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Modeling and Performance Analysis of

Multitaper Detection Using Phase-Type

Distributions over MIMO Fading Channels
Ebtihal H. G. Yousif1, Member, IEEE, and Tharmalingam Ratnarajah1, Senior Member, IEEE

and Mathini Sellathurai2, Senior Member, IEEE

Abstract

This paper presents modeling and analysis of two variations of the multitaper detector namely multiple antenna

detection of a single-user multiple-input-multiple-output (MIMO) node, and the multitaper method (MTM) combined

with singular value decomposition (SVD), which is known as the MTM-SVD processor. Motivated by the reputation

of the MTM as the best nonparametric power spectral density (PSD) estimator and after reviewing the limited

previous research attempts, which focus on single-input-single-output (SISO) multitapering, we present the exact

analytical models for the two considered derivatives of the multitaper method over fading channels by making use

of the theory of Hermitian forms and Phase-Type distributions. In addition, using the Neyman-Pearson Approach

(NPA), the performance of both detectors is optimized over Nakagami fading. For both multitaper variations, we

accurately derive the eigenvalues of the Hermitian form of each detector, where the eigenvalues identify the Phase-

Type distribution parameters. This yields generalized expressions for the probabilities of false alarm and missed

detection when arbitrary multitaper weights are used. Finally, we investigate the impact of noise uncertainty on

the performance of MIMO-MTM. The results show that performance of both detectors is dependent on the total

number of discrete prolate spheriodal sequences (DPSSs), while for the MTM-SVD processor the performance is

also dependent on the number of cooperating users and the employed frequency resolution. It is also shown that

MIMO-MTM is robust under noise uncertainty. The obtained analytical models are proven to be accurate and enables

further investigations on the multitaper detector.

Index Terms

Cognitive Radio (CR), Eigenvalue Analysis, Hermitian forms, Hypoexponential distribution, Multitaper Estimator,

Phase-Type distributions, Spectrum sensing.
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I. INTRODUCTION

A. Background

The rapid growth of the commercial wireless communication services, along with the foreseen inefficiency of

the current spectrum management policies, have led to a massive demand for flexible spectrum handling strategies.

Hence, based on the software defined radio (SDR) platform, the concept of cognitive radios (CRs) was introduced

by Mitola in [1] and [2]. From a device perspective, cognitive radios were envisioned by Mitola as intelligent

agents that are capable of sensing the environment to identify the locations of possible spectrum holes. The aim

is dynamical fitting inside spectrum holes while observing and learning from the parameters obtained from the

surrounding wireless scene and while avoiding harmful interference with legacy users. The concept of cognitive

radios has received great attention from the research community as it poses as a promising technique that enables

exploitation of underutilized spectrum. The IEEE 802.22 standard for wireless regional area networks (WRANs) is

the first cognitive radio-based standard [3].

On the other hand, licensed shared access (LSA) is a recently evolving direction that takes advantage of the

CR concepts [4]. Within a cognitive radio context, exempted devices are known as secondary users (SUs) whereas

original license owners are known as primary users (PUs). However, within the LSA concept, the equivalent of a

SU is an LSA-Licensee and an incumbent for a PU. Thus, the concept of spectrum sensing is crucial to ensure an

interference-free mode of operation that will not harm legacy users. Generally, the problem of spectrum sensing

or detection of primary users has become increasingly important, and recently the IEEE 802.22 WRAN Spectrum

Occupancy Sensing (SOS) Study Group have been launched to develop spectrum sensing standards [5].

A considerable amount of studies investigating various techniques of spectrum sensing have been carried out,

such as [6] and [7]. However, not much of the current literature pays particular attention to detection over the

frequency dimension using spectrum estimates. In fact, there is a large volume of published studies describing

and analyzing time domain (TD) approaches such as the energy detector (ED) in particular and other TD-based

eigenvalue techniques (see [8], [9] and references therein). In frequency domain (FD), nonparametric spectrum

estimators include the periodogram, Bartlett method, Welch’s method of overlapped segmented averaging (WOSA)

and the multitaper method (MTM). The multitaper method has other various applications in geophysics and signal

and data processing, e.g., radiographic image analysis and radar sea-clutter classification. In [10], Haykin strongly

advocated MTM as part of his signal processing vision of the use of cognitive radios for opportunistic spectrum

access. It is well known in the literature that the problem of power spectral density (PSD) estimation is challenged

by the bias-variance dilemma [11]. However, centered on a specific frequency, the multitaper method mitigates the

dilemma as the signal is expanded within a fixed bandwidth. This impact results from the orthonormal properties

of special windowing functions, which are known as the discrete prolate spheriodal sequences (DPSSs) [12].

B. Previous Work and Motivations

Detection based on nonparametric PSD estimators was addressed in [13]–[20]. The presented study in [14]

considered the periodogram, whereas Bartlett’s method was considered in [15], WOSA method was considered in
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[16] and finally the multitaper method was considered in [17]–[20]. Focusing on previous work for the multitaper

method, [17] considered raw multitapering performed by a single secondary user to detect the presence of a primary

user. However, this study considered additive white Gaussian noise (AWGN) only, and then [18] upgraded the model

presented in [17] to include non-zero mean signal constellations where the performance was formulated in terms of

the Marcum Q-function. Also, [20] addressed the performance of the multitaper method for both cases of accurate

and inaccurate noise variance, by using approximations methods for the threshold. However, [20] did not focus

on fading and addressed the probability of detection in only two operation environments: deterministic signals in

AWGN and a Gaussian signal. Finally, the multitaper method combined with singular value decomposition (SVD)

was considered in [19] but without presentation of any accurate or closed form formulas or taking the impact of

fading into account. In addition, [19] didn’t assume the original decision variable that was proposed by Haykin in

[10] neither did the authors in [20]. Hence, in contrast with what was done previously in the literature, we tackle

all aforementioned issues by accurate mapping of the multitaper estimate into the Phase-Type class of statistical

distributions while assuming propagation over fading channels.

C. Contributions

In this paper, we address two specific scenarios for the multitaper method. First, since multiple-input-multiple-

output (MIMO) antenna systems are widely integrated to provide higher data rates and lower probability of errors;

we present the generalized case of sensing with the multitaper method when both the transmitting and sensing

nodes employ multiple antennas. Throughout the paper we will refer to this method as MIMO-MTM. Second, we

consider the multitaper method combined with singular value decomposition, which is known as the MTM-SVD

processor. For both considered multitaper scenarios we present an accurate analysis for the performance of the

detector over fading channels. Specifically, we

• formulate the decision variables (for both MIMO-MTM and the MTM-SVD processor) as a Phase-Type positive

semidefinite Hermitian form,

• and formulate the exact eigenvalues that are associated with the Hermitian form, i.e., the nonzero eigenvalues

of the product of the covariance matrix and the Hermitian matrix of the quadratic form

• and we present closed forms for the probabilities of false alarm and missed detection where we also bound

the probability of missed detection over Nakagami fading.

• Finally, we address the effect of noise uncertainty at a specific node, and we present accurate expressions for

the ergodic probabilities of false alarm and detection.

More specifically, we also derive the optimized detector based on the Neyman-Pearson Approach (NPA) over

Nakagami channels. For the case of the MTM-SVD processor, we also assume a case of independent but not

identically distributed (i.n.i.d.) fading channels, where the sensing nodes are distributed within a circle centered on

the transmitting node.
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Fig. 1. Structure for MIMO Sensing with Combining and Multitaper Estimation.

D. Paper Organization

The rest of the paper is organized as follows. Section II presents a description of the system model and a

preliminary background about the method of multitaper estimation. Section III provides the performance of MIMO-

MTM. Section IV considers the multitaper method combined with singular value decomposition for multiple band

detection. The effect of noise uncertainty is addressed in Section V. Section VI presents simulation results and

finally Section VII provides concluding remarks.

II. BACKGROUND AND SYSTEM SETUP

In this section preliminary information is provided, with a focus on background of the multitaper method of

estimation. We explain the basic system model that can be used to obtain a single multitaper estimate within a

single-input-single-output (SISO) context, i.e., both the transmitter and the receiving node have single antennas.

This system model will be modified throughout the paper to match the addressed detection scenario1.

A. Mathematical Operators

Following the general trend, throughout this paper vectors will be denoted by lowercase boldface characters and

matrices will be denoted by uppercase boldfaced characters. Other mathematical operators that will be used are

defined as follows:

• log is the natural logarithm, and log10 is the common logarithm (Base 10),

• j =
√
−1 is the imaginary unit,

• (·)T is the transpose,

• spec[·] is the matrix spectrum,

• (·)H denotes Hermitian transposition,

• ⟨., .⟩ denotes the inner product,

• ∥ · ∥F is the Frobenius norm and the subscript is omitted for vectors,

1This system model will be modified and explained for each of the considered case of sensing of single-user MIMO primary node with

antenna diversity, and the case of the MTM-SVD processor
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• ⊕ is the direct sum operator,

• ⊗ is the Kronecker product,

• ⊙ denotes the Hadamard product,

• (̂·) denotes an estimated parameter,

• tr[·] is the trace operator,

• rank[·] is the rank operator,

• diag(a1, . . . , aN ) is a diagonal matrix with elements a1, . . . , aN ,

• E[·] represents the statistical expectation operator.

The notations for special matrices are as follows. The identity matrix of size n is In, and similarly On is the

null matrix, 1n is the ones vector and 0n is the null vector.

As far as the concern of spectrum sensing, the null hypothesis H0 implies that the channel is empty, and the

hypothesis H1 implies that the channel is occupied. The probability of false alarm Pfa, the probability of detection

Pd and the probability of missed detection Pmd are defined as

Pfa(η), Prob {D > η|H0} , (1a)

Pd(η), Prob {D > η|H1} , (1b)

Pmd(η), Prob {D ≤ η|H1} , (1c)

where η is a chosen sensing threshold and D is the decision variable.

B. Multitaper Estimation

Let x(t) denote the instantaneously observed signal by the sensing node within a time frame of length L, i.e,

t = 0, . . . , L− 1, and let Ŝmt(f) denote the multitaper estimate at the f -th frequency (index).

1) The Slepian Sequences: The idea of multitaper estimation depends on using a set of orthonormal sequences

known as the Discrete Prolate Spheriodal Sequences (DPSS), and also known as the Slepian Sequences [21].

Hence, before computation of the multitaper estimate, a number of K Slepain tapers should be prepared. Let

ν(k)(L,W ) = {ν(k)t (L,W )}Lt=1 denote the k-th order Slepian taper, where k = 0, 1, . . . ,K − 1 and let λk denotes

the corresponding k-th energy concentration. It is assumed that the Slepian sequences are ordered in descending order

based on their energy concentrations. Centered on f , the Slepian sequences have the maximal energy concentration

within the bandwidth (f − W , f + W ). This allows the legendary problem of the bias-variance dilemma to be

replaced by a bias-resolution trade-off. Furthermore, the total number of the orthonormal tapers is limited by the

K ≤ ⌊2LW ⌋, which defines the degrees of freedom (DoF) for adjusting the variance of the estimate. Also, the

concentrations start to approach zero for values beyond 2LW − 1. Note that the common choices for half the

time-bandwidth product are 2.5, 3, 3.5, and 4. However, other ranges for the time-bandwidth product are from 6

to 10, while the number of Slepian sequences extends from 10 up to 16 [22], [23].
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2) Alternative Formulation for The Multitaper Method: Usually the spectrum estimate is computed from the first

eigenspectra that demonstrate the minimal sidelobe leakage. Because of this issue some software packages give the

option of dropping the last order taper(s). Using the weights a0, a1, . . . , aK−1, where ai ∈ R+, the conventional

expression to obtain the multitaper estimate from the discrete time observations {x(t)}L−1
t=0 is [11]

Ŝmt(f) =

∑K−1
k=0 ak(f)

∣∣∣∑L−1
t=0 ν

(k)
t (L,W )x(t)e−j2πft

∣∣∣2∑K−1
i=0 ai(f)

. (2)

There are three options for choosing a value for the weighting elements a0, a1, . . . , aK−1 which are: unity weights,

the energy concentrations associated with the employed Slepian sequences and the last option is using adaptive

weights. The representation of the multitaper estimate given by (2) is a conventional representation. However, the

estimator Ŝmt(f) can be written as the positive semidefinite Hermitian form that is given by

Ŝmt(f)=

∑K−1
k=0 ak(f)xHΨ(k)T

(L,W )Φ(f)Ψ(k)
(L,W )x∑K−1

i=0 ai(f)
, (3)

where x =
[
x(0) . . . x(L−1)

]T
and Ψ(k) ∈ RL×L is given by

Ψ(k)
(L,W ) = diag

(
ν
(k)
0 (L,W ), . . . , ν

(k)
L−1(L,W )

)
, 0 ≤ k ≤ K − 1, (4)

and Φ(f) ∈ CL×L is given by

Φ(f) = ξ(f)Hξ(f), (5)

where

ξ(f) =
[
1 ξf ξ2f . . . ξL−1

f

]
, (6)

and ξf is the primitive L-th root of unity for the f -th frequency index. Hence, the matrix that results from the

product Ψ(k)HΦ(f)Ψ(k) can be written as:

Ψ(k)T
(L,W )Φ(f)Ψ(k)

(L,W )

=


ν
(k)
0

2
(L,W ) ν

(k)
1 (L,W )ν

(k)
0 (L,W )ξ−1

f . . . ν
(k)
0 (L,W )ν

(k)
L−1(L,W )ξL−1

f

ν
(k)
1 (L,W )ν

(k)
0 (L,W )ξf ν

(k)
1

2
(L,W ) . . . ν

(k)
1 (L,W )ν

(k)
L−1(L,W )ξL−2

f

...
...

. . .
...

ν
(k)
0 (L,W )ν

(k)
L−1(L,W )ξL−1

f ν
(k)
1 (L,W )ν

(k)
L−1(L,W )ξL−2

f . . . ν
(k)
L−1

2
(L,W )

 . (7)

Looking into the previous equation, it can be seen that the following properties hold true:

rank
[
Ψ(k)T

(L,W )Φ(f)Ψ(k)
(L,W )

]
= 1, (8a)

tr
[
Ψ(k)T

(L,W )Φ(f)Ψ(k)
(L,W )

]
=

{
L−1∑
i=0

ν
(k)
i

2
(L,W )

}
. (8b)
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III. EXACT ANALYSIS OF THE MULTITAPER DETECTOR ASSUMING MIMO STRUCTURE WITH DATA

COMBINING

A. System Model

Let us consider a primary user network, in which each user is equipped with a number of N transmit antennas.

At the receiving side, the secondary system is equipped with a number of M antennas where M ≥ N as illustrated

in Fig.1. For each hypothesis, the overall received signal at the t-th time instant is given by

x(t) =

n(t), H0,

H(t)s(t) + n(t), H1,

(9)

where x(t) ∈ CM×1 is the received signal vector, H(t) ∈ CM×N is the channel matrix, s(t) ∈ CN×1 is the

transmitted symbols vector and n(t) ∈ CM×1 denotes the noise vector. Let us also define

x(t),
[
x
(t)
1 . . . x

(t)
M

]T
, (10a)

s(t),
[
s
(t)
1 . . . s

(t)
N

]T
, (10b)

n(t),
[
n
(t)
1 . . . n

(t)
M

]T
, (10c)

where s
(t)
i is the transmitted signal from the i-th antenna, which is assumed zero mean with the constraint E[sHs] ≤

σ2
s . The transmitted signals {s(t)i }Ni=1 are independent zero-mean circular symmetric complex Gaussian variables

with variance σ2/N . The instantaneous noise n
(t)
i is a circular symmetric additive white Gaussian noise process

with variance E[|n(t)
i |2] = σ2

n, and we also assume that the noise process is spatially white. The channel matrix

H(t) is assumed spatially rich, with independent and identically distributed (i.i.d.) elements, and has the form

H(t) =


h
(t)
1,1 . . . h

(t)
1,N

...
. . .

...

h
(t)
M,1 . . . h

(t)
M,N

 , (11)

where h
(t)
m,i is the instantaneous channel from the i-th transmit antenna to the m-th receiver. Henceforth, at the

receiving side the signal received by the i-th branch at the t-th time instant is

x
(t)
i =

n
(t)
i , H0,∑N
p=1 h

(t)
i,ps

(t)
p + n

(t),
i H1,

(12)

where t = 0, . . . , L− 1 and i = 1, . . . ,M .
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B. Combining Followed by Multitaper Estimation

Let x̆ = {x̆(t)}L−1
t=0 be the column vector consisting of the instantaneous equally combined2 output signal, i.e.,

x̆(t) =
∑M

i=1 x
(t)
i , where for the case of H0 we have x̆(t) ∼ CN

(
0,Mσ2

n

)
, and for the case of H1 we have

x̆(t) ∼ CN
(
0,

σ2
s

N

∑N
p=1

∣∣∣∑M
i=1 h

(t)
i,p

∣∣∣2 +Mσ2
n

)
. Conditioned on the channel gains, by the end of the sensing frame

of L samples, we have

H0 : x̆ ∼ CN
(
0L, σ

2
nMIL

)
, (13a)

H1 : x̆ ∼ CN
(
0L, σ

2
sH̆H̆H + σ2

nMIL

)
, (13b)

where

H̆H̆H ≡ 1

N
diag

(
N∑

p=1

∣∣∣∣∣
M∑
i=1

h
(0)
i,p

∣∣∣∣∣
2

,

N∑
p=1

∣∣∣∣∣
M∑
i=1

h
(1)
i,p

∣∣∣∣∣
2

, . . . ,

N∑
p=1

∣∣∣∣∣
M∑
i=1

h
(L−1)
i,p

∣∣∣∣∣
2)

. (14)

The multitaper estimate can be written as the Hermitian form that is given by

Ŝmt(f) =
ak(f)∑K−1

i=0 ai(f)
vec
(
x̆⊗ 1T

K

)H K−1⊕
k=0

Ψ(k)T
(L,W )Φ(f)Ψ(k)

(L,W ) vec
(
x̆⊗ 1T

K

)
. (15)

Generally, in order to obtain the statistical distributions of a given Hermitian form, it is required to derive expressions

for the eigenvalues associated with the Hermitian form under scrutiny [24]. Looking into the Hermitian form given

by (15), the Hermitian matrix of the Hermitain form is

ak(f)∑K−1
i=0 ai(f)

K−1⊕
k=0

Ψ(k)T
(L,W )Φ(f)Ψ(k)

(L,W ).

Thus, in this case the eigenvalues of the Hermtian form in (15) are the eigenvalues of the matrix that results from

the product of the covariance matrix of vec
(
x̆⊗ 1T

K

)H
and the Hermitian matrix associated with the Hermitian

form.

Theorem 1 (Eigenvalues of the Hermitian form given by (15)): The positive semi-definite Hermitian form given

by (15) has LK eigenvalues, but with only K nonzero eigenvalues. Assuming the case of the null hypothesis H0,

the k-th nonzero eigenvalue is given by

ℓ
(k)
0 =

ak∑K−1
i=0 ai

Mσ2
n∥ν(k)∥2, (16)

and assuming the case of the alternate hypothesis H1, the k-th nonzero eigenvalue is given by

ℓ
(k)
1 =

ak∑K−1
i=0 ai

 1

N
σ2
s

L∑
t=1

N∑
p=1

∣∣∣∣∣
M∑
i=1

h
(t)
i,p

∣∣∣∣∣
2

ν
(k)
t

2
+Mσ2

n∥ν(k)∥2
 . (17)

2The use of MIMO here aids in faster collection of signals, and mitigates the impact of noise. Equal combining is employed since the channel

from the primary transmitting node to the secondary sensing node is assumed to be unknown. Other combining techniques that requires channel

state informations (CSI), such as maximal ratio combining (MRC) are used only within the context of cooperative spectrum sensing in the

reporting channels.
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Proof: Let Σx̆ be the covariance matrix of x̆ and let Σx̆,EGC be the covariance matrix that is associated with

the Hermitian form in (15). We have

Σx̆, E
[
x̆x̆H

]
, (18)

Σx̆,EGC, E
[
vec
(
x̆⊗ 1T

K

)
vec
(
x̆⊗ 1T

K

)H]
. (19)

Since rank[Σx̆,EGC] = LK and rank[Φf ] = 1 then it follows that

rank

[
K−1⊕
k=0

Φ(f)

]
= rank

[
K−1⊕
k=0

Ψ(k)2
(L,W )

K−1⊕
k=0

Φ(f)

]
, (20)

and then we can conclude that

rank

[
Σx̆,EGC

K−1⊕
k=0

Ψ(k)T
(L,W )Φ(f)Ψ(k)

(L,W )

]
,

= rank

[
K−1⊕
k=0

Φ(f)

]
= K. (21)

Next, to find the exact value of the eigenvalue under each hypothesis, each nonzero eigenvalue corresponds to

the part of the spectrum estimate that is computed from the k-th Slepian sequence. Therefore, the k-th eigenvalue

is tr[Σx̆Ψ
(k)T

(L,W )Φ(f)Ψ(k)
(L,W )] and assuming H0 we get the expression given by (16), and assuming the

alternate hypothesis H1 we arrive at the expression given by (17).

C. Estimation with Generalized/Distinct Weights

With the aid of [25, Ch.10], a Hermitian quadratic form with distinct eigenvalues has a PDF which is a weighted

sum of exponential kernels. In this case, the weights reported in [25] can be seen as scaled values of the Lagrange

basis polynomials that are associated with the nonzero eigenvalues of the Hermitian quadratic form. This case is a

hypoexponential3 variable with distinct parameters. However, the performance for generic values can be obtained,

which will be explained as follows. By making use of the results from Theorem 1, and summing the K weighted

eigenspectra the total spectrum estimate is a Phase-Type distributed variable, where a generalized PDF is given by

f(x;α,Z) = −αT
K exp (xZ)Z1K , x ≥ 0, (22)

where α = [1, 0, . . . , 0] is a K × 1 probability vector and Z ∈ RK×K is the subgenerator matrix, which employs a

form that is subject to the considered hypothesis. For further understanding of the generic structure of subgenerator

matrices, the reader is referred to [28] and [29]. Assuming the case of the hypothesis H0, the probability of false

alarm is

Pfa(η;α,Z0) =

∫ ∞

η

f(x;α,Z0) dx = αT
K exp (ηZ0)1K , (23)

3The hypoexponential distribution [26], [27] generalizes the Erlang distribution. It can be viewed as a special case of the Phase-Type distribution

as it represents a mixture of phases that can be identical or non-identical.
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where Z0 ia a function of the nonzero eigenvalues ℓ
(0)
0 , . . . , ℓ(K−1) obtained in Theorem 1, and is defined as

Z0 =

∑K−1
k=0 ak
Mσ2

n



−a−1
0 a−1

0 0 . . . 0

0 −a−1
1 a−1

1 . . . 0

0 0 −a−1
2

. . . 0
...

...
...

. . .
...

0 0 0 . . . −a−1
K−1


. (24)

The previous result given by (23) can be used for any value of the weights a1, . . . , aK−1. However, for the case

of distinct weights, the probability of false alarm can be written as

Pfa(η)=
K−1∑
i=0

exp

(
− η

aiMσ2
n

∥∥ν(i)(L,W )
∥∥2

K−1∑
k=0

ak

)
K−1∏
q=0
q ̸=i

ai
∥∥ν(i)

(L,W )
∥∥2

ai
∥∥ν(i)(L,W )

∥∥2 − aq
∥∥ν(q)(L,W )

∥∥2 . (25)

On the other hand, assuming the alternate hypothesis H1, let us define ϑ and ν
(k)
2 as

ϑ=
[
ϑ0 . . . ϑL−1

]T
, (26a)

ϑt=

N∑
n=1

∣∣∣∣∣
M∑

m=1

h(t)
m,n

∣∣∣∣∣
2

, (26b)

ν
(k)
2 = ν(k) ⊙ ν(k). (26c)

Thus, the probability of missed detection is obtained as

Pmd(η;α,Z1) = 1−
∫ ∞

η

f(x;α,Z1) dx

= 1−αT
K exp (ηZ1)1K . (27)

By making use of the results from Theorem 1, Z1 have the form given by

Z1 = N
K−1∑
k=0

ak

×



−a−1
0

σ2
s⟨ϑ,ν

(0)
2 ⟩+NMσ2

n∥ν2
(0)∥2

a−1
0

σ2
s⟨ϑ,ν

(0)
2 ⟩+NMσ2

n∥ν2
(0)∥2

0 . . . 0

0
−a−1

1

σ2
s⟨ϑ,ν

(1)
2 ⟩+NMσ2

n∥ν2
(1)∥2

a−1
1

σ2
s⟨ϑ,ν

(1)
2 ⟩+NMσ2

n∥ν2
(1)∥2

. . . 0

0 0
−a−1

2

σ2
s⟨ϑ,ν

(2)
2 ⟩+NMσ2

n∥ν2
(2)∥2

. . . 0

...
...

...
. . .

...

0 0 0 . . .
−a−1

K−1

σ2
s⟨ϑ,ν

(K−1)
2 ⟩+NMσ2

n∥ν2
(K−1)∥2


. (28)

Similarly, for distinct eigenvalues the probability of missed detection can be written as given by

Pmd(η) = 1−
K−1∑
i=0

exp

 −ηa−1
i

∑K−1
k=0 ak

Mσ2
n∥ν(i)(L,W )∥2 + 1

N σ2
s

∑L
t=1

∑N
n=1

∣∣∣∑M
m=1 h

(t)
m,n

∣∣∣2 ν(i)t

2
(L,W )


×

K−1∏
q=0
q ̸=i

aiσ
2
s

∑L
t=1

∑N
n=1

∣∣∣∑M
m=1 h

(t)
m,n

∣∣∣2 ν(i)t

2
(L,W ) + aiNMσ2

n∥ν(i)
(L,W )∥2

σ2
s

∑L
t=1

∑N
n=1

∣∣∣∑M
m=1 h

(t)
m,n

∣∣∣2 (aiν(i)t

2
(L,W ) − aqν

(q)
t

2
(L,W ))

)
+NMσ2

n

(
aq∥ν(q)(L,W )∥2 − ai∥ν(i)(L,W )∥2

) . (29)
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In fact, when using the energy concentrations of the Slepian sequences as weights, some of the weights of the

exponential kernels in (25) and (29) may approach infinity when the denominator approaches zero, since the energy

concentrations will be very close or equal to 1. In this case, the generalized forms given by (23) and (27) should

be used.

D. Estimation with Unity Weights

Based on the previous results, let us consider the case of applying unity weights to (15), i.e., a0, . . . , aK−1 = 1.

Assuming the null hypothesis, and since ∥ν(k)
(L,W )∥2 ≈ 1 the probability of false alarm is given by

Pfa(η) =
1

Γ(K)
Γ

(
K,

Kη

σ2
nM

)
. (30)

where Γ(·) denotes the gamma function and Γ(., .) is the upper incomplete gamma function as defined in [30].

Similarly the probability of missed detection is given by

Pmd(η) = 1−
K−1∑
i=0

exp

 −ηNK

NMσ2
n + σ2

s

⟨
ϑ,ν

(i)
2 (L,W )

⟩
 K−1∏

q=0,q ̸=i

NMσ2
n + σ2

s

⟨
ϑ,ν

(i)
2 (L,W )

⟩
σ2
s

⟨
ϑ,ν

(i)
2 (L,W ) − ν

(q)
2 (L,W )

⟩ . (31)

E. Optimal Ergodic Performance over Nakagami Fading Channels

1) Maximum Average Probability of Miss: Let us assume that the instantaneous channel envelope from the n-

th transmit antenna to the m-th receive antenna is an m-Nakagami process with shape parameter m and spread

parameter Ω. Moreover, let γ(t)
m be the instantaneous signal-to-noise-ratio (SNR) for the m-th branch, where t =

0, . . . , L − 1 and m = 1, . . . ,M . Let us also assume that E[γ(t)
1 ] = · · · = E[γ(t)

M ] = γ. Looking into (29),

since ϑt ∼ Gamma(N,MΩ), then
∑L−1

t=0

∑M
m=1 γ

(t)
m ν

(k)
t is a mixture of the instantaneous SNR weighted with

instantaneous values of the k-th Slepian vector. This is a case of a hypoexponential variable with NL rate parameters,

which is equivalent to a Phase-Type distribution with a 1×NL probability vector and an NL×NL subgenerator

matrix. In this case, since

E

[
L−1∑
t=0

M∑
m=1

γ(t)
m ν

(k)
t

2
(L,W )

]
= γM∥Ψ(k)

(L,W )∥2F, (32)

then applying Jensen’s inequality gives the minimum bound for the average probability of missed detection as

E[Pmd(η, γ)] ≥ Pmd(η,E[γ])]. Assuming distinct weights a0, . . . , aK−1 the minimum average probability of missed

detection is

Pmd(η) ≤ 1−
K−1∑
i=0

exp

(
−η
∑K−1

k=0 ak
aiσ2

nM (γ + 1)

)
K−1∏
q=0,
q ̸=i

ai
(ai − aq)

(33)

and when all weights are unity the Phase-Type distribution of the mixture
∑L−1

t=0

∑M
m=1 γ

(t)
m ν

(k)
t is reduced into

the Erlang distribution, and hence the average minimum probability of missed detection is

Pmd,min(η, γ) =
1

Γ(K + 1)
exp

(
−ηK

γ + 1

)(
ηK

γ + 1

)K

1F1

(
1;K + 1;

ηK

γ + 1

)
. (34)

where 1F1(·; ·; ·) is Kummer’s confluent hypergeometric function.
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2) Optimal Probability of Detection: Let δ denote a predefined probability of false alarm. Hence the likelihood

ratio is given by p(z;H1)
p(z;H0)

where p(z;H0) , − ∂
∂zPfa(z) and p(z;H0) , ∂

∂zPmd(z), and hence the test will have

the form

(γ + 1)−K exp

(
zγK

σ2
nM(γ + 1)

)
H1

≷
H0

η(δ), (35)

where η(δ) is the sensing threshold that yields the predefined probability of false alarm δ. Hence, the test can be

rewritten in the form

z ≥ log
(
η(γ + 1)K

) σ2
nM(γ + 1)

γK
. (36)

The threshold is chosen to satisfy the constraint
∫∞
η

p(z;H0) dz = δ, [31], [32]. The modified threshold is

η′(δ) =
(
η(γ + 1)K

) σ2
nM(γ + 1)

γK
. (37)

The probability of false alarm in (30) can be inverted by making use of the function Q−1(·, ·), which is the inverse

regularized incomplete (upper) gamma function [33].

IV. EXACT ANALYSIS USING THE MTM-SVD PROCESSOR

The MTM-SVD processor is a collaborative variation of the multitaper detector in which a number of users

cooperate by sending their local eigenspectra to be processed by a central node. In this part, the performance of

the MTM-SVD processor is investigated over fading channels.

A. System Model

In this section, let us assume that the τ -th burst consists of L time instants t, i.e., equivalent to a single sensing

frame. The multitaper method combined with singular value decomposition was recommended for use by cognitive

radios in [10]. Let us consider a number of M single-antenna sensing nodes where the received signal by the m-th

node is x̧(m) such that

H0 : x̧(m) = ņ(m), (38a)

H1 : x̧(m) = ḩ(m) ⊙ ş + ņ(m), (38b)

where ņ(m) ∈ CL×1 and ḩ(m) ∈ CL×1 are the noise and the channel vectors at the m-th node and s ∈ CL×1 is

the transmitted signal, such that

ş ,
[
ş0 ş1 . . . şL−1

]
, (39a)

ḩ(m) ,
[
ḩ(m)
0 ḩ(m)

1 . . . ḩ(m)
L−1

]
, (39b)

ņ(m) ,
[
ņ(m)
0 ņ(m)

1 . . . ņ(m)
L−1

]
. (39c)

Furthermore, let us assume that the sensing nodes are uniformly distributed inside a circle with radius r, centred on

the transmitting (primary) node. It is also assumed that all nodes use the same number of Slepian vectors, which is

chosen to be larger than the total number of collaborative users, i.e., K > M . Since each sensing node report the
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local eigenspectra to the central node, then let X (m)
k (f) be the eigenspectrum that is produced by the m-th node

using the k-th Slepian sequence. Henceforth, let us define the matrix A ∈ CM×K as

A(f) =


w

(1)
0 X (1)

0 (f) w
(1)
1 X (1)

1 (f) . . . w
(1)
K−1X

(1)
K−1(f)

w
(2)
0 X (2)

0 (f) w
(2)
1 X (2)

1 (f) . . . w
(2)
K−1X

(2)
K−1(f)

...
...

. . .
...

w
(M)
0 X (M)

0 (f) w
(M)
1 X (M)

1 (f) . . . w
(M)
K−1X

(M)
K−1(f)

 (40)

where ω
(m)
k is the weight assigned to the m-th user using the k-th Slepian vector. Applying SVD to the matrix A

produces

A(f)= U(f)Υ(f)VH(f), (41a)

=

M∑
m=1

σm(f)um(f)vH
m(f), (41b)

where the unitary matrices U and V are M ×M and K ×K respectively. The matrix Υ is M ×K and consists

of the singular values σ1, . . . , σM , um is the m-th left eigenvector and vm is the associated right eigenvector4.

Furthermore, it can be shown that [10], [34]

σ2
m(f) =

K−1∑
k=0

∣∣∣w(m)
k X (m)

k

∣∣∣2 . (42)

Within a centralized cooperative spectrum sensing context, the MTM-SVD processor requires each CR node to

send its values of the eigenspectrum that were computed within a band of interest. This is represented by the m-th

row of A. When the BS receives the various eigenspectra from all users, it constructs the matrix A and applies

SVD.

B. Performance of the Decision Statistic for Wideband Sensing

The decision statistic proposed in [10] can be used for wideband sensing to declare whether a frequency band

is white, gray or black. Let Nb be the number of frequency bins, flow be the lowest frequency of the bandwidth

under scrutiny and ∆f be the width of the frequency bin. The decision statistic is given by

I(τ, f) =

M∑
m=1

Nb−1∑
l=0

|σm (flow + l∆f, τ)|2 ∆f. (43)

The next step of the test to be conducted is whether the instantaneous value of the decision statistic exceeds a

specific threshold for a number of Nsb successive bursts, i.e,
Nsb∩
τ=1

{
I(τ, f) > η(τ, f)

}
. (44)

Looking into the previous equation and treating the decision statistic as a Hermitian form shows that the decision

variable I(τ, f) follows the Phase-type distribution, where the subgenerator matrix is MKNb × MKNb. In this

case the subgenerator matrix has the form given by (45), where the notation ℓk,mi,f denotes the eigenvalue of the

4For the physical interpretation for the left singular vector and the right singular vector within the context of detection, the reader is referred

to [10], [34]
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ZSVD
i =



− ℓ
(0,1)
i,f0

ℓ
(0,1)
i,f0

0 0 0 0 0 0 0

0
. . . . . . 0 0 0 0 0 0

0 0 −ℓ
(0,1)
i,fL−1

ℓ
(0,1)
i,fL−1x

0 0 0 0 0

0 0 0 −ℓ
(0,2)
i,f0

x
ℓ
(0,2)
i,f0

0 0 0 0

0 0 0 0
. . . . . . 0 0 0

0 0 0 0 0 −ℓ
(0,2)
i,fL−1)

ℓ
(0,2)
i,fL−1

0 0

0 0 0 0 0
. . . . . . 0 0

0 0 0 0 0 0 − ℓ
(K−1,m)
i,f0

ℓ
(K−1,m)
i,f0

0

0 0 0 0 0 0
. . . . . . 0

0 0 0 0 0 0 0 −ℓ
(K−1,m)
i,fL−2

ℓ
(K−1,m)
i,fL−2

0 0 0 0 0 0 0 0 ℓ
(K−1,m)
i,fL−1



,

(45)

Hermitian form representation of I(τ, f) that is associated with the k-th Slepian sequence and the m-th sensing

node for the f -th frequency. Finally, i refers to the considered hypothesis where i = 0 implies H0 and similarly

i = 1 implies H1. Hence generalized forms for the probabilities of false alarm and missed detection are given by

PSVD
fa (η, τ)=

Nsb∏
τ=1

αT
GLK exp

(
η(τ)ZSVD

0

)
1GLK , (46a)

PSVD
md (η, τ)=

Nsb∏
τ=1

1−αT
GLK exp

(
η(τ)ZSVD

1

)
1GLK , (46b)

where the values of ℓ(k,m)
i,f in the subgenerator matrix given by (45) are obtained by the following Theorem.

Theorem 2: [Exact Eigenvalues of the Hermitian Form of the SVD Processor] The decision variable at the end

of the τ -th burst is a Hermitian positive semidefinite form. Assuming H0, the eigenvalue for the m-th user and the

k-th Slepian sequence at the f -th frequency (index) is

ℓ
(k,m)
0,f =

∣∣∣w(m)
k

∣∣∣2 σ2
n (47)

and assuming the alternate hypothesis the eigenvalue is given by

ℓ
(k,m)
1,f =

∣∣∣w(m)
k

∣∣∣2 (σ2
n + σ2

s∥ḩm ⊙ ν(k,m)(f)∥2
)
. (48)

Proof: Similar to the employed strategy for the proof in Theorem 1, let us define the column vector x̧svd as

given by

x̧svd= vec

(
vec
(

x̧(1) ⊗ 1T
K

)
, . . . , vec

(
x̧(1) ⊗ 1T

K

)
)︸ ︷︷ ︸

Nb times

, . . . , vec
(

x̧(M) ⊗ 1T
K

)
), . . . , vec

(
x̧(M) ⊗ 1T

K

)
)︸ ︷︷ ︸

Nb times

)
, (49)
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and let us define the associated covariance matrix as

Σsvd , E
[
x̧svdx̧Hsvd

]
. (50)

Furthermore, the decision statistic I(τ, f) can be written as the Hermitian form given by

I(τ, f) = x̧Hsvd

(
M⊕

m=1

Nb−1⊕
l=0

K−1⊕
k=0

ω
(m)
k

H
Ψ(k,m)T

(L,W )Φ(flow + l∆f, τ)Ψ(k,m)
(L,W )ω

(m)
k

)
x̧svd. (51)

Henceforth, the property demonstrated by

rank

[
Σsvd

M⊕
m=1

Nb−1⊕
l=0

K−1⊕
k=0

|ω(m)
k |2Ψ(k,m)TΦ(flow + l∆f, τ)Ψ(k,m)

]
= MKNb. (52)

holds true since rank[Σsvd] = LMKNb while rank[Φ] = 1. Immediately, it follows that there are MKNb nonzero

eigenvalues that are associated with the Hermitian form in (51) and defined by the set

spec

(
Σsvd

M⊕
m=1

Nb−1⊕
l=0

K−1⊕
k=0

|ω(m)
k |2Ψ(k,m)TΦ(f, τ)Ψ(k,m)

)

=

{
ℓ
(k,m)
i,f : m = 1, . . . ,M, f = 0, . . . , Nb − 1, k = 0, . . . ,K − 1, i = 0 ⇒ H0, i = 1 ⇒ H1

}
. (53)

Recalling the fact that each nonzero eigenvalue corresponds to the part of the Hermitian form that is computed by

the m-th user, which is utilizing the k-th Slepian vector at the f -th frequency index, then the corresponding eigen-

value is |ω(m)
k |2tr[x̧x̧HΨ(k,m)TΦ(f, τ)Ψ(k,m)] and considering H0 we get (47), while addressing the hypothesis

H1 yields (48).

By making use of the results of the previous theorem, the probability of false alarm is reduced to

PSVD
fa (η, τ) =Nb

M∑
m=1

K−1∑
k=0

exp

(
−η(τ)

σ2
n|w

(m)
k |2

)
K−1∏

q=0,q ̸=k

|w(m)
q |2

|w(m)
q |2 − |w(m)

k |2
, (54)

where τ = 1, . . . , Nsb. Similarly the probability of missed detection is given by

PSVD
md (η, τ) =

Nsb∏
τ=1

1−
M∑

m=1

Nb−1∑
l=0

K−1∑
k=0

exp

 −η(τ)

|w(m)
k |2

(
σ2
n + σ2

s

∥∥∥ḩ(m) ⊙ ν(k,m)(fl)
∥∥∥2)



×
K−1∏

q=0, q ̸=k

|w(m)
k |2

(
σ2
n + σ2

s

∥∥∥ḩ(m) ⊙ ν(k,m)(fl)
∥∥∥2)

σ2
n

(
|w(m)

k |2 − |w(m)
q |2

)
+ σ2

s

(
|w(m)

k |2
∥∥∥ḩ(m) ⊙ ν(k,m)(fl)

∥∥∥2 − |w(m)
q |2

∥∥∥ḩ(m) ⊙ ν(q,m)(fl)
∥∥∥2) . (55)

C. Performance Over i.n.i.d Nakagami Channels

Different from section III-E1, in this part we assume independent but non-identical Nakagami channels. The

channel envelope from the transmitting user to the m-th node is Nakagami distributed with shape and spread

parameters denoted by mm and Ωm respectively. The sensing nodes are assumed to be uniformly distributed inside

a cell of radius r, centered on the transmitting primary node. In this case, the local SNR is gamma distributed

where the PDF is

f(γ
(m)
t ) =

1

Γ(mm)

(
mm

γ(m)

)mm

γmm−1
m exp

(
− mm

γ(m)
γ
(m)
t

)
. (56)
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The average SNR (per sensing channel), i.e., γ(m), follows a log-normal distribution with a standard deviation of

θ dB, where the mean value follows a decreasing exponential path loss with exponent αe. Hence, the PDF of the

average SNR per user5 γ can be written as [35], [36]

f
(
γ(m)

)
=

2

c
exp

(
2θ2 − 2c(γ(m) − γrad)

c2

)
Q

(
2θ2 − c(γ(m) − γrad)

cθ

)
, (57)

where γrad is the average SNR at distance r, Q(·) denote the Gaussian Q-function, Q(z) = 1√
2π

∫∞
z

exp
(
−u2

2

)
du,

and c = 10αe log(e) denotes the parameter of the exponential pass loss.

Hence, as a function of the average SNR (per user), the bound of the average probability of missed detection is

obtained as given by

Pmd(η, τ) ≥
Nsb∏
τ=1

1−
M∑

m=1

Nb−1∑
l=0

K−1∑
k=0

exp

(
−η(τ)

σ2
nω

(m)
k

(
1 + E

[
γ(m)

])) K−1∏
q=0,q ̸=i

ω
(m)
k(

ω
(m)
k − ω

(m)
q

) . (58)

D. The Neyman-Pearson Detector over i.i.d. Nakagami Channels

Let β denote a predetermined probability of false alarm. The PDF of the decision variable assuming H0 and H1

are given by

f(z;H0) =
1

Γ(KM)

zKM−1

(σ2
n)

KM
exp

(
− z

σ2
n

)
, (59)

and

f(z;H1) =
1

Γ(KM)

σ2
n
KM

zKM−1

(1 + γ)KM
exp

(
−zσ2

n

1 + γ

)
(60)

respectively. Using the Neyman-Pearson criteria, the likelihood ratio test is to accept H1 if f(z;H1)
f(z;H0)

is larger than

the threshold that yields a probability of false alarm of β. Hence the test is rewritten as

(1 + γ)
−KM

exp

(
− zγ

σ2
n(1 + γ)

)
H1

≷
H0

η(β). (61)

Rearranging the previous equation, the modified test is

z
H1

≷
H0

−σ2
n log

(
η(β) (1 + γ)

KM
)(

1 +
1

γ

)
. (62)

The probability of false alarm can be inverted to obtain the value of β by utilizing the inverse regularized incomplete

(upper) gamma function, Q−1(·, ·), [33].

V. IMPACT OF NOISE UNCERTAINTY

The detection of signals is affected by noise uncertainty and this issue was investigated for the conventional

time-domain energy detector in many studies [37], [38]. Let α denote the noise uncertainty factor, such that the

estimated noise is σ̂2
n = ασ2

n. Usually the noise uncertainty factor is limited within the interval [10−B/10, 10B/10],

5since here we assume identical but non-identically distributed (i.n.i.d.) fading channels, the i.i.d. case can be obtained by substituting a

unified value of γ for γ(m)
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such that in dB 10 log10 α is uniformly distributed within the interval [−B,B] and then the PDF of the noise

uncertainty factor is given by

fα(z) =


5

log(10)Bz , 10−B/10 < z < 10B/10,

0, otherwise.
(63)

Finally, the average probabilities of false alarm and detection are given by

E{Pfa(α)} =

∫ 10B/10

10−B/10

Pfa(z)fα(z) dz, (64)

E{Pd(α)} =

∫ 10B/10

10−B/10

Pd(z)fα(z) dz, (65)

For MIMO-MTM, closed forms for the special case of unity weights can be obtained as follows. Let us recall

(30) and let us recall the substitution Γ(a, b) = Γ(a) − ba

a 1F1 (a; a+ 1;−b). Thus, averaging the probability of

false alarm over the probability distribution of the noise uncertainty factor we get

E {Pfa} =1− 5

B log(10)Γ(K + 1)

(
ηK

σ2
nM

)K ∫ 10B/10

10−B/10
1F1

(
K;K + 1;

−ηK

zσ2
nM

)
z−K−1 dz (66)

which is an integral of a confluent hypergeomteric function, which can be solved into the closed form given by

E {Pfa} = 1 +
5K−2B−1

Γ(K) log(10)

(
Kη

σ2
nM

)K
{
10−

BK
10 2F2

 K,K

K + 1,K + 1

∣∣∣∣∣∣ −Kη

σ2
nM

10−
B
10


− 10

BK
10 2F2

 K,K

K + 1,K + 1

∣∣∣∣∣∣ −Kη

σ2
nM

10
B
10

} (67)

where

pFq (a1, . . . , ap; b1, . . . , bq; z) =
∞∑
k=0

1

k!

(a1)k(a2)k...(ap)k
(b1)k(b2)k...(bq)k

zk

is generalized hypergeometric function and for brevity we use

pFq (a1, . . . , ap; b1, . . . , bq; z) = pFq

a1, . . . , ap

b1, . . . , bq

∣∣∣∣z
 .

Using the same procedure the average probability of detection can be obtained. Let g = Kη
σ2
nM

, c = Ωσ2
s

σ2
n

, b = 10
B
10

and a = 10−
B
10 . Recalling (34), the average probability of detection is expressed by the integral in

E {Pd} =1− 5

B log(10)Γ(K + 1)

∫ 10B/10

10−B/10

1

z

(
ηK

zσ2
nM + σ2

sΩM

)K

1F1

(
K;K + 1;

−ηK

zσ2
nM + σ2

sΩM

)
dz (68)
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which can be solved as

E {Pd} = 1 +
5K−2B−1gKcK−2

Γ(K) log(10)(K − 1)

×


(

c

a+ c

)K−1

F
1:1;1

1:1;0


K − 1 : K ; 1 ;

K : K + 1 ; − ;

∣∣∣∣∣∣∣∣∣∣∣
− g

a+ c
,

c

a+ c



−
(

c

b+ c

)K−1

F
1:1;1

1:1;0


K − 1 : K ; 1 ;

K : K + 1 ; − ;

∣∣∣∣∣∣∣∣∣∣∣
− g

b+ c
,

c

b+ c




, (69)

where the function F(·) is Kampé de Fériet function where the function definition and the full proof are provided

in the Appendix.

VI. SIMULATION RESULTS AND DISCUSSION

In this section we provide simulation results and numerical examples to give an insight into the performance

of the multitaper method for the two considered scenarios of MIMO-MTM and MTM-SVD. Fig. 2 validates the

accuracy of the derived formulas for the PDF of the decision variable under the hypotheses H0 and H1 for both

cases of MIMO-MTM and the MTM-SVD processor. It is obvious that by using the derived parameters for the

Phase-Type probability distribution, the theoretical probability distribution functions are matching for both cases of

the null hypothesis H0 and the alternate hypothesis H1. The results were obtained using a sample size of 64 and a

number of 4 DPSSs. For the case of MIMO-MTM, the transmitter employs a number of N = 3 transmit antennas,

while the receiver employs a number of M = 4 antennas. For the case of MTM-SVD, the number of cooperating

nodes is M = 3.

Fig. 3 presents a comparison between MIMO-MTM and all other nonparametric power spectrum estimators: the

periodogram, Bartlett’s method and Welch’s method. The performance comparison is provided in terms of the

receiver operating characteristics (ROC), i.e., the probability of detection versus the probability of false alarm.

For Bartlett’s method the vector x̆ is divided into KB sub-segments each of length LB. For Welch’s method, an

overlapping factor, ϵ, is used to divide x̆ into a number of overlapping segments each of length Lw, such that the

resultant number of segments is Kw. Hence, based on the assumed MIMO structure, the periodogram, Bartlett’s

estimate and Welch’s estimate are given by

Ŝx(f)=
1

L

∣∣∣∣∣
L−1∑
t=0

x̆(t)e−j2πft/L

∣∣∣∣∣
2

, (70)

ŜBart
x (f)=

1

KBLB

KB∑
i=1

∣∣∣∣∣
LB−1∑
t=0

x̆(t)e−j2πft/LB

∣∣∣∣∣
2

, (71)
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ŜWOSA
x (f)=

1

KwLw

Kw∑
i=1

∣∣∣∣∣
Lw−1∑
t=0

x̆(t+ iϵ)e−j2πft/Lw

∣∣∣∣∣
2

, (72)

where Ŝx, ŜBart
x and ŜWOSA

x denote the periodogram, Bartlett’s estimator and Welch’s estimator respectively. The

values of the sub-segemnt parameters KB and KW are obtained as a function of L as:KB = L
LB

,

KW = L−ϵ
LW−ϵ ,

(73)

respectively.

The simulation parameters are L = 16, M = 5, N = 3, K = 6, KB = KW = 2, ϵ = 4. From Fig. 3, it can

be seen that MIMO-MTM yields the best performance compared to all other nonparametric methods. Both Bartlett

and Welch’s methods yield the same ergodic probability of detection as long as KW = KB, and therefore they both

yield the same ROC curves as shown in the figure. The periodogram yields the poorest performance, as it yields

the lowest probability of detection for a given probability of false alarm.

In Fig. 4, its shown that applying the Neyman-Pearson approach introduces further enhancement in the perfor-

mance of MIMO-MTM for low values of the SNR. The figure illustrates the receiver operator characteristics for

two values of the SNR, given by −11dB and −25dB, respectively. The simulation parameters are N = 3 transmit

antennas, M = 5 receive antennas, the length of the sensing frame is L = 256 samples and the number of DPSSs

is K = 16. The optimized detection threshold is given in (36). It can be seen that the performance is significantly

enhanced, as the average probability of detection is maximized as a function of the probability of false alarm.

Table I presents a comparison between the MIMO-MTM model and other nonparametric methods. The table

provides numerical examples which demonstrate the performance in terms of the probability of detection and the

probability of missed detection for predefined values of the probability of false alarm given by Pfa = {0.05, 0.1, 0.2}.

These values where chosen as spectrum sensing techniques are optimally required to have a maximum probability

of false alarm of 0.1, and a minimum probability of detection of 0.9 [39]. The results presented in the table contains

both MIMO-MTM and MIMO-MTM combined with the Neyman-Pearson approach from Section III-E2 using the

likelihood ratio in (36). Generally, for small values of the SNR, the performance of most detectors tend to lie on

the line-of-no-discrimination. For example, from the table it can be seen that for a small SNR of -17dB and -9dB,

the periodogram produces an achievable pair (Pfa, Pmd), that lies in the line-of-no-discrimination (this effect is also

shown in Fig.3). However, with optimization using the NPA, the ergodic probability of detection is maximized and

the performance of MIMO-MTM is significantly enhanced as can be seen from the numerical values in the table.

In fact, MIMO-MTM succeeded on satisfying the constraint of the probability of false alarm, while reducing the

probability of miss as well.

Fig. 5 illustrates the average probability of detection versus the number of samples within a single sensing frame.

The figure compares between MIMO-MTM, the periodogram, Bartlett’s method and Welch’s method. For a given

sample size, MIMO-MTM outperforms all other methods. It can also be seen that MIMO-MTM, Bartlett’s method

and Welch’s method are not affected by any increase in the sample size and provides a constant average probability
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of detection. However, the periodogram is affected by low sample sizes and the performance converges to a constant

value as the sample size increases.

Fig. 6 depicts the effect of noise uncertainty when using MIMO-MTM. The results show that the expressions

obtained in Section V are accurate. The simulation parameters are m = 1, Ω = 0.5, N = 3, M = 5, for two cases:

1) σ2
s = 1.5, σ2

n = 2, total SNR= −4.2597dB and 2) σ2
s = 4, σ2

n = 10, total SNR= 4dB. A worst case is assumed of

B = 2dB. It is also shown that the performance margin is very negligible, which makes the performance identical

to the case of when the impact of noise uncertainty is ignored.

Fig.7 shows the receiver operator characteristics assuming that the fading process is independent but not identically

distributed. The MTM-SVD procssor is also compared with the case of using periodograms. A number of M =

{4, 6, 8} sensing nodes are assumed, where each sensing node uses a K = 16 Slepian vectors. The local weights

are assumed to be the energy concentrations of the Slepian vectors. The average SNR of a distance equivalent to the

radius from the primary transmitting node is γrad = 6 dB and αe = 3.5. It can be seen that when the probability

of false alarm is 0.1, almost all cases yield a probability of detection of 1.

Finally, in Fig. 8 we plot the average probability of detection versus the SNR when the threshold is optimized to

maximize the probability of detection assuming independent and identically distributed fading channels with γ = 6

dB. The optimized threshold is given by (61). Simulations were carried for M = 5, K = 16 and two cases of

number of frequency bins and it can be seen that using a larger number of bins yields better performance.

VII. CONCLUSION

This study set out to determine the exact performance analysis of the multitaper detector from two perspectives:

MIMO-MTM and the MTM-SVD processor. Both multitaper-based scenarios were investigated within the context of

detection of primary transmissions over fading channels, for nodes that employ opportunistic spectrum access. This

study has shown that the decision variable for both considered scenarios can be statistically modeled using the Phase-

Type distribution, where the exact distribution parameters were derived as the nonzero eigenvalues of the Hermitian

form representations of the corresponding variables. The findings showed that in general the derived analytical results

accurately matched the investigated scenarios. Furthermore, in this paper, we extended the obtained models into

optimized versions using the Neyman-Pearson Approach over Nakagami channels. Finally, we also investigated the

impact of noise uncertainty in a MIMO-MTM node. As a summary, for the case of MIMO-MTM, the performance is

significantly enhanced by increasing the number of Slepian vectors and number of receiving antennas, and MIMO-

MTM is robust under noise uncertainty. For the case of the MTM-SVD processor, the performance is a function

of the number of collaborating nodes, frequency resolution and number of Slepian vectors as well. It is mention

worthy that the obtained models in this paper provides a basis for further optimization investigations for the MTM.

APPENDIX
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Let g = Kη
σ2
nM

and c =
Ωσ2

s

σ2
n

. Let us consider the integral of the form

J =
gK

K

∫ b

a
1F1

 K

K + 1

∣∣∣ −g

z + c

 z−1 (z + c)
−K

dz, (74)

which can be expressed as

J =
gK

KcK−1

∫ c
a+c

c
b+c

1F1

 K

K + 1

∣∣∣− g

c
y

× yK−2 (1− y)
−1

dy, (75)

which yields

J =
gK

KcK−1

{
∆

(
c

a+ c

)
−∆

(
c

b+ c

)}
, (76)

where

∆(z) =
zK−2

K − 2
F

1:1;1

1:1;0


K − 2 : K ; 1 ;

K − 1 : K + 1 ; − ;

∣∣∣∣∣∣∣∣∣∣∣
− g

c
z, z

 (77)

which is the notation for the Kampé de Fériet function introduced by Srivastava and Panda and reported in [40] as:

F
A:B;C

Ǎ:B̌;Č


(a) : (b) ; (c) ;

(ǎ) : (b̌) ; (č) ;

∣∣∣∣∣∣∣∣∣∣∣
y, z

 =
∞∑
s=0

∞∑
r=0

1

r!

1

s!

(a)r+s(b)r(c)s

(ǎ)r+s(b̌)r(č)s
yrzs, (78)

where

(a)n= (a1)n(a2)n . . . (aA)n, (79a)

(b)n= (b1)n(b2)n . . . (bB)n, (79b)

(c)n= (c1)n(c2)n . . . (cC)n, (79c)

(ǎ)n= (ǎ1)n(ǎ2)n . . . (ǎǍ)n, (79d)

(b̌)n= (b̌1)n(b̌2)n . . . (b̌B̌)n, (79e)

(č)n= (č1)n(č2)n . . . (čČ)n, (79f)

where (·)n is Pochhammer symbol.
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TABLE I

NUMERICAL EXAMPLES FOR COMPARISON BETWEEN MIMO-MTM AND OTHER NONPARAMETRIC ESTIMATORS

MIMO-MTM

(with NPA)
MIMO-MTM Welch Bartlett Periodogram

L = 16 ,K = 16
L = 16, KW = 2,

ϵ = 4, LB = 10

L = 16, KB = 2

LB = 8
L = 16

M = 3,N = 2 Pfa Pd Pmd Pd Pmd Pd Pmd Pd Pmd Pd Pmd

Rayleigh

SNR=−17dB

0.05 1 0 0.06 0.940 0.054 0.946 0.054 0.946 0.050 0.950

0.1 1 0 0.116 0.884 0.106 0.894 0.106 0.894 0.100 0.900

0.2 1 0 0.224 0.776 0.209 0.791 0.209 0.791 0.200 0.800

Nakagami

m=6

SNR=−9dB

0.05 1 0 0.124 0.876 0.076 0.924 0.076 0.924 0.051 0.949

0.1 1 0 0.210 0.790 0.139 0.861 0.139 0.861 0.100 0.900

0.2 1 0 0.350 0.650 0.254 0.746 0.254 0.746 0.202 0.708
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Fig. 2. Fitting of Phase-Type theoretical PDFs of the decision variable and numerical data for both MIMO-MTM and MTM-SVD.
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Fig. 3. Comparison between MIMO-MTM and the case of using MIMO with other nonparametric PSD estimators (K = 4, L = 16, M = 5,

N = 3)
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Fig. 4. Further enhancement of MIMO-MTM using the Neyman Pearson Approach (NPA) in law values of the SNR. (K = 16, L = 256,

M = 5, N = 3)
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Fig. 6. Performance under noise uncertainty. (m = 1, Ω = 0.5, N = 3, M = 5)
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Fig. 7. Receiver operator characteristics for the MTM-SVD processor assuming i.n.i.d fading channels.
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