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PREFACE

This thesis contains an account of the development 
of the three digital computers SNOCOM, NIMBUS and ARCTURUS 
within the School of Electrical Engineering of the University 
of Sydney.

SNOCOM was the first semiconductor, general-purpose 
digital computer constructed and installed in Australia. It was 
built for the Snowy Mountains Hydro Electric Authority and was 
commissioned in August, 1960.

NIMBUS is the first educational digital computer 
of its kind to be built in Australia (and possibly in the world). 
It was commissioned in December, 1961,

ARCTURUS is a parallel, general-purpose digital 
computer which utilises advanced techniques of design and con
struction, and which contains some novel and original features. 
Its internal processing speed is greater than that of other 
computers constructed in Australia. It was commissioned in May, 
1966, and has been used for both teaching and research purposes.

Chapter 1 of this thesis deals with SNOCOM. A brief 
description of this computer is presented, and then the design 
of the ’’Auto-input" (an original feature due to the Author) is 
described in detail. Conclusions drawn from the SNOCOM project 
terminate the chapter.

Chapter 2 deals with NIMBUS, and contains a brief 
description, a summary of the design of a very simple computer 
and conclusions drawn from the NIMBUS project.

Chapters 3-7 deal with the various stages of the 
ARCTURUS project, viz :- system design (Chapter 3), functional 
and logical design (Chapter 4), circuit design (Chapter 5), 
constructional techniques and commissioning (Chapter 6) and 
programming (Chapter 7). Although many logical design consider
ations are not even mentioned, Chapter 4 is, by far, the longest 
chapter. The approach taken with this chapter was to describe 
designs for selected sections of the computer so that a reason
ably accurate representation of the design techniques used in 
ARCTURUS is produced.

Chapter 8 contains a review of computer developments 
and an appraisal of the SNOCOM, NIMBUS and ARCTURUS projects.

The ARCTURUS project was carried out with extremely 
limited man-power and financial support. By salvaging semicon
ductors and connectors from old equipment, and by constructing 
several peripheral units in the laboratory, this computer was 
produced with a component cost of less than $A 10,000. This sum 
was obtained over a period of about five years.
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The Author’s publications relating to the work de
scribed in this thesis are as follows :-

(i) MThe Logical Design of the General Purpose Digital
Computer SNOCOM” , Conference Papers, Annual Engin
eering Conference, The Institution of Engineers, 
Australia, Cooma, 1962, and Jour. I. E. Aust., June, 
1962, ppl25-136.

(ii) MAn Educational Digital Computer", Conference Papers,
Australian Computer Conference, Melbourne, 1963

(iii) "Laboratory Equipment for Teaching Digital Computer
Fundamentals", Proc. I.R.E.E.Aust., Feb., 1965 ,Spec
ial Issue on Education, pp77-83.

(iv) "The Design and Construction of the Digital Computer
ARCTURUS", Proceedings of the Third Australian Comp
uter Conference, Canberra, May, 1966.

Reformatted versions of Papers (i) , (iii) and (iv) appear in 
the Appendix. Paper (ii) is not included as it is similar to 
Paper (iii) .

Papers (i), (ii) and (iv) were read at Computer/ 
Engineering Conferences. The Author received the 1963 Award of 
the J. R. Bainton Prize from the Institution of Engineers, Aust
ralia for Paper (i) .

The Author was in charge of the final stages of the 
development of SNOCOM and of all stages of the development of 
NIMBUS and ARCTURUS. Mr. K. R. Rosolen (the Author's Design 
Assistant) played a major role in all three projects, and was 
mainly responsible for circuit design and constructional tech
niques. System design, functional design, logical design and 
programming were the main responsibilities of the Author.

The merit of the work described in this thesis lies 
in (i) the novel and original features- incorporated in the three 
computers SNOCOM, NIMBUS and ARCTURUS, (ii) the fact that, under 
the Author's direction, a small but effective research group 
capable of establishing advanced concepts and techniques has 
been formed and (iii) the fact that the SNOCOM, NIMBUS and 
ARCTURUS projects represent a significant contribution to the 
development of computers in Australia.
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INTRODUCTIQN

The development of the digital differential analyser 
ADA (Ref. 1) was carried out as a joint project of the School 
of Electrical Engineering of the University of Sydney and the 
Mathematical Instruments Section of the Commonwealth Scien
tific and Industrial Research Organization. As this project 
was supported by the Snowy Mountains Hydro Electric Authority, 
one of its aims was to produce a second computer for the 
Authority.

In 1957 investigations carried out by the author 
(Ref. 2) led to the conclusion that the Authority’s computing 
requirements could be better met by a general-purpose digital 
computer than by a digital differential analyser.

After ADA was completed early in 1958, the develop
ment of the computer, which was to be known as SNOCOM, was 
commenced. The availability of Frankel’s design of the LGP- 
30 (Ref. 3) and the realization that essentially the same 
circuit and constructional techniques developed for ADA could 
be used with the second machine were the main reasons for 
basing SNOCOM (Ref. 4) on the logical structure of the LGP-30.

i SNOCOM was commissioned in August, 1960, and has
given many years of good service.

In 1961 the educational digital computer NIMBUS 
(Refs. 5 and 6) was constructed and since 1962 it has been 
used very effectively in final-year courses on computer design. 
NIMBUS consists essentially of a large number of logic and 
storage elements which may be readily patched together. The 
number, type and. arrangement of these elements have been 
selected so that it is possible to synthesize a very simple 
computer.

NIMBUS has also been used to test logic circuit 
configurations for carrying out high-speed arithmetic and to
bread-board equipment for testing computer peripherals.

During the years 1961 to 1963 the peripheral units 
for ARCTURUS(Rinc*l2uciing a paper tape reader of novel design 
(Ref. 7) were constructed; the circuitry associated with the 
ferrite-core memory was constructed and a new range of 4 MIIz 
logical elements was developed.

The specification and design of the central 
processing unit for ARCTURUS were completed by mid-1964. 
Construction of this unit was carried out in the years 1964 
to 1965. Commissioning of the computer commenced in late 
1965, and by early 1966 the computer was in good operating 
order.
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The development of ARCTURUS was carried out with 
very limited resources. This has meant that much time was 
spent in developing peripherals rather than purchasing 
commercial units, in salvaging transistors and diodes from 
old equipment and in manufacturing in the laboratory almost 
every logical package of the computer. Items of major 
expenditure include a Teletype punch, a 32x32x20 ferrite-core 
stack, about 2000 transistors and about 5000 diodes. The 
justification for the purchase of these units still had to 
include the usefulness of the final product for teaching 
purposes. Hence the specifications of ARCTURUS had to be 
made so that the computer could be constructed in a reasonable 
time with the available resources and so that the final 
product would be useful both for teaching and research.

In spite of the difficult conditions under which 
the ARCTURUS project was carried out, a reasonably fast com
puter with some novel and original features has been constructed 
and is now in good operating order.

Because ARCTURUS is significantly different from 
all computers previously constructed in Australia, a new 
approach to design had to be established. This has resulted 
in a powerful central processing unit which was relatively 
simple to implement.

No relaxation of the specifications of ARCTURUS was 
found to be necessary during commissioning. In fact, not only 
were the design and constructional techniques found to be 
quite adequate, but also they suggested methods which could 
be used in faster and more powerful computers.



CHAPTER 1
THE DIGITAL COMPUTER SNOCOM

1.0 LIST OF SYMBOLS USED IN THIS CHAPTER
1.0. 0, Symbols used in the text
1.0. 1 Symbols appearing in the diagrams only

1.1 INTRODUCTION

1.2 GENERAL DESCRIPTION

1.3 FUNCTIONAL AND LOGICAL DESIGN

1.4 THE AUTO INPUT
1.4.0 A bootstrap routine
1.4.1 The Auto Input
1.4.2 Logical design of the Auto Input

1.5 CONCLUSIONS
1.5.0 Usefulness of the Auto Input feature
1.5.1 Design approach to minimize hardware
1.5.2 Flexibility of a serial arithmetic and 

control unit.
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1.0 LIST OF SYMBOLS USED IN THIS CHAPTER

1.0.0 Symbols used in the text

So - S! 
Do - D!

Rrp
V
Vb
c
0 -
/ #
W1 -
B
B*
B '

w16

w

(Fig. 1.3) 
(Fig. 1.3) 
(Fig. 1.3) 
(Fig. 1.3)

9 + -

A

Segment timing waveforms 
Digit timing waveforms 
Interleaved clock pulses 
Once-per-revolution marker 
Store playback flip-flop 
Auto input store playback signal 
Sequence counter
N J F L Sexadecimal characters
Control characters used in input instruction
Binary counter outputs of the sector number generator
Auto input flip-flop
Signal which sets B to ONE
Signal which resets B to ZERO
Phase 1
Waste digit (Fig. 1.3)
Accumulator playback flip-flop

1.0.1 Symbols appearing in the diagrams only
F G H
K

L

pi
A"

A
J.

A
C
R"
R
V ”
f
ts
w
we

Phase flip-flops
Sector search, lock-out and augmentation flip-flop
Carry-borrow flip-flop
Order flip-flops
Track selection flip-flops
Accumular input (i.e. signal to accumulator record 
amplifier)
Accumulator playback flip-flop
Double length accumulator playback flip-flop
Counter playback flip-flop
Instruction register input
Instruction register playback flip-flop
Digits to be recorded (in the main store)
Duration of.recording (in the main store)
Sign digit
Full address waveform 
Early full address waveform 
Sector number generator output.v
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1.1 INTRODUCTION
In the early 1950’s engineers of the Snowy Mountains 

Hydro-Electric Authority had used the C.S.I.R.O. Mechanical 
Differential Analyser (Ref. 8) with some success for the 
solution of flood-routing problems (Ref. 9).

In the mid-1950’s the development of the digital 
differential analyser ADA (Ref. 1) was commenced as a joint 
project of the School of Electrical Engineering of the 
University of Sydney and the Mathematical Instruments Section 
of the Commonwealth Scientific and Industrial Research 
Organization.

Because the digital differential analyser had been 
accredited with many of the outstanding advantages of both 
analogue and digital computers, and because of its previous 
success with a mechanical differential analyser, the Snowy 
Mountains Hydro-Electric Authority supported the ADA project 
with the understanding that a second computer would be built 
for its own use.

The Authority’s computer was to be specifically 
designed for the solution of a system-operational problem 
which had previously taken many man-years of manual calcul
ations for its solution. It was shown by the author that a 
digital differential analyser solution was possible, but 
about four hundred integrators would have been required and 
the computation time might have been prohibitively long (Ref.2). 
The main reason for this was that the problem had not been 
formulated as a set of ordinary non-linear differential 
equations, and although the differential analyser approach 
(e.g. for the generation of analytic functions and for the 
evaluation of integrals) could be applied to advantage in some 
sections of the problem, there were some sequences of arith
metic and logical operations on whole numbers which could not 
be avoided. As the digital differential analyser is an in
cremental computer, operations on whole numbers are extremely 
inefficient.

In 1957 a system-operational problem typical of those 
which the Authority wanted solved was programmed for its 
solution on SILLIAC, the general-purpose digital computer 
within the Basser Computing Department of the University of 
Sydney. The SILLIAC studies carried out by the author led to 
the conclusion that the Authority’s computing requirements 
could be better met by a general-purpose digital computer 
than by a digital differential analyser.
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After ADA was completed early in 1958, the develop
ment of the computer which was to be known as SNOCOiM was 
commenced. The availability of Frankel’s design of the LGP-30 
(Ref. 3) and the realization that essentially the same circuit 
and constructional techniques developed for ADA could be used 
with the second machine were the main reasons for basing 
SNOCOM (Ref. 4) on the logical structure of the LGP-30.

SNOCOM was constructed within the School of Electrical 
Engineering of the University of Sydney, and was then installed 
in August, 1960 within the offices of the Snowy Mountains 
Hydro-Electric Authority in Cooma - about 260 miles from 
Sydney. Since 1960 SNOCOM has given many-years of good service.

A paper on SNOCOM (Ref. 4) was presented at the 
Annual Conference of the Institution of Engineers, Australia 
in March, 1962 in Cooma. The author received the 1963 Award 
of the J.R. Bainton Prize for this paper. A reformatted 
version of this paper is presented in the appendix. A general 
description of- SNOCOM will now be presented. This is followed 
by an outline of the functional and logical design and by 
details of the "Auto Input". Conclusions drawn from the 
SNOCOM project terminate the chapter.
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1.2 GENERAL DESCRIPTION
SNOCOM is a fixed-point, binary, serial, stored- 

program, single-address, general-purpose digital computer 
using transistor circuits and magnetic drum storage. The 
storage capacity of the computer is 2048 words, each of 32 
binary digits. These are arranged on 64 tracks of the drum 
with 32 words per track. The Model 512-A Bryant magnetic 
drum (5M dia., 12” long) runs at 6,000 R.P.M., giving a clock 
rate of 102.4 kHz, a word time of 312 microseconds and a 
mean access time of 5 milliseconds. The accumulator, 
instruction register and instruction counter are in the form 
of recirculating registers, with the spacing between record 
and playback heads corresponding to one word period. The 
addition of a second playback head on the accumulator recircul
ating register enables double length numbers to be stored for 
use in the multiplication and division processes. The computer 
logic is synchronized by clock pulses derived from a clock 
track and a once-per-revolution marker permanently recorded 
on the drum.

An interlaced sector number system enables simple 
instructions to be obeyed within nine word periods. Another 
sixty-four word periods are required for the multiplication 
and division instructions. Hence the addition and multiplic
ation times are 2.8 milliseconds and 22.8 milliseconds, 
respectively. The bench-mark time (i.e. the time to carry 
out ten additions and one multiplication) is about 51 milli
seconds .

The peripheral units consist of (1) a Ferranti TR 5 
paper tape reader which operates at 300 characters per second, 
(2) a Teletype BRPE paper tape punch which operates at 50 
characters per second and (3) a modified IBM electric type
writer which operates at 10 characters per second. Both out
put units are computer controlled and all units may operate 
simultaneously.

A SNOCOM number word consists of a sign bit, thirty 
magnitude bits and a spacer bit as shown in Figure 1.0. The 
binary point is assumed to be between bit 0 and bit 1 , 
and the normal two’s complement system for the representation 
of negative numbers is used.

A SNOCOM instruction word consists of four order 
bits, six track bits and five sector bits as shown also in 
Fig. 1.0. The track and sector bits together constitute the 
full address of the instruction. Apart from the sign bit 
which is used in conjunction with the conditional transfer of
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control order for external program control, the remaining bits 
have no significance. Corresponding to the different combin
ations of the four order bits, there are sixteen basic in
structions which SNOCOM is capable of executing.

The order code for SNOCOM’s sixteen basic instructions 
is shown in Table 1.0. These instructions are defined in 
detail in the Appendix.

TABLE 1.0
THE SNOCOM ORDER CODE"

CODE
ORDER

Sexadecimal Binary

1 0001 Bring
F 1110 Add
L 1111 Subtract
7 0111 Multiply fractions
6 0110 Multiply integers
5 0101 Divide
9 1001 Extract
+ 1010 Unconditional transfer
- 1011 Conditional transfer
N 1100 Store
J 1101 Store and clear
2 0010 Store address
3 0011 Return address
4 0100 Input
8 1000 Output
0 0000 Stop

See Appendix J for details
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NUMBER WORD

INSTRUCTION WORD

10 12 13 14 15 16 17 18 19 20 21 22 23 2A 15 26 27 28 23 50 31

—I I—
z„ ORDER TRACK SECTOR SPACER

ADDRESS

Figure 1.0 FORMAT OF SNOCOM NUMBER $ INSTRUCTION WORDS
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1.3 FUNCTIONAL AND LOGICAL DESIGN
The following brief description refers to the simpli

fied diagram of Fig. 1.1. More details appear in the SNOCOM 
paper.

The execution of each instruction stored on the 
magnetic drum takes place in four to eight phases with each 
phase consisting of one or more word periods. During comput
ation information is held on the drum ,in the recirculating 
registers and in flip-flops. The definition of the operations, 
which are to be executed in each phase, such as the transfer of 
information from drum to recirculating register or from re
circulating register to flip-flop, constitutes the functional 
design of the computer.

Logical design consists of deriving Boolean equations 
from which logic circuits may be readily obtained to implement 
the functional design.

The logical design of the LGP-30 as described by 
Frankel (Ref. 3) consists primarily of (1) the specification 
of the conditions under which each of the main fifteen flip- 
flops is set and reset, (2) the specification of the digits 
to be recorded in the recirculating registers in each digit 
period and (3) the specification of the exact location on the 
magnetic drum in which specified digits are to be recorded.

SNOCOM is a synchronous computer as all operations 
carried out in all possible machine phases are synchronized 
by timing waveforms generated from clock tracks on the drum.
These timing waveforms are shown in Fig. 1.2.

To maintain complete flexibility so that any digit 
within a word may be specified, a word period has been 
divided into six segments with each segment containing either 
four, five or six digits. The segment waveforms SQ - 
and the digit waveforms D - Dr of Fig.l.2are generated by 
two ring counters and interconnecting logic. Any digit within 
a word is specified in terms of these waveforms. For example, 
the waste digit and the sign digit are the first and last 
digits in the word and may be specified as SqD2 and SoD-̂ , 
respectively.

The interleaved clocks T and T0 are used in theo 2
two-phase logic arrangement. The once-per-revolution marker 
synchronizes the segment and digit rings.

In SNOCOM consecutive addresses do not correspond 
to consecutive locations on a track of the drum, but to locations 
which are spaced nine word periods apart. In this way an in
struction, which refers to an operand which is appropriately
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located between itself and the next instruction, is obeyed in 
nine word periods rather than the minimum time of thirty-two 
word periods (corresponding to one drum revolution) which 
would otherwise be required. To make the above interlaced 
system possible, a sector number must be formed by subtracting 
seven from the number of the preceding sector (modulo 32).
The resulting sector number sequence is shown in the Appendix 
(in the SNOCOM paper).

Two three-stage binary counters are used in the 
generation of the sector number sequence. The first counter 
corresponds to the three least significant digits of the 
sector number and is pulsed to count forwards every word 
period. The second counter corresponds to the two most sig
nificant digits of the sector number plus an additional (more 
significant) digit which effectively counts odd and even drum 
revolutions. This second counter is pulsed to count backwards 
on every word period except every eighth when the first counter 
changes from the state 111 to 000. With the above arrangement 
one is added to the weight one position of the sector number 
and one is subtracted from the weight eight position; this 
results in a sector number being formed which is seven less 
than the preceding one. The second counter is inhibited from 
changing when the first has changed from 111 to 000 as this 
already represents a subtraction of seven.

The binary counters are pulsed early in the word 
period and their states are gated by the digit waveform 
(D - D5) so that their representation is converted into the 
serial form required by the machine logic.

In the LGP-30 the sector number pattern is recorded 
permanently on one track of the drum. This is not the case 
for SNOCOM, and the parallel representation of the sector 
which is next to be presented by the store playback amplifier 
is utilized in the auto input logic.
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SECTOR NUMBER GENERATOR (TYPICAL SECTION OF WAVEFORM)

Figure 1 .2 SNOCOM TIMING WAVEFORMS
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1.4 THU AUTO INPUT

1.4.0 A bootstrap routine
With SNOCOM's order code the minimum number of in

structions required for a bootstrap or short input routine is 
three. In sexadecimal these instructions are as follows

Location Instruction
000 00400000
001 00N00030
002 00400000

Input
Store in location 3 
Input.

The first two words on the input tape must be

/0 0N0 0 0 40 # / 0 0 + 0 0 0 0 0 #

where / and # are the control characters detected by the 
input logic to enable a complete word to be read into the 
accumulator by the input instruction.

The routine must be started at location 000 by 
pressing the "clear C" button on the control console. The 
latter word on the tape is stored in location 004 on the 
execution of the former (instruction) word which had previously 
been stored in location 00 3. by the three orders of the 
initial bootstrap routine. On the execution of the latter 
(instruction) word in location 004 control is transferred 
to location 000 , and the following program on the input 
tape is then effectively under the control of the following 
routine

Location
0 0 0

001
002
003
004

Instruction
— * 00400000 

00N00030 
00400000 
( ) 

—  0 0 + 0 0 0 0 0

Input
Store in location 3 
Input

Transfer to location 0 .

This routine may be used to fill a program into the store 
when each word of the program is preceded by a "store” or 
"store and clear" instruction whose operand address corres
ponds to the location in which the word is to be stored.

The execution of the bootstrap routine can be 
terminated if the first order of an order pair is an uncon
ditional transfer of control order.



1.4.1 The Auto Input
After the auto input button has been pressed, the 

normal store playback (V) from sectors 0, 1 and 2 is in
hibited and replaced by a pattern of digits generated from 
the timing unit. This pattern of digits is equivalent to the 
following three orders

00400030 
00N00030 
00400030

(from sector 0)
( " " 1 )
( " " 2 ) .

If the first two words on a program tape are

/00N00040# / o o + o o o o o #
and the computer is started after pressing the "clear C" button 
the word 00+00000 will be stored in 004 and the program 
will then be effectively under the control of the following 
bootstrap routine

Location
0 0 0

001
002

003
004

Instruction 
r-* 00400030 

00N00030 
00400030

 ̂ } From store 
L  0 0 + 0 0 0 0 0

From
timing unit

The normal store playback from sectors 0, 1 and 2 
(track 0) is not inhibited permanently, conditions being 
returned to normal immediately a ONE is sensed in the waste 
digit position of the accumulator in phase 1.

It is to be noted that, because of a simplification 
of logical design, the normal store playback is inhibited 
whenever the sector number generator announces a number whose 
binary equivalent contains a ZERO in the weight 4 position, 
and this applies not only to track 0 but to all tracks.
To eliminate these abnormal conditions as soon as possible, 
it is recommended that all program tapes should begin with 
the following eight words

/00N00040# 
/ 0 0 N 0 0 0 0 0 #  

/00N00010# 
/00N00020#

/ 0 0 + 0 0 0 0 0 #
/00400000#
/00N00030#
/00400001#

When this is done, the bootstrap routine discussed above will 
be actually written into the store, and conditions will be re
turned to normal by the ONE in the waste digit position of the
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eighth word.
After the program tape has been placed in the tape 

reader, the normal procedure for entering a program using 
the auto input is as follows :-

1. Press the initial set button.
2. Press the clear C button.
3. Press the auto input button.
4. Press the operate button.

It is to be noted that without the auto input feature many 
times this number of operations would have been required 
for entering programs into the computer.

1,4.2 Logical design of the Auto Input
The sector number generator announces the sector 

number of the next word to be presented to the read-write 
heads of the main memory. Hence, when sectors 0, 1 and 2 
are being played back, the sector number announces 25, 26 and 
27, respectively. If the binary counter outputs of the 
sector number generator are w^ , w^ , w^ , wg and w^g , 
the relevant sectors are represented by the following :-

Sector played back Sector number announcement
0 wi CM

lb W4 W8 w^g (sector 25)
1 r~

\

lb W2 W4 W8 w16 ( " 26)
2 W - . w„ w., w 0 wn r ( " 27)1 2 4 8 16
3 "i W2 W4 W 8 w16 ( " 2 8)
4 wi W2 W4 W8 W16 ( " 29).

It can readily be seen that w^ alone distinguishes sectors 
0, 1 and 2 from sectors 3 and 4.

After 'the auto input button has been pressed, the 
3 flip-flop is set to the ONE state, and while this flip-flop 
is in this state, the normal V playback from sectors 0, 1 
and 2 (and other sectors but not sectors 3 and 4) is inhibited. 
The conditions to be satisfied while V’ is inhibited are 
therefore represented by w^•B = 1 .

The normal V playback is replaced by a pattern of 
digits generated from the timing unit. For example, an input 
order 00400000 is represented by a single digit 2^2 , and 
the order 00N00030 is represented by the 4 digits :-

S4D3 + si|D2 + S1D1 + SlDo
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Using
0, 1 and 2 ; and

w.
w,

and w, to distinguish between sectors
to distinguish sectors 0, 1 and 2 from

sectors 3 and 4, the pattern of digits to be generated from 
the timing unit may be represented by

S1(D2w 1w 2w 1)
+ CS^Dg + S4D2 + S1D1 + S1D0 ) wx„2w4

+ S4D2w 1w 2”4
The digits from sectors 0, 1 and 2 have in

common. Also, as the address portion of an input order has 
no significance, the digits S-̂ D̂  and S,Dq may be added 
to the input orders without harm. The pattern therefore may 
be simplified to

(2^2 + + SiD0> + ^4^3W1W 2W4 *

The auto input logic is introduced into the main 
machine logic by replacing the normal V playback by a new 
variable which is equal to V under normal conditions,
but equal to the digits generated from the timing unit under 
the conditions of Auto Input (i.e. when w^*B = 1) . Hence

vb - V,vV B + ' V B<S4D2 + S1D1+S1Do+SliD3w1w2) .

The B flip-flop is set to ONE when the auto input 
button is depressed, and is reset to ZERO when a ONE is de
tected in the waste digit of the accumulator in <J>̂ . It is 
also reset to ZERO when the initial set button is depressed 
so that the computer may be used without the Auto Input 
operation. Hence

B ’ = auto input button
B ’ = <j>_t A + initial set button.JL W

A logic diagram corresponding to the above equations 
is shown in Fig. 1.3.
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AUTO INPUT INITIAL SET

Figure 1.3 - SNOCOM fs AUTO INPUT LOGIC
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1.5 CONCLUSIONS

1.5.0 Usefulness of the Auto Input feature
Some simple magnetic drum computers (such as the 

LGP-30) require an undesirably long sequence of console 
operations to enter programs into the main store. One possible 
solution to this problem would be to have a bootstrap routine 
or an assembly routine permanently recorded on one track of 
the drum. As this track cannot be used for any other purpose, 
one track of the drum is the price paid for the simpler 
loading procedure. The most desirable arrangement would be 
one (like SNOCOM’s Auto Input) which requires very little 
additional hardware and which does not in any way diminish 
the capabilities of the computer.

Since its installation the Auto Input feature of 
SNOCOM has been found to be an extremely useful feature and 
almost all programs are entered this way.

1.5.1 Design approach to minimize hardware
The approach taken by Frankel (Ref. 3) in the design 

of the LGP-30 had as one of its main objectives the minimiz
ation of hardware. One design approach which significantly 
contributed to the attainment of this objective was the 
allocation, to computing elements (especially flip-flops), of 
active functions in as many of the machine phases as possible. 
For example, the K flip-flop is used to search for the 
correct sector in phases one and three, to increment the 
sequence counter in phase two and to lock out the computer 
when peripheral units are not ready. Another example is the 
use of the flip-flop as a means of stopping the computer
as well as one of four order flip-flops which determine the 
type of instruction which is to be obeyed.

Another useful design approach was the appropriate 
grouping of instructions so that complete decoding of the 
order flip-flops would not be required as the flip-flop out
puts themselves would provide effective control signals,

A close examination of the design of the LGP-30 and 
SNOCOM would reveal some of the subtleties which enabled the 
designers to produce remarkably economical designs.

For a commercial computer like the LGP-30 the 
economies gained by an ingenious design would be extremely 
desirable because of the saving of cost. For a custom-built 
computer like SNOCOM (of which only one was built) some of 
these economies may well prove to be false economies. A case 
in point is the multiple use of the Qg flip-flop. When
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the computer stops (e.g. on single-shot operation), the Q 
indicators only reveal that the last instruction obeyed was 
one of two possible instructions. The additional complexity 
in interpreting the console indicators would provide a strong 
case for another flip-flop.

It appears that as computing elements become less 
expensive, the designer’s objective should not be a minimal 
hardware design but rather an efficient (near minimal) design 
which considers simplicity of understanding and use as well. 
Other considerations, of course, include simplicity of con
struction, commissioning and maintenance procedures.

1.5.3 Flexibility of a serial arithmetic and control unit
Starting from the general framework of the LGP-30 

design, it has been found relatively simple to introduce a 
number of desirable features into SNOCOM. These features 
include (i) the allowable selection of the number of' characters 
entered by an input instruction, (ii) the auto input feature, 
(iii) the reduction of the operand search phase (phase three) 
to one word period for some instructions and (iv) the buffer
ing of all peripheral units and the modification of the phase 
logic to enable simultaneous operation of all peripheral units 
and the central processing unit.

As SNOCOM is a serial computer, it would be expected 
that relatively small amounts of hardware would be necessary 
to introduce new features, as in many cases only a single 
signal line is affected. It would, for example, be relatively 
simple to extend the order code of the computer by providing 
a large number of variants of some of the instructions.

By making use of recent advances in semiconductor 
devices, it would be possible to construct a central processing 
unit similar to SNOCOM’s which was significantly more powerful 
and several orders of magnitude faster. However, as SNOCOM 
is already "memory-limited", there would be little point in 
doing this without changing the organization of the computer 
and the form of the memory. These observations would suggest 
that a good design could be obtained by combining a parallel, 
ferrite-core store with a serial central processing unit. This 
approach has, in fact, been taken by designers of some 
commercial computers (Ref. 10).



- 2 1 -

CHAPTER 2
THIJ EDUCATIONAL DIGITAL COMPUTER NIMBUS

2.0 LIST OF SYMBOLS USED IN THIS CHAPTER

2.1 INTRODUCTION

2.2 BRIEF DESCRIPTION OF NIMBUS

2.3 THE DESIGN OF A SIMPLE COMPUTER

2.4 CONCLUSIONS
2.4.0 Usefulness of machines like NIMBUS for teaching
2.4.1 Usefulness of machines like NIM3US for research

2.4.1.0 NOR configurations
2.4.1.1 High-speed circuit configurations.
2.4.1.2 Multi-function computer elements
2.4.1.3 Testing computer peripherals
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LIST OF SYMBOLS USED IN THIS CHAPTER
Clock pulse (Figs. 2.0 and 2.1)
3inary counter drive pulse (Figs. 2.0 and 2.1) 

ĝ Binary counter outputs (Figs. 2.0 and 2.1)
3^ waveform differentiated (Figs. 2.0 and 2.1) 
B-̂ g waveform differentiated (Figs. 2.0 and 2.1) 
Initial set (Fig. 2.0)
Signals which stop the timing unit (Fig. 2.0)

2  Machine phases 0-3 (Fig. 2.1)
2  Function toggle outputs
2  Sequence counter outputs

Sequence counter input
Sequence counter drive input

2  Address register outputs
Address register input
Address register drive input
Fixed store output
Word 15 (= PQP0P1P )3 2 1 o
Instruction register (address) outputs
Instruction register (address) input
Instruction register (address) drive input
Instruction register (order) outputs
Instruction register (order) input
Instruction register (order) drive input
Accumulator outputs
Accumulator input
Accumulator drive input
Store register outputs
Store register input
Store register drive input
Signal which sets the K flip-flop (to 1)
Signal which resets the K flip-flop (to 0) 
Counter augmentation flip-flop output 
Carry/borrow flip-flop output 
Sum/difference digit 
Store output
Counter augmentation and carry/borrow flip-flop
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2.1 INTRODUCTION
As a result of the rapidly increasing use of digital 

equipment both for research and industrial applications, there 
is great demand for personnel trained in digital systems 
engineering. Training in this field can be carried out quite 
effectively with the use of "educational digital computers" 
(Refs. 5 and 6). These are experimental units which have been 
specifically designed with the specification of a complete 
computer in mind. The number, type and arrangement of logical 
circuits provided in the experimental unit enable the synthesis 
not only of various combinational and sequential switching 
circuits, but also of a complete stored-program computer.

The first digital-logic training devices were marketed 
in 1960, and now a large range is commercially available 
(Refs. 11 and 12). The function of these devices is of course 
to provide training in the fundamentals of digital circuits. 
Educational digital computers must also be able to do this, 
but they go one step further. The synthesis of a complete 
digital computer would be extremely useful to teach engineers 
computer design techniques and to help programmers visualize 
the internal organization of a computer.

Some of the desirable features of a digital-logic 
training device or an educational digital computer are as 
follows:- the equipment should contain standard transistorized 
digital circuits (or integrated circuits) for good simulation 
of actual design problems; the circuit modules may be either 
fixed or removable, but the arrangement must be flexible so 
that many circuits may be synthesized; logic panels must be 
clearly engraved and extensive monitoring facilities must be 
provided to facilitate the understanding and testing of circuit 
configurations; the main control unit must enable the monitor
ing of memory states after each state-change (i.e. after each 
clock pulse); and finally the device, must be "student-proof" 
so that any interconnection may be made without damage to the 
equipment.

Most of the above features have been incorporated 
into the educational digital computer NIMBUS. This machine 
has been used since 1962 by final-year students of electrical 
engineering of the University of Sydney. A brief description 
of NIMBUS is presented in section 2.2; an outline of the design 
of an extremely simple computer is presented in section 2.3; 
and finally conclusions concerning the usefulness of machines 
like NIMBUS for teaching and research are presented in section 
2.4.
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2.2 BRIEF- DESCRIPTION OF NIMBUS
A photograph of NIMBUS appears on page iv , and a 

reproduction of a paper (Ref. 6) containing a description of 
this machine appears in the Appendix.

In essence, the machine consists of several sub- 
assemblies and a large number of logical and storage elements 
which may be readily patched together. The sub-assemblies 
provided in NIMBUS enable experiments on serial, synchronous, 
digital systems to be carried out.

One of the main sub-assemblies is the control and 
timing unit. A logic diagram of this unit is shown in Figure 
2.0, and timing waveforms are shown in Fig. 2.1. When the 
START button is depressed, the timing unit generates one pulse, 
eight pulses, thirty-two pulses or a train of pulses depending 
on whether the MODE-SELECTION switch is in the BIT, PHASE,
ORDER or NORMAL positions, respectively. When this switch 
is in the MONITOR position, the unit runs continuously and all 
waveforms may be monitored. The ability to change the mode of 
operation in this way is an extremely useful and almost indis
pensable feature of a training device.

To demonstrate the principles of operation of a 
stored-program computer, some storage device must be provided 
in the educational machine.

In NIMBUS a sixteen word pinboard-store is provided, 
and this is supplemented by a very limited amount of erasable 
storage in the form of a one-word flip-flop register. The 
outputs of the four-stage address register are decoded into 
sixteen lines which drive the WORD-busses of the pinboard-store. 
Component plugs containing sub-miniature diodes may be inserted 
to bridge the WORD-busses with the eight BIT-busses at 
appropriate places. The pinboard, together with component 
plugs, forms a diode-matrix which produces (in parallel) the 
eight bits of the word specified by the contents of the address 
register. The diode-matrix outputs are combined with the timing 
waveforms B-̂ , B2 and B̂  in parallel-to-serial conversion 
circuits to produce the serial store output VQ . The selection 
of either the pinboard-store output or the flip-flop register 
output may be readily carried out using the outputs of the 
address register as the gating signals.

Other sub-assemblies take the form of self-contained 
shift registers. The arrangement of these sub-assemblies were 
chosen with the organization of a simple computer in mind; 
for example, a four-stage register for the (sequence) counter 
is provided and the panel for this sub-assembly is accordingly 
engraved with this function in mind. Other registers are
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provided for the address register, the instruction register 
and the accumulator.

The sloping panels of the' machine contain storage 
and logical elements. Each of the existing panels contains 
two flip-flops, three invert circuits and nineteen NOR circuits. 
Other circuits may be used as the panels are self-contained 
and readily interchangeable.

The inputs and outputs of all elements in the 
machine are brought to sockets on the panels so they may be 
interconnected with flexible leads.
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Figure 2.0 :- NIMBUS CONTROL $ TIMING UNIT
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Figure 2.1 NIMBUS TIMING WAVEFORMS



2.3 THE DESIGN OF A SIMPLE DIGITAL COMPUTER
The sub-assemblies and logic circuits briefly des

cribed in the preceding section may be interconnected to form 
a simple digital computer. Computers with different order 

codes may be constructed, the only restriction being the amount 
of hardware which is necessary for their implementation. An 

example of a computer which may be constructed is a fixed-point, 
binary, serial, single-address digital computer with a storage 

capacity of sixteen eight-bit words of which fifteen are fixed 
and one is erasable. The computer is capable of carrying out 

only eleven basic instructions, although four stages in the 

order part of the instruction register make provision for six

teen. The order code is shown in Table 2.0. A complete des

cription of the functional and logical design of this computer 
appears in the paper which is reproduced in Appendix K .

The Boolean equations of Table 2.1 represent a 

summary of this design. The symbols used in these equations 

are listed in section 2.0.

TABLE 2.0 : ORDER CODE OF A SIMPLE COMPUTER

Code Order

0000
0001
0010
0011
0100
0101
0110

0111

INPUT :—Illuminate the Z, monitor light and stop the computer so that eight digits may be sot into the accumulator. 
OUTPUT :—Illuminate the Z2 monitor light and stop the computer so that the accumulator may be monitored.
TRANSFER IF NEGATIVE :—Transfer control to the address specified by the instruction if the accumulator is negative. 
UNCONDITIONAL TRANSFER :—Transfer control to the address specified by the instruction.
STORE :•—Store the contents of the accumulator into the store register (address 15).
BRING :■—Bring the word specified by the address of the instruction into the accumulator.
ADD :—Add the word specified by the address of the instruction to the contents of tho accumulator retaining the result in the 

accumulator. *
SUBTRACT :—Subtract the word specified by the address of the instruction from the contents of the accumulator retaining 

tho result in the accumulator.
1010
1100

1110

TRANSFER IF ZERO :—Transfer control to the address specified by the instruction if the accumulator is zero. 
ACCUMULATE IN STORE :—Add the contents of the accumulator to the contents of the store register (address 15) retaining 

the result in the store register.
EXTRACT :—Obtain the logical product of the word specified by the address of the instruction and the contents of the accumu

lator retaining the result in tho accumulator.

TABLE 2.1 : BOOLEAN EQUATIONS FOR A SIMPLE COMPUTER

c , =  B 4T 0 K ' =  B 8T 0

C" =  BgCo +  B16B8 (fc; +  KC0) k ' =  b 8c ; t 0

+  B ieB8 |R#C0 +  R6C0 +  R8R6R4R 0 a =  A 7A 6 A 5A4 A 3 A jA jA,,

-f- R 8R #R 4(A 7R 0R 7 4* A 7C0R 7 -}- aC0R 7 -f- aR 0R 7)] B-od =  B 18B 8B4T 0

Ad =  B 16B 8R 6T0
R "„  =  V

A  =  R 5R 4A 0 4* B 5R4V -}■ R 7R 8b -)- R 7R jR 4A„V Bjd =  B4T 0

b =  AoV 1 7 +  A 0 V L > X 0 V L  +  A 0 V L B  a —  B 18B 8V 4" B18R 0

L' =  B gT 0 -f- (R4 A 0 V 4* B 4A„V) B g T 0 I’d =  B 8B4T 0

L' =  (R4A 0V 4- R 4Â 0V) BgT0 • B " =  B18C0 4" B 18R 0

Sd =  W 16BgT0 V =  W 15S0 4" W 16v 0 Z 1 —  R 8 R # R 4 /dB18

S” =  B 18S04-B 16RgR5 R 4S04-B 16R 6R 6 R 4(A0R 7 4-b R 7) Z 2 «a R 8 R 6 R 4 /1B1G

Logic configurations using NOR circuits and flip-flops

with transient storage gates may be readily derived from the

above Boolean equations. From the logic circuit diagrams, wiring 
lists may be obtained if they are felt to be necessary. The com

puter may then be patched-up and "commissioned". Simple programs 
may be run by inserting the appropriate pins in the pinboard.
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2 .4 CONCLUSIONS
2.4.0 Usefulness of machines like NIH3US for teaching:

The development of a new computer is in almost every 
case a group effort. As members of the group may have respon
sibilities in restricted (and often mutually exclusive) areas 
(such as integrated circuit manufacture and compiler writing), 
it is necessary to bring the group’s understanding of all com
puter fundamentals and techniques to a level where every member 
of the group can contribute to the overall project and also 
where there is a strong likelihood of some cross-fertilization 
of ideas. Here machines like NIMBUS have an important role.

In the university environment, training is carried 
out at various levels. At the undergraduate level, NIMBUS has 
been used very successfully to give students some insight into 
computer design techniques. At the honours student level,
NIMBUS has been used as part of a more complex digital control 
system (Ref. 13 ). At the research assistant level, all
personnel associated with the current research project have 
made use of NIMBUS as part of their training. Finally, at the 
professional engineer level, NIMBUS provided preliminary training 
for engineers who were to be responsible for a computer data
logging system in a modern power station.

Since 1962, when it was put into operation, NIMBUS 
has proved to be very effective for teaching computer funda
mentals, and there is a strong case for the continuation and 
expansion of this educational approach.

2.4.1 Usefulness of machines like NIMBUS for research 
2.4.1.0 NOR configurations

Many papers have been written on the design and 
application of NOR and NAND circuits (Refs. 14-19). Reference 
14 contains an annotated bibliography. Reference 15 is an 
example of a paper on the design of diode-transistor NOR cir
cuits; this is the type of circuit used in NIM3US.

The dual polarity logic suggested by Kintner (Ref.16) 
has been found to be extremely useful. As its name implies, 
this type of logic represents binary signals using both positive 
and negative logic. A change in representation occurs when 
signals pass through a NOR circuit, and the NOR circuit performs 
the OR function when the input signals are represented in 
positive logic, while the application of*De Morgan’s theorem 
shows that the NOR circuit performs the AND function when the 
input signals are represented in negative logic.
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The implementation of NOR and NAND logic is des
cribed in Maley and Earle’s book (Ref. 17) and this has been 
found to be very helpful. Hellerman’s catalogue of three- 
variable NOR and NAND circuits (Ref. 18) and Smith’s table of 
minimal three-variable NOR and NAND circuits (Ref. 19) have 
been noted for future reference. Variations of these circuits 
such as the NAND-AND configuration suggested by Burke and Bosse 
(Ref. 20) could be quite useful.

Logic circuits composed of NOR and NAND elements are 
now being used extensively in digital systems. As many inte
grated circuits carry out the NOR or NAND function, and are 
being used as the major logical element in many (if not most) 
digital research projects, machines like NIMBUS, which enable 
configurations of circuit elements with these logical functions 
to be readily constructed, must become useful research tools.
At the time of writing a second educational computer (NIMBUS II) 
containing integrated circuits (instead of discrete component 
circuits) is in its course of construction.

2.U.1.1 High-speed circuit configurations
NIMBUS was used for testing circuit configurations 

for the computer ARCTURUS (Ref. 21). These included circuits 
for a rapid multiplication procedure and a parallel, reversible 
counter.

2.4.1.2 Multifunction computer elements
The minimization of hardware is one of the designer’s 

objectives. One way of doing this is to time-share computer 
elements so that ‘they carry out many functions. An example of 
what can be done is provided by the design of section 2.3.

The K flip-flop is used for incrementing the sequence 
counter in phase 1 and is idle at other times. The L flip-flop 
is used to hold the carry/borrow digit in the addition/sub- 
traction process in phase 3 and is idle at other times. One 
flip-flop (say J) can carry out both functions. The setting 
and resetting equations for K and L (Table 2.1) are now 
replaced by the setting and resetting equations for J viz.:-

J ’

J'
V o  + (W  + R4Ao V) W o

B1 6 B8CoTo + (IW  + W o  •

From the above equations it can be seen that one 
flip-flop has been saved at the cost of the additional B^g 
and Blg gating. Examples like this provide the designer 
with a clear understanding of the advantages and additional 
complexities of logical systems in which computer elements 
are time-shared. Armed with this knowledge, he will be in a
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better position to decide when to apply this approach in more 
complex research projects.

2 . *4.1,3 Testing computer peripherals
NIMBUS was used to test a high-speed paper tape 

reader (Ref. 7). One of the tests carried out consisted of 
placing a tape loop of pairs of complementary-characters in 
the reader and arranging the logic in NIMBUS to read a pair of 
characters from the tape into two flip-flop registers (formed 
by cross-coupling NOR circuits) and to test if they were comple
mentary. If they were complementary, the test would be repeated 
automatically; if not, the test would stop. The reader was tested 
for periods of many hours in this way.

In the context of time-sharing systems much research 
effort has been directed at special peripheral devices for 
improving man-machine communication (Ref. 22), and it is very 
likely that research along these lines will continue for some 
time (Ref. 23) .

Towards the broad objective of developing a time- 
shared, digital process controller, a remote-console is being 
constructed for ARCTURUS (Ref. 2U). The logic for the remote 
console is treated as a complex sequential circuit and a state- 
flow-diagram approach is being taken for its design. Some of 
the sequential circuits (consisting of NOR circuits with some 
feedback connections) which are described in Maley and Earle's 
book (Ref. 17) have already been synthesized on NIMBUS, and it 
is planned to test the remote console logic (which utilizes 
integrated circuits) in the same way.

Based on experience with NIMBUS, it seems very likely 
that machines like NIMBUS (but perhaps with a little more 
computing power) would be extremely useful for testing special 
peripheral devices for computers, and they could become 
standard (and almost indispensable) items of test equipment 
for digital research laboratories.
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3.0 LIST OF SYMBOLS

3.0,0 Symbols used in the diagrams

J Memory register
K Accumulator
L Multiplier - quotient register
R Instruction register
S Sequence counter
U Operand counter
V Number of times counter

DFS Distribution function selector
AS Address selector
T Timing signals
C Control signals
0 Phase signals
X Absolute address signals

X,Y Selection lines of coincident-current memory system 
Z Inhibit lines of coincident-current memory system



- 33 -

3.1 APPROACH TO SYSTEM DESIGN

3.1.0 Background and objectives
The ARCTURUS project was initiated with the background 

of many years of computer research and development within 
the School of Electrical Engineering of the University of 
Sydney. With the Mathematical Instruments Section of the 
Commonwealth Scientific and Industrial Research Organisation 
playing a major role, this School took part in the development 
of the C.S.I.R.O. mechanical differential analyser (Ref. 8), 
the digital differential analyser ADA (Ref. 1) and the digita 1 
computer SNOCOM (Ref. 4).

Towards the end of 1959 the Mathematical Instruments 
Section of C.S.I.R.O. closed down, and further computer work 
was carried out by a very small group of University personnel.
SNOCOM was commissioned in August 1960; early in 1961, it was 
decided to retire ADA. At this time the objective was to 
utilise ADA’s electronic components by building a SNOCOM-type 
computer. A later objective was the connection of this computer 
to the analogue computer EEDAC.

Very limited resources were available to the computer 
group. This was responsible for the objectives of the group 
to be changed several times, and affected the sequence in 
which the various stages of the project were carried out.

The peripheral units of ARCTURUS were the first units 
to receive attention. A relay system for a monitor printer and 
a high-speed paper tape reader (Ref. 7) were developed leaving 
the Teletype BRPE paper tape punch as the only item of major 
expenditure.

Former experience with the peripheral units of SNOCOM 
suggested that the peripheral units (being electro-mechanical) 
were the least reliable units of a computer and hence some 
built-in checking procedure was desirable. This was carried 
out by arranging the peripheral units in such a way that they 
could operate off-line as a comparator-reperforator-printer. *

The decision to change the form of storage from a magnetic 
drum to ferrite-cores was responsible for abandoning the plans based 
on a SNOCOM-type computer. At this stage the digital computer 
CIRRUS (Ref. 25, 26), which was being constructed at the 
University of Adelaide, stimulated interest in "micro-programming" 
(Ref. 27-32) and its logical extension "stored-logic" (Ref 33-36). 
Hence the objective changed to one of building a stored-logic com
puter.
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With a full appreciation of the capabilities of 
an extremely small computer group with very limited 
resources, the group*s objective was finally changed to one 
of building a reasonably powerful general-purpose 
digital computer with some novel and new features. The 
usefulness of the computer for teaching and research 
purposes supported this final decision concerning main 
objectives.

The approach taken with the design of the 
arithmetic and control units of ARCTURUS was first to 
examine the specifications of a number of recent, commercial 
computers and to select some of the useful features. To 
these were added features suggested by the computer group’s 
experience with former projects and by information in 
j ournals.

With the performance characteristics of the 
peripheral units, the memory and the logical elements in 
mind, several forms of machine organisation were considered, 
and some idea of the best attainable specification for a 
computer using these units was obtained. Because of the 
very limited resources available to the group, the 
construction of such a computer proved to be quite a challenge. 
However no relaxation of this specification was found to be 
necessary and the ARCTURUS computer was subsequently completed 
and commissional successfully.

Some features not incorporated into ARCTURUS 
but which received some consideration are listed in section 
3.1.1, and a chronology of the various phases of the project 
are listed in section 3.1.2. A general description of 
ARCTURUS appears in section 3.2.

3.1.1______ Design considerations
Some of the computer systems and computer features 

which were considered but which were not incorporated into 
ARCTURUS are indicated below. This list is not exhaustive 
as many other features received cursory consideration.

Hybrid computer: Papers on hybrid computers (Refs. 37-40)
stimulated an interest in the possibility of connecting the 
new digital computer (ARCTURUS) with the. analogue computer 
EEDAC, and the hardware requirements of such a hybrid computer 
system were considered.
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Control computer: An interest in adaptive control systems
and the knowledge that digital computers were 

being used extensively for process control 
resulted in some attention being given to the requirements 
of a control computer.

Stored-logic: The conception of the micro-programmed
control unit (Refs. 27-32) has led to the development of a 
number of computers using this method of control. A logical 
extension of this method of control utilises a modifiable 
control memory, and results in a '’program-modifiable” or 
"stored-logic” computer (Refs. 33-36). Such a method of 
control was considered for ARCTURUS.

Minimal computer: Papers on the minimal logical complexity
for a computer (Ref . 41 ) resulted in consideration being
given to a minimal parallel computer containing only three 
registers.

Parallel-serial system: Papers on high-speed logic circuits 
capable of operating at pulse repetition rates of 160 MHz 
(Ref . 42 ) stimulated some interest in a system containing
a parallel (ferrite-core) store and a serial arithmetic unit.

Asynchronous adder: An appreciation of the advantages of
the asynchronous adder over the synchronous (ripple-carry) 
adder resulted in a proposed system containing
both asynchronous and synchronous elements. The asynchronous 
adder was later replaced by a carry-lookahead adder .

Small fast memory: The use of a small fast memory either
as a nesting store or as a scratch-pad store

was considered.

Fast program loops: The obvious advantages of being able to
hold complete programs in flip-flop registers resulted in an 
investigation of a proposed "micro-mode” (Ref. 36). Micro-mode 
instructions were addressless and hence several could be stored 
in each word-length register. It was hoped that the micro-mode 
feature would enable small program loops to be obeyed very 
rapidly.
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Number formats: Features which would facilitate double
length, floating-point and complex number operations 
received some attention.

High-level languages: List-processing operations (Refs. 43-44),
recursive operations and other features which would facilitate 
the development of high-level languages were also given some 
consideration.

3.1.2_____ Chronology
The following is a chronology of events leading to 

the commissioning of ARCTURUS. The dates shown are completion 
dates, and are only approximate as there was much overlapping 
of the various stages of the project.

Late -1960 

Mid-1961

Late-1961

Early-1962 
Late -1962

Mid-196 3 
Late -1963

Early-1964 

Mid-1964 

Early-1965 

Late-1965 

Early-1966

SNOCOM was installed. The next major computer 
project was considered.
The relay system for the monitor printer was 
developed. The printer logic was designed and 
constructed. The printer unit was tested.
The punch logic was designed and constructed.
The punch unit was tested.
NIMBUS was designed, constructed and commissioned. 
The high-speed paper tape reader was developed.
The reader logic was designed and constructed.
The reader unit was tested.
A range of 4 MHz logic circuits was developed.
The input-output console for ARCTURUS was 
designed, constructed and tested. This console was 
arranged so that the input-output units could 
operate off-line as a punched paper tape editing 
set.
The circuitry for the ferrite-core store was 
designed, constructed and tested.
The specification of the arithmetic and control 
units of ARCTURUS was completed.
The design'of the arithmetic and control units of 
ARCTURUS was completed.
The construction of the arithmetic and control units 
of ARCTURUS was completed.
ARCTURUS was commissioned.



3.2 GENERAL DESCRIPTION OF ARCTURUS
ARCTURUS is a fixed-point binary, parallel, single

address, general-purpose digital computer using packaged diode- 
transistor circuits, ferrite-core storage and paper-tape 
peripheral units.

3.2.0 ______ Word formats
The instruction and number formats, which use a word 

length of 20 bits, are shown in Figure. 3.0. An operation code 
of 5 bits provides 32 distinct instructions. Some of these 
have a large number of variants specified by the bits normally 
used as an address, A 13 bit address enables 8192 words to 
be directly addressed, although at present only 1024 words are 
available. Bit 6 of an instruction word specifies indirect 
addressing while bit 5 specifies a programmed-operator (see 
Section 3.2.6). A single-length number consists of a sign bit 
and 19 magnitude bits; a double-length number (such as the product 
formed by the multiplication of two single-length numbers) 
consists of a sign bit and 38 magnitude bits as shown in the figure 
A twofs complement representation of negative numbers is used.

3.2.1 Register configuration
A block diagram of ARCTURUS is shown in Figure 3.1.

The memory-output register (J), the accumulator (K), the 
multiplier-quotient register (L) and the instruction register 
(R) are all full-length registers, while the sequence counter (S) 
and the operand counter (U) are only address-length.

The ADDRESS SELECTOR (AS) selects the memory address, 
from U, S or R. The contents of K or L, or the output of the 
ADDRESS SELECTOR may be set into J prior to an arithmetic or 
logical operation being carried out on the contents of J and K.
The results of this operation may be set into any register via 
the DISTRIBUTOR.

3.2.2 ______Arithmetic unit
The arithmetic unit makes extensive use of a high

speed carry-lookahead-adder which can be used to accumulate 
numbers in  ̂ us. By appropriate selection of its inputs, the 
adder can be used for instruction modification as well as for 
arithmetic operations. The DISTRIBUTOR FUNCTION SELECTOR (DFS) 
selects arithmetic or logical functions of register outputs 
and distributes these signals to all registers. This produces an 
arithmetic unit which is quite powerful (in terms of arithmetic 
and logical functions which are possible), and it makes good 
utilization of the fast adder.
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Multiplier recoding produces a multiplication 
time between 5/** and 7̂  /** depending on the multiplier, and 
a non-restoring procedure for division produces a divide 
time of 10/xs . The contents of the two arithmetic 
registers K and L may shift in either direction at a rate 
of 4 MHz.

3.2.3 ______Memory
A ferrite-core memory using coincident-current- 

selection is used. The memory cycle may be either a normal 
(READ-WRITE) or a split (READ-EXECUTE-WRITE) cycle. The 
latter is used by instructions with execution phases which 
modify storage locations in one memory cycle. The memory 
cycle time is about 3̂ us and the access time 1m$ . The 
execution of some instructions may be carried out simul
taneously with the regeneration of information in the store.

The replacement of the 1024 word store by a 
4096 word (2/*S ) store is planned, and a recently acquired 
(7 million word) disc file will be added at a later stage.

3.2.4 ______ Peripherals
The peripheral units consist of a 1000 characters- 

per-second paper-tape reader, a 100 characters-per-second 
paper-tape punch and a 10 characters-per-second type-writer 
printer. Each of these units has a one-character buffer, 
and hence all units and the central processing unit may 
operate simultaneously. All peripheral units are connected 
to the computer via the K register.

3.2.5 ______ Instruction code
The ARCTURUS instruction code is shown in Table 

3.0. A detailed definition of these instructions appear in 
Appendix A.
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TABLE 3.0
ARCTURUS Instruction Code

BITS 0-4 BITS 7-19
Instruction T ypeO peration

C ode
A ddress ( A )  
V ariants (V )

00000 v Stop
00001 V Input-O utput
00010 v R egister T ransfer
00011 V Shift
00100 A T ransfer U n con d ition a l
00101 A T ransfer if  N egative
00110 V Skip
00111 (S p are)
01000 A A dd Index
01001 A Subtract Index
01010 A Index Skip
01011 A Jum p to Subroutine
01100 A C om pare Skip
01101 A Load K
o m o A Load L
O l i l i A Add
10000 A Subtract
10001 A And
10010 A M ultip ly
10011 A D ivid e
10100 A Store K
10101 A Store L
10110 A Store K A ddress
10111 A A ccu m ulate
11000 (S p are)
11001 (S p are)
11010 A Push
n o n A Pop
11100 A D ecrem en t H ierarchy
11101 A Increm ent H ierarchy
m i o V Return H ierarchyinn A E xecute

The majority of instructions use bits 7-19 to 
specify a memory address. When these bits are not used 
in this way but rather to specify variants of the 
instruction, a large number of variants is possible.
For example, during the execution of a REGISTER TRANSFER 
instruction, the variant bits determine the main control 
signals of the DISTRIBUTOR-FUNCTION-SELECTOR. As these 
signals, produce all the arithmetic and logical operations 
required during all phases of machine operation, all these 
operations (together with some additional ones, such as 
absolute-value operations) may be executed as variants of a 
single instruction. Tables of instruction variants are 
presented in Appendix E.

Several variants of instructions have been 
suggested by programming experience. For example, the 
SKIP IF NORMALISED variant of the SKIP instruction was 
found to be very useful for floating-point subroutines 
and was very simple to implement.

Most of the arithmetic instructions are quite 
standard. Some utilize the READ-EXECUTE-WRITE feature 
of the memory.
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For example, during the execution of the ACCUMULATE instruction, 
the operand is read from memory into the memory output register; 
the contents of the accumulator are added to the operand and 
the result is written back into memory. These operations 
require only a single memory cycle.

Sub-routine entry is simplified using the 
JUMP TO SUB-ROUTINE instruction. This instruction plants the 
return link in the location specified by the address in the 
instruction and then transfers control to the next location 
(following the link).

An instruction may be indexed by preceding the 
instruction with an ADD INDEX/SUBTRACT INDEX instruction.
In this way any location in memory may be used as an index 
register, but of course an additional instruction is required 
for every indexed instruction.

The programming of loops associated with an index is 
facilitated using the INDEX SKIP instruction. The programming 
of loops associated with a memory-search is facilitated using 
the COMPARE-SKIP instruction.

Nesting operations may be carried out using the PUSH 
and POP instructions.

A hierarchical structure of sub-routines in which a 
sub-routine may return to any higher or lower level sub-routine
may be programmed using the INCREMENT HIERARCHY,DECREMENT 
HIERARCHY and RETURN HIERARCHY instructions.

The EXECUTE instruction causes a specified instruction 
to be executed without altering the normal sequencing of the 
sequence counter.

3.2.6 Programmed operators and indirect addressing
Programmed operators are a feature of computers 

marketed by Scientific Data Systems (S.D.S.) (Ref. 10).
This feature enables a single instruction to specify the 
address of an operand, to store the sequence counter (return 
link) and to transfer control to a sub-routine determined by 
the operation code of the instruction.
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Using a simple assembly program (see Chapter 7), such an 
instruction could be coded like a normal machine language 
instruction but in fact could cause quite a complex sub
routine to be executed. This feature provides the programmer 
with a modifiable extension of the order code.

The programmed operator feature in ARCTURUS 
is slightly superior to the feature in S.D.S. computers 
as programmed operator instructions in ARCTURUS may be 
indirectly addressed. In ARCTURUS the indirect-addressing 
bit (bit 6) is sensed before the programmed operator bit 
(bit 5). If bit 6 is ONE the computer enters an indirect 
addressing phase in which a new operand address is read 
from memory and set into the instruction register (the R 
register). Bit 6 is again sensed and the above procedure 
may be repeated until bit 6 of the operand address is ZERO. 
When this condition is satisfied, the final (effective) 
operand address is set into the U register, (as well as 
into the R register) where it may be found at a later stage 
by the programmed operator sub-routine.

When the programmed operator bit (bit 5) is a ONE, 
the incremented sequence counter is stored in location 0, and 
control is transferred to location 32 plus the binary number 
represented by the operation code (bits 0-4). Locations 32 
to 63 would contain a directory of starting addresses for 
the programmed operator sub-routines. This may be stored in 
the form of a list of UNCONDITIONAL TRANSFER OF CONTROL 
instructions.

The programmed operator sub-routine finds the operand 
address in the U register and normally returns to the main 
program via the link in location 0. If programmed operator 
sub-routines are nested, each sub-routine must provide 
internal storage for its link to the next higher level.

Due provision is made for programmed operators 
by the simple assembly program described in chapter 7.
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5.2.7________ Machine phases
There are eleven possible machine phases viz : -

(i) fetch instruction
(ii) indirect addressing

(iii) programmed operator
(iv) indexing
(V) execute

(Vi) execution - 0
(vii) execution - 1

(viii) execution - 2

(ix) execution - 3
(X) clear store

Cxi) auto input

Phases (i) - (ix) in the above list are each 
associated with a single memory cycle. The CLEAR STORE 
phase and AUTO INPUT phase may be associated with niany 
memory cycles in which locations are cleared (for the former 
phase) and in which information read from tape is stored 
(for the latter phase).

Every machine cycle must contain a FETCH 
INSTRUCTION phase. In this phase the sequence counter 
specifies the location from which the instruction is to be 
read and to be set into the instruction register. If this 
instruction does not require a memory cycle for its 
execution (eg. SHIFT, SKIP instruction), the machine 
remains in the FETCH INSTRUCTION phase during the execution 
of the instruction. If the instruction requires a single 
memory cycle for its execution (eg. ADD, STORE instructions), 
the machine enters the EXECUTION-O phase. On the completion 
of a machine cycle, the machine returns to the FETCH INSTRUCTION 
phase for t-he start of another cycle. The phases EXECUTION - 1, 
EXECUTION - 2 and EXECUTION - 3 are required by some instructions 
(eg. PUSH, RETURN HIERARCHY instructions) which require three 
or four memory cycles for their execution.

Before the operation code of an instruction is used 
to initiate the execution of the instruction, bit 6 (which 
specifies indirect addressing) and bit 5 (which specifies a 
programmed operator) are sensed. When these bits are 
non-ZERO, the machine may enter the INDIRECT ADDRESSING or 
PROGRAMMED OPERATOR phases during which the procedure already 
described in section 3.2.6 is carried out.
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When the operation code specifies either an 
ADD INDEX or SUBTRACT INDEX instruction, the machine 
enters the INDEXING phase during which the index is read 
from memory for use in the modification of the following 
instruction.

When the operation code of the instruction 
specifies an EXECUTE instruction, the machine enters the 
EXECUTE phase to read an instruction into the instruction 
register without any further change being made to the 
sequence counter.

3.2.8 ___Control console
The control console for ARCTURUS has been divided 

into two sections; one section contains all the controls 
such as SENSE-SWITCHES, BREAK-POINT SWITCHES, START BUTTON , 
STOP BUTTON etc. which are frequently used by the machine 
operator; the other section contains MONITOR LIGHTS 
for all registers and important flip-flops as well as all 
controls required by the maintenance engineer for carrying 
out tests on the machine.

More details and a photograph of the control 
console are presented in a later chapter.

3.2.9 ___Summary of machine specification

Parallel
Fixed-point, binary 
Word-length : 20 bits 
Single-address
Number of basic instructions : 32 
Addressless instructions have a large number 

of variants
Indirect addressing 
Programmed operators 
Ferrite-core memory
Present memory capacity : 1024 words 
Designed memory capacity : 8192 words 
Memory cycle time : 3yas 
Memory access time : 1/̂s 
Accumulate time : /̂*s
Multiply time : 5 - 7̂  /*5 (depending on multiplier) 
Divide time : 10/*s 
Shift time : |
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Simultaneous instruction execution 
memory regeneration 

Buffered input and output 
Reader speed : 1000 char./sec 
Punch speed : 100 char./sec 
Printer speed : 10 char./sec 
Packaged diode-transistor circuits 
Auto input .

and
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4.0 LIST OF SYMBOLS

4.0,0 Symbo-ls for logical elements 

AND gate 

OR gate

INVERT circuit 

'NOR gate 

NAND gate

F’ F

F F

0C

FLIP-FLOP

f F* sets flip-flop to ONE 
F* resets flip-flop to ZERO
F ONE output of flip-flop 
F ZERO output of flip-flop

DIFFERENTIATE circuit

RD trigger input 
(ZERO -►ONE)

(POSITIVE-TRIGGER) < t QNE Qutput 
MONOSTABLE-MULTI ZERO output

NEGATIVE-TRIGGER
MONOSTABLE-MULTI

STORAGE GATE

T* trigger input 
(ONE-^ ZERO)

T 0 ONE output

( g* gate input

V clock
g gate output

(to flip-flop)
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4.0.1

Symbols 

T ’s

RD
EP

t pwd

t hx
Taem
TASSS
To
T], * T2 ' T

3’s
^REW

Symbols used in diagrams and text

used in Fig. 4.0 follow : •

All subscripted T ' s are timing waveforms 
clock pulses
(Memory) X-Y Read timing waveform
Execute period timing wareform
Delay timing waveform
(Memory) X-Y Write timing waveform
Post-write-disturb timing waveform
Execute clock
End-of-memory-cycle
Start-strobe-spacing timing waveform
(Memory) Strobe
Clocks
All subscripted 3's are control signals 
Read-execute-write contrcl signal

and/or

Additional symbols used in Fig. 4.2 follows : -

^RO

ÎA.
Ri (i

R0'R4 
/*i (i 
T1 CRT 
TaDE 
F *s

FER0
FEM 
S 1 s

SMCI
TST
fasp

Repeated operations contiol signal 
Transfer control signal 
Instruction assembled cortrol signal 

0 -- 19) Flip-flop outputs of the instruction 
register (the R register)

Operation code
0 -- 31) Decoded operation code signals
Change phase after register transfer pulse
Delayed end of memory pulse
All subscripted F ’s are flip-flops
End of repeated operatiors flip-flop
End of memory flip-flop
All subscripted S 's are switches
Memory cycle inhibit switchy
Start pulse
Abnormal stop flip-flop



- 51-

FrSPS Stop start flip-flop

SBS Break start switch

tpg Pulse generator clock pulse

SPGS Pulse generator start switch

SBPC Break phase clock switch
0 ' s Subscripted 0 ’ s are phase flip-flops

0 Phase

T0C Phase clock

TS0
^SA

Start phase pulse
Store using address selector control signal

^SD Store using distributor control signal
Fetch control signal

AvS Address selector settling timing waveform

4\S2 Second address selector settling timing waveform

tero End of repeated operations pulse

t ads Address selector or distributor settling timing 
waveform

tds Distributor settling timing waveform

Additional symbols used in Fig. 4.3 follow : -

V. =
l

= 0--4) Flip-flop outputs of the number-of-times 
counter (the V register)

oII
> Signal which senses condition V = 0

o

> Signal which senses condition V £ 0

T0P Operate pulse of repeated operations loop

T12 5 Pulse which follows 125 ns after Tqp
G Control flip-flop whose main function is to

T1 250

determine whether a or pulse follows TQp 
Pulse which follows 250 ns after T^p

T1D5 Delay pulse for
T*500 Pulse which follows 500 ns after T^p

Additional symbols used in Fig. 4.4 follow :-

B 's All subscripted B ’s are push-buttons

BIS Initial set push-button

bai Auto-input push-button



-  5 2  -

0 / a i

0C5CS
X)MNMC

A ii

Auto-input phase 
Clear store phase
No memory cycle (required for execution of 
instruction) control signal
Hierarchy etc. control signal (i.e. instruction 
requires more than one memory cycle fcr its 
execution)
End of bootstrap (auto-input) flip-flcp 

U^i (i = 10 -- 19) Flip-flop outputs of the operand register
(the U register)

F 7 EEB

TTuu Signal which senses condit

0f5fi Fetch instruction phase

^ E O Execution-0 phase

0e’ei Execution-1 phase

0E’E2 Execution-2 phase

0e’e3 Execution-3 phase •

0PPO Programmed operator phase

0I ID Indirect addressing phase

0I IX Indexing phase

0EEX Execute phase

A  8-9 Either or ̂  signal

Addditional symbols used in Fig. 4.6

A  28-31 /*2 s to A l  Cinclusive) sign

/*12-15 and /16-23^
?2 26-7 Either /*26 or /<2? signal
A. . (i =ii .10 -- 19) Address selector
S. . (i =ii 10 -- 19) Flip-flop outputs

(the S régis■ ter)

A s s Control signal which selects S for memory address

A u u Control signal which selects U for memory address

a r r Control signal which selects R for memory address

A s/SA Control signal which restricts the selection of S
for memory address to the perio d A s

a u a i a Control signal which restricts the selection of IJ
for memory address to the period AAS
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AUAI

a rai

h

Control signal which restricts the selection of 

U for memory address to the period A,^

Control signal which restricts the selection 

of R for memory address to the period A/^

10 -- 19) Control signals for specifying an

absolute address (only is used)

Additional symbols used in Table 4,0 follow : -

a ,s ,r ,k

'20

T2

EX

Control signals for selection of adder inputs 

(see Section 4.5.1)

Control signal which selects adder output 

Carry digit into least significant stage of 

adder

Flip-flop for changing control signals at 

time

Add/subtract flip-flop for multiplication and 

division

Flip-flop for changing control signals at 

time

(i = 0 -- 19) Flip-flop outputs of the memory input- 

output register (the J register)

Additional symbols used in Fig. 4.7 follow :

(i = 0 -- 19) Flip-flop outputs of the accumulator 

(the K register)

TT K Signal which detects condition TT" K. = ONE
o 1

(i.e. zero accumulator)

O/F Overflow signal (to be specified)

SSI, SS2, SS3 Sense switches

ascs Skip condition satisfied signal

Additional symbols used in Fig. 4.8 follow : -

Af, (i = 0 -- 19) Adder inputs 

P^ (i = 0 -- 19) Propagate function 

(i = 0 -- 19) Generate function 

P^* (n = 1,2,3) First-level generate function 

C^ (i = 0 -- 19)Carry digit
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(i = 0 -- 19) Sum digit 

Additional symbols used in Fig. 4.9 follow : -

T Terminate function
Control signal equal to £ + ?
Control signal equal to ai + k?

Additional symbols used in Fig. 4.10 follow : -

T^ (i = 0 -- 19) Terminate function
(i = 0 -- 19) Output of distributor-function-selector

Additional symbols used in Fig. 4.11 follow : - 

Jm Memory strobe pulse
Jji Distributor to J clock for stages 0 - 4
T »1 »1 I f  r

J (12 . *
J , _ " " ” 6 - 19

d3

Jas Address selector to J clock
Jr Reset J clock

Additional symbols used in Fig, 4.12 follow : -

r^n (n = 1 -- 5) Buffer flip-flops of reader 1 
Fifth bit input clock

K. .l Input clock

D -i Digit shifted into KQ during right shift

Kr Right shift K clock

Kd Distributor to K clock
Left shift K clock

°20 Digit shifted into during left shift

Additional symbols used in Fig. 4.13 follow : -

FOP Flip-flop set by TQp

V4M Special stage used for multiplication

L -1 Digit shifted into Lq during right shift

L2 0 Digit shifted into L^g during left shift

Lr Right shift L clock

L, Left shift L clock
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Additional symbols used in Fig. 4.14 follow : -

The following three symbols are applicable only to the 
description of the binary counter.
Gn Binary counter gate signal
Bn Binary counter output
F Forward-backward control signal

Additional symbols used in Fig. 4.15 follow : -

tsro Start repeated operation pulse

fsro Flip-flop set by T<,̂ q

Additional symbols used in Fig. 4.16 follow : -

T s Clock triggered by T^
V State of V register

Additional symbols used in Table 4.1 follow :

DR Divisor
DD Dividend
FR First remainder

Additional symbols used in Fig. 4,17 follow : - 

These symbols are applicable only to this figure.
* Inhibit brake signal
SCR Silicon Controlled Rectifier

Additional symbols used in Fig. 4.21 follow : -

A A delay
W Bit counter
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4,1_____ APPROACH TO FUNCTIONAL ANTD LOGICAL DESIGN
Functional design consists of the specification in 

words, timing diagrams, tables or any other convenient form, 
of all the functions which are to be performed by the 
computer’s hardware in every distinct time period of the 
computer’s operation. Logical design consists of imple
menting the functional design using configurations of logical 
elements.

The approach which must be taken to the functional 
and logical design of a complex digital system like a 
computer is firstly to break up the system into a number 
of distinct sections with well-defined links between 
sections. The separate requirements and design of each 
section are co-ordinated and these evolve into a general frame 
work for the whole system. Redesign of each section must 
then be carried out to fit in with the framework as much as 
possible.

Examples of sections of the computer for which a 
first design can be carried out independently of the 
remainder of the computer are the memory unit and the input- 
output unit. With the former, the main links with other 
sections would be in the form of the memory address signals, 
the START add END pulses of the memory cycle and the memory 
input-output register. With the latter, the links would be 
the information busses and the START and END pulses of the 
input-output cycle.

Examples of sections of the framework which carry 
out many functions include the REPEATED OPERATIONS LOOP 
and the CARRY-LOOKAHEAD-ADDER. The former is used to 
count the number of SHIFT operations, to count the number 
of characters read from tape and to terminate the multi
plication and division processes. The latter is used not 
only for the arithmetic processes but for indexing 
instructions and for incrementing the contents of a memory 
location. The first design for the last mentioned operation 
required additional logic to enable the memory output register 
to operate as a parallel binary counter. After the decision 
to build a fast CARRY-LOOKAHEAD-ADDER was made, a more 
economical design was found.
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Thc TIMING and CONTROL sections form a major part of 
the main framework of the computer. The design aim taken 
with the TIMING unit was to produce as fast a computer 
as possible. This meant that operations could not be 
tied rigidly to a clock common to all instructions as this 
inevitably would result in some wasted time periods.
Instead, a minimum time was allowed for each elementary 
operation, and the computer’s operation would consist of 
time periods during which only useful operations were 
carried out. Ths timing unit was realized using a system 
of gated monostable multis. The system produced is still 
synchronous as a specific amount of time is allowed for each 
elementary operation but the system is similar to an 
asynchronous system as an END OF OPERATION PULSE is produced 
to trigger the next useful operation. The design aim 
taken with the CONTROL unit was to produce a computer with 
as much flexibility as possible. As the computer would be 
useful for teaching and research purposes, future modifications 
to the order code and other design changes were likely.
To facilitate this, complete, decoding of the OPERATION CODE 
and the EXECUTION PHASES was carried out and the control 
signals are formed by diode ENCODE MATRICES. Changes to 
these matrices can be readily carried out.

Design examples are presented in the following sections.
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4,2 TIMING UNIT

4.2.0 Memory timing
A logic diagram of the memory timing unit is 

shown in Fig. 4.0. The unit consists essentially of 
a chain of gated monostable multis. Two types of 
monostablc multis are used. The first type triggers off 
the front edge of signals (i.e., when the input changes 
from ZERO to ONE). With this type, both the normal 
and inverted outputs are available, and a timing 
chain is obtained by arranging each monostable multi 
to be triggered by the inverted output of the preceding 
stage. With this arrangement, the READ, DELAY, WRITE 
and POST-WRITE-DISTURB waveforms (shown in Fig. 4.1) 
which are necessary for memory timing may be obtained.

Alternative chains of timing waveforms may be 
obtained by gating the trigger signals of monostable 
multis by control signals. An example of this is shown 
in Fig. 4.0. When the READ-EXECUTE-WRITE signal 
is a ONE, specifying a split memory cycle, an additional 
period, the EXECUTE PERIOD is inserted in the timing 
chain as shown in Fig. 4.1.

The second type of monostable multi triggers 
off the back edge of signals (i.e. when the input changes 
from ONE to ZERO) and is very convenient for constructing 
timing chains. An example of the application of this type 
of monostable multi is the timing chain of
Fig. 4.0.

4.2.1 Main timing unit
From an examination of the timing requirements of 

each machine phase, it was decided that the main timing 
unit should be built on the framework of the memory 
timing unit. In all cases except one (the auto-input) 
this has resulted in a very satisfactory arrangement.
For the auto-input (to be described later), the arrange
ment is still quite acceptable, although it is not ideal.

A logic diagram of the main timing unit is shown 
in Fig. 4.2. In this unit, the READ pulse (TpD) and the 
POST-WRITE-DISTURB pulse (Tp^p) are the first and last 
pulses produced by the memory timing unit. At the end 
of Tp^p, an END-OF-MEMORY pulse (T^) is produced.
In many cases, this pulse initiates the next phase by 
firstly producing a PHASE-CLOCK pulse (T^) and a little 
later a START-PHASE pulse (T^) .
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The delay a^ ows the memory
settle before the memory cycle is

address circuits 
initiated.

to

At the end of the memory cycle, clock pulses
Tads ^ds anc* ^crt ma^ Pr°duced for the register
TRANSFER instruction.

Before a memory cycle, an additional delay 
may be inserted if the ADDRESS-SELECTOR is used to 
transfer information to the MEMORY-INPUT-OUTPUT register 
(the J register) before it is changed to the memory address 
where the information is to be stored.

If the REPEATED OPERATIONS LOOP (described in 
the next section) is initiated (e.g. for a SHIFT 
instruction) the timing unit must wait for an END-OF- 
REPEATED-OPERATIONS pulse (T^pq) before initiating the 
next phase. As shifting can occur simultaneously with 
memory regeneration, the initiation of the next phase 
must be inhibited until after both of the T^o anc* ^em 
pulses have been produced. This is the function of the
FERO and FEM fliP-flops.

4.2,2 Repeated operations loop
A logic diagram of the REPEATED OPERATIONS LOOP 

is shown in Fig. 4.3. This circuit operates in conjunction 
with the five-stage V counter which is used to terminate 
the loop.

One of the applications of this circuit is to 
generate the clock pulses for the multiplication process. 
This process involves "multiplier-recoding” and is 
described in a later section. In this application, the 
circuit generates a specified number of pulses with 
each pulse following either 250 ns or 500 ns after the 
preceding one, depending on the setting of a control 
flip-flop G. The state of G may change during the 
generation of pulses.

The circuit utilises monostable multis which 
trigger off the back edge of signals. As flip-flop 
start switching on the front edge of signals, a 
careful examination of the times allowed for circuit 
switching must be made.
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G is clocked by the OPERATE pulse Tq p , and it is 
gate ^ 1 2 5  Pu^ses* The important point to note i 
the time which is allowed for the G flip-flop to 
to its new state and to carry out the gating of 
successfully is the period of the T^p pulses (no 
A similar comment applies to the V counter. Thi 
counter is initially set to the number of pulses 
to be generated. The counter is decremented by 
pulses and it is used to gate to T^^ pulse
As the front edge of T^5 changes V to its new s 
and T0,-q is triggered by the back edge o£ T1 2 5 ’ 
the period of T-^5 which is allowed for the sett 
of V and its associated circuits.
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TSRO (start>

Figure 4.3 - REPEATED OPERATIONS LOOP
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4.3 MACHINE PHASES

4.3.0 Flow diagram
A flow diagram of machine phases is shown in 

Fig. 4.4. Every machine cycle begins with a FETCH 
INSTRUCTION phase (0pj). During this phase the 
instruction is read from memory into the instruction 
register (the R register). If the INSTRUCTION ASSEMBLED 
signal ( Is ONE and the instruction does not
require a memory cycle for its execution (i.e. = ONE),
the machine will remain in 0pj during the execution of 
the instruction and hence will be in this phase at the 
beginning of the next machine cycle. If the instruction 
does require a memory cycle for its execution (e.g.^,^= ZERO 
for an ADD instruction) , the machine will enter the 
EXECUTION-O phase (0£q) from where it will return to 0pj 
at the beginning of the next machine cycle.

If an instruction requires more than one memory 
cycle for its execution (i.e. if ̂  = ONE), the 
EXECUTION-1 phase (0pp) will follow 0pQ, and from 0p^ 
the machine proceeds to 0p^. If the instruction is a 
RETURN HIERARCHY instruction (i.e. if / ^ q = ONE), the 
machine enters a further execution phase 0p^ from where 
it returns to 0pj. If /^q = ZERO, the machine returns 
to 0pj from 0p9.

The INSTRUCTION ASSEMBLED signal ( ^ IA) may be 
ZERO for a number of reasons viz : -

(i) the instruction uses INDIRECT ADDRESSING 
(i.e. R6 = ONE)

(ii) the instruction specifies a PROGRAMMED OPERATOR 
(i.e. R5 = ONE)

(iii) the instruction is an ADD-INDEX or SUBTRACT-INDEX 
instruction (i.e.^g_g = ONE)

(iv) the instruction is an EXECUTE instruction 
(i.e. = ONE)

(v) the machine is in the AUTO-INPUT phase 
(1,e* 0AI = ONE)

(vi) the machine is in the CLEAR STORE phase 
(i.e. 0CS = ONE)
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The conditions (v) 
so that the AUTO-INPUT and 
quite independently of the 
register.

and (vi) above are included 
CLEAR STORE logic may operate 
contents of the instruction

The remaining conditions (i) - (iv) are sensed 
in a definite sequence. Condition (i) has the highest 
priority and is sensed first; this is followed by 
condition (ii) and finally the mutually exclusive 
conditions (iii) or (iv).

If condition (i) is satisfied, the machine 
will enter the INDIRECT ADDRESSING phase in which a 
new address (including the INDIRECT ADDRESSING 
bit - (bit 6) -is read into the instruction register.
If condition (i) is again satisfied, this procedure 
is repeated.

If condition (ii) is satisfied, the machine 
will enter the PROGRAMMED OPERATOR phase (0pq) in which 
the incremented sequence counter is stored in location 
0 and is then filled with the binary number represented 
by the operation code of the instruction plus thirty- 
two. From 0pQ the machine returns to 0pj.

If condition (iii) is satisfied, the machine will 
enter the INDEXING phase (0j^) in which the index or 
negated index is read into the instruction register 
depending on whether the instruction was ADD-INDEX or 
SUBTRACT-INDEX respectively. A flip-flop is set so that 
the following instruction is added to the contents of the 
instruction register instead of being set into this 
register. From 0-^ the machine returns to 0Fi-

If condition (iv) is satisfied, the machine will 
enter the EXECUTE phase (0p^) in which a new instruction 
is read into the instruction register. Interpretation 
of this instruction is then carried out just as if it 
had been read fromnemory on a FETCH INSTRUCTION phase.
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4,3.1 Implementation
A diagram of the phase logic is shown in Fig. 4.5. 

The eleven machine phases are represented by eleven 
flip-flops, only one of which can be in the ONE state at 
any one time. With only minor variations for 0^j and 0^, 
all flip-flops have transient storage gates in their setting 
(ONE-input) and resetting (ZERO-input) lines, and these 
are clocked by the PHASE CLOCK (T^) .

The transient storage gates require signals 
which determine the next phase into which the machine 
will proceed when the next PHASE CLOCK is produced.
The signals are established at sometime in the current 
phase. For example during the FETCH INSTRUCTION phase 
the instruction is clocked into the instruction register 
(the R register) by the T̂  clock. Several levels of logic 
circuits are required to form the storage gate signals 
in terms of the outputs of the R flip-flops and other 
signals. Hence the time between the T^ clock and the 
next PHASE-CLOCK (which is produced after the current 
memory cycle) is the time allowed for the above circuits 
to settle and to charge up the appropriate storage gates 
in readiness for the PHASE CLOCK.

Storage gates are used to advantage. For example 
the connection of the ONE-output to the ZERO-input line 
of a flip-flop ensures that the flip-flop cannot be in the 
ONE state for two consecutive memory cycles. This is the 
requirement for 0pQ, 0IX, 0po, 0pl, 0p2 and 0p3. The 
derivation of the ZERO - input signals for the 0pj> 0jp 
and 0px flip-flops using inverters enables these flip- 
flops to remain in their ONE states for any number of 
consecutive memory cycles.

The connection of the ONE - output of one flip-flop 
to the ONE - input of another flip-flop ensures that one 
phase is followed by another (e.g. 0p2 is followed by ^E2 ̂ * 
The cascading of several flip-flops in this way produces a 
chain of consecutive phases. Such an arrangement is used 
for instructions which require more than one memory cycle for 
their execution.

The passage from one phase to two alternative 
phases depending on some machine condition can be easily 
arranged with simple gating.
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For example the two AND gates with ^  and as
inputs ensure that after leaving 0^q , the machine enters 

or depending on whether a)h is ZERO or ONE
respectively.

Conditions which can exist simultaneously can 
be sensed in a definite sequence by arranging each 
condition to be inhibited by all others of higher 
priority. For example the conditions R̂  = ONE,
Rt- = ONE and /*g_g = ONE can all exist simultaneously.
The condition R̂  = ONE which requires the machine to 
enter the INDIRECT ADDRESSING phase has priority
over the other two, and the condition R<- = ONE 
which requires the machine to enter the PROGRAMMED OPERATOR 
phase (0po) has priority over the last. This can be 
arranged by using the signals R̂ lT̂ Rf. and R̂ I\g f 8-9 
(together witli signals necessary for other reasons) 
as setting inputs for the 0pQ and the 0 ^  flip-flops
respectively.

An alternative arrangement for the phase logic 
which used only four phase flip-flops was considered, but 
was not used because it required complete decoding of the 
flip-flop outputs and the logic for changing the states 
of the flip-flops was quite complex. The arrangement 
used was found to be very flexible as it enabled quite a 
fundamental change to the phase sequencing to be carried 
out by a relatively small change in hardware. It was also 
found to be quite a powerful method for phase sequencing 
as many complex sequences are possible, and yet the logic 
is relatively simple to understand and to implement.
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IS AI BCS

Figure 4.4 FLOW DIAGRAM OF MACHINE PHASES
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4.4 CONTROL

4,4.0 Arithmetic unit control
The control signals of the arithmetic unit are 

functions of the PHASE signals (0*s), the OPERATION CODE 
section of the instruction register (R̂  - R̂ ) and 
other machine signals. Not all the thirty-two signals 
/•q “/^x are Pr°duced by a complete decoding of RQ - R̂  ; 
instead, most are combined with some of the 0 *s 
to produce signals which specify every distinct machine 
phase. For example the signal is produced to
specify the EXECUTION-O phase of the ADD instruction. 
Signals such as 5 _23 ^EO are aiso produced to specify 
the EXECUTION-O phase of a group of instructions.

With every distinct machine phase specified 
by theyU.0 signals, machine control signals may be formed 
by ENCODE circuits. Tables, like Table 4.0, in which the 
ONES indicate the phases in which the control signals 
(ap,a,s etc.) are equal to ONE, can be used to specify 
these circuits. Entries such as F or F indicate 
additional restraints and hence represent AND gates.
Hence Table 4.0 represents a circuit with at most two 
levels of logic.

The generation of the control signals for the 
REGISTER TRANSFER instruction requires some explanation. 
At the end of the FETCH INSTRUCTION memory cycle of 
the.REGISTER TRANSFER instruction,the 0p  ̂ flip-flop is 
reset and additional timing waveforms T^^^, T ^  and 
are produced. As all phase flip-flops are in their ZERO- 
states all the 0 and y*0 signals are ineffective, and 
hence control signals and clocks may be defined in terms 
of the above timing waveforms. This is the reason for 
the Tpp entry in the last row of Table 4.0.

4.4.1 Memory control
Control signals are required to specify the different 

types of memory cycles. For example specifies a FETCH cycle, 
^SD a STORE-USING-DISTRIBUTOR cycle, ^ SA a STORE-USING-ADDRESS- 
SELECTOR cycle and 3REW a (split) READ-EXECUTE-WRITE cycle. As 
these signals are functions of the 0 and /0 signals, they are 
produced in the same way as the control signals of the arithmetic 
uni t.
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The memory address may be specified by the SEQUENCE 
COUNTER (the S register), the OPERAND COUNTER (the U register) 
or the address section of the INSTRUCTION RESISTER (the R 
register). The ADDRESS SELECTOR shown in Pig. 4.6 determines 
this address.

During a STORE-US ING-ADIRESS-SELECTOR cycle, 
the ADDRESS SELECTOR is used to transfer information 
to the MEMORY-INPUT-OUTPUT register (the J register) 
before it is used to specify the memory address 
where this information is to be stored. The timing 
signal which determines which of these two functions 
the ADDRESS SELECTOR has during the cycle is A iK 
(see Fig. 4.2). A general expression for the 
outputs of the ADDRESS SELECTOR vould then be : -

An (fl A AS + f2 A AS^ Sn + (f3 AAS + f4 A AS} Un 

+ (f5AAS + f6 ¿AS) Rn + Yn

In the above equation f][ - f6 are functions of the 
0 and signals. It is to be noted that a direct 
implementation of the above equation would require 
the AAS ând A a s) signals to pass through four levels 
of logic before reaching the output. A slight 
improvement in circuit configuration can be obtained 
by utilising the fact that in the machine design, 
the conditionsfx = ONE, f2 = ONE are mutually
exclusive, and this is also so for the pairs of
conditions f3 = ONE, f4 = ONE and f̂ = ONE, f6 = ONE
An equivalent exprès sion for An miy now be derived :

An ■ (fi + f2) C V  A AS)<*2 + ÂAS5 Sn

+ Cf 3 + f4)C?3 + A a s 1̂ ^ 4 + Â AS) Un

+ Cf5 + + AAsK ?6 + Â AS) Rn + ■

It is now to be noted that the (and ¡\ ̂ ) signals must 
pass through only three levels of logic before reaching 
the output. The inverters necessary for the generation 
of the inverse functions ?1 etc. do not come into 
consideration here, as the ̂ 0 and f signals are assumed 
to settle well before the /[ ̂  signal is produced.
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The circuit configuration suggested by the last 
equation is only slightly superior to the one suggested 
by the first A equation as there are other much larger 
delays associated with the memory address circuits.
However only a slight increase in hardware was
involved and hence the slightly superior configuration
for the ADDRESS SELECTOR was used. This is shown in Fig.4.6.

4.4.2 Miscellaneous control signals
The computer utilises a large number of 

miscellaneous control sginals. Examples of these are 
signals which determine when binary counters are to be 
pulsed, signals which determine whether a counter runs 
forwards or backwards, signals which determine whether a 
clock pulse is to be produced and a signal which determines 
when the peripheral units are ready.

A logic diagram showing how one of these signals 
is generated is shown in Fig. 4.7. The SKIP CONDITIONS 
SATISFIED signal ( is used by the SKIP instruction
logic to determine whether or not the SEQUENCE COUNTER 
is to be incremented. Bits 7-19 of the SKIP instruction 
do not specify an operand address but rather the machine 
conditions which are to be sensed. Complete decoding 
of these bits would produce an enormous number of possible 
conditions, but of course is out of the question because 
of the amount of hardware involved. As in many 
engineering designs a compromise is made, and decoding 
for pairs of bits is provided to increase the number of 
conditions sensed without an appreciable increase in 
hardware. The problems of circuit fan-in is solved 
by using a NOR-NAND configuration with the outputs of the 
NOR gates represented in negative logic. As these 
outputs are transmitted some distance to another 
package via the base-wiring, the signal regenerative 
property of the NOR gate is used to advantage.
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TABLE 4 . 0

SPECIFICATION OF SONE CONTROL SIGNALS

y’ 0 a l a s C20 r k

0 FI FT2 1

0 ID 1 1

0 IX 1

y 80 IX 1

W90 IX 1 1

0EX

y lO^EO 1 1

y l l 0EO 1 1 1

y 12^EO 1

y 150EO 1

U1 2 - 1S 0EO 1 1

y160EO 1 1 1

y17^EO 1

M1 8 - 190EO G F F F

y2O0£O 1

y2 20EO 1

y2 3^EO 1 1

U1 6 - 230EO 1

U2 6 - 270EO 1 1 -

y2 8 - 31^EO 1 1

U2 70E 1 1 1

y2 6^E2 1 1 1

W2 70 E2 1 1 1 1

U2 80 E2 1 F
r EX 1

re x

U2 90 E2 1 F
r EX

F
cX ? EX

0 E3 1 1

t ds 1 R +R-,^j g 1 2  o R-, n + iL -7 J  10  12  o R +R J 0 R13 R14
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4.5 _____CARRY LOOKAHEAD ADDER

4.5 .. 0 Brief description
■ ■ — ■ ■■ ■ ■■■ ■■ ■ ■■ ■ ...........-  ■■ j . ..

A discussion of the CARRY LOOKAHEAD principle and 
a more detailed description of the adder used in ARCTURUS 
appears in the Appendix L . A brief description
fol]Iows.

A block diagram of the adder is shown in Fig. 4.8. 
The adder stages are numbered 0 to 19, with stage 0 
being the most significant and stage 19 the least 
significant. The adder inputs are A^ and B. (i = 0 -- 19). 
and the carry digit into the least-significant stage is 
designated C2Q. The SUM and CARRY digits are designated 

aind C* respectively.

PROPAGATE and GENERATE functions (P. and G.) 
are first formed for each stage. The adder is then 
divided into four groups each of 5 stages; and first-level 
PROPAGATE and GENERATE functions are formed for the three 
least significant groups. These functions are designated 
Pn* and G * (n = 1,2,3) with n = 3 corresponding to the 
least significant group.

By using FIRST-LEVEL-LOOKAHEAD, i.e. by applying 
the lookahead principle to groups of stages,the CARRY digits 
C15, C^q and Cç- may be formed. Then with the CARRY digits 
C20* C15, C1Q and Ĉ  either known or established, the 
remaining CARRY signals may be formed using ZERO-LEVEL- 
LOOK.AHEAD. Finally, the SUM digits are formed in terms of 
the CARRY digits and PROPAGATE functions.

The advantage of the CARRY-LOOKAIIEAD-ADDER over the 
conv<entional RIPPLE-CARRY-ADDER is that in the latter, the 
CARR'Y and SUM digits of each full-adder stage are formed 
in succession as CARRY digits of less significant stages 
ripple through to more significant stages, whereas in 
the former, the CARRY and SUM digits of almost all stages 
are formed simultaneously. Hence, the CARRY-LOOKAHEAD-ADDER 
is miuch faster but requires more hardware.

4.5.1 Selection of adder inputs
The adder is used for carrying out arithmetic 

operations on -instructions (e.g. INDEXING instructions) 
as well as on numbers held in machine registers.
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A large number of different operations (such as CLEAR,
SUBTRACT, DECREMENT, etc.) are required. Both these 
requirements may be satisfied by the appropriate selection 
of adder inputs.

Control signals, a,s,r and k are used to select 
J,J,0 or 1 as the first adder input and R,K,0 or 1 as the 
second adder input. The defining equations are

A = aJ + sJ 
B = rR + kK + rk .

Different combinations of the control signals
a,s,r,k and C2Q produce many useful functions as the
adder output. For example, the combination ZERO, ONE, ZERO,
ONE, ONE respectively for these signals produces the
function K - J which is required by the SUBTRACT instruction;
the combination ONE, ZERO, ZERO, ZERO, ONE produces the
function J + 2 ^  which is required by the INCREMENT SKIP
instruction; and the combination ZERO, ZERO, ONE, ZERO, ONE

-19produces the function R + 2 which is required by the 
JUMP TO SUB-ROUTINE instruction. ,A table containing a 
list of these functions wduIU have bsen produced by the 
designer soon after the adder inputs were defined, and 
the machine design was carried out to take full advantage 
of the flexibility and speed of the adder.

4.5.2 Alternative configurations
A number of logic circuit configurations for the 

adder were considered; alternative :onfigurations for 
obtaining the PROPAGATE and GENERATE functions are shown 
in Fig. 4.9.

Configuration I represents the most direct 
approach. The adder inputs A and B are formed;
PROPAGATE (P) and GENERATE (G) signils are then formed in 
terms of the adder inputs, and are tompletely regenerated 
using double invert circuits.

Configuration II is a simplification of configuration I 
but allows an AND-OR circuit for fo-ming P.

Configuration III is derive! from the Boolean 
equations for the inverses of the T3RMINATE (T) and 
GENERATE (G) functions written in SUM-OF-PRODUCTS form.
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This configuration was chosen because the number of cascaded 
INVERT circuits was smaller than the number in other config
urations. Hence the use of Configuration III would result in 
a faster adder. The smaller number of INVERT circuits would 
also compensate for the increase in the number of AND gates 
over that of Configuration II.

A slight relaxation of the speed specification 
of the computer would possibly make Configuration II 
very attractive. The selection of adder inputs is more 
straight-forward and hence more flexible than in 
Configuration III. If Configuration II had been chosen, 
a wider choice of adder inputs might have been provided.

4.5.5 Final adder configuration
A skeletal logic diagram of the adder configuration 

is shown in Fig. 4.10. This diagram is intended to give 
some indication of the signal attenuation and time 
delays which are involved.

Time delays introduced by INVERT circuits are 
much greater than those introduced by AND or OR circuits. 
However, INVERT circuits do regenerate signals while diode 
AND and OR gates cause signal deterioration in the form of 
attenuation and level-shift.

Circuit tests showed that the configuration AND- 
OR-EF-AND-OR-EF (wheie EF represents an emitter follower) 
was quite satisfactory, but that further cascading of 
logic circuits without regeneraticn was unwise.

Hence the aim was to obtain a circuit arrangement 
for obtaining the SUM digits with the minimum number of 
INVERT circuits in cascade and with the restriction that 
the AND-OR-EF-AND-OR-EF-circuit ccnfiguration is the 
longest chain of logic circuits through which signals 
must pass before they are regenerated.

The choice of the circuit configuration for 
the P and G functions was discussed in the last section. 
This is followed (in Fig. 4.10) by configurations for the 
FIRST-LEVEL PROPAGATE and GENERATE functions (P 1 and G T) 
the FIRST-LEVEL-LOOKAHEAD circuits which produce 
^15* ^10 anĉ ^ 5 > an<̂  by t îe ZERO-LEVEL-LOOKAHEAD circuits 
which produce the remaining CARRY signals.
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The SUM digits which are functions of the CARRY signals 
and the PROPAGATE functions may be selected by the 
DISTRIbUTOR-FUNCTION-SELECTOR (DFS) and distributed 
(i.e. transmitted) to all machine registers.

From Fig. 4.10, it can be seen that from the 
effective selection of adder inputs to the complete 
regeneration of the DFS output, the maximum number of 
INVERT circuits in cascade is seven. Allowing a delay 
of 40 ns for an AND-OR-EF-INVERT-EF circuit, a reasonable 
estimate for the total delay of the adder circuits 
would be 280 ns. Allowing an additional 200 ns for 
charging transient storage gates, an estimate for the 
’’accumulate time” (i.e. the time required to add the 
contents of J to K and to place the answer in K) 
would be about 1 yus. This figure was achieved in practice.
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Figure 4♦ 10” - SKELETAL LCGIC DIAGRAM OF ADDER
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4.6 MACHINE REGISTERS

4.6.0 Distributor Function Selector

The DISTRIBUTOR FUNCTION SELECTOR (DFS) was 
introduced in the last section. Its function is 
to select arithmetic and logical functions of register 
outputs and to distribute these functions to all registers.

The DFS may select the ADDER output in which 
case the nominal time of  ̂/*s is allowed. However the 
ADDER may be by-passed (as required by the high-speed mul
tiplication process) in which case the DFS selects a 
register output and the nominal time of  ̂/ ¿ s is allowed.

The DFS output is fully regenerated and is used 
to feed all types of logical elements including transient 
storage gates, AND gates, R-S flip-flops and binary 
counters.

4.6.1 Memory Input Output Register
A logic diagram of the MEMORY INPUT OUTPUT REGISTER 

(the J register) is shown in Fig. 4.11.

A RESET-SET cycle using the CLOCKS J and J is° r m
used for sensing the memory output.

Two pairs of transient storage gates are connected 
to the inputs of each stage of the register. To these 
gates are connected the outputs of the DISTRIBUTOR 
FUNCTION SELECTOR and the ADDRESS SELECTOR. In this way 
the contents of all the main machine registers, 
as well as arithmetic and logical functions of these contents 
may be set into J and subsequently stored in the main memory.

An earlier machine configuration required J 
to be a very powerful register which could count and shift 
in either direction and which had the peripheral units 
connected to it. After the high-speed ADDER was 
designed, it was decided to use this unit for incrementing 
and decrementing. The design of the other arithmetic 
sections of the computer suggested that it was better to 
carry out shifting in the main arithmetic registers 
(K and L); this then led to the decision to connect the 
peripheral units to the K register.
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4,6.2 Main Arithmetic Registers
The main arithmetic registers to which programmers 

have access are the ACCUMULATOR (the K register) and 
the MULTI PLI HR-QUOTIENT-REGISTER (the L register) .
The OPERAND-REGISTER (the U register) is also available 
for limited use.

A logic diagram of the K register is shown in 
Fig. 4.12. Three pairs of transient storage gates are 
connected to each stage of the K register. To these 
gates are connected the output of the corresponding 
DISTRIBUTOR-FUNCTION-SELECTOR (DFS) and the outputs of 
the two adjacent DFS’s. In this way, all the arithmetic 
and logical functions produced by the DFS may be set 
into K in one of three positions : - the UNSHIFTED 
position, the LEFT SHIFT position and the RIGHT SHIFT 
position. This is controlled by three separate CLOCK 
pulses. Hence the ADD-SHIFT or SUBTRACT-SHIFT operations 
required by the multiplication and division procedures 
may be carried out by the generation of a single CLOCK 
pulse.

When the ADDER is by-passed, both the K and L registers 
may shift (in either direction) at the rate of 4 MHz. All the 
variants of the SHIFT instruction and all the SHIFT-modes re
quired by the multiplication, division and input-output pro
cedures may be obtained by supplying the appropriate signals 
to the transient storage gates at the extremities of the K and 
L registers and by supplying the appropriate CLOCK. The former 
section of the SHIFT logic is shown in Fig. 4.13.

A relatively simple modification to the logic 
represented by Fig. 4.13 was carried out quite late in 
the project to incorporate an ILLOGICAL SHIFT variant 
which was suggested by programming experience. This 
variant shifts ONES (compared with ZEROS for the 
LOGICAL SHIFT) into the extremities of the registers, 
and has proved to be very useful on a number of occasions.

The logic diagram of the K register (Fig. 4.12) 
shows AND gates connected to the ONE-sides of flip-flops.
These are for the connection of the input buffers to the 
K register. A LOGICAL SHIFT operation, which clears the 
appropriate stages of K, precedes a pulse which clocks 
the buffers into K. The outputs of the least
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4.6.3 Counters
Parallel binary counters are used for the ten-stage 

SEQUENCE COUNTER (the S register), the ten-stage OPERAND COUNTER 
(the U register), the five-stage NUMBER-OF-TIMES-COUNTER (the 
V counter) and the three-stage BIT COUNTER (the W counter). The 
SEQUENCE COUNTER runs forwards; the OPERAND COUNTER is revers
ible and the remaining two run backwards.

In the design of the counters, it was decided 
that the same types of packages should be used in all 
cases, and that the only difference should be in their 
method of interconnection. The logic circuit configuration 
for a parallel, reversible binary counter is shown in 
Fig. 4.14. The COMPLEMENTER is omitted if the counter 
is not required to be reversible, and the ONE-outputs or 
ZERO-outputs of the BINARY COUNTERS are connected to the 
NOR gates of the COUNTER GATING depending on whether the 
counter is to run backwards or forwards respectively.

The counter configuration of Fig. 4.14 (of which 
a slightly more detailed description appears in 
Appendix . L . ) was found to be very flexible
and produced compact standard packages. The complete 
circuit easily satisfied the design requirement of <
reliable operation at 4 MHz.
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4.7 MULTI PLIC/ATION PROCEDURE

4,7,0 General PTrinci £les
Extremely fast multipliers using only com

binational circuitts have been proposed (Ref. 45 )t 
but are not commorn because of the amount of hardware 
involved. Most miultiplication procedures involve a 
sequence of ADDITIIONS and SHIFTS in which the product 
of the numbers is formed as the accumulated sum of a 
number of partial products.

A common ttechnique is to utilise a double
length ACCUMULTAOFR-MQ REGISTER configuration which 
holds the growing ACCUMULATED PARTIAL PRODUCT and 
the diminishing MIULTIPLIER, The MULTIPLIER digits are 
sensed one at a tiime, and used to determine whether or 
not the MULTIPLICAND is to be added to the ACCUMULATED 
PARTIAL PRODUCT. After this the double-length register is 
shifted, and the procedure repeated until all MULTIPLIER 
digits have been ssensed.

The arrangement of the inputs to the K register 
in ARCTURUS (descriibed in Section 4.6 ) enables the ADD- 
SIIIFT and PASS-SHI FT operations to be carried out by a 
single CLOCK pulse?. This speeds up the multiplication 
procedure.

In most arithmetic units the SHIFT operation 
requires less time? than the ADD operation. Hence 
the multiplicationt procedure may be again speeded up 
by "by-passing'* thie adder and consequently allowing 
less time for the (PASS)-SHIFT operation.

The number* of SHIFT operations may be increased 
and the number of ADD operations reduced by MULTIPLIER 
RECODING. This produces a further speeding up of the 
multiplication procedure.

The procedture used in ARCTURUS is to sense 
MULTIPLIER digits two at a time. These are used to 
determine which of three operations are to be performed 
during each stage <of the multiplication procedure.
The three possible operations are (i) ADD-SHIFT 
(ii) SUBTRACT-SHIF7T and (iii) PASS-SHIFT. The last 
of these does not require the use of the ADDER, and 
hence if adder-bypiassing is available, this operation 
requires less time than either of the other two.
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As the procedure allows three different operations 
rather than two, it corresponds to a recoding of the 
MULTIPLIER from a BINARY to TERNARY system. This 
recoding is carried out so that (as far as possible) 
the number of PASS-SHIFT operations is maximised.
This results in a significant reduction of the average 
multiplication time.

4.7.1 Implementation
The implementation of the multiplier recoding 

procedure in ARCTURUS is fully described in Appendix L.
A very brief summary follows.

The multiplication logic makes use of the 
REPEATED OPERATIONS LOOP (Fig. 4.3). Typical timing 
waveforms are shown in Fig. 4.15.

When the REPEATED OPERATIONS LOOP is started 
by a Tĉ q pulse, it generates several pulse trains. 
Passage through the loop always produces a TQp pulse, 
while the generation of a T^^q or T<-qq pulse (250 ns or 
500 ns respectively after T^p) depends on the setting of 
a control flip-flop (G). Appropriate delays are 
introduced by the T^ 5  and T̂ j. pulses’.

The CLOCK pulses required by the multiplication 
procedure (e.g. Lr, Kr and L̂ ) may be generated from 
the pulses produced by the REPEATED OPERATIONS LOOP 
and from various control signals.

Some of the problems involved in the design of 
the multiplication logic were : -

(i) the critical timing of the CONTROL signals and
CLOCK pulses required by the MULTIPLIER RECODING 
and ADDER BY-PASSING operations

(ii) the correct treatment of positive and negative 
operands

and
(iii) the correct positioning of the result with the 

specified DOUBLE LENGTH NUMBER format.
All of these problems were of course solved; and the 
design has been verified by tests and operating experience.
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4,7.2 Multiplication time
The nominal times allowed for an ADD/SUBTRACT-SHIFT 

operation and a PASS-SHIFT operation are 500 ns and 
250 ns respectively. The multiplication time depends on 
the multiplier and varies between the time required for 
twenty PASS-SHIFT operations (i.e. 5/*s) and the time 
required for ten PASS-SHIFT operations plus ten ADD/ 
SUBTRACT-SHIFT operations (i.e. 7.5 /*s).

The above times exclude one memory cycle time 
required to fetch the instruction and one memory access 
time required to fetch the

• multiplicand. The
multiplication process may proceed while the multiplicand 
is being regenerated in the memory.
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4.8_____ DIVISION PROCEDURE

4,8,0 General Principles

Many early computers and even some second 
generation computers such as the IBM 1620 (Ref. 46 )

required a program to carry out division. The 

incorporation of the division function into the 

hardware of the computer can be carried out in a 

number Of ways (Ref. 47 ). NON-RESTORING procedures 

are invariably faster than RESTORING procedures 
and hence they are used unless the register configuration 

or other reasons strongly favour some other procedure.

In a parallel, binary computer, the basic requirements 
for hardware division are a double-length ACCUMULATOR-MQ 

REGISTER which can shift left (i.e. in the opposite 
direction to that required for multiplication) and a 

control unit which enables the DIVISOR to be added to 
or substracted from the REMAINDER held in the ACCUMULATOR.

A number of methods (Ref. 48 ) have been used 
for nneeding up the division procedure in large-scale, 

scientific computers. Some methods (Ref. 49 ) are
analogous to those used for multiplier recoding in that 

they utilise adder bypassing; however these methods assume 

normalised operands and hence are only applicable to 
floating-point arithmetic units.

A high-speed procedure for division is not as 
important as it is for multiplication as most programs 
do not use division instructions as often as multiplication 
instructions.

>

Although some attention was given to the possibility 
of incorporating a high-speed division unit into the 
ARCTURUS structure, it was finally decided to use a 
conventional NON-RESTORING technique.

4.8.1 Implementation

A very brief outline of the implementation of 
the division procedure in ARCTURUS follows.

This procedure makes use of the REPEATED OPERATIONS LOOP 
(Fig. 4.3); timing waveforms are shown in Fig. 4.16.
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For division, the G flip-flop is always in the 
ZERO state; hence the REPEATED OPERATIONS LOOP produces 
a train of equally spaced pulses with a pulse spacing of 
500 ns. These are used to generate the CLOCK pulses for 
the K - L registers and for the F flip-flop. Except 
for the final CLOCK pulse for K, all CLOCK pulses effectively 
shift the new contents of the double-length K - L register 
one place to the left. Hence each pair of ADD/SUBTRACT 
and SHIFT operations required by the NON-RESTORING 
division procedure is carried out by a single CLOCK pulse.
The F flip-flop determines whether the DIVISOR is added 
to or subtracted from the REMAINDER held in the K register.

Some of the problems involved in the design of the 
division logic were : -

(i) the detection of an incorrect result (by the 
DIVISION HANG-UP logic)

(ii) the correct timing of CONTROL signals and CLOCK 
pulses

and
(iii) the correct positioning of REMAINDER and QUOTIENT 

in the K - L registers.

The DIVISION HANG-UP conditions warrant further 
comment. These are shown in Table 4.1 . The fourth
column of this table shows whether the NON-RESTORING 
division procedure produces the correct result for 
different relative magnitudes and different signs of the 
DIVISOR and DIVIDEND . For the detection of an incorrect 
result, three machine conditions were considered. These 
were : -

(i) DIVIDEND and FIRST REMAINDER have same sign 
(column 5)

(ii) DIVISOR and DIVIDEND are equal (column 6)
(iii) FIRST REMAINDER is zero (column 7)

The entries in each of the columns 5, 6 or 7 
do not correspond exactly to those in column 4. A 
composite condition consisting of either condition (i) 
or condition (iii) (above) was considered preferable to 
any one condition alone. This composite condition is 
represented by the last column of the table. It shows 
that the DIVISION HANG-UP condition is satisfied (with 
the consequent stopping of the computer) if the absolute
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value of the DIVISOR is less than or equal to the absolute 
value of the DIVIDEND. The logic configuration of that part 
of the computer required for division requires that the two 
conditions (i) and (iii) above be sensed at two different times.
This is shown in Fig. 4,16. The latter condition makes 
use of thelTK gate which is used for sensing when the 
ACCUMULATOR is ZERO. It was found that only a small 
amount of additional logic was necessary for the 
DIVISION IIANG-UP logic but extreme care was necessary for 
the interpretation of machine signals at various stages 
of the division procedure.

4.8.2 Division time
The nominal time allowed for an ADD/SUBTR ACT-SHIFT 

operation is 500 ns. The division procedure requires 
twenty of these operations. Hence the division time is 10/us. 
This time excludes one memory cycle time required to fetch 
the instruction and one memory access time required to 
fetch the divisor. The division procedure may proceed 
while the divisor is being regenerated in the memory.
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4.9 PROGRAMMED OPERATORS

4,9.0 Implementation
The PROGRAMMED OPERATOR feature of ARCTURUS 

was described in section 3.2.6, A brief description 
of the hardware necessary for the feature follows.

At the end of a FETCH INSTRUCTION phase, the 
sequence counter is incremented, and the (incremented) 
sequence counter is then stored in location 0 during the 
PROGRAMMED OPERATOR phase. This is carried out by firstly 
transferring the sequence counter via the ADDRESS SELECTOR 
to the memory input-output register (the J register), and 
then initiating a STORE cycle in which the ADDRESS SELECTOR 
outputs are all ZERO. This last condition is readily 
obtained by ensuring that all the control signals 
associated with the ADDRESS SELECTOR are ZERO.

Transferring control to the address determined 
by the OPERATION CODE of the instruction plus 32 is carried 
out by SELECTION CIRCUITS connected to the setting lines 
of the sequence counter (the S register). During the 
PROGRAMMED OPERATOR phase, these SELECTION CIRCUITS 
set Rq - R̂  into S ^  - S^; S ^  is forced to ONE and 
all other stages of S are forced to ZERO.

Setting the effective operand address into the 
operand register (the U register) is readily accomplished 
by clocking the address portion of the instruction register 
(the R register) via the DISTRIBUTOR into the U register 
during the PROGRAMMED OPERATOR phase.

4.9.1 Extensions
The amount of hardware required for the PROGRAMMED- 

OPERATOR feature (in relation to its usefulness) is very 
small. In particular, the extension of the feature in 
ARCTURUS which enabled indirect addressing to be used with 
PROGRAMMED-OPERATOR routines which referred to multi-word- 
length operands required an insignificant amount of hardware, 
as the only operation involved was the setting of the 
effective operand address into the U register.
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A further improvement, which incidentally is 
utilised in later Scientific Data Systems computers 
(Ref. 60 ), is to use a hardware register instead 
of location 0 to hold the return link. In terms of 
the ARCTURUS structure, this would completely eliminate 
the PROGRAMMED OPERATOR phase and of course speed up 
the computer.

An even better arrangement would be one which 
allowed lists of return links to be stored either in 
flip-flop registers or some (fast) scratch-pad memory. 
This arrangement would allow PROGRAMMED OPERATOR 
routines to be nested without the necessity to store the 
return links within the routines. With costs of computer 
components (including scratch-pad memories) continuously 
decreasing, this arrangement may become quite attractive.
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4.10 PERIPHERAL UNITS 

4.10.0 Block Diagrams
Block diagrams of the logic required for the 

reader, printer and punch are shown in Figs. 4.17, 
4.19 and 4.18 respectively. Brief descriptions 
follow.

The reader logic has been designed to assemble 
the last character read from tape into the flip-flop 
BUFFER where it is ready for use by the computer.
Having sensed the state of the BUFFER, the computer 
produces a START pulse. This resets the READY flip-flop 
and puts the CLUTCH-BRAKE flip-flop into the state 
which removes the brake and applies power to the clutch.
As the tape moves forward, the amplified LOCATION PHOTO
CELL output is used to clock the BUFFER, to set the 
READY flip-flop and (normally) to.apply the brake.
Improved performance can be obtained (Ref. 7) by requiring 
the computer to produce an INHIBIT BRAKE SIGNAL (o' ) 
when it requires and can handle the information assembled 
into the BUFFER at the maximum rate of the reader.

The CLOCK 5 START pulse of the punch logic (Fig. 4.18) 
is used firstly to clock the signal lines representing 
the CHARACTER TO BE PUNCHED into the flip-flop BUFFER, 
and secondly to start the punch cycle. The READY flip-flop 
is reset by the CLOCK $ START pulse and set at the end of 
the timing waveform produced by the TIMING MULTI. The 
SYNCHRONISING flip-flop is used to trigger the TIMING MULTI 
at the correct instant in the punch cycle. Under normal 
conditions, the outputs of the BUFFER are gated, by the 
timing waveform (produced by the TIMING MULTI), and the 
gated outputs are used by the POWER DRIVERS for the FEED 
§ DIGIT SOLENOIDS. When the RUN-OUT button is depressed, 
a pre-determined character (e.g. a DELAY character for 
5-channcl tape or a DELETE character for 8-channel tape) 
is punched continuously. The TEST SWITCH represents hardware 
for carrying out simple tests on the punch and its 
associated logic.
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The printer logic of Fig. 4.19 assumes that 
the computer produces a CLOCK BUFFER pulse before a 
START pulse. The states of the BUFFER which represent 
the CHARACTER TO BE PRINTED are decoded into 32 
lines by 32 x 5-input NOR gates. These lines are then 
gated by TIMING WAVEFORMS which specify either a 
FIGURE-SHIFT character, a LETTER-SHIFT character or a 
character common to both shifts. The outputs of the 
SHIFT GATING are then used by the POWER DRIVERS of the 
SOLENOIDS (and relays) attached to the IBM ELECTRIC 
TYPEWRITER. FIGURE-SHI FT/LETTER-Sill FT operation is 
provided (electronically) by the use of the SHIFT 
flip-flop, and UPPER-CASE/LOWER-CASE operation is 
provided (mechanically) by the use of the mechanical lock 
on the typewriter together with a sensing micro-switch.
The function of the START INHIBIT logic is to inhibit 
the START pulse if the BUFFER contains an UPPER-CASE 
character or a LOWER-CASE character, and the printer is 
in the same case. The TIMING MULTI produces the (65 ms) 
signal required by the SOLENOIDS. The LOCKOUT MULTIS cause 
the printer to be locked out (i.e. for the READY flip-flop 
to be in the ZERO state) for 100 ms for most characters, 
and for 1 sec for the CARRIAGE-RETURN/LINE-FEED character, 
the UPPER-CASE•character and the LOWER-CASE character.
The printer logic also contains test circuits (not represented 
in Fig. 4.19) which enables every SOLENOID to be operated 
under single-shot or dynamic conditions.

The approach taken with the reader, punch and 
printer has been to design self-contained units with 
autonomous timing and control. This minimises the problems 
associated with the design of the interface between the 
computer and the peripheral units. With the examples given, 
it appears that there are four basic signals (or groups of 
signals) which the designer of such an interface must 
consider. These are : -

(i) the START signal from computer to peripheral unit,
(ii) the READY signal from peripheral unit to computer,

(iii) the DATA signals between the computer and the 
BUFFER of the peripheral unit,

and
(iv) the SENSE signal or CLOCK signal associated with 

the BUFFER.
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A brief account of how these signals are treated in 
the design of an off-line tape editing set and in the design 
of the input-output logic for ARCTURUS appear in 
following sections.

4,10,1 Off line tape editing
A block diagram of the logic which enables the 

computer’s peripheral units to operate as an off-line 
tape editing set is shown in Fig.2.20. The basic inter
face signals described in the last section are switched 
by a RELAY SELECTION system. This consists of a relay 
network containing many change-over contacts under 
the control of a single-toggle switch. The EDITING SET 
LOGIC receives READY signals from all units, and generates 
CLOCK $ START signals of those units selected by the 
operator. This logic is arranged to operate the units 
as fast as possible. For example, comparison of two 
tapes takes place at reader speed, reperforation of a 
tape at punch speed•reperforation and printing at printer 
speed and so on.

Since ARCTURUS was commissioned, the off-line 
tape editing unit has been found to be extremely useful.
As the amount of hardware required for this unit was 
extremely small, it is considered that designers of 
computers similar to ARCTURUS should seriously consider 
this worth-while feature.
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4.10.2 Input-Output Logic
A block diagram of the input-output logic is 

shown in Fig. 4.21. A brief description follows.

Reference to the ’’description of instructions" 
(Appendix C ) shows that, for an input-output instruction, 
bit 9 specifies a 4-bit or 5-bit character, bits 12, 13 
and 14 specify reader 1, printer and punch respectively, 
and bits 15-19 specify the number of times the input- 
output operation is carried out.

The NUMBER OF TIMES COUNTER (V) is used to count 
the number of input-output operations. This is set initially 
to correspond to bits 15-19 of the instruction; V is 
decremented during the input-output operation; and the 
condition V = 0 is used to terminate the execution of 
the instruction.

The 1-0 READY LOGIC produces a composite READY 
signal which depends only on those input-output units 
specified by the instruction. This is the feature 
which enables all input-output units to operate 
simultaneously.

The presence of an UNWANTED CHARACTER in the reader 
buffer (c.g. a 5th - bit character when a 4 - bit 
character is specified) is treated as a NOT READY condition 
for the reader. When this condition exists, the reader 
is started to assemble the next character.

A cyclic left shift of the accumulator (K) precedes 
each operation. The number of places shifted is 4 or 5 
depending on whether bit 9 is 0 or 1 respectively.
This shift operation is under the control of the W counter.

After the contents of K have been correctly 
positioned, the appropriate input-output cycles are 
started. If the reader is involved, the reader buffer is 
clocked into the least significant stages of K, and 
the reader is then started to assemble the next character.
If the printer and/or punch are involved, the logic 
generates the appropriate CLOCK 5 START pulses to output 
the character represented by the least significant 4 or 5 
stages of K.
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The independent specification of input-output units 
by individual bLts of the instruction is a most flexible 
arrangement, andl produces many useful variants of the 
instruction. Other bits of the instruction have been 
reserved for reaider 2, a comparison of reader buffers 
and 8-bit operation. These extensions will require little 
or no change to the existing logic.
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Figure 4.21 BLOCK DIAGRAM OF INPUT-OUTPUT LOGIC
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4.10.3 The ARCTURUS Auto Input
The ARCTURUS Auto Input is a special mode of operation 

which causes information on tape to be read and stored in 
consecutive memory locations. Such a feature is essential 
for loading an assembly program into the computer.
The hardware for the Auto Input may be represented by the 
following itemised steps : -

*START Press AUTO INPUT push-button to put the 
computer into the AUTO INPUT phase.
Press START push-button.

*STORE Store K in location specified by contents 
of U.

^INCREMENT Increment U.

*READ Read five non-fifth bit characters from 
tape into K.

*TEST If terminating character # has been
read, go to * SET ; if not, go to * STORE.

*SET Set K into U and S.

*EXIT Leave the AUTO INPUT phase; enter the 
FETCH INSTRUCTION phase.

*STOP. Stop.

The OPERAND COUNTER (the U register) is used to 
specify the memory address. The operations "within the 
loop" are (i) store K, (ii) increment U and (iii) read a 
word into K. This is repeated until the terminating 
character # (a fifth-bit character) has been sensed while 
reading into K. When this happens, K is stored into U 
as well as into the SEQUENCE COUNTER (the S register).
Before stopping, the computer leaves the AUTO INPUT 
phase and enters the FETCH INSTRUCTION phase. This is 
the normal "idling" position and represents the beginning 
of a normal machine cycle.
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The setting of K into U after If is sensed enables 
the programmer to specify where the assembly program is 
to be stored. The setting of K into S enables him to 
specify the starting address.

Other ’’bootstrap" methods which have been used in 
various computers include (i) the setting of an instruction 
pair into the instruction register by a bootstrap push
button (Ref. 51 ) and (ii) the use of the input typewriter
for loading the assembly program (Ref. 46 ) . The use of
a pin-board store for the bootstrap routine also appears 
to be a satisfactory arrangement.

The ARCTURUS Auto Input feature has made operating 
procedures for the computer extremely simple. It did 
not require an appreciable amount of hardware for its 
implementation, but is as good as, if not superior to, 
any of the schemes mentioned above.
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4.11 COMMENTS ON FUNCTIONAL 5 LOGICAL DESIGN
A number of examples of the functional and 

logical design of various sections of ARCTURUS have 
been given. These designs have not been described in 
detail but rather an outline of the design and a discussion 
of some of the salient points have been presented. Because 
of space limitations, descriptions of the design of other 
sections of ARCTURUS must be omitted.

From the experience gained with the functional 
and logical design of ARCTURUS, several general comments 
and conclusions can be made.

A good design attempts to make good utilisation of 
all the electronic circuits in the machine. While these 
circuits have adequate margins for reliable operation, they 
must be operated in such a way that the computing power 
of the over-all machine is maximised as far as possible. 
Towards this objective, the time delays associated with 
every elementary operation, such as the time between 
the setting and sensing of a flip-flop, must be known; 
nominal times must be allocated to these operations to 
ensure reliable operation, and then the design is carried 
out so that as far as possible operating times equal to 
the nominal values are allowed for every computer operation 
irrespective of how elementary this may be. There is 
no point in allowing more time than the nominal value as 
this slows down the computer, and the hopeful expectation, 
that the use of an operating time less than the nominal 
value for perhaps only one of several hundred similar 
circuit configurations will not depreciate the reliability 
of the over-all system, is completely unfounded, as we 
cannot assume that the worst-case conditions will not be 
met by the circuit configuration in question.

There should be as much concurrency of operations 
as possible. This is related to the aim of eliminating 
unnecessary delays or the aim of allocating active 
functions to all computer elements in as many computer 
phases as possible. The degree to which this principle 
can be applied, of course, depends on the structure of 
the computer (in particular, the autonomy of component units) 
and on the amount of buffering between the units.
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In ARCTURUS, the multiplication and division procedures 
can proceed concurrently with the regeneration of the 
operand in memory, and the buffering of all peripheral 
units enables the concurrent operation of all peripheral 
units and the central processing unit.

A computer should contain well-matched 
component units. There is, for example, little point 
in providing extensive hardware for speeding up the 
arithmetic unit if the computer is already severely 
limited by the speed of its memory. A possible 
mis-match between the peripheral units and the 
central processing unit should also be considered.
In ARCTURUS, the arithmetic unit has an accumulate 
time of \  / u s and a multiply time of 5 - /*s>
these speeds reasonably match the 3 /is cycle time 
of the memory, and the unit can well accommodate 
the 2 /is memory which is planned for the near future.
The peripheral units of ARCTURUS (see Section 4.10) 
are adequate for a scientific computer of its class.

The designer of digital equipment must of course 
give due consideration to the problems of circuit 
delays and signal deterioration. As circuit speed is 
an important design criterion, the problems of timing 
often become critical, and a sound knowledge of all 
circuit delays involved becomes very important.
This was particularly so for the design of the timing 
and control units of ARCTURUS. In systems which use 
diode-transistor logic, diode gates are found to be 
fast and cheap, and the over-all speed of a circuit 
configuration often depends to a great extent on the 
number of transistor invert circuits in cascade,
(see Section 4.5). Hence configurations are chosen 
to take full advantage of the speed of the diode gates and 
the regenerative property of transistor invert circuits. 
The regeneration problem does not exist with systems 
which use integrated circuits as regeneration does in 
fact take place in every circuit, and the main design 
criterion for maximum speed is a minimum number of 
circuits in cascade.
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A thorough understanding of both the algorithms for 
carrying out machine functions and the hardware required to 
implement these algorithms is extremely important for the 
:machine designer. The situation is not a static one as the 
availability of new logical elements provides the designer 
'with a challenge to make full utilisation of these elements 
in the production of faster and more powerful digital 
»computers .
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CHAPTER 5
ARCTURUS - CIRCUIT DESIGN

5.0 ____ DESIGN APPROACH
5.0. 0 General considerations
5.0. 1 ARCTURUS circuit design

5.1 ____ CIRCUIT TYPES $ CHARACTERISTICS
5.1.0 Characteristics of selected circuits
5.1.1 Summary of types 5 characteristics
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5. Q DESIGN APPROACH

5,0,0 fieneral Considerations
There is a wealth of information in the literature 

on the design of transistorized circuits for digital 
computers , This information is in the
form of books, papers, correspondence, design handbooks 
and manufacturer’s application notes,

"Proper functioning" of the circuit 
is, of course, the primary requirement to be satisfied 
by any design procedure. This requirement may narrow 
the choice of circuit types and may introduce constraints 
on the parameters of the circuit, but it does not lead to 
a specific set of parameters. Some form of "optimisation" 
must be applied or additional design criteria must be 
satisfied to oroduce a specific set of parameters from 
which an actual circuit may be constructed.

Optimisation in computers is that mechanization 
of equipment which results in maximum performance at 
minimum cost , To achieve such an objective,
designers of computer circuits not only must be 
proficient in electronic circuitry, but must understand 
logical design, and must be familiar with manufacturing 
techniques - both for the basic electronic components 
and for the synthesis of the complete computer system.
This is clearly so as the minimisation of over-all costs does 
not depend solely on the cost minimisation of isolated 
electronic circuits. Costs can be reduced, for example, 
by a simplification of packaging techniques or by a 
relaxation of specifications and tolerances of power 
supplies, or again by an increase in reliability as this 
reduces commissioning and servicing costs.

The first step in the design of logical circuits 
for a computer is the derivation of circuit specifications. 
For example, the objectives for the delay per gate, fan-in 
and fan-out must be specified. These specifications 
can be obtained only by an examination of the logical 
design of those sections of the computer which demands 
the severest circuit requirements. In a conventional 
computer configuration, the adder could well be expected 
to determine these requirements.
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The next two stteps invol\e an evaluation of 
components and types off circuits. Simple procedures 
for checking transistorr parameteis, and possibly a 
computer program to corrrelate these parameters with 
the delay produced when i inserted in circuit would be 
extremely useful. For the development of a large-scale 
system, the evaluation cof types of circuits could even 
involve the constructionn of small prototype systems using 
different circuits.

With the type otf circuit ;elected, the final 
step in the design is ann optimisa:ion of this circuit.
This could be carried ouut using a "worst case design" 
procedure (Ref. 52 ). The desigi of the basic logical gate
for the UNIVAC-LARC (Reff. 53 ) .s an example of a
worst-case design. Worsst-case coisiderations produced 
6 equations in 14 indepeendent unkiowns. Some of these 
unknowns were selected sso that a ligh percentage of diodes 
and transistors from thee manufactirers could be used; 
others were selected to minimise jower requirements.
Other criteria were intrroduced until 6 equations in 9 
unknowns remained. Thesse were then determined through 
an optimization of speedd.

As systems becomme larger aid design problems more 
complex, the circuit dessigner must take full advantage 
of the digital computer to assist in the design.
Programs have been writtcen for the design of computer 
circuits (Ref. 54 ) ; sonme of thes? use linear
programming techniques (fRef. 55 ). Circuit design using 
graphical input-output ddevices (Ref. 56 ) seems to
have an exciting future.

5.0.1 ARCTURUS Circuit. Design

The circuit desi^gn for ARCnURUS was carried out 
with the background knowlledge of a complete range of 
computer circuits used ir.n two earl.er computers, viz ; - 
the digital differential analyser aDA (Ref. 1) and 
the general purpose digittal computer SNOCOM (Ref. 4).
All three computers make use of the same type of basic 
logic circuitry viz : - ppositive lcgic diode AND-OR gates 
and P.NP transistor INVERTT circuits. However the circuits 
in ARCTURUS utilise betteer semiconcuctor devices and circuit 
modifications have been mmade to male these circuits far 
superior to those in the earlier machine.
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There was much overlapping of logical design 
and circuit design in the ARCTURUS project. An 
appreciation of the circuit requirements of a tentative 
logical design enabled diode and transistor types to 
be selected and a range of logical circuits to be 
constructed. An appreciation of the circuit capabilities 
by the logical designer enabled final improvements to the 
design to be made by making full utilisation of the 
circuits.

The design criteria of maximising speed, fan-in, 
fan-out, noise rejection, component tolerances 
and supply tolerances, and of minimising power requirements, 
heat dissipation, temperature sensitivity, component 
rejection and constructional costs were all considered 
in varying degrees to obtain a range of logical circuits 
which could be produced in quantity using the facilities 
of a small research laboratory.

The development of these circuits was carried 
out by Mr. K.R. Rosolen. The author is deeply indebted 
to Mr. Rosolen not only for developing these circuits 
but for the role he played in all stages of the ARCTURUS. 
project. Examples of these circuits and a brief 
description of their characteristics follow.
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5.1_____ CIRCUIT TYPES AND CHARACTERISTICS

5.1.0 Characteristics of Selected Circuits
Examples of circuit configurations are shown in 

Figs. 5.0, 5.2, 5.4 and 5.6, All circuits operate 
with + 1 volt and -1 volt as the ONE and ZERO signals. 
Positive logic is assumed unless otherwise stated.

The logic circuit of Fig. 5.0 shows a typical 
configuration containing an AND-OR-EF-AND-OR-EF-INVERT-EF 
logic chain. Typical waveforms through such a chain are 
shown in Fig. 5.1. An evaluation of waveforms like this 
indicated that the longest logic chain without 
regeneration should be limited to an AND-OR-EF-AND-OR-EF 
configuration. This limitation was never exceeded in the 
design of the computer; moreover regeneration after fewer 
logical circuits in cascade was considered wise for some 
important, heavily-loaded circuits.

The output of the INVERT circuit is a 0 volt/ -2 
volts signal. This is shifted positively (by 1 volt) by 
the divider circuit associated with the final emitter 
follower. The use of diodes in this circuit produces a 
voltage shift without an attenuation of signal amplitude.
The use of dividers in the outputs of INVERT circuits 
rather than in the outputs of the AND gates (which was the 
method used in ADA and SNOCOM) has resulted in a significant 
component reduction.

Resistor values of approximately double those 
indicated in Fig. 5.0 were in fact used in earlier circuit 
configurations. The reduction of these resistor values 
has increased speed at the expense of increased power 
requirements.

Typical waveforms associated with the storage 
gate flip-flop of Fig. 5.2 are shown in Fig. 5.3. A storage 
gate consists of a resistor-capacitor network which 
operates on the flip-flop input as an integrating circuit. 
The output of this circuit is sensed (i.e. gated)by the 
clock, and the clocked signal is applied to the input of the 
flip-flop.
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The use of storage gates enables setting and resetting 
signals to flip-flops to be removed at clock time.
This property is required by designers of single-phase, 
synchronous logic systems. Storage gates are used 
extensively in ARCTURUS for accumulating, shifting and 
counting.

The waveforms C and D of Fig. 5.3 show the 
delays involved in the clocking and sensing of a 
storage-gate flip-flop. These waveforms were generated 
by the REPEATED OPERATIONS LOOP. In this part of 
.the machine, the G flip-flop (which is a storage-gate 
flip-flop) is clocked by a T^p pulse, and is used 
to gate a T - ^ ^ 5 pulse which follows 125 ns after T^p 
(see section 4.2.2). The waveforms show that the G 
flip-flop has settled well in advance of the T - ^ 5  

pulse. Waveforms like these indicate the circuit 
tolerances which exist in the computer.

The binary counter circuit of Fig. 5.4 essentially 
consists of a storage-gate flip-flop whose inputs and outputs 
are cross-coupled. The addition of the GATE input 
(see Fig. 5.4) and the associated diode-AND gate enables 
parallel binary counters to be constructed using 
the basic binary counter circuit (see Section 4.6.3).
The RESET, INPUT and CLOCK inputs enable the binary 
counter to be initially set to either state using a 
reset-set cycle. Waveforms associated with a ten-stage, 
parallel, binary counter are shown in Fig. 5.5. As 
GATE signals are established for all stages of the 
counter in the bit-period prior to the activating COUNT 
pulse, all stages switch almost simultaneously.
There is no appreciable delay between the switching of 
the least-significant stage and the most-significant stage 
(as there is with a serial counter formed by cascading a 
number of stages), and depending on variations in 
switching speed, it is even quite possible for the most- 
significant stage to switch just before the least-significant 
stage. The waveforms of Fig. 5.5 verify these remarks.

A circuit diagram of a positive trigger monostable 
multi is shown in Fig. 5.6. Such a circuit can have 
several trigger inputs each of which can be controlled by 
a gate signal. As the resistor-capacitor network used for 
this purpose represents an integrating circuit
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when viewed froim the gate terminal, the gate signals 
must be established well before the front edge of the 
trigger input pulse. When these conditions are satisfied, 
the monostable multis with their gated input signals are 
extremely useful for the insertion or deletion of timing 
waveforms in chains of timing waveforms. This requirement 
was met several times in the design of the timing unit 
for ARCTURUS. Typical waveforms produced by a chain of 
monostable multis are shown in Fig. 5.7 . All waveforms 
are variable in period with a minimum of about  ̂ s > 
and a maximum determined by the value of the capacitor 
which is shown with the typical value of 470 pf in Fig. 5,6

A second type of monostable multi which triggers 
off the back edge of the input signal can have a period 
down to 100 ns, and is used extensively in the timing 
unit of ARCTURUS, Typical waveforms produced by this 
type of circuit are shown in Fig. 5.7.
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(A) Input waveform

(B) Waveform after AND-OR-EF

(D) Waveform after AND-OR-EF-AND-OR-EF-INVERT-EF

Figure 5.1 - WAVEFORMS OF DIODE-TRANSISTOR LOGIC CIRCUITS
(10 ns/cm, 1 volt/cm)
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(A) Flip-flop operating at 4 MHz clock-rate
(100 ns/cm)

(B) Flip-flop operating at 12 MHz clock-rate
(100 ns/cm)
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(C) Flip-flop clock-pulses (from repeated- 
operations loop) - (50 ns/cm)
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(D) Flip-flop switching (50 ns/cm)

Figure 5.3 - STORAGE-GATE FLIP-FLOP WAVEFORMS
(1 volt/cm)
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(A) Count pulse (50 ns/cm)
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(B) Switching of least-significant stage

(50 ns/cm)
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(C) Switching of most-significant stage
(50 ns/cm)

(D) Least-significant stage operating at 4 MHz
(100 ns/cm)

Figure 5.5 - WAVEFORMS OF TEN-STAGE, PARALLEL BINARY COUNTER
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(A) Superimposed memory timing waveforms generated by a
train of positive-trigger monostable multis (500 ns/cm)

TRIGGER 
ONE OUTPUT

(B) Switching delays of positive-trigger monostable multis
(100 ns/cm)

(C) Superimposed timing waveforms generated by a train of 
negative-trigger monostable multis (100 ns/cm)

(D) A train of four pulses produced by negative-trigger 
monostable multis and a binary counter (200 ns/cm)

Figure 5.7 - WAVEFORMS OF MONOSTABLE MULTIS (1 volt/cm)
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5.1,1 Summary of circuit characteristics
The characteristics of the logical circuits used 

in ARCTURUS are summarised in Table 5.0. Only those 
parameters which are representative of over-all circuit 
performance, and which are of major importance to the 
logical designer are listed in this table. For example, 
although the output of an AND gate may feed one OR gate, 
one flip-f-lop or one emitter follower, these do not 
represent the maximum fan-out of the gate, and the use 
of the basic AND-OR-EF and AND-OR-INVERT-EF configurations 
in a large part of the machine makes figures for the 
fan-out of individual AND and OR gates of much less 
importance than figures for the over-all circuit configuration. 
It is, however, to be noted that where individual AND or OR 
gates generate signals which are transmitted through the base 
of the computer, emitter followers are always used. Under 
these circumstances, the stray capacitance of the signal 
wire to ground and to other signal wires is often of more 
importance than the load introduced by other logical circuits. 
It is also to be noted that emitter followers are used with 
all outputs of all monostable and bistable circuits.

Although tests on circuit characteristics such 
as noise rejection, power supply tolerance, component 
tolerance, temperature sensitivity and vibration 
sensitivity were carried out on the logical circuits, 
no attempt has been made in Table 5.0 to list these 
characteristics quantitatively.

It can be seen from Table 5.0 that the number of 
basic circuit types used in ARCTURUS is not large.
However these circuits may be arranged into an unlimited 
number of different configurations. The size of the 
package used to hold the circuits and the number of pins 
in the package connectors introduce constraints. As well 
as satisfying these constraints, circuit configurations 
for the packages are designed to maximise switching 
capabilities of the package and to provide the logical 
designer with larger, functional building blocks. These 
topics will be treated in the next chapter.
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TABLE 5.0
Summary of Circuit Characteristics

CIRCUIT TYPE CHARACTERISTIC

AND Fan-in : 2-8 (typical)
: 20 (special gate)

Delay : 2-4 ns
OR Fan-in : 2-10

Delay : 2-4 ns
INVERT Delay : 30-40 ns

EF(Emitter follower) Fan-out: >15 
Delay : 2-4 ns

AND-OR-EF Delay : 5-8 ns
AND-OR-INVERT-EF Delay : 35-45 ns
R-S flip-flop 1 
Storage-gate FF ( 
Binary counter f 

Shift register J

Turnover time : 80 ns (typical) 
Max. repetition rate:

4 MHz (design spec.)
8 MHz (typical)

Positive-trigger Min.pulse period :  ̂ ys
monostable multi Pulse rise time : 30 ns

Mark-space ratio : > 2:1
Negative-trigger Min. pulse period:
monostable multi 125 ns (design spec.)

90 ns (typical)
Pulse rise time : 12-15 ns
Mark-space ratio: > 2:1

Clock driver Load: .0015 yf (typical) 
Pulse rise time 10-20 ns 
Pulse width 125 ns

Memory driver Current output 100 ma 
Pulse rise time 80 ns 
Pulse width 1 ys
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6.0 PACKAGING

6.0. 0 Standard Packages
The method of package construction was essentially 

the same as that used in ADA and SNOCOM. The electronic 
components are pushed into holes in a polythene card 
which is held in juxtaposition with one or more Cannon 
plug(s) by a stainless-steel band. Two sizes of packages

7 ttare used ; their dimensions are approximately 1? x 4"3»» i»» 4and 3̂  x 4̂  ; and they contain 15 pins and 55 pins 
respectively. Photographs of packages are shown in 
Fig. 6.0 and Fig. 6.1. Examples of component layout diagrams 
which are required for the construction of the packages 
are shown in Appendix A.

The majority of packages in ARCTURUS are of the 
15-pin type. In the design of these packages, the main 
objectives were to construct as much of the computer as 
possible using a small number of different types of 
packages, and to keep all non-standard packages as simple 
as possible. Logic diagrams of the standard packages 
used in ARCTURUS are shown in Appendix B.

6.0. 1 The KL Package
The 55-pin, KL package contains one stage each 

of the K register, the L register, the ADDER and the 
DISTRIBUTOR-FUNCTION-SELECTOR. These large packages 
which are innovations found only in ARCTURUS, were used 
to minimise inter-package wiring (base-wiring). This 
results in a reduction of signal delays and pick-up 
of extraneous noise. In the design of fast computers, 
long inter-package wiring introduces significant delays, 
and hence the layout of the packages within the main-frame is 
extremely important. An extension of the principle used 
in the KL packages, viz. the packaging of corresponding 
stages of all registers and the adder in the same package 
might be a worth-while consideration. The use of integrated 
circuits would make this idea quite feasible , and the 
resultant package would not be unmanageably large.

A logic diagram of the KL package is shown in 
Fig. 6.2. Most of the symbols used in this diagram are 
listed in Section 4.0. As the present discussion is 
concerned with the principles of packaging rather than 
details of logical design, the remaining symbols will not be
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Fig. 6.0 - PHOTOGRAPHS OF PACKAGES
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6.0.2_____ Package Tests
As part of the commissioning procedure, all 

packages were subjected to the following tests : -
(i) Visual inspection of all soldered joints.

(ii) Visual check of wiring according to the 
component layout diagram.

(iii) Static tests to check the logical functioning 
of the package according to the logic diagram,

(iv) Dynamic tests to check the dynamic performance 
of the package with every input of every gate 
connected to a pulse generator in turn. 
Unacceptable circuit delays, oscillations 
and ringing were detected by this test.

In addition to the above tests, selected 
packages were given temperature and vibration tests.
These packages were subjected to alternate blasts of 
hot and cold air generated by a hot air blower and an 
improvised blower system using liquid air. Results of 
these tests were very favourable, and indicated that 
temperature sensitivity of the circuits was not a major 
problem. Vibration tests using a motor operated cam 
were used to check the performance of plugs and sockets and 
to locate suspected dry joints. Combined temperature and 
vibration tests gave some indication of the durability of 
the complete package. These tests, which often lasted 
many hours, augmented confidence in the circuits and in 
their method of construction.
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6.1 BASE-WIRING

6.1.0 Specification
Wiring lists were obtained from the logic 

diagrams of functional units of the computer (such as 
the timing unit diagram and the input-output unit 
diagram). This information was transferred to a 
large 10* x 3* base-wiring diagram, which contained 
information about every package in the main-frame 
of the computer. An extract from this diagram which 
shows information pertaining to a particular package 
is shown in Fig. 6.3.

To minimise errors in the large base-wiring 
diagram, a system of cross-referencing was introduced.
This diagram contains not only a list of destination- 
points to which the package outputs are connected, 
but also a list of source-points from which signals 
are derived for the package inputs. Discrepancies in 
the system clearly reveal errors in wiring or in 
specification; these are checked out thoroughly and 
eliminated.

The large base-wiring diagram has proved 
useful in another way. The diagram provides a picture 
of the layout of the entire main-frame, and is extremely 
useful for choosing the optimum position of a package.
The KL clock driver package is a good example of a 
package where, operation can depend on its position within 
the ma‘in-frame. As the KL packages are arranged in line, 
and extend over several feet of the main-frame, the 
positioning of the clock drivers near the centre of 
these packages would minimise wire lengths for the clock 
lines. This would minimise signal overshoot, and also 
minimise the variation of the signals applied to each 
KL package. The above considerations were found to be 
extremely important, as the KL clock driver package 
was in fact moved to a position near the centre of the 
KL packages to improve the reliability of the computer.

6.1.1 Noise minimisation
Tests on the main-frame of the computer showed 

that the transmission of a 100 ns pulse (with a rise 
time of 10-15 ns) from one end of the main-frame to the 
other produced severe ringing.
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To overcome this and other noise problems, it was 
decided to introduce a ground-plane. Unfortunately, 
when this decision was made, most of the base-wiring 
had already been carried out, and hence it was necessary 
to form the ground-plane by inserting a grid of copper 
strips (with silver and gold flashing) behind the wires, 
and by soldering the strips at all cross-over points.

Noise on voltage lines has been minimised by 
providing an even distribution of filter capacitors 
through-out the main-frtf^^. These capacitors are 
connected between all voltage lines and the ground 
plane.

Where capacitive loading is important, wires 
are held well clear of the ground-plane and well clear 
of other wires by threading them through a number of 
stainless-steel wire-mesh brackets.

The above features for noise minimisation are 
illustrated in the photographs of Fig. 6.4. Since the 
incorporation of these features, most signal waveforms 
have been extremely "clean", and pickup of self-induced or 
extraneous noise has not been a problem.

6.1.2 Base-wiring Checks
As part of the commissioning procedure, a 

thorough check of the base-wiring was made. All points 
in the base were firstly inspected for dry or badly 
soldered joints. As all wires in the base were colour 
coded (e.g. blue-white wires for J signals, green-yellow 
wires for clocks and so on), a joint with two different 
coloured wires connected to it was immediately suspected 
of being wired incorrectly, and a thorough check of all 
wires connected to this joint would be made.

A check on the continuity of wires according 
to the base-wiring diagram was made using a system of 
probes and a buzzer. The cross-referenced specification 
of base wires (mentioned earlier) revealed many mistakes.
A test for the discontinuity of every pair of signal 
lines was not attempted because of the time required for 
such a test. However all voltage lines and some important
signal lines were in fact checked for discontinuity.
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Fig. 6.4 - PHOTOGRAPHS OF BASE-WIRING
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6.2 ENGINEERING CONSTRUCTION

6.2.0 Machine Layout
Photographs of ARCTURUS appear in Fig. 6.5.

The main-frame of the computer containing the memory, 
arithmetic and control units rests on top of a 
Steelbilt desk. The main console which is connected 
to the main-frame by short cables is located 
centrally on the desk for the convenience of the 
machine operator. The pedestals of the desk and the 
section between the pedestals contains power controls, 
power supplies»cooling fans and metering facilities.

The input-output unit consists of a long, 
narrow desk and a small cabinet. The reader and printer 
rest on top of this desk and the pedestal contains 
the Teletype BRPE punch. The small cabinet contains 
the input-output console and all the electronic 
circuitry required for the autonomous operation of the 
peripheral units. The layout of the input-output unit 
was suggested by experience with SNOCOM, and has been 
found to be very convenient for the efficient handling 
of paper tape,

6.2.1 Consoles
A photograph of the main console is shown in 

Fig. 6.6. There are two sections of this console.
The lower section contains all the pushbuttons and 
switches which are frequently used by the machine 
operator. This section i6 clearly engraved and the 
console arrangement is kept as simple as possible.
The upper section contains monitors for all machine 
registers and the controls for built-in engineering 
tests (see Section 6.3.1). A toggle register in this

t
section of the console is also used occasionally by 
the machine operator.

A photograph of the input-output console is shown 
in Fig. 6.7. The engraving of this console is illuminated 
in sections.
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Each section contains the monitors and controls 
for each peripheral unit, and only those sections 
corresponding to operative peripheral units are illumin
ated. The data flow between these units is also represented 
by illuminated engraved lines. This feature was found 
to be very useful particularly when the peripheral units 
were operated off-line as an editing set. Under these 
conditions, such a feature would significantly reduce 
operators* errors.

6,2,2 Auxiliaries
The power supply required by ARCTURUS is a 

single-phase, 240 V A.C. supply which is readily 
available from a wall outlet. The A.C. power controls 
are housed in the left-hand pedestal of the Steelbilt 
desk. Experience with SNOCOM suggested that a Variac 
control of the A.C. power to the D.C. power supplies 
was wise (if not absolutely necessary) to minimise 
the effects of switch-on and switch-off transients.
A Variac for this purpose was used in ARCTURUS.

The D.C. power supplies were constructed as 
separate, modular units. Design of power supplies for 
general-purpose, laboratory use (Ref # 57 ) were
utilised, but modifications to these designs were 
required by some high-current, high voltage supplies. 
Potentiometer controls to vary the output voltage of 
each supply within a limited range are provided, and are 
used in marginal tests on the computer. Metering 
facilities to monitor currents and voltages of all 
supplies are housed in the right-hand pedestal.

Cooling fans for the general cooling of the 
main-frame and for the cooling of specific components 
(such as the resistors in the memory drive amplifiers) 
are mounted at strategic points throughout the computer. 
Forced air ducts are also used in the main-frame.

The transistor amplifiers for the monitor 
lamps are mounted in units located as close to the 
base of the main-frame as possible. This arrangement 
minimises the capacitive loading of signal lines.
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Fig. 6.5 - PHOTOGRAPHS OF ARCTURUS SHOWING MACHINE LAYOUT
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Fig. 6.6 PHOTOGRAPHS OF MAIN CONSOLE
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6.3_____ COMMISSIONING PROCEDURE

6.3.0 ___ Sectional Tests
After the package and base-wiring tests 

described in Sections 6.0.2 and 6.1.2 had been carried 
out, the next stage of the commissioning procedure 
involved groups of packages plugged into the main 
frame. Groups of packages representing, for example 
the main timing unit or a complete binary counter 
were tested in their correct positions in the main-frame, 
but the control signals and drive pulse were produced 
externally.

The tests carried out on the first few groups 
of packages were initially very simple, but as more 
and more packages were gradually plugged into the 
main-frame, tests involved larger sections of the 
machine and hence became more comprehensive.

When sufficient packages were in the main-frame 
to enable the built-in engineering tests to become 
effective, the following stages of the commissioning 
procedure made full utilisation of these tests. They 
were, in fact, sufficient for testing the remaining 
sections of the machine prior to tests on the total- 
system.

6.3.1 ___Built-in Engineering Tests
The built-in engineering tests are basically 

very simple, but are extremely useful. These tests 
require a small amount of additional logic to inhibit 
some important machine signals, and to insert, in their 
place, some test signals in the form of a single pulse 
or a pulse train. These tests are carried out under 
the control of toggle-switches and push-buttons located 
in the top section of the main console.

As the functioning of the computer depends so heavily 
on the correct functioning of the main timing unit, a 
built-in test of this unit is provided. By replacing the 
normal START pulse by a train of pulses from a pulse 
generator, all timing waveforms may be monitored.
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With the timing unit operating satisfactorily, 
single-shot tests can be carried out to check every 
machine function. Extensive use is made of a toggle 
register which enables information to be set into 
all registers. By setting the instruction register 
(the R register) to hold different machine instructions 
in turn, all instructions may be checked out on a 
single-shot basis. By inhibiting the R clocks (at 
present carried out by removing the R clock package), 
all instructions may be obeyed repeatedly to enable 
all relevant control and timing waveforms to be 
monitored.

As test switches are used to break not only the 
main timing unit but also the V and W loops as well, 
elementary steps involved in the execution of a complex 
instruction (such as the INPUT-OUTPUT instruction) 
may be tested on a single shot basis.

The MJI (Memory-to-J Inhibit) switch has been 
found to be extremely useful. By using this switch, 
tests on the arithmetic and control sections of the 
machine can be carried out quite independently of the memory, 
as the required instruction or operand may be set up 
artificially in J using the toggle register.

Although the tests described above are basically 
very simple, they were found to be extremely useful in 
the early stages of commissioning for the location of 
machine faults. The additional' controls required by these 
tests also provided a means for storing information, 
and this resulted in the first operation of ARCTURUS 
as a stored-program computer.

6.3.2 Total-system Tests
Prior to a series of tests using programs read 

from tape, tests on the "total-system” were carried 
out with the machine executing simple programs stored 
a word at a time using the console switches. The aim 
of these tests was firstly to determine the optimum 
settings of important adjustable controls, and secondly 
to obtain some indication of the sensitivity of the 
total system to temperature changes and to external
noise sources



- 1 4 9 -

Marginal tests involving a variation of all 
voltages in turn were carried out to determine the 
range of voltages over which reliable operation was 
produced. '’Optimum” settings of these voltages were 
then chosen near the middle of these ranges.

Some voltages used only by the memory unit determine 
the memory drive currents, and hence were very critical.
To determine the optimum settings of these voltages, 
modifications were made to the machine to read from (and 
write into) all locations of the memory in turn. In this 
way, superimposed playback waveforms from all locations could 
be viewed on a C.R.O., and optimum settings not only of the 
memory voltages, but also of the important STROBE pulse, could 
be determined. It is anticipated that modifications 
for this test will be incorporated into the "built-in 
engineering tests” at a later date.

Temperature sensitivity tests involved blasts 
of hot and cold air directed at sections of the machine.
These tests were useful for locating several marginally 
faulty circuits.

Noise immunity tests involved turning equipment 
in the computer room on and off. The machine was only 
affected when the same A.C. line was used. This suggested 
that a further improvement in machine reliability could be 
obtained by the use of an isolating transformer and/or 
line-filter.

6,3.3 Test Programs
A whole range of very simple test programs each 

involving only one or two words was written to check the 
execution of every instruction. As the instruction under 
test was obeyed repeatedly, all timing and control signals 
associated with this instruction could be monitored. These 
programs were found to be very useful.

Memory dumps were found to be useful not only for 
debugging programs, but also for testing the machine.
The more complex output formats which are useful for 
debugging programs were, of course, not necessary for
testing purposes, and the sexadecimal dump was invariably 
used.
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A memory test program tested every location with 
different test patterns • With the test program stored 
in the first half of the memory, the test pattern (read 
from tape) was stored in every location of the second 
half of the memory; the fetch-and-compare operation was 
then applied to each location in turn, and a print-up of 
all faulty locations (if any) was produced. By copying 
itself into the second half of the memory, the test 
program can test the first half. The whole procedure was 
repeated many times using different test patterns.

It is to be noted that, with the memory test 
program described above, the test pattern is stored 
in many locations before any fetch-and-compare operation 
is carried out. This is a more severe test than one 
which consists of a succession of store-fetch-and-compare 
operations. This is so because in the program which is 
described, all ferrite-cores corresponding to the test 
location are subjected to many half-read pulses before a 
full-read pulse is applied.

During its first five months of operation, ARCTURUS 
was found to be very reliable, and extensive test 
programs have not been found necessary. However, the use
fulness of a single, comprehensive test program which 
tests all machine functions and produces a diagnostic 
print-up is fully appreciated; and in anticipation of 
an increased work-load for the machine, which puts more 
emphasis on the machine’s reliability, such a test program 
is being planned.
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7.0 THE ASSEMBLY PROGRAM API

7.0,0 Introduction § Description
Prior to the development of API, all programs 

for ARCTURUS were written in binary. This entailed 
working out, from the description of ARCTURUS instructions 
(Appendix C) , the binary patterns (or sexa
decimal characters) corresponding to every instruction 
in the program.

Assembly Programs simplify program preparation 
for digital computers. One of the main reasons for 
their use would be to facilitate the use of the program 
library. The Assembly Program API is a basic assembly 
program in that only the features which were considered 
"essential" for the efficient programming of a small 
scientific computer with limited storage capacity were 
incorporated. A description of this program follows.

Instructions in API use the sexadecimal character set 
0-“9, + ,-,N,J,F,L. The format of these instructions is :

TYPE INDIRECT
ADDRESS

DECIMAL
ADDRESS

TERMINATOR

TT J AAAA

+ (31 Characters) 
- SS 
N 
F 
L

The symbols used in the above instruction format 
are defined below : -
TT The symbols TT represent two sexadecimal characters 

which specify the instruction type. The characters, 
for machine instructions, range from 00 to 1L; and 
for programmed operators from 20 to 3L.

J The character J specifies indirect addressing. If
indirect addressing is not required, this character 
is omitted.
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AAAA

♦

(i)

(ii)

(iii)

(iv)

(V)

- SS

N

F

L

The symbols AAAA represent a decimal number 
which specifies an address or a pseudo-address 
representing an instruction variant. The number 
may contain any number of decimal digits from zero 
to six inclusive, but must be less than or equal to 
524287. If no address is specified it is assumed 
to be zero.

The terminator ♦ specifies a change of directive. 
Details of the operations initiated by this 
terminator are as follows : -

The block number is incremented by one.

The block number is printed. Blocks are 
numbered 20 (sexadecimal) onwards to correspond to 
the locations in which their starting addresses 
are stored.

The 31 five-bit characters on the tape following 
the character ♦ which constitute a "program- 
identifier” are read and printed, but not stored.

The block-start-address is printed. The block- 
start-addresses are stored as a list starting 
from location 20 (sexadecimal). These addresses 
may form part of unconditional-transfer instructions 
required by programmed-operators.

The block-start address specifies the location in 
which the first assembled word of the next block is 
to be stored.

The terminator - specifies that the address which 
it follows is to be considered relative to the 
starting address of the block specified by the 
two sexadecimal characters SS.

The terminator N specifies that the instruction is 
to be obeyed and not to be stored.

The terminator F specifies that the address which 
it follows is a fixed address (i.e. relative to 
address zero).

The terminator L specifies that the address, which 
it follows is to be considered relative to the 
starting address of the current block.
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After API is loaded, the initial conditions of 
the program are : -

(i) The address of the instruction which stores 
the assembled-instruction is 32 (decimal).

(ii) The block number is 1L (sexadecimal). 

Features of API are : -

(i) The operation codes for "programmed operators" 
form a logical extension of the operation codes 
used for machine instructions.

(ii) Indirect addressing may be specified independently.

(iii) Operand addresses are specified in decimal.
(iv) Programs may be readily assembled using blocks of 

instructions with each block consisting of either a 
library sub-routine or one section of the user’s 
program.

(V) Relative addressing with respect to the beginning 
of the block being currently assembled or with 
respect to the beginning of any specified block 
is provided.

(vi) Closed sub-routines may be assembled and then 
executed before the rest of the program is assembled 
under the control of API.
(This is accomplished by terminating a JUMP TO SUB
ROUTINE instruction with the character N).

(vii) Program identifiers are printed to provide a permanent 
record of the programs being used.

(viii) The assembled program may be started at any fixed 
address or at the beginning of any specified block.

Some instructions, such as the REGISTER TRANSFER
instruction, use individual bits of the instructions to specify 
independent•control functions. This results in a large 
number of variants for these instructions. No provision is made 
in API for the independent specification of control functions. 
However, the severity of this limitation is significantly reduced 
by the extensive use of the pre-compiled lists of corresponding 
instruction variants and pseudo-addresses. Examples of these 
lists are shown in Appendix E.
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7.0.1______Program Structure $ Coding
The program structure of API is shown on page 1 5 6  

the detailed coding is shown in Appendix

There is some difference of opinion concerning 
the usefulness of flow diagrams for the description of 
computer programs. One world-renowned computer authority 
(Ref. 58 ) has stated that their usefulness has been
over-rated, while other experienced programmers continue 
to make extensive use of them.

In an attempt to find a suitable substitute for 
the flow diagram, the Author has made use of what he calls 
a ’’program structure". This consists of a list of program 
statements, some of which are associated with a label. 
Program statements are to be considered sequentially (from 
top to bottom), unless a break in sequence is called for by 
a GO TO or IF-GO TO statement.

The API program contains 57 words. As this 
program is to be used many times and memory space is at a 
premium, considerable effort was directed at the production 
of an optimised coding for this program. By using various 
coding tricks, the number of words was reduced several times 
While a further reduction may still be possible, it can 
be said with confidence that at least a "near-optimum" 
coding has been produced.
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THE API PROGRAM STRUCTURE

* ENTRY

CLEAR
READ

Read two sexadecimal characters.
Assemble operation code and programmed-operator 
bit in location reserved for the assembled- 
instruction.
Clear K and L,

* TERMINATOR -

Read one sexadecimal character,
IF decimal GO TO * CONVERT 
IF +,-tN,J,F,L, GO TO * TERMINATOR ♦,
* TERMINATOR -, * TERMINATOR N, * CHARACTER J,
* TERMINATOR F, * TERMINATOR L respectively.

* CONVERT: Convert decimal address to binary assembling address
in L.

: GO TO * READ.
* TERMINATOR + : Operate carriage return/line feed on printer.

Set printer to figure shift.
Set printer to lower case.
Increment block number.
Print block number.
Read and print program identifier.
Set block-start-address in instruction which 
stores assembled-instruction.
Print block-start-address.
GO TO * ENTRY.
Read two sexadecimal characters specifying 
a block number.
Fetch into K the block-start-address of 
specified block.
Remove from K all but address bits.
GO TO * TERMINATOR F.
Add address in L to assembled-instruction.

: GO TO * ASSEMBLED-INSTRUCTION.
* ASSEMBLED-INSTRUCTION : Obey assembled-instruction.

: GO TO * ENTRY.
Add indirect address bit to assembled- 
instruction.
GO TO * CLEAR.
Add address in L and block-start-address 
in K to assembled-instruction.
Store assembled instruction.
Increment address of instruction which 
stores assembled-instruction.
GO TO * ENTRY.
Fetch into K the block-start-address of 
the current block.
GO TO * COLLATE.

* COLLATE

* TERMINATOR N:

* CHARACTER J

* TERMINATOR F:

* TERMINATOR L:
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7. 1______ PROGRAMMED-OPERATORS

7. 1.0_____Programming Arrangements Using API
It will be recalled from previous descriptions, 

that the programmed-operator feature is a hardware innovation 
which facilitates the use of sub-routines and which provides 
effectively a powerful extension of the machine’s repertoire 
of instructions. Programmed-operators carry out these 
functions, viz : -

(i) PLANT LINK - The incremented sequence counter 
is stored in location 0.

(ii) STORE OPERAND ADDRESS - The operand address is 
stored in the U register. (N.B. the operand 
may be indirectly addressed to any number of levels),

(iii) TRANSFER CONTROL TO SUB-ROUTINE - The next instruction 
is taken from location 32 plus the number represented 
by the operation code.

The operations involved in the execution of 
programmed-operators using the facilities of the assembly 
program API are illustrated by Fig. 7.0. This figure is 
concerned with an indirectly addressed programmed-operator 
which requires a double-length operand* The programmed- 
operator (21 J 70F) is stored in location 500 of the 
main program. When a programmed-operator is indirectly 
addressed, the hardware of ARCTURUS has been designed to treat 
the requirements of indirect addressing before those of 
the programmed-operator. Indirect addressing may be carried 
out to any level (as with a normal machine instruction),and 
the final effective operand address is stored in the U 
register. In satisfying the programmed operator requirements 
of the example represented by Fig. 7.0, the address 501 
(the incremented sequence counter) is stored in location 0, 
and control is transferred to location 21 (sexadecimal).
The use of API requires a directory of starting addresses of 
the program blocks to be stored in the locations starting 
from 20 (sexadecimal). If a programmed-operator is used as one 
of these blocks, an UNCONDITIONAL TRANSFER OF CONTROL instruction 
is used as its entry in the directory. This instruction 
causes the computer to obey the programmed operator, which, in 
the example of Fig. 7.0, is a sub-routine for carrying out 
some operation on a double-length operand.
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The first word of this operand may be obtained by planting 
the operand address from U into a FETCH instruction; 
the second word may be obtained using an ADD INDEX instruction. 
The link back to the main program may be carried out by 
indirectly addressing location 0.
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Figure 7.0 THE OPERATIONS INVOLVED IN THE
EXECUTION OF PROGRAMMED-OPERATORS
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7 ̂ 1 X______Examples - Poub le-length Arithmetic
All double-length programmed-operators (as well as 

all floating-point programmed-operators) make use of a' 
double - lerigth/floating-point accumulator in memory. For 
example, the double-length-add-subtract programmed-operator, 
which is described in Appendix F,
causes the double-length number specified by the programmed- 
operator instruction to be added to or subtracted from the 
contemts of the double-length accumulator. This is an example 
of a programmed-operator with two entry points. This 
arrangement is used, of course, to take full advantage of the 
similarity between the programs for the two individual functions.

One precaution which had to be taken with the above 
program was that of making the overflow logic ineffective 
for all intermediate arithmetic operations but effective for 
the final operation as a safeguard against producing incorrect 
results.

Another precaution was that of making the arrangements 
for the "directive print-out" of programmed-operators with multiple 
entry compatible with those required by API.

A full description of the double-length-multiply 
programmed operator also appears in the Appendix ( Appendix G)
This and other double-length programmed-operators have been checked 
on the machine. However, at the time of writing, a better 
algorithm for double-length division is being considered. The 
number of words in these programs are shown below: -

Double-length store : 10 words
Double-length fetch: 8 words
Double-length add-subtract:25 words 
Double-length multiply: 46 words
Double-length divide : 53 words

7.1.2 Examples-Floating-point Arithmetic
The format of a floating-point number in ARCTURUS is

shown below : -

j-<— Si gn bit

19

-»-Waste

1 1 1 8

Mantissa — 8 - b it
Exponen t
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The mantissa is a normalised, 30-bit fraction 
represented by the two's complement system. The 8-bit 
"exponent" is a positive integer, C, which defines 
the factor 2 by which the mantissa must be multiplied
to obtain the true value of the number.

All floating-point programmed-operators assumed 
that the operands are in the above format, and they convert 
results into this format before storing them in memory.
The waste bit was used to make the format compatible 
with that of a double-length number in so far as double- 
length-store and double-length-fetch programmed operators 
may be used for floating-point numbers.

The normalisation process in the above programs 
makes good utilisation of the SKIP IF NORMALISED variant 
of the SKIP instruction. A SHIFT UNTIL NORMALISED variant 
of the SHIFT instruction (using the U register to count 
the number of shifts) has been proposed, but has not yet 
been incorporated in the hardware. This variant would 
produce a significant improvement in all floating-point 
programs.

Much programming experience was gained by writing 
the floating-point programmed-operators. Many coding 
tricks making use of the subtleties of the machine design 
were discovered, and many coding problems suggested 
worthwhile modifications to the hardware. A full description 
of all these points is beyond the scope of this section.
An example of the floating-point programmed-operators is, however, 
presented in the Appendix ( Appendix H ). Although these 
programs have not yet been checked thoroughly on the machine, 
an advanced stage has been reached in their development.
At present, the number of words in these programs are as 
follows : -

F1oating-point -add-subtract- 
multiply-divide : - 143 words
Floating-point-input : - 99 words
Floating-point-output: - 85 words
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7. 2 SUB-ROUTINE HIERARCHY

7.2.0 ____Jump-to-Sub-routine Instructions
In early machines like SILLIAC (Ref. 51) 

the absolute or relative address of a sub-routine-link 
had to be planted in one of the machine registers 
by the programmer before the sub-routine was entered.

In machines like the LGP-30 (Ref. 3) 
and SNOCOM, which were designed in the late 1950's, 
instructions like the RETURN ADDRESS instruction were 
introduced to store the link (e.g. sequence counter 
plus two) in the location specified by the instruction.
This made the sub-routine entry instructions independent 
of their locatio n , but the UNCONDITIONAL TRANSFER OF 
CONTROL instruction (for entering the sub-routine) which 
followed immediately after the RETURN ADDRESS instruction 
was still necessary.

In machines like ARCTURUS and some commercial 
machines designed in the early 1960's, instructions like 
the JUMP-TO-SUB-ROUTINE instruction were introduced to 
carry out both functions of "planting the link" and 
"entering the sub-routine". With the use of the JUMP-TO- 
SUB-ROUTINE instruction in ARCTURUS, the sub-routine entry 
point immediately follows the location in which the link is 
stored. On first contact, this may not appear to be an 
ideal arrangement; however, with indirect addressing, there 
is no disadvantage, and the instruction has proved to be 
extremely satisfactory.

7.2.1 ____Sub-routine Hierarchy Instructions
Computer programs frequently use nested sub-routines. 

If conventional JUMP-TO-SUB-ROUTINE instructions (described 
above) are used, each sub-routine is only provided with a 
link back to the sub-routine of the next higher level. It has 
been suggested (Ref. 59 ) that "recursive" operations
could be readily programmed, if each sub-routine were 
provided with links to both the next lower and next higher 
levels of the sub-routine hierarchy. If these facilities are 
to be provided, it appears that all sub-routine links should be 
best stored in some list, and a "hierarchy counter" should be 
provided to specify the level.



- 1 6 3 -

In ARCTURUS, the INCREMENT HIERARCHY, DECREMENT 
HIERARCHY and RETURN HIERARCHY instructions (see Appendix c) 

use location 1 as the hierarchy counter.
This location contains an address which "points" to one 
sub-routine link in a list of links. As the hierarchy 
counter may be incremented or decremented many times, 
not only do these hierarchy instructions enable sub-routines 
to return to either a lower or higher level, but also 
the number of levels traversed may be specified.

The execution of the hierarchy instructions require 
either three or four memory cycles. Although several 
interesting problems were encountered in the design of the 
hardware for these instructions, the amount of hardware 
was not excessive.

Because of the infrequency of their use, these 
hierarchy instructions may not save much computing time. 
However, they were introduced, not for this purpose but for 
the purpose of stimulating thought on special instructions 
(in particular those required for‘recursive operations).
It is hoped that this will lead to hardware innovations in 
later machines.
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7.3________SOFTWARE DEVELOPMENT

7.3.0______Present Situation

Descriptions of test programs, assembly programs
and programmed-operators have been presented in earlier

sections. Apart from these, programs have been written
by two research students working for higher degrees.

These programs are concerned with : -
(i) preliminary studies leading to research work on

the processing of recordings from radio telescopes
(Ref. 60 )

and
(ii) the addition of a remote console to ARCTURUS 

(Ref. 24)

ARCTURUS has also supported several Electrical 
Engineering Honours projects. These were concerned 
with : -

(i) a digital differential analyser simulator 
(Ref. 61)

(ii) a floating-point coding system similar to the A9 

system (Ref. 51) used with SILLIAC and the 
KDF9 (Ref. 36)

(iii) the computer requirements of a remote console 
(Ref. 62)

and (iv) a logic simulator for testing the d e s i g m o f  a 

digital control system (Ref. 63).

7. 3.1

(i)

(ii)
(iii)
(iv)

and (v)

Plans for the Future

Short-range plans for the future include : - 

the further development of programmed-operators, 
the full development of an A9-type coding system, 

the extension of testing and diagnostic facilities, 
the development of software (together with hardware 
modifications) to enable a remote console to be 
added to the machine,

the development of software (together with 

hardware modifications) to make efficient use of 
a recently acquired disk file.

Long-range plans centre around the proposed use 
of ARCTURUS- in a multi-level digital control system.

The efficient communication between computers and the 
control strategies to be used at the various levels of the 
hierarchical structure will pose many software and 
hardware problems.



- 1 6 5 -

The solutions of these problems will be topics of future 
research projects.

A computer-bureau-type installation was not the main 
objective of the ARCTURUS project, as a very good computing 
service was already being provided by commercial machines 
within the University environment. The main objective was 
the construction of a computing installation for research 
purposes. This could take the form of the evaluation of 
hardware innovations,the stimulation of research work on 
computer organisations, and the development of both the 
hardware and software required by complex digital computer 
control systems. The support of research projects at the 
levels of both the Honours Bachelor's degree and the Master's 
degree has already proved that ARCTURUS is a very useful 
research tool; and its continued use in this role for 
projects planned for the Ph.D. level will confirm the fact 
that the ARCTURUS project has been a success.
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8.0 PREFACE TO FINAL CHAPTER
The objective of this final chapter is to present 

an appraisal of the computer projects described in this 
thesis. This is carried out by firstly presenting 
(in Section 8.1) a review of digital computer developments 
on a world-wide basis, and secondly discussing (in Section 
8.2) some of the features of the SNOCOM, NIMBUS and 
ARCTURUS projects in relation to the computer environment 
in which these projects were carried out.

There are nearly 200 books and innumerable papers 
written on various aspects of digital computer technology. 
Because the technology is so extensive, an outline (in 
several pages) of the developments in all aspects of the 
technology can only be a superficial one. However some 
sections of the outline represent summaries of experience 
gained in particular aspects of the technology which had 
to be studied in depth, and the remaining sections have 
evolved from numerous journals, reprints, books and notes 
which were accumulated during the course of the projects.

To place the SNOCOM, NIMBUS and ARCTURUS projects 
in proper perspective, a brief survey of the development 
of digital computers in Australia is presented in Section 
8.2. An appraisal of these projects is then made.
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8.1 REVIEW OP COMPUTER DEVELOPMENTS

8.1.0 History and Introduction (Refs. 68-69)

The early computers which played major roles in 

the evolution of the modern digital computer include 

the electro-mechanical Harvard Mark I (which brought 

Babbage's ideas into being), the relay computers built 

by the Bell Telephone Laboratories and the first electronic 

computer ENIAC. Early stored-program computers include 

the EDVAC, the EDSAC and the IAS computer.

Probably the most significant single concept 

which resulted in the rapid growth of computer technology 

was that of the "stored-program computer". Since its 

development by von Neumann and others in

the late 1940's, almost all later computers have utilised 

this concept. However, there have been some important 

conceptual refinements which include micro-programmable 

organisations, push-down memories, associative memories and 

multi-computer systems.

The developments of computer hardware have seen 

the shift from "first-generation" computers using vacuum- 

tubes through "second-generation" computers using discrete 

semiconductor components to "third-generation" computers 

using integrated circuits.

Since about 1958 computer technology has 

made extensive use of three major components: the magnetic 

core, the transistor and the magnetic surface (in the form 

of drums, tapes and discs). Other components have been used, 

but at present there are no serious contenders for the roles 

played by the above three.

The development of computer software has seen the 

trend towards the increased use of "problem-oriented languages". 

These have been written for commercial, scientific and other 

applications, and have resulted in a significant increase in 

"programmer productivity".

More details of the above aspects of digital computer 

technology, viz: - systems, hardware, software and applications, 

are presented in following sections. They are treated in 

approximately this order.

8.1.1 Logical Organisation and Systems (Refs. 70-73)

Since the early 1950fs there have been many 

developments in the logical organisation of digital computers. 

These have resulted in an increase in the power and speed 

of computers, a simplification of programming, and an 

extension, of the computer from a computational tool to a
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A wide variety of word-lengths, word formats 

and instruction repertoires are to be found in today's 

computers. Many contain features which enable numerous 

different arithmetic and logical operations to be carried 

out on fixed and floating-point numbers, bits, bytes, 

data fields and lists. Many of the more sophisticated 

features are first found only in the large computers, 

but as these features become established, the trend is 

towards the incorporation of modest versions of these features 

in the smaller machines.

Various forms of memory addressing techniques 

(including indirect and relative addressing) are in use, 

and much research effort is being directed at content- 

addressable or associative memories for information storage 

and retrieval and other applications.

For the specification of instruction sequencing 

many forms of branching instructions (such as the skip 

instruction in ARCTURUS) have been used, and features have 

been introduced for the efficient programming of loops and 

sub-routines. For real-time applications a priority interrupt 

system is important.

Microprogramming was proposed as an efficient and 

flexible means of control for a digital computer. Research 

effort directed at the production of cheap and fast read-only 

stores has resulted in this method of control being adopted 

for some commercial computers (including the lower range of 

the IBM System/360). The use of a fast-read-slow-write 

control-memory has resulted in several program-modifiable 

or stored-logic computers.

As the mismatch between fast central-processing- 

units and slow peripheral devices increased, the advantages 

of multiprogramming became apparent. To produce efficient 

multiprogramming^features such a priority interrupts, 

memory protection, real-time clocks and program relocation 

were introduced.

As new logical and memory devices are developed 

and hardware costs are reduced, computer designers will 

take full advantage of these advances in the technology, 

and the trend will inevitably be the production of faster, 

more powerful^cheaper and more reliable computers. The 

mastery of the batch fabrication of logical and memory 

elements will result in a radical change in computer 

organisations. Networks of a large number of interconnected 

computers (which have already been proposed) may then 

represent another major break-through in computer technology.
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8.1.2 Logical Design and Switching Theory (Refs.74-7 7  ̂ 4 8)
There have been a number of clever methods for 

speeding up the arithmetic operations in digital computers. 
Erxamples of these are the "carry-lookahead" and"multiplier- 
recoding" methods described in an earlier chapter. With 
the exclusion of the smaller computers, most computers 
now have floating-point hardware. In general, no macro
instructions such as square-root or sine are provided,as 
rapidly converging algorithms for these functions are 
available.

Boolean algebra has been found to be adequate 
for the specification of combinational circuits. Many 
Boolean minimisation techniques, such as those for 
minimising contact springs, diodes, gates, feedback loops, 
states, hazards, inverters and logical levels, have been 
applied. However, even the best computerized techniques 
(which are far more powerful than the well known Quine 
method) can only handle 20 to 30 variables because of 
storage and computing time .limitations. Hence the classical 
minimisation techniques are inadequate for many complex 
design problems in existing large computers.

The mathematical model of the digital computer 
as a complex sequential switching circuit may be useful 
for small machines. However the application of the state 
diagram approach to the design of large systems is limited 
because the individual steps, such as the state assignment 
for circuit minimisation, are complex and an exhaustive 
treatment (even by computers) is prohibitive.

It appears that switching theory is adequate 
for small logical design problems, but large systems cannot 
be synthesised by a direct application of this theory.
For large systems, the designer must be guided by the principles 
established by the switching theory, but often experience and 
intuition play important roles, and a useful approach is the 
partitioning of the system into a number of interconnected, 
readily-designable sections.

8.1.3 Logical Elements and Circuits (Refs. 78-81)
Since the invention of the transistor in 1948, 

and its subsequent introduction into commercial equipment 
around 1954, semiconductor technology has progressed so 
rapidly that semiconductor devices are now being used in 
high-speed switching circuits that require not only transition 
times as short as one nanosecond but also repetition rates 
above 100 MHz.
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Other logical elements have been used for various 
reasons; for example magnetic logical elements because 
of their reliability, magnetic thin films, cryogenic 
devices and tunnel diodes because of their speed and so on. 
However the transistor either as a discrete component or as 
part of an integrated circuit still remains the most important 
logical element for digital computers.

Integrated electronics technology, which was given 
substantial support because of the requirements of the 
aerospace industry, has made a great impact on digital 
computers.

As well as being fast, small, cheap, low-power- 
consumption logical elements, integrated circuits can 
provide the designer with more powerful functional units 
such as full adder stages and shift registers. As nanowatt 
devices are feasible-,, and as many as 1000 logic circuits 
may go on a single monolithic integrated circuit chip and 
switch at subnanosecond speeds, integrated microelectronic 
circuits provide a great promise for the development of more 
powerful computers.

Other logical elements which have some promise for 
computers of the future include batch fabricated thin film 
elements and optical logical elements. The latter may solve 
some of the problems of interconnecting fast logical elements.

8.1.4 Memories (Refs. 82-85)
The types of memories used in the early computers 

include the mercury delay-line ,the cathode-ray-tube store 
and the magnetic drum. From these early forms of memories, 
other types (notably the ferrite core memory) have emerged 
with greater speeds and capacities, and have played major 
roles in the development of the modern digital computer.

Most large systems use a hierarchy of storage in 
which a combination of different types of storage techniques 
are used to achieve the necessary capacity and speed at a 
reasonable cost. The present state-of-the-art is represented 
by the following : - magnetic thin-film scratch-pad memories 
of 2500 to 2X10^ bit capacity have been constructed with a 
cycle time of 100 ns to 500 ns at a cost of $0.50 to $2.00 
per bit; magnetic core main memories with capacities of 10,000 
to 2X10^ bits have been constructed with 0.7 ys to 4 ys cycle 
time at a cost of 5* to 25* per bit; and magnetic disc file 
auxiliary storage with capacities of 2X107 to 2X109 bits 
have been constructed with 15 ms to 150 ms access time at a 
cost of 0.01* to 0.2* per bit.
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While block transfer of information is usually 
adopted between auxiliary (backing) stores and the main 
internal memory, additional hardware can be designed to 
produce an effective one-level storage system. An example is 
the "one-level" core-drum system used in ATLAS.

Monolithic integrated circuit arrays (as high
speed control or scratch-pad memories) and magnetic thin 
film main internal memories have already been used in 
commercial computers. Further improvements in magnetic 
core technology and batch fabrication techniques will result 
in higher performance scratch-pad and main memories of the 
near future. However it does appear that moving-magnetic- 
media type electromechanical memories will still be used 
for auxiliary stores with capacities in excess of 10^ bits.

8.1.5 Input-output systems (Refs. 86-88,56)
Conventional input-output devices for computers 

include paper tape, punched cards, magnetic tape, typewriters 
and line printers. More recent or more specialised devices 
include non-impact printers, visual character display consoles, 
optical character readers, magnetic-ink character recognition 
systems and graph plotters.

Graphical devices such as Sutherland's Sketchpad 
have significantly improved man-machine communication, 
and have introduced a new generation of extremely promising 
input-output devices. Graphical devices have been used for 
automotive styling, for the design of electronic circuits 
and civil engineering structures and for computer-assisted 
instruction. It appears that it is in the area of 
"machine-aided design" that graphical man-computer 
communication devices hold the greatest promise.

Research work on the computer recognition of speech 
and handwriting have been carried out, but it does appear 
that useful operating systems will not be available in 
the foreseeable future.

8.1.6 Constructional Techniques (Refs. 89-92)
Modular construction for complex systems is of 

course necessary because of manufacturing, installation 
and maintenance requirements. Discrete semiconductor 
components are usually mounted on a printed circuit card, 
and the cards are interconnected via the printed circuit 
connectors by the base wiring of the main frame. The 
base wiring is carried out by hand on a point-to-point 
basis or by some automatic wire-wrapping machine. To 
reduce the number of the less-reliable printed circuit 
connectors, individual printed circuits are sometimes
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connect ed permanently to a mother-board to form larger 
functional units.

When integrated circuits are mounted on a 
mother-board, multi-layer printed interconnections are 
often used. As integrated circuits become faster (with 
switching times of the order of several nanoseconds), 
the effects of the interconnections on the operation of 
the circuits become extremely important. The interconnections 
must be considered as transmission lines and all lines must 
be properly terminated to minimise signal reflections.
When the layout of the integrated circuits is important, 
computers can be used to examine all possible layouts to 
minimise wiring delays and crosstalk.

Trends in constructional techniques point to 
an increase in the number of circuit functions per chip 
and possibly the use of a "three dimensional" interconnection 
technique.

8.1.7 Software (Refs, 93-94)
Automatic programming, which may be defined as 

all those methods which attempt to shift the burden of 
formulation and programming of problems for computers onto 
the machine themselves, has evolved from various assembly 
programs, interpretive programs and machine-oriented languages 
to the powerful problem-oriented languages in use today.
It has been estimated that by the use of FORTRAN, programmer 
productivity is increased by a factor of 50 over that 
resulting from the use of machine language, and a further 
improvement by a factor of 10 or more is still possible.

Since its inception in 1954, FORTRAN has had 
extensive use (especially in the United States) as a 
scientific programming language. However ALGOL is gaining 
wide-spread acceptance as a common, international programming 
language for mathematical problems, and is being used 
extensively as a medium of human communication of algorithms 
in published form.

Other problem-oriented languages include COBOL 
for commercial applications, SOL for systems simulation,
LISP for list processing, FORMAC for the manipulation of 
mathematical expressions, PERT for planning and controlling 
large military and engineering programs, LOTIS for simulating 
digital systems and DAS for simulating analogue computers.
The above examples represent only a small percentage of the 
program-oriented languages in use today but give some 
indication of their diversity.
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To cater for the diverse requirements of a 
larger percentage of the users of a scientific computing 
centre,IBM has introduced PL/1. The potential and scope 
of this language together with the ability to use subsets 
of the language will ensure its wide-spread use for many 
years to come.

8.1.8 Time-sharing (Refs. 95-97,22)
Aspects of computer utilisation which are 

associated with time-sharing include multi-access systems, 
multiprogramming, multiprocessing, real-time processing, 
interactive (on-line) processing and remote processing.
In general the main objective is the sharing of computing 
resources among a number of users. Systems which contain 
a large centralized computer or a multiprocessor network which 
is connected to a large number of remote user terminals 
may be conveniently described as computer "utilities" which 
provide adjustable amounts of computing power to individual 
users whenever it is required.

Not only is the potential of the entire central 
processor made available to individual users, but also 
time-sharing provides an "interactive", "personalized" 
computer usage. Greater efficiency results from a more 
intimate collaboration between the computer and an individual 
user, or between the computer and several users working on 
different aspects of a common problem.

Some of the requirements of time-shared systems 
include dynamic program relocation, memory protection, 
priority interrupts, large memories, complex scheduling 
logic, reliable communications equipment and so on. These 
represent enormous hardware and software costs to system 
planners. However these costs are spread over many users, 
and the many advantages of time-shared systems have created 
a trend towards centralization. If Grosch’s law (which states 
that a computers potential is proportional to the square of its 
cost) is true, the computer cost structure will favour the 
time-shared large machine in preference to a large number of 
small, decentralised machines.

8.1.9 Computer Control (Refs. 98-101)
Since computers were first used for industrial 

control about eight years ago,the world-wide tally of process 
computer installations has grown to over 1,300. Computer 
control has had its longest history in the oil, chemical, steel • 
and power industries, but its application to other industrial 
processes is progressing very rapidly.
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Various approaches taken with the use of 
computers in control systems include data acquisition 
systems, closed-loop supervisory computer control, 
direct digital control and direct digital supervision.
A hierarchical structure of control computers has 
been suggested for some complex systems. Whatever 
the approach taken, the main objective is of course 
to improve efficiency. As anticipated improvements 
are seldom greater than five per cent, and the cost of 
the control computer together with sensing and control 
equipment represents a significant proportion of overall 
costs, planning of the overall system must be carried out 
very carefully.

The computer requirements for real-time operation 
include priority interrupts and special input-output 
instructions. However the instruction repertoire of ’’control 
computers" is essentially the same as that of any general- 
purpose computer used for scientific computation. Reliability 
is of paramount importance in most computer control systems. 
Redundancy techniques applied even to the extent of 
providing parallel computing systems have been used to increase 
reliabili ty .’’Back-up" systems in case of failure include the 
use of manual or analogue controllers. The failure of 
some early computer control systems (especially in the power 
supply industry), which were due to unreliable hardware and 
software, has resulted in computer control being applied 
with more caution and with a greater emphasis on reliability.

In the computer control field, the relationship 
between theory and practice is remote. Sophisticated theories 
and mathematical techniques such as sampled-data theory, 
dynamic programming and optimal control theory are available, 
but there seems to be many difficulties in the application 
of these theories to the analysis, little own the synthesis, 
of computer control systems. Until there is a stronger bond 
between theory and practice, computer control will remain an 
art rather than a science.

8.1.10 Miscellaneous Applications and Concluding Remarks 
(Ref . 102)

Computers are extremely versatile as indicated 
by their use in science where they have been active partici
pants in the analysis of results and in the development of
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new theories, in technology where they have become indis
pensable for the design and control of complex systems, in 
organisations where they have provided improved communication 
and control resulting in increased efficiency, in education 
where they have provided personalised tuition adjusted 
to the capabilities of individual students, in information 
storage and retrieval where they have improved the efficiency 
of libraries and have assisted in research and development, 
and in the field of artificial intelligence where they have 
provided an understanding of human mental processes. As 
the potential of computers increases because of reduced 
cost, increased speed, increased reliability, increased 
capacity and improved man-machine communication, their 
application areas will certainly increase. Many benefits 
to humanity have resulted from the use of computers, and 
continued progress in computer technology holds great promise 
for the future.
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8,2 APPRAISAL OF SNOCOM, NIMBUS $ ARCTIJRUS PROJECTS

8,2,0 Computer Development in Australia
Apart from SNOCOM, NIMBUS and ARCTURUS, the 

only other digital computers constructed in Australia 
were CSIRAC (Ref. 64 ), SILLIAC (Ref. 51)
ADA (Ref. 1 ), ATROPOS (Ref. 65) and
CIRRUS (Ref. 25-26).

CSIRAC was a serial, general-purpose digital 
computer using vacuum-tube elements and mercury delay-line 
storage. It was constructed in the early 1950?s by the 
Radio Physics Laboratory of C.S.I.R.O., and although it 
suffered from problems of unreliability during its early 
years, it gave good service within C.S.I.R.O. and at the 
University of Melbourne before it was retired several 
years ago.

SILLIAC is a parallel general-purpose digital computer 
using vacuum-tube elements and cathode-ray-tube storage. Its 
design was based on that of the ILLIAC with minor modifications, 
and'was constructed under the supervision of the Basser 
Computing Department within the School of Physics of the 
University of Sydney. It was commissioned in 1956 and has 
given sterling service; its retirement is imminent.

ADA was a serial, digital differential analyser 
using semiconductor circuits and magnetic-drum storage.
It was constructed by the Mathematical Instruments Section 
of C.S.I.R.O. within the School of Electrical Engineering of 
the University of Sydney. It was commissioned in 1958, 
but because of unreliable operation, it was given a premature 
retirement several years later.

ATROPOS was a parallel, digital computer using 
semiconductor circuits and ferrite-core storage. It was 
constructed as an impact-prediction computer by the 
Weapons Research Establishment. Papers on its design appeared 
around 1960, but its usefulness and future are not known.

CIRRUS is a parallel, general-purpose digital computer 
using semiconductor circuits and ferrite-core storage. The 
computer, which uses a micro-program control unit and has multi
program features, was constructed by the University of Adelaide. 
It was completed by 1963, and it has had extremely good use as 
a service computer.
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8 . 2 . 1  SNOCOM

SNOCOM was the first general-purpose digital 
computer constructed and installed in Australia which 
utilised semiconductor components and which has had 
extensive use. Its construction demonstrated that a 
useful computer can be built in Australia starting from 
the description of the logical organisation of a computer 
which appeared in a single publication. It was also 
demonstrated that useful features, such as the auto-input, 
could be designed to fit within the framework of this 
organisation.

SNOCOM established the suitability of constructional 
methods which were developed for ADA, and which were later 
used and extended in ARCTURUS and CIRRUS. It also established 
the potential (and also some weakness) of circuit designs.
These were used as a guide to the development of the faster 
circuits used in ARCTURUS.

In the course of the SNOCOM project, a SILLIAC 
program for simulating SNOCOM was written so that SNOCOM 
programs could be developed even before this machine was 
completed. Extensions to the simulator program enabled 
proposed SNOCOM design modifications to be assessed (Rèf. 66). 
The SNOCOM project also stimulated some thought on machine 
organisation and order codes (Ref. 67).

The success of the SNOCOM project was directly 
responsible for the continuation of computer research 
and development at the School of Electrical Engineering of 
the University of Sydney.

8.2.2 NIMBUS
NIMBUS is the first educational computer of its 

kind to be built in Australia (and possibly in the world).
It represents the first serious attempt to build laboratory 
equipment for teaching computer fundamentals and digital 
techniques. Its usefulness in this role has been established 
during the past four years; and this has encouraged the 
extension of this educational approach.

It has been established that NIMBUS and similar 
machines are extremely useful research tools. Applications 
include the evaluation of logical circuit designs and the 
bread-board construction of special test equipment.

The success of the NIMBUS project has resulted 
in the decision to build a similar but more powerful machine 
(NIMBUS II).
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8,2.3 ARCTURUS
With the use of advanced techniques of logical 

design such as carry-lookahead and multiplier-recoding 
which produce an accumulate time of hvsec and a multiply 
time (for 20 bits) of 5 to 7hvsec (depending on the 
multiplier, the arithmetic unit of ARCTURUS is the fastest 
of all computer arithmetic units constructed in Australia.

Techniques for the provision of a large number 
of useful instruction variants (such as those of the 
register transfer instruction) have been established and 
a computer with a flexible and reasonably powerful instruction 
repertoire has been produced.

The ARCTURUS project has demonstrated that 
relatively advanced concepts such as programmed-operators 
can be implemented with small amounts of hardware, and it 
has also demonstrated the usefulness of such concepts.

Aspects of the ARCTURUS design, such as the 
auto-input and the register configuration, have made some 
contribution to the solutions of logical organisation problems 
which affect overall efficiency.

The ARCTURUS project has established methods 
for designing complex timing units. Configurations 
of gated monostable-multis (of both positive-trigger and 
negative-trigger types) and storage-gate flip-flops have 
been established for timing the micro-steps such as shifting 
and counting etc. as well as the complex phase sequences 
which are possible in a digital computer.

The ARCTURUS project has established the usefulness 
of the completely autonomous input-output unit which can 
be used for off-line tape editing as well as for checking 
the computer peripherals.

The ARCTURUS project has made some contribution 
to the art of constructing systems which use very high
speed logical circuits. Functional packaging, ground planes 
and special mounting arrangements for important signal lines 
are examples of the techniques established.

ARCTURUS has stimulated thought on logical 
organisations. Many suggestions concerning useful instructions 
(such as the detour, set and repeat instructions) have been 
made. Some of these suggestions have already been 
incorporated into the machine and their usefulness has been 
demonstrated. However studies of the proposed ’’micro-mode" 
and of the existing hierarchy instructions have indicated 
that these features are not extremely useful in their 
present form.
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ARCTURUS provides a research tool for advanced 
work on digital control, and plans for the control of a 
model power system have already been considered. For 
this application ARCTURUS will be more useful than a 
commercial machine of comparable cost,as extensions and 
modifications to the machine to incorporate the interface 
between the system and the computer may be made more 
readily.

The success of the ARCTURUS project has 
demonstrated that a very useful computer can be built 
within the environment of Australian universities with a 
component cost of less than $A 10,000. This money was 
obtained over a period of about 5 years, and the very 
restricted budget necessitated the salvaging of many 
diodes and transistors from old equipment. Despite the very 
difficult conditions, a fast and powerful digital computer 
incorporating some original and advanced concepts has 
been constructed.

8.2.4 Concluding Remarks
This thesis has been an account of the development 

of the three computers SNOCOM, NIMBUS and ARCTURUS. The 
main objectives have been to describe the original features 
incorporated in the computers, to present examples of 
new design techniques and to outline some of the novel 
engineering details of construction, installation and 
utilisation.

An outcome of the SNOCOM, NIMBUS and ARCTURUS 
projects has been that a small but effective research group 
has been formed. This group has shown that it is capable 
of taking full advantage of progress in computer technology, 
and of establishing advanced concepts and techniques.
The merit of this thesis lies firstly in the fast that the 
author has been the principle investigator of this research 
group, and secondly in the fact that the success of the 
SNOCOM, NIMBUS and ARCTURUS projects has been a significant 
contribution to the development of computers in Australia.
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APPENDIX B

(B) COMPLEMENT GATE OR SELECTION PACKAGE

Figure 6,10 - LOGIC DIAGRAMS OF STANDARD PACKAGES
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APPENDIX B

(G) J REGISTER PACKAGE
Figure 6.10 - LOGIC DIAGRAMS OF STANDARD PACKAGES



- 1 9 6 -

APPENDIX B

(H) POSITIVE TRIGGER MONOSTABLE MULTI PACKAGE

(I) NEGATIVE TRIGGER MONOSTABLE MULTI PACKAGE

( X indicates an internai connection )

Figure 6.10- LOGIC DIAGRAMS OF STANDARD PACKAGES
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(K) NOR DECODE PACKAGE

(L) AND DECODE PACKAGE

igure 6.10 - LOGIC DIAGRAMS OF STANDARD PACKAGES
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APPENDIX B

(N) SHIFT REGISTER PACKAGE

(0) ALTERNATIVE BINARY COUNTER PACKAGE 

Figure 6.10 - LOGIC DIAGRAMS OF STANDARD PACKAGES
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APPENDIX C - DESCRIPTION OF ARCTURUS INSTRUCTIONS 
LIST OF SYMBOLS

J
K
L
R
S
U
V
DFS
D
AS
A
AU
V R
KL
N

19

<K>
M = <A> 
I 
()

O ’

( ) i

°i-3

Memory output register.
Accumulator.
Multiplier-quotient register.
Instruction register.
Sequence counter.
Operand counter.
Number of times counter.
Distributor function selector.
Output of DFS.
Address selector.
Address R7 - R-̂ g .
Arithmetic Unit.
Instruction register outputs.
Double length register formed by KQ-K^g > ^l”^19 *
Number of times an operation is executed (specified
by R15 - Rig). •
Memory location with address - K^g .
Memory location with address R7 - R,p .

-19Number increment = 2
Contents of a register or a memory location before 
an operation.
Contents of a register or a memory location after an 
operation.
Bit i of a register or a
memory location before/after an operation.
Bits i to j (inclusive) of a register or a memory 
location before/after an operation.
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DESCRIPTION OF INSTRUCTIONS

CODE INSTRUCTION DESCRIPTION

OOOOO 00 Unconditional 
■n o ; 01 Contingent on BP1 ON 
18 19 ï 10 Contingent on BP2 ON 

11 Continue
00001 INPUT-

OUTPUT
i 0 
\ 1

4- bits
5- bits 
Reader 1 
Printer 
Punch
Number of times

R<
R12r!
R14 d 
R15"R19
A cyclic left shift of K 4 or 5 places 
depending on Rg precedes each oper
ation. Reading overwrites K, r or
K16 to K19 * If Rg = 0 , the
character read is the next non-fifth bit 
character in the buffer or on the tape. 
The character printed or punched is
either
Reading

0 » K16~K19 or K15"K19 * 
precedes printing or punching.

REGISTER- f 00 Transfer L to J first
TRANSFER R _ Í? J 01 Transfer K to J first

| 7 8 10 Transfer U to J first
11 Transfer U to J first

CMi—1
0

4

<+HM = 0 , Rg and R10 specify the

00010

first AU input as follows:

R9R10

f 00 Zero
j 01 One’s complement of J
10 J
11 All ones (-1)

If R,0 = 0, R‘12
crement is 
output.

11 specifies that an in-

R11
If R,

Í ?
= o,

to be added to the adder

Add I to adder output 
R, = 0, R, , = 0 , R.g - w j " ^9 R11 ” Ki2 speci

fies that the first AU input is the ab
solute value of J .

R12 f i Absolute value of J
specify the second AU in

put as follows:-
(00 Zero 
01 K
10 R*
11 All ones (-1) 
specify the distributor output

as follows :-

R-̂ g and R ^

R13R14

R15R16
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[ 00 Adder output
n p j 01 Exclusive OR of AU inputs 
15 16 \ 10 AND of AU input?

[ 11 Inclusive OR of AU inputs
17
18 
19

Clock distributor into U 
Clock distributor into K 
Clock distributor into L

00011, SHIFT
R8R9

R
R
R

10
11
12

R
R
13
14

Ris-R19

00 Logical
01 Cyclic
10 Arithmetic
11 Illogical
0 Separate
1 Double
Shift L
0 L left
1 L right
Shift K
0 K left
1 K right
Number of times

00100 TRANSFER, 
j UNCON

DITIONAL
00101! TRANSFER IF 

NEGATIVE

(S)’ = A

( S ) T = A If K = 1

00110; SKIP Rn Accumulator normalised

R10R11

R13R14

R15“R19

00  -

01 Accumulator < 0
10 Accumulator = 0
11 Accumulator  ̂0
00  -

01 Sense switch 1 ON
10 Sense switch 2 ON
11 Sense switch 3 ON
Number of times

00111 (SPARE)
01000! ADD INDEX
------------------1---------------------------------
010011 SUBTRACT 

INDEX

Add (M) to address of next instruction
Subtract (M) from address of next 
instruction

01010 j INDEX 
SKIP (M)» = (M) + I 

(S)1 = (S) + 1 if (M)T = 1 o
01011 JUMP TO 

SUBROUTINE (M)T = (S) 
(S)’ = A + 1

01100 COMPARE
SKIP

(S)f = (S) + 1
if (M). = (K). for all i
(L)i=l 1 1

such that
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01101 LOAD K (K)' = CM)
o m o LOAD L (L)» = (M)
Olili ADD (K)' = (K) + (M)
10000 SUBTRACT (K)’ = (K) - (M)
10001 AND (K)| = (K)i.(M)i (i = 0 — 19)

10010 MULTIPLY (KL)' = (L) x (M) 
Lq = 0

10011 DIVIDE (L)T = (KL) * (M)
10100 STORE K (M)* = (K)
10101 STORE L (M) 1 = (L)
10110 STORE K 

ADDRESS (M)6-19 = (K)6-19

10111 ACCUMULATE (M)T = (M) + (K)
11000 (SPARE)
11001 (SPARE)
11010 PUSH (<(M)>)' = (K) 

(M)f = (M) + I
11011 POP (M)' = CM) - I 

CK)' = (<(M)>)
11100 DECREMENT

HIERARCHY (<(!)>)’ = (S) 
(l)r = (1) - I 
(S) ' = A

11101 INCREMENT
HIERARCHY

(<(1)>)’ = (S) 
(1)’ = (1) + I 
(S)T = A

11110 RETURN
HIERARCHY

R ( 0 Decrease 
k13 1 1 Increase
R-^ Change hierarchy 
R̂ -̂R-̂ g Number of times
(<(1)>)' = (S)
(l)f = (1) + I (N times) 
(S)T = (<(1)>)

11111 EXECUTE Execute instruction in M
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APPENDIX D - CODING OF THE ASSEMBLY PROGRAM API

LOCATION LABEL INSTRUCTION REMARKS
DEC. SEXAD.

. # 003N6 Load from 3N7
967 3N7 * ASSEMBLED - 00000 Obey instruction

INSTRUCTION
968 3N8 * ENTRY 08082 Read op. code
969 3N9 10021 (IO ’ = (K)
970 3N+ 1810F Sh.L + 14 logical
971 3N- 18341 Sh.K + 1 logical
972 3NN 1804F Sh.K + 14 logical
973 3NJ + 03N7 Store bits 0-5
974 3NF * CLEAR 10003 Clear K and L
975 3NL * READ 08081 Read 1 sexad, char.
976 3 JO 803L7 Subtract 10
977 3J1 283LJ Go to * CONVERT
978 3J2 . 203F6 Go to 3F6
979 3J3 * TERMINATOR + 683L+ Fetch CR-FS-LC-LC char.
980 3J4 08444 Print
981 3J5 503L9 Increment block number
982 3J6 683L9 Fetch block number
983 3J7 1804N Sh.K + 12 logical
984 3J8 08042 Print block number
985 3J9 084JL Read/print program-

identifier
986 . • 3J + 203FF Go to 3FF
987 3J- * TERMINATOR - 08082 Read block number
988 3JN + 0 3F0 Store temporary
989 3JJ 6 + 3F0 Fetch indirect block no.
990 3JF * COLLATE 883F1 Remove all but address
991 3JL 203L3 Go to * TERMINATOR F
992 3F0 00000 Temporary store
993 3F1 01LLL Address mask
994 3F2 02000 Indirect address bit
995 3F3 ^TERMINATOR N 10402 (K)’ = (L)
996 3F4 -83N7 Accumulate address
997 3F5 203N7 Go to * ASSEMBLED-

INSTRUCTION
998 3F6 18043 Sh.K + 3 logical
999 3F7 + 03F0 Store temporary
1000 3F8 10002 Clear K
1001 3F9 403F0 Add index
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1003 3F- * CHARACTER J 683F2 Fetch indirect address
bit

1004 3FN -83NF Accumulate 1
1005 3FJ 203NF Go to * CLEAR
1006 3FF 6 + 3L9 Fetch indirect block no.
1007 3FL 883F1 Remove all but address
1008 3L0 -03L5 Set block-start-address
1009 3L1 08045 Print block-start-address
1010 3L2 203N8 Go to * ENTRY
1011 3L3 * TERMINATOR F 10422 /—

\ 
J+/*—

\ 

v__/II

1012 3L4 783N7 Add bits 0-6
1013 3L5 •►0020 Store assembled-instruc-

tion
1014 3L6 503L5 Increment address
1015 3L7 0000 + Number 10
1016 . 3L8 203N8 Go to * ENTRY
1017 3L9 0001L Block number
1018 3L + 96F10 CR-FS-LC-LC char.
1019 3L- * TERMINATOR L 6 + 3L9 Fetch indirect block no.
1020 3LN 203JF Go to.* COLLATE
1021 3LJ * CONVERT 783L7 Add 10
1022 3LF 903L7 (KL) ' = 10(L) + (K)
1023 3LL 203NL Go to * READ

# 003N8 Start at 3N8



-205-
APPENDIX E

APPENDIX E - DETAILS OF ARCTURUS INSTRUCTION VARIANTS

- ARCTURUS API AND SEXADECIMAL OPERATION CODES

API INSTRUCTION SEXADEC.*
00 Stop 00
01 Input-output 08
02 * Register transfer 10
03 Shift 18
04 Transfer unconditional 20
05 Transfer if negative 28
06 Skip 30
07 (Spare) 38
08 Add index 40
09 Subtract index 48
0 + Index skip 50
0- Jump to subroutine 58
ON Compare skip 60
0J Load K 68
OF Load L 70
0L Add 78
10 Subtract 80
11 And 88
12 Multiply 90
13 Divide 98
14 Store K + 0
15 Store L + 8
16 Store K address -0
17 Accumulate -8
18 (Spare) NO
19 (Spare) N8
1 + Push JO
1- Pop J 8
IN Decrement hierarchy F0
1J Increment hierarchy F8
IF Return hierarchy L0
1L Execute L8

* The sexadecimal operation codes given above assume 
that bits 5-7 of the instruction are zero.



- 2 0 6 -

APPENDIX E
VARIANTS OF THE STOP INSTRUCTION

TYPE SEXADEC. API •

Unconditional stop 00000 00 F
Stop contingent on BP1 ON 00001 00 IF
Stop contingent on BP2 ON 00002 00 2F
Continue 00003 00 3F

VARIANTS OF THE SKIP INSTRUCTION

TYPE SEXADEC. API

Skip once if K is norma-
lised 30401 06 1025F
Skip once if (K) < 0 30101 06 257F
Skip once if (K)= 0 30201 06 513F
Skip once if ( K) > 0 30301 06 769F
Skip once if SSI is ON 30021 06 33F
Skip once if SS2 is ON 30041 06 65F
Skip once if SS3 is ON 30061 06 97F
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VARIANTS OF THE INPUT-OUTPUT INSTRUCTION

TYPE SEXADEC. API

Read one sexadecimal 
(4-bit) char. 08081 01 129F

Read one 5-bit char. 08481 01 115 3F

Print one sexadecimal char. 08041 01 65F

Print one 5-bit char. 08441 01 1089F

Punch one sexadecimal char. 08021 01 33F

Punch one 5-bit char. 08421 01 1057F

Read and print one sexa
decimal char. 080N1 • 01 193F

Read and print one 5-bit 
char. 084N1• 01 1217F

Read and punch one sexa
decimal char. 080 + 1 01 161F

Read and Punch one 5-bit 
char. 084 + 1 01 1185F

Read* print and punch 
one sexadecimal char. 080F1 01 225F

Read, print and punch 
one 5-bit char. 084F1 01 1249F

Print and punch one 
sexadecimal char. 08061 01 97F

Print and Punch one 
5-bit char. 08461 01 1121F
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VARIANTS OF THE SHIFT INSTRUCTION
L Logical I 11logical A Arithmetic
C Cyclic S Separate D Double
0 Zero places + Left - Right

VARIANT ,SEXAD. API , INTEGER1
SH L s K+ 0 1 $940 03 0064 +098368
SH L s K- 0 13o60 03 0096 +098400
SH L s L+ 0 13100 03 0256 +O9356O
SH L s L- 0 18180 03 0334 +098633
SH L s L+ K+ 0 18l 40 03 O32O +098624
SH L s L+ K- 0 18160 03 0362 +093656

; SH L s L- K+ 0 181 nO 03 0448 +O98752
SH L s L- K- 0 i8 i f0 03 0430 +098784
SH L D K+ 0 18240 03 0576 +098380
SH L D K- 0 13?60 03 0603 +098912
SH L D L+ 0 I83OO 03 0768 +099072
SH L D L- 0 1 8380 03 0896 +099200
SH L D L-f K+ 0 I834O 03 0852 +099156
SH L D L+ K- 0 I836O 03 0364 +099163
SH L D L- K+ 0 I83n0 03 0960 +099264
SH L D L- K- 0 i83fO 03 0992 +099296
SH I S K+ 0 18n4o 03 3136 + 101440
SH I s K- 0 18n60 93 3163 +101472
SH I S L+ 0 18 jOO 03 3323 +101632
SH I S L- 0 I8 j80 03 31*56 +101760
SH I S L+ K+ 0 18 j 40 03 3392 +101696
SH I S L+ K- 0 18,j60 03 3424 +IOI728
SH I S L- K+ 0 13 jnO 03 3620 +101324
SH I S L- K- 0 I8 j f0 03 3552 +101356
SH I D K+ 0 l8 f4 o 03 3648 +101952
SH I D K- 0 I8 f60 03 3680 +101984
SH I D L+ 0 18100 03 3840 +102144
SH I D L- 0 18180 03 3968 +102272
SH I D L+ K+ 0 13l4o 03 3904 +102208
SH I D L+ K- 0 18160 03 3936 +102240
SH I D L- K+ 0 I8 ln0 03 4032 +102336
SH I D L- K- 0 18 l fO 03 4064 +102368
SH A S K+ 0 18840 03 2112 +100416
SH A S K- 0 13860 03 2144 +100443
SH A S L+ 0 18900 03 2304 +IOO608
SH A S L- 0 13980 93 2432 +100736
SH A S L+ K+ 0 18940 03 2368 +100672
SH A S L+ K- 0 18960 03 2400 +100704
SH A S L- K+ 0 139nO 03 2496 +100300
SH A s L- K- 0 I39 f0 . 03 2528 +IOO832
SH A D K+ 0 18+40 03 2624 +100923
SH A D K- 0 13+60 03 2656 +100960
SH A D L+ 0 18-OO 03 2816 +101120
SH A D L- 0 18-80 03 2944 +101248
SH A D L+ K+ 0 13-40 03 2330 +101184
SH A D L+ K- 0 18-60 03 2912 +101216
SH A D L- K+ 0 18-nO 03 3OO8 +IO I3 I2
SH A D L- K- 0 13-fO 03 3040 +IOI344
SH C s K+ 0 18440 03 1038 +099392
SH C S K- 0 13460 03 1120 +099424
SH c S L+ 0 18500 03 1230 +099584
SH c S L- 0 18580 03 1 4oS +099712
SH c S L+ K+ 0 13540 03 1344 +099648
SH c S L+ K- 0 18560 03 1376 +099680
SH c S L- K+ 0 I85n0 03 1472 +099776
SH c S L- K- 0 I85 f0 03 1504 +099808
SH c D K+ 0 18640 03 1600 +099904
SH c D K- 0 18660 03 1632 +099936
SH c D L+ 0 18700 03 1792 +100096
SH c D L- 0 18780 03 1920 +100224
SH c D L+ K+ 0 18740 03 1856 +100160
SH c D L+ K- 0 18760 03 1338 +100192
SH c D L- K+ 0 I87n0 03 1934 +100283
SH c D L- K- 0 I87 f0 03 2016 +100320
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VARIANTS OF THE REGISTER TRANSFER INSTRUCTION 
For L= Add 1 For K= Add 2
For U= Add 4 For KLU= Add 7

LOGICAL OPERATIONS
VARIANT SEXAD A P I INTEGER
= 0 10018 02 0024 +065560
= I 10613 02 1360 +067096
= U 11413 02 3144 +070630
= L '  0413 02 1043 +066534
= K 10n13 02 3096 +068652
=NU 1 213 02 4632 +070163
=NL 10213 02 0336 +066072
=NK 10+13 02 2534 +068120
= U*K 1 1 430 02 3163 +070704
= L * K 104^0 02 1072 +066603
=NU*K 11230 02 4656 +070192
=NL*K 10230 02 0560 +066096
= U@K 11 423 02 5160 +070696
= L ©K 1 0428 02 1064 +066600
= N U @ K 11223 02 4648 +070184
=NL®K 10223 02 0552 +066033
= U/K 1 1433 02 5176 +070712
= L / K 10438 02 1080 +066616
=NU/K 11238 02 4664 +070200
=NL/K 10253 02 0563 +066104

ARITHMETIC OPERATIONS
. VARIANT SEXAD A P I INTEGER

= 0 10000 02 0000 +0655:56
=+1 10100 02 0256 +06579?
=-1 10600 02 1556 +067072
= -2 1066O 02 1632 +067168
=MU 11000 02 4224 +069760
=+U 11400 02 5120 +070656
=-U 11300 02 4864 +070400
=ML 10030 02 0123 +065664
=+L 10400 02 1024 +066560
= -L 10300 02 0763 +066504
=MK 10380 02 2176 +067712
=+K 1 OnOO 02 3072 +068608
= -K 10 -00 02 2816 +068552
=MU-1 1 1 0 f0 02 4320 +069856
= + U -1 11460 02 5216 +070752
=-U -1 11360 02 4960 +070496
=ML-1 1 0 0 f0 02 0224 +065760
= + L - 1 10460 02 1120 +066656
= -L -1 10360 02 0864 +o664oo
=MK-1 1 0 8 f0 02 2272 +067808
=+K-1 10n60 02 3163 +063704
= -K -1 10 -6 0 02 2912 +068443
=MU+K 110+0 02 4266 +069792
=+U+K 11420 02 5152 +070683
=-U+K 11320 02 4896 +070452
=ML+K 100+0 02 0160 +065696
=+L+K 10420 02 1056 +06659?
= -L+K 10320 02 0S00 +0665j56
=MK+K 103+0 02 2203 +0677^4
=+K+K 10n20 02 3104 +068640
=K-U-1 11220 02 4640 +070176
=K -L -1 10220 02 05^4 +066080
= -U -2 11260 02 4704 +070240
= - L - 2 10260 02 o6 os +066144
= -K -2 10+60 02 2656 +063192
=U +1 11500 02 5376 +070912
=L +1 10500 02 1230 +066816
=K +1 10J00 02 3323 +063364
=U+K+1 11520 02 5408 +070944
=L+K+1 10520 02 1312 +066848
=K+K+1 10,]20 02 3360 +068896
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PRINTER CODE

D e c im a l FIGURE SHIFT. LETTER SHIFT. B i n a r y
Bumbe r . Lorne r  C a s e . U pper  C a s e . Lo” ’ e r  C o s e .  Upper  C a s e . C o d e .

0 0 i P P 0 0000
1 1 * 1 Q 00001
2 2 © w 17 00010

3 3 / e E 00011
4 4 4i> r R 00100

5 5 . i t T 00101
6 6 & y Y 0 0110
7 7 f u U 00111
8 8 ( i I 01000
9 9 ) 0 0 01 COI

10 = + k K 01010
11 -  r* s S 01011
12 n I'T n N 01 10 0
13 j  j d • J 01101
14 f  F f . F 0 1110
15 1 L 1 L 01111
16 Low er  C a s e . L ow er C a s e . 10000
17 d D 10001
18 C R/LF. C R/LF. 10010
19 b 3 10011
20 L e t t e r  S h i f t . L e t t e r S h i f t . 10100
21 9> V V 10101 ■
22 a A 10110
23 3 1 

8 8 X X 10* 11 •
24 S p a c e . Space m 11000
25 g G 11001
26 • • El M 11010
27 F ig u r e  S h i f t . F ig u r e S h i f t . 11011
28 ! M h H 11100
29 O 0

5» d c C 11101
30 z z 11110

L

Upper C ase . Upper C a se . 11111
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APPENDIX F - DOUBLE-LENGTH-ADD-SUBTRACT PROGRAMMED-OPERATOR

Specification : - This program causes the double
length number specified by the programmed-operator 
instruction to be added to or subtracted from the number 
in the double-length accumulator (locations 4 and 5).
The add-entry is the first word of the routine and the 
subtract-entry is the fourth. The overflow logic is 
effective with the last arithmetic instruction; this is 
stored in the 20th word of the program.

Method : - The instructions immediately
following the different entry points set into internal 
temporary storage either a waste order (for addition) or 
a ’’negate K” order (for subtraction). This instruction 
causes the double-length operand to pass unchanged or to be 
negated before it is added to the double-length accumulator.

The program assumes that the waste bits of 
both the operand and the number in the double-length 
accumulator are zero. Hence a carry into the sign 
position is a true carry digit, 'and does not represent 
an overflow condition. To inhibit the stopping of the 
computer when such a carry digit is produced, a ’’register- 
transfer-add" instruction rather than an "add from memory" 
instruction is used, as the overflow logic is not effective 
during the execution of the former instruction. The same 
precaution is taken when the carry digit is added to the 
first half of the operand. However for the final addition, 
an "add from memory" instruction is required as the overflow 
logic should be used as a safeguard against the generation 
of incorrect results.
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. DOUBLE-LENGTH ADD-SUBTRACT PROCRAMMED-OPERATOR CODING : -

00 + DOUBLE LENGTH ADD

REL.LOC. REMARKS

ADD ENTRY
0 0J 22L Set waste order in 24L
1 14 24L
2 04 5L

SUBTRACT.
ENTRY

3 0 J 23L Set KT * -K order in 24L
4 14 24L
5 02 5122F K' - U
6 16 16L Obtain operand address
7 OF 5F
8 08 16L Fetch second half
9 00 IF
10 1L 24L Execute 24L
11 02 1058F Kf * K + L Add second halves
12 02 IF L - 0
13 • 03 1857F Sh.C.D.L + K + 1 Form carry §
14 03 97F Sh.L.S, K - 1 set waste bit = 0
15 14 5F Store second half result
16 OJ (F) Add carry to
17 • 02 1058F K' = K + L first half
18 1L 24L Execute 24L
19 OL 4F Add first half of DL acc.
20 14 . 4 F Store first half result
21 04 JF Link
22 02 F Waste order
23 02 2818F k * -
24 00 F Temp, store
25 00 + DOUBLE LENGTH SUBTRACT

00 2N
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APPENDIX G - DOUBLE-LENGTH-MULTIPLY PROGRAMMED-OPERATOR

Specifications : - This program multiplies the
number (the multiplicand) in the double-length accumulator 
(locations 4 and 5) by the double-length number (the 
multiplier) specified by the programmed-operator instruction, 
and places the quadruple-length product in locations 4,5,6 
and 7. Bit 0 of location 4 is the sign bit of the product, 
while locations 5,6 and 7 contain waste bits (set to zero) 
in the sign position.

Method : - In the following description,
a superscript * indicates a double-length number, and 
subscripts 1 and 2 indicate the more-significant and less 
significant halves of the double-length number. Hence :

D*
Di
°2
M*
M1M„

double-length multiplicand 
more-significant half of multiplicand 
less-significant half of multiplicand 
double-length multiplier 
more-significant half of multiplier 
less-significant half of multiplier

From the above definitions we obtain : -

D* - Dx + 2'19 D_

M* = Mx + 2*19 M,

Hence the double-length product M* D* is 
given by : -
M* D* « M, D, + 2’19 (M1 D2 + M7 D,) + 2‘38 M„ D.1 1 2 ~1 ‘2 2

All the partial products (M̂  D2,
M2 and M2 D2) are double-length numbers and may be 
represented by a single symbol superscripted with a *. 
Let

p* - Mx Dx
Q* " M1 D2
R* ' M2 D1
S* ‘ M2 °2
Hence the

2'19(Q*

Hence the equation for M* D* becomes : - 
X*) * 2*38 S*
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Two major problems in the summation of the 
partial-products are : -

(i) incorrect results produced by overflow
and (ii) arithmetic shifting of double-length numbers

-19required by the factor 2

It is to be noted that S* is always positive, but 
P*, Q* and R* may be positive or negative.

To overcome the above problems, equivalent 
expressions for M* D* may be derived as follows : -

M * D* = p* + 2‘19 ( Q *  + T*) ♦ 2 ”57 <. 52

where x* * R* + 2"19 S1

M * D* = p* + w* + 2"19 U* + 2-57 S2

where IV* = 2-19Qi + 2-19 T1

and u *  = 2‘19 (Q 2 + T
l 2 )

M * D* = V* + w* + 2-38
U2 2-57 S2

where v* = P* + 2’19 U1

M* D* = xi + 2'19 X- + 2"38 U2 + 2'57 S2

where X* s V* + W*

The above expressions give, an outline of the 
steps required to produce four single-length numbers 
X2 , ^ 2  anc* ^2 represent the quadruple-length product
of two double-length numbers. It is to be noted that 
overflow during intermediate steps of the process cannot 
occur, and arithmetic shifting of only single-length numbers 
is required.

The detailed coding of this programmed 
operator follows.
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DOUBLE-LENGTH MULTIPLY PROGRAMMED-OPERATOR CODING

00 + DOUBLE LENGTH MULTIPLY

REL.LOC.
r

REMARKS

0
1

0J
16

F
40L

Plant Link

2
3
4
5

02
16
02
16

5122F
20L

3330F
9L

Kf « U .Obtain
. * Operand 

K’ ■ K *■ 1 Address

6
7

OJ
14

4F
45L

Temp. Store D1

8 02 2F K - 0
9 OF (F) L' = M2
10 12 5F Form S* » M 2  D2

11 15 7F Store S2

12
13

OF
12

J 9L 
45L

L * « M2
Form T* = M2 Dx + 2"19 S!

14 15 42L Store T2
15 03 3059F SH.ADL-K-19
16
17

03
14

385F
43L

SH LSL-1 STORE
2 T1

18 15 44L
19 02 2F K = 0
20 OF (F) L» = Mx
21 12 5F Form Q* *= M^ D2
22 15 41L Store Q2
23 03 3059F SH ADL-K-19 ST0RE
24
25

03
14

385F
4F

SH LSL-1 , Q
2“iy Q1 IN

26
27

15
22

5F
43L

D.L. ACC. 
DL ADD : W* = 2'19Q. + 2’19T1

28 OF 42L
29 OJ 4 IL
30 02 1057F Lf » K + L FORM
31
32

02
03

2F
833F

K “ 0 U*=2“19 
SH LDL + K + 1 ( q 2 + t 2 )

33 03 385F SH LSL - 1
34 15 6F Store U2
35
36

OF
12

J 2OL 
45L

L1 = M1
Form V* * P* + 2"l9U1

37
38

14
15

4 IL 
42L

Temp. Store
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39 22 41L DL ADD : Form X* = y* + w*
40 04 (F) Link
41 oo F) Temp. store:
42 (00 F) Temp. store: T2
43 oo F) Temp. store: -192 iyTn
44 (00 F) Temp. store: l
45 (00 F) Temp. store: Di

00 2N
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APPENDIX H - FLOATING-POINT INPUT PROGRAMMED-OPERATOR

Specification : - The input number fdrmat
which this program assumes is : -

± DDDDDDDDD ± DD
MANTISSA MANTISSA EXPONENT EXPONENT
SIGN (DECIMAL FRACTION) SIGN (DECIMAL INTEGER)

The mantissa sign would normally be either + or -. 
However any even sexadecimal character is interpreted as + , 
and any odd sexadecimal character as - .

The mantissa may consist of 0 to 9 (inclusive) 
decimal digits. The program assumes that the digits 
represent a decimal fraction with the decimal point occurring 
before the first digit.

The exponent sign must be either + or -.

The exponent must consist of two decimal 
digits. A decimal integer is assumed, and this specifies 
an exponent of 10.

The program will convert a number in the above 
format into an equivalent number

with the format of a binary floating-point 
number. This number will then be stored in the double- 
length/floating point-accumulator (locations 4 and 5) as 
well as in locations n and n + 1, where n is the address 
specified by the programmed-operator instruction.

Method : - At each stage of the input process, a complete 
representation of the number is produced by the contents of 
the double-length accumulator and two integers and C 2 .
These integers are exponents of 10 and 2 respectively,
and determine numbers by which the double length accumulator
is to be multiplied. Initially = 0 and = 38 + 128.
The number 38 is necessary as the decimal to binary conversion 
process produces a double-length integer of 38 magnitude bits, 
and the number 128 is .required as a scaling in the exponent 
part of a binary floating-point number. As each digit of 
the mantissa is read, is decremented, and a corresponding
double-length integer is produced using double-length 
programmed-operators.
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The exponent digits are converted into a 
binary integer which is used to modify C^.

The double-length accumulator is normalised 
(by shifting left) but a complete representation of 
the number is maintained by adjusting C2 during the 
shifting process.

At this stage, the aim is to reduce 
to zero. If is positive, this is carried out by 
multiplying the double-length accumulator by 10 i 2̂ , 
adding 4 to C2 abd subtracting 1 from C^. If 
is negative, the double-length accumulator is multiplied

3by 2 i 10, 3 is subtracted from C2 and 1 is added to C^q .

After the final normalisation process, the 
mantissa is combined with C2, and the floating-point number 
is stored in the floating-point accumulator, as well as 
in the locations specified by the programmed-operator 
instruction.

The program structure of the floating-point 
programmed-operator follows, and this in turn is followed by 
the detailed coding.
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Program structure : -

* P.0. ENTRY : Obtain link
: Obtain operand address
: Read mantissa sign and set MNS

(Mantissa Negative Switch)
: Clear DL accumulator
: Set to zero
: Set to 166

* READ : Read 1 sexad
: If exponent sign go to * EXP. SIGN
: Convert mantissa to binary integer
: Decrement C^q
: Go to * READ

* EXP. SIGN

* TEST C1Q

** I

* NEG.

* ZERO MANT.

* COMBINE
* DL STORE

Set ENS (Exponent Negative Switch)
If MNS is negative, negate DL accumulator 
If mantissa is zero, go to * ZERO MANT. 
Normalise mantissa adjusting C£

(Jump to sub-routine * NORM.)
Read and convert exponent to binary integer 
Use exponent to form new C^q 
If C1Q = 0, go to * COMBINE 
If C1Q < 0, go to *C1Q NEG.
Multiply mantissa by 10 i 24 
Add 4 to C 2  

Subtract 1 from C^Q 
Normalise mantissa adjusting C 2  

(Jump to sub-routine * NORM.)
Go to * TEST C1Q
Multiply mantissa by 2^ i 10
Subtract 3 from C 2

Add 1 to C^0
Go to **1
Read 2 sexads
Go to * DL STORE
Combine mantissa and C 2

DL store
Go to main program (LINK)
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* NORM. Sub-routine link 
Set in U
Fetch DL accumulator in K, L' 
Shift out waste digit

* TEST If normalised, go to * END 
Shift K, L left 
Decrement U 
Go to * TEST

* END Introduce waste digit 
Store KL in DL accumulator 
Store U in 
Sub-routine Link
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FLOATING-POINT INPUT PROGRAMMED-OPERATOR CODING : -

00 + FLOATING PT INPUT

REL.LOC. REMARKS
* P.O. ENTRY
0 0J F Obtain link
1 16 68L
2 02 5122F (K)' - (U)
3 16 67L
4 02 3F K = 0, L = 0 Read
5 01 129F Read 1 sexad. mantissa sign
6 03 1121F Sh.C.S.K - 1
7 14 85L set MNS
8 15 4F Clear DL accumulator
9 15 5F
10 15 87L C10 = 0
11 OJ 89L C~ = 166
12
* READ

14 88L L

13 02 2F OIIX

14 01 129F Read 1 sexad
15 14 92L
16 10 96L Subtract 10 Test
17 06 774F exponent sign
18 24 95L DL Mult. convert
19 21 6F DL Fetch mantissa to
20 • 22 91L DL Add binary integer
21 02 1538F  ̂ * Decrement C^q
22 17 87L
23

* EXP. SIGN
04 13L Go to * READ

24 03 1125F Sh. C.S.K-5
25 14 86L Set ENS
26 OJ 85L Test MNS
27 06 771F Skip K> 0, 3
28 20 6F DL Store MNegate
29 23 6F DL Sub. DL accumulator
30 23 6F DL Sub.
31 OJ 4F
32 OF 5F Test
33 02 1082F  ̂ m zero mantissa
34 06 538F Skip K = 0, 26 Cond. go to * ZERO
35 0- 69L MANT.Normalise mantissa
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36 02 3F
37 01 129F
38 03 1012F
39 01 129F
40 12 96L
41 0J 87L
42 15 87L
43 08 86L
44 0L 87L
45 14 87L
TEST C1Q
46 0J 87L
47 06 527F
48 05 56L
49 24 90L
50 0J 98L
51 17 88L
52 02 1538F

*1
53 17 87L
54 0- 69L
55 04 46L
C1Q NEG.
56 24 93L
57 0J 97L
58 17 88L
59 02 258F
60 04 53L
ZERO MANT.
61 01 130F
62 04 67L
COMBINE
63 03 3180F
64 11 5F
65 0L 88L
66 14 5F

DL STORE
67 20 • (F)
68 04 (F)
NORM.
69 00 (F)
70 0J 88L
71 02 3076F
72 0J 4F
73 OF 5F
74 03 257F

K = 0, L = 0 
Read 1 sexad 
Sh. C.D.L-K-20 
Read 1 sexad 
KL * 10L + K

Read 7 
convert 
exponent to 
binary 
integer in L

Form
Add index ENS new C^

§

Test C1Q = 0
Skip K = 0, 15 Cond. go to * COMBINE 
Cond. go to * C10 NEG.
DL mult, by 10 ? 2^

Add 4 to 

K * -1

Accumulate 
Normalise mantissa 
Go to * TEST C1Q

DL Mult, by 23i 10

Subtract 3 from 
K = + I 
Go to **1

Read 2 sexads 
Go to *DL STORE

Sh.I.S.K - 12 
Set bits 12 to 19 to zero 
Add Combine mantissa

and

DL store
Link to main program 

Sub-routine link
it *

Set C? in U
U = K z

v * .

Fetch DL acc. in KL

Sh.L.S.L + 1 Shift out waste bit
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* TEST
75 06 1027F Skip K = norm, 3 Cond. go to*END
76 03 8 33F Sh.L.D.L + K ♦ 1

Shift KL left
77 02 5220F Decrement U
78 04 75L Go to * TEST
79 • 03 385F Sh.L.S.L-1 Introduce waste bit
80 14 4F Store KL in DL acc.
81 15 5F
82 02 5122F K * U c ? « .  I T  • /-Store U m  C~
83 16 88L L

84 04 J 69L Sub-routine link
85 (00 F) MNS .

86 (00 F) ENS
87 (00 F) C10
88 (00 F) C2
89
90

00 166F 
0+ F

Initial C2 
DL 10 4 2 4

91 00 F •

92 (00 F) DL mantissa digit
93 2N J 1638F DL 23i 10
94 06 J 4915F
95 00 F DL integer 10
96 00 10F
97 3L J 8189F integer 3̂
98 00 4F integer 4

00 2N
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The Logical Design of the General Purpose Digital Computer SNOCOM
By D. G. Wong, B.Sc., M.Eng.Sc.

(Graduate)*

Summary.—SNOCOM is a general-purpose digital computer based on the logical design of the LGP-30. In this paper, a description of the functional 
and logical design of SNOCOM is presented.

A working machine with many desirable features has been produced. The main purpose of this paper has been to illustrate how some of these features 
have been arranged to fit into the general framework of the LGP-30 design.

L ist of Symbols.
f
F
F'
F'
F .
F, G, H
</>! ~ 8̂
K
L
Q i - Q *  
Q2
P i - P »
A"

A
A*
C"
C
R ’
R
V

f
V
v„
B* ~ B32
B /P
O /F
R ll
R i
z 3
Zj
D0- D s
50 ~ S6
5 1 or u 
S3 or z 
Si or x 
S s or y  
w
w,
t„
t ,
To, Ti
v
«>1 -  wlt
Z0
b J
b
S
P
r
X
B

“ 1 ” output of the F flip-flop.
“ 0 ” output of the F  flip-flop (complement of F).
Signal which sets F  (to 1).
Signal which resets F  (to 0).
“ 1 ” output of the early F flip-flop.
Phase flip-flops.
Phases (defined by Table III).
Sector search, lock-out and augmentation flip-flop. 
Carry-borrow flip-flop.
Order flip-flops.
Blocked state flip-flop.
Track selection flip-flops.
Accumulator input (i.e., signal to accumulator record 

amplifier).
Accumulator playback flip-flop.
Double length accumulator playback flip-flop.
Counter input.
Counter playback flip-flop.
Instruction register input.
Instruction register playback flip-flop.
Digits to be recorded (in the main store).
Duration of recording (in the main store).
Store playback flip-flop.
Auto input store playback signal (see Section 7.1).
Outputs of the BP  (break-point) switches.
Break point stop signal (see Section 7.3).
Overflow stop signal (see Section 7.3).
Ready ready signal.
Weight 5 reader buffer flip-flop.
Printer ready signal.
Punch ready signal.
Digit timing waveforms.
Segment timing waveforms.
Sector number waveform.
Track number waveform.
Order number waveform.
Second sector number waveform.
Full address waveform.
Early full address waveform.
Waste digit.
Sign digit.
Interleaved clock pulses.
Sector number generator output.
Binary counter outputs of the sector number generator. 
Output of the Z0 (or external transfer) switch. 
Adder-subtracter inputs.
Adder-subtracter output.
Add or subtract signal.
Duration of the shift register operation of the P flip-flops. 
Either R  or C depending on the phase.
Stroke (/) character flip-flop.
Auto input flip-flop.

NOTE : The complement of a Boolean variable is represented 
in bold type (or in the illustrations by a bar over the symbol).

1.—Introduction.

In 1957, the System Operational Problem was programmed 
for its solution on SILLIAC, the general-purpose digital computer 
within the Basser Computing Department of the University of 
Sydney. The success of the SILLIAC studies led to the recom
mendation that the specification of the computer to be built for the 
Snowy Mountains Authority be changed from a digital differential 
analyser to a general-purpose digital computer.

After ADA was completed and officially opened in March, 1958, 
the logical design of the computer which was to be known as 
SNOCOM was commenced. The availability of Frankel’s design 
of the LGP-30 (Ref. 3) and the realization that essentially the same 
circuit and constructional techniques developed for ADA could be 
used with the second machine, were the main reasons for basing 
SNOCOM on the logical design of the LGP-30.

The purpose of this paper has been to describe some of the 
computer processes which were not covered in any detail in Frankel’s 
paper, and also to present some of the features which have been 
incorporated into the design of SNOCOM.

2.—G eneral D escription.
SNOCOM is a fixed-point, binary, serial, stored-program, 

single-address, general purpose digital computer using transistor 
circuits and magnetic drum storage. The storage capacity of the 
computer is 2,048 words, each of 32 binary digits. These are 
arranged on 64 tracks of die drum with 32 words per track. The 
Model 512-A Bryant magnetic drum (5 in. dia., 12 in. long) runs 
at 6,000 r.p.m., giving a clock rate of 102.4 kc/s, a word time 
of 312 microseconds and a mean access time of 5 milliseconds. 
The accumulator, instruction register and instruction counter are 
in the form of recirculating registers, with the spacing between 
record and playback heads corresponding to one word period. The 
addition of a second playback head on the accumulator recirculating 
register enables double length numbers to be stored for use in the 
multiplication and division processes. The computer logic is 
synchronised by clock pulses derived from a clock track and a once- 
per-revolution marker permanently recorded on the drum.

An interlaced sector number system enables simple instructions 
to be obeyed within nine word periods. Another sixty four word 
periods are required for the multiplication and division instructions. 
Hence the addition and multiplication times are 2.8 milliseconds 
and 22.8 milliseconds, respectively. The bench-mark time (i.e., 
the time to carry out ten additions and one multiplication) is about 
51 milliseconds.

The peripheral units consist of (1) a Ferranti TR5 paper tape 
reader which operates at 300 characters per second, (2) a Teletype 
BRPE paper tape punch which operates at 50 characters per second, 
and (3) a modified IBM electric typewriter which operates at 
10 characters per second. Both output units are computer- 
controlled and all units may operate simultaneously.

N U M B E R  WORD

I 2 3 *  S  6 7 3  9 ¡0 U H ¡3 H  IS /6  !7  18 0  2D 2! 72 23 2H 25 2b 27 28 2q 30

SIGN 30 M AG N ITU D E B ITS SPACER

In 1955, the development of the Digital Differential Analyser 
“ A.D.A. ” (Refs. 1,2) was commenced by the Mathematical Instru
ments Section of C.S.I.R.O. under the direction of the Professor 
of Electrical Engineering of the University of Sydney. This 
project was supported by the Snowy Mountains Hydro-Electric 
Authority and it was understood that a second D.D.A. was to be 
built and installed in the S.M.H.E.A. offices in Cooma North, 
N.S.W. This second computer was to be specifically designed for 
the solution of a System Operational Problem, which had previously 
taken many “ man-years ” of manual calculations for its solution.

This problem had been formulated, not as a set of ordinary 
differential equations, but as a long sequence of simple arithmetic 
and logical operations on whole numbers. It was shown that a 
D.D.A. solution was possible, but about 400 integrators would 
have been required and the computation time might have been 
prohibitively long.

•This paper, No. 1625, was presented before the Engineering Conference, 1962, 
in Cooma from 19th to 23rd March, 1962.

The author is Lecturer, School of Electrical Engineering, The University of Sydney.

IN STR U C TIO N  W ORD

0 2 * 6 8 10 // 12

~L
l i 16 n 8 19 2 21 72 3 24 2 26 77 28 / X

Zo SPA CER'oRDEF TRACK SECTOR

ADDRESS
Fig. 1.—SNOCOM Number and Instruction Words.

A SNOCOM number word consists of a sign bit, thirty magni
tude bits and a spacer bit as shown in Fig. 1. The binary point is 
assumed to be between bit 0 and bit 1, and the normal two’s com
plement system for the representation of negative numbers is used. 
Hence, all machine variables (x) lie in the range:

-1  < x < 1 -  2-30

The Journal, June, 1962
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A SNOCOM instruction word consists of four order bits, 
six track bits and five sector bits as shown also in Fig. 1. The 
track and sector bits together constitute the full address of the 
instruction. Apart from the sign bit which is used in conjunction 
with the conditional transfer of control order for external program 
control, the remaining bits have no significance. Corresponding 
to the different combinations of the four order bits, there are 
sixteen basic instructions which SNOCOM is capable of executing.

3.—T he SNOCOM Order Code.

The order code for SNOCOM’s sixteen basic instructions 
is shown in Table I. These instructions are defined in detail in 
Table VII (Appendix IV) and a brief discussion of these is presented 
in following sections.

TABLE I.
T he SNOCOM Order Code. 

(Simplified.)

Code
Order

Sexadecimal Binary

1 0001 Bring
F 1110 Add
L 1111 Subtract
7 0111 Multiply fractions
6 0110 Multiply integers
5 0101 Divide
9 1001 Extract
-f 1010 Unconditional transfer
— 1011 Conditional transfer
N 1100 Store
J 1101 Store and clear
2 0010 Store address
3 0011 Return address
4 0100 Input
8 1000 Output
0 0000 Stop

3.1.—Arithmetic and Logical Instructions :
The arithmetic operations of addition, subtraction and division 

are carried out with an accuracy of 30 binary digits plus sign. 
For multiplication, the complete product consisting of 60 binary 
digits plus sign is formed (by the use of a second playback head 
on the accumulator track), and the most significant 30 bits plus 
sign or the least significant 30 bits are left in the accumulator, 
depending on whether a 7 order or a 6 order is being executed.

The augend, minuend, multiplier or dividend is entered into 
the accumulator by a 1 order, while the address of the addend, 
subtrahend, multiplicand or divisor is specified in the single
address instruction. The results of the arithmetic operations are 
left in the accumulator.

As the accumulator is used to hold both the multiplier and the 
product, with a suitable choice of constants for the multiplicand, 
7 and 6 orders can be used as right and left shift orders, respectively. 
For example, a 7 order multiplication by 08000000 (sexadecimal) 
is equivalent to multiplication by 2-4 and this results in the contents 
of the accumulator being shifted 4 binary places to the right. 
On the other hand, a 6 order multiplication by 08000000 is equiva
lent to multiplication by 231-4 and this results in the contents of the 
accumulator being shifted 27 binary places to the left.

The 9 order obtains the bit-by-bit logical product of the 
contents of the accumulator and the contents of the location specified 
by the instruction, and retains the result in the accumulator. Used 
in conjunction with “ masking ” numbers which contain l ’s in 
certain bit positions and 0’s elsewhere, the 9 order makes possible 
the storage of several pieces of information in the same storage 
location, as each piece of information may be isolated (or extracted) 
and used individually.
3.2— Transfer of Control Instructions :

Interconnection of routines and branching of a program 
depending on intermediate results are made possible by the 
unconditional transfer and conditional transfer instructions. Manual 
control of a program in the computer is also made possible by the 
external transfer switch Z0. Reference to Table VII shows that the 
order 80-0ABC0 transfers control to ABC  if the accumulator is 
negative or if the switch Z0 is “ on ” . It should be noted that if 
branching of a program is to be made contingent only on the Z0 
switch setting, it is necessary to ensure that the accumulator is 
positive when the above conditional transfer order is obeyed. 
This may be carried out by preceding the order with a J  order 
(store and clear), as zero is interpreted as a positive number.

3.3— Record Instructions :
Intermediate results are recorded on the magnetic drum using 

the N  order (store) or the J  order (store and clear), and addresses 
of instructions in the store are modified using the 2 order (store 
address). The 3 order (return address) is used for “ planting ” 
the (return) “ link ” between a subroutine and the main program. 
The order immediately following the 3 order is usually an uncon
ditional transfer order which transfers control to the first order in 
the subroutine. The address of the second order after the 3 order 
is planted into the last order of the subroutine (also an unconditional 
transfer order) which transfers control back to the main program.

3.4— Input Instruction :
Reference to Table VII shows that it is possible to enter a single 

character (four bits) or a complete word (eight characters) on the 
execution of a single 4 order. The eight characters of a word are 
enclosed within two control characters, /  (stroke) and #  (number), 
which direct the input logic to repeat the input process (to be 
described) until all characters enclosed by the two control characters 
have been entered into the accumulator. It is to be noted that all 
5th bit characters (including the control characters /  and #) never 
enter the accumulator.

3.5— Output Instruction :
If bit No. 17 (see Fig. 1) of an 8 order is 0, bits 18-22 are 

punched as a character on the output tape; if bit 17 is 1, and if 
bits 18-22 correspond to one of the nineteen decoded characters, 
the output printer will be activated. A program may be written 
to either punch or print the results of a computation depending 
on the setting of the Z0 switch. This may be carried out very 
simply as the only difference between a print and a punch order is 
the constant 00004000 (sexadecimal) which may or may not be 
added to the output order depending on the Z„ setting.

3.6.—Stop Instruction :
The conditional stop orders may be very useful in code-checking 

a new program. If 0 orders with different track numbers are 
scattered throughout a program, the programmer may stop the 
computation just before the suspected faulty section of the program 
by setting the appropriate break-point switches. The computer 
may then be switched over to single operation mode, and the error 
located by monitoring the contents of the three main registers and 
the states of the main flip-flops after the execution of each 
instruction.

4.—T he T iming U n it .

Waveforms generated by the timing unit are used (1) to 
synchronise the operation of the logic circuits, (2) to maintain the 
correct interpretation of digits in a word by extracting the appro
priate digits to be used in the machine logic and (3) to announce the 
number of the sector which is next to appear under the read-write 
heads of the main store.

The interleaved clocks T0 and T2 of Fig. 2 are derived from a 
clock track on the drum, and are used in the double flip-flop arrange
ment of Fig. 5. A once-per-revolution marker synchronizes the 
segment and digit ring counters described in Section 4.1. and the 
sector number generator described in Section 4.2.
4.1. — The Segment and Digit Timing Waveforms:

To maintain complete flexibility so that any digit within a 
word may be specified, a word period has been divided into six 
segments with each segment containing either four, five or six 
digits. The segment waveforms S0 —  S 5 and the digit waveforms 
D0 —  D5 of Fig. 2 are generated by two ring counters and inter
connecting logic. Any digit within a word is specified in terms of 
these waveforms. For example, the waste digit and the sign digit 
are the first and last digits in the word and may be specified as 
S 0D2 and S qD ĵ respectively.
4.2. — The Sector Number Generator :

In SNOCOM, consecutive addresses do not correspond to 
consecutive locations on a track of the drum, but to locations which 
are spaced nine word periods apart. In this way, an instruction 
which refers to an operand, which is appropriately located between 
itself and the next instruction, is obeyed in nine word periods rather 
than the minimum time of thirty-two word periods (corresponding 
to one drum revolution) which would otherwise be required. To 
make the above interlaced system possible, a sector number must be 
formed by subtracting seven from the number of the preceding 
sector (modulo 32). This results in the sector number sequence 
shown in Table II.

Two three-stage binary counters are used in the generation 
of the sector number sequence. The first counter corresponds 
to the three least significant digits of the sector number and is 
pulsed to count forwards every word period. The second counter 
corresponds to the two most significant digits of the sector number 
plus an additional (more significant) digit which effectively counts 
odd and even drum revolutions. This second counter is pulsed 
to count backwards on every word period except every eighth 
when the first counter changes from the state 111 to 000. With the 
above arrangement, one is added to the weight one position of the 
sector number and one is subtracted from the weight eight position; 
this results in a sector number being formed which is seven less than 
the preceding one. The second counter is inhibited from changing 
when the first has changed from 111 to 000 as this already repre
sents a subtraction of seven.

The binary counters are pulsed early in the word period and 
their states are gated by the digit waveforms (D0 -  -  Ds) so that their 
representation is converted into the serial form required by the 
machine logic.

In the LGP-30, the sector number pattern is recorded per
manently on one track of the drum. This is not the case for 
SNOCOM, and the parallel representation of the sector which is 
next to be presented by the store playback amplifier is utilized in the 
auto input logic.

The instruction search (</>l), instruction setting (</>2) and 
operand search (</>3) operations require a minimum time of three
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word periods. As consecutive addresses are nine word periods 
apart, there are six optimum sector numbers for instructions which 
require one word period for their execution. As an example, 
sectors 18, 11, 4, 29, 22 and 15 would be optimum for an “ add ” 
instruction stored in sector 0. Sectors 25 and 8 are excluded as 
these correspond to the operand search (</>3) of the current instruc
tion, and the instruction search (</>l) of the next instruction 
respectively. Type 7, 6 and 5 instructions require 66, 64 and 67 
word periods for their execution and there are correspondingly 
five, seven and four optimum sectors for these instructions.

5.—M anual Controls for Starting a Program.

Because the three operations for initial filling described in 
Section 5.1 were designed to share common timing circuits, it is 
necessary for the machine operator to select the required operation 
by pressing the appropriate button, before initiating the operation 
by pressing the “ operate ” button. Buttons on the machine 
console must be pressed 28 times in the correct sequence before the 
bootstrap routine described in Section 5.2 could be initially filled 
to input a new program. It was realized very early in the develop
ment of the computer that this would cause a great deal of incon
venience. To overcome this, “ block record ” toggle switches with

Interleaved Clock Pulses
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TABLE II.
SNOCOM Sector N umber Sequence.

Sector Number Binary Equivalent

0 00000
25 11001
18 10010
11 01011
4 00100

29 m oi
22 10110
15 01111
8 01000
1 00001

26 11010
19 10011
12 01100
5 00101

30 11110
23 10111
16 10000
9 01001
2 00010

27 11011
20 10100
13 01101
6 00110

31 m i l
24 11000
17 10001
10 01010
3 00011

28 11100
21 10101
14 01110
7 00111
0 nonnn

associated logic were introduced to safeguard the unscheduled 
mutilation of an input routine which was to be stored permanently 
at the beginning of the store. Control was to be transferred to this 
routine by simply pressing the “ clear C ” button. SNOCOM’s 
auto input described in Sections 5.3 and 7.1 has been extremely 
effective in simplifying the procedure for starting a program, and it 
has not been necessary to develop programs using the block record 
feature.

5.1. —Initial Filling:
The three operations provided for initially filling the magnetic 

drum store with a bootstrap routine are as follows.—
(1) Fill the accumulator with the character(s) presented by the tape 

reader ; i.e., obey an input instruction (-> A).
(2) Transfer the contents of the accumulator into the instruction 

register (A -> R).
(3) Execute the instiuction held in the instruction register (Ex.R).

As an example, to fill the word 00+00000 (sexadecimal) into 
location 004 (sexadecimal), the input tape would contain the word 
pair :

/00N 00040# /00 + 00000#
and the manual operations would be as follows.—

1. Fill Accumulator (-> A)
2. Transfer A  to R (A-> R)
3. Fill Accumulator (-»■ A)
4. Execute R (Ex.R)

Steps 1 and 2 put the “ store ” order (type N ) into the instruction 
register. The word 00+00000 is entered into the accumulator in 
step 3, so that on the execution of the store order in step 4, this word 
is filled into location 004 in the main store.

5.2. —A Bootstrap Routine :
With SNOCOM’s order code, the minimum number of 

instructions required for a bootstrap or short input routine is three. 
In sexadecimal, these instructions are as follows.—

Location Instruction
000 00400000
001 00N00030
002 00400000

The first two words on the input tape must be :
/00N00040 #  /00 +  00000 #

and the routine must be started at location 000 by pressing the 
“ clear C ” button on the control console. The latter word is 
stored in location 004 on the execution of the former (instruction) 
word which had previously been stored in location 003 by the three 
orders of the initial bootstrap routine. On the execution of the 
latter (instruction) word in location 004, control is transferred to 
location 000, and the following program on the input tape is then 
effectively under the control of the following routine.-—

Location Instruction

000 -» 00400000

001 00N00030

002 00400000

003 ( )

004 — 00+00000

This routine may be used to fill a program into the store when 
each word of the program is preceded by a “ store ” or “ store and 
clear ” instruction whose operand address corresponds to the 
location in which the word is to be stored.

The execution of the bootstrap routine can be terminated if the 
first order of an order pair is an unconditional transfer of control 
order.

5.3.— The Auto Input:
After the auto input button has been pressed, the normal 

store playback (F) from sectors 0, 1 and 2 is inhibited and replaced 
by a pattern of digits generated from the timing unit. This pattern 
of digits is equivalent to the following three orders.—

00400030 (from sector 0)
00N00030 ( „ „ 1)
00400030 ( „ „ 2)

If the first two words on a program tape are :
/00N00040 #  /0 0 +00000 #

and the computer is started after pressing the “ clear C ” button, 
the word 00+00000 will be stored in 004, and the program will 
then be effectively under the control of the following bootstrap 
routine.—

Location Instruction

000 -> 00400030 1

001 00N00030 From
’ timing unit

002 00400030

003 < n - From store
004 — 00+00000 J!
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The normal store playback from sectors 0, 1 and 2 (track 0) 
is not inhibited permanently, conditions being returned to normal 
immediately a “ 1 ” is sensed in the waste digit position of the 
accumulator in phase 1.

It is to be noted that, because of a simplification of logical 
design, the normal store playback is inhibited whenever the sector 
number generator announces a number whose binary equivalent 
contains a “ 0 ” in the weight 4 position, and this applies not only to 
track 0 but to all tracks. To eliminate these abnormal conditions 
as soon as possible, it is recommended that all program tapes should 
begin with the following eight words.—

/00N00040 #  
/00N00000 #  
/00N00010 #  
/00N00020 #

/ 0 0+ 00000 #  

/00400000#  
/00N00030 #  
/00400001 #

When this is done, the bootstrap routine discussed above will be 
actually written into the store, and conditions will be returned to 
normal by the “ 1 ” in the waste digit position of the eighth word.

After the program tape has been placed in the tape reader, the 
normal procedure for inputting a program using the auto input is as 
follows.—

1. Press the initial set button.
2. Press the clear C button.
3. Press the auto input button.
4. Press the operate button.

6.— F unctional D esign.

The execution of each instruction stored on the magnetic 
drum takes place in four to eight phases. During computation, 
information is held on the drum, in the recirculating registers 
and in flip-flops. The definition of the operations which are to be 
executed in each phase, such as the transfer of information from 
drum to recirculating register or from recirculating register to 
flip-flop, constitutes the functional design of the computer. The 
multiplication and division processes which require the additional 
phases (five to eight) are not described in this paper, and for these 
the reader is referred to Reference 3.

6.1. —Phase 1.—Instruction Search :
The address digits of the instruction counter specify the 

address of the next instruction which is to be obeyed. In phase 1 
(abbreviated </>l), the track digits of the instruction counter are set 
into six flip-flops (P1 —  P 6) which control the track selection cir
cuits during the subsequent phase {<f>2); the sector digits are used 
in conjunction with the sector number generator of the timing 
unit to terminate <f> 1 so that the correct instruction is presented by 
the store during $2.

6.2. —Phase 2.—Instruction Setting and Counter Address Aug
mentation :

In <¡>2 which lasts only one word period the instruction to be 
obeyed is transferred from the store to the instruction register.

As the instructions in the store are normally obeyed sequen
tially, the address of the instruction counter must be augmented 
by one at some time in the machine cycle after it has directed the 
logic to set the current instruction into the instruction register. 
This is carried out in <f>2, and the new augmented address will be 
effective in the next <f>\ unless the current instruction is an uncon
ditional transfer of control order or a successful conditional transfer 
of control order, in whir’ _ase the augmented address is overwritten 
in a later phase (</>4).
6.3. —Phase 3.—Order Setting, Operand Search and Lock-out:

In (f)3, the order digits of the instruction register are set into 
four flip-flops (<2i —  Q4), and these control the logic in the execu
tion phases which are to follow.

The track digits of the instruction register are set into the same 
six flip-flops P1- - P 6 which were used in<f>l. For the orders which 
specify the address of an operand (order types 1, 2, 3, 5, 6, 7, 9, 
N, J, F and L), the P flip-flops are used to control the track selection 
circuits during the subsequent phase (<£4), and the sector digits of the 
instruction register are used in conjunction with the sector number 
generator to terminate <f>3 so that the correct operand is presented 
by the store during <£4.

For order types 0, +  and —, which do not refer to the store, 
cf>3 is terminated after one word period.

For order types 4 and 8, <f>3 is terminated after one word 
period provided the peripheral units are not operated at their 
maximum speeds. However, if a program attempts to operate 
any of the peripheral units at greater than its maximum speed, the 
computer will “ lock-out ” (i.e., wait) in </>3 until that particular 
unit is ready. It is to be noted that there are one character buffer 
registers associated with each peripheral unit, so that it is possible 
for the reader, printer, punch and the computer itself to operate 
simultaneously. For an input order (type 4), the track digits in 
Px -  P4 are overwritten by the character (consisting of four bits) 
which is to be input and this character is shifted into the accumulator 
in </>4.
6.4. —Phase 4.—Execution :

In (f>4, which lasts only one word period, the order specified 
by the states of the four Q flip-flops is executed.

As SNOCOM is a single-address machine, the contents of the 
accumulator are used as the second operand of instructions requiring

two operands (e.g., addition, subtraction, multiplication and 
division), and the accumulator is also used to store the results of the 
computation.

For the transfer of control instructions (types +  and —), 
the augmented address of the instruction counter may be over
written by the address digits of the instruction register.

For the record orders (types 2, 3, N  and J), the store record 
amplifier is activated and information is written onto the magnetic 
drum.

For the .input order (type 4), the accumulator digits are 
effectively shifted four places to the left and the four digits held in 
Pi —  P 4, which had previously (in </>3) been set according to the 
character to be input, are shifted into the four least significant 
places. The input logic has been designed so that any number of 
characters (up to 8) can be entered into the accumulator on the 
execution of a single input order. This is accomplished by using 
two control characters (/ and #) on the input tape. After a /  
character has been detected in <f>3, cf>3 and not <¡>1 is made to follow 
<f)4 so that the </>3 -  </>4 input process (described above) is repeated. 
After a #  character has been detected in </>3, </>l and not cf>4 is made to 
follow (f>3. For example, if the input tape contained /L3F #, the 
machine would cycle through the following phases on the execution 
of a single input order.—

<f> 1 —>  <j>2  —*■ <j>3  —>  <f>4 —>  tf>3 —*■ <¿4 —>  <f>3 —>  (£4 - >  <j>3 —> <f> 1
It is to be noted in the above example that the machine enters 
(f>4 three times and hence three sexadecimal characters are entered 
into the accumulator. It is also to be noted that all 5th bit characters 
(including /  and #) are excluded from entering the accumulator.

For the print or punch order (type 8), the character to be 
printed or punched is determined by the track digits of the in
struction. These have already been set into the P flip-flops (in rf>3). 
The flip-flop Pi is used to determine whether the printer or the 
punch is activated : if Px =  0, the 5 bit character P2P3P4P5P6 is 
punched ; if Px =  1 the character corresponding to P2P 3P4P5P6 is 
printed.

For a stop order (type 0), the computer completes (f>4 and remains 
in >̂1 until instructed (manually) to continue its computation. A 
detection of overflow or division hang-up will also stop the computer.

7.—L ogical D esign.

The following brief description refers to the simplified block 
diagram of Fig. 3. More details appear in Appendices I, II and III.

The logical design of the LGP-30 as described by Frankel 
in Reference 3 consists primarily of (1) the specification of the 
conditions under which each of the main fifteen flip-flops is set and 
reset, (2) the specification of the digits to be recorded in the 
recirculating registers in each digit period and (3) the specification 
of the exact location on the magnetic drum in which specified 
digits are to be recorded.

Three flip-flops (P, G, H) are used to define the eight machine 
phases (see Table III). Some improvement in machine specifica
tion has resulted from changing the conditions under which phase 
three is terminated in SNOCOM. The additional logic described 
in Section 7.2 utilizes the multi-purpose flip-flop K  which is used 
(1) for sector search, (2) for peripheral unit lock-out and (3) for 
augmenting the counter address. The L flip-flop is used to delay 
the carry or borrow digit in the adder-subtracter described in 
Appendix II. The four flip-flops QiQ2Qz and Q4 are used to hold 
the order digits during the execution phases. The flip-flop Q2 
is also used in the blocked-state logic to be described in Section 7.3. 
The main purpose of the six flip-flops P 15 P2, P 3, P4, P 5 and P 6 
is to select the correct track while recording on or playing-back 
from the magnetic drum.

A signal-flow and block diagram for the recirculating registers 
is presented in Fig. 7. The derivation of the Boolean equations 
representing the digits (A", C" and R") presented to the record 
amplifiers of the recirculating register is briefly described in 
Appendix II. The equations are essentially the same as those 
described by Frankel, with minor modifications. No modifications 
to the multiplication and division processes were made and hence 
these are not described.

The V  logic representing the digits to be recorded and the /  
logic representing the duration of recording ensure the correct 
execution of the four record instructions.

Two significant improvements over the LGP-30 design which 
have been incorporated in SNOCOM are described in Sections 7.1 
and 7.2. The logic in Section 7.3 was not described in any detail in 
Frankel’s paper. In these sections, it is assumed that die reader 
is familiar with the material in the Appendices I, II and III.

7.1.—The Auto Input:
As the sector number generator announces the sector number 

of the next word, when sectors 0, 1 and 2 are being played back, 
the sector number generator announces 25, 26 and 27, respectively. 
If the binary counter outputs of the sector number generator are 
zou zv2, k>4, zvB, and zu1G, the relevant sectors are represented by the 
following.—

Sector played back Sector number announcement
0 to  i z v 2 u>4 Wg W i g (sector 25)
1 W i w2 U>1 W g W i g ( „ 26)
2 W i Wo w t W g W i g ( « 27)
3 w . IV  2 »4 W g W i g ( » 28)
4 W i VO 2 W t W g W i g ( » 29)
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Fig. 3.—Simplified Block Diagram of SNOCOM.

It can readily be seen that wA alone distinguishes sectors 0, 1 and 2 from sectors 3 and 4.
After the auto input button has been pressed, the 8  flip-flop 

is set to the “ 1 ” state, and while this flip-flop is in this state, the 
normal V  playback from sectors 0, 1 and 2 (and other sectors but 
not sectors 3 and 4) is inhibited. The conditions to be satisfied 
while V  is inhibited are therefore represented by iu4 . B  =  1.

The normal V  playback is replaced by a pattern of digits 
generated from the timing unit. For example, an input order 
00400000 is represented by a single digit S iD2, and the order 
OON00030 is represented by the 4 digits :

S 4D3 +  S4D3 +  S1D1 +  SiD0
Using zVi and w2 to distinguish between sectors 0, 1 and 2 and 

a>4 to distinguish sectors 0,1  and 2 from sectors 3 and 4, the pattern 
of digits to be generated from the timing unit may be represented by : SiD3wliv2w t

+  (S4D3 +  S4D2 +  SlDl +  SjDq) tu1zv2tvi-f S iDizv1w2u>i
The digits from sectors 0, 1 and 2 have S 4D2 in common. 

Also, as the address portion of an input order has no significance, 
the digits SiDx and S tD 0 may be added to the input orders without 
harm. The pattern therefore may be simplified to :

(54D2 +  SjDi +  S4D0) w  1 +  S4-D3 wlw2tvi
The auto input logic is introduced into the main machine 

logic by replacing the normal V  playback by a new variable V b 
which is equal to V  under normal conditions but equal to the 
digits generated from the timing unit under the conditions of auto 
input (i.e., when w 4 . B  =  1). Hence :

Vt, — V . w 4 . B +  tv4 . B(S4D3 +  +  .Si-Do +  SiD3tViW3)
The B  flip-flop is set to “ 1 ” when the auto-input button is 

depressed, and is reset to “ 0 ”  when a “ 1 ” is detected in the waste 
digit of the accumulator in <f>l. I t  is also reset to “ 0 ” when the 
initial set button is depressed so that the computer may be used 
without the auto input operation. Hence :

B' =  auto input button
B' =  <t>i tw A +  initial set button.

A logic diagram corresponding to the above equations is shown 
in Fig. 4.
7.2.— Termination of Phase 3 :

In  the logical design of the LGP-30 as described by Frankel’s 
summary of equations, </>3 is terminated by sector number agree
ment for all orders. However, for five of the sixteen orders (viz., 
0, 4, 8, +  and — orders) reference is not made to the store 
immediately following the termination of cf>3 (i.e., in f  4).

In  SNOCOM, <f>3 is terminated after one word period for 0, 
4- and — orders by setting K  to “  1 ” at S bD3 in </>3. This setting 

of K  to “ 1 ”  must occur after S J} when K  might be reset to “ 0 ” 
by the operand search logic, and also after <S4 during which time the 
order digits in  the R  register are set into the Q flip-flops. The 
states of the Q flip-flops corresponding to 0, +  and — orders are 
Q 1Q 2Q3Q 4> Q 1Q 2Q3Q 4 and QiQzQsQi respectively. The termination of <f)3 after one word period for 0, +  and — orders may 
therefore be represented b y :

K ' =  (Q1Q2Q3Q4 +  Q1Q2Q3) <t>3 SbD3 +
For type 4 and 8 orders, termination of <f>3 is controlled by 

“ reader ready ”  (R LLR 5)} “ printer ready ” (Z3) and “  punch 
ready ” (Zj) signals, and provided the computer program does not 
attempt to operate the peripheral units faster than their maximum 
operating speeds, SNOCOM* S logic is such that <f>3 for these orders 
will last only one word period. The K  flip-flop is reset to “ 0 ” 
at S 6D1 in <f>3 as it might have been left in the “  1 ” state by sector 
agreement. The “ ready ” signal o f the unit specified by the Q’s 
and is then sensed; if  the vmit is ready, <£3 is terminated by 
setting K  to 1 at S bD3; i f  the unit is not ready, the machine will 
repeatedly lock-out and sense the ready signal at following S 5D3 
times until the unit is ready to initiate another input or output cycle. 
The above arrangement is represented by the equations :
K' =  (Q!Q2Q3Q4 +  Q1Q2Q3Q4) ¿ 3  SsD, +
K' =  Q!Q2Q3Q4 • ¿3S6D3 (z 3p i +  z 2p i) +  Q1Q3Q3Q4 • <I>3S 3D3R llR 3 +

Auto Input Initial Set

0 1 0 1

In the above, R LL equals 1 when any character has been correctly 
assembled in the input buffer. The significance of R-a is that 
only a correctly assembled non-5th bit character will terminate 
<j>3, as these are the only characters which are permitted to enter the 
accumulator in <f>4.

I t is to be noted that only the “  ready ” signal corresponding 
to the current input or output instruction is sensed. Hence, the 
computer and all three peripheral units may be in operation 
simultaneously.
7.3.— The Blocked State :

In  the blocked state, the computer remains in <j> 1. This is 
accomplished by making the transfer from 1 to <f>2 contingent on 
the occurrence of Q2 — 1. The flip-flop Q2 is always found in the 
1 state when <f> 1 is entered. However, it is reset to 0 later in the 
first word period of ̂ 1 if  the stop computer cycle has been previously 
initiated by (1) the detection of overflow in an addition or sub
traction, (2) the detection of an improper division, (3) the execution 
of a break point order or (4) the setting of the computer in the single 
operation mode.

Each of the fifteen main flip-flops in the computer is repre
sented by a pair of flip-flops operating with inter-leaved clocks, 
as shown in Fig. 5. The Q2 flip-flop is set to 1 when <f> 1 is entered by adding a term F eF  to the Q \  equation.—

Q \ = FJP +
where F e and F  are the 0 and 1 sides of the early and late F  flip- 
flops, respectively. The term F eF  produces a 1 output only when 
the phase changes from <f>4 to f l ,  cf>4 to <f>5 and <f>7 to <f>8. It is to be 
noted that <22 — 1 for multiplication and division orders. Hence 
on entering f l  from </>4, </> 6, </>7 or f  8, Q2 will be found in the 1 state.

7.3.1.—Overflow.—The normal two’s complement repre
sentation of negative numbers is used. Hence overflow is detected 
by the presence or absence of the carry or borrow digit into the 
sign digit position. The four conditions under which over-flow 
occurs is represented by :
O/ F =  F G H t 3QlQ3Q3(Qi A V L  +  Qi A V L  +  Q i A V L +  Q4 A V L)
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F F
Fig. 5.—Flip-flop Pair with Interleaved Clocks.

The above O/F  signal is used to set a flip-flop which illuminates 
the O/F  monitor light and causes the machine to idle in the next 
>̂1 by resetting Q2 to 0. An overflow on-off switch is provided to 

inhibit the stopping of the machine when overflow occurs.

7.3.2.—Break Point Stop.—The track number of a 0 order is 
held in the P  flip-flops during 4. Reference to Table VII shows 
that the computer is to stop unconditionally when all P ’s are in the 
0 state. Otherwise, stopping is contingent on the setting of a BP 
switch and the setting of the corresponding P  flip-flop in the 1 state. 
These conditions are represented b y :
B /P  =  F G H  Q 1Q2Q 3Q 1 {PlP iP iP iP iP , +  P1B 32 +  P 2B lt + P aB a +  

P  4 B t +  P  5B2)
where P32----- Bz are the outputs of the BP switches.

The above B /P  signal is used to set a flip-flop which illuminates 
the B/P  monitor light and causes the machine to idle in the next 

by resetting Qz to 0.

8.— Conclusions.

The problem of starting programs on simple magnetic drum 
computers has been overcome in SNOCOM by the incorporation 
of the “ Auto Input ” feature.

The “ Lock-out ” circuitry necessary for the simultaneous 
operation of the computer and the peripheral units has been found 
extremely effective. This feature, together with the relatively 
high operating speeds of the peripheral units, has effectively 
increased the computational speed of the computer for problems 
involving large amounts of input data and output results.

Starting from the general framework of the LGP-30 design, 
it has been found relatively simple to introduce a number of desirable 
features into SNOCOM. These features include the computer 
control of both the printer and the punch, the allowable selection 
of the number of characters entered on the execution of an input 
order, and the reduction of computational time by minimizing the 
period of the operand-search and lock-out phase (</>3).

SNOCOM had run satisfactorily for several months within the 
Electrical Engineering School of the University of Sydney before 
its installation within the main offices of the Snowy Mountains 
Authority in Cooma North, N.S.W. Since the beginning of 1961, 
its operation in its new environment has also been found satisfactory.

The design, construction, testing and installation of SNOCOM 
were carried out by an extremely small group of qualified personnel 
and technicians, some of whom had teaching commitments as well. 
The success of the SNOCOM project has shown that substantial 
contributions can be made by such groups in the computer field, 
and it is the opinion of the author that computer research and 
development (even by small groups) at the University should be 
encouraged.
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APPENDIX I.
Phase L ogic.

A block diagram of the phase logic is shown in Fig. 6. The eight 
machine phases are defined in terms of the settings of the F, G and H  flip- 
flops in Table III.

TABLE IU.
D efinition of Phases in  T erms of F, G and H.

Phase F, G, H  States

4> i F G H
F G H

<¿3 F G H
4>i F G H
4>s F G H
4* 8 F G H
4*7 F G H
fa F G H

By virtue of the double flip-flop arrangement (Fig. 5) the outputs of a 
particular flip-flop (for example F  and F) may be used in the setting and 
resetting logic of the same flip-flop. (A single flip-flop with input storage 
gates would also have been satisfactory.)

The conditions under which a flip-flop (e.g., F) are set (to “  1 ” )  
and reset (to “ 0 ”) are denoted by F' and F ', respectively. The sign 
digit t ,  is the last digit of a word period; hence, the term t ,T 2 will be 
included in all the setting and resetting expressions for F, G and H.

As <f>2 and <f>4 consist of only one word period, the change in F at the 
end of these phases is represented by :

F' =  F G H t , T 2 +
F' =  F G H t,  T2 +
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Fig. 6.— Block Diagram of the Phase and Blocked State Logic.



THE LOGICAL DESIGN OF SNOCOM— Wong. 131

A* H e a d __________ A Head______ ____A*Head

I REC- AMPL~1 I P/B AM PL-FF | | P/B AMPL.-FF |

ill. 02. «3
04 (+ .-.N .2 .3 .8 .0 )

^ ----------- Vb

1.9) / O — Vb

04(F,L) ADDITION
SUBTRACTION

-Vb

I  Omit sign digit

MULTIPUCATION
DIVISION

tU (All except ♦ and successful - )

------------- 1 « order~ |-—  R

I
0 *  LOGIC 

Change - order into 
♦ order in 03

-Ats
-Rts
- Z 0

R Head

, T
1 RB AMPL.-FF

0a (prolonged U)

02____
(order to be obeyed )

0 ^ (All except prolonged 4)

I Qt-a ,-o T : Q

To all lo g ic  
where order type 
nas been specified

Fig. 7.—Signal-Flow and Block Diagranl of the Recirculating Register Logic.

TABLE IV.
In the above and following equations, a +  following an expression indicates 
that other equations show contributions to that input.

At the end of <f>2 and <t>4, G is set to 0, hence :
G = G H  t, T2 +

The K  flip-flop is used in the instruction search process of or the 
operand search and lock-out processes of <j>3. It is found in the “ 1 ” 
state at the end of the word period if the phase is to be terminated. Hence 
the transfer from <¿1 to <f>2 and from </>3 to 4>4 may be represented by :

G' = F G H K Q i t , T i + F G H K t , T z  +
= G H  K  t s T2 (F + Q2) +

The K  flip-flop is set to 1 at the beginning of each word period, i.e., 
during the waste digit period. Hence :

K ' =  t w
Disagreement between the sector number generator digits and the 

sector digits of C during <f>l or the sector digits of ft during <¿3 or the second 
sector digits of C during <f>6 resets the K  flip-flop to 0. The conditions are 
represented by the equations :

K ' = (G H  u + H  y) (v r  +t> r) 
r = F H R + ( F  + H ) C

where r is C during <¿>1 and <f>6, and R during 4>3. The terms within the 
first set of brackets of the K ' equation ensure that the detection for dis
agreement between the sector number generator digits and r takes place 
during the sector digits of <f>l and f  3, and during the second sector digits 
of <f>6.

It is apparent from previous descriptions that the sector number 
generator generates patterns of five digits during the sector digit period u 
and patterns of six digits during the second sector digit period y . The 
six digit pattern is required for the termination of <f>6, 26 =  64 word periods 
after the termination of <j>3 (as described in Frankel’s paper).

APPENDIX II.
Recirculating R egister L ogic.

The following descriptions refer to the signal flow and block diagram 
for the recirculating registers (Fig. 7).
Instruction Register Input :

The digits corresponding to the instruction to be obeyed are presented 
by the main store and set into the instruction register during every <f>2. 
During multiplication and division orders, the multiplicand or divisor is 
presented by the main store and set into the instruction register during 
<j>4. For the prolonged input order, the instruction register must recirculate 
unchanged in <f>4, as its order digits will be repeatedly set into the Q flip- 
flops on each return to <f>3. The X  flip-flop is found in the 1 state after the 
detection of a /  (stroke) character on the input tape, and while in this state, 
the prolonged input order is to be executed. Under all other conditions 
(viz., during <j> 1, f3 , <f>5, <f>6, <f>7 and <j>8) the instruction register recirculates 
unchanged. Hence :

R " = F G H V  + F G H ( V X  + R X )  + (G + H)R  
Order Setting :

The order digits of R  are set into the Q flip-flops by connecting these 
flip-flops as a shift register during the order digit period of <f>3. Hence :

Q'i = <f>3 x R  Q \  = <t>3 x R
Q\ =  ¿ 3  * Qi +  Q\ =  ¿3 * Qi +  etc.

Counter Inpu t:
The address digits of the C (counter) register are recirculated unchanged 

in and <j>3. The second sector announcement digits are copied into C 
during these two phases; the digits copied during the last word period of 
<¡>3 are used in the multiplication and division process to terminate <f>6.

C" =  G H(wC +  vy) +
Complete recirculation of C is carried out during every <f>5, <¡>6, <f>7 

and <¿>8, and also during <i4 of all orders except +  and successful —, in 
which case the digits from R  are entered into C. It is to be noted that 
when a successful — order is detected at the end of <f>3, the — order repre
sented by the state of the Q flip-flops is actually changed into a f  order. 
The decision to recirculate C or to enter R  into C during <j>4 therefore 
depends only on whether or not the Q flip-flops represent a +  order. 
Hence:

C  = H  C + F G H  [QiQtQzQt C +  QiQzQzQi ^] +
The address in C  is augmented by unity in <f>2. This operation is 

carried out with the help of the K  flip-flop which is always found in the 1 
state at the beginning of each word period. While K  = 1, the complement 
of the address digits of C are recirculated. However, the first 0 in the 
address digits of C resets K  to 0, and from the next digit onwards, the digits 
are recirculated unchanged. That this process adds 1 to the address digits 
can be seen from Table IV. It is to be remembered that the digits pre
sented to the serial logic are in the sequence from the least significant 
to the most significant. In the table, this sequence is represented by the 
digits running from right to left. The dashes represent digits which are 
recirculated unchanged.

Counter Address Augmentation Examples.

Example 1 Example 2 Example 3 Example 4

c ---------------- 0 ---------------01 --------------Oil -------------- 0111

C ' ---------------- ! ---------------10 --------------100 ---------------1000

The above procedure is represented by the equations :
K  = G H w C  +
C" = F  G H  w (K  C + K  C) +

The double flip-flop arrangement for K  (with interleaved clocks) 
ensures that the first 0 is complemented.

Conditional Transfer Orders :
A — order is changed into a +  order if the sign digit of A  is 1 or if the 

sign digit of ft is 1 and the Z0 switch is on. As Qt alone distinguishes a 
— order from a +  order, the above procedure is simply represented by

Q 't  = QiQiQs 0*4 +  R  z 0) t , +
Accumulator In p u t:

The accumulator recirculates unchanged during every <pl, <j>2, <j>3 and 
during <f>4 of + ,  —, N , 2, 3, 0 and 8 orders. Hence :

A '  =  A H  [F + G + QiQsQ* +  Q2 (Q3 +  Q«)] +
During <f>4, the accumulator input is V b for a 1 order, A V h for a 9 order 

and b (the output of the adder-subtracter) for F  or L orders. The multipli
cation and division processes require that the accumulator recirculates 
unchanged in <f>4 for 5, 6 and 7 orders, except for the omission of the sign 
digit. During <j>4 of a 4 order, the accumulator recirculates through 
P„ P2, P 3 and P , (connected as a shift register). Hence, the accumulator 
input is P t. The accumulator input during f 4 of 1, 9, F, L , 5, 6, 7 and 4 
orders may therefore be described by :
A ” ^ A H Q t Q A Q '  + Q J t ,  + F  G H I Q ^ Q ^ Q ,  + A)  V b +  Q .Q ^ b

+ Q 1Q2Q 3Q 1P 4] +
It is to be noted that the two A" equations (above) describe the <fA 

accumulator input for all 16 orders, although only 15 are mentioned 
explicitly. For a J  order, the accumulator is cleared during ¿4 simply by 
omitting a term involving Q1Q2Q 3Q4 in the A" equations.
Addition and subtraction :

The two inputs to the adder-subtracter are denoted by i and j, and the 
output by b. In the execution of F  and L  orders occurring in <fA, the two 
inputs are the A  (accumulator) and V  (store) digits, respectively. Hence : 

i = A H  +  
j  = V H  +

Control signals S =  1 or 5  =  0 are used to indicate whether sub
traction or addition (respectively) is to be performed. Q t alone dis
tinguishes an F  order from an L  order. Hence :

S =  H Q ,  +
The truth table for the formation of the sum and carry digits from the 

augend digit (»), the addend digit (j) and the carry digit from the next lower 
order (L) is shown as Table V (see Ref. 6).

TABLE V.
T ruth T able for F ull Adder.

i 0 1 0 1 0 1 0 1

j 0 0 1 1 0 0 1 1

L 0 0 0 0 1 1 1 1

Sum 0 1 1 0 1 0 0 1

Carry 0 0 0 1 0 1 1 1

The truth table for the formation of the difference and borrow digits 
from the minuend digit (*), the subtrahend digit (j) and the borrow digit 
from the next lower order (L) is shown as Table VI.

TABLE VI.
T ruth T able for F ull Subtracter.

i 0 1 0 1 0 1 0 1

j 0 0 1 1 0 0 1 1

L 0 0 0 0 1 1 1 1

Difference 0 1 1 0 1 0 0 1

Borrow 0 0 1 0 1 0 1 1
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It can be seen from the tables, that for the eight different combinations 
of i , j  and L, the sum and difference digits are the same. Hence the following 
equation for b does not involve 5. The terms in the equation represent 
combinations of i, j  and L  which make the sum or difference digit equal to 1 
Hence :

b =  i j  L + i j  L +  i j  L  +  i j  L
The most straightforward way of completing the design of the full 

adder-subtracter would be to derive an expression for the carry/borrow 
digit (which would depend on the control signal S). This digit would be 
delayed by 1 digit period and the output of the delay unit used as the 
L  (and L) signal in the above expression. A slight simplification in the 
logic is possible using the method described by Frankel. The carry/borrow 
flip-flop (L) is initially set to 0, and the conditions for setting and resetting 
the flip-flop are derived.

From the truth table, it can be seen that the L  and carry digits differ 
only for two cases : a Carry is “ initiated ” for the condition i j  L and 
“ terminated ” for i j L .  Similarly, a borrow is “  initiated ” for i  j  L and 
“ terminated ” for i j  L. L  and L may be omitted from the above con
ditions as the extra pulses will not change the state of the flip-flop. Hence 
the setting and resetting of the carry/borrow flip-flop may be represented 
by :

L '  =  ( i j  S  + i j  S) t w 
L" =  ( i j  S  + i j  -(- r„

(N .B .—The waste digit t w is the first digit in the word.)

APPENDIX HI.
M ain  Store L ogic.

The following descriptions refer to the signal flow and block diagram 
for the main store record and playback logic (Fig. 8).

Shift Register Operation of the P  Flip-flops :
The six P  flip-flops are connected as a shift register during the track 

digits of <¿1 and j>3, and during </>4 of an input order. The digit periods 
during which this shift register operation takes place are denoted by p. 
H ence:

P — G H z  + F G H  Q ,Q2Q 3Q4
The input to the shift register is represented by the two conditions 

P \  and P \  (i.e., the conditions for setting and resetting the first stage). 
The input digit is r (which is C during <f> 1 and R  during <f>3), while G =  1 
(i.e., dining 4>l and <f>3), and it is A  during <f>4 (represented by the con
dition G =  1). Hence :

P \  =  p G r + p G A  +
P \  = p G r  + p G A +

The P 2 flip-flop follows P , one digit later while P 3 follows P 2 and so 
on. H ence:

P \  =  P P i +
P \  =  p P j +  etc.

It is to be noted that the shifting operation takes place by virtue of the 
fact that each of the main flip-flops is actually represented by a pair of 
flip-flops operating with interleaved clocks.

Fig. 8.—Signal-Flow and Block Diagram of the Main Store Logic.

Record Orders :
The time during which recording takes place is denoted / ,  and 

corresponds to all of <f>4 for N  and J  orders but only the address part of 
<t>4 for 2 and 3 orders. Hence :

/  =  FG (QiQjQs +  Q iQ 2Q .w)
The digits to be recorded are denoted V". For N, J  and 2 orders 

they are the digits presented by the accumulator. For 3 orders, the address 
digits of C augmented again by 1 are to be recorded. This is carried in 
exactly the same way as the formation of C" in <f>2. Hence :

V  =  (Ql + Q J A +  Q, Qt ( K C  +  K C )  +
It is to be noted that the K ' equation in Appendix II does not involve F. 
Hence this equation will be effective in <f>2 for the formation of C" as well 
as in <jA for the formation of V" on a 3 order.

APPENDIX IV. 
TABLE VB.

T he SNOCOM Order Code.

Instruction
(Sexadecimal) Effect

0010/1BC0
“ Arithmetic and logical instructions ”
Bring . Replace the contents of the accumulator by the 
contents of memory location A B C  (sexadecimal).

OOFOABCO Add . Add the contents of location ABC  to the contents 
of the accumulator and retain the sum in the accumulator.

00L0ABC0 Subtract. Subtract the contents of location A BC  
from the contents of the accumulator and retain the 
difference in the accumulator.

OOlOABCO M ultiply F ractions. Multiply the contents of loca
tion A B C  by the contents of the accumulator, and 
retain the sign and most significant 30 bits of the product 
in the accumulator.

0060ABC0 M ultiply  Integers. Multiply the contents of location 
A B C  by the contents of the accumulator and retain the 
least significant 30 bits of the product in the accumulator 
(bit positions 0-29), making bit 30 of the accumulator 
equal to zero.

0050ABC0 D ivide. Divide the contents of the accumulator by 
the contents of location A BC  and retain the quotient 
(rounded to 30 bits plus sign) in the accumulator.

0090ABC0 Extract. Obtain the “ logical product ” of the contents 
of the accumulator and the contents of location A BC  and 
retain the result in the accumulator.

00+0ABC0
“ Transfer of control instructions ”
U nconditional T ransfer. Transfer control to A BC  
unconditionally, i.e., execute next the instruction in 
location ABC.

00-0 A BCO Conditional T ransfer. Transfer control to A BC  
only if the number in the accumulator is negative.

80-0 A BCO C onditional T ransfer D epending on E xternal 
T ransfer Switch  Z 0. Transfer control to A BC  if the 
number in the accumulator is negative or if the external 
transfer switch Z 0 is “ on ” ,

Instruction
(Sexadecimal) Effect

00N0ABC0
“ Record instructions ”
Store. Store the contents of the accumulator in 
location A B C  leaving the accumulator unchanged.

00J0ABCO Store and Clear. Store the contents of the accumulator 
in location A B C  leaving the accumulator cleared.

0020ABC0 Store Address. Replace the address digits of the 
word in location A BC  by the address digits of the word 
in the accumulator, leaving the accumulator and the 
remaining digits of A BC  unchanged.

0030A BCO Return Address. Replace the address digits of the 
word in location A BC  by the address digits of the 
instruction counter augmented by “ one ”, leaving the 
instruction counter and the remaining digits of ABC  
unchanged. (During the execution of this instruction, 
the instruction counter holds the address of the next 
instruction to be executed.)

00400000 Input. Shift the contents of the accumulator 4 places 
to the left, transfer the first non-5th-bit character 
assembled in the input flip-flops into the 4 least significant 
places of the accumulator and then assemble the next 
character from the tape reader into the input flip-flops. 
If the first control character /  (stroke) has been read 
before the first non-5th-bit character, then repeat the 
above procedure until the second control character # 
(number) has been read.

0080ZBOO Output. Punch or print the character specified by the 
least significant 5 bits of the track number portion of the. 
output instruction. The character is punched if the 
most significant bit of the track number portion of the 
output instruction is “ 0 ” and printed if this bit is “ 1

OOOOABOO Stop. Stop unconditionally if the track number digits 
of the stop instruction are zero. Stop if a break point 
switch on the console is “ on ” and the corresponding 
binary digit of the track number is a “ 1
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Discussion
Dr. M . W. Woods (Member, Adelaide Division).—Can the author give 

any statistical information on the reliability of the computer in service, 
expressed as a percentage of hours out of service against total working 
hours ? Such a figure is, to some extent, a “ figure of merit ” for the 
machine.

Mr. M . Kovarik (Senior Research Officer, Engineering Section, 
C.S.I.R .O .).—In coupling relatively slow output devices, such as the 
electrical typewriter mentioned in the paper, to computers, it is necessary 
to make sure that the computer is not trying to output a new message 
element before the output device is ready to accept it. In some output 
devices a special signal is available for the “ ready ” condition; otherwise 
a delay must be generated between message elements to be output by the 
computer. In the case of a typewriter, a delay long enough to cope with 
the carriage return function would slow down the machine operation 
excessively. How has this problem been solved in the SNOCOM design, 
and if the delay method has been used, what safety margins in the delay 
period have been found sufficient for trouble-free operation ?

Professor A. R. Billings (Department of Electrical Engineering, The 
University of Western Australia).—I will first disobey the chairman’s 
instructions, and congratulate the author and his co-workers on achieving 
so much so soon with so little and so few. Having said that, I would like 
to take issue with him on his contention that similar work in University 
departments deserves support. I think that in the late forties and early 
fifties, when computers were in their infancy, much valuable work could 
be and was contributed from Universities such as Manchester, Illinois 
and others. I now very seriously doubt whether the construction and design 
of computers is a proper function for a University.

Commercially the principle is unsound. If computer manufacturers 
with their vast resources can only succeed in producing computers which 
are obsolete before they are sold, what chance does a University depart
ment with its limited resources have of producing something which is 
not even less in keeping with current trends by the time it is finished. 
However, quite regardless of this, I think the exercise of producing a full 
scale computer has little to commend it as a contribution to fundamental 
research and scholarship, the furtherance of which are the principle ob
jectives of a University. This is not so say that Universities cannot con
tribute to computer technology. They can, but in more profitable ways 
than producing computers. There is a large field where useful and realistic 
contributions can be made. In particular that part of Mr. Wong’s paper 
concerned with logical design is an example of success in such a field, 
others are the development of numerical techniques and their application 
to unsolved scientific and engineering problems and the discovery and 
exploitation of new logical circuit elements.

I will concede that some small scale computer construction and design 
can be useful as a laboratory teaching aid to familiarise students with com
puter philosophy, but this is quite different from the building of large 
machines for their own sake.

Air. B. Z. de Ferranti (Associate Member, Melbourne Division).— 
May I congratulate Mr. Wong on his most comprehensive paper and on 
its excellent presentation.

SNOCOM has been the outcome of the excellent work which for quite 
some time has been associated with the Electrical Engineering Depart
ment at the University of Sydney. However, despite my own association 
with similar projects in universities I do not wish to enter into discussion 
as to whether universities should build computers. I should perhaps, 
however, point out there have been some significant examples of great success 
in this field, such as the University of Manchester.

I would like to raise two particular questions which arise from Mr. 
Wong’s paper. The first would be to ask if he could explain the main 
reasons for building the timing unit rather than using a track on the drum 
and if this provides great advantages over the LGP 30 design. The second 
is to ask how the selection from several available data locations on the drum 
which are optimum for any instruction could best be handled by the pro
grammer. Is there an optimum assembly programme and are there features 
of the design which make SNOCOM easy to use in this respect ?

I would like to comment on the question of reliability which has been 
raised. Reliability of machines like SNOCOM are usually a function of 
their peripheral equipments. It has been said that the internal electronics 
of the machine have required next to no attention tor some months, but 
that input and output equipment have required maintenance. In this 
context, input is critical (on SNOCOM there is only one continuous input 
device but two output devices). Peripheral equipments can be expected 
to break down at some tim e; they are not infallible. This is understand
able as they are mechanical, not electronic, and require mechanical adjust
ment from time to time. Hence it is good policy to have spare units or, 
even better, alternative input channels with a spare unit to attach as required. 
Hence two input readers and one spare might be preferred. From a design 
point of view, alternative input channels are not difficult, and they provide

a degree of flexibility which is highly desirable from the user’s point of 
view.

T h e A u th o r  in  R ep ly  :
I would like to thank Dr. Woods, Mr. Kovarik, Prof. Billings and 

Mr. de Ferranti for their congratulations and very interesting discussion, 
and also Mr. Brown for his contribution in reply to some of the questions.

To Mr. Kovarik.—After the initiation of a print cycle, the printer- 
ready signal mentioned in' Section 7.2 inhibits the initiation of a second 
print cycle for a period which depends on whether or not the carriage- 
return-line-feed operation is to be executed during the current print 
instruction. The delay or lock-out periods corresponding to these two 
conditions are nominally 2 seconds and 100 milliseconds respectively. 
These delay periods are generated by monostable-multis whose periods 
may be continuously adjusted. The nominal figures quoted above include 
a safety margin of up to 50 per cent to ensure trouble free operation.

To Professor Billings.—I agree with Prof. Billings in that there is little 
case for university computer groups to compete with industry in building 
larger, faster and more reliable computers of the von Neumann type, as 
resources of industry are much greater and the building of such a machine 
in itself will not contribute to fundamental research.

There is no doubt that university groups do contribute substantially 
to computer technology without having to build large-scale machines. 
There is, however, some case for building small relatively inexpensive 
machines at the university for both teaching and research purposes. The 
teaching computer should be as simple as possible so that the fundamentals 
of a von Neumann type machine may be readily demonstrated. Such a 
machine has been constructed within the Electrical Engineering School 
of the University of Sydney. The construction of a computer for research 
may be justified in two ways. Firstly, if the digital computer forms part 
of a more complex, larger system such as a hybrid analogue-digital system 
in which adaptive control systems (for example) are being studied, then I feel 
that the construction of the digital machine is completely justified if for any 
reason (including available finance) commercial machines are unsatisfactory. 
Secondly, if a fundamentally new computer organisation using new circuit 
elements promises to have advantages over existing systems, then I feel 
that these advantages should be established without any doubt by the con
struction of a complete machine. If a significant “ break-through ” in 
computer design can be made, there is less likelihood of the machine being 
obsolete when it is completed.

To Mr. de Ferranti.—The main reason for generating the segment and 
digit waveforms of Fig. 2 in a timing unit instead of recording the relevant 
waveforms on several tracks of the drum was that any digit within a word 
period could be readily derived from these waveforms. This made possible 
the generation of the bootstrap instructions of the auto input and the 
interconnection of the asynchronous peripheral units with the computer 
proper. A timing unit to generate the sector number pattern had to be 
initially constructed even if this pattern eventually were to be recorded 
permanently on one track of the drum. The decision not to do this was 
made when the parallel representation of the sector which was next to be 
presented by the store playback amplifier was utilized by the auto input 
logic. This method of starting programs proved superior to that used in 
the LPG-30, and was only possible by using waveforms from the timing 
unit.

A significant improvement in SNOCOM’s reliability was made after 
each peripheral unit together with its associated logic was adjusted and 
checked out individually using special test sets before being interconnected 
with the machine proper. I am in complete agreement with Mr. de Ferranti 
in that computer designers should anticipate trouble with electro-mechanical 
peripheral units, and it is certainly good policy to have alternative input/ 
output channels with spare units to attach as required.
M r. P . T . B ro w n  in  R ep ly  :

To Dr. Woods.—During the period of a little more than a year for which 
SNOCOM has been in service, the computer has undergone unscheduled 
maintenance, principally associated with the reader and punch, for approxi
mately 5 per cent of working hours. Routine maintenance, training main
tenance personnel and minor design modifications to improve reliability 
occupied an additional 15 per cent of total working hours.

To Mr. de Ferranti.—An optimum assembly program for SNOCOM 
has been written and this will automatically place a constant or variable 
in a location which is optimal with respect to a single selected instruction. 
However, because a variable is always referred to by at least two instructions, 
better results can always be obtained by hand optimisation. SNOCOM 
is easier to use in this respect than some computers because there are six 
locations on each track of the drum which are optimal with respect to a given 
instruction, instead of only one. Also the physical arrangement on the drum 
of sequentially numbered locations is such that instructions which are three 
or four locations apart in the command sequence have respectively one and 
two optimal locations in common.



Laboratory Equipment for Teaching Digital 
Computer Fundamentals

D. G. WONG*

Summary
Digital computer fundamentals may be taught more effectively 

by the use of especially designed educational digital computers. 
These are experimental units containing sufficient logic and storage 
elements for the synthesis of a complete stored-programme com
puter.

This paper contains a description of the educational digital 
computer which has been used for the last three years by final-year 
students of electrical engineering at the University of Sydney. 
A detailed description of the logical design of a simple computer 
and a game-playing programme for this computer are also provided. 
Conclusions concerning the suitability of educational units like 
the one described for undergraduate courses in digital computers 
are made in the final section of the paper.

List of Symbols
(N.B. The complement of a Boolean variable is

represented by a bar over the symbol.)
T0 Clock pulse.
t 2 Binary counter drive pulse (see figs. 2 and 3).

® 1  ®16 Binary counter outputs (see figs. 2 and 3).
B4 waveform differentiated.

zlB16 B1 6  waveform differentiated.
I.S. Initial set.

Zi, z 2 Signals which stop the timing unit (see fig. 2).
^ 0  3̂ Machine phases 0-3 (see fig. 3).
G0 - G 3 Function toggle outputs.
c 0 - c 3 Sequence counter outputs.

C" Sequence counter input.
Cd Sequence counter drive input.

P 0 - P 3 Address register outputs.
P" Address register input.
p d Address register drive input.
V0 Fixed store output.
W15 Word 15 ( =  P3P2P1P0)-

R 0 R 3 Instruction register (address) outputs.
R", Instruction register (address) input.
R/fd Instruction register (address) drive input.

R 4 — R 7 Instruction register (order) outputs.
R”o Instruction register (order) input.
Rod Instruction register (order) drive input.

A0 A 7 Accumulator outputs.
A” Accumulator input.
Ad Accumulator drive input.

s 0 - s 7 Store register outputs.
S" Store register input.
Sd Store register drive input.
K ' Signal which sets the K  flip-flop (to 1).
K' Signal which resets the K flip-flop (to 0).
K Counter augmentation flip-flop output.
L Carry/borrow flip-flop output.
b Sum/difference digit.
V Store output.

♦School of Electrical Engineering, The University of Sydney, 
.S.W .
Manuscript received by The Institution December 14, 1964. 
U.D.C. number 371.677 : 681.3.

1. Introduction
As a result of the rapidly increasing use of digital 

equipment in Australia, there is a great demand for 
personnel trained in the fields of electronic data processing 
and digital systems engineering. Universities must play 
a leading role in training these personnel1.

Training in digital computer fundamentals can be made 
more effective by the use of “  educational digital com
puters ” . These are experimental units which have been 
specifically designed with the specification of a complete 
computer in mind. The number, type and arrangement 
of logical circuits provided in the experimental unit 
enable the synthesis not only of various combinational 
and sequential switching circuits, but also of a complete 
stored-programme computer.

The experimental unit to be described has been used 
for the last three years by final-year students of electrical 
engineering of the University of Sydney. Students are 
given the functional design of a simple computer and 
are asked to carry out the detailed logical design, to 
construct their computers and also to test their designs 
by writing and running a number of simple programmes. 
A better understanding of digital computers is obtained 
by most students who use the unit, and there is strong 
justification for the continuation and expansion of this 
educational approach.

2. Educational Digital Computers
The first digital-logic training devices were made 

commercially available in 1960, and now they are manu
factured by about twenty companies2.

The main use of these devices is the teaching of digital- 
circuit fundamentals to students doing digital computer 
courses at places of tertiary education as well as to 
engineers and technicians in industry who are engaged in 
the design or maintenance o f computer systems. Other 
uses include the bread-boarding of equipment either for 
manufacture or for testing the performance of computer 
peripherals.

Some of the desirable features of a digital-logic training 
device are as follows : the trainer should contain standard 
transistorized digital circuits for good simulation of 
actual design problems ; the circuit modules may be 
either fixed or removable, but the arrangement must 
be flexible so that many circuits may be synthesized; 
logic panels must be clearly engraved and extensive 
monitoring facilities must be provided to facilitate the 
understanding and testing of circuit configurations ; the 
main control unit must enable the monitoring of memory 
states after each state-change (i.e. after each clock pulse) ; 
and finally the device must be “  student-proof ”  so that 
any interconnection may be made without damage to 
the equipment.

Most digital-logic training devices only contain sufficient 
logic modules for the synthesis of a computer sub-as
sembly. The synthesis of a complete digital computer 
would be extremely useful to teach engineers computer

1. Bennett, J. M ., “  E .D .P .— the universities’ role ” , Australian 
Computer Conference, Melbourne, 1963.

2. Gray, S. B., “  A  survey of digital-logic training devices ” , 
Electronics, Aug. 24, 1964, 71-83.
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Figure 1.— Laboratory equipment for teaching digital computer 
fundamentals.

Figure 2 .— Control and timing unit.

'i 11 n̂i 11 i'i 11A11 ['n n ì 1111! 11 in i i'.t0 
ii ii ii ii ii ii ii ii in ii m in im a

Figure 3.— Timing waveforms.
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design techniques and to help programmers visualize 
the internal organization of a computer. The inter
connection of a number of training devices is possible2, 
but the ideal seems to be an experimental unit containing 
a combination of sub-assemblies and basic circuits. The 
basic circuits are used to teach digital-logic fundamentals 
such as the design of full-adders, counters and shift- 
registers, etc., while the additional sub-assemblies enable 
the synthesis of a complete computer. The sub-as
semblies provided could, for example, teach the tech
niques used for serial, synchronous systems ; others 
could be used for asynchronous systems and so on. There 
is no doubt that training in the digital computer field 
would become more effective by the extensive use of 
this approach.

Most of the above features have been incorporated in 
an educational digital computer at the University of 
Sydney. A photograph of the educational computer 
is shown in fig. 1 and a brief description follows.

The educational computer consists essentially of a 
large number of logical and storage elements which may 
be readily patched together. The elements are arranged 
in six vertical panels and six sloping panels. Each of 
the twelve panels is removable after the disconnection 
of a voltage cable, and a package construction for the 
electronic circuitry is used. These features are desirable 
from the point of view of construction, testing and main
tenance. The inputs and outputs of the elements are 
brought to sockets on the panels. These are interconnected 
using flexible leads with taper pins at both ends. Two 
sockets are provided for each input and output on the 
sloping panels so that a number of points may be linked 
without the use of busses. However, twenty busses 

which run the length of the unit are provided to eliminate 
the need for long wires.

The six vertical panels (from left to right) are as fol
lows :—

(i) Control and timing unit (see figs. 2 and 3).
(ii) Function toggles (providing 0/1 output for toggle 

up/down) and sequence counter (a 4-stage shift 
register).

(iii) Address register (a 4-stage shift register) and 
fixed store (see sect. 2.3).

(iv) Instruction register (two 4-stage shift registers).
(v) Accumulator (an 8-stage shift register).

(vi) Store register (an 8-stage shift register).
The six sloping panels contain logical elements such 

as NOR circuits and flip-flops.

2.1 Control and timing unit
A control and timing unit is provided so that experi

ments on serial, synchronous, digital systems may be 
carried out. A logic diagram of this unit is shown in 
fig. 2, and timing waveforms are shown in fig. 3. The 
repetition rate may be either 50 kc/s or 5 c/s, and is 
determined by selecting the appropriate output from two 
free running multivibrators. Under normal conditions, 
interleaved clock pulses T 0 and T2 are generated by three 
monostable multivibrators. A five-stage binary counter 
is driven by T2.

When the START button is depressed, the timing unit 
generates one pulse, eight pulses, thirty-two pulses or a 
train of pulses depending on whether the MODE-SELEC

TION switch is in the BIT, PHASE, ORDER or 
NORMAL positions, respectively. When this switch 
is in MONITOR position, the unit runs continuously 
and all waveforms may be monitored.

A signal appearing at the Zx or Z2 inputs wall stop 
the timing unit. The unit may be started again by 
depressing the RESET button and then the START 
button.

2.2 Shift registers
Each shift register is associated with two signals. 

One signal is the input to the first stage and represents 
the information which is to be stored in the register. 
The other is the SHIFT or DRIVE input and specifies 
the period during which the register is to operate as a 
shift register. This input usually consists of the clock 
pulse T0 gated with other timing waveforms. When no 
drive input exists, the information in the register re
mains in static form. Each stage is monitored by an 
indicator light.

The eight-stage registers may be set initially to either 
state by a number of toggle switches and a SET button. 
The four-stage registers can only be initially set to zero 
by a CLEAR button.

2.3 Fixed store
The outputs of the address register are decoded into 

sixteen lines which drive the WORD-busses of the “  pin
board ” store. Component plugs containing sub-miniature 
diodes may be inserted to bridge the WORD-busses 
with the eight BIT-busses at appropriate places. The 
pin-board, together with component plugs, forms a 
diode-matrix which produces (in parallel) the eight bits 
of the word specified by the contents of the address 
register. The diode-matrix outputs are combined with 
the timing waveforms Bl5 B2 and B4 in parallel-to-serial 
conversion circuits to produce the serial store output V 0.
2.4 Logic panels

The four existing panels each contain two flip-flops 
with (transient) storage-gates in both input lines, three 
invert circuits and nineteen NOR circuits with either 
three or five inputs.

With the use of NOR circuits, any number of stages of 
logic may be cascaded without fear of error through cumu
lative voltage shifts. The circuits used also contain 
some safe-guard against inadvertent short-circuiting of 
two outputs.
3. The Design ofVSim ple DigitarComputer

The sub-assemblies and logic circuits described in 
the preceding section may be interconnected to form a 
simple digital computer. Computers with different 
order codes may be constructed, the only restriction being 
the amount of hardware which is necessary for their 
implementation. The following sections are given as 
an example of a complete design.

3.1 Functional design
The computer to be designed is a fixed-point, binary, 

serial, single-address digital computer with a storage 
capacity of sixteen eight-bit words of which fifteen are 
fixed and one is erasable. The computer is capable of 
carrying out only eleven basic instructions, although four 
stages in the order part of the instruction register make 
provision for sixteen. The order code is shown in table 1.

Table 1

Code Order

0000
0001
0010
0011
0100
0101
0110

0111

1010
1100

1110

IN P U T  :— Illuminate the Z1 monitor light and stop the computer so that eight digits may be set into the accumulator.
O U TPU T :— Illuminate the Z 2 monitor light and stop the computer so that the accumulator may be monitored.
TRA NSFER  IF  N E G AT IVE :— Transfer control to the address specified by the instruction if the accumulator is negative.
UNCO N D ITIO N AL TRANSFER :— Transfer control to the address specified by the instruction.
STORE :— Store the contents of the accumulator into the store register (address 15).
BRIN G  :■— Bring the word specified by the address of the instruction into the accumulator.
AD D  —-Add the word specified by the address of the instruction to the contents of the accumulator retaining the result in the 

accumulator.
SUBTRACT : Subtract the word specified by the address of the instruction from the contents of the accumulator retaining 

the result in the accumulator.
TRANSFER IF  ZERO :— Transfer control to the address specified by the instruction if the accumulator is zero.
ACCUM ULATE IN  STORE :— Add the contents of the accumulator to the contents of the store register (address 15) retaining 

the result in the store register.
E X TR A C T  :— Obtain the logical product of the word specified by the address of the instruction and the contents of the accumu

lator retaining the result in the accumulator.
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The execution of each instruction takes place in four 
phases designated cf>0, <f>x, <f>2 and </>3. These may be 
specified in terms of the timing waveforms B8 and B16.

The counter specifies the address of the next instruction 
which is to be obeyed. In <f>0, the counter digits are set 
into the address register so that the correct instruction 
is presented by the store in the next phase.

In (f>x, the instruction to be obeyed is transferred from 
the store to the instruction register.

As the instructions in the store are normally obeyed 
sequentially, the counter must be augmented by one at 
some time in the machine cycle after it has directed the 
logic to set the current instruction in the instruction 
register. This is carried -out in <̂>l5 and the new aug
mented counter digits will be effective in the next 
unless the current instruction is an unconditional transfer 
or a successful conditional transfer order, in which case 
the augmented counter digits will be over-written in a 
later phase.

In f>2, the address digits of the instruction register are 
set into the address register so that the correct operand 
is presented by the store in the next phase.

In <f)3 (the execution phase), the order specified by 
the order digits of the instruction register is carried out. 
As only eleven of the sixteen different combinations of 
R 7, R 6, R5 and R4 are used, the term R 7 is only included 
when the remaining three order digits are associated 
with two of the eleven instructions. The Z4 and Z2
computer stops are activated when R 6 R 5 R 4 =  1, and 
R 6 R s R 4 =  1, respectively. When R 6 R 5 R 4 =  1, or 
when R 7 R 6 R 5 R 4 A 7 =  1, or when R 7 R 6 R s R4 a =  1 
(where a =  A 7 A 6 A5 A4 A3 A2 Ax A 0), the address digits 
of the instruction register are set into the counter.

When R 7 R 6 R 5 R4 =  1, the contents of the accumu
lator are stored into the store register (address 15). 
When Rg R 5 R4 =  1, the word presented by the store is 
brought into the accumulator. When R 7 R e R 5 R4 — 1, 
or Rg R g R4 =  1, the word presented by the store is 
added or subtracted (respectively) from the contents of 
the accumulator and the result is retained in the accumu
lator. When R 7 R 6 R 5 R4 =  1, the contents of the 
store register is added to the contents of the accumulator 
and the result is retained in the store register. When 
R 7 Rg R 6 R4 =  1, the logical product of the word pre
sented by the store and the contents of the accumulator 
is obtained and retained in the accumulator.

3.2 Logical design 
3.2.1 Counter
In the following design, the counter operates as a shift 

register during the four least significant digit periods of 
every word. During <f>0 and <f>2> if re-circulates un
changed. The K  flip-flop is always found in the 0-state 
when cf>1 is entered. While in this state, the complement
of the counter output (C0) is re-circulated. However, the
first 0 of the counter digits sets K (to 1), and from the 
next digit onwards, the digits are re-circulated unchanged. 
The above process augments the counter by unity3 in 
<f>v During cf>g, the counter is re-circulated unchanged 
for all orders except UNCONDITIONAL TRANSFER 
orders, TRANSFER IF NEGATIVE orders when 
A 7 =  1 and TRANSFER IF ZERO orders when a =  1. 
For these three latter cases, the address digits of the 
instruction register are entered into the counter. The 
above procedures are represented by the following 
equations :—

c d = ■ b 4t 0

C" =  B ;c 0 +  B16B8 ( K C i - f  KC0)

+  B16B8 |RgC0 +  RgC0 +  R 6R 5R4R 0 

+  R 6R 5R4(A7R 0R 7 +  A 7C0R 7 +  aC0R 7 +  aR0R 7)] 

K ' =  B8T0 

K ' =  B8CoT0

a =  A 7 A 6 Ag A4 A3 A2A4 A 0 
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3.2.2 Instruction register
The instruction register actually consists of two four- 

stage shift registers. The order digits of the instruction 
to be obeyed are presented by the store during the most 
significant four digit periods of </>4, and are set and held 
in the first four-stage register. Hence :—

Rm =  b 16b 8b4t 0 

R" 0 =  V
The second four-stage register holds the address digits 

of the instruction, and its shift register operation is 
required during the least significant four digit periods of 
<f)x, <f>2 and </>3. In <f>x the address digits of the instruction 
to be obeyed are presented by the store and are entered 
into this register ; in </>2, the digits are entered into the 
address register and in </>3, the digits in serial form may 
be required for entering into the counter register on the 
execution of TRANSFER orders. In <f>2, the digits 
must be re-circulated unchanged because they may be 
required again in <f>3. The digits are re-circulated un
changed also in cf)3 so that the complete instruction may 
be monitored after its execution. The above conditions 
are satisfied by the following :—

R̂ d =  B4T0

R a =  B16B8V -f- B16R 0

3.2.3. Address register
The counter digits and the address digits of the in

struction register are entered into the address register 
during the least significant four digit periods of f>0 and 
(f>2, respectively. Hence :—

B<i =  B8B4T0

P” =  B16C0 +  B16R 0
3.2.4 Accumulator
The shift register operation of the accumulator is 

required only in <j>3 of STORE, BRING, ADD, SUB
TRACT, ACCUMULATE IN STORE and EXTRACT 
orders. Hence :—

Ad =  B16B8R 6T0
For a STORE order the accumulator re-circulates 

unchanged ; for a BRING order the digits (V) presented 
by the store are entered into the accumulator ; for 
ADD and SUBTRACT the accumulator input is the 
output (b) of the serial adder-subtractor. For an E X 
TRACT order the accumulator input is A 0V. Hence :—

A " =  R 5R4A 0 +  B 5R4V +  R 7R 5b -f- R 7R 5R4A0V

3.2.5 Adder-subtractor
A flip-flop (designated L) is used to hold the carry- 

borrow digit in the addition-subtraction process. The 
inputs to the adder-subtractor are the digits presented 
by the accumulator (A0) and store (V). The output (b) 
is defined by the following equation3 :—•

b =  A0V L  +  A0 V r  +  Âo T L  +  A0 V L
Following the design described in reference 3, the 

setting and resetting equations for the carry-borrow 
flip-flop are as follows :—

L' =  B8T0 -f- (R4A0V +  R4A0V) B8 T0 

L' =  (R4A0V +  R 4A0V) B8T0

The B8T0 term in the L' equation resets the L flip-
flop (to 0) before the commencement of the addition- 
subtraction operation in <f>3.

3.2.6 Store register
The store register operates as a shift register only 

when word fifteen is indicated by the address register, 
and also only during <j>1 and f>3 of the machine cycle. 
During </>4 and also during <f>3 of all orders except STORE 
and ACCUMULATE IN STORE orders, the contents 
are re-circulated unchanged. During f>3 of a STORE 
order, the contents of the accumulator are stored in this 
register. During <f>3 of an ACCUMULATE IN STORE 
order, the output of the adder-subtractor are entered

3. Wong, D . G., “  The logical 
digital computer SNOCOM ” ,

design of the general purpose 
J.I.E. Aust., June 1962, 125-136.

Proceedings I.R.E.E. Australia 81



WONG : Laboratory Equipment for Teaching Digital Computer Fundamentals

Table 2

Location Contents Remarks

0 -»• 1 1 0 0 m i Accumulate in store

1 0101 1010 Bring number “ 48 ”

2 0111 m i Subtract number removed

3 -> 0 1 1 1 1 110 Subtract numbér “ 11 ”

4 1 0 1 0 i o n Transfer if zero

5 0 0 1 0 0 1 1 1 — Transfer if negative

6 — 0 011 0011 Unconditional transfer

7 0 1 1 0 m o « - Add number “ 11 ”

8 - > 1 1 0 0 u n Accumulate in store

9 0 0 0 0 0 1 1 0 Input/Stop and number “ 6 ”

10 0011 0 0 0 0 Unconditional transfer and number “ 48 ”

11 0101 i n i « - Bring number removed

12 1 110 1001 Extract

13 — 0 011 1 000 Unconditional transfer

14 0 0 0 0 i o n Number “ 11 ”

15 Temporary storage =  number removed

into this register. Hence :—
s* =  w 16b 8t 0

S =  B16Sq-|-B16R 6R 5 Bî A qR? “l~bR7)

3.2.7 Store logic
When word fifteen is specified by the address register, 

the digit presented by the store (V) corresponds to the 
output of the store register (S0). When word fifteen is 
not specified, V corresponds to the output of the fixed 
store (V0). Hence :—

• . ■ V =  w15s0 +  w15v0
3.2.8 Input and output
The computer may be stopped before the commence

ment of (f)0 by gating the ZlB16 signal with the appro
priate order digits and supplying this signal to the Z4 
or Z2 stop computer inputs. Hence :—

Z1 =  R 6R 5R4zlB16 

Z2 — Rg Rg R4ÆBÎ6

3.3 Logical circuit configurations
The realization o f the Boolean equations of section 

3.2 in terms of NOR circuits and flip-flops is straight
forward using the approach discussed in reference 4.

4. Programming the Computer
A number of programmes can be written to illustrate 

some elementary aspects of programming. These in
clude :

(i) the manner in which transfer instructions break 
the normal sequencing of instructions,

(ii) the modification of instructions, and
(iii) the use of computer words as both numbers and 

instructions.
A programme which has provided some amusement dur

ing computer laboratory classes is shown in table 2. This 
is a programme for the computer to play one version of the 
game NIM. The player and the computer must alter
nately remove a number of pegs from a line. There are 
49 pegs initially on the line and the maximum number 
which may be removed in one turn is 10. The player 
or computer that removes the last peg loses. The number 
which the player removes is entered in the accumulator 
and when the computer is started, it will calculate the 
number it wishes to remove and will stop with this 
number in the accumulator.

Features of the programme are
(1) if the computer goes first, it will always win,
(2) if the player is playing a winning game, the com

puter will output a different number each turn,

6. Corbato, F. J., “  The compatible time-sharing system— a 
programmer’s guide ” , The M.I.T. Computation Center, 
M.I.T. Press, 1963.

but refuses to take the last peg as it has been pro
grammed to win,

(3) the computer will take control and win once the 
player makes a mistake.

This programme to play NIM is the most complex one 
written for this simple computer. A severe restriction 
is the amount of erasable storage. This restriction will 
soon be removed by the addition of a small magnetic 
drum.

5. Conclusions
With the ever increasing use of the digital computer 

as a tool for problem-solving, it is becoming clear that 
computers should be introduced as early as possible 
in science and engineering courses.

With the use of problem-oriented programming langu
ages there is no reason why this cannot be carried out 
at the first-year level. In the United States, first-year 
elective courses in computing are offered at some world- 
renowned universities and the trend is towards the intro
duction of computing into the secondary schools4 5.

For the efficient training of students in the use of 
computers, good man-machine communication is 
desirable. The multi-console, time-shared computer 
system developed by project MAC at the Massachusetts 
Institute of Technology® seems to be the ideal solution, 
and should be used as a guide for future expansion in 
computer facilities at Australian universities.

With the increasing use of digital equipment for 
communication, for process instrumentation and control, 
and for data acquisition and reduction, there is an in
creasing demand for personnel with training in “  digital 
systems engineering ” . Here, the emphasis is on the 
synthesis of digital systems, and training courses would 
include electronic circuit design, switching circuit theory 
and logical design of digital devices. For this training, 
the educational computer would be an invaluable educa
tional aid. Combinational or sequential switching cir
cuits may be readily realized and tested ; and students 
are shown how elementary logical circuits may be inter
connected to form a complex piece of equipment like a 
stored-programme digital computer.

The computer field is expanding so rapidly that it is 
inevitable that in the not too distant future computers 
will be designed and built on a commercial scale in 
Australia. This will significantly increase the demand 
for computer personnel. It is a matter of some urgency 
that Australian universities and Australian industry 
should co-operate immediately to support .the develop
ment of more digital equipment designed specifically 
for educational purposes. This will ensure the increasing 
supply of adequately trained computer personnel.
4. Wong, D. G., “ An educational digital computer ” , Australian

Computer Conference, Melbourne, 1963.
5. Heller, G. C., “  A  computer curriculum for the high school ” ,

Datamation, May 1962, 23-26. « 2
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SUMMARY
T he  A R C T U R U S  com puter, w hich  was developed w ith in  the 

Electrical Eng inee ring  School of the U nive rsity  of Sydney, 
is a paralle l, b inary, gene ra l-purpose  d ig ita l com puter u sing 
p ackaged  d iode-transistor circuits, ferrite-core sto rage and 
paper-tape peripheral units. T h is  paper conta in s a brief 
description  of the com puter, a su rvey  of the design  and 
constructiona l techn iques, and a detailed description  of 
the im plem entation  of the ca rry -lookahead -adde r and  the 
m ultip lication  procedure u sing  m ultip lier recoding.

I. INTRODUCTION
For the past two decades, the School of Electrical Engineer

ing of the University of Sydney has been engaged in computer 
research and development. Computing equipment which has 
been constructed include the C.S.I.R.O. mechanical differential 
analyser(U, the digital differential analyser ADA*2> and the 
general-purpose digital computer SNOCOM*3).

Computer teaching at the School has developed to the 
stage where all under-graduates are introduced to the use of 
both digital and analogue computers, and most final-year 
students elect to take two courses in which the emphasis is 
on computer design. An educational digital computer *4> 5> 
(called NIMBUS) which was constructed by the School has 
been found to be very effective for teaching digital computer 
fundamentals.

The digital computer ARCTURUS is being constructed 
to satisfy some of the ever-increasing teaching and research 
requirements of the School. ARCTURUS is basically a 
parallel, binary, general-purpose digital computer using 
packaged diode-transistor circuits and ferrite-core storage. As 
such it will be useful for teaching purposes. Elowever, the 
computer does contain some new features, and the ability to 
modify the computer’s hardware (perhaps to include an inter
face with other analogue/digital equipment) will make the 
computer a useful tool for research.

The design and construction of the peripheral equipment 
for ARCTURUS was commenced about five years ago. Work 
on the memory followed, leaving the design and construction 
of the central processing unit to be carried out last. At the 
time of writing all units have been checked out separately and 
an advanced stage has been reached with the commissioning 
of the computer.

II. SYSTEM DESIGN 
2.1 Approach to System Design

The approach which was taken for the system design of 
ARCTURUS was determined largely by the aim of producing 
a computer with the best possible specification by a small 
group with very limited resources. The realization that the 
construction of the computer would take many years deter
mined the sequence in which the units of the computer were 
designed and built.

Former experience with the peripheral units of SNOCOM 
and the availability of paper-tape preparation equipment 
determined the specification of the peripheral units for 
ARCTURUS. These took the form of a paper-tape reader*6> 
(with the possibility of adding a second), a paper-tape punch 
and a monitor printer. Being electro-mechanical, the peri
pheral units were expected to be the least reliable units of 
the computer. Hence, a built-in check in the form of the 
ability to run the peripheral units off-line as a comparator- 
reperforator-printer was constructed. A relay network with 
many change-over contacts under the control of a single toggle 
switch was used to switch the signal and control lines as 
shown in Figure 1.

The memory was the next unit to receive attention. A core 
stack was purchased but the drive and sense circuits were 
constructed. Load-sharing switches based on the design devel
oped for the CIRRUS computer*7.8’9) were used to drive 
the cores.

The arithmetic and control sections of ARCTURUS were 
the last to be specified. This reduced the likelihood of the 
computer becoming obsolete before it was completed. The 
approach taken here was first to examine the specifications of 
a number of recent, commercial machines and to select some 
of the useful features. Several forms of machine organization 
(including a micro-programmed or stored-logic structure) were 
considered at this stage. Flexibility of machine design and 
construction to enable special instructions to be added or

F
F
F '
F ’
J
K
L
R
S
U
DFS
D
AS
A

B
C
Pn
Gn
Tn

ONE output of F flip-flop.
ZERO output of F flip-flop. 
Signal which sets F to ONE. 
Signal which resets F to ZERO. 
Memory output register. 
Accumulator.
Multiplier-quotient register. 
Instruction register.

(Sequence counter (Figure 3). 
(Sum digit (Figure 9).
Operand counter.
Distributor function selector. 
Output of DFS.
Address selector.

(First adder input (Figure 9). 
(Address R, — R1# (Appendix). 
(Second adder input (Figure 9). 
(Binary counter output (Figure 8). 
Carry bit.
Propagate function.
Generate function.
Terminate function.
First level propagate function.

First level generate function.

a, s, r, k, alf K„, l, g, p, m Control signals.
H  Toggle switch.
Kt Shift K left clock.
Kr Shift K right clock.
Kd Distributor to K clock.
Lt Shift L left clock.
L r Shift L right clock.
Ld Distributor to L clock.
T  Timing waveforms.
V Number of times counter.
R0 — Rlg Instruction register outputs.
KL Double length register formed by K0 — K19, Lx — Llt.
N  Number of times an operation is executed (specified by

Rit Ri»)-
< K  > Memory location with address K1 — Klt.
M  =  < A }  Memory location with address R, — R19.
I  Number increment =  2-19.
( ) Contents of a register or a memory location before

an operation.
( )' Contents of a register or a memory location after an

operation.
( )i Bit i of a register or a
( )'i memory location before /after an operation.
( )(-i Bits i to j  (inclusive) of a register or a memory
( Yi-j location before /after an operation.
EF Emitter follower.

modifications to be made readily for research purposes was 
considered important. Some of the major decisions such as 
the decision to use a carry-lookahead-adder instead of an 
asynchronous adder were left until quite late in the project. 
However, at this stage the specification of the machine had 
to be temporarily frozen to enable the detailed functional and 
logical design to be carried out. After the machine has been 
commissioned according to the initial specifications, modifica
tions can then be made.

2.2 General Description
ARCTURUS is a fixed-point binary, parallel, single-address, 

general-purpose digital computer using packaged diode-trans
istor circuits, ferrite-core storage and paper-tape peripheral 
units.

The instructions and number formats, which use a word 
length of 20 bits, are shown in Figure 2. An operation code 
of 5 bits provides 32 distinct instructions. Some of these have 
a large number of variants specified by the bits normally 
used as an address. A 13 bit address enables 8192 words to 
be directly addressed, although at present only 1024 words 
are available. When the indirect address bit is a ONE, the 
address in the instruction is the address of the address of the 
operand. This indirect addressing may be carried to any level. 
The “programmed-operator” feature*10) enables a single 
instruction to specify the address of an operand, to store the 
sequence counter (return link) and to transfer control to a 
subroutine determined by the operation code of the instruction. 
Such an instruction appears like a normal machine language 
instruction but in fact could cause quite a complex operation 
(e.g., floating-point sine) to be carried out. A single-length 
number consists of a sign bit and 19 magnitude bits; a double
length number (such as the product formed by the multiplica
tion of two single-length numbers) consists of a sign bit and 
38 magnitude bits as shown in the figure. A two’s comple
ment representation of negative numbers is used.

A block diagram of ARCTURUS is shown in Figure 3. 
The memory output register (7), the accumulator (K ), the 
multiplier-quotient register (L) and the instruction register
(R) are all full-length registers, while the sequence counter
(S) and the operand counter ([/) are only address-length. The 
arithmetic unit makes extensive use of a high-speed carry- 
lookahead-adder. By appropriate selection of its inputs, the 
adder can be used for indexing instructions as well as for the 
arithmetic operations (such as adding, substracting and 
incrementing, etc.) which are carried out on operands. The 
“distributor-function-selector” selects arithmetic or logical 
functions of register outputs and distributes these signals to all 
registers. This produces an arithmetic unit which is quite 
powerful (in terms of arithmetic and logical functions which
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Fig. 1. Input-Output- Unit.
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are possible), and it makes good utilization of the fast adder. 
The “address-selector“ selects the memory address from U, 
S or R. The direct link between R and S is necessary for the 
“programmed-operator” feature.

2.3 Instruction Code
The ARCTURUS instruction code is shown in Table 1. 

More details are presented in the appendix.
When bits 7 to 19 are used to specify variants of an instruc

tion, a large number of variants is possible. For example, 
during the execution of a REGISTER TRANSFER instruc
tion, the variant bits determine the main control signals of 
the DISTRIBUTOR-FUNCTION-SELECTOR. As these 
signals produce all the arithmetic and logical operations 
required during all phases of machine operation, all these 
operations (together with some additional ones, such as 
absolute-value operations) may be executed as variants of a 
single instruction.

A number of instructions have been included to simplify 
looping and the use of subroutines. For example, the JUMP 
TO SUBROUTINE instruction plants the return link in the 
location specified by the address in the instruction and then 
transfers control to the next location (following the link).

Most of the arithmetic instructions are quite standard. 
Some utilize the READ-EXECUTE-WRITE feature of the 
memory. For example, during the execution of the ACCUMU
LATE instruction, the operand is read from memory into the 
memory output register; the contents of the accumulator are 
added to the operand and the result is written back into 
memory. These operations require only a single memory 
cycle.

Some instructions (such as the nesting and hierarchy instruc
tions) require more than one memory cycle for their execu
tion. The usefulness of these instructions is still to be 
established by programming experience. However, the imple
mentation of quite complex instructions has been instructive, 
and if these prove to be useful, faster implementations 
(requiring more hardware) or even new machine organizations 
may evolve. If the inclusion of novel instructions will stimu
late either designer or user into thinking about new machine 
organizations, at least one of the aims of building a computer 
at the University will be fulfilled.

BITS 0-4 BITS 7-19
Instruction TypeOperation

Code
Address (A) 
Variants (V)

00000 V Stop
0 0 0 0 1 V Input-Output
0 0 0 1 0 V Register Transfer
0 0 0 1 1 V Shift
0 0 1 0 0 A Transfer Unconditional
0 0 1 0 1 A Transfer if Negative
0 0 1 1 0 V Skip
0 0 1 1 1 (Spare)
0 1 0 0 0 A Add Index
0 1 0 0 1 A Subtract Index
0 1 0 1 0 A Index Skip
0 1 0 1 1 A Jump to Subroutine
0 1 1 0 0 A Compare Skip
0 1 1 0 1 A Load K
o m o A Load L
O l i l i A Add
1 0 0 0 0 A Subtract
10001 A And
1 0 0 1 0 A Multiply
1 0011 A Divide
1 0 1 0 0 A Store K
10101 A Store L
1 0 1 1 0 A Store K Address
1 0111 A Accumulate
1 1 0 0 0 (Spare)
1 1 0 0 1 (Spare)
1 1 0 1 0 A Push
n o n A Pop
1 1 1 0 0 A Decrement Hierarchy
11101 A Increment Hierarchy
i m o V Return Hierarchy
u m A Execute

TABLE I
III. FUNCTIONAL AND LOGICAL DESIGN 

3.1 Approach to Functional and Logical Design
Functional design consists of the specification, in words, 

timing diagrams, tables, or any other convenient form, of all 
the functions which are to be performed by the computer’s 
hardware in every distinct time period of the computer’s 
operation. Logical design consists of implementing the func
tional design using configurations of logical elements.

The approach which must be taken to the functional and 
logical design of a complex digital system like a computer 
is firstly to break up the system into a number of distinct 
sections with well-defined links between sections. The separate 
requirements and design of each section are co-ordinated and 
these evolve into a general framework for the whole system. 
Redesign of each section must then be carried out to fit in 
with the framework as much as possible.

Examples of sections of the computer for which a first 
design can be carried out independently of the remainder of 
the computer are the memory unit and the input-output unit. 
With the former, the main links with other sections would be 
in the form of the memory address signals, the START and 
END pulses of the memory cycle and the memory output 
register. With the latter, the links would be the information 
busses and the START and END pulses of the input-output 
cycle.

Examples of sections of the framework which carry out 
many functions include the REPEATED OPERATIONS 
LOOP and the CARRY-LOOKAHEAD-ADDER. The former 
is used to count the number of SHIFT operations, to count

the number of characters read from tape and to terminate the 
multiplication and division processes. The latter is used not 
only for the arithmetic processes but for indexing instructions 
and for incrementing the contents of a memory location. The 
first design for the last mentioned operation required addi
tional logic to enable the memory output register to operate 
as a parallel binary counter. After the decision to build a fast 
CARRY-LOOKAHEAD-ADDER was made, a more econo
mical design was found.

The TIMING and CONTROL sections form a major part 
of the main framework of the computer. The design aim taken 
with the TIMING unit was to produce as fast a computer 
as possible. This meant that operations could not be tied 
rigidly to a clock common to all instructions as this inevitably 
would result in some wasted time periods. Instead, a minimum 
time was allowed for each elementary operation, and the 
computer’s operation would consist of time periods during 
which only useful operations were carried out. The timing unit 
was realized using a system of gated monostable multis. The 
system produced is still synchronous as a specific amount of 
time is allowed for each elementary operation but the system 
is similar to an asynchronous system as an END OF OPERA
TION PULSE is produced to trigger the next useful operation. 
The design aim taken with the CONTROL unit was to produce 
a computer with as much flexibility as possible. As the 
computer would be useful for teaching and research purposes, 
future modifications to the order code and other design 
changes were likely. To facilitate this, complete decoding of 
the OPERATION CODE and the EXECUTION PHASES 
was carried out and the control signals are formed by diode 
ENCODE MATRICES. Changes to these matrices can be 
readily carried out.

Design examples are presented in the following sections.

3.2 Timing Unit Design
A logic diagram of the memory timing unit is shown in 

Figure 4. The unit consists essentially of a chain of gated 
monostable multis. Two types of monostable multis are used. 
The first type triggers off the front edge of signals (i.e., when 
the input changes from ZERO to ONE). With this type, both 
the normal and inverted outputs are available, and a timing 
chain is obtained by arranging each monostable multi to be 
triggered by the inverted outout of the preceding stage. With 
this arrangement, the READ, DELAY, WRTTE and POST- 
WRITE-DISTURB waveforms (shown in Figure 5) which 
are necessary for memory timing may be obtained.

Alternative chains of timing waveforms may be obtained by 
gating the trigger signals of monostable multis by control signals. 
An example of this is shown in Figure 4. When the READ- 
EXECUTE-WRITE sienal vREw is a ONE, specifying a split 
memory cycle, an additional period, the EXECUTE PERIOD is 
inserted in the timing chain as shown in Figure 5.

The second type of monostable multi triggers off the back edge 
of signals (i.e. when the input changes from ONE to ZERO). This 
type is very convenient for constructing timing chains as illustrated 
by the logic circuit diagram of Figure 4, and the waveforms of 
Figure 6. As this type triggers off the back edge of signals, and 
flip-flops start switching on the front edge of signals, a different 
approach to design is necessary. One aspect of this approach may 
be described in terms of the logic circuit diagram of Figure 7. This 
represents a circuit for generating a specified number of pulses 
with each pulse following either 250 ns or 500 ns after the preceding 
one, depending on the setting of a control flip-flop G. The state 
of G may change during the generation of pulses. In the design, 
G is clocked by the OPERATE pulse Top, and it is used to gate 
7,25 pulses. The important point to note is that the time which is 
allowed for the G flip-flop to settle to its new state and to carry out 
the gating of T12S successfully is the period of the Top pulses 
(not r 125). A similar comment applies to the V counter. This 
counter is initially set to the number of pulses which is to be 
generated. The counter is decremented by 7’1,5 pulses and it is 
used to gate T^„ or T-m pulses. As the front edge of T125 changes 
V to its new state and 77 ̂  is triggered by the back edge of 7’,oS, it 
is the period of Tx25 which is allowed for the settling of V and its 
associated circuits.
3.3 Design of a Parallel Reversible Binary Counter

The design principle of a parallel, reversible binary counter is 
illustrated in Figure 8. In this figure the binary counter stages have 
OUTPUTS, which are designated B„ and Bv (n =  1 . . . N, where 
N  is the total number of stages). The stages consist of flip-flops 
whose outputs are gated and cross-coupled to their inputs via 
transient storage gates. When a GATE signal Gn is a ONE, the 
next COUNT pulse will change the state of the stages. The counter 
mav be set initiallv to anv state by using the RESET line and the 
INPUT’gated by the CLOCK.

A parallel binary counter is characterized by the fact that 
the same COUNT pulse is applied to all stages. Hence all 
stages switch simultaneously. This, of course, is to be pre
ferred to the characteristics of a serial binary counter in 
which each stage triggers the succeeding stages and switching 
delays are cumulative.

Combinational circuits are used to form the GATE signals. 
In a forward counter, a stage must switch when all less significant 
stages are in the ONE state and in a backward counter when they 
are in the ZERO state. The counter mode is determined by a control 
signal F. The counter operates in the FORWARD or BACK
WARD mode depending on whether F  is a ONE or ZERO 
respectively._The COMPLEMENTER (of Figure 8) selects either 
the signals Bn or Bn to enable the NOR gates to carry out the 
appropriate AND function on signals Bn or Bn respectively. NOR 
gates are used in preference to diode AND gates because of their 
signal regenerative property.

The signals which determine whether a stage is to switch 
when the next COUNT pulse arrives, start to settle to their 
new values after the last COUNT pulse changes the states 
of the counters. The combined settling time of the counters, 
the complementer, the NOR gates and the storage gates 
determines the time which must be allowed between successive
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clock pulses and hence determines the maximum repetition 
rates of the counter. As the total number of stages is increased, 
the only limitation is the fan-in of the NOR gates. If the fan-in 
is m, an extra two NOR delays are added to the GATE 
settling time for every m - 1 stages added.
3.4 Carry-Lookahead-Adder
3.4.1. The Carry-Lookahead-Adder Principle

In a conventional RIPPLE-CARRY-ADDER, the carry and 
sum bits of each full-adder stage are formed in succession as 
carry bits of less significant stages ripple through to more 
significant stages.

In a CARRY-LOOKAHEAD-ADDER, the carry bits of a 
number of adder stages are formed simultaneously.

The increase in speed realized by such an adder can be seen by 
first considering two adjacent stages n and n + 1 , where stage 
n +  1 is less significant. Using the normal definitions of the 
GENERATE and PROPAGATE functions (G„ and P„)n , the 
relevant carry equations are:—

Cn = Gn + Pn Cn+1 
,. . . ^ '« + .1  Gn+1 -f- P n + 1  C„+2.

The direct circuit equivalents of the above equations (as used in 
the conventional ripple-carry-adder) would result in the Cn signal 
settling after C„ + 1 has settled as the Cn+1 signal must pass through 
an AND-OR circuit configuration to form Cn. Both carry signals 
may be formed simultaneously by generating Cn directly in terms 
of Cn+2. This may be done by using the direct circuit equivalents 
of the following equations:—

C„ =  Gn +  Pn Gn+i +  P„ Pn + 1 C„ + 2  

. . Cn+1 Gn+i “f- Pn+1 C„+2.
A limitation to the application of the above principle to a 

large number of adder stages is the fan-in of the circuits 
used. A reasonable number of stages in a group to which the 
above principle may be applied is five. GENERATE and 
PROPAGATE signals may be derived for the group, and the 
carry-lookahead principle may be applied to a number of 
groups. This process may be continued by designating five 
groups as a section12  and then using carry-lookahead circuits 
between sections. Carry-lookahead between stages within a 
group will be called ZERO-LEVEL-LOOKAHEAD, between 
groups within a section will be called FIRST-LEVEL-LOOK- 
AHEAD and between sections will be called SECOND-LEVEL- 
LOOK AHEAD1!.
3.4.2 Description of Adder with Zero-Level and First-Level- 

Lookahead
A block diagram of the adder is shown in Figure 7. A 

description follows.
The adder stages are numbered 0 to 19, with stage 0 being the 

most significant and stage 19 the least significant.
The adder inputs are A { and B, (/ =  0 . . . 19), and the carry digit 

into the least-significant stage is designated C20. The sum and 
carry digits are designated S{ and Ct respectively. PROPAGATE 
and GENERATE functions (P, and GJ) are formed for each stage. 

Pi — AiBt -f- A{B{
Gt = AiBi

The adder is divided into 4 groups each of 5 stages. PRO
PAGATE and GENERATE functions may be formed for the three 
least significant groups. These first-level functions are designated
P 1 and G (n =  1, 2, 3) with n = 3 corresponding to the least-n n
significant group. The defining equations are:—
P = P 6P.P 7P 8P 9

G =  G5 +  P 5 G6 +  P 6P 6 G7 +  P 5P 6P 7 G8 +  P 5P 6P 7P 8 G9

I
P = P

2

G =  G,

loP llP 12 P 1 »P14

+ P i o  G n  + PioPiiC12 + P10P11P12G13 + PioPiiPi2G14

P — PibPioPnPisPio
G = Gis + P10G10 + Pi.Pi.G, 5Pl6F i7 G18 -f- P 1 rP 1 fiP 1 ?PirGils'-'ie "1“ -i'l5i'l6t-,17 + -P15l-16/-17l

By using FIRST-LEVEL-LOOKAHEAD, i.e. by applying th< 
lookahead principle to groups of stages, we may look ahead tc 
C1 5 , C10 and C6. The equations are:—

C15 = G + P  C20

/  i l  i i
— G + P  G + P P C 20

i l lc5 = g| + P G 1 + P P G 1 + p'p'p'Cfc.
With the carry signals C20, C15, C10, C5 either8 known or estab 

fished, the remaining carry signals may be formed using ZERO 
LEVEL-LOOKAHEAD. The equations for C j-Q  are:

C4 =  G4 +  P 4 C5 

Cs =  Gs +  P*G4 +  P aP4 C5 c2 =  g 2 +  p 2 g 3 +  p 2p 3 g 4 +  P 2P 3 C5 

Cl = c a +  P lG2 +  P 4P 2 G3 +  P jP 2P 3 G4 +  P \P 2P3P 4C3. 
Similar equations apply to C6-C 9, Cu-C 14 and C1 6-C19.
The sum digits are formed in terms of carry digits and PRO 

PAGATE functions. The equations are:—
Sn =  Pn Cn+1 + Pn Cn+1 (« =  0-19).

3.4.3 Selection of Adder Inputs
The adder is used for carrying out arithmetic operations on 

instructions (e.g., INDEXING instructions) as well as on 
numbers held in machine registers. A large number of different 
operations (such as CLEAR, SUBTRACT, DECREMENT, 
etc.) are required. Both these requirements may be satisfied 
by the appropriate selection of adder inputs.

Control signals a, s, r and k  are used to select J, 7, 0 or 1 as the 
first adder input and R, AT, 0 or 1 as the second adder input. The

Fig. 9. Block Diagram of Carry-Lookahead-Adder.

Fig. 11. Logic Circuit Configuration of the Adder.

n k »>

Fig. 10. Logic Circuits of the Adder, Distributor and 
K, L Registers.
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Fig. 12. Multiplication Timing Waveforms.

Fig. 13.

Typical Diode-Transistor Logic Circuit Configuration.
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defining equations are
A =  aJ +  sJ 
B — rR + k fi  + rk.

From these equations the following expressions for the TERM
INATE, GENERATE and PROPAGATE functions (T, G, and P) 
may be derived:—

T  =  aJ + sJ +  rR +  k K  +  rk 
G = s J  + a J  + k  R + ~r~K +  ~RK 8 +  a 

P = T +  G
where 9 =  k + 7
and a = a s + r k.

The implementation of these equations is shown in Figure 10. 
The additional L m gate shown in this figure is to be ignored in the 
present context as it is only used for the COMPARE-SKIP 
instruction.
3.4.4 The Distributor-Function-Selector

The distributor-function-selector selects various computer 
signals for distribution to the main computer registers.

The logic diagram of one stage of the distributor-function- 
selector, whose output is designated D{, is included in Figure 10. 
The signals which may be selected are shown in the following 
table:—

Signal selected Control signal

Adder output 
K  register output 
L register output
Logical product or generate function G 
Exclusive OR or propagate function P 
Toggle register output

Ox
Ks
l
g
P

Toggle switch H
Table 2

The defining equation for Dt is as follows:—
Di =  ax PiCi+1 +  axP ,C <+i +  K,Kt +  ILi +  gGi +  pPt +

3.4.5 The Add-Shift Mechanism
Shifting of information in the K and L registers is accom

plished by having three pairs of transient storage gates con
nected to each register as shown in Figure 10.

The signals which may be set into the registers are specified 
by the following table:—

REGISTER SIGNAL CLOCK

K ■®»+i Ki
K Di Kd
K Di-1 Kr
L C<+1 Li
L Di Ld
L Li-1 L r

Table 3
Shifting K  left is carried out by specifying control signal Ks and 

by providing a Kt clock. A Kr clock would be provided for shifting 
K  right. Shifting L  left or right is carried out by providing clocks 
L, or L r.

Adding and shifting in the one clock period may be carried out 
by specifying the control signal a, and by providing the appropriate 
K  clock. This is used in the multiplication and division logic.

3.4.6 Logic Circuit Arrangement of Adder
The skeletal logic circuit diagram of Figure 11 is intended 

to show how the logic elements of the adder are cascaded, and 
hence gives some indication of the signal attenuation and time 
delays which are involved.

Time delays introduced by INVERT circuits are much 
greater than those introduced by AND or OR circuits. How
ever, INVERT circuits do regenerate signals while diode AND 
and OR gates cause signal deterioration in the form of attenua
tion and level-shift.

Circuit tests showed that the configuration AND-OR-EF- 
AND-OR-EF (where EF represents an emitter follower) was 
quite satisfactory, but that further cascading of logic circuits 
without regeneration was unwise.

Hence the aim was to obtain a circuit arrangement for 
obtaining the SUM digits with the minimum number of IN
VERT circuits in cascade and with the restriction that the 
AND-OR-EF-AND-OR-EF—circuit configuration is the long
est chain of logic circuits through which signals must pass 
before they are regenerated.

3.5 The Multiplication Procedure Using Multiplier Recoding
3.5.1 A Simple Multiplication Procedure

A simple multiplication procedure using the ARCTURUS 
arithmetic unit could be implemented as follows.

The multiplicand is held in register J and the multiplier is 
held initially in register L. Registers K  and L  form a double 
length shifting register, and hold the growing partial product 
and the diminishing multiplier. Register K  can be cleared 
initially to correspond with an initial partial product of zero. 
The least significant bit of L  is used to control the adder. 
If this bit is a ONE, the contents of J and the contents of 
K  are summed and the sum is placed in K. If the bit is a 
ZERO, K  is left unchanged. After either of the above steps, 
registers K  and L  are shifted one place to the right. The 
process is repeated until all multiplier bits have been sensed, 
if the two’s complement is used for the representation of 
negative numbers, a multiplier sign bit of ONE will cause the 
subtraction of the multiplicand from the partial product.

The simplest system for timing the above muL.pl.catLii procedure 
would involve n time-periods each of equal duration r, v here n is 
the number of bits in each word and r  is the time allowed for an 
ADD/ADD ZERO operation followed by a SHIFT operation.

The time required for the multiplication processes would then be m .
3.5.2 Speeding Up the Multiplication Process

The multiplication time may be reduced by providing input 
gates to each stage of the K  register and the most significant 
stage of L  to enable the ADD/ADD ZERO and SHIFT opera
tions to be initiated by a single clock pulse.

The multiplication time may be further reduced by “by-passing 
the adder” . This again involves providing additional input gates to 
registers K and L  to enable them to shift without using the adder, 
thus eliminating the ADD ZERO operation. The multiplication 
time is reduced because the SHIFT time ts may be significantly 
less than the ADD time ta . The multiplier digit must control the 
time interval (either ts  or ta) between successive clock pulses. 
The multiplication time would then vary between m s  (correspond
ing to a multiplier of all ZEROS) and uta (corresponding to a 
multiplier of all ONES).

The number of SHIFT operations may be increased (and 
the number of ADD operations reduced) by “multiplier
recoding”. This produces a further reduction in the multiplica
tion time.
3.5.3 Multiplier Recoding( 13)

By convention, the binary number 00111110 represents 
25 +  24 +  23+  22 +  21. A better understanding of the steps involved 
in a multiplication process (when the number is used as the 
multiplier) may be obtained by placing a PLUS SIGN (+ ) above 
the bit position of the multiplier which requires an ADD-SHIFT 
operation (assuming this is possible using a single clock pulse), 
and a DOT ( . )  above the bit position which requires a PASS- 
SHIFT operation (assuming the existence of gates for adder by
passing). The PASS part of the PASS-SHIFT operation indicates 
that the partial product remains unchanged. The above number

• * +  +  + + + *

when used as a multiplier may then be coded as 0 0 1 1 1 1 1 0 ,  
and the sequence of PLUS SIGNS and DOTS moving from right 
to left (i.e. from the least to the most significant ends) would 
indicate the steps involved in the multiplication process.

The binary number 00111110 contains a STRING OF ONES 
and represents 26 — 21. This suggests an alternative multiplication 
procedure requiring fewer arithmetic operations. The term — 21 
represents a subtraction. This does not introduce a complication 
as circuits for subtraction are provided, and are such that the 
ADD and SUBTRACT operations take the same time. Using 
a MINUS SIGN (—) above a bit position of the multiplier to 
represent a SUBTRACT-SHIFT operation, the multiplier may be

recoded as 0 0 1 1 1 1 1 0 . It is to be noted that the process using 
the recoded multiplier involves only two ADD-SHIFT or SUB
TRACT-SHIFT operations compared with five ADD-SHIFT 
operations required by the process using the conventional coding 
of the multiplier.

The decision to ADD-SHIFT, SUBTRACT-SHIFT or PASS- 
SHIFT is made by sensing a number of multiplier bits starting from 
the least significant end and progressing to the most significant end. 
A good decision is one that will PASS-SHIFT the largest number 
of times, i.e. it will postpone (as far as possible) any ADD-SHIFT 
or SUBTRACT-SHIFT operation. When two multiplier digits are 
sensed at each step, the decision is based on the concepts of 
STRINGS of ONES, ISOLATED ZEROS and ISOLATED ONES. 
These are defined as follows. Two or more adjacent ONES con
stitute a STRING OF ONES, and as noted above, the least 
significant ONE of a STRING OF ONES is interpreted as 1 while 
the ZERO to the left of the most significant ONE is interpreted

+
as 0. An ISOLATED ZERO is a zero which is flanked by ONES, 
which form part of a STRING OF ONES, and is to be interpreted 
as 0. An ISOLATED ONE is a ONE which is not a member of 
a STRING OF ONES and which is flanked by ZEROS. An

ISOLATED ONE is interpreted as 1.
Based on the above definitions, the PRESENT OPERATION 

TO BE PERFORMED is determined by the LAST OPERATION 
PERFORMED and by the two multiplier digits Pi+1 and P{ which 
are sensed in the T-th step ( / = ! . . .  n). Before the first step, the 
LAST OPERATION PERFORMED is assumed to be an ADD- 
SHIFT operation. The following table defines the PRESENT 
OPERATION TO BE PERFORMED.

MULTIPLIER
BITS

T A S T
OPERATION
PERFORMED

INTER
PRETATION

PRESENT 
OPERATION 

TO BE
PERFORMEDP i+ i Pi

1 1 ADD-SHIFT INITIATING 
A STRING

SUBTRACT-
SHIFT

0 0 SUBTRACT-
SHIFT

TERMIN
ATING A 
STRING

ADD-SHIFT

1 0 SUBTRACT-
SHIFT

ISOLATED
ZERO

SUBTRACT-
SHIFT

0 1 ADD-SHIFT ISOLATED
ONE

ADD-SHIFT

ALL OTHER CONDITIONS PASS-SHIFT

Table 4
A further saving of multiplication time may be obtained by 

considering more than two multiplier digits in each step. How
ever, the greatest saving is obtained in going from a multiplier 
with conventional coding to a r¿coded multiplier which con
siders two multiplier digits in each step, and the incremental 
saving diminishes as more multiplier digits are considered.

3.5.4 An Implementation of a Multiplication Procedure Using 
Multiplier Recoding

The repeated operations timing loop. The repeated operations timing 
loop shown in Figure 7 is used to generate timing pulses required
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by the multiplication process. The number of pulses produced is 
determined by the V counter. This is set initially to 20 and is 
decremented by r 125 pulses.
The F flip-flop. The F flip-flop is used to determine whether an 
addition or a subtraction is to be carried out. The control signals 
of the adder are set up to add or subtract depending on whether F  
is ONE or ZERO respectively. The multiplier is held initially in 
L and the two multiplier digits which are sensed are Lia and L19. 
The setting and resetting expressions for F  (i.e. expressions for F ' 
and F ') may be obtained in terms of Lia and Ll0 according to 
table 4. After F  has been set initially to ONE, the conditions which 
change it to ZERO are LlaZ,18, and those which change it from 
a ZERO to a ONE are L18L19. Hence 

F — L iSL19 
F — LxaL19.

Note that as L  and F  are to change at the same time, transient 
storage gates are necessary to maintain the setting and resetting 
signals while the flip-flop is turning. The clock for F  is Top.
The G flip-flop. The G flip-flop is used to determine whether the 
operation to be performed is an ADD/SUBTRACT-SHIFT 
operation or a PASS-SHIFT operation. The former operation is 
performed when G is ZERO and the latter when G is ONE.

Starting from the information in table 4, it can be shown that 
an ADD/SUBTRACT-SHIFT operation is to be performed when 
Ll9F + L l9F is ONE. Hence the setting and resetting signals for 
G are as follows:—

G ' = L \9F +  L19F 
G ' =  Lx9F  +  Lx9F.

As L, G, and F are to change at the same time, transient storage 
gates are also required for G. The clock for G is Top.

The timing waveforms of Figure 12 correspond to a multiplier of

01 1 I  0 0 0 1  1 1 10  1 i lO  0 1 0 0 .
It can be seen that when an ADD/SUBTRACT-SHIFT operation 
is to be performed, there is a period of 500 ns between Top and the 
next clock pulse (Lr, Kr or Kd), but when a PASS-SHIFT operation 
is to be performed, this period is reduced to 250 ns. Hence 500 ns 
are allowed for the settling of the flip-flops F  and G, the adder and 
the register gates, while only 250 ns is allowed when the adder is 
by-passed.
The Fsro flip-flop. The multiplication process requires 20 pairs of 
consecutive multiplier digits. As the register L  contains only 20 
digits, an additional multiplier digit must be obtained. Consider
ation of negative multipliers requires a repetition of the multiplier 
sign digit. Hence an initial arithmetic shift of one place is required, 
during which process the information originally held in Lla is not 
lost but is stored in the control flip-flops F  and G.

During the flrst nineteen (of the twenty) steps in the multiplication 
process, the output of the least signiricant stage of the adder {D19) 
is set into L 0. By this process, the least significant half of the 
product is gradually formed in L. During the twentieth step, K is 
not shifted (hence the occurrence of a Kd pulse and not a Kr (pulse) 
and a logical shift of one place is carried out in L. These steps 
ensure the correct positioning of the double-length product in K 
and L. (See Figure 2).

The Fsro flip-flop is used to generate the digit (L_x) which is 
to be set into L 0 to satisfy the above requirements. As V is 
decremented by T12& and the shift pulse may be a T2M pulse, only 
125 ns would be allowed for the L 0 storage gates to settle if the 
signal V=o were used to gate L_x- It would be better to sense the 
condition V=1125 ns earlier and to record this information in Fsro - 
However, Fsro alone cannot determine three different values for 
L_x, viz. L 0, D19 and ZERO. A convenient signal which could be 
used to complete the gating is V4, the most significant stage of V.

The flip-flop Fsro is initially set to ZERO by the INITIAL SET 
BUTTON (B[S) and the START PHASE SIGNAL {Ts<)>). The 
final equations for Fsro and L_x are as follows:—

_  F 'sro  =  Tsro
F 'sro  =  Bls_+ T<pc +  V-i T2b0 +  V-x Tbno 

L-x =  Fsro  Vt, L0 +  Fsr o  L>19.
Negative partial products. The arithmetic (right) shifting of the 
partial product requires the repetition of the sign digit. Hence 

7>-i =  D0.
The register clocks. TheG flip-flop is used to select either 

the adder output or the K  register output while the machine 
is carrying out an ADD/SUBTRACT-SHIFT operation or a 
PASS-SHIFT operation. Different times are allowed for the 
circuits to settle but the same transient storage gates are 
clocked.

The V counter is used to gate the nineteen RIGHT-SHIFT-A 
pulses (K r) and the one DISTRIBUTOR-TO-A pulse (Kd). When 
V =  0 and a T2b0 pulse is produced instead of a Th00 pulse, there is 
no Kd pulse. There is no point making Kd equal to Tb20 as the 
register remains unchanged. The twenty-one RIGHT-SHIFT-L 
pulses (Lr) are readily generated from the pulse trains produced by 
the repeated operations timing loop. The final equations are:— 

Kr — J 'V o  {T„, +  T 5 0 0 )
Kd = V=o ( +  Tb00)

L r =  Top +  7250 +  Tb00.
Typical waveforms are shown in Figure 12.

Multiplication time. The nominal times allowed for an ADD/ 
SUBTRACT-SHIFT operation and a PASS-SHIFT operation are 
500 ns and 250 ns respectively. The multiplication time depends on 
the multiplier and varies between the time required for twenty 
PASS-SHIFT operations (i.e. 5 ps) and the time required for ten 
PASS-SHIFT operations plus ten ADD/SUBTRACT-SHIFT 
operations (i.e. 7-5 ps).

The above times exclude one memory cycle time required 
to fetch the instruction and one memory access time required 
to fetch the multiplicand. The multiplication process may pro
ceed while the multiplicand is being regenerated in the 
memory.

IV. LOGICAL CIRCUITS
The logical circuits used in the arithmetic and control 

sections of the computer include positive-logic diode AND- 
OR gates and transistor INVERT circuits. A typical circuit

configuration is shown in Figure 13. It is to be noted that
current amplification (using emitter followers) is provided after 
signals pass through only two stages of diode gating, and 
signal voltage regeneration (using invert circuits) is provided 
after four stages of diode gating. The nominal voltage levels 
representing the ONE and ZERO signals are -)-l volt and — 1 
volt respectively. The 0 volt/—2 volt signal at the collector 
of the INVERT transistor is shifted positively by 1 volt in the 
last EMITTER FOLLOWER circuit. The two diodes in series 
here produce the level shift without a reduction in signal 
amplitude. An AND-OR-EMITTER FOLLOWER-INVERT- 
EMITTER FOLLOWER circuit configuration would have a 
typical delay of 50 ns.

Flip-flops, shift-registers and binary counters may be pro
duced by interconnecting the basic AND/OR/INVERT 
circuits and resistor-capacitor transient storage gates. The 
circuits so formed may operate at repetition rates up to 4 
Mc/s.

The positive-trigger and negative-trigger monostable multis 
used in the timing unit may have periods as short as 500 ns 
and 100 ns respectively.

A brief description of the signal waveforms shown in Figure 
6 follows:
Photograph A (500 ns/div., 1 volt/div.)

The READ, DELAY, WRITE and POST-WRITE- 
DISTURB waveforms of the memory timing are super
imposed. These are generated by a train of positive 
trigger monostable multis.

Photograph B (100 ns/div., 1 volt/div.)
Waveforms generated by a train of negative trigger 
monostable multis are superimposed.

Photograph C (100 ns/div., X volt/div.)
This shows the COUNT pulse and one edge of the least 
and most significant stages of a 10-stage parallel binary 
counter.

Photograph D (200 ns/div., 1 volt/div.)
This shows a train of four pulses generated by negative 
trigger monostable multis and a binary counter.

V. CONSTRUCTIONAL TECHNIQUES AND 
COMMISSIONING

The problems involved in the commissioning of a computer 
must be anticipated in the design and construction stages. 
With such a complex piece of electronic equipment, of course, 
some form of package construction is essential. It seems that 
a good policy is to implement as much of the computer as 
possible with the smallest number of package types, and to 
keep all non-standard packages as simple as possible. With a 
high-speed computer, the layout of the packages within the 
main frame is very important. The aim here is to minimize 
the length of inter-package wiring (base-wiring) reducing 
signal delays and to minimize pickup of self-induced or 
extraneous noise.

The method of package construction was essentially the 
same as that used in two former machines2- 3. The electronic 
components are pushed into holes in a polythene card which 
is held in juxtaposition with one or more Cannon plug(s) by 
a stainless-steel band. Two sizes of packages are used. The 
small 15-pin package is approximately l i "  x 4" which is 
a convenient size for constructional and testing purposes, and 
would hold, for example, two flip-flops or four negative- 
trigger monostable multis. The large 55-pin package is approx
imately 3f" x 41". The aim here is to hold in the one 
package one stage of each of the registers in the arithmetic 
unit plus the interconnecting logic. This arrangement would 
minimize base wiring and hence would reduce wire lengths 
and increase speed.

To reduce pickup, a grid of copper strips with silver and 
gold flashing is used as a ground plane close to the base 
wires. Where capacitive loading is important, wires are held 
well clear of the ground plane and well clear of other wires 
by threading them through a number of stainless-steel wire- 
mesh brackets.

In the early stages of commissioning, every soldered joint 
in the packages and in the base was inspected and the wiring 
checked. This was followed by a dynamic test of every input 
of every logical element. Some packages were subjected to 
hot-air-blast and vibration tests.

After every package had been checked individually, groups 
of packages (for example, those forming the main timing 
unit) were plugged into the base and tested. As an increasing 
number of packages were plugged into the base, more com
plex tests requiring the combined operation of a larger part 
of the machine were made possible.

Commissioning of the computer was facilitated by incorpor
ating into the design a number of engineering tests. Tests 
such as the triggering of the main timing chain from a built- 
in pulse generator to enable timing waveforms to be monitored 
are carried out under the control of toggle switches and push
buttons on the maintenance engineer’s console. This console 
monitors all registers and important flip-flops, and all arith
metic and logical operations may be checked under single
shot or dynamic conditions.

At the time of writing, an advanced stage has been reached 
with the commissioning of ARCTURUS.

VI. CONCLUSIONS
The completion of ARCTURUS will support the case for 

the continuation of computer hardware projects at Australian 
Universities, ARCTURUS was produced with very limited 
resources, and there is no doubt that in the three areas of 
teaching, research and staff training, it will be far superior to
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a commercially available computer of comparable cost.

Introductory courses on the use of computers can be 
taught more effectively using an open-shop system with a small 
(cheap) computer than with a closed-shop system with a 
large (expensive) computer which does not have time-sharing, 
multi-console facilities. Teaching in the field of computer 
design which may be carried out at a more advanced level 
(e.g., final-year, honours or post-graduate levels) can also be 
taught more effectively as the staff concerned will have a more 
intimate knowledge of the hardware of the computer, and 
design examples involving diverse practical aspects will be 
more readily available.

In the context of time-sharing systems, much research effort 
has been directed at special peripheral devices for improving 
man-machine communication14, and it is very likely that 
research along these lines will continue for some time1®. 
A home-made computer could be a very useful research tool 
here, as modifications and additions to the computer could 
be made readily to incorporate the device. A flexible computer 
(i.e., one which can be modified easily) can also be useful for 
research into the organization of computers. Special instruc
tions built into the computer could suggest different configura
tions or special hardware for improving its performance. Other 
applications of a flexible computer would include on-line 
processing of test data and research into the computer control 
of complex systems. These applications would involve the 
interconnection of computer and test set or system via 
analogue-digital converters.

The third area in which the construction of a computer 
would prove to be more beneficial than the purchase of a 
commercial machine would be that of staff training. ARC
TURUS (like most computers) is a very complex piece of 
equipment. The approach taken to its design and construction 
with very limited resources was good engineering training. 
Such training is essential if university lecturers are to reveal 
to students scientific and engineering experience concerning the 
application of abstract theories so that the students’ creative 
abilities are developed as well as their memories1®.

The need for Computer Science courses, involving the 
theory, design, control and application of information-process
ing systems, to provide adequately trained computer personnel 
has been recognized for a number of years, Many of these 
have been available only to post-graduate students or under
graduates in their final years, but it does appear that the trend 
is towards courses which form a major part of a first- 
degree program17. Logical design forms an important part of 
these courses. A completely theoretical treatment of logical 
design is not sufficient as it is closely related to circuit design 
and the properties of components. These related subjects arc, 
of course, treated in an Electrical Engineering course. Hence it

does appear that hardware projects (involving design) should 
be carried out at Schools of Electrical Engineering at Aus
tralian Universities. Not only will this produce adequately 
trained staff, but it is likely that computer teaching equip
ment will evolve as a by-product® and student interest will be 
stimulated in an important area of Computer Science.
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IX. APPENDIX

TABLE 5. DESCRIPTION OF INSTRUCTIONS TABLE 5 (continued)

CODE INSTRUCTION DESCRIPTION

00000 STOP (00 Unconditional 
r  r  101 Contingent on BP 1 ON 

j 10 Contingent on BP2 ON 
[ l l  Continue

00001 INPUT-
OUTPUT

(0 4-bits 
R * 11 5-bits 
R u  Reader 1 
R ia Printer 
R l t  Punch 
R i i - R n  Number of times 
A cyclic left shift of K  4 or 5 places 
depending on R 9 precedes each 
operation. Reading overwrites K 1& or 
K l t  to K 19. If R 9 =  0, the character 
read is the next non-fifth bit character 
in the buffer or on the tape. The 
character printed or punched is either 
0, K ie- K 19 or K 1S- K 19. Reading 
precedes printing or punching.

00010 REGISTER-
TRANSFER

(00 Transfer L  to J  first 
r . r .  01 Transfer K i o  J  first 

110 Transfer U to J  first 
(11 Transfer U to J  first 

R 9 a  if R l t  =  0 
Rio if R l2  “  0 
R ll  C20 if R ia =  0 
D Id =  Jo, s — Jo, C9o — J 0 
12 (if R 9 =  0, Rio  =  0, R n  =  0

R13 r  
R n  k

(00 Ö! =5 1 g  =  0  p  — 0
* i 5* .e  =  S g  =  (i  P  = \| 10 a1 =  0 g  =  1 p  — 0 

(11  d \ — 0  g  =  1 p  =  1
R i7 Clock distributor into U 
R lg Clock distributor into K  
R 19 Clock distributor into L

00011 SHIFT (000 Logical 
r  r  r  1100 Arithmetic 
8 9 1 010 Cyclic together 

0̂01 Cyclic separately 
Ru Shift L

|0  L  left 
R u  (1 L  right 
R l3 Shift K

10 K  left 
R l1 (1 K  right 
R is - R i t  Number of times

00100 TRANSFER
UNCON
DITIONAL

3 h

00101 TRANSFER IF 
NEGATIVE

cs y  =  A if K 0 =  1

00110 SKIP R 9 Accumulator normalized
(00 —
101 Accumulator <  0 

^ioRn 110 Accumulator =  0 
(11 Accumulator > 0
00 —

01 Sense switch 1 ON
10 Sense switch 2 ON
11 Sense switch 3 ON 

Rl&- R 19 Number of times

C O D E I N S T R U C T I O N D E S C R I P T I O N

00111 (S P A R E )

01000 A D D  I N D E X A d d  ( M )  to  address o f  n ext instruction

01001 S U B T R A C T
I N D E X

S u b tract (A/) fro m  address o f  next 
instruction

01010 I N D E X
S K IP

( M Y  =  (A/) +  /
(5 ) ' -  (5 ) +  1 i f  ( A f) 0' =  1

01011 J U M P  T O  
S U B R O U T I N E

(A /)' =  (5 ) 
(5 )' =  A +  1

01100 C O M P A R E
S K IP

(5 )' =  (S )  +  1
i f  (M ) i  =  (K) i  fo r  all i such  that 

(L ), =  1

01101 L O A D  K ( K Y  =  (M )

o m o L O A D  L ( LY  =  (M )

O l i l i A D D CK Y  =  (K ) +  ( M  )

10000 S U B T R A C T ( K Y  =  (K ) -  (A f )

10001 A N D (K) ' i  =  ( K ) i . ( M ) i (i =  0 - 19)

10010 M U L T I P L Y CKL Y  =  (Z.) X (A/) 
L 0 =  0

10011 D I V I D E ( LY  =  (KL)  -=- (A/)

10100 S T O R E  K ( M Y  =  (K)

10101 S T O R E  L ( M Y  =  ( L)

10110 S T O R E  K  
A D D R E S S

( M Y  t - 19 =  (X ) 8_19

10 111 A C C U M U L A T E ( M Y  =  ( M )  +  (K )

11000 (S P A R E )

11001 (S P A R E )

11010 P U S H «  (M) » '  =  (K ) 
( M Y  =  (M) +  /

n o n P O P (k y  =  «  (m ) >y 
( M Y  =  (M ) -  /

11100 D E C R E M E N T
H I E R A R C H Y

«  (1) » '  =  (5 )
( i y  =  a) -  /
( S Y  =  A

11101 I N C R E M E N T
H I E R A R C H Y

«  ( l )  >y =  ( s )  
( iy  =  (D +  /  
( S Y  =  A

i m o R E T U R N
H I E R A R C H Y

(0 D ecrease  

13 11 Increase 
Ru  C h a n g e h ierarch y 
R15-Æ19 N u m b e r o f  tim es 
«  ( 1) » '  =  (S)
( 1) ' =  ( 1) ±  I  (N  tim es) 
( S Y  =  «  ( 1) »

u m E X E C U T E E xecu te  instruction  in  M
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