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Abstract
Dynamic resource management strategies in embedded many-core systems rely on task migration to
adapt the deployment (mapping) of applications dynamically, e.g., for thermal/power management
or load balancing. In case of hard real-time applications, however, the current practice of on-line
application adaptation is limited to reconfiguring the whole application between a set of statically
computed mappings with statically verified timing guarantees. This heavily restricts the application’s
adaptability. To enable hard real-time task migrations in many-core systems without relying on a
static analysis, this paper presents (i) a predictable task migration mechanism supported with (ii) a
lightweight migration timing analysis and (iii) a lightweight migration timing feasibility check which
can be applied on-line to bound on the worst-case temporal overhead of a migration and examine
the admissibility of this overhead w.r.t. the hard real-time requirements of the application. For a
variety of applications and many-core platforms, we experimentally demonstrate the feasibility of
hard real-time task migrations, the lightness of the proposed timing analysis and feasibility check for
on-line use, and the advantage of the proposed task migration approach over mapping reconfiguration
as the state-of-the-art real-time adaptation approach for many-core systems.
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1 Introduction

The ever-increasing number of applications hosted on a shared multi/many-core platform in
modern embedded systems engenders a highly dynamic environment: Different applications
are launched and terminated on demand and independently from each other, running
applications are exposed to workload variation and fluctuating performance requirements,
and platform resources may become unavailable unexpectedly, e.g., due to the emergence of
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Figure 1 A heterogeneous tiled many-core architecture. Tiles are interconnected by a NoC. Each
tile comprises a set of cores, a set of memories, and a network adapter, interconnected via buses.

thermal hot spots or hardware faults. Such events are typically addressed using dynamic
resource management strategies which adapt the deployment of running applications. These
strategies chiefly rely on task migration for rearranging the applications.

Migration-based resource management strategies can be viewed as an ensemble of two
components: a migration policy and a migration mechanism. The migration policy determines
which task(s) must be migrated when and whereto. A major factor taken into account during
this selection process is the overhead associated with each migration option, e.g., the latency
or the resource requirement of the migration process. These overheads are primarily a
byproduct of the underlying migration mechanism which determines how a migration is
performed. The choice of migration mechanism, in turn, depends on the target hardware
architecture, particularly, its interconnection scheme and memory organization.

Many-core platforms, e.g. [8, 21, 36], are typically organized as a set of tiles with a Network-
on-Chip (NoC) interconnection and a distributed No Remote Memory Access (NORMA)
storage scheme for scalability [26], see, e.g., Fig. 1. Each tile comprises a set of cores, a
set of memories, and a Network Adapter (NA), interconnected via a set of memory buses.
This infrastructure enables the transmission of messages both between cores located on the
same tile (intra-tile transmission) and between cores located on different tiles (inter-tile
transmission). In the context of task migration, intra-tile task migrations are realized through
the on-tile memories, oftentimes implicitly. The distributed memory scheme between tiles,
however, necessitates inter-tile task migrations to be realized by explicit relocation of the
task context between the source and destination tiles over the NoC.

Motivation. Existing works in the area of real-time task migration are either tailored to
soft real-time constraints and try to reduce the number of deadline misses [1, 6], or assume a
universal shared-memory scheme which, in the context of many-core systems, restricts their
scope of applicability to intra-tile migrations only [19, 38]. Recently, composable many-core
systems have emerged, primarily to cope with the immense systems dynamism and design
complexity [2, 17, 41]. In a composable many-core system, e.g. [17], running applications
are decoupled from each other using explicit reservation of resources (or resource budgets)
required by each application so as to establish a spatial and/or temporal isolation between
concurrent applications [2, 23]. This enables the worst-case temporal behavior of each
application to be analyzed based on its reserved resources (or resource budgets), irrespective
of the choice and behavior of the other applications that may run concurrently.

Contribution. In this paper, we exploit system composability to enable hard real-time
task migrations without relying on a static timing analysis and verification. To that end,
we present (i) a predictable migration mechanism which complies with the storage- and
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communication schemes of many-core systems and can be employed for both intra- and inter-
tile migrations, even in the case of migrations between cores of different types. We supply
the proposed migration mechanism with (ii) a lightweight migration timing analysis which
can be used on-line to calculate a safe bound on the worst-case latency of each migration
process. To verify the real-time conformity of a migration, we then present (iii) a lightweight
migration timing feasibility check which examines the admissibility of the migration latency
w.r.t. the given hard real-time deadline of the application and the changes in its timing
behavior during and after the migration. Our experimental results demonstrate the feasibility
of hard real-time task migrations, the lightness of the proposed timing analysis and feasibility
check for on-line use, and the advantage of the proposed task migration approach over the
state-of-the-art hard real-time adaptation approach, namely, mapping reconfiguration.

2 Related Work

A large body of work exists on task migration in multi/many-core systems used for load
balancing [4, 14, 22], temperature balancing [16, 24, 27], or fault resilience [3, 37]. They,
however, either (i) rely on assumptions about the platform which do not necessarily apply to
embedded many-core platforms, or (ii) disregard the temporal overhead of migration, making
them inapplicable for hard real-time applications. For instance, in [1, 5, 19, 20, 30, 37], a
globally shared-memory scheme is assumed for context migration while many-core systems
typically manifest a distributed NORMA scheme [26]. Likewise, the migration approaches
in [1, 12, 15, 27, 30] rely on a full/partial static replication of tasks on every memory in the
system, which imposes an immense storage overhead that is often not tolerable in embedded
many-core systems. From a predictability viewpoint, only a few existing migration approaches
investigate the timing overhead of task migration [1, 6, 19, 38]. They, however, either assume
soft real-time requirements and do not provide timing guarantees [1, 6] or investigate hard
real-time task migration but rely on assumptions such as a globally shared-memory scheme
which makes them inapplicable for inter-tile migrations in many-core systems [19, 38].

In the context of dynamic many-core systems, existing approaches [11, 32, 33, 40] for
hard real-time application adaptation verify the admissibility of migration overhead using
compute-intensive static timing analyses. Authors in [11] investigate real-time system
reconfigurations between statically known system modes, each corresponding to a unique
choice and deployment of active applications. Since the number of system modes and
migrations per mode transition grows exponentially with the number of applications, this
approach is generally not considered a viable solution for highly dynamic systems. To
improve scalability, authors in [32, 33, 40] investigate per-application composable mapping
reconfigurations in which each running application can be independently reconfigured between
a set of statically computed mappings without affecting the other running applications.

In this paper, we present a task migration mechanism and timing analysis which, compared
to mapping reconfiguration, enables a finer adaptation granularity as it empowers the real-
time migration of any subset of an application’s tasks without relying on a static analysis.
Contrarily to existing migration solutions, our approach complies with the distributed
memory scheme of embedded many-core systems. It is supported with a lightweight timing
analysis and feasibility check which bound the worst-case temporal overhead of the migration
processes at run time and examine the admissibility of this overhead w.r.t. the application
deadline and the changes in its timing behavior during and after the migrations.

NG-RES 2020
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3 System Model

3.1 Platform Architecture
The target many-core platform is assumed to be organized as a set of (possibly heterogeneous)
tiles interconnected by a Network-on-Chip (NoC), see, e.g., Fig. 1. Each tile comprises a set
of homogeneous cores, memories, and a Network Adapter (NA), interconnected via buses.

Composability. The platform is assumed to be devoid of timing anomalies [35] and fully
composable [2, 17], so that applications can share resources without affecting each other’s
worst-case timing behavior. Composability is established by means of exclusive reservation of
resources (or reservation of periodic time budgets on resources) per application at its launch
time. To establish this scheme, each potentially shared resource, i.e., core, bus, NoC link,
and NA, must have a contentionless time-triggered arbitration policy, e.g., Time-Division
Multiplexing (TDM) or Weighted Round-Robin (WRR). In this context, the worst-case
timing behavior of each application can be analyzed based on its required resources (or
resource budgets). As a result, as long as the reserved resource budgets of an application
remain intact, its analyzed worst-case timing guarantees will hold, regardless of the presence
and the behavior of other applications which utilize the remaining budget of these resources.

Memory Model. We consider a distributed NORMA scheme between tiles which is common
for many-core systems [26]. Under this memory scheme, inter-tile data exchanges are realized
by means of explicit message passing between communicating tiles over the NoC, while intra-
tile data exchanges are realized through dedicated spaces in the memories on the respective tile.
To achieve storage composability, the memory space in each tile is dynamically partitioned
among tasks executed on it and messages produced and/or consumed on it.

NoC Model. The NoC is assumed to have a wormhole-switched- [29] and credit-based
virtual-channel [7] flow control, see, e.g., the NoC in [18]. Under wormhole switching, packets
are decomposed into so-called flits which are routed independently from each other in pipeline.
Virtual channels provide multiple buffers per link which enables transmission preemption and
composable link sharing among multiple communication flows. For each flow, the required
bandwidth budget can be reserved on each link located on its transmission route, and its
transfer latency can be analyzed based on its reserved budget, irrespective of the other flows.

3.2 Application and Mapping
We consider data-flow applications with a hard real-time constraint on their end-to-end
latency (makespan), denoted as the application deadline. Each application is specified by an
acyclic task graph (DAG) GP (T ∪M,E) where T denotes the set of tasks and M denotes
the set of unicast messages, each exchanged between one pair of tasks. E is a set of directed
edges which represent data dependencies among tasks and messages. For each task t∈T ,
the Worst-Case Execution Time (WCET) Ct per core type, the minimum interarrival time
Pt, and the maximum context size Bt are given. For each message m∈M , the minimum
interarrival time Pm and the maximum payload size Bm are given.

To execute an application, a so-called mapping of it on the platform is used which specifies
(i) the binding and budget of the tasks on cores and (ii) the routing and budget of the
inter-tile messages on the NoC. The Worst-Case Response Time (WCRT) Lt of each task
t∈T and the Worst-Case Traversal Time (WCTT) Lm of each message m∈M are derived
based on the budget reserved for each task (message) on its bound core (NoC route). For
this purpose, we use the timing analysis from [31].
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4 Real-Time Task Migration

Resource management in many-core systems, particularly, the migration of tasks, is typically
controlled and operated by a so-called Run-time Manager (RM), see [39] for an overview.
In the following, we consider a scenario where, during the execution of an application,
task migration becomes necessary to address a run-time event, e.g., a thermal hot spot.
Assume that the RM has selected a subset of the application’s tasks for migration to different
destinations. Before starting the migrations, the RM must first check the availability of
resources required by each migrating task. These are (i) the target core, (ii) the post-migration
NoC routes for inter-tile messages to/from the migrating task, and (iii) migration routes for
data transfer between the source and destination tiles in case of inter-tile migrations.

In a non-real-time context, the RM performs the migrations after the availability of the
required resources for all migrating tasks is verified. In a hard real-time context, however,
the migrations can take place only after the RM also verifies that (iv) the timing overhead
imposed during the migrations and (v) the changes in the timing behavior of the application
after the migrations cannot lead to a violation of its real-time deadline. To enable this
verification, in Section 4.1 we present a migration mechanism that enables the RM to migrate
tasks in a predictable fashion and transparently to the application. In Section 4.2, we present
a migration timing analysis which enables the RM to bound the worst-case latency of the
steps involved in the migration of each task and, then, the end-to-end latency of the multi-task
migration process. In Section 4.3, we present a migration timing feasibility check which
enables the RM to verify the real-time conformity of the migrations w.r.t. the end-to-end
migration latency and the changes in the timing behavior of the application during and after
the migrations. Finally, we present an illustrative example in Section 4.4 and elaborate on
the run-time overhead and complexity of our approach in Section 4.5.

4.1 Migration Mechanism
This section presents a task migration mechanism which enables the RM to perform task
migrations in a predictable manner and transparently to the application. Our migration
mechanism is non-preemptive. This enables migrations between heterogeneous cores using
fat binaries without requiring source code modification and state transformation mechanisms
which are typically not available in embedded systems. A fat binary comprises a set of
binaries, one per Instruction Set Architecture (ISA), from which the fitting binary is selected
at the migration destination, see [28]. We distinguish between intra- and inter-tile migrations:

Intra-Tile Task Migration. If a task is to be migrated between two cores on the same
tile, the migration is realized implicitly via the memories on the tile. Here, the RM simply
schedules the task for its next execution iteration (job) on the target core instead of the
source core. The latency of this process can be safely bounded by the (known) worst-case
context-switch latency LOS of the operating system.

Inter-Tile Task Migration. Migrating a task between different tiles requires an explicit
transfer of the task’s dataset between the source and destination tiles. To that end, first
the execution of the migrating task is suspended non-preemptively, i.e., after completing its
current job. At the same time, its input/output (i/o) messages are suspended by blocking the
injection of new messages into the NoC while allowing the already-injected messages to reach
their destination node. The former ensures execution consistency between the jobs executed
before the migration and the jobs executed after the migration, while the latter is crucial

NG-RES 2020



5:6 Real-Time Task Migration for Many-Core Systems

to prevent communication inconsistencies that may arise, e.g., due to out-of-order delivery
or even loss of input messages if they arrive at the old location after the migration process.
Note that system services such as message forwarding or buffer reordering for resolving these
issues are not typical for embedded systems. After the current job is completed and the i/o
messages are suspended, the relocation process between the migration source- and destination
tiles begins. In this step, the task’s context, its unprocessed input messages, and its blocked
output messages – all residing in the source tile’s memory – are relocated to the destination
tile. The task’s execution is resumed after the relocation process has completed.

4.2 Migration Timing Analysis
This section presents a migration timing analysis that enables the RM to bound the worst-case
end-to-end latency of migration processes. To that end, let T̂ ⊆ T denote the set of tasks
selected for inter-tile migration. Also, let function Mio(t) provide the set of input and output
messages of task t ∈ T . For each task t ∈ T̂ , the worst-case migration latency consists of
two components: (i) suspension latency δsusp(t) and (ii) relocation latency δreloc(t). In the
following, we present a lightweight timing analysis to bound the suspension- and relocation
latency of each migrating task, and, subsequently, the end-to-end latency of the multi-task
migration process for the two predominant cases of sequential and parallel migrations.

4.2.1 Suspension Latency
The suspension process of a migrating task t ∈ T̂ – which begins after the current job of t
has completed – involves two parallel operations: (i) storing the state of t in the tile memory
and (ii) suspending the i/o messages of t. State storage is performed by the operating system.
The latency of this process is bounded by the (known) worst-case context-switch latency LOS

of the operating system. Communication suspension is realized by blocking the injection of
new input messages and output messages of the migrating task into the NoC and allowing
the already-injected i/o messages to reach their destination. In the worst case, the suspension
process is initiated right after the i/o messages are injected into in the NoC. Since each
message m is guaranteed to be transmitted within its WCTT Lm, the worst-case latency
for suspending all i/o messages of t can be bounded by the largest WCTT among its i/o
messages. Taking into account the two parallel operations above, (i) and (ii), the worst-case
suspension latency δsusp(t) of each migrating task t ∈ T̂ can be bounded as:

δsusp(t) = max
{
LOS , max

m∈Mio(t)
{Lm}

}
(1)

4.2.2 Relocation Latency
The relocation of a migrating task t ∈ T̂ begins only after t is suspended and involves the
transfer of the migration dataset of t from the memory on the source tile to the destination tile.
The migration dataset denotes the data required for a seamless resumption of t’s execution at
the destination tile. It contains t’s context (code, state, etc.) of size Bt and its unprocessed
input- and blocked output messages m ∈Mio(t), residing in the source tile’s memory. Thus,
the size of the migration dataset for task t ∈ T̂ is bounded by Bmig(t) = Bt +

∑
m∈Mio(t) Bm,

where Bm denotes the maximum payload size of message m.
The migration dataset is transferred to the destination tile in three steps: (i) the NA on

the source tile reads the dataset from the memory, decomposes it into flits, and injects the
flits into the NoC. (ii) The flits are then transferred over the NoC to the destination tile.
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Finally, (iii) the NA on the destination tile reconstructs the dataset from the flits and stores
it in the memory. The worst-case relocation latency δreloc(t) of a task t ∈ T̂ can be bounded
using Eq. (2). Here, the first term bounds the latency of steps (i) and (iii), which we derive
using the NA latency analysis from [31]. Note that the source and destination NAs have
identical worst-case latencies, as they read/write the same amount of data Bmig(t) from/to
the memories. The second term in Eq. (2) bounds the NoC latency for transferring Bmig(t)
over the migration route ρmig(t), which we derive using the NoC latency analysis from [33].
Both NA- and NoC analyses [31, 33] are lightweight and can be used on-line.

δreloc(t) = 2× LNA

(
Bmig(t)

)
+ LNoC

(
Bmig(t), ρmig(t)

)
(2)

4.2.3 End-To-End Migration Latency
The end-to-end migration latency denotes the overall time overhead imposed on the regular
execution of the application due to the migration of one or more tasks. It reflects the interval
between the moment when the state storage of the first migrating task begins and the moment
when the relocation processes for all migrating tasks are completed. In case of a single-task
migration, the end-to-end migration latency is bounded by the sum of the suspension time
δsusp(t) and the relocation time δreloc(t) of that task t. If multiple tasks are to be migrated,
the migrations may be performed (i) in parallel or (ii) sequentially. These two approaches
enable the RM to draw a trade-off between the end-to-end migration latency and the amount
of NoC budget that must be reserved for establishing the migration routes.

Parallel Migrations. In case of parallel migrations, for each migrating task t, a suspension
latency δsusp(t) and a relocation latency δreloc(t) is imposed. Thus, the end-to-end latency of
parallel migrations can be bounded using Eq. (3). Note that parallel migrations are possible
only if sufficient budget on NoC links is available so that the RM can reserve a migration
route ρmig(t) for each migrating task t ∈ T̂ . Congestion could then particularly occur when
multiple migrating tasks have overlapping migration routes.

δparmig(T̂ ) = max
t∈T̂

{
δsusp(t) + δreloc(t)

}
(3)

Sequential Migrations. In case of a sequential relocation of tasks, the end-to-end migration
latency depends on the order in which the migrating tasks are relocated. Here, it may happen
that the suspension of those tasks that are decided to be migrated first takes longer than the
suspension of those that are decided to be migrated after the former. As a result, the latter
suffer an idle time before the relocation of the former begins. Here, the worst-case scenario
arises when (i) the task t′ ∈ T̂ chosen to be migrated first is the one with the highest WCRT,
i.e., Lt′ = maxt∈T̂ {Lt}, (ii) the suspension request is issued right after t′ starts its execution
iteration, and (iii) at least one other migrating task t̃ ∈ T̂ has finished its execution iteration
and updated its state in the memory prior to the suspension request. In this situation, t̃
undergoes the highest possible idle time before the relocation of the first migrating task t′
begins. This idle time is guaranteed not to exceed the sum of t′’s WCRT Lt′ and worst-case
suspension time δsusp(t′). Thus, the worst-case migration latency for a sequential relocation
of migrating tasks can be bounded as:

δseqmig(T̂ ) = max
t∈T̂

{
Lt + δsusp(t)

}
+
∑
t∈T̂

δreloc(t) (4)

NG-RES 2020
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4.3 Migration Timing Feasibility Check
Task migration affects the temporal behavior of the application twofold: First, the regular
execution of migrating tasks and the injection of their i/o messages into the NoC are
suspended during the migration process. Second, the WCRT of each migrating task and
the WCTT of its i/o messages may change after the migration; The WCRT of a task may
change, e.g, if its pre- and post-migration cores are heterogeneous. The WCTT of a message
may change, e.g., if its pre- and post-migration NoC routes have different lengths.

We present a lightweight migration timing feasibility check to enable the RM to examine
whether performing a given set of migrations can lead to the violation of the application’s
deadline, taking into account the worst-case migration latency as calculated in Section 4.2
and the changing timing behavior of the application during and after the migrations. The
migration timing feasibility check must verify that the application deadline will be respected
by the end-to-end latency of each application input which either (i) arrives before the
migrations and is processed by some migrating tasks before their migration and by some
others after their migration or (ii) arrives during/after the migrations and is, therefore,
processed by the migrating tasks after their migration. We examine the satisfaction of the
given application deadline for both of these cases simultaneously by calculating a safe upper
bound on the end-to-end latency of any application input as follows:
i For each migrating task t ∈ T̂ , the post-migration WCRT L′

t is calculated using the
response time analysis from [31]. For all other tasks t ∈ T \T̂ , we consider L′

t = Lt.
ii For each message m∈M to/from the migrating tasks, the post-migration WCTT L′

m is
calculated using the traversal time analysis from [31]. For other messages, L′

m = Lm.
iii For each application task/message x ∈ T ∪M , a safe bound on x’s pre- and post-migration

latency is derived as L̂x =max{Lx, L
′
x}, referred to as the compound latency of x.

iv The latency of the longest path in the application DAG is derived using the DFS
algorithm [13] where the compound latency of each task/message is used as its weight.
The result is referred to as the compound application latency and denoted by L̂app.

The compound application latency L̂app provides a safe bound on the end-to-end latency
of any application input whose processing may be affected by the migrations in question.
Therefore, the RM can check the real-time conformity of the migrations by verifying that
L̂app + δmig(T̂ ) does not exceed the given application deadline. Here, L̂app bounds the end-
to-end latency of the application and δmig(T̂ ) (derived in Section 4.2) bounds the end-to-end
latency of the migrations.

4.4 Example
Consider the exemplary application depicted in Fig. 2a which is mapped on four tiles of a
many-core architecture as shown in Fig. 2b. The application tasks t0–t6 communicate with
each other via messages m0–m7. For brevity, the NoC routes of messages and the internal
layout of tiles (including the binding of tasks to cores, the memories, and the NAs) are not
depicted in Fig. 2b. The WCRT Lt of each task t and the WCTT Lm of each message m are
also given in Fig. 2a. Assume a scenario where the RM has selected tasks t1–t3 for migration
to the destinations indicated by red arrows in Fig. 2b. Task t1 is selected for intra-tile
migration, whereas tasks t2 and t3 are selected for inter-tile migration, thus, T̂ = {t2, t3}.

To check whether the migration of t2 and t3 can lead to the violation of the application’s
deadline, the RM first calculates the end-to-end latency of the migrations. Assuming a
context-switch latency of LOS = 1, Eq. (1) bounds the suspension latency of the migrat-
ing tasks as δsusp(t2) = max{1,max{2, 3}} = 3 and δsusp(t3) = max{1,max{1, 3, 0, 3}} = 3.
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Figure 2 (a) Example application annotated with pre-/post-migration latencies of tasks and
messages and (b) its pre-migration mapping on the chip, used in the illustrative example in Section 4.4.

Then, assuming relocation latencies of δreloc(t2) = 4 and δreloc(t3) = 6, the end-to-end migra-
tion latency of t2 and t3 is guaranteed not to exceed δparmig(T̂ ) = max {(3 + 4), (3 + 6)} = 9
in case of parallel migrations, or δseqmig(T̂ ) = max {(10 + 3), (7 + 3)}+ (4 + 6) = 23 in case of
sequential migrations, derived using Eq. (3) and Eq. (4), respectively.

For migration timing feasibility check, assume that the RM has derived – using the
analysis from [31] – the post-migration WCRT L′

t of each migrating task t ∈ T̂ and the
post-migration WCTT L′

m of t’s i/o messages m ∈Mio(t) as given in Fig. 2a. Based on
these, the compound application latency is bounded to L̂app = 53, following steps (i)–(iv)
in Section 4.3. Recall that L̂app = 53 bounds the end-to-end latency of application inputs that
are affected by the migration process. In our example, this is the latency for an input that
passes through t0, m1, t2, and m3 before the migrations, is blocked at the input buffer of t3
prior to the migration process, is relocated with t3 during the migrations, and passes through
t3, m5, t5, m7, and t6 after the migrations. Based on the latency bounds above, the RM
performs the migrations only if the application deadline is at least δparmig(T̂ )+L̂app=9+53=62
in case of parallel migrations, or δseqmig(T̂ )+L̂app=23+53=76 in case of sequential migrations.

4.5 Run-Time Overhead and Complexity

Any analysis targeted for on-line use must be lightweight so as to introduce an acceptable
overhead for the RM. In the following, we elaborate on the computational complexity of
the proposed migration timing analysis and feasibility check. Note that the WCRT and
WCTT analyses adopted from [31], and the NA- and NoC latency analyses adopted from [31]
and [33], respectively, are constant-time non-iterative operations with a complexity of O(1).

The migration timing analysis presented in Section 4.2 embodies a 2-level nested loop
where the outer loop iterates through migrating tasks and the inner loop iterates through
their i/o messages. Since each message is unicast (has one producer and one consumer,
see Section 3.2), the inner loop can have a maximum total of 2 |M | iterations, resulting in a
linear time complexity of O(|T |+ 2 |M |) = O(|T |+ |M |) for the migration timing analysis.

For the migration timing feasibility check, the main compute overhead stems from the
calculation of the compound application latency in steps (i)–(iv) in Section 4.3. Here,
steps (i)–(iii) are implemented by simple loops with a computational complexity of O(|T |),
O(|M |), and O(|T |+ |M |), respectively. Having the application DAG provided as adjacency
lists, the DFS algorithm in step (iv) will have a complexity of O(|T |+ |M |). Therefore, the
migration timing feasibility check presented in Section 4.3 has a linear time complexity of
O(|T |+ |M |). When examining the real-time conformity of a (possibly multi-task) migration,
the RM applies the migration timing analysis and the feasibility check in succession. This
introduces a compute overhead of linear time complexity O(|T |+ |M |) for the RM, rendering
the proposed migration timing analysis and feasibility check scalable for on-line use.
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5 Experimental Results

For our experiments, we consider two heterogeneous tiled many-core architectures with 6×6
and 8×8 tiles, respectively. Each tile is composed of four homogeneous cores while each
platform comprises tiles of three different core types. Every shared resource (core, bus, NA,
and NoC link) has a WRR arbitration policy. For the NoC, the XY-routing algorithm [29] is
used. We consider four hard real-time applications from areas of automotive (18 tasks, 21
messages), telecommunication (14 tasks, 20 messages), consumer (11 tasks, 12 messages), and
networking (7 tasks, 9 messages) provided by the Embedded System Synthesis Benchmarks
Suite (E3S) [10]. To obtain a set of mappings for each application per architecture, we use
the OpenDSE framework [34] to perform a Design Space Exploration (DSE), employing the
NSGA-II evolutionary algorithm [9] provided by the Opt4J optimization framework [25].
The DSE is performed over 1, 000 generations and retains a population of 100 mappings. It
optimizes the mappings w.r.t. five design objectives to be minimized: (i) distance to the hard
real-time application deadline (set to 80% of the aggregate interarriavl time of tasks and
messages on the longest path) evaluated using the analysis from [31], (ii) energy consumption
evaluated based on [10] for cores and [42] for buses/NoC links with wire lengths of 5mm
and 2mm, respectively, and (iii)–(v) number of allocated cores from each of the three core
types. The DSE provides a set of Pareto-optimal mappings Vi per application i.

In our experiments, we investigate the feasibility and the effectiveness of the proposed
real-time task migration approach in a case study on adaptive thermal management of
many-core systems. Consider the scenario in which a real-time application i is launched
using one of its precomputed mappings v ∈ Vi. During the execution of the application,
the RM identifies the emergence of a thermal hot spot around one of the cores in use by
the application which, consequently, necessitates the evacuation of the thermally affected
core while guaranteeing that the evacuation process will not lead to the violation of the
application’s deadline. For the evacuation, we consider two adaptation approaches:

(i) Mapping Reconfiguration. In this approach, the RM reconfigures the application to
another one of its precomputed mappings which does not depend on the thermally affected
core. To that end, the RM iterates through the mappings v′∈Vi\{v} and checks per mapping
(i) the availability of its required cores and NoC routes, (ii) the availability of migration
routes for the relocation of (potentially all) tasks, and (iii) the real-time conformity of the
reconfiguration process. We implement this approach using the mapping reconfiguration
mechanism and timing analysis from [33] which are developed based on a sequential migration
of tasks. This approach represents the state of the art in hard real-time application adaptation.
Here, the evacuation of the thermally affected core is considered successful iff a mapping is
found which passes both the resource checks, (i) and (ii), and the timing check, (iii).

(ii) Task Migration. In this approach, the RM migrates only those tasks that are running
on the thermally affected core. We implement this approach using the proposed migration
mechanism, supported by our migration timing analysis and timing feasibility check for the
worst-case timing verification of the migrations. For the sake of comparability with mapping
reconfiguration, the migrations are performed sequentially. For a migration-based evacuation,
the RM iterates through the platform tiles (excluding the heated tile) and checks for each
candidate tile, (i) the availability of a free core, (ii) the availability of NoC routes for i/o
messages of the migrating tasks after the migration, and (iii) the availability of a NoC route
for the relocation of migrating tasks. If the availability of all required resources is verified,
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Figure 3 Success rate of task migration and mapping reconfiguration at different background
utilization levels. The plots in each column (or row) correspond to one application (or architecture).

the RM performs (iv) the migration timing analysis and feasibility check. If the required
resources are not available or the timing check is not passed, the RM continues its search
through the remaining tiles. The evacuation is considered successful iff a destination tile is
found with passes both the resource checks, (i)–(iii), and the timing check, (iv).

We perform the evacuation experiment for each mapping v ∈ Vi of each application i as
follows: First, application i is launched on an empty platform using mapping v. Then, we
introduce additional (background) load into the system by iteratively occupying free resources
(cores and NoC links) at random, thereby, generating different background utilization levels.
At each utilization level, we then iterate through the cores in use by the application and,
in each iteration, mark one core as an emerging hot spot so that its evacuation becomes
necessary in near future. Then, for each investigated approach, i.e., mapping reconfiguration
and task migration, we check whether the affected core can be evacuated successfully.

Evacuation Success. For each background utilization level, we record the evacuation
success of each approach. Figure 3 illustrates the success rate of the two approaches versus
background utilization level per application (plot column) on each architecture (plot row).
The reported results are an average over five runs of DSE per application and architecture
and 20 repetitions of the run-time thermal management experiment per DSE to incorporate
diverse mixes of preoccupied resources for each background utilization level. The obtained
results offer two major insights: First, the high success rate of task migration demonstrates the
practicality of task migration also in a hard real-time context. Second, compared to mapping
reconfiguration, task migration offers a substantially higher success rate, demonstrating its
advantage over mapping reconfiguration as a real-time deployment adaptation approach.
Among all applications and architectures, task migration exhibits an up to 95% higher success
rate (35% on average), compared to mapping reconfiguration. This success difference roots
in three advantages of task migration over mapping reconfiguration: Since it often involves
the relocation of only a subset of the application’s tasks, task migration (i) requires a smaller
set of resources which increases its chances of passing the resource checks, (ii) imposes a
lower timing overhead which increases its chances of passing the timing check, and, thanks
to its lightweight timing analysis and feasibility check, (iii) enables the RM to consider all
possible adaptation options instead of a restricted set of statically computed options.
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Run-Time Overhead. During the RM’s search for a destination tile, the application contin-
ues its regular execution. Thus, the overhead of the search process is not critical w.r.t. the
real-time constraints. However, to fit for on-line use, this overhead – which is mainly due to
the resource- and timing checks – must be acceptable. In Section 4.5, we demonstrated the
scalability of the proposed analyses which were shown to exhibit a linear time complexity
of O(|T | + |M |). To assess their overhead in absolute time, in the thermal management
experiment, we also record the time spent during the RM’s search process before the first
destination is found which passes both the resource- and the timing checks – performed on an
Intel i7-4770 CPU at 3.4GHz with 32GiB of RAM. The records denote an average overhead
of 1.08ms (standard deviation of 0.16ms) for the resource checks and 0.57ms (standard
deviation of 0.06ms) for the timing check. According to the results, the overhead of the
proposed migration timing analysis and feasibility check is by an average of 47% lower than
that of the resource check which verifies their lightness of for on-line use.

6 Conclusion

In this paper, we proposed a predictable migration mechanism supported with a migration
timing analysis and feasibility check to enable hard real-time task migrations in composable
many-core systems. The proposed migration mechanism complies with the distributed
memory scheme of many-core systems, and its supporting analysis is lightweight and, therefore,
applicable for on-line use. Experimental results demonstrate the feasibility of hard real-
time task migrations, the lightness of the proposed timing analysis and feasibility check for
on-line use, and the advantage of the proposed task migration mechanism over mapping
reconfiguration as the state-of-the-art hard real-time adaptation approach.
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