138 research outputs found

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    Leveraging service-oriented business applications to a rigorous rule-centric dynamic behavioural architecture.

    Get PDF
    Today’s market competitiveness and globalisation are putting pressure on organisations to join their efforts, to focus more on cooperation and interaction and to add value to their businesses. That is, most information systems supporting these cross-organisations are characterised as service-oriented business applications, where all the emphasis is put on inter-service interactions rather than intra-service computations. Unfortunately for the development of such inter-organisational service-oriented business systems, current service technology proposes only ad-hoc, manual and static standard web-service languages such as WSDL, BPEL and WS-CDL [3, 7]. The main objective of the work reported in this thesis is thus to leverage the development of service-oriented business applications towards more reliability and dynamic adaptability, placing emphasis on the use of business rules to govern activities, while composing services. The best available software-engineering techniques for adaptability, mainly aspect-oriented mechanisms, are also to be integrated with advanced formal techniques. More specifically, the proposed approach consists of the following incremental steps. First, it models any business activity behaviour governing any service-oriented business process as Event-Condition-Action (ECA) rules. Then such informal rules are made more interaction-centric, using adapted architectural connectors. Third, still at the conceptual-level, with the aim of adapting such ECA-driven connectors, this approach borrows aspect-oriented ideas and mechanisms, and proposes to intercept events, select the properties required for interacting entities, explicitly and separately execute such ECA-driven behavioural interactions and finally dynamically weave the results into the entities involved. To ensure compliance and to preserve the implementation of this architectural conceptualisation, the work adopts the Maude language as an executable operational formalisation. For that purpose, Maude is first endowed with the notions of components and interfaces. Further, the concept of ECA-driven behavioural interactions are specified and implemented as aspects. Finally, capitalising on Maude reflection, the thesis demonstrates how to weave such interaction executions into associated services

    Architectural Analysis of Systems Based on the Publisher-Subscriber Style

    Get PDF
    Architectural styles impose constraints on both the topology and the interaction behavior of involved parties. In this paper, we propose an approach for analyzing implemented systems based on the publisher-subscriber architectural style. From the style definition, we derive a set of reusable questions and show that some of them can be answered statically whereas others are best answered using dynamic analysis. The paper explains how the results of static analysis can be used to orchestrate dynamic analysis. The proposed method was successfully applied on the NASA's Goddard Mission Services Evolution Center (GMSEC) software product line. The results show that the GMSEC has a) a novel reusable vendor-independent middleware abstraction layer that allows the NASA's missions to configure the middleware of interest without changing the publishers' or subscribers' source code, and b) some high priority bugs due to behavioral discrepancies, which were eluded during testing and code reviews, among different implementations of the same APIs for different vendors

    AMBIENT-PRISMA: Distribution and Mobility in Aspect-Oriented Software Architectures

    Full text link
    This thesis presents a framework called Ambient-PRISMA for describing and developing distributed and mobile software systems in an abstract way. Ambient-PRISMA enriches an aspect-oriented software architecture approach called PRISMA with concepts of Ambient Calculus (AC). Ambient Calculus (AC) is a formalism that provides primitives to describe distribution and mobility characteristics in an abstract way. It introduces a concept called ambient which is a bounded place where computation happens. This enrichment is performed by extending the PRISMA metamodel, and Aspect-Oriented Architecture Description Language (AOADL). A case study of an electronic Auction System with mobile agents is used throughout the thesis in order to illustrate the work.Ali Irshaid, N. (2007). AMBIENT-PRISMA: Distribution and Mobility in Aspect-Oriented Software Architectures. http://hdl.handle.net/10251/12900Archivo delegad
    corecore