95 research outputs found

    Power Efficient and High Speed Carry Skip Adder using Binary to Excess One Converter

    Get PDF
    The design of high-speed and low-power VLSI architectures need efficient arithmetic processing units, which are optimized for the performance parameters, namely, speed and power consumption. Adders are the key components in general purpose microprocessors and digital signal processors. As a result, it is very pertinent that its performance augers well for their speed performance. Additionally, the area is an essential factor which is to be taken into account in the design of fast adders. Towards this end, high-speed, low power and area efficient addition and multiplication have always been a fundamental requirement of high-performance processors and systems. The major speed limitation of adders arises from the huge carry propagation delay encountered in the conventional adder circuits, such as ripple carry adder and carry save adder. Observing that a carry may skip any addition stages on certain addend and augend bit values, researchers developed the carry-skip technique to speed up addition in the carry-ripple adder. Using a multilevel structure, carry-skip logic determines whether a carry entering one block may skip the next group of blocks. Because multilevel skip logic introduces longer delays, Therefore, in this paper we examine The basic idea of this work is to use Binary to Excess- 1 converter (BEC) instead of RCA with Cin=1 in conventional CSkA in order to reduce the area and power. BEC uses less number of logic gates than N-bit full adder

    The design and construction of the digital computers snocom, nimbus and arcturus

    Get PDF

    Design and implementation of high-radix arithmetic systems based on the SDNR/RNS data representation

    Get PDF
    This project involved the design and implementation of high-radix arithmetic systems based on the hybrid SDNRIRNS data representation. Some real-time applications require a real-time arithmetic system. An SDNR/RNS arithmetic system provides parallel, real-time processing. The advantages and disadvantages of high-radix SDNR/RNS arithmetic, and the feasibility of implementing SDNR/RNS arithmetic systems in CMOS VLSI technology, were investigated in this project. A common methodological model, which included the stages of analysis, design, implementation, testing, and simulation, was followed. The combination of the SDNR and RNS transforms potential complex logic networks into simpler logic blocks. It was found that when constructing a SDNRIRNS adder, factors such as the radix, digit set, and moduli must be taken into account. There are many avenues still to explore. For example, implementing other arithmetic systems in the same CMOS VLSI technology used in this project and comparing them to equivalent SDNR/RNS systems would provide a set of benchmarks. These benchmarks would be useful in addressing issues relating to relative performance

    Design of a reusable distributed arithmetic filter and its application to the affine projection algorithm

    Get PDF
    Digital signal processing (DSP) is widely used in many applications spanning the spectrum from audio processing to image and video processing to radar and sonar processing. At the core of digital signal processing applications is the digital filter which are implemented in two ways, using either finite impulse response (FIR) filters or infinite impulse response (IIR) filters. The primary difference between FIR and IIR is that for FIR filters, the output is dependent only on the inputs, while for IIR filters the output is dependent on the inputs and the previous outputs. FIR filters also do not sur from stability issues stemming from the feedback of the output to the input that aect IIR filters. In this thesis, an architecture for FIR filtering based on distributed arithmetic is presented. The proposed architecture has the ability to implement large FIR filters using minimal hardware and at the same time is able to complete the FIR filtering operation in minimal amount of time and delay when compared to typical FIR filter implementations. The proposed architecture is then used to implement the fast affine projection adaptive algorithm, an algorithm that is typically used with large filter sizes. The fast affine projection algorithm has a high computational burden that limits the throughput, which in turn restricts the number of applications. However, using the proposed FIR filtering architecture, the limitations on throughput are removed. The implementation of the fast affine projection adaptive algorithm using distributed arithmetic is unique to this thesis. The constructed adaptive filter shares all the benefits of the proposed FIR filter: low hardware requirements, high speed, and minimal delay.Ph.D.Committee Chair: Anderson, Dr. David V.; Committee Member: Hasler, Dr. Paul E.; Committee Member: Mooney, Dr. Vincent J.; Committee Member: Taylor, Dr. David G.; Committee Member: Vuduc, Dr. Richar

    Characterization and Design of High-Level VHDL I/Q Frequency Downconverter via Special Sampling Scheme

    Get PDF
    This study explores the characterization and implementation of a Special Sampling Scheme (SSS) for In-Phase and Quad-Phase (I/Q) down conversion utilizing top-level, portable design strategies. The SSS is an under-developed signal sampling methodology that can be used with military and industry receiver systems, specifically, United States Air Force (USAF) video receiver systems. The SSS processes a digital input signal-stream sampled at a specified sampling frequency, and down converts it into In-Phase (I) and Quad-Phase (Q) output signal-streams. Using the theory and application of the SSS, there are three main objectives that will be accomplished: characterization of the effects of input, output, and filter coefficient parameters on the I/Q imbalances using the SSS; development and verification of abstract, top-level VHDL code of the I/Q SSS for hardware implementation; and finally, development, verification, and analysis of variation between synthesizable pipelined and sequential VHDL implementations of the SSS for Field Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASIC)

    ARITHMETIC LOGIC UNIT ARCHITECTURES WITH DYNAMICALLY DEFINED PRECISION

    Get PDF
    Modern central processing units (CPUs) employ arithmetic logic units (ALUs) that support statically defined precisions, often adhering to industry standards. Although CPU manufacturers highly optimize their ALUs, industry standard precisions embody accuracy and performance compromises for general purpose deployment. Hence, optimizing ALU precision holds great potential for improving speed and energy efficiency. Previous research on multiple precision ALUs focused on predefined, static precisions. Little previous work addressed ALU architectures with customized, dynamically defined precision. This dissertation presents approaches for developing dynamic precision ALU architectures for both fixed-point and floating-point to enable better performance, energy efficiency, and numeric accuracy. These new architectures enable dynamically defined precision, including support for vectorization. The new architectures also prevent performance and energy loss due to applying unnecessarily high precision on computations, which often happens with statically defined standard precisions. The new ALU architectures support different precisions through the use of configurable sub-blocks, with this dissertation including demonstration implementations for floating point adder, multiply, and fused multiply-add (FMA) circuits with 4-bit sub-blocks. For these circuits, the dynamic precision ALU speed is nearly the same as traditional ALU approaches, although the dynamic precision ALU is nearly twice as large

    Digital signal processing application based on residue number system

    Get PDF
    Tato práce se zabývá systémem zbytkových tříd a jeho aplikacemi v digitálních obvodech. První část se zabývá VHDL návrhem různých typů sčítaček v systému zbytkových tříd a jejich porovnání se standartními sčítačkami. V druhé části je implementován obrázkový processor který pracuje v systému zbytkových tříd a jeho výkonostní analýza. V textu je popsán postup návrhu a jsou prezentovány výsledky analýz.This work deals with residue number system and its applications in digital circuits. The first part is VHDL design of different adder types in residue number system and their comparison with regular adders. The second part is VHDL implementation of image processor that computes in residue number system and its performance analysis. Presented text contains description of design procedures and presentation of analysis results.

    A study of arithmetic circuits and the effect of utilising Reed-Muller techniques

    Get PDF
    Reed-Muller algebraic techniques, as an alternative means in logic design, became more attractive recently, because of their compact representations of logic functions and yielding of easily testable circuits. It is claimed by some researchers that Reed-Muller algebraic techniques are particularly suitable for arithmetic circuits. In fact, no practical application in this field can be found in the open literature.This project investigates existing Reed-Muller algebraic techniques and explores their application in arithmetic circuits. The work described in this thesis is concerned with practical applications in arithmetic circuits, especially for minimizing logic circuits at the transistor level. These results are compared with those obtained using the conventional Boolean algebraic techniques. This work is also related to wider fields, from logic level design to layout level design in CMOS circuits, the current leading technology in VLSI. The emphasis is put on circuit level (transistor level) design. The results show that, although Boolean logic is believed to be a more general tool in logic design, it is not the best tool in all situations. Reed-Muller logic can generate good results which can't be easily obtained by using Boolean logic.F or testing purposes, a gate fault model is often used in the conventional implementation of Reed-Muller logic, which leads to Reed-Muller logic being restricted to using a small gate set. This usually leads to generating more complex circuits. When a cell fault model, which is more suitable for regular and iterative circuits, such as arithmetic circuits, is used instead of the gate fault model in Reed-Muller logic, a wider gate set can be employed to realize Reed-Muller functions. As a result, many circuits designed using Reed-Muller logic can be comparable to that designed using Boolean logic. This conclusion is demonstrated by testing many randomly generated functions.The main aim of this project is to develop arithmetic circuits for practical application. A number of practical arithmetic circuits are reported. The first one is a carry chain adder. Utilising the CMOS circuit characteristics, a simple and high speed carry chain is constructed to perform the carry operation. The proposed carry chain adder can be reconstructed to form a fast carry skip adder, and it is also found to be a good application for residue number adders. An algorithm for an on-line adder and its implementation are also developed. Another circuit is a parallel multiplier based on 5:3 counter. The simulations show that the proposed circuits are better than many previous designs, in terms of the number of transistors and speed. In addition, a 4:2 compressor for a carry free adder is investigated. It is shown that the two main schemes to construct the 4:2 compressor have a unified structure. A variant of the Baugh and Wooley algorithm is also studied and generalized in this work
    corecore