18,688 research outputs found

    A new class of wavelet networks for nonlinear system identification

    Get PDF
    A new class of wavelet networks (WNs) is proposed for nonlinear system identification. In the new networks, the model structure for a high-dimensional system is chosen to be a superimposition of a number of functions with fewer variables. By expanding each function using truncated wavelet decompositions, the multivariate nonlinear networks can be converted into linear-in-the-parameter regressions, which can be solved using least-squares type methods. An efficient model term selection approach based upon a forward orthogonal least squares (OLS) algorithm and the error reduction ratio (ERR) is applied to solve the linear-in-the-parameters problem in the present study. The main advantage of the new WN is that it exploits the attractive features of multiscale wavelet decompositions and the capability of traditional neural networks. By adopting the analysis of variance (ANOVA) expansion, WNs can now handle nonlinear identification problems in high dimensions

    Adaptive transient solution of nonuniform multiconductor transmission lines using wavelets

    Get PDF
    Abstract—This paper presents a highly adaptive algorithm for the transient simulation of nonuniform interconnects loaded with arbitrary nonlinear and dynamic terminations. The discretization of the governing equations is obtained through a weak formula-tion using biorthogonal wavelet bases as trial and test functions. It is shown how the multiresolution properties of wavelets lead to very sparse approximations of the voltages and currents in typical transient analyzes. A simple yet effective time–space adaptive al-gorithm capable of selecting the minimal number of unknowns at each time iteration is described. Numerical results show the high degree of adaptivity of the proposed scheme. Index Terms—Electromagnetic (EM) transient analysis, multi-conductor transmission lines (TLs), wavelet transforms. I

    Lattice dynamical wavelet neural networks implemented using particle swarm optimization for spatio-temporal system identification

    No full text
    In this brief, by combining an efficient wavelet representation with a coupled map lattice model, a new family of adaptive wavelet neural networks, called lattice dynamical wavelet neural networks (LDWNNs), is introduced for spatio-temporal system identification. A new orthogonal projection pursuit (OPP) method, coupled with a particle swarm optimization (PSO) algorithm, is proposed for augmenting the proposed network. A novel two-stage hybrid training scheme is developed for constructing a parsimonious network model. In the first stage, by applying the OPP algorithm, significant wavelet neurons are adaptively and successively recruited into the network, where adjustable parameters of the associated wavelet neurons are optimized using a particle swarm optimizer. The resultant network model, obtained in the first stage, however, may be redundant. In the second stage, an orthogonal least squares algorithm is then applied to refine and improve the initially trained network by removing redundant wavelet neurons from the network. An example for a real spatio-temporal system identification problem is presented to demonstrate the performance of the proposed new modeling framework

    Lattice dynamical wavelet neural networks implemented using particle swarm optimisation for spatio-temporal system identification

    Get PDF
    Starting from the basic concept of coupled map lattices, a new family of adaptive wavelet neural networks, called lattice dynamical wavelet neural networks (LDWNN), is introduced for spatiotemporal system identification, by combining an efficient wavelet representation with a coupled map lattice model. A new orthogonal projection pursuit (OPP) method, coupled with a particle swarm optimisation (PSO) algorithm, is proposed for augmenting the proposed network. A novel two-stage hybrid training scheme is developed for constructing a parsimonious network model. In the first stage, by applying the orthogonal projection pursuit algorithm, significant wavelet-neurons are adaptively and successively recruited into the network, where adjustable parameters of the associated waveletneurons are optimised using a particle swarm optimiser. The resultant network model, obtained in the first stage, may however be redundant. In the second stage, an orthogonal least squares (OLS) algorithm is then applied to refine and improve the initially trained network by removing redundant wavelet-neurons from the network. The proposed two-stage hybrid training procedure can generally produce a parsimonious network model, where a ranked list of wavelet-neurons, according to the capability of each neuron to represent the total variance in the system output signal is produced. Two spatio-temporal system identification examples are presented to demonstrate the performance of the proposed new modelling framework

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Wavelet-Based High-Order Adaptive Modeling of Lossy Interconnects

    Get PDF
    Abstract—This paper presents a numerical-modeling strategy for simulation of fast transients in lossy electrical interconnects. The proposed algorithm makes use of wavelet representations of voltages and currents along the structure, with the aim of reducing the computational complexity of standard time-domain solvers. A special weak procedure for the implementation of possibly dynamic and nonlinear boundary conditions allows to preserve stability as well as a high approximation order, thus leading to very accurate schemes. On the other hand, the wavelet expansion allows the computation of the solution by using few significant coefficients which are automatically determined at each time step. A dynamically refinable mesh is then used to perform a sparse time-stepping. Several numerical results illustrate the high efficiency of the proposed algorithm, which has been tuned and optimized for best performance in fast digital applications typically found on modern PCB structures. Index Terms—Finite difference methods, time-domain analysis, transmission lines, wavelet transforms. I

    A black-box model for neurons

    Get PDF
    We explore the identification of neuronal voltage traces by artificial neural networks based on wavelets (Wavenet). More precisely, we apply a modification in the representation of dynamical systems by Wavenet which decreases the number of used functions; this approach combines localized and global scope functions (unlike Wavenet, which uses localized functions only). As a proof-of-concept, we focus on the identification of voltage traces obtained by simulation of a paradigmatic neuron model, the Morris-Lecar model. We show that, after training our artificial network with biologically plausible input currents, the network is able to identify the neuron's behaviour with high accuracy, thus obtaining a black box that can be then used for predictive goals. Interestingly, the interval of input currents used for training, ranging from stimuli for which the neuron is quiescent to stimuli that elicit spikes, shows the ability of our network to identify abrupt changes in the bifurcation diagram, from almost linear input-output relationships to highly nonlinear ones. These findings open new avenues to investigate the identification of other neuron models and to provide heuristic models for real neurons by stimulating them in closed-loop experiments, that is, using the dynamic-clamp, a well-known electrophysiology technique.Peer ReviewedPostprint (author's final draft

    On-Off Intermittency in Time Series of Spontaneous Paroxysmal Activity in Rats with Genetic Absence Epilepsy

    Get PDF
    Dynamic behavior of complex neuronal ensembles is a topic comprising a streamline of current researches worldwide. In this article we study the behavior manifested by epileptic brain, in the case of spontaneous non-convulsive paroxysmal activity. For this purpose we analyzed archived long-term recording of paroxysmal activity in animals genetically susceptible to absence epilepsy, namely WAG/Rij rats. We first report that the brain activity alternated between normal states and epilepsy paroxysms is the on-off intermittency phenomenon which has been observed and studied earlier in the different nonlinear systems.Comment: 11 pages, 6 figure

    Forecasting the geomagnetic activity of the Dst Index using radial basis function networks

    Get PDF
    The Dst index is a key parameter which characterises the disturbance of the geomagnetic field in magnetic storms. Modelling of the Dst index is thus very important for the analysis of the geomagnetic field. A data-based modelling approach, aimed at obtaining efficient models based on limited input-output observational data, provides a powerful tool for analysing and forecasting geomagnetic activities including the prediction of the Dst index. Radial basis function (RBF) networks are an important and popular network model for nonlinear system identification and dynamical modelling. A novel generalised multiscale RBF (MSRBF) network is introduced for Dst index modelling. The proposed MSRBF network can easily be converted into a linear-in-the-parameters form and the training of the linear network model can easily be implemented using an orthogonal least squares (OLS) type algorithm. One advantage of the new MSRBF network, compared with traditional single scale RBF networks, is that the new network is more flexible for describing complex nonlinear dynamical systems

    Wavelet Neural Networks: A Practical Guide

    Get PDF
    Wavelet networks (WNs) are a new class of networks which have been used with great success in a wide range of application. However a general accepted framework for applying WNs is missing from the literature. In this study, we present a complete statistical model identification framework in order to apply WNs in various applications. The following subjects were thorough examined: the structure of a WN, training methods, initialization algorithms, variable significance and variable selection algorithms, model selection methods and finally methods to construct confidence and prediction intervals. In addition the complexity of each algorithm is discussed. Our proposed framework was tested in two simulated cases, in one chaotic time series described by the Mackey-Glass equation and in three real datasets described by daily temperatures in Berlin, daily wind speeds in New York and breast cancer classification. Our results have shown that the proposed algorithms produce stable and robust results indicating that our proposed framework can be applied in various applications
    corecore