168 research outputs found

    Compressed Random-Access Trees for Spatially Coherent Data

    Get PDF
    International audienceAdaptive multiresolution hierarchies are highly efficient at representing spatially coherent graphics data. We introduce a framework for compressing such adaptive hierarchies using a compact randomly-accessible tree structure. Prior schemes have explored compressed trees, but nearly all involve entropy coding of a sequential traversal, thus preventing fine-grain random queries required by rendering algorithms. Instead, we use fixed-rate encoding for both the tree topology and its data. Key elements include the replacement of pointers by local offsets, a forested mipmap structure, vector quantization of inter-level residuals, and efficient coding of partially defined data. Both the offsets and codebook indices are stored as byte records for easy parsing by either CPU or GPU shaders. We show that continuous mipmapping over an adaptive tree is more efficient using primal subdivision than traditional dual subdivision. Finally, we demonstrate efficient compression of many data types including light maps, alpha mattes, distance fields, and HDR images

    Syntactic and semantic image representations for computer vision

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1991.Includes bibliographical references (leaves 70-72).by Bradley Joseph Horowitz.M.S

    Quality Measurements on Quantised Meshes

    Get PDF
    In computer graphics, triangle mesh has emerged as the ubiquitous shape rep- resentation for 3D modelling and visualisation applications. Triangle meshes, often undergo compression by specialised algorithms for the purposes of storage and trans- mission. During the compression processes, the coordinates of the vertices of the triangle meshes are quantised using fixed-point arithmetic. Potentially, that can alter the visual quality of the 3D model. Indeed, if the number of bits per vertex coordinate is too low, the mesh will be deemed by the user as visually too coarse as quantisation artifacts will become perceptible. Therefore, there is the need for the development of quality metrics that will enable us to predict the visual appearance of a triangle mesh at a given level of vertex coordinate quantisation

    Project MEDSAT: The design of a remote sensing platform for malaria research and control

    Get PDF
    Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission

    Design and Evaluation of Compression, Classification and Localization Schemes for Various IoT Applications

    Get PDF
    Nowadays we are surrounded by a huge number of objects able to communicate, read information such as temperature, light or humidity, and infer new information through ex- changing data. These kinds of objects are not limited to high-tech devices, such as desktop PC, laptop, new generation mobile phone, i.e. smart phone, and others with high capabilities, but also include commonly used object, such as ID cards, driver license, clocks, etc. that can made smart by allowing them to communicate. Thus, the analog world of just a few years ago is becoming the a digital world of the Inter- net of Things (IoT), where the information from a single object can be retrieved from the Internet. The IoT paradigm opens several architectural challenges, including self-organization, self-managing, self-deployment of the smart objects, as well as the problem of how to minimize the usage of the limited resources of each device. The concept of IoT covers a lot of communication paradigms such as WiFi, Radio Frequency Identification (RFID), and Wireless Sensor Network (WSN). Each paradigm can be thought of as an IoT island where each device can communicate directly with other devices. The thesis is divided in sections in order to cover each problem mentioned above. The first step is to understand the possibility to infer new knowledge from the deployed device in a scenario. For this reason, the research is focused on the web semantic, web 3.0, to assign a semantic meaning to each thing inside the architecture. The sole semantic concept is unusable to infer new information from the data gathered; in fact, it is necessary to organize the data through a hierarchical form defined by an Ontology. Through the exploitation of the Ontology, it is possible to apply semantic engine reasoners to infer new knowledge about the network. The second step of the dissertation deals with the minimization of the usage of every node in a WSN. The main purpose of each node is to collect environmental data and to exchange hem with other nodes. To minimize battery consumption, it is necessary to limit the radio usage. Therefore, we implemented Razor, a new lightweight algorithm which is expected to improve data compression and classification by leveraging on the advantages offered by data mining methods for optimizing communications and by enhancing information transmission to simplify data classification. Data compression is performed studying the well-know Vector Quantization (VQ) theory in order to create the codebooks necessary for signal compression. At the same time, it is requested to give a semantic meaning to un- known signals. In this way, the codebook feature is able not only to compress the signals, but also to classify unknown signals. Razor is compared with both state-of-the-art compression and signal classification techniques for WSN . The third part of the thesis covers the concept of smart object applied to Robotic research. A critical issue is how a robot can localize and retrieve smart objects in a real scenario without any prior knowledge. In order to achieve the objectives, it is possible to exploit the smart object concept and localize them through RSSI measurements. After the localization phase, the robot can exploit its own camera to retrieve the objects. Several filtering algorithms are developed in order to mitigate the multi–path issue due to the wireless communication channel and to achieve a better distance estimation through the RSSI measurement. The last part of the dissertation deals with the design and the development of a Cognitive Network (CN) testbed using off the shelf devices. The device type is chosen considering the cost, usability, configurability, mobility and possibility to modify the Operating System (OS) source code. Thus, the best choice is to select some devices based on Linux kernel as Android OS. The feature to modify the Operating System is required to extract the TCP/IP protocol stack parameters for the CN paradigm. It is necessary to monitor the network status in real-time and to modify the critical parameters in order to improve some performance, such as bandwidth consumption, number of hops to exchange the data, and throughput

    DCT Implementation on GPU

    Get PDF
    There has been a great progress in the field of graphics processors. Since, there is no rise in the speed of the normal CPU processors; Designers are coming up with multi-core, parallel processors. Because of their popularity in parallel processing, GPUs are becoming more and more attractive for many applications. With the increasing demand in utilizing GPUs, there is a great need to develop operating systems that handle the GPU to full capacity. GPUs offer a very efficient environment for many image processing applications. This thesis explores the processing power of GPUs for digital image compression using Discrete cosine transform

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity
    corecore