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1
Introduction

Since ancient times, the human face has been a medium for revealing many of people’s
aspects, personality, and characteristics. The ancient Greeks attributed facial features to
certain characteristics [61]. Basic face-inferred information (e.g. age, visual attention,
emotions, and identity) is well-known and humans have been able to recognize it with
ease.

It comes as no surprise that this information plays a role in our life from early on. The
knowledge, which comes along with perceiving this information over time, influences
how people interact and converse with each another. In addition to having old roots
and playing a key role in social interaction, this face-inferred information is culturally
independent [32]. Estimating people’s age and visual attention along with recognizing
identity and emotions is universally applicable and part of everyday life everywhere.

Other face-inferred information is more subtle. The colorization of the face can reveal
some social or biological cues. Increasing red or yellow of face’s color is positively
correlated with perceived health of black African and white Caucasians [106, 107]. Fur-
thermore, the shape of the face is correlated with more subtle information. Various stud-
ies [16, 60, 108] have concluded a relationship between the facial width-to-height ratio
to aggression, unethical behavior, deception, dominance and even politically-relevant
characters [69].

The abundance of information derived from the human face inspired early research
in computer vision and artificial intelligence to automatically extract this information
[11, 66, 136]. Automatic face recognition has been a success story in computer vision.
The line of research initially consisted of basic face-related tasks like age estimation
[38], gender [79] and ethnicity recognition [37], as well as gaze estimation [58]. Later,
more subtle tasks were added such as recognizing genuine smiles [25, 125] and mirco-
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expression recognition [88].

As the research performance continued to improve, additional general face-related chal-
lenges were being considered. Changes in the lighting conditions and digital noise
hinder the recording of faces [117]. Occlusion and changes in head pose obscure parts
of the face which may contain informative cues [10]. Furthermore, task-specific face-
related challenges were being addressed. Facial expressions change the dynamics of
the facial muscles and make it more difficult to estimate a person’s age [54]. Omitting
user active engagement from calibrating gaze estimators, as required in some practical
situations, proposed the challenge of automatically calibrate the gaze estimators [58].

Such challenges reflect realistic instantiations of the tasks at hand. Finding solutions
under these challenges bridges the semantic gap in automatic face analysis, and pushes
for efficient realization of these solutions for everyday life problems.

This thesis addresses two face-analysis tasks: automatic age estimation and automatic
eye gaze estimation. Different from previous approaches [38], the focus is to provide
(practical) solutions for such tasks under variant conditions and setups.

1.1 Age Estimation

Consciously and subconsciously, people estimate the age of others on a daily basis. The
social interaction between two people is often influenced by the difference in perceived
age. Perceived physical maturity usually correlates with mental maturity, which directs
our communications with others. In a social event, people in their thirties would likely
converse with people in their age group differently than with others in different age
groups. Estimating the age of a person is essential for daily social communication and,
therefore, has become the focus of various studies [9, 35, 92].

Humans perceive age primarily through the changes in the facial skin. During aging, the
human face loses collagen beneath the skin leading to thinner, darker, and more leathery
skin [38]. Age-induced facial wrinkles become more distinct as a result of repeated
activation of facial muscles and they start to appear in different directions depending on
these muscles [21].

With the recent surge in the fields of Human-Computer Interaction (HCI) and automatic
human behavior analysis, automatic age estimation has become an urgent topic of re-
search. In Electronic Customer Relation Management (ECRM) – a company’s strategy
to interact and communicate with current and potential customers – the age of customers
is a key knowledge for efficient marketing. A company which sells anti-baldness cures
would, reasonably, rule out teenagers from its target groups. Early works in automatic
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age estimation focused on the changes in head size during early aging [67]. For later age
stages, facial skin changes are chiefly employed to automatically tell the age. Many re-
search works [41, 53, 130, 133] designed aging features with the aim to characterize the
wrinkles and other skin-related changes. These features are then mapped, by machine
learning techniques, to the estimated age.

Age estimation may be hindered by independent factors like facial expressions, which
induce the movement of some facial muscles that overlap with age-related ones. More-
over, poor imaging conditions introduce noise, which, affects the estimated age. Aging
cues, like wrinkles and fine skin details, are particularity prone to these changes. Such
challenges suggest the necessity to go beyond the standard scenarios to address real-life
cases.

1.2 Eye Gaze Estimation

Understanding where a person is looking at is key for social communication. It is actu-
ally argued that understanding the gaze is essential for early learning of infants [13, 14].
Knowing where people gaze reveals their areas of attention and what their interests are.
The duration, fixations, and the temporal-spatial patterns reflect the behavior of the per-
son and their interaction with the surroundings.

Successes in automatic gaze estimation have triggered applications in various domains.
Early applications were designed to assist disabled users in interacting via eye move-
ments [63]. Another application is eye typing [76] where text is generated by looking
at keys on the screen. Automatic gaze estimation has been integrated in monitoring and
surveillance systems; e.g. monitoring behavior in plane cockpits or driver fatigue detec-
tion [8, 64]. The more HCI systems are integrated in everyday life, the more automatic
human behavior analysis and, consequently, gaze estimation are needed. Recently, in
marketing research and ECRM, the behavior and interests of (potential) customers are
monitored around the clock.

Typical gaze estimation systems require explicit calibration. One type of calibration
aims to estimate the relationships between the user, the gaze plan (e.g. screen), and
the camera [58]. The user is usually asked to follow explicit instructions. While this
procedure is feasible for some applications such as eye typing, marketing research will
restrict to little active interaction from the user and ECRM will permit no active user
contribution at all. In the latter cases, estimating the gaze points should be carried out
completely passively.
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1.3 Research Questions

In this thesis, we aim to address the following research questions:

Question 1: For poor-quality images, does loose interpretation of aging features allevi-
ate the negative influence of noise on age estimation?

When presented with poor-quality images, the facial skin complexion is often distorted
or obscured. While this is a challenge in automatic face analysis in general, it is partic-
ularity problematic for automatic age estimation since it relies primarily on the fine skin
changes. The skin details become less lucid and the attribution of certain skin features
(aging cue) to an estimated age becomes less certain. To overcome this, in chapter 2,
we assign multiple interpretations to the aging features. In other words, the single ’am-
biguous’ age cue can suggest more than one age at a time. Technically speaking, the
aging features are assigned to pre-learned visual words in a soft manner which results
in more noise-robust features and, hence, better performance.

Question 2: How can we alleviate the negative influence of facial expressions when
predicting age?

Facial expressions induce changes in facial muscles, which distort the aging cues. A
facial expression is described by a combination of these changes in the face, which are
called Action Units [33]. A problem in age estimation is that expression-related muscles
overlap with aging-induced facial changes. For example, smiling involves the activation
of some facial muscles leading to raising the cheeks and pulling the lip corners. This
influences the aging wrinkles around the mouth and near the eyes. Consequently, the
changes to aging cues caused by expressions show the necessity of addressing the influ-
ence of expression when estimating age. To this end, in chapter 3, age and expression
are jointly learnt to model their relationship. The aim is to achieve expression-invariant
age estimation. More specifically, we introduce a new graphical model, which contains
a latent layer between the age/expression labels and the facial features. This layer cap-
tures the relationship between age and expression and, consequently, leads to better age
prediction.

Question 3: Can we use the movements of the facial muscles to infer further details
about age and hence achieve better age estimation?

During aging, the face experiences multiple changes in muscle tones and fat tissues.
While such changes induce age-related wrinkles, it also influences the way facial ex-
pressions are being displayed. In chapter 4, we aim to make use of some dynamic
facial features to boost the accuracy of age estimation. Dynamic features such as speed,
acceleration, and amplitude are extracted from facial landmarks such as eyelids, lip cor-
ners, and cheeks. When combined with skin appearance features, the dynamic features
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produce more discriminative aging descriptors and hence, better age estimation.

Question 4: Can we automatically design region-specific, efficient and robust aging
features?

Facial aging cues differ from one area to another. Several aging features [41, 53, 122]
are aimed to capture the details of the wrinkles on the face (wrinkle features) while
others [7, 83, 130] measure aging changes of skin texture (skin texture features). These
features are typically applied exhaustively to cover the entire face. Other works [21]
combine both features for more discriminative aging descriptors. However, the design
(or choice) of the feature types and the corresponding face regions are handcrafted.
This suggests designing a feature extraction scheme that is automatically adapted for
each facial area. To this end, in chapter 5, region-specific aging filters are learnt for
each of the different face regions. More specifically, a convolutional neural network is
assigned to each facial part. The filters are designed to fit the corresponding face regions
and, hence, produce effective, yet robust aging descriptors.

Question 5: What is the influence of different types and levels of digital noise on the
performance of aging features?

The influence of image quality on the performance has long been a challenge in face-
related image processing tasks. It is particularly important to address this challenge in
age estimation since the aim is to capture subtle aging cues such as skin texture and
wrinkle. Such cues are sensitive to small changes in image quality. Moreover, face
images in real-life scenarios are taken using various capturing devices and are prone to
noise due to digital transmission and compression. This makes it important to study
the performance of aging features with varying image quality degradation. In chapter
6, we introduce a scheme to explore the influence of image quality on the performance
of appearance aging features and we propose a basic framework to automatically assign
the best aging features based on the quality of the face image.

Question 6: Can we automatically calibrate gaze estimation systems without any active
engagement from the user side?

A prerequisite for current gaze estimation systems is user-involved calibration. This
process is needed to set values of a number of parameters. For instance, geometric-
calibration involves determining the relative locations and orientations between the ele-
ments of the setup (e.g. the user, the plane, and the camera) [58]. For some applications
like analyzing customers’ gazing behavior in shopping mall, the calibration should be
done entirely passively on the user side. In chapter 7, we exploit the gaze patterns of
others to auto-calibrate the gaze system (i.e. without manual calibration). We make use
of the observation that the gaze patterns of people are indicative of where a new user
will look in that same scene [65]. The calibration process can be seen as adding con-
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straints to a set of variables (parameters) and solving the system. In most of the current
gaze estimators, the constraints are set by eye (image) measurements while fixating at
predefined points on the gaze plane. In our work, the geometrical constraints defined
by the human gaze patterns (for the same stimulus) serve to obtain calibration-free gaze
estimation, which is sufficient to trace the user’s attention.



2
Soft Encoding for Age Estimation under
Uncontrolled Conditions

2.1 Introduction

Automatic age estimation of a person is an interesting and challenging task, with many
important applications in human-computer interaction, market intelligence and visual
surveillance. Since human faces provide most information to perceive the age, most
previous research efforts have focused on age estimation from face images [38].

Constructing a proper face image representation is a key component for successful face
age estimation systems. Typically two kinds of features are extracted from face im-
ages: appearance features (e.g. wrinkles, skin roughness) and geometric features (e.g.
shapes, ratios of distances between facial landmarks). For applications where images
acquired in unconstrained settings, it is difficult to automatically detect a sufficient num-
ber of fiducial landmarks to compute the geometrical features of the face.

As reviewed in [38], many approaches have been exploited to represent and model faces
from images such as anthropometric models, age subspace or manifold, and active ap-
pearance models. However, each representation has its limitations and strengths. For
example, the anthropometric model is useful for young ages, but not appropriate for
adults; for age manifold learning, a large number of training samples is needed. The fa-
cial representation should not only be discriminative but also robust to appearance vari-
ations and noise. In recent years, local descriptor based approaches have been proven
to be effective for face image analysis [23, 71, 75, 83]. Traditionally, Gabor-wavelets
have widely been exploited to model local facial appearance [42, 75]. Recently, the his-
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togram of Local Binary Patterns [83] have been adopted to describe the micro-structures
of the face [3, 104, 133]. Tolerance against monotonic illumination changes and com-
putational simplicity are the most important properties of LBP features. Scale-Invariant
Feature Transform (SIFT) [71] and Histogram of Oriented Gradients (HOG) [23] are
other types of local descriptors that have shown good performance in face analysis [48]
and object recognition.

More recently, Cao et al. [15] argued that these local descriptors use manually designed
encodings, and it is difficult to get an optimal encoding method. As shown in [15],
the existing handcrafted codes are unevenly distributed, and some codes may rarely
appear in face images. This means that the resulting code histogram is less informative
and less compact. They presented a learning-based encoding method, which adopts
unsupervised learning methods to encode the local micro-structures of the face into a set
of discrete codes. With Principal Component Analysis (PCA) and normalization, their
learning-based descriptor achieves superior performance on face verification. Instead of
face verification, in this paper, we consider learning-based encoding in the context of
age estimation.

We adopt the learning-based encoding method for age estimation and propose a prin-
cipled approach of extracting robust and discriminative facial features and encoding.
First, instead of learning a codebook from the entire face, we extract and learn multi-
ple codebooks for individual face patches. The intuition behind this is that the features
histogram is computed for each patch. Second, the encoding is done by a weighting
scheme in which each pixel is softly assigned to multiple candidate codes. This is to
alleviate ambiguity especially in noisy real-life images. Aging effects are mainly ob-
served as textural variations in faces such as wrinkles and other skin artifacts. Therefore,
we investigate the use of orientation histogram of local gradients to describe faces for
age estimation.

The rest of the paper is organized as the following. In Section 2.2 we provide an
overview on related work. Section 2.3 describes learning-based encoding method. We
outline our adaptations in Section 2.4. Experiments are presented in Section 2.5. Sec-
tion 2.6 concludes the paper.

2.2 Related Work

In the last few years, many research efforts have been invested on age estimation from
face images. A thorough survey of the state of the art can be found in [38].

Geng et al. [45] introduces the Aging Pattern Subspace for age estimation, where an
aging pattern is defined as a sequence of face images from the same person, sorted in the
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temporal order. This approach is evaluated on the FG-NET aging database, achieving a
Mean Absolute Error (MAE) of 6.77 years. However, in general, it is difficult to collect
multiple face images of the same person at different ages. Instead of learning a specific
aging pattern for each individual, a common aging pattern could be learned from face
images of multiple people [39]. Manifold learning techniques are adopted to embed
face images into a low-dimensional aging manifold. The age manifold based regression
[51] produces a MAE of 5.07 years on the FG-NET aging database.

Further, Yan et al. [130, 132] propose to use Spatially Flexible Patches as face repre-
sentation. This technique considers local patches and information about the position.
Modeled by a Gaussian mixture model, their approach achieves a MAE of 4.95 years
on the FG-NET database. Guo et al. [53] introduces the Biologically Inspired Features
for age estimation. Combined with SVM, the proposed features produce a MAE of 4.77
years on the FG-NET database. Recently Ni et al. [81] collected a large web image
database, and built a universal age estimator based on multi-instance regression.

Yang and Ai [133] consider LBP features for age estimation. They achieve the error
rate of 7.88% on the FERET database and 12.5% on the PIE database. Further, Gao
and Ai [42] study the problem of age estimation in consumer images. In their approach,
Gabor features are extracted and used with Linear Discriminant Analysis (LDA). They
consider four age categories: baby (0-1), child (2-16), adult (17-50), and old (50+).
Trained on 5,408 faces, their age estimator achieved an accuracy of 91% on 978 testing
images. Gabor features are demonstrated to be more effective than LBP features and
pixel intensities in their study. More recently, Shan [103] applies Adaboost to learn local
features, both LBP and Gabor features, for age estimation on real-life faces acquired in
unconstrained conditions.

Cao et al. [15] presents a learning-based encoding method, which adopts unsupervised
learning methods to encode the local micro-structures of the face into a set of discrete
codes. The method achieves high accuracy for face verification. In the next section, we
extend this method to age estimation. The extension consists of three points: the codes
are assigned in soft manner, different codebooks for different face patches, and using
features more related to estimating the age.

2.3 Learning-based Encoding

In this section, we briefly describe the learning-based encoding method [15]. At each
pixel, its neighboring pixels intensities are sampled in a ring-based pattern to form a
low-level feature vector. r∗8 values are sampled at even intervals on the ring of radius r.
The authors extensively varied the parameters (e.g. ring number, ring radius, sampling
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number of each ring), and found the differences among patterns are not of influence on
the face database they used. Following [15], we use the second sampling method with
two rings (r = 1, r = 2, with center), that is, 25 values (8 from the first ring, 16 from
the second ring, and the center value). After sampling, the sampled feature vector is
normalized into unit length, to make the feature vector invariant to local illumination
changes.

Then, the encoder is learned by applying unsupervised learning to a set of training face
images. The feature vectors are extracted at each pixel. Different unsupervised learning
methods are considered. In [15], three methods are examined: K-means, PCA tree, and
random-projection tree [36]. Their experiments show that the difference among these
learning schemes is small. In this paper, the PCA tree [36] is adopted. The largest
principal component for the vectors at each node is first computed. After projecting the
vectors onto that principal component, the vectors are split from the median value and
two children nodes are created; the principal component and the median value are stored
in the parent node. These children nodes are further split until the leaf number is equal
to the code number, where each leaf represents one code. With the learned encoder, the
input face image is encoded. Similar to LBP features, the encoded face image is divided
into a grid of patches (7×5 patches used in [15]), and the code histogram computed at
each patch is concatenated to form the descriptor of the whole face image.

2.4 Our Approach

In this section, the learning-based encoding method is transformed to face age estima-
tion.

2.4.1 Patch-based Code Learning

In Cao et al. [15], the code set is learned using the sampled vectors from the whole face.
However, the histograms are derived at the level of regions (patches). The histogram is
constructed from the sampled vectors in each patch. These histograms are concatenated
later to form the global descriptor.

There are variations among different face patches. Each individual patch may have dif-
ferent codes or code distributions, e.g. some codes may appear frequently in one patch
while they are rare for another patch. To illustrate this point we build two code sets from
2080 training images (used in Section 2.5). One code set is learned from the sampled
vectors extracted from the whole face, and the other is learned from the sampled vectors
extracted from one face patch (the upper left). Later, we extracted the sampled vectors
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from the upper left patch in 664 testing images (also used in Section 2.5), then we en-
coded the vectors using the two code sets and constructed the frequency histograms.
Figure 2.1 shows the two histograms. As can be observed, for this face patch, the codes
learned from the whole face are unevenly distributed (i.e., some codes rarely appear),
while the codes learned from the face patch are more uniformly distributed (i.e., they
are used more efficiently). Therefore, with different code set for each individual patch,
the code histogram is much more informative and compact. However, learning multiple
code sets introduces increase in both time and memory complexities.

2.4.2 Soft Encoding

When encoding the input image with the learned codebook, each sampled vector (at
each pixel) is assigned to the closest code. We call this hard encoding. However, for
face images (especially real-world images), ambiguities always exist. That is, for a
given sampled vector, there are multiple candidate codes. Assigning to the closest code
makes the encoding sensitive to image noise and varying conditions (e.g. illumination).
These factors can distort the sampled vector, resulting in different code assignments.
We use soft encoding assigning the given sample vector to multiple codes with weights.
Soft encoding is used in image classification [126].

When deriving the codes with the PCA tree, after dividing the training samples using
the median value, a Gaussian distribution model is estimated for each branch. For soft
assignment, the probability that it is from either branch is estimated using the Gaussian
model. This is used as the weight for that branch. The weight is multiplied with the
weight coming from the parent node. The new weight is passed to the children. In this
way, each code (leaf) is assigned with a weight leafc(ri), where c is the code, ri is the
feature vector i. The encoding is started with weight of 1 at the tree root. The weights
of all the codes are normalized. Thus the histogram bins are computed as follows:

Bin(c) =
n∑
i=1

leafc(ri)

Si
(2.1)

Si =
C∑
c=1

leafc(ri) (2.2)

where C is the number of codes, n is the number of sampled vectors, and Si is a nor-
malization factor, i.e., the sum of weights of all codes (for the given sampled vector).
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Fig. 2.1: The codes frequency histograms in one face patch of 664 face images using two dif-
ferent code sets; one learned from the whole face (Top) and the other learned from the
corresponding face patch (Bottom). 2,080 face images are used for learning both code
sets.

2.4.3 Orientation Histogram of Local Gradients

For each pixel, neighboring pixels are sampled in the ring-based pattern to form a low-
level feature vector. However, the extracted local features are sensitive to image noise
and illumination variations. Furthermore, as aging effects in faces are mainly observed
as texture variations such as wrinkles and other skin artifacts, local gradients (or edge
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Fig. 2.2: The performance over different block sizes.

responses) may be more effective. Following HOG [23], we extract the orientation
histogram of local gradients in neighborhood as the low-level feature vector for code
learning.

Therefore, we use the following approach. Given a pixel, local gradients in the neigh-
borhood (i.e., local block) are computed, and a 1-D histogram of gradient directions is
accumulated over the pixels in the block. The orientation bins are evenly spaced over
0◦− 360◦. Each gradient contributes to one or more bins, where the vote is weighted by
the magnitude of the gradient; the magnitude is added to the corresponding bin. There
are some parameters to choose in the implementation, including block size, gradient
computing, and orientation binning. Therefore, we aim to study the influence of the
various on the learning-based encoding. We use the dataset detailed in Section 2.5,
where 1,000 face images are used for code learning. 2,080 training images and 664
testing images are used for age group classification n using linear SVM. All faces have
a resolution of 61x49 pixels. Throughout this section, results are obtained with the fol-
lowing default setting: 5x5 block size, 8 orientation bins (i.e., each bin covers angle of
45◦), gradient computing Sobel-1D [-1,0,1].

Block Size — We test the block size of 2× 2, 3× 3, 4× 4, 5× 5, 7× 7, 9× 9, 16× 16.
Figure 2.2 shows the results of different block sizes when using 256 codes. It seems the
block size of 4x4 or 5x5 are the best choice for the dataset we use.

Gradient Computation — We test different gradient filters, namely: Sobel-1D [-1,0,1],
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Sobel-2D [-1,-2,-1; 0,0,0; 1,2,1], cubic [1,-8,0,8,-1], diagonal [-1,0; 0,1], Prewitt [1,1,1;
0,0,0; -1,-1,-1] and Gaussian derivatives with different sigma values. The best perfor-
mance using 256 codes is achieved using Gaussian derivatives with σ = 0.75. It seems
that the smoothness of Gaussian helps, and fine scale derivatives perform better for this
task.

Gradient Result(%) Gradient Result(%)
Sobel1-D 51.2 Gaussian (0.5) 51.8
Sobel2-D 50.9 Gaussian (0.75) 52.8
Cubic 46.1 Gaussian (1) 52.3
Diagonal 51.7 Gaussian (3) 47.9
Prewitt 49.2 Gaussian (5) 41.9

Tab. 2.1: The performance with different gradient filters.

Orientation Binning — We test different bin numbers (2,3,4,6,8,12,16) with Gaussian
and Sobel-1D gradients using 256 codes. The Gaussian derivative consistently outper-
forms Sobel-1D for all bin numbers. The best results are achieved using 6, 8 or 12
bins.

2.5 Experiments

2.5.1 Dataset and Experimental Settings

In most of the existing studies, face images with limited variations are considered. Im-
ages are usually high-quality frontal faces, occlusion-free, with clean background and
limited facial expressions. However, in real-world applications (e.g. collecting demo-
graphic statistics in shops), age estimation needs to perform on real-life face images
captured in unconstrained environments. There are appearance variations in real-life
faces, which include facial expressions, illumination changes, head pose variations, oc-
clusion or make-up, and poor image quality. Therefore, age estimation on real-life face
images is much more challenging.

The FG-NET dataset is used in many studies. It contains face images with 68 facial
landmarks. These landmarks are manually detected and often used by other methods to
extract shape information that helps estimating the age [45, 51, 131]. However, under
unconstrained conditions these landmarks cannot be accurately detected automatically.
And using manually-annotated landmarks is not plausible in real-life applications. So
comparing our method with other methods applied on FG-NET dataset is not feasible.
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To analysis the contribution of the manually annotated landmarks, Choi et al. [21]
compared the performance of their method using manually and automatically obtained
landmarks on FG-NET dataset. The MAE error increased around 20%.

Therefore, in this paper, we conduct experiments on real-life faces using a face image
set1 collected recently [40]. The dataset consists of 28,231 faces from 5,080 Flickr im-
ages, 86% of which were detected by a face detector, and others were manually added.
Each face was labeled with the gender and age category. Seven age categories were
considered: 0-2, 3-7, 8-12, 13-19, 20-36, 37-65, and 66+, roughly corresponding to
different life stages. Example faces in the dataset are shown in Figure 2.3.

The dataset contains large diversity in race, pose, illumination conditions, and facial
expressions. Many faces in the dataset have low resolution: the median face has only
18.5 pixels between eye centers, and 25% of the faces have under 12.5 pixels. To study
age estimation on faces with reasonable resolution, Shan [103] considered only faces
with the eye distance more than 24 pixels. This results in a collection of 12,080 faces.
The author selected 2,080 faces as the training set, and 644 faces as the testing set.
The gender in the training/testing data sets is evenly distributed. In our experiments,
we select another 1,000 face images that are excluded from the training/testing sets for
code learning, and perform age group classification using the training/testing sets. All
face images are normalized to 61×49 pixels based on eye centers. Linear SVM is used
as the classifier for simplicity. We used LIBSVM 2 for training and testing.

2.5.2 Experimental Results

Code Learning: Image vs Patches — We first examine the learning-based encoding
method for age estimation. Figure 2.4 shows the results. It is shown that the recog-
nition performance increases when the code number increases for most of code num-
bers. The performance decreases a bit when the code number is higher than 512. This
might be due to overfitting when learning the codebook for large number of codes. The
best performance of 56.2% is obtained using 512 codes. Then we compare this default
image-based learning with the patch-based learning. The patch-based learning provides
comparable or better performance than the image-based learning for most of the code
numbers. The best performance is 56.5% with 128 codes. This suggests that code learn-
ing at the regional level leads to more informative code histogram.

Soft Encoding — We apply soft encoding for face image encoding. The results are
shown in Figure 2.5. It is evident that soft encoding achieves better results than hard

1 chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html
2www.csie.ntu.edu.tw/ cjlin/libsvm
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Fig. 2.3: Example faces in the dataset [40].

encoding. This illustrate that soft encoding leads to a more robust code histogram.

Orientation Histogram of Local Gradients (OHLG) — We conduct experiments on
code learning using the OHLG feature extraction. Based on the study in Section 2.4,
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Fig. 2.4: The performance of image-based learning vs patch-based learning over different code
numbers.
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Fig. 2.5: The performance of soft encoding vs hard encoding over different code numbers.

we select the following setting: 5x5 block size, Gaussian derivative, and 8 orientation
bins. Figure 2.6 compares the results of OHLG with the sampling method. It is shown
that the OHLG feature extraction produces comparable performance as the ring-based
sampling. It does not outperform the sampling method. This might be due to the poor
quality of the images for which the textural patterns (e.g. wrinkles) are not obvious.
To verify this, we further conduct experiments on the dataset with better quality face
images.

We conduct experiments on the FG-NET database [1] and MORPH database [93], both
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Fig. 2.6: The performance of code learning using the OHLG feature extraction over different
code numbers.

of which have better quality faces. FG-NET contains 1,002 face images from Caucasian
people, with the ages range from 0 to 69 years. MORPH contains 1,690 images from
different ethnicities (433 Caucasian-descendant faces), with the age ranging from 15
to 68. We use the FG-NET data with ages between 15 and 68 as the training set, and
use the 433 Caucasian images from MORPH as the testing set. The code learning is
done using the remaining non-Caucasian faces in MORPH. Since we have exact ages
instead of categories, we use the Mean Absolute Error (MAE) as the criterion. Figure
2.7 shows the results. It can be derived that the OHLG feature extraction outperforms
the sampling method in most of code numbers. We further test soft encoding with
the OHLG feature extraction on the MORPH and FG-NET dataset. The results are
shown in Figure 2.8. Soft encoding reduces the MAE when using the OHLG feature
extraction for most of the codes, especially for larger codes. Overall, soft encoding with
OHLG feature extraction outperforms the ring-based sampling for all code numbers.
This illustrates the effectiveness of our improvement.

Codebook discriminative power — Since the codebook is learned from a separate set,
the discriminative power of the images in this set and how much they reflect the differ-
ences between the age categories may affect the discriminative power of the codebook.
In the following experiment, we test different sets for learning the codebook. Sets with
sizes 500, 750, 1000, 1250, and 1500 are taken. The larger sets contain the smaller
ones. For each set we ran the experiment using soft encoding over different code num-
bers. The performance is evaluated by a 2-fold cross-validation over the training set.
This is to ensure that the learning code set does not fit the test set. The results are shown
in Figure 2.9. We noticed that the 750-image set gave the best results. This suggests
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Fig. 2.7: The MAE on the MORPH and FG-NET dataset of code learning using the OHLG
feature extraction.
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Fig. 2.8: The MAE on the MORPH and FG-NET dataset using soft encoding with the OHLG
feature extraction.

that the corresponding codebook is the most discriminative. The codebooks learned
from the larger sets result in lower performances. It is possible that images outside the
750-image set may contain noise negatively affecting the discriminative power of the
codebook. We reran the experiment using the codebook learned from the 750-image
set. Following the setup in [103], we train the descriptors over all the training set im-
ages and reported the results on the testing set in Figure 2.10. The highest recognition
rate 59.5% achieved using 1024 codes. This is 3.6 point higher than the last reported



20 Soft Encoding for Age Estimation under Uncontrolled Conditions

4 8 16 32 64 128 256 512 1024 2048
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Code number

R
e
c
o
g
n
it
io

n
 R

a
te

 

 

500−image Dataset

750−image Dataset

1000−image Dataset

1250−image Dataset

1500−image Dataset

Fig. 2.9: Soft encoding using different learning code sets. The results were computed using
two-fold cross-validation on the training set.
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Fig. 2.10: Soft encoding using 750-image learning code set. The red curve represents Image-
based encoding results while the black one represents patch-base encoding results.
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result in [103], were the recognition rate was 55.9%.

Face Verification — We apply soft encoding to the face verification problem. The LFW
benchmark [62] is used. The LFW test set consist of 10 subsets each contains 300 same-
person pairs and 300 different-persons pairs. The evaluation is reported using 10 fold
cross-validation. At each fold, one subset is used for testing and other 9 are used for
training. The final results are the average of the 10 folds results. Another 1000 images
are used for learning the codebook. The face size is 96x84. As in [15], we apply a
DoG preprocessing step and the codes are learned once for all the 10-folds. The 1000
images identities, used for learning the codebook, never appear in the 10 sets. Figure
2.11 shows the results.
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Fig. 2.11: The performance of soft encoding vs hard encoding over different code numbers on
LFW face verification dataset.

Soft encoding achieves higher results than hard encoding for most of the code num-
bers. This suggests that our method can be directed to other face-related problems.
The reported results in [15] are around 5% higher than our results. Cao et al. used
another commercial software for face alignment 3. This might explain the difference
of the results. In their paper, Cao et al. applied further dimensionality reduction and
normalization steps. Here we compare with the raw feature vectors.

3 After personal communication with the first author of the paper (Cao).
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2.6 Conclusions

In this paper, we adopted the learning-based encoding method for age estimation. In-
stead of learning a set of codes from the entire face, we extracted and learned multiple
codebooks for individual face patches. Soft encoding has been used. Orientation his-
togram of local gradients in neighborhood has been introduced as feature vector for
code learning.

Experiments showed that our extensions produced better or comparable performance
for most of the cases. Using discriminative codebook, our method outperforms the
best performance reported on Gallagher dataset [103]. We extend our method to face
verification and show improvements which suggests that our method can be directed to
other face-related problems.



3
Expression-Invariant Age Estimation

3.1 Introduction

Automatic age estimation is an important research field in the area of computer vision
and has many applications such as human-computer interaction, security, and surveil-
lance. In general, the human age is derived from facial aging cues. The aging of adults is
primarily perceived via skin changes [38]. During aging, the human face loses collagen
beneath the skin leading to thinner, darker, and more leathery skin [38]. Age-induced
facial wrinkles become more distinct as a result of repeated activation of facial muscles
and they start to appear in different directions depending on these muscles [21]. For
example, vertical wrinkles intensify between the eyebrows while horizontal wrinkles
become more apparent close to the eye corners.

External factors like facial expressions cause changes in facial muscles which distort
the aging cues. A facial expression is explained by a combination of these changes
in the face which are called Action Units [33]. A problem in age estimation is that
expression-related muscles overlap with aging-induced facial changes. For example,
smiling involves the activation of some facial muscles leading to raising the cheeks and
pulling the lip corners. This influences the aging wrinkles around the mouth and near the
eyes. Consequently, the aging cues changes caused by expressions show the necessity
of separating the influence of expression when estimating the age.

Most of the existing age estimation methods assume that faces show little or no ex-
pressions and ignore the changes of the face appearance induced by them. Guo et al.
[54] study human age estimation under facial expression changes. Their method learns
the correlation between two expressions at a time (e.g. neutrality and happiness). To
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predict the age across two expressions, the face is mapped from one expression (e.g.
happiness) to another (e.g. neutrality). Next, the age is predicted from the “mapped”
face. For the face aging representation, Biologically-Inspired Features (BIF) [53] and
Marginal Fisher Analysis (MFA) are used. Zhang et al. [139] employ a weighted ran-
dom subspace method to solve cross-expression age estimation. In their method, several
feature sets are generated first, then subspaces are built for these sets. Next, a classifier
is learnt for each subspace and predictions of all classifiers are fused to produce the final
prediction. Their method does not require different expressions from the same subjects
as opposed to [54]. However, both methods [54, 139] require the expressions of test
images to be known before predicting the age which limits their applicability.

In this paper, we propose a different approach. Instead of learning the age across two
expressions, we jointly learn the age and expression and model their relationship. The
aim is to achieve expression-invariant age estimation. In our approach, one model is
learnt for all expressions. To predict the age, the age and expression are inferred jointly,
and hence prior-knowledge of the expression of the test face is not required. More
specifically, we introduce a new graphical model which contains a latent layer between
the age/expression labels and the facial features. This layer captures the relationship
between the age and expression. During training, the age and expression variables are
observed. This allows the latent layer to learn the configurations which map the features
to the age for different expressions and thus obtaining expression-invariant age estima-
tion. For testing, the age and expression labels are unknown and the method finds the
values of age, expression and latent layer which together maximize their compatibility
with the features.

The contributions of our work are: 1) we show how age-expression joint learning im-
proves the age prediction compared to learning independently from expression. 2) As
opposed to existing methods, the proposed method predicts the age across different
facial expressions without prior-knowledge of the expression labels of the test faces.
3) Finally, our results outperform the best reported results on age-expression datasets
(FACES and Lifespan).

3.2 Algorithm

The proposed graphical model aims to jointly learn the relationship between age and
expression. To this end, an inter-connected latent layer is introduced. The latent vari-
ables encode the changes in face appearance. These variables are not explicitly defined,
but learnt from the training data.

The graphical model has four sets of connections: First, connections between the face
subregions and the latent variables. These connections are designed to capture the
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changes of face appearance related to age and expression. Second, connections be-
tween the face subregions and the age/expression labels are formed. The aim here is
to directly infer the age/expression from the features. Third, connections between the
latent variable modeling the relationship between the face subregions. Finally, connec-
tions are established between the latent variables, the age, and the expression. The last
type of connections is designed to relate the age with the expression which allows the
joint learning between them. Next, we discuss the model formulation and explain the
inference and learning techniques.

3.2.1 Model Formulation

Suppose we have N training samples (images) {s1 = (x1, y1), s2 = (x2, y2), ..., sN =
(xN , yN)} where xn represents the features for sample sn and yn = {ya,n, ye,n} ∈ Y =
A × E denotes the age and the expression labels. A and E are the age and the ex-
pression spaces, respectively. The image is uniformly divided into four (2 × 2) sub-
regions. The feature vector extracted from each sub-region xi is connected to the cor-
responding hidden variable hi. Hence, the sample feature vector consists of four sub-
region vectors xn = [x1, x2, x3, x4] and the corresponding latent layer is denoted by
hn = [h1, h2, h3, h4] ∈ H4, whereH is the space of the latent variable state.

Fig. 3.1: Our graphical model to jointly learn the age and the expression. x represents the fea-
ture vector, h denotes the latent variables, ya and ye are the corresponding age and
expression respectively. Note that, while all xi are connected with ya and ye, we do
not show these connections in this figure for the sake of clarity.
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The aim is to learn the mapping between the features x and labels y. Our model maxi-
mizes the conditional probability of the joint assignment of y given observation x:

y∗ = argmaxyP (y|x; θ). (3.1)

Where:

P (y|x; θ) =
∑
h∈H

P (y,h|x; θ) =

∑
h∈H exp(ψ(y,h, x; θ))∑

y′∈Y,h∈H exp(ψ(y′ ,h, x; θ))
.

Where ψ(.) is the potential function which measures the compatibility between the (ob-
served) features, the joint assignment of the latent variables, and the output labels. In
the next section, the potentials are defined.

3.2.2 Potentials

The potentials measure the compatibility of the joint assignment of different variables:

ψ(y,h, x; θ) =
4∑
i=1

ψ1(ya, xi; θ
1
i )+

4∑
i=1

ψ2(ye, xi; θ
2
i )+

4∑
i=1

ψ3(hi, xi; θ
3
i )+ψ4(h, ya, ye; θ4).

(3.2)
In our model, four types of potentials are used. Hereafter, we explain each one of them.
Potential ψ1 models the compatibility of the features and the age:

ψ1(ya, xi; θ
1
i ) = θ1

i φ1(ya, xi), (3.3)

where φ1(ya, xi) represents the feature mapping function encoding the features of the
joint assignment of ya and xi. The length of φ1(ya, xi) is equal to the length of xi
multiplied by the cardinality of ya. In case there are S different ages and the feature
vector xi has K features, the size of θ1

i will be S × K. The mapped feature vector is
given by:

φ1(ya, xi) = [ 0...0︸︷︷︸
K×(ya−1)dimension

xTi ...0]. (3.4)

The model turns into a multi-class SVM for age estimation when solely this potential
is utilized with the maximum margin method. Multi-class SVM is used as a baseline in
this paper. This potential models the global mapping between the input features and the
output age prediction.

Potential ψ2 models the compatibility of the features and the expression:

ψ2(ye, xi; θ
2
i ) = θ2

i φ2(ye, xi), (3.5)
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where φ2(ye, xi) encodes the features of the joint assignment of ye and xi and is defined
in the same way as in equation 3.4.

Potential ψ3 models the compatibility of the observation and the latent states:

ψ3(hi, xi; θ
3
i ) = θ3

i φ3(hi, xi). (3.6)

Here, φ3(hi, xi) encodes the features of the joint assignment of the latent variable hi and
the features xi. The latent variables capture the changes of face appearance. For exam-
ple, a hidden state could represent whether the mouth is open (e.g. happy) or frowning
(e.g. angry). Thus, the potential ψ3(hi, xi; θ) learns the mapping of the observed fea-
tures to the appearance changes.

The potential ψ4 models the compatibility between the age, the expression, and the
latent layer:

ψ4(h, ya, ye; θ4) = θ4φ4(h, ye, ya). (3.7)

φ4(h, ye, ya) represents the feature mapping function which encodes the features of the
joint assignment of h, ye and ya. The length of φ4(h, ye, ya) is the multiplication of the
cardinalities of h, ye and ya. The element corresponding to the assignment of h, ye and
ya is set to be 1 while all other elements are set to be 0.

3.2.3 Inference and Learning

Inference: Given the model parameters θ, the inference involves a combinatorial search
of the joint assignment of h, ye and ya which results in the maximum conditional prob-
ability:

(ŷ, ĥ) = argmaxy∈Y,h∈Hψ(x, y,h; θ). (3.8)

Since the proposed graphical model contains loops, it is intractable in general to perform
the maximization. However, by collapsing all the latent variables h with the output vari-
ables ye a new potential factor is obtained. In the same way, by collapsing all the latent
variables h with the output variables ya we get another new potential factor. Then the
model becomes a chain structure and dynamic method is used to solve the maximization
problem [80].

Learning: To learn the parameters θ, we exploit the max margin approach [121]. Since
the latent variables h are not labeled in the training set, we need to solve the following
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latent structure SVM problem:

min
θ,ξ

{
1

2
‖θ‖2 + C

N∑
i=1

ξi

}
(3.9)

s.t. ∀i ∈ {1, 2, . . . , N}, ∀y,∀h ∈ H :

ξi ≥ ∆(yi, y)+ψ(y,h, xi;w)− ψ(yi,h
∗
i , xi; θ).

Where ψ(.) is the potential function as described in equation 3.2. h∗i is the optimum
state under the current parameter. The loss function ∆(yi, y) is defined as the following:

∆(y, ŷ) =

{
|ya − ŷa| if ye = ŷe

1 + |ya − ŷa| if ye 6= ŷe
. (3.10)

This optimization problem is non-convex. Following [135], we use the CCCP concave-
convex framework [137] to solve it. More details of the CCCP procedure can be found
in [135, 137].

3.3 Experiments

The goal of the proposed approach is to capture the relationship between the age and
expression and, hence, alleviate the influence of expression in age estimation. In this
section, we conduct a number of experiments to validate our model using the age-
expression datasets FACES [30] and Lifespan [78].

3.3.1 Datasets

The publicly available age estimation datasets like FG-NET [1] and MORPH [93] con-
tain mostly neutral faces. The non-neutral faces in those datasets are not expression-
labeled. Therefore, to evaluate expression-invariance age estimation, we use other
datasets: FACES and Lifespan, which are recently introduced to the computer vision
community [54]. FACES dataset contains face images of 171 subjects showing 6 ba-
sic expressions: neutrality, happiness, anger, fear, disgust, and sadness. Every subject
shows all the expressions resulting in 1026 = 171 × 6 face images. The faces in the
dataset are frontal with fixed illumination mounted in front and above of the faces. The
ages of the subjects range from 19 to 80. The age distribution is not uniform and in total
there are 37 different ages.

The Lifespan dataset is a collection of faces of subjects from different ethnicities show-
ing different expressions. The expression subsets have the following sizes: 580, 258, 78,
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64, 40, 10, 9, and 7 for neutrality, happiness, surprise, sadness, annoyed, anger, grumpy,
and disgust, respectively. The ages of the subjects range from 18 to 93 years and in total
there are 74 different ages. The dataset has no labeling for the subject identities. We
follow the setup of [54, 139] and use the neutral and the happy subsets. Although the
age distributions of both datasets cover a wide range of ages, the FACES dataset is more
challenging for age prediction since its expression variation (six expressions) is larger
than the one in Lifespan dataset (two expressions).

For feature extraction, eye centers are first automatically detected and the faces are
registered and cropped. Then, the faces are divided into 8×8 patches and a local feature
vector is extracted for each patch. Finally, the patch local descriptors are concatenated
together to form the face descriptor. To extract the features from each patch, we use
Local Binary Pattern (LBP) [83]. It is a simple, efficient, and rotation-invariant approach
and successfully used for age prediction to capture the skin texture details [21, 133]. In
our experiments, we use 8 sampling points with a radius equal to 1.

As in previous setups [54, 139], the datasets are divided into 5 folds. For the FACES
dataset, the expression distributions are uniform for all the 5 folds, and none of the
subjects appears in more than one fold. For the Lifespan dataset, the dataset (neutral
and happy) is split randomly into 5 folds. As the subject identities are not available, a
subject overlap between the training and the test samples is possible. The results are
measured quantitatively by Mean Absolute Error (MAE) 1

N

∑N
n=1 |yna − ŷna | . Where yna

is the true age for the test sample n, ŷna is the predicted age for the test sample n, and N
is the number of the test samples.

Fig. 3.2: Example faces from FACES (left) and Lifespan (right) datasets.



30 Expression-Invariant Age Estimation

3.3.2 Expression-Invariant Age Estimation

In this experiment, we compare two cases. First, learning the age independently from
the expression. Second, learning the age jointly with the expression. In both cases,
the same 5-fold age-expression datasets are used for evaluation. For the expression-
independent learning, a multi-class SVM is used as a baseline. In the expression-joint
learning, we use the proposed graphical model and the number of hidden states |H| is
set to 3. For the model learning, the expression is observed and the potential function in
equation 3.2 is applied. The results for the proposed model are shown in Table 3.2. For
both datasets, our graphical model significantly reduces the prediction error (14.43%
for FACES and 37.75% for Lifespan). The errors reported in [54] and [139] for FACES
and Lifespan datasets are shown in Table 3.2. Although both methods assume prior-
knowledge of the expression of tested samples, our model outperforms their results for
the two datasets.

We further compare our age estimation approach with the joint classification method
by [52]. The method was proposed to recognize facial expressions while reducing the
influence of human aging. In their method, the authors simply divide the dataset into
four age groups ([18-29],[30-49],[50,69], and [70-94]) and consider each expression
within each age group as a new class. Then, classification is performed on the newly
defined classes. For facial feature extraction, they manually labelled 31 fiducial points
and applied Gabor filters [24] on the locations of those points. The four age group
classification accuracy using the joint learning method is reported.

To make a fair comparison, and since the authors [52] manually labeled 31 fiducial
points on the face, we use our features and compare only the joint learning methods.
To this end, we create a new class for each age/expression combination. Different from
[52], where the datasets are divided into four age groups, we consider each age sep-
arately. The total number of new classes is 37 × 6 = 222 in the FACES dataset and
74× 2 = 148 classes in the Lifespan dataset. The obtained errors for FACES and Lifes-
pan are 9.94 and 8.85 years respectively, which are higher than the baseline errors and
the ones obtained by our graphical model. It is worth mentioning that in [52], as the
datasets are divided into four age groups, the method is tested on smaller number of
“joint-classes” (24 and 8 for FACES and Lifespan respectively). In this experiment, the
number of joint-classes is much higher.

Detailed results for independent and joint learning for FACES and Lifespan datasets
are shown in Tables 3.2 and 3.3, where the error for each expression subset is shown
separately. The error is reduced for all expression subsets, however, in different rates.
The largest improvement is achieved for neutrality (with 30.13% error reduction), while
the smallest improvement is obtained for the anger and the disgust expressions (4.64%
and 2.43% respectively). This is explained as anger and disgust expressions induce
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more profound changes in the face appearance than the other expressions which make
age prediction/perception more difficult. Our model clearly outperforms the existing
methods [52, 54, 139] by a wide margin which further proves the effectiveness of our
approach.

The hidden states capture the changes in the face appearance. To further illustrate this
point, we show the face regions corresponding to each hidden state. More specifically,
the averages of the bottom and top regions are computed (Figure 3.3). For the bottom
regions, the first hidden state corresponds to the face appearance where the mouth is
open, the third hidden state represents a depressed lip corner, and the second hidden
state corresponds to a normal face appearance. For the top regions, the second hidden
state represents the face appearance where the eye is slightly closed while the first and
the third states correspond to open eye appearances.

Fig. 3.3: Average face regions corresponding to different hidden states (from left to right) for
the bottom and top face regions.

3.3.3 Joint-Learning for Expression Recognition

In this experiment, we consider a different, yet related, task: how age information can
improve the recognition of expressions. Although aging affects how people exhibit
expressions, much of automatic expression recognition methods do not use the age
of the subject to recognize expressions. This is mainly due to the lack of expression
datasets with a sufficiently large age range. Motivated by the introduction of recent
age-expression datasets, Guo et al. [52] recently proposed a method to recognize facial
expressions while reducing the influence of human aging.

We apply our model on FACES and Lifespan datasets to recognize the expression. The
results are shown in Table 3.4. Our method improves the expression recognition perfor-



32 Expression-Invariant Age Estimation

Tab. 3.1: Expression-independent and expression-joint learning are evaluated on FACES and Lifespan
datasets. The results show clear improvement of performance when the age is learnt jointly
with the expression and the age prediction error is reduced by 14.43% and 37.75% for FACES
and Lifespan datasets respectively. The results of the methods [54] and [139] along with the
results using the joint learning method [52] are compared with ours. Our model obtains the
best performance for both datasets with a large margin. Note that [54] and [139] assume
that the expressions of the tested sample is a prior-knowledge while our model has no such
requirement. The last column shows the difference in error when using the joint learning in
comparison with independent learning.

Dataset [54] [139] [52] Indep-Learn Joint-Learn Reduc-Rate %
FACES 9.12 8.33 9.94 8.66 7.41 14.43%
Lifespan 6.63 6.23 8.85 8.45 5.26 37.75%

Tab. 3.2: Age estimation error for each expression subset on the FACES dataset. The error is reduced
for all expressions using the expression-joint learning. The largest error reduction is achieved
for neutral faces (30.13%) while the smallest error reduction is obtained for anger and disgust
(4.64% and 2.43% respectively).

Test Data Indep-Learn Joint-Learn Reduc-Rate %
Neutrality 8.54 5.97 30.13
Anger 8.61 8.21 4.64
Disgust 8.37 8.17 2.43
Fear 9.79 8.25 15.71
Happiness 8.42 6.77 19.58
Sadness 8.17 7.07 13.44
Average 8.66 7.41 14.43

Tab. 3.3: Age estimation error for each expressions subset on the Lifespan dataset. The error is reduced
for both neutrality and happiness expressions. Note that, since the numbers of happy and
neutral faces are not equal, the weighted average is computed.

Test Data Indep-Learn Joint-Learn Reduc-Rate %
Neutrality 8.66 5.72 33.94
Happiness 7.96 4.14 47.91
Average 8.45 5.26 37.75

mance for the FACES dataset by 2.38%. However, the accuracy on the Lifespan dataset
is comparable to the one acquired by independent learning. This maybe explained by
the observation that there are only two expressions in Lifespan compared to six ones in
FACES, and hence the expression variation within Lifespan dataset is smaller than it is
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Tab. 3.4: Expression recognition using age-joint and age-independent learning evaluated on FACES and
Lifespan datasets. Joint-learning improves the accuracy by 2.38% on the FACES dataset while
the accuracy on the Lifespan dataset is comparable. The method in [52] is further tested on
our features, and the results show degrading in the performance for both datasets.

Dataset Indep-Learn % Joint-Learn % [52] %
FACES 90.05 92.19 84.68
Lifespan 93.91 93.68 91.05

within the FACES dataset. Consequently, the margin of improvement is smaller for the
Lifespan dataset and the joint learning method obtains comparable accuracy.

We compare the proposed method with the one in [52]. As the authors manually labeled
31 fiducial points on the face and extracted the features using their locations, a direct
comparison of the results will not be fair. Thus, we test the method in [52] using our fea-
tures. The datasets are divided into the same four age groups ([18-29],[30-49],[50,69],
and [70-94]). Then, a new class is created for each expression/age group combination
resulting in 24 and 8 new classes for the FACES and Lifespan dataset respectively. The
obtained accuracy (see Table 3.4) is lower than the one acquired by our model.

3.4 Discussion

The results obtained using our graphical model show the strength of joint-learning to
alleviate the influence of facial expression in age prediction. Some existing works
[54, 139] approached age prediction with variant facial expressions. Our method is
different in two aspects: First, in our model, the age is jointly learnt with all expressions
instead of learning the cross-expression for two expressions at a time. This property
allows our model to be extended to a broader group of tasks where the changes are
not restricted to the basic (profound) expressions. For example, the changes can be
described by a group of smaller units (e.g. action units [33]). These changes can de-
scribe various face (undefined) expressions. In such cases, the hidden layer will learn
the relationship between the age and multiple variables (action units) instead of one
variable (expression) at a time. Moreover, beside facial expressions, other attributes
can be learnt collectively within the proposed graphical model such as gender and race.
Second, the proposed approach does not require the expression labels of the test sam-
ples to be known while the existing methods [54, 139] assume prior-knowledge of the
expressions.
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3.5 Conclusions

In this paper, an expression-invariant age predictor is proposed by jointly learning the
age and the expression. We introduce a graphical model with a latent layer to learn the
relationship between the age and the expression. This layer is designed to capture the
changes in the face which induce the aging and the expression appearance.

Conducted on two age-expression datasets (FACES and Lifespan), our experiments
show the improvement in performance when the age is jointly learnt with the expres-
sion in comparison to expression-independent age estimation. The age estimation error
is reduced by 14.43% and 37.75% for FACES and Lifespan datasets respectively. Fur-
thermore, using our model, without prior-knowledge of the expressions of the test faces,
the acquired results are better that the best reported ones for both datasets.
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4
Combining Facial Dynamics with
Appearance for Age Estimation

4.1 Introduction

Age estimation from human faces is a challenging problem with applications in foren-
sics, security, biometrics, electronic customer relationship management, entertainment
and cosmetology [4, 38, 89]. Automatic age estimation can augment many computer
applications in these domains, but it can also be used as a stand-alone tool, since hu-
mans are not universally successful in estimating age. The most frequently used mea-
sure of age estimation is the mean absolute error (MAE), and a recent crowd-sourcing
study performed with frequently used aging databases show that humans have a MAE
of 7.2–7.4 years for estimating the age of a person over 15, depending on the database
conditions [56].

The main challenge of age estimation is the heterogeneity in facial feature changes due
to aging for different humans. To determine facial changes associated with age is a hard
problem, because they are related not only to gender and to genetic properties, but also
to a number of external factors such as health, living conditions and weather exposure.
Gender can play a role in the aging process as there are differences in aging patterns
and features in males and females. Furthermore, facial cosmetics, surgical operations,
the presence of scars, and even the presence of facial hair can be mitigating factors for
age estimation.

Age estimation is an active topic today due to the growing necessity of including this
information in real-world systems. This necessity comes from the fact that age is impor-
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tant to understand requirements or preferences in different aspects of the daily life of a
person. Systems implementing age specific human computer interaction can cope with
these aspects. Some examples are biometric systems that filter their database for the
estimated age range of a subject, vending machines capable of denying some products
such as alcohol or cigarettes to an underage customer, or advertisements in different
automated environments (web pages, displays in stores, etc.) that can be personalized
according to the age of the individual interacting with the system.

Automatic facial age estimation is affected by the traditional factors that make face anal-
ysis difficult in general. Unknown illumination conditions, non-frontal facial poses, and
presence of facial expressions, are some issues that such systems need to deal with. Es-
pecially, facial expressions might negatively affect the accuracy of automated systems:
When a person smiles, for instance, wrinkles are formed and these can be misleading
when only the appearance cues are taken into account [73]. Similarly, sagging of the
face in a sad expression can resemble the effects of aging.

The most important cues that are used in age classification are appearance-based, most
notably the wrinkles formed on the face due to deformations in skin tissue. For this
reason, current systems mainly focus on static appearance features of the face, as it
is the easiest way to obtain satisfactory results [38]. Hence, the dynamics of facial
movement are largely ignored.

In this paper, instead of only considering static appearance features, we explore a novel
set of dynamic features for age estimation. As movement features can be observed from
facial expressions, the aim is to use dynamic features derived from these facial expres-
sions for estimating the age. Since the smile is one of the most frequently used facial
expressions, as well as the easiest emotional facial expression to pose voluntarily [31],
we first focus on smiles and analyze the discrimination power of smile dynamics for
age estimation. Once we verify that smile dynamics can improve discrimination, we
validate the effectiveness of the proposed approach on a different facial expression.

There are a number of changes that happen on the face with aging, including loss of
muscle tone, loss of underlying fat tissue, which reduces the smoothness of the face
and creates wrinkles, receding gums (and sometimes, missing teeth), increased crows
feet around the eyes, sunken eyes as a consequence of fat from eyelids settling into
eye sockets, texture changes like blotches, dark spots, bone mass reduction causing
lower jaw to reduce in size, and cartilage growth to lengthen the nose [12, 77, 97].
All these morphological changes alter the overall appearance of an expression on the
face, but especially the loss of muscle tone directly affects the dynamics, along with
the appearance. It is well known that the elastic fibers on the face show fraying and
fragmentation at advancing age [98]. By leveraging the deformation features of the
facial surface patches, age estimation with dynamic features may improve over systems
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that use solely appearance-based cues.

The main contribution of this paper is to show, on multiple expressions, that expression
dynamics can be used to better estimate the age of a person. We propose a fully auto-
matic age estimation framework, and show that it significantly outperforms the generic
approach. We also introduce the high-resolution UVA-NEMO Disgust Database, which
we make publicly available. We report our results with smile and disgust expressions,
and make our experimental protocols available.

We extend our previous study [26] in many ways. Apart from a more in-depth treatment
and extended literature, (1) we use 3D volume changes via surface patches instead of
landmark movements, (2) we add frequency and facial asymmetry descriptors to the
feature set, (3) we use a two-level adaptive classification scheme, (4) we evaluate four
appearance features, (5) we systematically analyze gender-specific and spontaneity-
specific effects of aging features, (6) we introduce an adaptive grouping procedure, (7)
we introduce a new public database for disgust expression and report results on it.

The next section introduces related work in age estimation. Since there are compre-
hensive surveys in this area ([38, 89]), we focus on the most successful approaches,
and the most recent work. Section 4.3 describes the proposed system of age estima-
tion. In particular, we describe the detection and tracking of facial landmarks, the set
of dynamic features, and the two-level classification scheme. Section 4.4 describes the
experimental protocol and the UvA-NEMO Smile Database, as well as introducing the
new UVA-NEMO Disgust Database. Section 4.5 reports extensive comparative results.
We analyze the contribution of appearance and dynamic features in detail, selecting four
different state-of-the-art appearance-based approaches to serve as baselines. We test the
influence of different facial regions in age estimation, augment the method by using
gender-specific analysis, and study the effects of spontaneity in facial expressions. It is
followed by a discussion in Section 4.6. Section 4.7 concludes the paper.

4.2 Related Work

Several works propose to determine facial pattern changes and evolution associated with
the aging process, both from psychological and biological points of view. These stud-
ies are mostly aimed at age synthesis, i.e. changing the appearance of a rendered face
to show proper effects of aging. Some of these works are useful in the determination
of appropriate facial features for age estimation. For instance, O’Toole et al. [86] use
3D models of faces to apply caricaturing processes in order to describe age variations
between samples. Wu et al. [129] develop a system for the simulation of wrinkles and
skin aging for facial animation. Suo et al. [113] present a model for face aging by ana-
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lyzing it as a Markov process through a graph representing different age groups. Tidde-
man et al. [119] also develop prototype models for face aging using texture information.
In [84], a quantitative approach to face evolution of aging is presented.

The results of these studies show that the craniofacial development and skin texture are
the most important features for age estimation. In fact, one of the first approaches for
age estimation is proposed by Kwon and Lobo [67], where individual faces are classified
into three age groups (baby, young and senior). This classification is performed using
the theory of craniofacial development [5] and facial skin wrinkle analysis. Lanitis et
al. [68] propose an age estimation method based on regression analysis of the aging
function. During the training procedure, a quadratic function of facial features is fitted
to each individual in the training set as his/her aging function. As for age estimation,
they propose four approaches to determine the proper aging function for the unseen face
image. The Weighted Person Specific (WPS) approach achieves the best performance in
the experiments. This function, however, relies on profiles of the individual containing
external information such as gender, health, living style, etc.

Image processing methods, including tools for subspace learning and dimensionality re-
duction, are also used to automatically estimate the age. In [51], faces are projected into
manifolds by using subspace learning followed by a regression model to estimate the
age. The aging pattern subspace (AGES) method [46] models a sequence of individually
aging face images by learning a subspace representation. The age of a test face is deter-
mined by the projection in the subspace that can reconstruct the face image best. This
model is later extended by the authors to model the nonlinear nature of human aging by
considering learning of nonlinear subspaces, using a model called KAGES (Kernel AG-
ing pattErn Subspace) [43]. Zhan et al. [138] propose an extended non-negative matrix
factorization method to learn a subspace representation, which could recover age infor-
mation while eliminating variations caused by identity, expression, pose, etc. Chen et
al. propose a method that employs pairwise age ranking based on subspace learning for
age prediction [20]. In their approach, age ranks from unlabeled data are incorporated
by semi-supervised learning. [18] applies age-oriented local regression using distance
metric learning and dimensionality reduction.

Feature extraction is one of the key issues of automatic age estimation. In [53], Guo
et al. introduce biologically-inspired aging features (BIF) for age estimation. These
features are based on Gabor filter responses for different orientations and scales. Al-
najar et al. propose intensity- and gradient-based features to adopt a learning-based
encoding method for age estimation under unconstrained imaging conditions [7]. For
each pixel, neighboring pixels are sampled in a ring-based pattern to form a low-level
feature vector. Then, the features are encoded using a PCA-tree-based codebook. [134]
models the completed local binary patterns (CLBP) using an SVM regressor. Initially,
the method fine-tunes facial alignments in terms of facial shape and pose. The similarity
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transformation is based on local binary pattern distributions.

Aging patterns show significant differences in young and elderly people, and human
performance in age estimation shows differences for these groups. It seems possible
to break the age estimation problem into simpler subproblems by adopting different
strategies for different age groups. In [70], fuzzy age labels (human annotations) are
used in combination with the real age labels to train an age estimation system. Fuzzy age
labels are defined as the upper and lower bounds of human estimation. Hybrid constraint
supported vector regression is proposed to model both deterministic and fuzzy labels.
In [56], a hierarchical age estimation is proposed. It classifies each facial component
into one of four disjoint age groups using an SVM-based binary decision tree. For each
age group, a separate SVM regressor is trained to fine-tune the age prediction. Then,
outputs for different components using different features are fused to estimate the final
age.

Age estimation and expression recognition are rarely coupled, although several systems
rely on similar features and classification paradigms for both problems. In [54], an
age estimation method is proposed to cope with significant expression changes, using
correlation learning and discriminant mapping. However, this methodology requires
both neutral and expressive facial images for the same subject, since it is based on the
correlation between pairs of expressions. More recently, Zhang and Guo propose a
weighted random subspace method to deal with expression changes by improving the
discriminative power of the aging features [139].

Remarkably, the temporal dynamics of faces have been ignored in age estimation. Un-
til [26], the precursor of the present work, the only study is by [55] in which Hadid
proposes to use volume LBP (VLBP) features to describe spatio-temporal information
in videos of talking faces and classifies the ages of the subjects into five groups (child,
youth, adult, middle-age, and elderly). However, VLBP features alone are not powerful
enough and the proposed system could not reach the accuracy of static image-based age
estimation. Therefore, we propose to use facial dynamics and explore the potential for
obtaining useful cues from facial expressions which have been unexplored so far.

4.3 Method

The aim of the proposed method is to estimate the age of subject by using a sequence
of images that show the subject displaying a facial expression as input. To this end,
we focus on the smile expression, since it is one of the most frequently shown facial
expression. Additionally, disgust expression is considered to evaluate the reliability and
generalizability of the approach.
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The proposed approach combines appearance features with facial expression dynamics.
The method assumes that the input video starts with a moderately frontal face, and has
the entire duration of a smile (or disgust) expression. These are typical assumptions of
video-based expression recognition approaches.

The flow of the system is summarized as follows. Initially, a mesh model is fitted to
face using 17 fiducial points, and tracked during the rest of the video. The surface de-
formations on different regions are computed using the tracked mesh points. Temporal
phases (onset, apex, and offset) of the expression are estimated using the mean dis-
placement signal of the lip corners. Then, dynamic features for each regional patch are
extracted from each phase. Appearance features are extracted using the first frame of
the onset phase, in which the face is neutral. After a feature selection procedure, the
most informative dynamic features are selected and fused with appearance features to
train Support Vector Machine (SVM) classifiers/regressors. In the rest of this section,
we will outline the different components of our approach in detail.

4.3.1 Smile and Disgust Expressions

In this paper, we extract appearance and dynamic features from smile and disgust videos.
In general, a smile can be modeled as the upward movement of the mouth corners, which
corresponds to Action Unit 12 (AU12) in the facial action coding system (FACS) [33].
In terms of anatomy, the zygomatic major muscle contracts and raises the corners of
the lips during a smile [34]. On the other hand, the disgust expression is the display
of intense displeasure or condemnation that is shown by narrowing eyebrows, curling
upper lip, and wrinkling nose. In terms of dynamics, smile and disgust expressions
are composed of three non-overlapping phases; the onset, apex, and offset, respectively.
Onset is the initial phase of a facial expression and it defines the duration from neutral to
expressive state. Apex phase is the stable peak period of the expression between onset
and offset. Likewise, the offset is the final phase from expressive to neutral state.

According to Ekman [31], there are many smiles, which are different in terms of their
appearance and meaning. Ekman identified 18 of them (such as enjoyment, fear, mis-
erable, embarrassment, listener response smiles) by describing the specific visual dif-
ferences on the face and indicating the accompanying action units [31]. In this paper,
we focus on enjoyment smiles for the detailed analysis, because they are frequently
shown and can easily be induced. Subsequently, we use posed and spontaneous smiles.
To test whether the approach generalizes to other expressions, we use posed disgust
expressions.
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Fig. 4.1: (a) Used facial feature points with their indices. (b) Regional surface patches (with

their indices) and their underlying facial muscle structure. For simplicity, patches are
shown on a single side of the face.

4.3.2 Facial Feature Tracking and Alignment

To analyze facial dynamics, surface deformations of seven facial regions (eyebrow, eye-
lid, eye-side, cheek, mouth-side, mouth, chin) are tracked in the videos [see Fig. 4.1(b)].
Patches for these regions are initialized in the first frame of the videos, using automati-
cally detected 17 landmarks (corners and center of eyebrows, eye corners, center of up-
per eyelids, nose tip, and lip corners) for precise tracking and analysis [see Fig. 4.1(a)].
For automatic facial landmark detection, the method proposed by Dibeklioğlu et al. [28]
is used. This method models Gabor wavelet features of a neighborhood of the land-
marks using incremental mixtures of factor analyzers and enables a shape prior to en-
sure the integrity of the landmark constellation. It follows a coarse-to-fine strategy in
which landmarks are initially detected on a coarse level and then fine-tuned for higher
resolution. To track the facial features and pose, we use a piecewise Bézier volume
deformation (PBVD) tracker, originally proposed by Tao and Huang [118].

The PBVD tracker employs a model-based approach. A 3D mesh model of the face
[see Fig. 4.1(b)] is constructed by warping the generic model to fit the facial features
in the first frame of the image sequence. The generic face model consists of 16 surface
patches. To form a continuous and smooth model, these patches are embedded in Bézier
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volumes. If x(u, v, w) is a facial mesh point, then the Bézier volume is defined as:

x(u, v, w) =
n∑
i=0

m∑
j=0

l∑
k=0

bi,j,kB
n
i (u)Bm

j (v)Bl
k(w), (4.1)

where points bi,j,k and variables 0 < {u, v, w} < 1 control the shape of the volume.
Bn
i (u) denotes a Bernstein polynomial:

Bn
i (u) =

(
n
i

)
ui(1− u)n−i. (4.2)

After fitting the face model, facial feature points (as well as head motion) are tracked in
3D according to the movement and the deformations of the mesh. To measure 2D mo-
tion, template matching is used between frames at different resolutions. The estimated
2D image motion is modeled as a projection of the 3D movement onto the image plane.
Then, the 3D movement is calculated using the projective motion of several points.

The tracked 3D coordinates of the facial feature points `i [see Fig. 4.1(a)] are used to
align the faces in each frame. We estimate the 3D pose of the face, and normalize
the face with respect to roll, yaw, and pitch rotations. Since three non-collinear points
are enough to construct a plane, we use three stable landmarks (eye centers and nose
tip) to define a plane P . Eye centers are defined as middle points between inner and
outer eye corners and denoted by c1 = `7+`9

2
and c2 = `10+`12

2
. Angles between the

positive normal vector NP of P and unit vectors U on X (horizontal), Y (vertical), and
Z (perpendicular) axes give the relative head pose as follows:

θ = arccos
U.NP

‖U‖ ‖NP‖
, where N =

−−→
`15c2 ×

−−→
`15c1. (4.3)

In Equation 4.3,
−−→
`15c2 and

−−→
`15c1 denote the vectors from point `15 to points c2 and c1,

respectively. ‖U‖ and ‖NP‖ are the magnitudes of U andNP vectors. According to the
face geometry, Equation 4.3 estimates the roll (θz) and yaw (θy) angles of the face with
respect to the camera. However, the estimated pitch (θx) angle is subject-dependent,
since it is relative to the constellation of the eye corners and the nose tip. If we assume
that the face is approximately frontal in the first frame, then the actual pitch angles (θ′x)
are calculated by subtracting the initial value. Once the pose of the head is estimated,
tracked points are normalized with respect to rotation, scale, and translation by:

li =
[
`i − c1+c2

2

]
Rx(−θ′x)Ry(−θy)Rz(−θz) 100

ρ(c1,c2)
, (4.4)

where li is the aligned point and Rx, Ry, and Rz denote the 3D rotation matrices for
the given angles. ρ denotes the Euclidean distance between the given points. On the
normalized face, the middle point between eye centers is located at the origin and the
inter-ocular distance (distance between eye centers) is set to 100 pixels.
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4.3.3 Dynamic Features

To analyze the dynamics of facial deformations during an expression, we extract a set
of dynamic features from seven different patches on the face [see Fig. 4.1(b)]. These
patches are defined based on the underlying facial muscle structure, since the direction
and the length of such muscles cause the visual variations of expressions [95].

When the tracked points are normalized, onset, apex, and offset phases of the smile and
disgust expressions are detected, using the approach proposed by Schmidt et al. [99],
by calculating the amplitude of the expression as the distance of the right lip corner
to the lip center during the expression. Since the faces are normalized, the lip center is
calculated only once in the first frame. Differently from [99], we estimate the expression
amplitude as the mean amplitude of right and left lip corners, normalized by the length
of the lip. Let Dlip(t) be the value of the mean amplitude signal of the lip corners in the
frame t:

Dlip(t) =
ρ(

l116+l117
2

, lt16) + ρ(
l116+l117

2
, lt17)

2ρ(l116, l
1
17)

, (4.5)

where lti denotes the 3D location of the ith point in frame t. This estimate is smoothed by
the 4253H-twice method [127]. Then, the longest continuous increase in Dlip is defined
as the onset phase. Similarly, the offset phase is detected as the longest continuous
decrease inDlip. The phase between the last frame of the onset and the first frame of the
offset defines the apex.

To extract dynamic features from the given facial regions, deformation amplitude (D)
of the jth patch at time t is estimated by:

Dj(t) =

∑nj

i=1 λ (j, i, t)∑nj

i=1 λ (j, i, 1)
, j = {1, 2, . . . , 7}, (4.6)

where nj shows the number of meshes in patch j. λ (j, i, t) denotes the area of the ith

triangular mesh of patch j at time t. Let p1, p2, and p3 be the corner points of the related
mesh, then its surface area is calculated by:

λ =
√
γ(γ − ρ (p1, p2))(γ − ρ (p1, p3))(γ − ρ (p2, p3)), (4.7)

where

γ =
ρ (p1, p2) + ρ (p1, p3) + ρ (p2, p3)

2
. (4.8)

Deformation amplitudes Dj are hereafter referred to as amplitude signals. As shown in
Eq. 4.6, amplitude signals (Dj) are normalized by the initial patch area (area in the first
frame of the onset) for the sake of analysis. In addition to the amplitudes, speed V and
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acceleration A signals are computed by using the first and the second derivatives of the
amplitudes, respectively:

V(t) =
dD
dt

, (4.9)

A(t) =
d2D
dt2

=
dV
dt

. (4.10)

All the calculated amplitude signals are smoothed by the 4253H-twice method [127],
and then split into three phases as onset, apex, and offset, which are previously defined
using the amplitude signal Dlip of the lip corners.

A summary of the proposed dynamic features is given in Table 4.1. Note that the defined
features are extracted separately for each phase of the expression. As a result, we obtain
three feature sets for each of the surface patches. Each phase is further divided into
increasing (+) and decreasing (−) segments, for each feature set. This allows a more de-
tailed analysis of the feature dynamics. Most of these features were originally proposed
to analyze smile expressions [26], and a similar set has been employed for automatic
kinship estimation through smile dynamics [29]. The present study demonstrates that
they are also powerfully descriptive for the disgust expression.

In Table 4.1, signals symbolized with superindex (+) and (−) denote the segments of
the related signal with continuous increase and continuous decrease, respectively. For
example, D+ pools the increasing segments in D. η defines the length (number of
frames) of a given signal, and ω is the frame rate of the video. DL and DR define the
amplitudes for the left and right sides of the face, respectively. ψ denote the Discrete
Cosine Transform (DCT) coefficients of D and computed by:

ψ(k) =
1

ϕ(k)

η(D)∑
t=1

D(t) cos

(
π(2t− 1)(k − 1)

2η(D)

)
, (4.11)

where

ϕ(k) =

{ √
η(D) : k = 1√
η(D)

2
: 2 ≤ k ≤ η(D)

(4.12)

Since a low frequency signal can be reconstructed efficiently by using only a few DCT
coefficients, we enable the first 10 DCT coefficients (ψ(k), k = {1, 2, . . . , 10}) of
the amplitude signals in the feature set. As a result, for each face region, seven 35-
dimensional feature vectors are generated by concatenating these features.

In some cases, features cannot be calculated. For example, if we extract features from
the amplitude signal of the mouth patch using the onset phase, the decreasing segments
can be an empty set (η (D−) = 0). For such exceptions, all the features describing the
related segments are set to zero. This is done to have a generic feature vector format
which has the same features for different phases of each face region.
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Tab. 4.1: Definitions of the extracted features

Feature Definition

Frequency Components: [ ψ(1) , ψ(2) , . . . , ψ(10) ]

Duration:
[
η(D+)
ω , η(D−)

ω , η(D)
ω

]
Duration Ratio:

[
η(D+)
η(D) , η(D−)

η(D)

]
Maximum Amplitude: max(D)

Mean Amplitude:
[ ∑

D
η(D) ,

∑
D+

η(D+)
,
∑
|D−|

η(D−)

]
STD of Amplitude: std(D)

Total Amplitude: [
∑
D+ ,

∑
|D−| ]

Net Amplitude:
∑
D+ −

∑
|D−|

Amplitude Ratio:
[ ∑

D+∑
D++

∑
|D−| ,

∑
|D−|∑

D++
∑
|D−|

]
Maximum Speed: [ max(V+) , max(|V−|) ]

Mean Speed:
[ ∑

V+

η(V+)
,
∑
|V−|

η(V−)

]
Maximum Acceleration: [ max(A+) , max(|A−|) ]

Mean Acceleration:
[ ∑

A+

η(A+)
,
∑
|A−|

η(A−)

]
Net Ampl., Duration Ratio: (

∑
D+−

∑
|D−|)ω

η(D)

Left/Right Ampl. Difference: |
∑
DL−

∑
DR|

η(D)

4.3.4 Appearance Features

To describe the appearance of faces, we use four different state-of-the-art descriptors:
namely, intensity-based encoded aging features, gradient-based encoded aging features,
biologically-inspired aging features, and local binary patterns (LBP). Details of these
appearance descriptors are given in this section.

Intensity-based (IEF) and gradient-based encoded aging features (GEF) are proposed
by Alnajar et al. [7]. These features are based on a learning-based encoding. A dis-
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criminative low-level feature is computed for each pixel. Then, the features are encoded
by a PCA-tree-based codebook [36]. The face is divided into patches and the codes in
each patch are described by a histogram. Finally, the patch histograms are concatenated
together to form the aging descriptor. Two versions of the descriptor are used based on
low-level features: GEF based on gradient histogram (to capture wrinkle details) and
IEF based on intensity sampling (to capture skin texture and fine wrinkle details). For
IEF, the neighboring intensities are sampled around each pixel in a ring-based pattern.
25 intensity values are sampled at the circumferences of two rings with r = 1 (8 val-
ues) and r = 2 (16 values) including the central pixel value itself. To extract GEF, the
gradient directions are computed in an 8× 8 neighborhood of each pixel. The gradient
orientations are binned to equally-spaced bins over 0◦ − 360◦, where the gradient mag-
nitudes are accumulated. As in [7], Gaussian derivatives are chosen for calculating the
gradient and the number of bins equals eight.

Biologically-inspired aging features (BIF) are introduced by Guo et al. [53] for age es-
timation. The features are extracted by applying two-layer filters. In the first layer, BIF
uses Gabor filter responses for different orientations and scales. In the second layer, it
assembles the responses from the first layer in a local area (with the same directions and
adjacent scales “band") to a single value using max or standard deviation functions. The
authors adapt the descriptor from [102] by introducing the standard deviation operation
in creating the second layer and making the number of bands and orientations adaptive
to the data. In our experiments, for sake of simplicity, 16 orientations and eight bands
are computed to build the descriptor.

The original local binary patterns operator, which is proposed by Ojala et al. [82], takes
the intensity value of the center pixel as threshold to convert the neighborhood pixels to
a binary code. Computed binary codes describe the ordered pattern of the center pixel.
This procedure is repeated for each pixel on the image and the histogram of the resultant
256 labels can then be used as a texture descriptor. In [83], Ojala et al. show that a large
number of the local binary patterns contain at most two bitwise transitions from 0 to
1 or 1 to 0, which is called a uniform pattern. Therefore, during the computation of
the histograms, the size of the feature vector can be significantly reduced by assigning
different bins for each of the 58 uniform patterns and one bin for the rest. Uniform
local binary patterns are used in experiments, and are hereafter referred to as LBP. Eight
neighborhood pixels (on a circle with a radius of 1 pixel) are used to extract the LBP
features.

Since the onset of a facial expression starts with a neutral face, the first frame of the
previously detected onset phase is selected to extract the appearance features. On the
selected frame, the roll rotation of the face is estimated and normalized using the eye
centers c1 and c2. Then, the face is resized and cropped as shown in Fig. 4.2(a). The
inter-ocular distance dio is set to 50 pixels to normalize the scale and cropping. As
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(a) (b)
Fig. 4.2: (a) Cropping of a face image, and (b) the defined 7 × 5 blocks to extract appearance

features.

a result, each normalized face image has a resolution of 125 × 100 pixels. After the
preprocessing step, appearance features (IEF, GEF, BIF, and LBP) are computed. IEF,
GEF, and LBP descriptors are extracted from 7 × 5 non-overlapping (equally-sized)
blocks [see Fig. 4.2(b)]. For all descriptors, the dimensionality of the appearance feature
vectors is reduced by Principal Component Analysis (PCA) so as to retain 99.99% of
the variance.

4.3.5 Feature Selection and Classification

Estimating the age of a person by using a generic classifier/regressor is an inherently
challenging problem, since many factors influence the age for different age groups
(mainly shape in early ages and appearance in later ages [89]) and the learning-based
predictor should capture all these details from the training data to produce a correct age
estimation. One solution for this problem is dividing the prediction of the age into two
phases: The first one predicts the age group. Next, a second fine-tuned age prediction
model is learned to estimate the exact age.

In the two-level age prediction, the sample is first classified into an age group (first-level
prediction). Later, another predictor will place the sample in its exact age (second-level
prediction). In [26], the age groups are determined in a uniform way (8 − 14, 15 − 17,
18 − 21, 22 − 28, 29 − 35, 36 − 54, 55 − 76). However, problems may arise when
boundary ages between two adjacent groups are not distinctive (i.e. the aging features
are similar). In such cases, the first-level prediction is more prone to go wrong which
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Fig. 4.3: Two-level age estimation architecture using both appearance and dynamic features.

is likely to propagate the error to the second level prediction. To overcome this issue,
we propose a method that computes the ages which are dissimilar with their neighbors.
The whole age range is divided into groups in such a way that the boundary between
each two adjacent groups is discriminant. To this end, the average cosine similarity S
between each age a and its 2q neighbors h = {a − q, a − q + 1, . . . , a + q} − {a} is
computed by:

Sa =
1

2qna

2q∑
i=1

na∑
j=1

nhi∑
k=1

dja.d
k
hi

nhi
∥∥dja∥∥∥∥dkhi∥∥ , (4.13)

where dja denotes the feature vector of age a’s jth sample. na denotes the number of
samples for age a. After smoothing S, age a is set to be a group boundary if ∀hi, Shi >
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Sa. Minimum and maximum age values in the whole range are also set as boundaries.
Each boundary age is included in the same group with its most similar adjacent neighbor.
The number of neighborhood levels q ≥ 2 is selected automatically on the validation
data.

In the given two level architecture (see Fig. 4.3), we use Support Vector Machine classi-
fiers and regressors for age estimation. In the first level, one-vs-all SVM classifiers are
used to classify the age of a subject into automatically defined age groups. Then, the
age of the subject is fine-tuned using an SVM regressor which is specifically trained for
the related age group. For an improved estimation, the regressor of each age group is
trained with an age interval of −10 to +10 years of group boundaries. Then, the results
are limited by the age range (if the estimated age is less/more than the group boundaries,
it is set to the minimum/maximum age of the group). The resulting estimation of the
age is given as an integer with a 1 year resolution.

As described in Section 4.3.3, we extract three 35-dimensional dynamic feature vectors
for each face region. To deal with feature redundancy, we use the Min-Redundancy
Max-Relevance (mRMR) algorithm to select the discriminative dynamic features [87].
mRMR is an incremental method minimizing the redundancy while selecting the most
relevant information as follows:

max
fj∈F−Sm−1

I (fj, c)−
1

m− 1

∑
fi∈Sm−1

I (fj, fi)

 , (4.14)

where I shows the mutual information function and c indicates the target class. F and
Sm−1 denote the feature set, and the set of m − 1 features, respectively. Then, all the
selected dynamic features are concatenated with the appearance features (which are
extracted from the first frame of the expression onset and reduced by PCA) to train
the system (see Fig. 4.3). Minimum classification error on a separate validation set
is used to determine the most discriminative dynamic features. Similarly, to optimize
the SVM configuration, different kernels (linear, polynomial, and radial basis function)
with different parameters (degree of polynomial kernel) are tested on the validation set
and the configuration with the minimum validation error is selected. The test partition
of the dataset is not used for parameter optimization.
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(a) (b) (c) (d)

Fig. 4.4: Sample frames from the UvA-NEMO Smile and the UvA-NEMO Disgust Databases:
(a) Showing neutral face, (b) posed enjoyment smile, (c) spontaneous enjoyment smile,
and (d) disgust expression.

4.4 Experimental Settings

4.4.1 UvA-NEMO Smile Database

The UvA-NEMO Smile Database1 has been collected to analyze the change in dynamics
of smiles for different ages [27]. Data collection was carried out in the Science Center
NEMO (Amsterdam) [101] as part of Science Live, an innovative research programme.
NEMO visitors are the volunteers for the data collection. The database and its evaluation
protocols are made available to the research community.

This database is composed of videos (in RGB color) recorded with a Panasonic HDC-
HS700 3MOS camcorder, placed on a monitor at approximately 1.5 meters away from
the recorded subjects. Videos are recorded with a resolution of 1920 × 1080 pixels
at a rate of 50 frames per second under controlled illumination conditions. Addition-
ally, a color chart is present on the background of the videos for illumination and color
normalization. Sample frames from the database are shown in Fig. 4.4.

The database has 1240 smile videos (597 spontaneous, 643 posed) from 400 subjects
(185 female, 215 male). The ages of subjects vary from 8 to 76 years. 43 subjects do
not have spontaneous smiles and 32 subjects have no posed smile samples. Age and
gender distributions of the subjects in the database are given in Fig. 4.5(a).

For posed smiles, each subject was asked to pose a smile as realistically as possible,
sometimes after being shown the proper way in a sample video. Short, funny video seg-
ments are used to elicit spontaneous smiles. Approximately five minutes of recordings
are made per subject, and genuine smiles are segmented.

1[Online] Available: http://www.uva-nemo.org
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Fig. 4.5: Age and gender distributions of the subjects in (a) the UvA-NEMO Smile and (b) the
UvA-NEMO Disgust Databases.

For each subject, a balanced number of spontaneous and posed smiles are selected and
annotated by seeking consensus of two trained annotators. Each segment starts and ends
with neutral or near-neutral expressions.

4.4.2 UvA-NEMO Disgust Database

To show the applicability of the proposed approach on other facial expressions, we
introduce the UvA-NEMO Disgust Database1 in this paper. This database is composed
of posed (deliberate) disgust expressions, and recorded during the collection of the UvA-
NEMO Smile Database using the same recording/illumination setup. Sample frames
from the database are shown in Fig. 4.4.

Each subject was asked to pose a disgust expression as realistically as possible, some-
times after being shown a sample video. For each subject, one or two posed disgust ex-
pressions were selected and annotated by seeking consensus of two trained annotators.
Each segment starts and ends with neutral or near-neutral expressions. The resulting
database has 518 deliberate disgust videos from 324 subjects (152 female, 172 male).
313 of 324 subjects are also included in the 400 subjects of the UvA-NEMO Smile
Database. The ages of subjects vary from 8 to 76 years. Age and gender distributions
of the subjects in the database are given in Fig. 4.5(b). The database and its evaluation
protocols are made available to the research community.

4.4.3 Settings

To evaluate our system and assess the reliability of facial expression dynamics and facial
appearance information for age estimation problem, we first use the UvA-NEMO Smile
Database of 400 subjects. We then show the effectiveness of the proposed approach
for disgust expression using the UvA-NEMO Disgust Database. In our experiments,
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the two-level classification/regression system is used as described in Section 4.3.5. The
optimum number of selected dynamic features, adaptive age ranges, and kernels of the
SVM classifiers/regressors are determined on a separate validation partition. To this
end, a two level 10-fold cross-validation scheme is used. Each time a test fold is sepa-
rated, a 9-fold cross-validation is used to train the system, and parameters are optimized
without using the test partition. Candidate settings for these parameters are set as fol-
lows: Neighborhood level q = {2, 3, 4} for adaptive age grouping; candidate kernels
for the SVMs are linear, polynomial, and radial basis function. In polynomial and radial
basis function kernels, the gamma parameter is set as 1/d, where d is the number of
features.

There is no subject overlap between folds in either database. We initialize the tracking
by automatically annotated facial landmarks. For automatic facial landmark detection,
we use the system proposed by Dibeklioğlu et al. [28]. The mean localization error
for the related landmarks [corners and center of eyebrows, eye corners, center of upper
eyelids, nose tip, lip corners; see Fig. 4.1(a)] is 3.84% of the inter-ocular distance to
the actual location of the landmarks. Correlation coefficients between the extracted
amplitude signals with manual and automatic initializations ranged between 0.93 and 1.

4.5 Experiments

In this section, we present the results of our experiments on exact age estimation. First,
we evaluate the accuracy of the proposed system when only facial dynamics are used,
either individually for each facial region, or taken together, on smile expressions. We
compare these results with the combined use of appearance and dynamics. We then
test the influence of gender and expression spontaneity on the accuracy of the system
using the combined features. Finally, we report age estimation results using disgust
expression dynamics.

4.5.1 Dynamics

Since the proposed dynamic features are extracted from the deformations of seven dif-
ferent surface patches, we analyze the individual discrimination power of these defor-
mations and their combination for age estimation. Furthermore, to assess the reliability
of the feature selection step, performance of using automatically selected (most) infor-
mative dynamic features and the use of all features without any selection are compared.
The resulting mean absolute error (MAE) is given in Table 4.2.

As shown in Table 4.2, the feature selection increases the accuracy by approximately
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Tab. 4.2: Effect of using different facial regions with and without feature selection on the UvA-
NEMO Smile Database

Regions
MAE (years)

without Feat. Selection with Feat. Selection

1: Eyebrow 15.34 (±10.59) 13.32 (±9.63)
2: Eyelid 15.87 (±11.38) 13.50 (±10.21)
3: Eye-sides 14.74 (±10.15) 12.93 (±9.52)
4: Cheek 13.88 (±10.44) 12.14 (±9.35)
5: Mouth-sides 14.98 (±12.36) 13.27 (±11.42)
6: Mouth 15.74 (±13.73) 14.15 (±12.11)
7: Chin 28.70 (±29.70) 24.42 (±26.29)

1–7: All 12.04 (±9.81) 10.81 (±8.85)

13% (relative) on average, while reducing the dimensionality of the feature space. Since
the efficacy of the feature selection step is confirmed by these results, it is used in the
remainder of our experiments. By analyzing the regional results with feature selection,
it can be derived that the dynamics of cheek’s surface deformations are the most re-
liable features, with an MAE of 12.14 (±9.35) years. Deformation dynamics on the
sides of the eyes follow closely with an MAE of 12.93 (±9.52) years. The chin region
provides an MAE of only 24.42 (±26.29) because of its stationary surface characteris-
tic. By combining the dynamic features of different facial regions, the MAE of the age
estimation is decreased to 10.81 (±8.85) years.

4.5.2 Dynamics versus Appearance

The aim of this work is to improve the accuracy of age estimation by combining facial
appearance with expression dynamics. However, it is also important to show the dis-
criminative power of facial expression dynamics and appearance, individually. For this
purpose, the individual and combined uses of these features are evaluated.

As shown in Table 4.3, combining dynamics with appearance features significantly im-
proves the age estimation accuracy in comparison to the individual use of dynamic and
appearance features (p < 0.0015 for GEF, BIF and LBP; p < 0.01 for IEF). It is clear
that the use of only facial dynamics is not sufficient for accurate age estimation. The
MAE of using dynamic features is 10.81 (±8.85) years, where the MAEs for different
facial appearance descriptors range from 4.80 (±4.77) to 5.78 (±6.15) years. However,
by combining dynamic and appearance features, the proposed system is able to achieve
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Tab. 4.3: Mean Absolute Errors for dynamics, appearance, and combined features on the UvA-
NEMO Smile Database

Features
MAE (years)

without Dynamics with Dynamics

Appearance: None N/A 10.81 (±8.85)
Appearance: IEF 4.80 (±4.77) 4.33 (±4.03)
Appearance: GEF 5.48 (±5.57) 4.82 (±4.89)
Appearance: BIF 5.78 (±6.15) 5.03 (±5.10)
Appearance: LBP 5.46 (±5.58) 4.77 (±4.66)
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Fig. 4.6: Cumulative distribution of the mean absolute error for different features on the UvA-
NEMO Smile Database.
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Tab. 4.4: Performance of adaptive age grouping, grouping into bins of 10 years and the regres-
sion without grouping (none) on the UvA-NEMO Smile Database

Features
MAE (years)

None 10-years Adaptive

IEF + Dynamics 5.00 (±4.25) 4.40 (±4.11) 4.33 (±4.03)

GEF + Dynamics 5.63 (±4.86) 4.97 (±5.07) 4.82 (±4.89)

BIF + Dynamics 5.12 (±4.91) 5.94 (±5.24) 5.03 (±5.10)

LBP + Dynamics 5.29 (±4.36) 4.83 (±4.60) 4.77 (±4.66)

the best results. The combination of dynamics and IEF provides the highest accuracy
with an MAE of 4.33 (±4.03). The cumulative distribution of the MAEs for individual
and combined features are shown in Fig. 4.6.

The UvA-NEMO Database has uniform D65 illumination that does not specifically
highlight wrinkles. For images with direct illumination, we observe that wrinkles be-
come much more pronounced, and gradient based descriptors perform better than inten-
sity based features.

4.5.3 Assessment of Adaptive Age Grouping

We now test the use of a two-level classification/regression strategy. We evaluate the
performance of using three different classification/regression approaches, namely direct
regression (no grouping), classifying age groups into bins of 10-years and into adaptive
bins (based on training) before group-specific regression. The resulting MAEs of each
method for different feature combinations and their cumulative distributions are shown
in Table 4.4 and in Fig. 4.7, respectively.

The results show that the adaptive grouping outperforms other approaches for all fea-
tures. 10-years grouping follows it, and provides a more accurate estimation in compar-
ison to that of direct regression in most cases.

4.5.4 Effect of Gender

To assess the effect of gender on the accuracy of age estimation using the combined fea-
tures, a gender-specific age estimation approach is implemented. In the gender-specific
method, different classifiers/regressors are trained and tested for both males and fe-
males, separately. For this method, we assume that the gender labels of all samples are
given correctly. The MAEs for both gender-specific and the general approach are given
in Table 4.5.
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Fig. 4.7: Cumulative distribution of the mean absolute error for different grouping strategies on
the UvA-NEMO Smile Database.

IEF + Dynamics GEF + Dynamics BIF + Dynamics LBP + Dynamics

S
am
p
le
P
ro
p
o
rt
io
n
(S
u
cc
es
s
R
at
e)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

General

Gender Specific

Spontaneity Specific

Mean Absolute Error (years) as an Acceptance Threshold

Fig. 4.8: Cumulative distribution of the mean absolute error for general, gender-specific, and
spontaneity-specific methods on the UvA-NEMO Smile Database.

Tab. 4.5: Comparison of the gender-specific method with the general method for age estimation
on the UvA-NEMO Smile Database

Features
MAE (years)

Gender-specific General

IEF + Dynamics 4.25 (±3.95) 4.33 (±4.03)
GEF + Dynamics 4.67 (±4.71) 4.82 (±4.89)
BIF + Dynamics 4.91 (±4.88) 5.03 (±5.10)
LBP + Dynamics 4.58 (±4.47) 4.77 (±4.66)

Our results show that the gender-specific training decreases the overall MAE in compar-
ison the MAE of general-training. The MAE of the gender-specific approach for differ-
ent features range from 4.91 (±4.88) to 4.25 (±3.95) years. Although the improvement
is not statistically significant, the gender-specific training provides a 3% MAE enhance-
ment (relative) on average.

In particular, the improvement for males is more than that of females. The cumulative
distribution of the MAE for general and gender-specific methods are shown in Fig. 4.8.
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4.5.5 Effect of Expression Spontaneity

To assess the effect of expression spontaneity on the accuracy of using combined fea-
tures, a spontaneity-specific age estimation system is implemented. For this purpose,
separate classifiers/regressors are trained for spontaneous and posed smiles. Spontane-
ity of smiles is classified using the system of [27]. This system uses similar expression
dynamics to distinguish between spontaneous and posed smiles. Correct classification
of the system is 87.02% on the UvA-NEMO Smile Database.

Tab. 4.6: Comparison of the spontaneity-specific method with the general method for age esti-
mation on the UvA-NEMO Smile Database

Features
MAE (years)

Spontaneity-specific General

IEF + Dynamics 4.00 (±3.74) 4.33 (±4.03)
GEF + Dynamics 4.40 (±4.44) 4.82 (±4.89)
BIF + Dynamics 4.59 (±4.59) 5.03 (±5.10)
LBP + Dynamics 4.38 (±4.23) 4.77 (±4.66)

As shown in Table 4.6, the MAE of the spontaneity-specific approach ranges from 4.00
(±3.74) to 4.59 (±4.59), therefore improving the accuracy by 8% (on average) with re-
spect to the general approach. This means a statistically significant (p < 0.04) improve-
ment. Spontaneity-specific training decreases the MAE for both posed and spontaneous
smiles. Since the automatically detected neutral faces are used to extract the appear-
ance features for both approaches, accuracy improvements by performing spontaneity-
specific training indicates the differences between spontaneous and posed smiles in
terms of expression dynamics. The cumulative distribution of the MAE for general
and spontaneity-specific methods are shown in Fig. 4.8.

4.5.6 Effect of Temporal Phases

An expression video from onset to offset contains a lot of frames. The system we have
proposed gives a decision when the expression is completed, i.e. at the end of the
offset phase. However, it may be necessary to give a decision while the expression is in
progression. To understand how partial information would fare, we implement a version
of the proposed method. Spontaneity specific approach (with automatic spontaneity
detection) is used with adaptive age grouping in this experiment.

Since the order of the temporal phases during a facial expression is fixed, the online
system starts classification in the onset mode, where appearance features are combined
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with onset dynamics. When the apex is reached, it uses both the onset and the apex in
addition to appearance. In the final stage, dynamics of all three phases are used together
with appearance features. For these three modes, separate classifiers are trained.

Tab. 4.7: Effect of using dynamics of different temporal phases for age estimation on the UvA-
NEMO Smile Database

Features
MAE (years)

w/o Dynamics +Onset +Onset to Apex +Onset to Offset

IEF 4.80 (±4.77) 4.36 (±4.24) 4.23 (±4.09) 4.00 (±3.74)

GEF 5.48 (±5.57) 4.92 (±5.02) 4.75 (±4.71) 4.40 (±4.44)

BIF 5.78 (±6.15) 5.08 (±5.36) 4.87 (±4.95) 4.59 (±4.59)

LBP 5.46 (±5.58) 4.83 (±4.98) 4.66 (±4.67) 4.38 (±4.23)

The performance of the implemented system for the UvA-NEMO Smile Database is
given in Table 4.7. The results show that while all phases contribute to the accuracy, the
highest improvement rates are provided by combining onset dynamics with appearance
features. Including onset dynamics in the feature set decreases the MAE by 11.76%
(relative) on average. Including apex and offset phases in the analysis, increases the
accuracy further.

4.5.7 Comparison to Other Methods

To the best of our knowledge, this is the first study using facial expression dynamics
(such as speed, acceleration, amplitude, etc.) for age estimation. Except for the recent
work by [55], none of the previous studies in the literature focus on using temporal
information for age estimation.

In [55], Hadid proposes to use spatio-temporal information to classify the ages of the
subjects into five groups (child: 0 to 9 years old; youth: 10 to 19; adult: 20 to 39; middle-
age: 40 to 59 and elderly: above 60). They use volume LBP (VLBP) features with a tree
of four SVM classifiers. VLBP features are extracted from different overlapping face
blocks. Then the AdaBoost learning algorithm is used to determine the optimal size
and locations of the local rectangular prisms, and select the most discriminative VLBP
features for classification, automatically. To evaluate the system, 2000 videos of about
300 frames are randomly segmented from a set of video sequences mainly showing
talking faces (collected from the Internet). Additionally, an appearance-based (static)
system is implemented for comparison. This baseline method classifies each frame
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Tab. 4.8: Mean Absolute Error on the UvA-NEMO Smile Database for different methods.

Method
MAE (years) for Different Age Ranges

0–9 10–19 20–29 30–39 40–49 50-59 60–69 70–79 All

D
yn

am
ic

s

Deformation 4.85 8.72 12.22 13.06 13.53 11.55 14.13 17.82 10.81 (±8.85)

Displacement [26] 5.42 9.67 11.98 14.53 12.77 15.42 20.57 20.35 11.54 (±11.49)

A
pp

ea
ra

nc
e IEF, Fusion 2.73 3.28 4.68 5.36 5.38 9.09 12.97 14.65 4.86 (±4.54)

GEF, Fusion 2.89 3.17 5.00 6.07 5.38 10.97 16.90 17.53 5.24 (±5.38)

BIF, Fusion 3.92 3.73 4.90 5.61 5.86 12.30 17.33 18.24 5.63 (±5.79)

LBP, Fusion 3.42 4.02 5.13 6.63 5.60 9.06 10.43 13.41 5.37 (±5.28)

C
om

bi
ne

d,
Sp

on
.S

pe
c.

IEF + Dynamics 2.25 2.50 3.74 4.59 4.34 8.20 11.07 13.35 4.00 (±3.74)

GEF + Dynamics 1.40 2.29 3.99 5.17 5.37 10.17 15.00 16.06 4.40 (±4.44)

BIF + Dynamics 2.68 3.21 4.23 5.09 4.62 9.44 13.17 14.12 4.59 (±4.59)

LBP + Dynamics 1.53 2.68 3.95 5.31 5.31 9.33 11.83 13.94 4.38 (±4.23)

Sp
at

io
-

te
m

po
ra

l

VLBP [55] 10.69 12.95 15.99 18.54 18.43 16.58 23.80 26.59 15.70 (±12.40)

LBP-TOP 9.71 11.01 14.19 15.88 16.75 15.29 19.70 23.71 13.83 (±10.97)

Number of Samples 158 333 215 171 250 66 30 17 1240

in a video, individually, using LBP features with SVM classifiers. Majority voting
is used to fuse the classification results of each frame. Hadid reports that the static
image (appearance) based approach provides 77.4% correct classification, where the
performance of the spatio-temporal approach reaches only 69.2%.

VLBP is a straightforward extension of the original LBP operator to describe dynamic
textures (image sequences) [142]. VLBP enables the use of temporal space (T), models
the face sequence as a volume, and the neighborhood of each pixel is defined in three
dimensional space. In contrast, LBP uses only X and Y dimensions of a single image.
Then, the histograms of VLBP are used as features. In [142], Zhao et al. have proposed
to extract LBP histograms from Three Orthogonal Planes (LBP-TOP) XY, XT, and YT,
individually, and concatenate them as a single feature vector.

To compare our system with related approaches using smiles, we implement three base-
line methods: (1) VLBP-based spatio-temporal approach, (2) spatio-temporal approach
using LBP-TOP features, and (3) appearance-based approach which classifies the first
and the last frame of a smile onset (a neutral and an expressive face, respectively) us-
ing appearance features, individually, and fuses the estimations by mean operator. All
methods use the same classification/regression architecture as our method. Tests are
performed on the UvA-NEMO Smile Database. For a fair comparison, all of the com-
pared methods use automatically annotated facial landmarks to initialize the tracking
(for face alignment and feature extraction), and 7 × 5 non-overlapping blocks on the
face to compute the histograms. To generate histograms, uniform patterns are used



60 Combining Facial Dynamics with Appearance for Age Estimation

for LBP-TOP and LBP. The neighborhood size is set to eight for LBP and LBP-TOP,
and two for VLBP. Time interval for the volumetric approaches is set to three frames.
Zhao et al. [142] show that these neighborhood and time interval parameters perform
well for facial expression classification. To provide comparable smile durations for
spatio-temporal descriptors, each smile phase (onset, apex, and offset) is temporally in-
terpolated to 25 frames using bicubic interpolation. The dimensionality of IEF, GEF,
BIF, LBP, VLBP, and LBP-TOP features is reduced by Principal Component Analysis
(PCA) so as to retain 99.99% of the variance.

As shown in Table 4.8, the combination of dynamic and appearance features provides
the most accurate results. The spontaneity-specific method that combines dynamics
and IEF achieves the minimum MAE of 4.00 (±3.74) years. Note that combining ap-
pearance with expression dynamics provides more accurate age estimation than using
neutral and expressive frames in a video and averaging the results.

Spatio-temporal methods can only reach a mean accuracy of 15.70 (±12.40) and 13.83
(±10.97) years with VLBP and LBP-TOP features, respectively. By the sole use of
proposed dynamic features, the system is significantly more accurate than when it uses
the spatio-temporal features (p < 0.001). Finally, we also compare the deformation-
based dynamic features that proposed in this paper (first row of Table 4.8) with the
displacement dynamics (of eyelids, cheeks, and lip corners) introduced in our previ-
ous study [26] (second row of Table 4.8), and show that surface deformation dynamics
perform better.

4.5.8 Computational Load

In this section, we report average time requirements of different feature extraction mod-
ules. All the modules except the Bézier volume tracker, are composed of non-optimized
MATLAB code or C++/compiled MATLAB code. Speed tests are conducted on an Intel
i7-3687U, 2.1GHz (dual core) processor with 16GBs of RAM.

Average time requirements for each module used for different features are given in Ta-
ble 4.9. For a smile of 3.2 seconds (160 frames), facial expression dynamics can be
extracted in 8.0436 seconds (based on landmarking of 17 points, tracking, normaliza-
tion of landmarks, and dynamics extraction). Similarly, dynamics of a 0.6 seconds (30
frames) onset phase can be extracted in 2.4796 seconds. Extraction of IEF, GEF, BIF,
and LBP features requires 1.7785, 4.0825, 38.7947, 0.4599 seconds per frame, respec-
tively (based on landmarking of four points, cropping/alignment of the face image, and
feature extraction).

Newer generation of trackers use local binary features for accurate and very fast face
alignment, achieving speeds around 3000 fps on desktop computers [91]. Consequently,
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Tab. 4.9: Average time requirements of different feature extraction modules

Module
Duration

(seconds per frame)

Initial landmarking (four points: eye corners) 0.4323

Initial landmarking (17 points) 1.1204

Tracking 0.0411

Normalization of the landmarks 0.0017

Cropping/alignment of the face image 0.0234

IEF feature extraction 1.3228

GEF feature extraction 3.6268

BIF feature extraction 38.3390

LBP feature extraction 0.0042

Dynamics extraction (per signal) 0.0752

commercial systems will be able to perform face tracking and expression analysis in
real time. Our results show that age estimation will also benefit from the availability of
accurate and computationally cheap dynamic information.

4.5.9 Application to Disgust Expression

To evaluate the effectiveness of the proposed approach on a different facial expression,
we conduct experiments on disgust expression. To this end, the UvA-NEMO Disgust
Database is used. Adaptive age grouping is enabled in these experiments. Here, ap-
pearance features are extracted from the first, neutral frames of the onset of the disgust
videos.

Tab. 4.10: Mean Absolute Errors for dynamics, appearance, and combined features on the UvA-
NEMO Disgust Database

Features
MAE (years)

without Dynamics with Dynamics

Appearance: None N/A 10.32(±7.97)
Appearance: IEF 5.04 (±4.90) 4.21 (±4.07)
Appearance: GEF 5.50 (±5.67) 4.56 (±4.74)
Appearance: BIF 7.24 (±8.46) 6.09 (±7.08)
Appearance: LBP 5.29 (±5.05) 4.38 (±4.18)



62 Combining Facial Dynamics with Appearance for Age Estimation

As shown in Table 4.10, similar to the results on smiles, combining dynamics of disgust
expression with appearance features significantly improves the age estimation accuracy
in comparison to the individual use of dynamic and appearance features (p < 0.05).
MAE improvement over the accuracy of appearance features ranges from 0.83 to 1.15
years. These improvement rates are higher than those given in Table 4.3 for smile
videos. One reason is that all the disgust expressions are deliberate, causing the system
to act like a spontaneity-specific system and thus providing better modeling.

4.5.10 Classification of Age Ranges

Based on different application requirements, many studies report automatic age estima-
tion results as classification of age groups [40, 90, 123]. Since facial dynamics are much
more informative for large age differences, we conduct a set of experiments to show the
usefulness of dynamic features in classifying age groups using smile and disgust ex-
pressions. Two different set of age groups are evaluated in our experiments: (a) 7 age
groups of 10 years (8–17, 18–27, . . . , 68–77) as in [26], and (b) 5 age groups (8–12,
13–19, 20–36, 37–65, 66+) as in [40]. Our system is trained for these two different
sets of age ranges. Since the UvA-NEMO Smile Database includes both spontaneous
and posed smiles, spontaneity specific system is used for smiles by employing the auto-
matic spontaneity detection (for smiles) as proposed in [27]. The general classification
approach is used for disgust expression, since the UvA-NEMO Disgust Database has
only posed disgust expressions.

As shown in Table 4.11, combining dynamics with appearance features significantly
(p < 0.01) improves the classification accuracy of age groups. When smile videos are
used, mean accuracy improvement for 7 and 5 age groups are 9.58%, and 13.03% (ab-
solute), respectively. When disgust videos are used, mean accuracy improvement for 7
and 5 age groups are 11.78%, and 11.83% (absolute), respectively. In comparison to the
improvement on exact age estimation, these results display a more visible enhancement.
This is based on higher reliability of expression dynamics for classifying subjects with
large age differences. When the estimation of exact age is considered, the use of the
expression dynamics improves the first level classification accuracy in a visible way,
but in the second level (regression), while the exact age within the classified group is
being determined, dynamics fall short of fine-level estimation, and results mainly rely
on appearance features. As a result, expression dynamics are much more reliable and
discriminative for classifying age groups.
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Tab. 4.11: Classification accuracy of age ranges for appearance, and combined features on the
UvA-NEMO Smile and the UvA-NEMO Disgust Databases

Expr. Feature
Classification Accuracy (%)

7 Groups 5 Groups

Sm
ile

IEF 67.50 75.73 76.13 88.55

GEF 65.48 74.84 74.11 87.58

BIF 60.56 72.34 71.94 84.76

LBP 65.40 74.35 70.24 83.63

D
is

gu
st

IEF 64.29 76.06 79.34 90.93

GEF 64.09 75.68 75.68 86.68

BIF 56.95 69.50 64.67 78.76

LBP 60.62 71.81 78.96 89.58

without with without with
Dynamics Dynamics Dynamics Dynamics

4.6 Discussion

In our experiments, we show that deformation dynamics of cheek’s during smiles, per-
form best for individual regions. Additionally, fusion of all regions (with a feature
selection step) improves the accuracy of the cheek dynamics by 10.96%. For dynamic
features, using feature selection increases the accuracy approximately by 13% on av-
erage, as well as reducing feature dimensionality. This finding indicates that there is a
significant amount of noise or confusing information in surface deformation dynamics.

Our results show that the individual use of the facial expression dynamics is not suffi-
cient to obtain an accurate age estimation system. However, accuracy of using solely
appearance features of a neutral face (automatically detected as the first frame of the on-
set phase) is significantly outperformed (p < 0.0015 for GEF, BIF and LBP; p < 0.01
for IEF) by enabling the surface deformation dynamics of smile expression. More-
over, the use of combined features outperforms all the baseline methods tested in this
study. These results confirm the importance of facial expression dynamics. We also
show that the deformation-based dynamics outperform the displacement dynamics (of
eyelids, cheeks, and lip corners) introduced in our previous study [26].

To obtain the most informative dynamic features for age estimation, we use the fre-
quently selected descriptors (in feature selection procedure). Significant (p < 0.001,
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η2 > 0.15) differences of these features between different ages are investigated using
multivariate analysis of variance (MANOVA). Majority of the frequently selected fea-
tures are extracted from onset and offset of smiles. Additionally, the differences of these
features among different ages display lower significance level (p) in comparison to the
apex features. Such findings indicate that the deformation dynamics of smile onsets
and offsets are more discriminative than those of apex phase for age estimation. Dur-
ing the onset phase of smiles, the mean speed and the mean amplitude of deformation
decrease (D−) on eyelids significantly change among different ages. During the apex
phase, the maximum and mean amplitude of deformation on the mouth region are sig-
nificantly different for different ages. When the offset features are analyzed, it is shown
that the maximum and net amplitude of deformation on the mouth region significantly
change. Additionally, the second frequency component (ψ(2)) of deformation ampli-
tude on the mouth region significantly differs among ages. Note that ψ(2) denotes the
lowest frequency coefficient of the deformation amplitude, since ψ(1) is always the DC-
component (

∑
D√

η(D)
). So it can be inferred that during smile offsets, the rough shape of

the mouth deformation amplitude is an informative feature for age estimation.

Then, we have analyzed the significant differences of these features between sponta-
neous and posed smiles using the t-test. Our results show that the mean speed and the
amplitude of deformation decrease (D−) on eyelids are significantly higher (p < 0.005)
for posed smiles during the smile onsets. During the offset phase, on the mouth region,
the second frequency component of deformation is lower (p = 0.002) for spontaneous
smiles, whereas the net amplitude of deformation is (p < 0.001) significantly higher.
Similarly, the t-test analysis is repeated for male and female differences. The results
indicate that during smile apexes, the maximum and mean amplitude of the deforma-
tion of the mouth region is significantly lower for males (p < 0.001). During the offset
phase, on the mouth region, the second frequency component and the maximum ampli-
tude of deformation is lower (p < 0.001) for males, whereas the net amplitude of the
deformation is (p < 0.001) significantly higher. These findings can explain the higher
accuracy of the spontaneity- and gender-specific systems. The reader is referred to [25]
for further analysis of smile dynamics.

Experimental results show that spatio-temporal approaches (using smiles) based on
VLBP and LBP-TOP are not efficient for age estimation. Even the individual use of
our dynamic features outperforms these methods significantly. Spatio-temporal features
describe the change of facial appearance in time, but our proposed approach models the
appearance on a single neutral image (which is automatically selected as the first frame
of the onset phase) and adds the surface deformation dynamics of the facial expression
(such as amplitude, speed, acceleration, etc ) on it. As a result, the proposed system
(using spontaneity-specific approach) is significantly (p < 0.001) more accurate than
all the competitor methods used in our experiments. When we evaluate the performance
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of combining proposed features with appearance for disgust expression, similar to our
results on smiles, age estimation accuracy is significantly improved.

Our additional experiments on the classification of age ranges demonstrate that the facial
expression dynamics are much more reliable for group classification tasks. This is due to
higher discrimination power of expression dynamics for classifying subjects with large
age differences. However, dynamics are not discriminative enough for discriminating
similar ages. This finding can be explained by the large variation of expression dynamics
within a narrow age range.

4.7 Conclusions

Our study shows that dynamic facial features obtained by analyzing a frequently oc-
curring facial expression improves appearance-based age estimation. While appearance
is more informative than facial dynamics, it is affected by many external factors, like
make-up, scars, and wrinkles resulting from exposure to harsh weather conditions. Such
factors do not concern facial dynamics. Consequently, dynamics are sufficiently uncor-
related with appearance to allow fusion approaches for age estimation.

In our previous work, we have assessed a range of dynamical features in an exploratory
fashion, and have shown that if landmark movements are employed, eyelid dynamics are
the most revealing in terms of age estimation, followed by lip corners and cheeks [26].
The present work improves these results by using surface area features (instead of land-
mark movements) for characterizing 3D facial dynamics. We also introduce in this paper
a two-level classifier, where the age range for each classifier is adaptively selected in the
first level. We test four different features for appearance to show that the improvement
by dynamic features is consistent across representations, and we also introduce an ap-
pearance fusion baseline. We study gender effects systematically, to conclude that the
improvement due to gender-specific models is not significant. We show that sponta-
neous and posed smiles have different and distinct dynamics, and spontaneity-specific
age estimation significantly outperforms the general approach. Finally, we demonstrate
that the method we propose is usable with other expressions, and report results on the
new UvA-NEMO Disgust Database we introduce in this paper. Subsequently, this is the
most extensive dynamic age evaluation study to this date in the literature.
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5
Deep Aging Features

5.1 Introduction

Automatic age estimation is an important research problem in the field of computer vi-
sion. Its applications range from surveillance and security control to human-computer
interaction and online marketing. In general, the human age is derived from facial aging
cues where for adults it is primarily perceived via skin changes [38]. During aging, wrin-
kles become more apparent in some regions of the face (e.g. around the eyes). The facial
skin turns thinner, darker, and rougher. The age estimation schemes consist primarily of
two component; aging feature extraction and features classification/regression [38]. In
the last decade, there have been many research works to design [53] or use [7, 21, 133]
appearance features that capture the aging cues on the face. Some standard features
are taken from other tasks such as Local Binary Patterns (LBP) [83] or Gabor filters,
while others are devised or modified to represent the age(e.g. Biologically-Inspired
Features (BIF) [53]). These aging cues are inferred from different regions of the face.
For example, wrinkles develop mainly around the nose, the eyes and the mouth corners,
while skin texture changes mainly appear on the cheeks and the forehead. Therefore, a
proper age estimation system should employ suitable aging features for the related face
regions. As the age from faces is inferred mainly from the wrinkles and the skin tex-
ture, some of the aging features are aimed to capture the details of the wrinkles on the
face (wrinkle features) [41, 53, 112, 114] while others measure aging changes of skin
texture (skin texture features) [7, 133]. These features are either applied exhaustively
to cover the whole face [7, 53, 133] or, in a better way, applied to the corresponding
face regions [112]. Some recent age estimation systems combine both types of features
(each extracted from different face regions) [21] to obtain improved age descriptors.
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However, the design/choice of the feature types and the corresponding face regions are
handcrafted. For example, Choi et al. [21] extract the wrinkle aging cues using a bank
of Gabor filters where the number, the orientations and the scales of the filters are es-
timated. The locations of the wrinkle analysis regions in [21] are inferred from studies
on cosmetic surgery and biology. However, these regions are prone to mis-localization
(due to errors in facial landmark detection) and the hence the filters may not match the
intended regions. This suggests designing feature extraction scheme that is tolerant to
misalignment. To address this, we propose in this paper to learn the most suitable aging
features for each part of the face. The learnt features are adapted to slight misalign-
ment of face regions. Hence, producing more discriminate and, yet, more robust aging
descriptors.

More specifically, we decompose the face into different parts and assign a convolutional
network for each one. The aim is to find the set of filters that fit each corresponding
part. The pooling layer in the network serves to alleviate the effects of small registra-
tion error. Each part-based convolutional network is trained independently. Although
different parts of the face show different aging cues, we assume that the adjacent ones
are similar. To this end, a combination layer is topped over the part-based convolutional
networks. The output of the combination layer summarizes the features from all the
learnt part-specific face features into a single aging descriptor. The resulting descriptor
has significantly lower number of dimensions (176) than in other methods, yet more
discriminative.

The contributions of our paper are as follows: First, we propose an architecture to au-
tomatically learn the region-specific aging features. The resulting aging descriptor is
discriminative and robust to slight misalignments. Second, the conducted experiments
show the discriminative power, efficiency, and generalizability (cross-dataset evalua-
tion) of the proposed method. This suggests the suitability of the proposed method for
real-time applications.

5.1.1 Related Work

In the last decade, many methods have been proposed to automatically estimate the
age from the human face. Typical age estimation systems consist primarily of two
steps; aging feature extraction and age classification/estimation. An elaborate survey on
extracting and classifying aging features can be found in [38].

Shape features are used in the early days by Kwon and Labo [67] to estimate the age
from infancy to adulthood. As face size changes during this period, measurements
and ratios of distances between facial points are computed to estimate the age. Other
works utilize the face shape to infer the age (in combination with appearance features).
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[17, 21, 51, 68, 141] use Active Appearance Model (AAM) [22] to model the shape and
the appearance. The model parameters are used to estimate the age. As the face shape
stops developing at early adulthood, the shape-induced features are limited in providing
cues about the age for later age stages.

Appearance-based features are utilized to derive the age from the wrinkles and the skin
texture. Features like LBP [83, 133], Encoding-based Sampling [7], or Discrete Cosine
Transformation [130] are used to primarily capture the skin texture changes and the
fine wrinkles. For more pronounced wrinkles, gradient-based filters are used like Sobel
[114, 122], Gabor filters [41], or Biologically-Inspired Features (BIF) [44, 53]. Like fine
wrinkles features, these filters are convolved over the entire face [53] or constrained to
specific regions [122]. Other approaches combined both types of features to produce a
single age descriptor [21].

Recently, the focus of research efforts in computer vision have been shifted to deep mod-
els. Driven by the recent boosts in the scale of computational power and large amounts
of labeled data, convolutional networks are utilized in face-related tasks like face de-
tection and parsing [74, 85]. A similar approach to ours is employed to face alignment
and facial points detection [111, 140]. Sun et al. [111] use three-level convolutional
networks to estimate the positions of five facial landmarks. The first level contains three
networks to estimate the rough locations of the eye centers, the nose, and the corners of
the mouth. The second and the third level aim to refine the estimation of the facial land-
marks. In a similar approach, Zhang et al. [140] use successive stacked auto-encoder
networks to accurately (and gradually) locate the landmarks on the face. An advantage
of their method is refining the landmarks collectively as opposed to [111], where the
landmarks are estimated independently. We do not aim at landmark estimation.

In this paper, we apply deep convolutional networks to learn region-based features.
The networks aim to learn the filters that fit best each face regions. The outputs of
the networks are further fed to combination layer which allows merging the information
from these networks. In such a case, the resulting age descriptor contains region-specific
features but, still, allows interaction and weighting of the different regions.

5.2 Deep Aging Features

Our goal is to design a feature extractor that provides discriminative age features per
face region. To this end, we aim at learning specific filter banks for different areas of
the face. In this way, features extracted for each face region provides an estimation of
the age. Then, on top of these per-region features, a combination layer is used to learn
relationships between the different face regions to provide the final output.
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5.2.1 Motivation

Aging cues may vary spatially depending on the part of the face. In fact, the type of
feature to be extracted depends on the location of the regions in the face. Therefore,
the aim is to provide small trainable networks which are fine-tuned for different areas
of the face. As lesser data is required for training, smaller nets can used to avoid over-
fitting. In general, aging cues are dependent on the age range. Some approaches divide
the age range into segments to perform multi-class classification by assigning each age-
range to a different class. Optimally, there is a class for each different age. Other
approaches consider the age as a continuous value and use regression to infer the age
of the test sample. The former approach may fail due to differences within the age
segment. Ages near the boundaries of each segment are closer than ages in the middle
of the age segment. Using regression, these differences are not represented. On the other
hand, a multi-class classifier considers different relationships between aging cues in the
different areas of the image. Therefore, our approach takes the benefits of both methods
by performing regression via multi-class classification using a piecewise regressor.

In general, a network is trained in a supervised way and then the last layer before the
soft-max operation is used to provide the feature vector. This approach is suited even if
the features do not contain useful information for the task at hand. The size of the feature
vector depends on the complexity of the architecture. For large networks, methods use
dimensionality reduction to generate a smaller fixed-sized vector. We depart from a
different approach in which the last layer is used to explicitly encode the age of the
sample and then regression is computed for training. The advantage is twofold. First,
the dimension of the feature vector is fixed and does not depend on the number of
kernels in the last convolutional layer. Second, the feature vector provides direct age
information that can be used for higher level reasoning.

5.2.2 Region-Specific Features

Our region-specific feature is a CNN consisting of two convolutional layers with linear
rectification units as activation neurons and average pooling operations. More specif-
ically, the structure of our network is expressed as (18 × 18) – (14 × 14 × Nf1) –
(5 × 5 × Nf2) - (1 × 1 × Nf3) - (1 × 1 × 1), where the last unit is a continuous value
representing the age. In this way, the neural network is based on regression. Regression
has been used before for age estimation [38]. However, these approaches use multi-
class classification by assuming that the number of classes is the same as the number of
different ages in the dataset.

Face regions of interest are first resized to 64 × 48 and then partitioned using a 4 × 4
overlapping grid as shown in Figure 5.1. Each patch of size 18 × 18 is locally normal-
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Fig. 5.1: Proposed deep aging features framework. The region-specific feature extractor is de-
fined in the red box. Feature extractor uses piecewise regression for learning (green
box – see Figure 5.2). In addition, the framework considers global appearance and
gender characterization to predict the final age (blue box).

ized and used as input for a different network. In our experiments, the first convolutional
layer is set to Nf1 = 24 kernels of size 5 × 5 with rectifier linear units (max(out, 0)),
followed by a max pooling operation of size 2 × 2. This pooling operation reduces the
dimensionality and provides robustness to small displacements during the face align-
ment process. The second convolutional layer contains Nf2 = 72 kernels of size 5 × 5
also with rectifier linear units and its output is fully connected to the feature layer con-
sisting of Nf3 = 11 kernels. The fully connected layer uses a dropout rate of 0.5. All
these parameters are obtained empirically to result in a suitable trade–off between over-
fitting and discriminative power. Kernels are relatively small to capture fine details in
facial features such as wrinkles. The number of kernels per layer is kept low to cope
with datasets containing a relatively small number of training samples.

The cost function is the Euclidean distance between the age output (in years) of the net-
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work and the ground-truth age of the training sample. The aim is to combine the last two
layers to perform regression using piecewise linear decomposition. Usually, learning is
done by a multiclass classifier where each possible age or age-range is represented by a
different class. Using age-ranges has the drawback that the distances between the pre-
dicted and real ages are not represented. Other approaches apply regression to represent
ages as continuous values. Our approach differs from previous methods. We consider
aging features to be continues value and dependent on the age range. To this end, our
feature extractor is trained using piecewise regression. The basic idea is to partition the
age range into segments that potentially share similar properties. Regression is applied
to each segment. This approach is based on the two last layers of the network. The
last layer represents the age value while the feature layer encodes the age in segments.
The feature layer is trainable and fixed to Nf3 = 11 dimensions while the last layer is
non-trainable and provides the desired output. The benefit of this structure is to provide
suitable and compact features in the feature layer (Figure 5.1) and, at the same time,
provide a continuous output for regression. The feature layer splits the age axis (real
output) into age intervals defined by different thresholds Θ = θ1 < θi, . . . , < θNf3

as
shown in Figure 5.2. Given these segments, the age in the last layer is computed as:

ŷ =

Nf3∑
k=1

θkŷ
(f)
k , (5.1)

where Θ is the set of weights in the last layer and ŷf = [ŷf1 , . . . , ŷ
f
Nf3

] is the output of
the feature layer. The loss function is defined as:

L(W,X) =
∑
i∈N

‖yi − ŷi‖, (5.2)

where ŷi is the age estimated for the i-th sample using Eq. (5.1) and N is the number
of samples in the training set. In this paper, we fixed the weights of the last layer Θ
using the age ranges. More specifically, the age axis is partitioned into 11 segments
(i.e., ŷf ∈ R11), the size of the segments is empirically fixed to ∆ = 8 years resulting in
Θ = [3.5, 11.5, 19.5, 27.5, 35.5, 43.5, 51.5, 59.5, 67.5, 75.5, 83.5].

During training, for each training sample, we minimize the squared distance in the fea-
ture layer by ‖y(f) − ŷ(f)‖. The real value (ground truth) in the feature layer y(f) is
computed as follows ( Figure 5.2). First, the real age value is projected in the closest
age segment (i = dy−θ1

∆
e). This projection defines the entries of y(f) since age segments

correspond to consecutive dimensions in the feature vector. Finally, the two consecutive
values of the feature vectors are computed using the distance between the projected age
and the segment limits:

y
(f)
i = 1− di

∆
, i ∈ [dy − θ1

∆
e, dy − θ1

∆
e+ 1] (5.3)
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where di = ‖θi − y‖ is the distance between the projected age and the limit of the
corresponding age segment. A complete illustrative example is shown in Figure 5.2.
Importantly, y(f) directly encodes age information based on appearance features.

Holistic Age Features

Figure 5.1 outlines the proposed algorithm for age estimation. The first component
of the pipeline is the region-specific feature extractor applied to different parts of the
face. Features for each region are given by y(f) which is the output after removing
the non-trainable layer. Each feature directly encodes the estimated age for that patch.
This is different from other methods where features provide support to a specific age
(using multi-class classifiers) or simply represent the visual appearance. The framework
includes a combination layer integrating the per-patch estimated age resulting in the final
output. The input to the combination layer is a 176 dimensional vector constructed by
concatenating the output of each patch (16 in our experiments). The framework also
incorporates high level facial cues by fine tuning features of the entire image (blue box
in Figure 5.1). The aim is to represent global (coarse) differences between faces at
different ages (e.g. differences in gender or ethnicity may result in a different global
appearance). The input image is cropped to the face area and resized to 64 × 48 and
then partitioned by fixed 4 × 4 overlapping grids ( Figure 5.1). Then features for each
patch are extracted and concatenated leading to a 176 feature vector.

Fig. 5.2: The proposed region-specific feature encodes ages into the feature layer using piece-
wise regression (corresponding to the green box in Figure 5.1.
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5.3 Experiments

The goal of the proposed approach is to learn region-specific aging features using an
architecture based on convolutional networks. The resulting features capture the age-
telling cues for each region independently. Their learnt outputs are further fed into a
combination layer which aims to integrate their information. In this section, we conduct
a number of experiments to provide insights into the proposed architecture (Section
5.3.5) and evaluate the discriminative power, the efficiently, and the generalizability of
the learnt features.

5.3.1 Datasets and Experimental Setting

Two datasets are used in our experiments. The first dataset is Morph-III [93] aging
dataset. It is one of the largest aging dataset with accurate ground truth and around
200K images of more than 13K subjects. The images in other large-scale datasets are
crawled from the internet with no ground truth [81]. The female to male ratio is around
1 to 6. The dataset contains facial images of subjects from different ethnicities (African,
Caucasian, Asian, Hispanic, and others). However, the samples of African and Cau-
casian descendants constitute around 95% of the total dataset samples (73% and 22%
respectively). The ages of the subjects range from 16 to 80 (Figure 5.4), however,
around 99% of the samples are of ages less than 60 years.

The second dataset is FGNET 1 which contains 1002 facial images from 82 subjects of
Caucasian descendant. The ages range from 0 to 69 years, however the age distribution
is skewed to younger ages (around 70% less than 20 years). Figure 5.4 shows the age
distributions of both datasets. Sample faces from both datasets are shown in Figure 5.3.

Our experiments are conducted primarily using Morph dataset due its large size. FGNET
is used for validating our features in a cross-dataset experiment. For both datasets, the
eye centers are detected and the face is registered and cropped. For faces where eyes
are not detected, the samples are discarded. To isolate the ethnicity influence in our
experiments, we conduct our experiments on Caucasian descendant samples resulting
in 45878 samples. The dataset is split randomly into 41495 training and 4383 test sets.
Figure 5.5 shows the distributions of the training and test sets. The performance is eval-
uated quantitatively by Mean Absolute Error (MAE) 1

N

∑N
i=1 |yi − ŷi| . Where yi is the

true age for the test sample i, ŷi is the predicted age for the test sample i, and N is the
number of the test samples.

1http://www.fgnet.rsunit.com
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Fig. 5.3: Sample faces from Morph (up) and FGNET (down) datasets.

5.3.2 Region-Specific Feature Learning

In this experiment, we evaluate the features learnt by the proposed method. The net-
work is configured as detailed in Sect. 5.2.2. Region-specific networks have the same
configuration (18×18) – (14×14×24) – (5×5×72) - (1×1×11) - (1×1×1). The se-
lection of the parameters aims at providing a trade off between discriminative power and
training overfitting. On one hand, the network needs to be fine tuned for each specific
region. On the other hand, the amount of training images is limited and therefore, larger
networks would lead to overfitting. Different experiments have shown that this con-
figuration leads to good trade off between training speed and accuracy. Gobal features
are extracted using the same configuration. For the gender features, we use common
supervised training on two classes (male / female) and then, features are extracted on
the previous layer.

The features are tested with two learning methods; Support Vector Machine (SVM)
and Random Forest. In addition to being widely used as the state-of-the-art methods,
they are of different types. SVM uses a maximum margin approach while Random
Forest is an ensemble-based learner. This is to illustrate the effectiveness of our features
regardless of the learner used. The results for SVM are 4.17 (classification) and 4.04
(regression) while the errors produced by Random Forest are 4.13 (classification) and
3.87 (regression).
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Fig. 5.4: Age distributions for MORPH (up) and FGNET (down) datasets.

5.3.3 Comparison with Other Methods

To further show the effectiveness of our architecture, we compare the proposed fea-
tures with other state-of-the-art features. Namely, we extract LBP, BIF and Encoding-
based Features (EBF) from the training and test sets and apply the same classifica-
tion/regression setting used in Section 5.3.2. EBF learns the encoding of the intensity
samples (EBF-S) or the gradient information (EBF-G). LBP and EBF-S are aimed to
capture primarily the skin aging changes, while BIF and EBF-G are designed to cap-
ture the deep and apparent wrinkles on the face. The dimension of the BIF features is
reduced using PCA (from 11080D) to 1000D since BIF produced large error using the
unreduced dimension. As in the previous settings, SVM and Random Forest and uti-
lized to estimate the age from the features. Tables 5.1 and 5.2 summarize the results of
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Fig. 5.5: Distributions of the training and test test. The test set distribution is scaled up 3 times
for better comparison.

Tab. 5.1: Comparison between four types of features and the proposed features (Region-Specific Fea-
tures (RSF)) using SVM: Local Binary Pattern (LBP), Bio-Inspired Features (BIF), Encoding-
based Features EBF-S and EBF-G.

Method Class. Reg
LBP 5.08 4.73
EBF-S 4.23 4.14
EBF-G 4.52 4.47
BIF 4.29 4.15
RSF 4.17 4.04

Tab. 5.2: Comparison between four types of features and the proposed features (Region-Specific Fea-
tures (RSF)) using Random Forest: Local Binary Pattern (LBP), Bio-Inspired Features (BIF),
Encoding-based Features EBF-S and EBF-G.

Method Class. Reg
LBP 6.68 –
EBF-S 6.14 –
EBF-G 6.13 5.44
BIF 8.53 6.15
RSF 4.13 3.87

SVM and Random Forest respectively. The region-based features produces the lowest
errors for both learning methods using classification and regression which proves the
effectiveness of the proposed features regardless of the prediction method.



78 Deep Aging Features

Tab. 5.3: Comparison between the proposed features (Region-Specific Features (RSF)) and four types
of features (all reduced to 176 dimension): Local Binary Pattern (LBP), Bio-Inspired Features
(BIF), Encoding-based Features EBF-S and EBF-G. SVR is used for prediction.

Method 176-D All-D
LBP 5.19 4.73
EBF-S 4.76 4.14
EBF-G 4.87 4.47
BIF 4.70 4.15
RSF 4.04 4.04

5.3.4 Efficiency vs. Discriminative Power

The experiments in the previous section show the effectiveness of the proposed learnt
features. In this section, we discuss the efficiency of the features in two aspects; fea-
ture extraction and estimation (time) cost. While the other features have relatively high
dimension > 1000 (1180, 5120, and 11080 for LBP, EBF, and BIF respectively), the
dimension of the region-based features is 176. Besides that, the features are extracted
in one pass of the architecture which is faster than the other features (pixel sampling
(LBP), gradient computing (EBF), or banks of Gaussians with different orientations
and scales (BIF) 2. Efficiency is specially important on devices with limited computa-
tional power like wearable devices (e.g. Google Glass) where realtime processing is a
must. To compare with other features in low-dimension scale, PCA is used to reduce
the dimension of LBP, EBF-S, EBF-G, and BIF into 176. Table 5.3 shows the results
using SVR (as it gives the best results for the other features). For LBP, EBF, and BIF,
the error increases by at least 10% when the feature dimension is reduced to the same
number as in our features. This is further suggests the compactness advantage of the
proposed features over other features.

5.3.5 Contribution of the Combination Layer

Figure 5.6 shows the performance evaluation of the region-specific features applied to
the different areas of the face. As shown, the larger error occurs in the upper part of the
face. This area usually corresponds to hair and therefore are less discriminative for age
estimation. On the other hand, higher accuracies are provided by the areas located in the
second and the third rows of the face corresponding to areas around the eyes and nose.
Given this accuracy distribution, an important advantage of our method is that specific
areas of the image can be omitted to reduce computational cost. More specifically, we

2We do not report the computation time for extracting the features since different implementation
might result in different computation times
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omit the features from the first row and train an SVM regressor. The resulting error
increased from 4.04 to 4.07 (less than 1%) while the dimensionality is reduced to 132.

Fig. 5.6: Accuracy of region-specific features applied to different areas of the image (higher
accuracy is represented by reddish colors while lower accuracy is represented by bluish
colors). As shown, the accuracy decreases in the upper part.

Table 5.4 summarizes the performance of three instances of our deep aging proposal.
First the combination of region-specific features. Second, region-specific features com-
bined with global appearance features and finally, region-specific features, global fea-
tures and gender features. As shown, including context improves the performance. The
improvement is slightly better when gender features are considered.

Tab. 5.4: Comparison between different instances of our framework by including global features using
Random Forest: the proposed features (Region-Specific Features (RSF)), features combined
with global appearance information and the complete framework including gender features.

Combination Class. Reg
RSF 4.13 3.87
RSF + Global 4.03 3.81
RSF + Global + Gender 3.97 3.78

5.3.6 Generalizability: Cross-Dataset Evaluation

In this experiment the generalizability of our features is explored. We investigate how
well our feature extraction architecture can do when applied to extract features from dif-
ferent dataset (cross-dataset evaluation). To this end, we estimate the age from samples
in FGNET dataset using the previously explained models (each was learnt with different
types of features extracted from Morph train subset). Please note that, here, the same
architecture (filters) learnt from the Morph train subset is applied. In other words, the
FGNET samples are used solely for testing and no retraining is performed. As shown
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Tab. 5.5: Generalizability: cross-dataset evaluation on FGNET using the proposed features and four
other types of features: Local Binary Pattern (LBP), Bio-Inspired Features (BIF), Encoding-
based Features EBF-S and EBF-G. SVR is used for prediction.

Method MAE
LBP 6.67
EBF-S 7.65
HA 6.42
BIF 8.13
RSF 6.41

in Figure 5.4, a significant number of samples in FGNET are of teenage group and
younger while the age range in Morph starts from adulthood. Therefore, we evaluate
only on samples with ages>= 20 years (∼300 samples). Note that the age distributions
of the Morph and the refined FGNET are still significantly different. The age ranges are
only similar. Table 5.5 shows the results for different features. The best performance
was achieved with our features which further suggests the robustness of the proposed
features.

5.4 Discussion

We proposed a deep architecture to learn region-specific age features from the face. The
focus here is primarily on the feature extraction with regards to discrimination power,
efficacy and generalizability. To fairly compare with other feature-extraction methods,
the experimental settings are applied to all compared features in the same manner. Two
different classifiers/regressors are used; maximum-margin learner (SVM) and ensemble
learner (Random Forest). Linear kernel for SVM and a default number of trees (1000)
for Random Forest.

In terms of effectiveness, efficiency and generalizability, the proposed features outper-
form the other features. The fast feature extraction and the low-dimensionality of our
age descriptor makes it especially suitable for real-time application such are wearable
devices with limited processing power. By visualizing the contribution of each region-
specific features, the dimensionality is further reduced to 132 while the error increases
insignificantly (less than 1%).

The generalizability of the method is further evaluated by testing the features on the
FGNET dataset in a cross-dataset evaluation. FGNET samples with ages 20 and higher
are tested (see Section 5.3.6). The error produced is 6.41 years. While other reported
errors (using methods trained and tested on FGNET) are smaller (just below 5 years),
those errors are computed for the entire FGNET dataset (including the ones in [0-19]



5.5 Conclusion 81

range). The errors for age groups older than teenage on FGNET are higher than the
ones in the teenage group. For example, Yan et al. [132] compute the error for each
10-year group. Although the error over all the dataset is 4.94 years, the error becomes
8.41 years when calculated over the rage [20-69]. Their error is even smaller than the
errors (also calculated over the range [20-69]) produced by other methods they discuss
in their papers (12.30 , 11.23, and 17 years). Please note that they report only the overall
error and the per-group errors. However, it should be mentioned that their methods are
trained on FG-NET where younger ages are more frequent than adult and elderly ages.

5.5 Conclusion

A novel approach is proposed to extract age features from facial images. The proposed
approach extracts region-specific features as opposed to other methods, where the same
filters are applied to the entire face. A convolutional network is assigned to each part
of the face and a combination layer is employed to integrate the information from the
convolutional networks.

The discriminative power, efficiency and generalizability of the proposed features are
shown by our experiments. Compared to other state-of-the-art features, the proposed
features produced smaller errors with different classifiers/regressors. Efficiency-wise,
the resulting features are extracted fast and have a dimension of 176. A cross-dataset
experiment to evaluate the generalizability where the model, based on our features, pro-
duced smaller errors than other models which are based on state-of-the-art features. The
proposed features are suitable for real-time application especially for wearable devices
with limited processing power.
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6
Age Estimation Under Changes in Image
Quality: an Experimental Study

6.1 Introduction

Automatic age estimation is an important task in image processing as it has numerous
applications in everyday life: i.e. security, surveillance, and online marketing. The
human face reveals rich information about the age of a person and hence automatic age
estimation systems are typically designed to predict the age from the human face. While
aging, facial features change in response to muscle contractions and other biological
changes of the skin. The facal skin becomes more leathery and rough while winkles
start to appear and become more pronounced in certain face areas (e.g. around the
eye and mouth corners). The shape of the face contains details indicating the age of
the person. From infancy to early adulthood, the size of the head grows and certain
measurements of the head size correspond to age.

A number of aging features have been designed or used to capture the aging cues. Some
features [7, 83, 130, 133] are primarily applied to model the skin texture changes and the
fine wrinkles on the face, while others [41, 44, 53, 114, 122] are mainly used to capture
the pronounced wrinkles of the face. To measure the effectiveness of these features,
they were used in age prediction pipelines.

The influence of image quality on the performance has long been a challenge in face-
related image processing tasks. It is particularity important to address this challenge in
age estimation since the aim here is to capture the skin texture and wrinkle changes.
Moreover, the face images in real-life scenarios are taken using different capturing de-
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vices and are prone to noise due to digital transmission and compression. It is this which
makes it important to study the performance of aging features with varying image qual-
ity degradation.

Many research works propose or utilize features to extract the age. A thorough sur-
vey can be found in [38]. Kwon and Labo [67] first use the head size information
to infer the age. They compute ratios and measurements of distances between facial
points. Other methods [17, 51, 68, 141] adopt other variations of shape-based mod-
els to estimate the age. Since the shape models are limited to a certain aging period,
appearance-based features are primarily utilized. They capture wrinkle changes and
model the skin texture. Skin texture and fine wrinkles are represented by features like
LBP [83, 133], Encoding-based Features [7] and Discrete Cosine Transformation [130].
Other gradient-based features like Gabor filters [41], Sobel [114, 122] and Biologically-
Inspired Features (BIF) [44, 53] are adopted to detect pronounced wrinkles. However,
since these features are designed or adjusted to capture certain aging cues, changes in
image quality may introduce artifacts which influence these fine details and hence the
output of these features. This suggests addressing the challenge posed by changes in
image quality for age estimation.

In this paper, we investigate the effect of image quality on the performance of aging
features. We mainly focus on appearance-based features. A number of age estimation
datasets are used in our experiments. To investigate the robustness of the features, we
simulate degrading of the image quality by applying different types of digital image
noise and analyze the performance. Furthermore, we introduce a basic framework to
automatically assign the best aging features based on the quality of the face image.

6.2 The Proposed Scheme

In this section, we explain the proposed scheme used to investigate the influence of
image quality on aging features performance. A key point is to isolate the feature con-
tribution from the other factors like preprocessing and learning steps. To this end, the
datasets are reduced to similar sizes. The facial points are detected using the same land-
marker and the faces are registered in the same manner. This leaves the image quality
as a single variable to be tested.

To analyze the effect of the quality of images on the performance, we simulate artifacts
in the datasets by applying different types of noise: JPEG-compression noise, quanti-
zation noise, and scaling noise. Each noise type is applied with different qualities to
further analyze the performance. For JPEG-compression, the images are compressed
with different compression rates. To simulate the quantization noise, the images are
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quantized to different values (lower than the original 256 pixel values). Finally, the im-
ages are scaled down by different factors and then scaled up to simulate scaling noise.

Appearance aging features can be categorized into skin-texture features and pronounced-
wrinkle features. However, these features differ significantly in size, number of param-
eters and efficiency. For certain purposes, some features are favored over others. For
instance, LBP is known to be efficient and requires a small number of parameters. This
may favor it over other features like BIF which requires dense convolution of multiple
Gabor filters. In this work, we focus on the details captured by the features. A suitable
feature extraction method for this purpose is the Encoding-based Features [7] where
local features are extracted around certain positions (e.g. in a dense manner) and the
features are quantized into pre-learnt patterns. This method has the advantage that the
local features can vary depending on the task. If skin texture and fine wrinkles are to be
captured, sampling-like local features are deployed, while gradient-based local features
are used to capture more pronounced wrinkles. Consequently, this provides an adequate
tool to test the performance of features for different image qualities.

6.3 Experiments

In this section, the datasets used in the experiments are first explained along with the
experimental setup. We then discuss the features and the conducted experiments.

6.3.1 Datasets and Experimental Setup

Four publicly available dataset are used: FGNET 1, FACES [30], UvA-Nemo [26], and
Morph [93]. The images in these datasets are collected from personal portrait (FGNET),
or captured primarily to build the age-estimation dataset. FGNET is probably the most
well-known publicly available dataset. It contains 1002 images of 82 subjects. The im-
ages are taken from personal portraits in different time periods. Morph dataset contains
around 200K low quality images. A subset of 1K samples are selected. FACES dataset
contains still images of 171 subjects showing six expressions. The imaging conditions
are very good which allows the fine details of the face to be shown. In total, there are
1026 images in the dataset. Finally, UvA-Nemo dataset contains videos of 400 subjects
showing happy expressions. The first frame, which shows a neutral face, is extracted
from each video. The dataset is collected primarily for age and expression research
purposes with fixed lighting conditions. Figure 6.1 shows example images of the four
datasets.

1http://www.fgnet.rsunit.com
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Fig. 6.1: Sample images from the datasets used in our evaluation: Morph (top left), FGNET (top right),
FACES (down left), and UvA-Nemo (down right).

A facial landmarker is employed to detect the eye centers which are used to register the
face. The face is then cropped to the size of 125× 100. All faces are converted to gray
scale. The datasets are further divided into three folds of similar sizes. The identities
of the subjects are mutually exclusive between the folds and the age distributions in the
folds are aimed to be as similar as possible.

In Encoding-based Features, a local feature vector is calculated around each pixel. Then,
the features are encoded with a pre-learnt visual codebook. A PCA tree is used to build
a 256-code visual dictionary. The type of details captured is then determined by the
choice of the local features. We utilize two types of features. First, sampling features
where the intensities of 25 points around the pixel are sampled. This aims to capture the
skin texture and fine wrinkles. Second, gradient-based features. Here, the histogram of
gradient directions are computed in a 8× 8 area around the pixel. This is used to model
the intensity and the direction of the apparent wrinkles. The gradients are computed
using Gaussian derivatives with different sigma (width) values: 0.5, 0.75, 1.0, and 1.25.
The face is divided into 7×5 patches and a histogram of the visual codes is calculated for
each patch. The patch-based histograms are concatenated to form the aging descriptor.

Finally, an SVM classifier is employed to learn and predict the age. A linear kernel
with C = 1 is applied in all experiments for fair comparison and to limit the influence
of the learning process. Three-fold cross-validation is used to report the results. Mean
Absolute Error (MAE) is reported for the evaluation of the performance quantitatively
where MAE = 1

N

∑N
i=1 |yi − ŷi| . yi is the true age for the test sample i, ŷi is the

predicted age for the test sample i, and N is the number of the test samples.

In the following experiments, we investigate the influence of image quality degradation.
More specifically, we explore the influence of three different types of image noise: JPEG
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Fig. 6.2: Variations of an image when JPEG-compressed with different qualities (from left to right):
100, 75, 50, 25, and 10. Where 0 is the lowest quality and 100 is the highest quality (no
compression).

compression noise, quantization noise, and image scale noise. For each of these noise
types, the aging features are evaluated and analyzed.

6.3.2 Compression Noise

In this experiment, we explore the performance for images contaminated by compression-
related artifacts. The images are compressed using the lossy JPEG compression with
different qualities (0 is the lowest and 100 is the highest quality (no compression)). Fig-
ure 6.2 shows the variations of an image from FACES dataset when compressed with
qualities 75, 50, 25 and 10.

The features are evaluated on the compressed datasets and the results are reported in
Table 6.1. A performance is considered better than another if the error is reduced by no
less than 0.1 otherwise the two performances are deemed comparable. For 75-quality
and 50-quality compressions, the best results are obtained with gradient features with
sigma equals to 0.5 when applied on FACES and Morph datasets. For other datasets,
the performance of sampling and gradient features are comparable. When 25-quality
compression is applied, gradient features with larger sigma values (0.75-1.25) give bet-
ter results. This is because larger filters are required to smooth and capture the wrinkles
since fine details disappear gradually. With 10-quality compression, even larger sigma
values provide better gradient features than the ones with smaller sigma values or the
sampling features. The results show that the more artifacts the image contains, the wider
the filter is preferred to capture the aging cues.

6.3.3 Quantization Noise

The image intensities are typically quantized into 256 values. However, fewer quantized
values can be used to reduce the image size which introduces quantization noise. In this
experiment, we vary the quantized values (from 256) to 64, 32, 16, 12, and 8. Figure
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Fig. 6.3: Variations of an image when quantized to different values (from left to right): 256 (original)
64, 32, 16, 12, and 8.

Fig. 6.4: Variations of an image when scaled down with different factors (from left to right): 1 (original),
2, 4, 6, and 8.

6.3 shows the variations of an image from FACES dataset when different quantization
rates are applied.

The performance of the aging features for different quantized values are shown in Table
6.4. The quantization noise gradually erase the aging details. Similar to the behavior
with JPEG-compression noise, the more quantization noise the image has, the wider the
filter is preferred to produce the best performance.

6.3.4 Scaling noise

We refer to the noise when scaling up an image (from a low resolution) as the scaling
noise. In this experiment, we simulate scaling noise by scaling down the images by
different factor and then scaling up to the original size. More specifically, the images
are scaled down by 2, 4, 6, and 8 factors. Figure 6.4 shows an image from FACES
dataset when scaled down with different factors.

Table 6.3 shows the performance of the aging features when scaling noise is introduced.
Unlike, JPEG-compression and quantization noise, the aging features show similar be-
havior. i.e. all the aging features produce degrading performance and no clear pref-
erence can be suggested when scaling noise is introduced. This is because this type
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Tab. 6.1: Evaluation of aging features on FGNET, FACES, UvA-Nemo, and Morph datasets
when JPEG-compressed with different qualities: 75, 50, 25, and 10 (0 is the low-
est quality and 100 is the highest quality (no compression)). The number after the
dataset name refers to the compression quality. e.g. FACES-75 is the dataset FACES
when compressed with 75 quality. SAM refers to sampling local features and GR050,
GR075, GR100, GR125 refer to the gradient-based local features for sigma values of
0.5, 0.75, 1.0, and 1.25 respectively.

Dataset SAM GR050 GR075 GR100 GR125
FGNET-100 7.33 7.49 7.52 7.36 7.44
FACES-100 11.05 9.15 10.34 10.31 11.23
UvA-Nemo-100 6.55 6.85 6.77 7.08 7.46
Morph-100 6.70 6.64 6.92 6.74 6.86
FGNET-75 7.39 7.50 7.48 7.49 7.39
FACES-75 11.25 9.80 10.21 10.76 10.82
UvA-Nemo-75 6.77 7.04 6.69 7.09 7.66
Morph-75 6.82 6.63 7.06 6.67 6.88
FGNET-50 7.56 7.48 7.48 7.55 7.54
FACES-50 10.76 10.06 10.21 10.97 10.99
UvA-Nemo-50 7.11 7.26 7.13 7.36 7.57
Morph-50 6.89 6.46 7.00 6.87 6.83
FGNET-25 7.81 7.47 7.65 7.48 7.58
FACES-25 11.98 10.42 11.30 11.15 11.40
UvA-Nemo-25 8.03 7.76 7.29 7.36 7.44
Morph-25 7.05 6.98 6.85 6.76 6.57
FGNET-10 8.89 8.31 8.06 7.86 7.89
FACES-10 13.64 12.86 12.19 12.32 12.32
UvA-Nemo-10 9.73 9.38 9.37 9.35 8.83
Morph-10 7.54 7.38 7.44 7.23 6.98

of noise affect the aging details in a similar manner and, hence, the aging features are
negatively affected similarly.

6.3.5 Automatic Feature Assignment

In the previous section, our experiments show how the performance of the aging fea-
tures depends on the quality of the images. In this experiment, we aim to automatically
assign the most suitable features to each test sample based on the image quality. We
restrict our experiment to JPEG-compression noise since it is the most common noise
among the three tested types. More specifically, we train a classifier to detect the qual-
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Tab. 6.2: Evaluation of aging features on FGNET, FACES, UvA-Nemo, and Morph datasets
when images are quantized with different values: 256(original), 64, 32, 16, 12, and 8.
The number after the dataset name refers to the number of the quantized values. e.g.
FACES-32 is the dataset FACES when images are quantized to 32 values.

Dataset SAM GR050 GR075 GR100 GR125
FGNET-256 7.33 7.49 7.52 7.36 7.44
FACES-256 11.05 9.15 10.34 10.31 11.23
UvA-Nemo-256 6.55 6.85 6.77 7.08 7.46
Morph-256 6.70 6.64 6.92 6.74 6.86
OKFGNET-64 7.39 7.40 7.56 7.51 7.46
FACES-64 11.06 9.54 10.47 10.79 11.14
UvA-Nemo-64 6.58 7.03 6.81 7.14 7.44
Morph-64 6.72 6.86 6.90 6.78 6.70
OKFGNET-32 7.71 7.65 7.62 7.58 7.52
FACES-32 11.18 9.52 10.35 11.00 10.97
UvA-Nemo-32 7.09 6.68 6.99 7.11 7.46
Morph-32 6.95 6.91 6.86 6.70 6.83
OKFGNET-16 8.43 7.63 7.80 7.64 7.69
FACES-16 10.73 9.51 10.48 10.54 10.74
UvA-Nemo-16 8.55 7.60 7.17 7.22 7.53
Morph-16 7.28 6.85 7.14 6.77 6.88
OKFGNET-12 9.14 7.97 7.80 7.63 7.55
FACES-12 10.69 10.06 10.71 10.58 10.67
UvA-Nemo-12 8.99 7.95 7.46 7.41 7.73
Morph-12 7.40 7.04 7.10 7.07 6.99
OKFGNET-8 10.55 8.46 8.73 8.44 8.15
FACES-8 11.96 10.03 11.57 11.08 11.51
UvA-Nemo-8 10.78 8.77 8.29 8.49 8.23
Morph-8 8.15 7.06 7.15 7.00 7.21

ity of the image and then apply the appropriate age estimator (leaned on the features
most suitable for the detected quality). The results are shown in Table 6.4. The results
here are reported for the dataset and its compressed variations (the original with the
four compressed variations). We compare the obtained performance with the perfor-
mance when using a single (best) feature type. For example, for FACES dataset, the
single best feature type is GR050 and hence we compare the proposed method against
these features for FACES dataset. Regarding UvA-Nemo dataset, GR100 features are
compared against and so on. The results show that better or comparable performance
is obtained with assigning the most suitable features in comparison to applying a single
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Tab. 6.3: Evaluation of aging features on FGNET, FACES, UvA-Nemo, and Morph datasets
when images are scaled down with different factors: 1(original), 2, 4, 6, and 8. The
number after the dataset name refers to the the downscaling factor. e.g. FACES-4 is
the dataset FACES when images are scaled down by factor 4.

Dataset SAM GR050 GR075 GR100 GR125
FGNET-1 7.33 7.49 7.52 7.36 7.44
FACES-1 11.05 9.15 10.34 10.31 11.23
UvA-Nemo-1 6.55 6.85 6.77 7.08 7.46
Morph-1 6.70 6.64 6.92 6.74 6.86
OKFGNET-2 7.41 7.27 7.58 7.40 7.49
FACES-2 11.87 10.29 10.51 11.31 11.29
UvA-Nemo-2 6.95 7.10 7.17 7.30 7.52
Morph-2 6.84 6.54 6.98 6.85 6.93
OKFGNET-4 7.55 7.43 7.59 7.70 7.71
FACES-4 13.38 11.71 11.95 12.52 12.32
UvA-Nemo-4 8.14 8.02 8.09 7.82 7.86
Morph-4 7.58 7.25 7.42 7.46 7.57
OKFGNET-6 7.88 7.92 8.04 8.20 7.93
FACES-6 14.41 13.39 13.35 13.38 13.39
UvA-Nemo-6 8.67 8.79 8.73 8.93 8.81
Morph-6 8.06 7.97 8.24 7.92 8.10
OKFGNET-8 7.88 8.16 8.34 8.00 8.29
FACES-8 14.78 13.58 13.48 14.11 13.64
UvA-Nemo-8 9.18 9.31 9.73 9.57 9.80
Morph-8 8.36 8.39 8.68 8.52 8.37

Tab. 6.4: The performance when automatically assigning the most suitable aging features based on the
image quality. The results are compared against the single best feature type for each dataset.
Here, each dataset includes also its compressed variations (the original dataset and the four
compressed variations).

Dataset Best Single Automatically
Feature Type Assigned Features

FGNET 7.57 7.57
FACES 10.46 10.43
Uva-Nemo 7.45 7.31
Morph 6.81 6.77

(best) feature type for all image qualities.
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6.4 Conclusion

In this paper, the influence of image quality on aging feature performance is investi-
gated. The motivation here is that changes in image quality affect the aging cues which
primarily capture the skin texture and the wrinkles. A scheme was proposed to isolate
the contribution of the features while changing the image quality. Four age estimation
datasets were experimented on. The performance was studied when different types of
noise artifacts were applied to the datasets.

Finally, we introduced a framework to automatically, based on the image quality, apply
the most suitable feature type. The image qualities are automatically predicted. Our
results show better or comparable performance when automatically applying different
features, based on image quality, in comparison to a single (best) feature type.



7
Calibration-Free Gaze Estimation Using
Human Gaze Patterns

7.1 Introduction

Gaze estimation is the process of determining where a person is looking at in a prede-
fined plane. It is an important task in computer vision and has numerous applications
in everyday life: i.e. human-computer interaction, assisting disabled users (e.g. eye
typing) [76], and human behavior analysis [105].

In general, gaze estimation methods fall into two categories: 1) appearance-based meth-
ods [57, 72, 124] and 2) 3D-eye model-based methods [19, 49, 50, 128]. The former
class extracts features from images of the eyes and map them to points on the gaze plane
(i.e. gaze points). The latter tries to construct a 3D model of the eye and estimates the
visual axis. Then, the intersection of the axis and the gaze plane determines the gaze
point. Regardless of which gaze estimation method is used, a calibration procedure is
needed. The calibration can be camera-based (estimating the camera parameters), geo-
metric calibration (estimating the relationships between the scene components like the
camera, the gaze plane, and the user), personal calibration (determining the angle be-
tween visual and optical axes), or gaze mapping correlation [58]. An extensive overview
of the different approaches of gaze estimation and calibration can be found in [58].

3D-eye models require special equipment like cameras with multiple light sources and
infrared. The costs and the strict requirements for their use (infrared, for example, is
not reliable when used outdoors) limit their range of applicability. On the other hand,
appearance-based approaches are less accurate than 3D-eye-models and less invariant
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to head pose changes. Yet, low-cost cameras are common and sufficient for appearance-
based approaches which makes them suitable for applications where high accuracy is
not essential. Consider for example an application of people looking at advertisements
for marketing research. Asking each participant to buy dedicated cameras or to do the
experiment in the lab is time consuming and costly. Because low-cost cameras are
integrated in almost every laptop or tablet nowadays, appearance-based methods are
more suitable in such an application.

Besides the choice of the recording equipment, the adopted approach allows for a certain
level of flexibility in the setup and the calibration. During calibration, users are usually
asked to fixate their gaze on certain points while images of their eyes are captured. This
procedure is cumbersome and sometimes impractical. In case of, for example, tracing
costumers attention in malls, estimating the gaze points or regions should be done pas-
sively. Hence, some approaches propose methods to reduce the number of calibration
points. However, in the case of passive gaze estimation, the calibration should be done
completely automatically without an active calibration procedure imposed on the user.

Some recent studies focus on visual saliency information in images and videos to avoid
applying active human calibration. Sugano et al. [109, 110] treat saliency maps ex-
tracted from videos as probability distributions for gaze points. Gaussian process re-
gression is used to learn the mapping between the images of the eyes and the gaze
points. Chen and Ji [19] use 3D models of the eye and incrementally estimate the angle
between the visual and the optical axes by combining the image saliency with the 3D
model. The argument for using saliency is that people look at salient regions with higher
probability than other regions. However, as shown in [65], the computational saliency
models do not frequently match the actual human saccades (Figure 7.1). In our previous
paper [6], we propose that the gaze patterns of several viewers provide important cues
for the auto-calibration of new viewers. This is based on the assumption that humans
produce similar gaze patterns when they look at a stimulus. The assumption is supported
by Judd et al. [65], where the authors show that fixation locations of several humans are
strongly indicative, in general, of where a new viewer will look at. To the best of our
knowledge, our work is the first to use human gaze patterns in order to auto-calibrate
gaze estimators.

We present a novel approach to auto-calibrate gaze estimators based on the similarity
of human gaze patterns. In addition, we make use of the topology of the gaze points.
Consider, in a fully uncalibrated setting, a person who follows a stimulus from left to
right. It would be difficult to indicate where the gaze points are on the gaze plane.
However, their relative locations can still be inferred and used for auto-calibration. In
a fully uncalibrated setting, when a new subject looks at a stimulus, initial gaze points
are inferred. Then, a transformation is computed to map the initial gaze points to match
the gaze patterns of other users. In this way, we use all the initial gaze points to match
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Fig. 7.1: (Taken from [65]). Examples where saliency models do not match the human fixations.
Bright spots indicate the saliency model predictions and the red dots refer to the human
gaze points.

the human gaze patterns instead of using each gaze point at the time. Consequently, the
transformed points represent the auto-calibrated estimated gaze points.

The rest of the paper is organized as follows. The proposed method is explained in
Section 2. Next, we describe the experimental setup and evaluation in Section 3. The
results are discussed in Section 4. Finally, the conclusions are given in Section 5.

7.2 Calibration-Free Gaze Estimation Using Human
Gaze Patterns

We build upon the observation that gaze patterns of individuals are similar for a certain
stimulus [65]. Although, there is no guarantee that people always look at the exact same
regions, human gaze patterns will provide important cues about the locations of the gaze
points of a new observer. The pipeline of the proposed method is as follows: when a
new user is looking at a stimulus, the initial gaze points are computed first. Then, a
transformation is inferred which maps the initial gaze points to gaze patterns of other
individuals. In this work, we consider transformations which combine translation and
scaling (per dimension). Including other transformations like rotation or shearing may
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Fig. 7.2: Graphical illustration of the proposed method. Template gaze patterns refer to the gaze
points of other individuals for the same gaze plane (display). When a new user looks
at the stimulus, his or her initial gaze points are first estimated which preserves the
relative locations between the gaze points. These points are transformed so that they
match the template gaze patterns.

yield better mapping. However, they are not taken into account, since 1) translation and
scaling are more common for gaze estimation, and 2) to reduce the search space. Figure
7.2 illustrates the pipeline.

7.2.1 Initial Gaze Points

The final gaze points should eventually match the human gaze patterns. However, we
need to start from an initial estimation of the gaze points. Hereafter, we present two
methods to achieve this: estimation of initial gaze points from eye templates and esti-
mation based on 2D-manifold.

Eye templates

In this approach, the eye images of a (template) subject are captured while fixating the
eyes on points on a gaze plane. The images of the eyes of a new user are captured and
compared with the template eye images. The idea is to reconstruct eye images based
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on the eye image templates. Note that here the eye templates are captured once for a
single subject. When a new subject uses the gaze estimator, his or her eye images are
compared with the already-collected eye templates. This is different from the traditional
calibration-based gaze estimator where the eye templates are captured and stored for
each subject and/or each different setting. The process can be performed at the raw
intensity level or at the feature level. We will refer to both eye image representations as
feature vectors. Consider {ti} to be the template feature vectors, and {pi} denotes the
corresponding gaze points. Furthermore, {wi} corresponds to the computed weights to
reconstruct the feature vector of a new eye image t̂:

t̂ =
∑
i

witi s.t.
∑
i

wi = 1. (7.1)

Then the corresponding gaze point p̂ for t̂ is calculated as follows:

p̂ =
∑
i

wipi. (7.2)

To find the weights {wi}, Tan et al. [116] suggest to first select a subset of {ti} where
the first and the second neighbors of the sample are used for training. The weight values
are then computed as in [94]. Lu et al. [72] select only the direct neighbors as a training
subset. Here, we select only the direct neighbors as in [72].

For a new user, potentially in a different unknown scene setup, the initial gaze points
will be incorrect (without calibration). However, the relative locations between the gaze
points are preserved.

2D manifold

In their work [72], Lu et al. find that the (template) eye features correspond to a 2D
manifold while retaining most of the important information about the relative eye move-
ments. The reason is that the eyes move, in the appearance-based representation, in two
degrees of freedom. Figure 7.3 shows the projection of features of nine eye images on
a 2D manifold and their corresponding nine gaze points on the gaze plane. It can be
derived that the feature projections preserve the relative locations of the corresponding
gaze points.

The 2D manifold can be obtained by projecting the template features on the first two
principal components. However, the locations on the 2D manifold may be interchanged,
transposed, or rotated when compared with the corresponding gaze points. For exam-
ple, when the eyes move mainly vertically, the first principal component represents the
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Fig. 7.3: The projection of features of 9 eye images on a 2-D manifold (red, left) and the posi-
tions of the corresponding gaze points on the gaze plane (blue, right). The 2D mani-
fold is computed using 800 eye images corresponding to various locations on the gaze
plane.

pupil changes on the Y dimension and the second principal component represents the
X dimension. Hence, the projected locations need to be transposed. As this step is per-
formed once offline, the projected locations are checked once and transformed to match
the corresponding gaze points locations. As in the eye templates method, this procedure
is followed once with a single (template) subject. When a new user looks at a stimu-
lus, the eye features are projected on the offline-learned 2D manifold and the projected
values are treated as initial gaze points.

The previous two methods (eye templates and 2D manifold) provide a way to find the
initial gaze points. In the next section, we explain how to map these points to match the
template (human) gaze patterns.

7.2.2 Gaze Points Mapping

Judd et al. [65] show that the fixation points of several humans correspond strongly with
the gaze points of a new user. We aim to exploit this observation to perform calibration
without the need for active user participation. To this end, we transform the initial
(uncalibrated) gaze points so they match the template gaze patterns for a stimulus. By
applying the aforementioned transformation, we aim to transfer the gaze points to their
correct positions without explicit calibration. We present two different methods to find
the transformation. Let the set P = {p1,p2, ....pM} denotes the gaze patterns of M
users (hereafter, we call them template gaze patterns) where pu = {pu1 , pu2 , ....puSu

}
consists of the Su gaze points of user u. Let p = {p1, p2, ....pS} be the initial gaze point
set for a new user. The following two methods aim to transform and hence match p with
the template gaze patterns P.
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K-closest points

This method tries to find the best mapping which minimizes the sum of distances of
each point pj ∈ p to its K closest neighbors of P. Assume Φ is the set of all mappings.
The method tries to find a mapping φ̄ ∈ Φ which satisfies:

φ̄ = arg min
φ
L(p,P, φ), (7.3)

where:

L(p,P, φ) =
S∑
j=1

K∑
k=1

‖φ(pj)−N(φ(pj),P, k)‖. (7.4)

N(pj,P, k) is the k closest point from P to pj . φ̄ is the computed mapping and p̄ = φ̄(p)
represents the mapped auto-calibrated gaze points. Note that we try to match the initial
gaze points p with all the gaze patterns in P simultaneously. To find p̄ and φ̄, we adopt
a gradient-descent approach. To search for a local minimum (or maximum) using gradi-
ent descent methods, first, the gradient of the objective function is computed w.r.t to the
corresponding parameters. Second, the parameters step toward the negative (positive)
direction of the gradient in case of cost (reward) function. These two steps are repeated
multiple times (epochs). We restrict the transformation to translation and scaling as dis-

cussed in Section 7.2. The transformation of a point p =

[
x
y

]
by φ = [s1, s1, h1, h1] is

φ(p) =

[
s1 0
0 s2

]
· p+

[
h1

h2

]
=

[
s1.x+ h1

s2.y + h2

]
.

Here, we assume the origin to be the mean of p. The parameter set φ is updated based
on the derivative of the cost function L w.r.t φ:

φ← φ− γ∇φL, (7.5)

where γ is the learning rate and:

∇φL =


∂L
∂h1

∂L
∂h2

∂L
∂s1

∂L
∂s2

 . (7.6)
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The derivative w.r.t h1 is computed as follows:

∂L
∂h1

=
S∑
j=1

K∑
k=1

∂‖φ(pj)−N(φ(pj),P, K)‖
∂h1

. (7.7)

Let N(φ(pj),P, K) = {g1, g2, ....gK}, then:

∂L
∂h1

=
S∑
j=1

K∑
k=1

∂ 2
√

(φ(pj)x − gx,k)2 + (φ(pj)y − gy,k)2

∂h1

, (7.8)

∂L
∂h1

=
S∑
j=1

K∑
k=1

s1.px,j + h1 − gx,k
2
√

(φ(pj)x − gx,k)2 + (φ(pj)y − gy,k)2
. (7.9)

And:

∂L
∂s1

=
S∑
j=1

K∑
k=1

s1.p
2
x,j + h1.px,j − gx,k.px,j
‖φ(pj)− gk‖

. (7.10)

∂L
∂h2

and ∂L
∂s2

can be derived in a similar manner.

Mixture model

In the K-closest points method, the matching is measured by the distances between
each point of the initial gaze set and its closest neighbors in the template gaze patterns.
Here, the initial gaze points are mapped to match a mixture model which is fit to the
template gaze patterns. More specifically, we first model the template gaze patterns
by a Gaussian mixture model. Next, the initial gaze points are transformed so that
the probability density function of the transformed points is maximized. Formally, the
method searches for a mapping φ̄ ∈ Φ so that:

φ̄ = arg max
φ

S∑
j=1

pdf(φ(pj)), (7.11)

where:

pdf(p) =
K∑
k=1

ωkN (p|µk,Σk), (7.12)
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and:

N (p|µ,Σ) =
1√

(2π)2|Σ|
exp(−1

2
(p− µ)TΣ−1(p− µ)). (7.13)

K is the number of model components, ωk is the mixing coefficient of the kth Gaussian
componentN (µk,Σk) with µk mean and Σk covariance matrix. φ̄ is computed again by
a gradient descent approach. The parameter set φ is updated as follows:

φ← φ+ γ∇φF , (7.14)

where F is the reward function we aim to maximize:

F =
S∑
j=1

K∑
k=1

ωkN (φ(pj)|µk,Σk). (7.15)

The derivative w.r.t h1 is computed as follows:

∂F
∂h1

=

S∑
j=1

K∑
k=1

ωk

∂ωk
1√

(2π)2|Σk|
exp(−1

2
(φ(pj)− µk)TΣ−1

k (φ(pj)− µk))

∂φ(pj)

∂φ(pj)

∂h1

.

(7.16)

∂F
∂h1

=

S∑
j=1

K∑
k=1

ωk
1√

(2π)2|Σk|
exp(−1

2
(φ(pj)− µk)TΣ−1

k (φ(pj)− µk))

+
S∑
j=1

K∑
k=1

∂(−1
2
(φ(pj)− µk)TΣ−1

k (φ(pj)− µk))
∂φ(pj)

∂φ(pj)

∂h1

(7.17)
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∂F
∂h1

=
S∑
j=1

K∑
k=1

ωkN (φ(pj)|µk,Σk)

+
S∑
j=1

K∑
k=1

(−(φ(pj)− µk)TΣ−1
k ) ·

[
1
0

]
. (7.18)

And:

∂F
∂s1

=
S∑
j=1

K∑
k=1

ωkN (φ(pj)|µk,Σk)

+
S∑
j=1

K∑
k=1

(−(φ(pj)− µk)TΣ−1
k ) ·

[
pj,x
0

]
. (7.19)

∂F
∂h2

and ∂F
∂s2

can be derived in a similar manner.

7.3 Experiments

In this section, we describe the experimental setup and the data used to evaluate the
performance of our method. The first ten images of the eye tracking dataset of Judd et
al. [65] are used as stimuli (Figure 7.4). The dataset has the advantage of containing
the eye tracking data of 15 subjects for 1003 images collected from Flickr and LabelMe
[96]. Hence, this data is used as template gaze patterns. The dataset contains landscape
and portrait images with a 1024 × 768 resolution. The images contain multiple objects
and they do not necessarily contain faces or objects centered in the middle of the image,
which represents a realistic stimuli set.

For obtaining the ground truth for a new user, the Tobii T60XL gaze estimator [2] is
used. It uses four infrared diodes mounted at the bottom of a 24 inch display with a
resolution of 1920 × 1200 pixels. The reported accuracy of the gaze estimator is within
1◦.

The design of the scene setup is to allow the subjects to look at the stimuli without hard
constrains e.g. using a chin rest or sitting at a fixed distance from the stimuli. To collect
the eye images, a web camera is mounted above the screen to record the face of the
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Fig. 7.4: The 10 images used as stimuli in our experiments. The images show landscapes and
street views where multiple objects are present in the scene.
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subject. The eye image resolution is around 60 × 30. The coordinates and direction
of the camera is unknown with regard to the gaze plane and can change for each new
subject. Ten subjects were asked to sit where they wanted but within the allowed range
of the Tobii system. The subject’s distance from the display ranged from 55 to 75 cm.
No chin rest is used in the experiments so the heads of the subjects may move during
the experiment.

The subjects were asked to look at each image for three seconds followed by one second
of showing a gray image. No specific task was asked and the subjects freely viewed the
stimuli. The recording of each subject is stored and later analyzed to estimate the gaze
points. We follow Lu et al. [72] approach to extract the images of the eyes. For each
of the ten stimuli, the first corresponding web camera frame is taken as an input by the
landmarker [143] to detect the eye corners. In [110], the eye corners are detected using
the OMRON OKAO vision library. To detect the eye corners for the subsequent frames,
we apply template matching using the eye corners of the first frame (for each stimulus)
as templates. The eye images are then cropped from the corner and resized to 70 × 35.
Histogram equalization is applied to alleviate the illumination changes. Regarding the
gradient descent search in the matching methods, the number of epochs is set to 50. To
prevent over downscaling the initial gaze points, we set a lower bound of scaling equal
to 90% of the scale of the template gaze patterns.

7.3.1 Results on Artificially Distorted Data

Our assumption is that a collection of gaze patterns of individuals can be used to au-
tomatically infer the gaze calibration of a new user. In this section, we validate the
assumption on artificially distorted data. More specifically, we use the eye tracking
dataset in [65] and apply a distortion to the subject fixations. The distorted fixations are
considered as a simulation of the initial (uncalibrated) gaze points. For each stimulus,
we apply a random translation and scaling to the fixation set of each subject. Then,
the methods in K-closest points and mixture model methods are used to transform the
distorted gaze points to their correct locations. The first 30 images in the dataset are
used in this experiment. For each image, we tested the subjects with 10 or more fix-
ations. We discarded the images where the number of subjects (10 or more fixations)
was less than 6 to ensure sufficient gaze patterns. Using the K-closest points, the mean
accuracy across all images is 3.3◦, while the accuracy is 3.5◦ using the mixture model
fitting (the scene setup details can be found in [65]). The same procedure is applied
on the ground truth gaze points obtained from our collected data. For this dataset, the
K-closest points and mixture model fitting obtained accuracies of 2.6◦ and 2.4◦ respec-
tively. The results show the validity of the proposed methods to bring the distorted
(uncalibrated) gaze points closer to their correct locations for different sets of template
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gaze patterns. Regarding the parameter setting, we setK in the K-closest points method
to 5 and the number of Gaussian components to 7. We examined different values of K
and components number and the performance difference was not significant.

7.3.2 Results on Real Data

The previous section shows how artificially distorted gaze points can be transformed
to their correct locations with sufficient accuracy using the K-closest points. In this
section, we use the aforementioned collected data to automatically calibrate the gaze
estimator and find the gaze points from the videos acquired from the web camera. We
apply the K-closest points and mixture model methods (Sections 7.2.1 and 7.2.1) to find
the initial gaze points.

For the eye templates method, 25 eye templates were captured while a subject was
fixating their eyes at 25 points on a 21.5 inch display. This process is followed once
for a single (template) subject. Therefore, reconstructing an eye image of a new subject
from the eye templates will not be optimal due to the changes in eye appearance between
the template subject and the other subjects. However, we assume that it still gives a good
representation of the topology of the gaze points. As in [72] we divide the eye image
into a 5x3 grid and sum up the intensity of the pixel inside each grid cell. The resulting
15 values constitute the feature vector of the eye image.

Regarding the 2D manifold method, a template subject was asked to look at random
points on the screen while his face was video recorded. The eye images are cropped and
their feature vectors are computed as previously explained. Then, the feature vectors are
projected on the first two principal components to constitute a 2D-manifold. The eye
images of a new subject (while looking at a stimulus) are cropped, and then the feature
vectors are extracted and projected on the same manifold to determine their relative
locations. The distances between the initial gaze points are much larger than the actual
corresponding gaze points. Yet, this will not affect the results as the initial gaze points
will be scaled down, while finding the mapping, to match the initial gaze points with the
template gaze patterns.

We select the gaze template patterns in two ways: First, we use the fixation points
provided in the eye tracking dataset [65]. Second, the ground truth of our collected data
(via the Tobii gaze estimator) is used. In the second case, for each subject, we consider
the gaze points of the other subjects as template gaze patterns. The K-closest points and
the mixture model fitting methods are applied to the initial gaze points. Table 7.1 shows
the results.

The results show that the K-closest points method achieves lower error than using the
mixture model method while 2D manifold outperforms eye templates for both template
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Tab. 7.1: Accuracies over different methods and template gaze pattern sets. KCP denotes K-
closest points method, GMM refers to Gaussian mixture model fitting. The best accu-
racy is yielded using 2D manifold and K-closest points.

Template Gaze Patterns from [65] Template Gaze Patterns from our Data

KCP GMM KCP GMM

Eye Templates 4.6◦ 4.6◦ 4.7◦ 4.7◦

2D Manifold 4.2◦ 4.3◦ 4.4◦ 4.5◦

Tab. 7.2: Accuracies of the gaze estimation auto-calibrated using K-closest points and 2D manifold.
The accuracies are shown per subject/stimulus.

Stim. 1 Stim. 2 Stim. 3 Stim. 4 Stim. 5 Stim. 6 Stim. 7 Stim. 8 Stim. 9 Stim. 10 Average

Subject 1 4.8◦ 3.1◦ 2.1◦ 2.7◦ 6.3◦ 5.3◦ 4.9◦ 6.7◦ 6.4◦ 4.5◦ 4.7◦

Subject 2 4.7◦ 2.1◦ 3.6◦ 2.1◦ 4.1◦ 3.8◦ 3.7◦ 5.9◦ 5.5◦ 4.8◦ 4.0◦

Subject 3 4.4◦ 2.9◦ 1.8◦ 2.2◦ 3.6◦ 3.8◦ 3.4◦ 5.0◦ 5.3◦ 6.6◦ 3.9◦

Subject 4 3.7◦ 2.3◦ 2.0◦ 2.8◦ 2.1◦ 2.4◦ 3.6◦ 6.2◦ 5.2◦ 6.7◦ 3.7◦

Subject 5 5.5◦ 2.9◦ 2.8◦ 2.6◦ 3.4◦ 3.2◦ 3.6◦ 6.1◦ 4.6◦ 5.7◦ 4.0◦

Subject 6 3.9◦ 3.0◦ 1.6◦ 3.9◦ 2.9◦ 3.5◦ 4.6◦ 5.1◦ 6.5◦ 5.3◦ 4.0◦

Subject 7 4.2◦ 3.7◦ 3.1◦ 3.2◦ 3.5◦ 4.7◦ 5.2◦ 6.3◦ 7.7◦ 6.1◦ 4.8◦

Subject 8 3.5◦ 3.1◦ 3.6◦ 5.0◦ 5.0◦ 5.3◦ 4.9◦ 5.4◦ 5.0◦ 4.0◦ 4.5◦

Subject 9 3.8◦ 2.6◦ 2.7◦ 4.0◦ 4.4◦ 3.6◦ 5.5◦ 5.7◦ 5.5◦ 4.1◦ 4.2◦

Subject 10 4.4◦ 3.3◦ 3.8◦ 4.2◦ 3.3◦ 4.7◦ 4.6◦ 6.0◦ 6.6◦ 4.8◦ 4.6◦

gaze pattern sets. The best accuracy (4.2◦) is obtained using the K-closest points and
the 2D manifold. Table 7.2 details the results per subject/stimulus. Figure 7.5 shows the
results for the first four images with subject 3.

Regarding the template gaze patterns, the accuracies are similar for both sets with a
slight improvement when using the gaze patterns from [65] dataset. The template gaze
pattern sets were collected in two different experiments on two different groups of sub-
jects. This is interesting as it shows the general similarity of gaze patterns and hence
suggests the validity of using them in auto-calibration regardless of the viewers. The
gaze estimation accuracies vary for different subjects. The relatively lower accuracies
for some subjects might be either due to errors in estimating the initial gaze points,
i.e. because of eye appearance variations with the template subject eye templates which
leads to incorrect initialization, or because of the gaze behavior of the subjects and its
variation with the template gaze patterns. This point is further discussed in Section
7.3.4.

The stimuli set contains landscape and street view images, which makes the auto-
calibration more challenging than images with clearly salient objects that humans usu-
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ally focus on. Yet, the reported accuracy (4.2◦) and the results in Figure 7.5 show the
validity of our approach.

7.3.3 Gaze Estimation Error vs. Image Content

The primary observation behind our method is the similarities between the gaze patterns
of different viewers when looking at the same stimulus [65]. These patterns may be
influenced by the complexity or the scattering of the stimulus. This may, consequently,
affect the gaze estimation error. In this section, we look further into the relationship
between the image complexity and the gaze estimation error. More specifically, we first
investigate the influence of the scene complexity to the heterogeneity between the gaze
patterns of different users. Then, we examine the effect of this heterogeneity on the
accuracy of the auto-calibrated gaze points estimation.

A number of approaches were proposed to model the image statistics (i.e. complexity)
[47, 100, 120]. Here, we follow the approach of Geusebroek and Smeulders [47] and
Scholte et al. [100] by fitting a Weibull distribution to the contrast value of the stimulus
image. The Weibull distribution is defined as:

f(x) = C exp(−|x− µ
β
|γ). (7.20)

Where C is a normalization constant and µ, β, and γ are the parameters of the Weibull
distribution corresponding to the location, the scale, and the shape respectively. β and
γ indicate some perceptual characteristics of the image such as regularity, coarseness,
roughness, and contract [47, 115]. Geusebroek and Smeulders [47] and Scholte et al.
[100] and found that images which correspond to low values of beta and gamma rep-
resent isolated objects in a plain background while their content changes gradually to
contain multiple objects with higher values of beta and gamma. This suggests that im-
age complexity can be characterized by the Weibull parameters. Scholte et al. [100]
further evaluated the image complexity by compressing the images into JPEG format;
the intuition here is that higher compression corresponds usually to simple scene and
lower compression relates to complex scenes. They found that higher beta and gamma
values correlate with higher JPEG file size (lower compression) and hence higher scene
complexity. More importantly, the Weibull parameters, gamma and beta, highly corre-
late with neural responses in the early visual system [100].

The dissimilarity (i.e. heterogeneity) between two gaze patterns is measured by com-
puting the KL divergence of their corresponding probability models. More specifically,
each gaze pattern is modeled by a Gaussian mixture model. Next a symmetric KL diver-
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Fig. 7.5: Gaze estimation results for the first four images with subject 3. The red traces represent
the estimated gaze points while the blue traces represent the ground truth obtained from
the Tobii gaze estimator. The results are achieved using 2D-manifold and K-closest
points.
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gence is computed between the two probability distributions P and Q (corresponding
to the two mixture models):

SDKL(P‖Q) = DKL(P‖Q) +DKL(Q‖P ), (7.21)

where:

DKL(P‖Q) =

∫ ∞
−∞

p(x) ln(
p(x)

q(x)
)dx. (7.22)

To compute the dissimilarity between more than two gaze patterns, the mean of the
pair-wise similarities is calculated (we call it hereafter gaze patterns heterogeneity). To
evaluate the relationship between the image complexity and the gaze patterns hetero-
geneity, we compute the correlation between the heterogeneity values and the corre-
sponding beta and gamma parameters. The results indicate no significant correlation
(r <0.1). This might be since the subjects were assigned a memory test while viewing
the stimuli [65]. In this case, some regions might have been looked at to be memorized
(for the test) rather than being salient or drawing attention. This reduces the impact the
image complexity has on the gaze behavior.

Next, we compute the correlation between the gaze estimation error and the gaze pat-
tern heterogeneity. Since we do not have the estimation error for all 1003 stimuli, we
artificially distort the ground truth by random transformations (translation and scaling)
and applying the mapping algorithm to transform the gaze points back to their correct
positions (similar to the experiment in Section 7.3.1). The gaze estimation error, here,
is associated with only the gaze mapping error (i.e. feature extraction error is not ap-
plied) which makes the correlation more indicative. With α = 0.01, the correlation
(r = 0.407) is significant which indicates an effect of the gaze pattern heterogeneity
and the gaze estimation error.

The results of the previous experiments suggest an effect of the similarities between
gaze patterns of viewers on the auto-calibration error. However, no correlation is found
between the gaze patterns heterogeneity and the image complexity (characterized by
Weibull parameters as in [47, 100]).

7.3.4 Initial Gaze Points Error vs. Auto-calibration Error

The previous experiments show how our method achieves, using visual features, an er-
ror of 4.2◦ without any kind of active calibration. Early steps of cropping the eye regions
and extracting the visual features are likely to introduce some noise which propagates
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to later steps and, consequently, contributes to the final error. In this experiment, we
aim to isolate the gaze estimation error produced by the feature extraction procedure
from the error induced by our auto-calibration method. To this end, we use the relative
movements of eye centers provided by Tobii’s infrared diodes as initial gaze points for
the new users. Note that these are not the ground truth gaze points provided by the
actively-calibrated Tobii system but just the changes of eye center positions measured
by the infrared diodes. Since the infrared diodes produce more accurate and stable mea-
surements than an RGB webcamera (especially when the head moves slightly during
recording), we assume that such measurements alleviate the influence of initial gaze
points estimation error. Please note that this is different from the experiment in Section
7.3.1, where the ground truth is distorted and realigned by the auto-calibration method.
In this experiment, the measurements are more robust than the ones obtained by the
RGB webcamera. However, they are still prone to some form of noise. Using the K-
closest points method, the error reaches 3.1◦. The results show that part of the gaze
estimation error is attributed to noise in the feature extraction step (and hence the initial
gaze point estimation).

7.3.5 Uncalibrated Human Gaze Patterns

In Section 7.3.2, we show how the gaze points of a new user in a uncalibrated setup can
be inferred by using the information of gaze patterns of other users. The assumption in
that experiment is that gaze patterns are available and calibrated, which may not be the
case in some setups. In this experiment, we aim to relax this condition by using only
the uncalibrated gaze patterns of other users in an incremental way. More specifically,
the method starts with saliency information [59] as a template gaze pattern. For every
new user, the gaze points are estimated and added to the template gaze patterns. The
assumption here is that even if the gaze points are "estimated" (i.e. not accurate), they
still provide some cues for other uncalibrated gaze points. After a certain number of
users, since the template gaze patterns are modified, the gaze points of all users are re-
estimated. Hence, the accuracy is improving gradually. In this experiments, the gaze
points are re-estimated after 10 users. This process is repeated a number of times. The
gaze estimation error over the iterations is plotted in Figure 7.6. Table 7.3 shows the
errors after 10 iterations per user/stimulus. The results show that the error decreases
gradually when adding or updating estimated gaze points. After 10 iterations, the er-
ror decreases from 4.7◦ to 4.3◦. This suggests that our method provides comparable
accuracy even when no calibrated gaze points of other users are available.
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Fig. 7.6: Gaze estimation error after incrementally updating the template gaze patterns with
estimated gaze points.

Tab. 7.3: Accuracies of the gaze estimation using uncalibrated gaze patterns after 10 iterations. The
accuracies are shown per subject/stimulus.

Stim. 1 Stim. 2 Stim. 3 Stim. 4 Stim. 5 Stim. 6 Stim. 7 Stim. 8 Stim. 9 Stim. 10 Average

Subject 1 4.5◦ 2.6◦ 2.8◦ 5.2◦ 5.2◦ 5.0◦ 3.5◦ 6.5◦ 5.0◦ 4.0◦ 4.4◦

Subject 2 4.4◦ 2.9◦ 3.9◦ 4.2◦ 4.3◦ 3.8◦ 4.0◦ 5.3◦ 4.9◦ 4.5◦ 4.2◦

Subject 3 3.7◦ 3.4◦ 2.0◦ 4.5◦ 3.6◦ 3.6◦ 3.4◦ 5.1◦ 4.8◦ 5.7◦ 4.0◦

Subject 4 4.2◦ 2.9◦ 2.8◦ 3.3◦ 3.1◦ 2.1◦ 3.3◦ 5.3◦ 3.7◦ 6.5◦ 3.7◦

Subject 5 5.0◦ 4.2◦ 3.5◦ 3.1◦ 4.5◦ 3.0◦ 3.9◦ 5.5◦ 4.5◦ 5.3◦ 4.3◦

Subject 6 2.8◦ 3.1◦ 2.0◦ 6.0◦ 3.7◦ 3.3◦ 3.6◦ 4.9◦ 5.4◦ 5.3◦ 4.0◦

Subject 7 4.5◦ 3.4◦ 3.5◦ 3.2◦ 4.1◦ 4.7◦ 5.2◦ 6.6◦ 6.6◦ 5.5◦ 4.7◦

Subject 8 4.0◦ 3.3◦ 3.6◦ 5.4◦ 4.9◦ 5.3◦ 4.6◦ 4.2◦ 4.0◦ 3.2◦ 4.2◦

Subject 9 4.4◦ 3.1◦ 3.3◦ 5.5◦ 5.4◦ 3.6◦ 4.0◦ 7.4◦ 5.4◦ 4.1◦ 4.6◦

Subject 10 4.5◦ 3.6◦ 3.7◦ 4.8◦ 3.5◦ 4.8◦ 4.3◦ 5.9◦ 6.0◦ 4.4◦ 4.5◦

7.3.6 Comparison to the State-of-the-art Methods

We compare our method with existing state-of-the-art auto-calibration approaches. The
recent work of Chen and Ji [19] uses a single camera with multiple infrared lights to
reconstruct the 3D eye model. They use the saliency to estimate the angle between the
visual and optical axes. The authors reported less than 3◦ accuracy using five images
and five subjects. Clearly, the comparison with this method is not feasible as the authors
use different equipment to reconstruct an accurate 3D eye model.
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Sugano et al. [110] adopt an appearance-based gaze estimator and use visual saliency for
auto-calibration. The authors reported an accuracy of 3.5◦. However, their experimental
setup differs from ours in the following aspects: First, a chin rest is used in [110] to
fixate the head during the experiment while the subjects in our experiment do not use
any tool to fixate their heads. Second, the authors in [110] ask the subjects to look at a
number of 30-second videos for training (5-20 videos), while in our method the subject
needs to look at a single image for 3 seconds. Images contain less cues than videos
in which moving objects attract the viewers attention. However, experimenting on still
images is more natural and requiring motion in the scene limits the applicability of the
gaze estimator. Finally, Sugano et al. analyze the performance variations with respect to
different number of training videos. When training on 5 videos (each lasts 30 seconds),
the average accuracy is about 5.2◦ (the exact accuracy is not reported as the results are
plotted on a graph). While our method achieves an average accuracy of 4.2◦ by looking
at a single image for 3 seconds.

7.4 Discussion

Our method provides sufficient accuracy to predict the areas of attention even with a
flexible setup and a webcam. This is especially important for tasks where gaze estima-
tion is required with no active participation from the user and using off-the-shelf hard-
ware. In this work, we propose a flexible setup and use low-cost publicly available web
cameras. There is a trend nowadays to use eye gaze estimation for electronic consumer
relationship marketing which aims to employ information technology to understand and
fulfill the needs of the consumers. These applications usually collect the data passively
without active user participation. Our method is suitable for such applications. Tracing
consumers attention when shopping in malls or when exploring advertisements on their
laptops are examples of use.

We further make use of the "estimated" gaze points of the subsequent subjects to grad-
ually auto-calibrate the gaze estimator by updating the template gaze patterns. This
relaxes the condition of having the calibrated gaze patterns available. However, the
presented method still has some limitations; the gaze behavior is, in general, expected
to be different for different tasks (e.g. free viewing, searching, or memorizing). Con-
sequently, the gaze patterns obtained from different tasks would differ and this would
negatively affect the auto-calibration.
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7.5 Conclusion

We presented a novel method to auto-calibrate gaze estimators in an uncalibrated setup.
Based on the observation that humans produce similar gaze patterns when looking at
a stimulus, we use the gaze patterns of individuals to estimate the gaze points for new
viewers without active calibration.

The proposed method was tested in a flexible setup using a web camera without a chin
rest. To estimate the gaze points, the viewer needs to look at an image for only 3
seconds without any explicit participation in the calibration. Evaluated on 10 subjects
and 10 images showing landscapes and street views, the proposed method achieves
an accuracy of 4.2◦. A number of experiments were conducted to give further insight
into the method and its contribution in different cases. The gaze estimation error was
reduced to 3.1◦ when infrared measurements were utilized. When using uncalibrated
gaze patterns of other viewers, the estimation error was comparable to the one with
calibrated gaze patterns. Finally, experiments show that the heterogeneity between the
gaze patterns of the viewers has an impact on the auto-calibration error. To the best of
our knowledge, this is the first work to use human gaze patterns in order to auto-calibrate
gaze estimators.
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8
Summary and Conclusion

8.1 Summary

Below, are the individual conclusions per chapter followed by the thesis conclusion.

8.1.1 Chapter 2

In this chapter, to alleviate the negative influence of noise in poor-quality images, a
learning-based encoding method for age estimation is adopted. Soft encoding and ori-
entation histogram of local gradients have been introduced. Experiments show that bet-
ter or comparable performance are obtained using our extensions. With a discriminative
codebook, our method outperforms the best performance reported on the poor-quality
Gallagher dataset [103].

8.1.2 Chapter 3

In this chapter, an age-expression joint-learning approach is proposed to obtain expression-
invariant age predictor. The relationship between the age and the expression is learnt by
introducing a graphical model with a latent layer. This layer is designed to capture the
changes in the face which induce the aging and the expression appearance.

We test our approach using two age-expression datasets (FACES and Lifespan). A re-
duction of the age estimation error is reported when the age is jointly learnt with the
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expression in comparison to expression-independent age estimation. The age estima-
tion error is reduced by 14.43% and 37.75% for FACES and Lifespan datasets respec-
tively. The proposed approach has the advantage of not requiring prior-knowledge of
the expressions. Experimental results show that, using our model, the acquired results
are better that the best reported ones on both datasets.

8.1.3 Chapter 4

This study makes use of the facial dynamics to improve the appearance-based age es-
timation. To this end, landmark movements from eye lids, lip corners, and cheeks are
employed. Another approach, for characterizing 3D facial dynamics, is to use the sur-
face area features. We also introduce, in this chapter, a two-level classifier where the
age range for each classifier is adaptively selected in the first level.

To show the contribution of the proposed dynamic features when accompanied with ap-
pearance features, four different appearance features are tested. The results prove the
consistency of the dynamic features behavior across representations. Also, an appear-
ance fusion baseline is introduced. We study gender effects systematically and conclude
that the improvement due to gender-specific models is not significant. While this study
mainly focus on dynamic features when smiling, experimental results show the posi-
tive contribution of the dynamic features with other expression (disgust) which further
proves the effectiveness of the proposed features.

8.1.4 Chapter 5

The aim of this study is to automatically design region-specific, efficient and robust
aging features. To this end, a convolutional network is assigned to each facial region.
These are followed by a combination layer to integrate the information from the previous
networks. This is different than other methods where the same filters are applied to the
entire face.

We test the effectiveness, efficiency and generalizability of the proposed features. The
proposed methods produce smaller estimation error than other state-of-the-art features
using various classifiers and regressors. Efficiency-wise, the proposed features can be
extracted fast and have a dimension of 176. Finally, a cross-dataset experiment to evalu-
ate the generalizability where the model, based on our features, produces smaller errors
than other models which are based on state-of-the-art features. Given the obtained re-
sults, the proposed features are shown to be suitable for real-time application especially
for wearable devices with limited processing power.
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8.1.5 Chapter 6

Motivated by the sensitivity of aging cues to image noise, in this chapter, the influence
of image quality on aging feature performance is investigated. Changes in image quality
affect the aging cues which primarily capture the skin texture and the wrinkles. We pro-
pose a scheme to isolate the contribution of aging features for different types and levels
of noise. Three common digital noise types are investigated; JPEG-compression noise,
quantization noise, and scaling noise. Four age estimation dataset are experimented on.

Finally, a framework is proposed to automatically, based on the image quality, apply
the most suitable feature type. The image quality is automatically predicted. Results
show better or comparable performance when automatically applying different features,
based on image quality, in comparison to a single (best) feature type.

8.1.6 Chapter 7

This chapter addresses the problem of auto-calibration in gaze estimators where no ac-
tive user involvement is required. Based on the observation that people have similar
gaze patterns when looking at the same stimulus, a novel approach is proposed. The
gaze patterns of individuals is utilized to estimate the gaze points for new users without
active calibration.

The experimental setup is flexible and designed to simulate practical scenarios; 1) a web
camera is mounted as a capturing device, 2) no chin rest, and 3) viewers need to look at
the stimulus for only 3 seconds. The proposed method produces an error of 4.2◦. To give
further insight into the proposed approach, we test the method in different cases. First,
to isolate the impact of eye measurements error on gaze estimation error, more accurate
infrared diodes are utilized which reduces the error to 3.1◦. Second, uncalibrated gaze
patterns of other users, compared to calibrated gaze patterns, are utilized which produces
comparable results. Finally, experiments show that the heterogeneity between the gaze
patterns of the viewers has an impact on the auto-calibration error. To the best of our
knowledge, this is the first work to use human gaze patterns in order to auto-calibrate
gaze estimators.

8.2 Conclusions

In this thesis, we aim to find solutions to some of the problems in automatic face anal-
ysis under unconstrained conditions. Since computer scientists first began research on
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automatic face analysis, many improvements and challenges have been uncovered. So-
lutions for automatic face analysis have matured in the last few years. Translating these
solutions to real-life practical scenarios faces some challenges. This work contributes
toward tackling these challenges for automatic age estimation and eye gaze estimation.
It helps in applying automatic face analysis for everyday life problems.

In Chapter 2, we answer the first research question and show how, in a learning-based
encoding scheme, soft assignment of local features alleviates the negative influence of
noise on age estimation. The second research question concerns the negative influence
of facial expressions when predicting age. In Chapter 3, we propose a graphical model
to jointly predict age and expression. It contains a hidden layer to capture the relevant
facial changes and, hence, alleviates the negative influence of expression when estimat-
ing age. In Chapter 4, we answer the third research question which concerns the use
of facial dynamics to improve age prediction. To this end, we employ facial dynamic
features such as landmark movements and surface area features. Results show that
dynamic features, when combined with appearance features, further enhance the age
estimation. The fourth research question raises the idea of automatically designing
region-specific, efficient, and robust aging features. To this end, in Chapter 5, we sug-
gest patch-based convolutional networks. The proposed features are fast to extract and
test, yet, they produce a smaller error compared to other state-of-the-art features across
various classifiers and regressors. The fifth research question concerns the influence
of different types and levels of digital noise on the performance of aging features. An
empirical study about the influence of different levels of JPEG compression, quantiza-
tion, and scaling noise on aging features is discussed in Chapter 6. Finally, the sixth
research question investigates automatic calibration of age estimation systems without
active user involvement. Answering this question, we propose in Chapter 7 to use the
gaze patterns of other people to auto-calibrate for a new viewer. Using an off-the-shelf
web camera, no chin rest, and only 3-second viewing time, our approach produces an
error of 4.2◦ which is sufficient to trace the attention of users.
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Samenvatting

Dit proefschrift richt zich op twee taken in gezichts analyse: het automatisch schatten
van leeftijd en het automatisch schatten van kijkrichting. Anders dan in eerdere aan-
pakken is het vooral gericht op het aanbieden van (praktische) oplossing voor deze taken
in varierende omstandigheden en opstellingen. Beneden zijn de conclusies gegeven per
hoofdstuk.

Hoofdstuk 2:
In dit hoofdstuk, om de negatieve invloed van ruis in plaatjes van lage kwaliteit te ver-
lichten, is een codering voor het voorspellen van leeftijd op basis van leren aangenomen.
Continue codering en orientatie histogrammen van lokale afgeleiden worden geintro-
duceerd. Experimenten laten zien dat verbeterde of vergelijkbare resultaten worden
bereikt door middel van onze uitbreidingen. Met een discriminatieve representatie ver-
betert onze methode de beste resultaten die zijn gerapporteerd op de lage kwaliteit Gal-
lagher dataset [56].

Hoofdstuk 3:
In dit hoofdstuk wordt een aanpak geintroduceerd dat tegelijkertijd leeftijd en gelaatsuit-
drukking leert, om een leeftijdsvoorspeller te krijgen dat onafhankelijk is van gelaat-
suitdrukking. De relatie tussen leeftijd en gelaatsuitdrukking wordt geleerd door een
grafisch model te introduceren met een verborgen laag. Deze laag is ontworpen om de
verschillen in het gezicht vast te leggen die kenmerkend zijn voor leeftijd en gelaatsuit-
drukking.

We testen onze aanpak op twee datasets met leeftijd en gelaatsuitdrukking annotaties
(FACES en Lifespan). Een verbetering in het schatten van de leeftijd wordt gerap-
porteerd wanneer de leeftijd tegelijkertijd wordt geleerd met de gelaatsuitdrukking, in
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vergelijking met leeftijdsschatting dat afhankelijk is van de gelaatsuitdrukking. De fout
in de leeftijdsschatting wordt gereduceerd met 14.43voor de FACES en Lifespan dataset
respectievelijk. De voorgedragen aanpak heeft als voordeel dat het niet kennis van
gelaatsuitdrukkingen van te voren nodig heeft. Experimenten laten zien dat onze re-
sultaten beter zijn dan de best gerapporteerde resultaten op beide datasets.

Hoofdstuk 4:

Deze studie maakt gebruik van dynamische elementen in het gezicht om het schatten
van de leeftijd op basis van het uiterlijk te verbeteren. Veelzeggende bewegingen van
oogleden, mondhoeken, en wangen worden gebruikt. In dit hoofdstuk introduceren
we ook een leeralgoritme met twee lagen, waarbij het bereik van de leeftijd voor elk
leeralgoritme adaptief wordt geselecteerd in de eerste laag.

Om de bijdrage van de geintroduceerde dynamische functies te laten zien als toevoeging
op de uiterlijk functies, worden vier verschillende uiterlijk functies getest. De resultaten
bewijzen de consistentie van het gedrag van de dynamische functies over verschillende
representaties. Ook wordt een fusie op basis verschillende uiterlijke kenmerken geintro-
duceerd. Wij bestuderen de effecten van het geslacht systematisch en concluderen dat
de verbetering die komt door modellen die specifiek zijn aan geslacht niet significant
zijn. Alhoewel deze studie voornamelijk gericht is op de dynamische functies wanneer
er wordt gelachen, laten experimenten zien dat de dynamische functies een positieve
toevoeging hebben op andere uitdrukkingen (zoals afkeer), wat de effectiviteit van de
voorgestelde functies verder bewijst.

Hoofdstuk 5:

Het doel van deze studie is om automatisch functies te ontwerpen die specifiek voor een
regio, efficient, en robuust zijn. Daarom wordt een convolutioneel netwerk toegekend
aan elk gebied van het gezicht. Deze worden gevolgd door een combinatielaag om all
informatie van de netwerken te integreren. Dit verschilt van andere methoden waarbij
dezelfde filters worden toegepast op het gehele gezicht.

Wij evalueren de effectiviteit, efficientie, en mogelijkheid om te generaliseren op de
voorgestelde functies. De voorgestelde methoden hebben een kleinere fout in de schat-
ting dan andere functies van de bovenste plank die gebruik maken van meerdere leer-
algoritmen. De voorgestelde functies kunnen snel berekend worden en hebben een
dimensionaliteit van 176. Een experiment tussen twee datasets, om de generalisatie
de evalueren, produceert kleinere fouten voor onze functies dan andere modellen die
gebaseerd zijn op functies van de bovenste plank. Op basis van de behaalde resultaten
laten de voorgestelde functies zien dat ze geschikt zijn voor real-time applicaties, zeker
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voor draagbare apparaten met gelimiteerde processoren.

Hoofdstuk 6:
Gemotiveerd door de gevoeligheid van leeftijdsaanduidingen door ruis in plaatjes, wordt
in dit hoofdstuk de invloed van de kwaliteit van plaatjes op het schatten van leeftijd
onderzocht. Aanpassingen in de kwaliteit van plaatjes hebben een invloed leeftijdsaan-
duidingen, die voornamelijk zijn gebaseerd op huid texturen en rimpels. Wij stellen
een plan voor om de toevoeging van verschillende types ruis op het schatten van de
leeftijd te isoleren. Drie gebruikelijke types van digitale ruis worden onderzocht.; JPEG-
compressie ruis, quantizatie ruis, en schaal ruis. Vier datasets voor het schatten van
leeftijd worden gebruikt in de experimenten.

Uiteindelijk wordt ook een kader voorgesteld om automatisch, op basis van de kwaliteit
van een plaatje, de meeste geschikte functietype toe te passen. De kwaliteit van een
plaatje wordt automatisch voorspeld. Resultaten laten zien dat automatisch verschil-
lende functies gebruiken op basis van de kwaliteit van plaatjes leidt tot betere of vergeli-
jkbare resultaten dan de functie die individueel het beste presteert.

Hoofdstuk 7:
Dit hoofdstuk behandelt het probleem van het automatisch kalibreren van schatters van
staarrichting waarbij geen actieve inmenging van gebruikers nodig is. Op basis van
de observatie dat mensen vergelijkbare staarpatronen hebben wanneer ze kijken naar
dezelfde prikkelingen, wordt een nieuwe aanpak voorgesteld. De patronen in staarricht-
ing van individuen wordt gebruiken om staarpunten te schatten voor nieuwe gebruikers,
zonder actieve calibratie.

De experimentele set-up is flexibel en ontworpen om praktische scenario’s te simuleren:
1)een webcamera is gebruikt, 2) geen steun voor de kin is nodig, en 3) kijkers hoeven
maar voor drie seconden naar de prikkelingen te kijken. De voorgestelde methode geeft
een fout van 4.2 graden. Om verdere inzichten in de voorgestelde aanpak te krijgen,
testen we de methoden in verschillende gevallen. Ten eerste, om het effect van fouten in
de afmetingen van het oog op de fout in de schatting van staarrichting te isoleren, wor-
den preciezere diodes gebruikt, wat de fout terugbrengt tot 3.1 graden. Ten tweede, niet-
gekalibreerde staarpatronen van andere gebruikers, in vergelijking met gekalibreerde
staarpatronen, worden gebruikt, wat vergelijkbare resultaten geeft. Experimenten laten
zien dat de heterogeniteit tussen de staarpatronen van de kijkers een invloed heeft op de
fout van automatische kalibratie. Voor zover bij ons bekend, is dit het eerste werk dat
staarpatronen gebruikt om schatters van staarrichting automatisch te kalibreren.
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