ring has the major benefit of a lower latency and higher throughput. But the bus has a lower overall power consumption at the same frequency. However, if we tune the frequency of the network to meet the throughput requirements of control network, we see that the ring consumes less energy per transported bit

    On-Line Dependability Enhancement of Multiprocessor SoCs by Resource Management

    Get PDF
    This paper describes a new approach towards dependable design of homogeneous multi-processor SoCs in an example satellite-navigation application. First, the NoC dependability is functionally verified via embedded software. Then the Xentium processor tiles are periodically verified via on-line self-testing techniques, by using a new IIP Dependability Manager. Based on the Dependability Manager results, faulty tiles are electronically excluded and replaced by fault-free spare tiles via on-line resource management. This integrated approach enables fast electronic fault detection/diagnosis and repair, and hence a high system availability. The dependability application runs in parallel with the actual application, resulting in a very dependable system. All parts have been verified by simulation

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Real-Time Task Migration for Dynamic Resource Management in Many-Core Systems

    Get PDF

    Design and Programming Methods for Reconfigurable Multi-Core Architectures using a Network-on-Chip-Centric Approach

    Get PDF
    A current trend in the semiconductor industry is the use of Multi-Processor Systems-on-Chip (MPSoCs) for a wide variety of applications such as image processing, automotive, multimedia, and robotic systems. Most applications gain performance advantages by executing parallel tasks on multiple processors due to the inherent parallelism. Moreover, heterogeneous structures provide high performance/energy efficiency, since application-specific processing elements (PEs) can be exploited. The increasing number of heterogeneous PEs leads to challenging communication requirements. To overcome this challenge, Networks-on-Chip (NoCs) have emerged as scalable on-chip interconnect. Nevertheless, NoCs have to deal with many design parameters such as virtual channels, routing algorithms and buffering techniques to fulfill the system requirements. This thesis highly contributes to the state-of-the-art of FPGA-based MPSoCs and NoCs. In the following, the three major contributions are introduced. As a first major contribution, a novel router concept is presented that efficiently utilizes communication times by performing sequences of arithmetic operations on the data that is transferred. The internal input buffers of the routers are exchanged with processing units that are capable of executing operations. Two different architectures of such processing units are presented. The first architecture provides multiply and accumulate operations which are often used in signal processing applications. The second architecture introduced as Application-Specific Instruction Set Routers (ASIRs) contains a processing unit capable of executing any operation and hence, it is not limited to multiply and accumulate operations. An internal processing core located in ASIRs can be developed in C/C++ using high-level synthesis. The second major contribution comprises application and performance explorations of the novel router concept. Models that approximate the achievable speedup and the end-to-end latency of ASIRs are derived and discussed to show the benefits in terms of performance. Furthermore, two applications using an ASIR-based MPSoC are implemented and evaluated on a Xilinx Zynq SoC. The first application is an image processing algorithm consisting of a Sobel filter, an RGB-to-Grayscale conversion, and a threshold operation. The second application is a system that helps visually impaired people by navigating them through unknown indoor environments. A Light Detection and Ranging (LIDAR) sensor scans the environment, while Inertial Measurement Units (IMUs) measure the orientation of the user to generate an audio signal that makes the distance as well as the orientation of obstacles audible. This application consists of multiple parallel tasks that are mapped to an ASIR-based MPSoC. Both applications show the performance advantages of ASIRs compared to a conventional NoC-based MPSoC. Furthermore, dynamic partial reconfiguration in terms of relocation and security aspects are investigated. The third major contribution refers to development and programming methodologies of NoC-based MPSoCs. A software-defined approach is presented that combines the design and programming of heterogeneous MPSoCs. In addition, a Kahn-Process-Network (KPN) –based model is designed to describe parallel applications for MPSoCs using ASIRs. The KPN-based model is extended to support not only the mapping of tasks to NoC-based MPSoCs but also the mapping to ASIR-based MPSoCs. A static mapping methodology is presented that assigns tasks to ASIRs and processors for a given KPN-model. The impact of external hardware components such as sensors, actuators and accelerators connected to the processors is also discussed which makes the approach of high interest for embedded systems
    corecore