28 research outputs found

    Spectrum Matching in Licensed Spectrum

    Get PDF
    Spectrum sharing is one of the promising solutions to meet the spectrum demand in 5G networks that results from the emerging services like machine to machine and vehicle to infrastructure communication. The idea is to allow a set of entities access the spectrum whenever and wherever it is unused by the licensed users. In the proposed framework, different spectrum provider (SP) networks with surplus spectrum available may rank the operators requiring the spectrum, called spectrum users (SUs) hereafter, differently in terms of their preference to lease spectrum, based for example on target business market considerations of the SUs. Similarly, SUs rank SPs depending on a number of criteria, for example based on coverage and availability in a service area. Ideally, both SPs and SUs prefer to provide/get spectrum to/from the operator of their first choice, but this is not necessarily always possible due to conflicting preferences. We apply matching theory algorithms with the aim to resolve the conflicting preferences of the SPs and SUs and quantify the effect of the proposed matching theory approach on establishing preferred (spectrum) provider-user network pairs. We discuss both one-to-one and many-to-one spectrum sharing scenarios and evaluate the performance using Monte Carlo simulations. The results show that comprehensive gains in terms of preferred matching of the provider-user network pairs can be achieved by applying matching theory for spectrum sharing as compared to uncoordinated spectrum allocation of the available spectrum to the SUs

    On the efficiency of dynamic licensed shared access for 5G/6G wireless communications

    Get PDF
    The licensed shared access (LSA) is a spectrum licensing scheme authorizing additional new users (the licensees) to dynamically share the same spectrum with the old users (the incumbents). Contained in the terms of the spectrum usage authorization is a set of strict protective measures for the incumbent system which introduce extra restrictions on the licensee operations. Such measures imply that the licensee’s access to the spectrum can be revoked or restricted at any time which may result in the degradation of critical performance metrics of the latter. Addressing this issue and the accompanying challenges as we enter the 5G zettabytes era motivates the research problems addressed in this thesis. A vertical LSA spectrum sharing involving a mobile network operator (MNO) as the licensee and two categories of incumbent including the aeronautical telemetry, and a group of terrestrial public and ancillary wireless services is adopted in this thesis. Firstly, an analytical examination of the uplink and downlink licensee’s transmit power, when its spectrum access right is revoked (i.e., the limited transmit power) is done. Then a power allocation scheme that maximizes the energy efficiency (EE) of the licensee when it is operating with limited transmit power is proposed. Simulation results reveal the impact of the LSA spectrum access revocation on the allowable transmit power of the licensee as a function of the effect of different interference propagation path and the transmission direction. A comparison of the proposed optimal power allocation method with the equal power allocation (EPA) method further shows considerable improvement in the achievable EE of the licensee. Furthermore, in the LSA, the achievable spectrum efficiency (SE) of the licensee is limited by the interference threshold constraint set by the incumbent’s protective measures. Consequent on this, we propose an SE maximization of the licensee’s system subject to the incumbent interference threshold constraint. Furthermore, the LSA band spectral utilization was characterised as a function of the licensee’s achievable SE and the statistics of the LSA spectrum availability. The obtained results provide quantitative insights for practical system design and deployment of the LSA system, especially when compared to the results obtained in the maximization of the EE. In particular, the effect of variations in critical operational parameters throws up interesting network design trade-off challenge, worthy of consideration. This informs the subsequent multi objective optimization of the EE-SE trade-off investigated next. Interestingly, the obtained results indicate that with careful selection of the licensee eNodeB coverage radius, transmit power, and number of user equipment per eNodeB coverage area, one can engineer the best possible trade-off between the spectrum and energy efficiency in practical LSA deployment. A major LSA feature is guaranteeing predictable quality of service (QoS) for both the incumbent and the licensee systems. In terrestrial implementation, the reduction in the achievable data rate caused by the incumbents’ protective measures, may violate guaranteed QoS in the licensee system. To address this issue, we propose a LSA - based hybrid aerialterrestrial system with drone base station (D-BS). Simulation results show that using the proposed scheme, the licensee, when operating under the incumbents’ imposed restrictions, is able to achieve the QoS data rate requirements of the users on its network. In conclusion, the findings in this research indicates that the dynamic LSA is a practically viable solution to the spectrum management requirements of the emerging vertical wireless technologies in 5G and beyond

    Efficient Resource Allocation and Spectrum Utilisation in Licensed Shared Access Systems

    Get PDF

    Bibliographic and Text Analysis of Research on Implementation of the Internet of Things to Support Education

    Get PDF
    The Internet of Things (IoT) has pervaded practically all aspects of our lives. In this exploratory study, we survey its applications in the field of education. It is evident that technology in general, and, in particular IoT, has been increasingly altering the educational landscape. The goal of this paper is to review the academic literature on IoT applications in education to provide an understanding of the transformation that is underway. Using topic modeling and keyword co-occurrence analysis techniques, we identified five dominant clusters of research. Our findings demonstrate that IoT research in education has mainly focused on the technical aspects; however, the social aspects remain largely unexplored. In addition to providing an overview of IoT research on education, this paper offers suggestions for future research

    Secrecy Outage Analysis of <i>k</i>-th Best Link in Random Wireless Networks

    Get PDF

    Performance analysis of spectrum sensing techniques for future wireless networks

    Get PDF
    In this thesis, spectrum sensing techniques are investigated for cognitive radio (CR) networks in order to improve the sensing and transmission performance of secondary networks. Specifically, the detailed exploration comprises of three areas, including single-node spectrum sensing based on eigenvalue-based detection, cooperative spectrum sensing under random secondary networks and full-duplex (FD) spectrum sensing and sharing techniques. In the first technical chapter of this thesis, eigenvalue-based spectrum sensing techniques, including maximum eigenvalue detection (MED), maximum minimum eigenvalue (MME) detection, energy with minimum eigenvalue (EME) detection and the generalized likelihood ratio test (GLRT) eigenvalue detector, are investigated in terms of total error rates and achievable throughput. Firstly, in order to consider the benefits of primary users (PUs) and secondary users (SUs) simultaneously, the optimal decision thresholds are investigated to minimize the total error rate, i.e. the summation of missed detection and false alarm rate. Secondly, the sensing-throughput trade-off is studied based on the GLRT detector and the optimal sensing time is obtained for maximizing the achievable throughput of secondary communications when the target probability of detection is achieved. In the second technical chapter, the centralized GLRT-based cooperative sensing technique is evaluated by utilizing a homogeneous Poisson point process (PPP). Firstly, since collaborating all the available SUs does not always achieve the best sensing performance under a random secondary network, the optimal number of cooperating SUs is investigated to minimize the total error rate of the final decision. Secondly, the achievable ergodic capacity and throughput of SUs are studied and the technique of determining an appropriate number of cooperating SUs is proposed to optimize the secondary transmission performance based on a target total error rate requirement. In the last technical chapter, FD spectrum sensing (FDSS) and sensing-based spectrum sharing (FD-SBSS) are investigated. There exists a threshold pair, not a single threshold, due to the self-interference caused by the simultaneous sensing and transmission. Firstly, by utilizing the derived expressions of false alarm and detection rates, the optimal decision threshold pair is obtained to minimize total error rate for the FDSS scheme. Secondly, in order to further improve the secondary transmission performance, the FD-SBSS scheme is proposed and the collision and spectrum waste probabilities are studied. Furthermore, different antenna partitioning methods are proposed to maximize the achievable throughput of SUs under both FDSS and FD-SBSS schemes

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed
    corecore