
THE UNIVERSITY OF

SYDNEY
Copyright and use of th is thesis

This thesis must be used in accordance with the
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright
may be an infringement of copyright and
copyright owners may be entitled to take

legal action against persons who infringe their
copyright.

Section 51 (2) of the Copyright Act permits
an authorized officer of a university library or
archives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in

the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research

or study.

The Copyright Act grants the creator of a work
a number of moral rights, specifically the right of
attribution, the right against false attribution and

the right of integrity.

You may infringe the author’s moral rights if you:

- fail to acknowledge the author of this thesis if
you quote sections from the work

- attribute this thesis to another author

-subject this thesis to derogatory treatment
which may prejudice the author’s reputation

For further information contact the
University’s Copyright Service.

sydney.edu.au/copyright

THE DESIGN AND CONSTRUCTION OF

THE DIGITAL COMPUTERS SNOCOM, NIMBUS AND ARCTURUS

D.G. WONG

A thesis presented in support of an applic
ation for the degree of Doctor of Philosophy in the
School of Electrical Engineering of the University
of Sydney.

December, 1966.

- 1 1

PREFACE

This thesis contains an account of the development
of the three digital computers SNOCOM, NIMBUS and ARCTURUS
within the School of Electrical Engineering of the University
of Sydney.

SNOCOM was the first semiconductor, general-purpose
digital computer constructed and installed in Australia. It was
built for the Snowy Mountains Hydro Electric Authority and was
commissioned in August, 1960.

NIMBUS is the first educational digital computer
of its kind to be built in Australia (and possibly in the world).
It was commissioned in December, 1961,

ARCTURUS is a parallel, general-purpose digital
computer which utilises advanced techniques of design and con
struction, and which contains some novel and original features.
Its internal processing speed is greater than that of other
computers constructed in Australia. It was commissioned in May,
1966, and has been used for both teaching and research purposes.

Chapter 1 of this thesis deals with SNOCOM. A brief
description of this computer is presented, and then the design
of the ’’Auto-input" (an original feature due to the Author) is
described in detail. Conclusions drawn from the SNOCOM project
terminate the chapter.

Chapter 2 deals with NIMBUS, and contains a brief
description, a summary of the design of a very simple computer
and conclusions drawn from the NIMBUS project.

Chapters 3-7 deal with the various stages of the
ARCTURUS project, viz :- system design (Chapter 3), functional
and logical design (Chapter 4), circuit design (Chapter 5),
constructional techniques and commissioning (Chapter 6) and
programming (Chapter 7). Although many logical design consider
ations are not even mentioned, Chapter 4 is, by far, the longest
chapter. The approach taken with this chapter was to describe
designs for selected sections of the computer so that a reason
ably accurate representation of the design techniques used in
ARCTURUS is produced.

Chapter 8 contains a review of computer developments
and an appraisal of the SNOCOM, NIMBUS and ARCTURUS projects.

The ARCTURUS project was carried out with extremely
limited man-power and financial support. By salvaging semicon
ductors and connectors from old equipment, and by constructing
several peripheral units in the laboratory, this computer was
produced with a component cost of less than $A 10,000. This sum
was obtained over a period of about five years.

- 1 1 1 -

The Author’s publications relating to the work de
scribed in this thesis are as follows :-

(i) MThe Logical Design of the General Purpose Digital
Computer SNOCOM” , Conference Papers, Annual Engin
eering Conference, The Institution of Engineers,
Australia, Cooma, 1962, and Jour. I. E. Aust., June,
1962, ppl25-136.

(ii) MAn Educational Digital Computer", Conference Papers,
Australian Computer Conference, Melbourne, 1963

(iii) "Laboratory Equipment for Teaching Digital Computer
Fundamentals", Proc. I.R.E.E.Aust., Feb., 1965 ,Spec
ial Issue on Education, pp77-83.

(iv) "The Design and Construction of the Digital Computer
ARCTURUS", Proceedings of the Third Australian Comp
uter Conference, Canberra, May, 1966.

Reformatted versions of Papers (i) , (iii) and (iv) appear in
the Appendix. Paper (ii) is not included as it is similar to
Paper (iii) .

Papers (i), (ii) and (iv) were read at Computer/
Engineering Conferences. The Author received the 1963 Award of
the J. R. Bainton Prize from the Institution of Engineers, Aust
ralia for Paper (i) .

The Author was in charge of the final stages of the
development of SNOCOM and of all stages of the development of
NIMBUS and ARCTURUS. Mr. K. R. Rosolen (the Author's Design
Assistant) played a major role in all three projects, and was
mainly responsible for circuit design and constructional tech
niques. System design, functional design, logical design and
programming were the main responsibilities of the Author.

The merit of the work described in this thesis lies
in (i) the novel and original features- incorporated in the three
computers SNOCOM, NIMBUS and ARCTURUS, (ii) the fact that, under
the Author's direction, a small but effective research group
capable of establishing advanced concepts and techniques has
been formed and (iii) the fact that the SNOCOM, NIMBUS and
ARCTURUS projects represent a significant contribution to the
development of computers in Australia.

IV-

PHOTOGRAPHS

SNOCOM

NIMBUS

ARCTURUS

v-

ACKNOWLEDGEMENTS

The construction of SNOCOM was made possible by
the generous support given by the Snowy Mountains Hydro
Electric Authority to computer development within the School
of Electrical Engineering of the University of Sydney.

Dr. M.W. Allen, formerly of the Mathematical
Instruments Section of the Commonwealth Scientific and
Industrial Research Organization (now Professor of Electronic
Computation at the University of New South Wales), was res
ponsible for the circuit design and constructional tech
niques utilized in SNOCOM. The initial stages of develop
ment of SNOCOM were under his direct supervision, and he is
to be given much of the credit for its success.

The assistance given by Messrs. W,S. Lamond,
L.G. Bellamy, J.E. Todd, R.B. White, K.R. Rosolen, P.T. Brown
and D. Linsten during various stages of the SNOCOM project is
also gratefully acknowledged.

The author is particularly indebted to Mr. K.R.
Rosolen who capably assisted in all stages of the NIMBUS and
ARCTURUS projects. Mr. Rosolen is to be given much of the
credit for the circuit design and constructional techniques
used in these projects. He was directly responsible for the
construction of the tape reader, the modifications to the
printer, the wiring of a large number of packages, all the
base wiring of ARCTURUS and all the mechanical construction.

The author would like to thank Mr. I.M. Cowell for
wiring some of the packages for ARCTURUS and for his assistance
during the latter stages of the project.

The author would particularly like to thank
Professor W.N. Christiansen, Head of the School of Electrical
Engineering of the University of Sydney for his encouragement
and support of all the projects described in this thesis.

Finally, the author would like to thank his super
visor, Dr. H.K. Messerle,*for his guidance and sound advice
on numerous occasions during the running of the projects and
also during the production of this thesis.

* (now Professor of Electrical Engineering at
the University of Sydney)

- vi -

CONTENTS

INTRODUCTION

CHAPTER 1 - THE DIGITAL COMPUTER SNOCOM
1. 0 List of symbols used in this chapter
1.1 Introduction
1.2 General description
1.3 Functional $ logical design
1.4 The auto-input
1.5 Conclusions

CHAPTER 2 - THE EDUCATIONAL DIGITAL COMPUTER NIMBUS
2.0 List of symbols used in this chapter
2.1 Introduction
2.2 Brief description of NIMBUS
2.3 The design of a simple computer
2.4 Conclusions

CHAPTER 3 - ARCTURUS - SYSTEM DESIGN
3.0 List of symbols
3.1 Approach to system design
3.2 General description of Arcturus
3.3 Implementation of system design

CHAPTER 4 - ARCTURUS - FUNCTIONAL $ LOGICAL DESIGN
4.0 List of symbols
4.1 Approach to functional $ logical Design
4.2 Timing unit
4.3 Machine phases
4.4 Control
4.5 Carry lookahead adder
4.6 Machine registers
4.7 Multiplication procedure
4.8 Division procedure
4.9 Programmed operators
4.10 Peripheral units
4.11 Comments on functional $ logical design

CHAPTER 5 - ARCTURUS - CIRCUIT DESIGN
5.0 Design approach
5.1 Circuit types $ characteristics

- 1 -

-3-

- 21-

-31-

-47-

-117-

- V I 1 -

CH A P T E R 6 - A R C T U R U S - C O N S T R U C T I O N A L T E C H NIQUES
$ C O M M I S S I O N I N G -134-

6.0 P a c k a g i n g
6.1 B a s e - w i r i n g
6.2 E n g i n e e r i n g c o n s t r u c t i o n
6.3 C o m m i s s i o n i n g p r o c e d u r e

C H APTER 7 - A R C T U R U S - P R O G R A M M I N G -151-
7.0 The ass e m b l y p r o g r a m API
7.1 P r o g r a m m e d - o p e r a t o r s
7.2 S u b r o u t i n e h i e r a r c h y
7.3 So f t w a r e d e v e l opment

CHAPTER 8 - R E V I E W $ A P P R A I S A L -166-

o•oo Preface to final chapter

00 • h-» R e v i e w of computer d e v e lopments
8.2 A p p r a i s a l of SNOCOM, NIMBUS

5 A R C T U R U S projects

REFERENCES -181-

APPENDIX -191-

- 1 -

INTRODUCTIQN

The development of the digital differential analyser
ADA (Ref. 1) was carried out as a joint project of the School
of Electrical Engineering of the University of Sydney and the
Mathematical Instruments Section of the Commonwealth Scien
tific and Industrial Research Organization. As this project
was supported by the Snowy Mountains Hydro Electric Authority,
one of its aims was to produce a second computer for the
Authority.

In 1957 investigations carried out by the author
(Ref. 2) led to the conclusion that the Authority’s computing
requirements could be better met by a general-purpose digital
computer than by a digital differential analyser.

After ADA was completed early in 1958, the develop
ment of the computer, which was to be known as SNOCOM, was
commenced. The availability of Frankel’s design of the LGP-
30 (Ref. 3) and the realization that essentially the same
circuit and constructional techniques developed for ADA could
be used with the second machine were the main reasons for
basing SNOCOM (Ref. 4) on the logical structure of the LGP-30.

i SNOCOM was commissioned in August, 1960, and has
given many years of good service.

In 1961 the educational digital computer NIMBUS
(Refs. 5 and 6) was constructed and since 1962 it has been
used very effectively in final-year courses on computer design.
NIMBUS consists essentially of a large number of logic and
storage elements which may be readily patched together. The
number, type and. arrangement of these elements have been
selected so that it is possible to synthesize a very simple
computer.

NIMBUS has also been used to test logic circuit
configurations for carrying out high-speed arithmetic and to
bread-board equipment for testing computer peripherals.

During the years 1961 to 1963 the peripheral units
for ARCTURUS(Rinc*l2uciing a paper tape reader of novel design
(Ref. 7) were constructed; the circuitry associated with the
ferrite-core memory was constructed and a new range of 4 MIIz
logical elements was developed.

The specification and design of the central
processing unit for ARCTURUS were completed by mid-1964.
Construction of this unit was carried out in the years 1964
to 1965. Commissioning of the computer commenced in late
1965, and by early 1966 the computer was in good operating
order.

- 2 -

The development of ARCTURUS was carried out with
very limited resources. This has meant that much time was
spent in developing peripherals rather than purchasing
commercial units, in salvaging transistors and diodes from
old equipment and in manufacturing in the laboratory almost
every logical package of the computer. Items of major
expenditure include a Teletype punch, a 32x32x20 ferrite-core
stack, about 2000 transistors and about 5000 diodes. The
justification for the purchase of these units still had to
include the usefulness of the final product for teaching
purposes. Hence the specifications of ARCTURUS had to be
made so that the computer could be constructed in a reasonable
time with the available resources and so that the final
product would be useful both for teaching and research.

In spite of the difficult conditions under which
the ARCTURUS project was carried out, a reasonably fast com
puter with some novel and original features has been constructed
and is now in good operating order.

Because ARCTURUS is significantly different from
all computers previously constructed in Australia, a new
approach to design had to be established. This has resulted
in a powerful central processing unit which was relatively
simple to implement.

No relaxation of the specifications of ARCTURUS was
found to be necessary during commissioning. In fact, not only
were the design and constructional techniques found to be
quite adequate, but also they suggested methods which could
be used in faster and more powerful computers.

CHAPTER 1
THE DIGITAL COMPUTER SNOCOM

1.0 LIST OF SYMBOLS USED IN THIS CHAPTER
1.0. 0, Symbols used in the text
1.0. 1 Symbols appearing in the diagrams only

1.1 INTRODUCTION

1.2 GENERAL DESCRIPTION

1.3 FUNCTIONAL AND LOGICAL DESIGN

1.4 THE AUTO INPUT
1.4.0 A bootstrap routine
1.4.1 The Auto Input
1.4.2 Logical design of the Auto Input

1.5 CONCLUSIONS
1.5.0 Usefulness of the Auto Input feature
1.5.1 Design approach to minimize hardware
1.5.2 Flexibility of a serial arithmetic and

control unit.

- 3 -

- 4-

1.0 LIST OF SYMBOLS USED IN THIS CHAPTER

1.0.0 Symbols used in the text

So - S!
Do - D!

Rrp
V
Vb
c
0 -
/ #
W1 -
B
B*
B '

w16

w

(Fig. 1.3)
(Fig. 1.3)
(Fig. 1.3)
(Fig. 1.3)

9 + -

A

Segment timing waveforms
Digit timing waveforms
Interleaved clock pulses
Once-per-revolution marker
Store playback flip-flop
Auto input store playback signal
Sequence counter
N J F L Sexadecimal characters
Control characters used in input instruction
Binary counter outputs of the sector number generator
Auto input flip-flop
Signal which sets B to ONE
Signal which resets B to ZERO
Phase 1
Waste digit (Fig. 1.3)
Accumulator playback flip-flop

1.0.1 Symbols appearing in the diagrams only
F G H
K

L

pi
A"

A
J.

A
C
R"
R
V ”
f
ts
w
we

Phase flip-flops
Sector search, lock-out and augmentation flip-flop
Carry-borrow flip-flop
Order flip-flops
Track selection flip-flops
Accumular input (i.e. signal to accumulator record
amplifier)
Accumulator playback flip-flop
Double length accumulator playback flip-flop
Counter playback flip-flop
Instruction register input
Instruction register playback flip-flop
Digits to be recorded (in the main store)
Duration of.recording (in the main store)
Sign digit
Full address waveform
Early full address waveform
Sector number generator output.v

- 5 -

1.1 INTRODUCTION
In the early 1950’s engineers of the Snowy Mountains

Hydro-Electric Authority had used the C.S.I.R.O. Mechanical
Differential Analyser (Ref. 8) with some success for the
solution of flood-routing problems (Ref. 9).

In the mid-1950’s the development of the digital
differential analyser ADA (Ref. 1) was commenced as a joint
project of the School of Electrical Engineering of the
University of Sydney and the Mathematical Instruments Section
of the Commonwealth Scientific and Industrial Research
Organization.

Because the digital differential analyser had been
accredited with many of the outstanding advantages of both
analogue and digital computers, and because of its previous
success with a mechanical differential analyser, the Snowy
Mountains Hydro-Electric Authority supported the ADA project
with the understanding that a second computer would be built
for its own use.

The Authority’s computer was to be specifically
designed for the solution of a system-operational problem
which had previously taken many man-years of manual calcul
ations for its solution. It was shown by the author that a
digital differential analyser solution was possible, but
about four hundred integrators would have been required and
the computation time might have been prohibitively long (Ref.2).
The main reason for this was that the problem had not been
formulated as a set of ordinary non-linear differential
equations, and although the differential analyser approach
(e.g. for the generation of analytic functions and for the
evaluation of integrals) could be applied to advantage in some
sections of the problem, there were some sequences of arith
metic and logical operations on whole numbers which could not
be avoided. As the digital differential analyser is an in
cremental computer, operations on whole numbers are extremely
inefficient.

In 1957 a system-operational problem typical of those
which the Authority wanted solved was programmed for its
solution on SILLIAC, the general-purpose digital computer
within the Basser Computing Department of the University of
Sydney. The SILLIAC studies carried out by the author led to
the conclusion that the Authority’s computing requirements
could be better met by a general-purpose digital computer
than by a digital differential analyser.

- 6-

After ADA was completed early in 1958, the develop
ment of the computer which was to be known as SNOCOiM was
commenced. The availability of Frankel’s design of the LGP-30
(Ref. 3) and the realization that essentially the same circuit
and constructional techniques developed for ADA could be used
with the second machine were the main reasons for basing
SNOCOM (Ref. 4) on the logical structure of the LGP-30.

SNOCOM was constructed within the School of Electrical
Engineering of the University of Sydney, and was then installed
in August, 1960 within the offices of the Snowy Mountains
Hydro-Electric Authority in Cooma - about 260 miles from
Sydney. Since 1960 SNOCOM has given many-years of good service.

A paper on SNOCOM (Ref. 4) was presented at the
Annual Conference of the Institution of Engineers, Australia
in March, 1962 in Cooma. The author received the 1963 Award
of the J.R. Bainton Prize for this paper. A reformatted
version of this paper is presented in the appendix. A general
description of- SNOCOM will now be presented. This is followed
by an outline of the functional and logical design and by
details of the "Auto Input". Conclusions drawn from the
SNOCOM project terminate the chapter.

- 7 -

1.2 GENERAL DESCRIPTION
SNOCOM is a fixed-point, binary, serial, stored-

program, single-address, general-purpose digital computer
using transistor circuits and magnetic drum storage. The
storage capacity of the computer is 2048 words, each of 32
binary digits. These are arranged on 64 tracks of the drum
with 32 words per track. The Model 512-A Bryant magnetic
drum (5M dia., 12” long) runs at 6,000 R.P.M., giving a clock
rate of 102.4 kHz, a word time of 312 microseconds and a
mean access time of 5 milliseconds. The accumulator,
instruction register and instruction counter are in the form
of recirculating registers, with the spacing between record
and playback heads corresponding to one word period. The
addition of a second playback head on the accumulator recircul
ating register enables double length numbers to be stored for
use in the multiplication and division processes. The computer
logic is synchronized by clock pulses derived from a clock
track and a once-per-revolution marker permanently recorded
on the drum.

An interlaced sector number system enables simple
instructions to be obeyed within nine word periods. Another
sixty-four word periods are required for the multiplication
and division instructions. Hence the addition and multiplic
ation times are 2.8 milliseconds and 22.8 milliseconds,
respectively. The bench-mark time (i.e. the time to carry
out ten additions and one multiplication) is about 51 milli
seconds .

The peripheral units consist of (1) a Ferranti TR 5
paper tape reader which operates at 300 characters per second,
(2) a Teletype BRPE paper tape punch which operates at 50
characters per second and (3) a modified IBM electric type
writer which operates at 10 characters per second. Both out
put units are computer controlled and all units may operate
simultaneously.

A SNOCOM number word consists of a sign bit, thirty
magnitude bits and a spacer bit as shown in Figure 1.0. The
binary point is assumed to be between bit 0 and bit 1 ,
and the normal two’s complement system for the representation
of negative numbers is used.

A SNOCOM instruction word consists of four order
bits, six track bits and five sector bits as shown also in
Fig. 1.0. The track and sector bits together constitute the
full address of the instruction. Apart from the sign bit
which is used in conjunction with the conditional transfer of

- 8 -

control order for external program control, the remaining bits
have no significance. Corresponding to the different combin
ations of the four order bits, there are sixteen basic in
structions which SNOCOM is capable of executing.

The order code for SNOCOM’s sixteen basic instructions
is shown in Table 1.0. These instructions are defined in
detail in the Appendix.

TABLE 1.0
THE SNOCOM ORDER CODE"

CODE
ORDER

Sexadecimal Binary

1 0001 Bring
F 1110 Add
L 1111 Subtract
7 0111 Multiply fractions
6 0110 Multiply integers
5 0101 Divide
9 1001 Extract
+ 1010 Unconditional transfer
- 1011 Conditional transfer
N 1100 Store
J 1101 Store and clear
2 0010 Store address
3 0011 Return address
4 0100 Input
8 1000 Output
0 0000 Stop

See Appendix J for details

- 9 -

NUMBER WORD

INSTRUCTION WORD

10 12 13 14 15 16 17 18 19 20 21 22 23 2A 15 26 27 28 23 50 31

—I I—
z„ ORDER TRACK SECTOR SPACER

ADDRESS

Figure 1.0 FORMAT OF SNOCOM NUMBER $ INSTRUCTION WORDS

- 10 -

1.3 FUNCTIONAL AND LOGICAL DESIGN
The following brief description refers to the simpli

fied diagram of Fig. 1.1. More details appear in the SNOCOM
paper.

The execution of each instruction stored on the
magnetic drum takes place in four to eight phases with each
phase consisting of one or more word periods. During comput
ation information is held on the drum ,in the recirculating
registers and in flip-flops. The definition of the operations,
which are to be executed in each phase, such as the transfer of
information from drum to recirculating register or from re
circulating register to flip-flop, constitutes the functional
design of the computer.

Logical design consists of deriving Boolean equations
from which logic circuits may be readily obtained to implement
the functional design.

The logical design of the LGP-30 as described by
Frankel (Ref. 3) consists primarily of (1) the specification
of the conditions under which each of the main fifteen flip-
flops is set and reset, (2) the specification of the digits
to be recorded in the recirculating registers in each digit
period and (3) the specification of the exact location on the
magnetic drum in which specified digits are to be recorded.

SNOCOM is a synchronous computer as all operations
carried out in all possible machine phases are synchronized
by timing waveforms generated from clock tracks on the drum.
These timing waveforms are shown in Fig. 1.2.

To maintain complete flexibility so that any digit
within a word may be specified, a word period has been
divided into six segments with each segment containing either
four, five or six digits. The segment waveforms SQ -
and the digit waveforms D - Dr of Fig.l.2are generated by
two ring counters and interconnecting logic. Any digit within
a word is specified in terms of these waveforms. For example,
the waste digit and the sign digit are the first and last
digits in the word and may be specified as SqD2 and SoD-̂ ,
respectively.

The interleaved clocks T and T0 are used in theo 2
two-phase logic arrangement. The once-per-revolution marker
synchronizes the segment and digit rings.

In SNOCOM consecutive addresses do not correspond
to consecutive locations on a track of the drum, but to locations
which are spaced nine word periods apart. In this way an in
struction, which refers to an operand which is appropriately

- 11 -

located between itself and the next instruction, is obeyed in
nine word periods rather than the minimum time of thirty-two
word periods (corresponding to one drum revolution) which
would otherwise be required. To make the above interlaced
system possible, a sector number must be formed by subtracting
seven from the number of the preceding sector (modulo 32).
The resulting sector number sequence is shown in the Appendix
(in the SNOCOM paper).

Two three-stage binary counters are used in the
generation of the sector number sequence. The first counter
corresponds to the three least significant digits of the
sector number and is pulsed to count forwards every word
period. The second counter corresponds to the two most sig
nificant digits of the sector number plus an additional (more
significant) digit which effectively counts odd and even drum
revolutions. This second counter is pulsed to count backwards
on every word period except every eighth when the first counter
changes from the state 111 to 000. With the above arrangement
one is added to the weight one position of the sector number
and one is subtracted from the weight eight position; this
results in a sector number being formed which is seven less
than the preceding one. The second counter is inhibited from
changing when the first has changed from 111 to 000 as this
already represents a subtraction of seven.

The binary counters are pulsed early in the word
period and their states are gated by the digit waveform
(D - D5) so that their representation is converted into the
serial form required by the machine logic.

In the LGP-30 the sector number pattern is recorded
permanently on one track of the drum. This is not the case
for SNOCOM, and the parallel representation of the sector
which is next to be presented by the store playback amplifier
is utilized in the auto input logic.

- 1 2 -

Fi
gu

re

i.
i

-
SI

MP
LI

FI
ED

BL

OC
K

DIA
GR

AM

OF

SN
OC

OM

- 1 3 -

INTERLHAVED CLOCK PULSES
I I I I I 1 I T,

1 I I I I i I I I I 1 I I I 1 I I I I I 1 1 I I I I I I I I I I I I I T.

fl REVOLUTION MARKER___ _

_TL n__n. n n_R n
_l TLnn

nn
_r

n_L_n n rL_nn ■ n n n_!__n i_TLLjtn n n n_n.n n n nn n
WASTE

SECTOR NUMBER

TRACK NUMBER

WASTE

ORDER

SECOND SECTOR NUMBER

In
n ONE WORD PERIOD

WASTE DIGIT SQD2 n_
I SIGN DIGIT n_

1 FULL ADDRESS (LATE)

1 I FULL ADDRESS ÇEARLY)

"U ri_n_r
14 46

i_ j— L r u — L_T i_r “ 1
L T L

D.

D,

J0
Sx(u)

S2(z)

SJ

S4 (x)
ss (y)

W

SECTOR NUMBER GENERATOR (TYPICAL SECTION OF WAVEFORM)

Figure 1 .2 SNOCOM TIMING WAVEFORMS

- 14-

1.4 THU AUTO INPUT

1.4.0 A bootstrap routine
With SNOCOM's order code the minimum number of in

structions required for a bootstrap or short input routine is
three. In sexadecimal these instructions are as follows

Location Instruction
000 00400000
001 00N00030
002 00400000

Input
Store in location 3
Input.

The first two words on the input tape must be

/0 0N0 0 0 40 # / 0 0 + 0 0 0 0 0 #

where / and # are the control characters detected by the
input logic to enable a complete word to be read into the
accumulator by the input instruction.

The routine must be started at location 000 by
pressing the "clear C" button on the control console. The
latter word on the tape is stored in location 004 on the
execution of the former (instruction) word which had previously
been stored in location 00 3. by the three orders of the
initial bootstrap routine. On the execution of the latter
(instruction) word in location 004 control is transferred
to location 000 , and the following program on the input
tape is then effectively under the control of the following
routine

Location
0 0 0

001
002
003
004

Instruction
— * 00400000

00N00030
00400000
()

— 0 0 + 0 0 0 0 0

Input
Store in location 3
Input

Transfer to location 0 .

This routine may be used to fill a program into the store
when each word of the program is preceded by a "store” or
"store and clear" instruction whose operand address corres
ponds to the location in which the word is to be stored.

The execution of the bootstrap routine can be
terminated if the first order of an order pair is an uncon
ditional transfer of control order.

1.4.1 The Auto Input
After the auto input button has been pressed, the

normal store playback (V) from sectors 0, 1 and 2 is in
hibited and replaced by a pattern of digits generated from
the timing unit. This pattern of digits is equivalent to the
following three orders

00400030
00N00030
00400030

(from sector 0)
(" " 1)
(" " 2) .

If the first two words on a program tape are

/00N00040# / o o + o o o o o #
and the computer is started after pressing the "clear C" button
the word 00+00000 will be stored in 004 and the program
will then be effectively under the control of the following
bootstrap routine

Location
0 0 0

001
002

003
004

Instruction
r-* 00400030

00N00030
00400030

 ̂ } From store
L 0 0 + 0 0 0 0 0

From
timing unit

The normal store playback from sectors 0, 1 and 2
(track 0) is not inhibited permanently, conditions being
returned to normal immediately a ONE is sensed in the waste
digit position of the accumulator in phase 1.

It is to be noted that, because of a simplification
of logical design, the normal store playback is inhibited
whenever the sector number generator announces a number whose
binary equivalent contains a ZERO in the weight 4 position,
and this applies not only to track 0 but to all tracks.
To eliminate these abnormal conditions as soon as possible,
it is recommended that all program tapes should begin with
the following eight words

/00N00040#
/ 0 0 N 0 0 0 0 0 #

/00N00010#
/00N00020#

/ 0 0 + 0 0 0 0 0 #
/00400000#
/00N00030#
/00400001#

When this is done, the bootstrap routine discussed above will
be actually written into the store, and conditions will be re
turned to normal by the ONE in the waste digit position of the

- 1 6 -

eighth word.
After the program tape has been placed in the tape

reader, the normal procedure for entering a program using
the auto input is as follows :-

1. Press the initial set button.
2. Press the clear C button.
3. Press the auto input button.
4. Press the operate button.

It is to be noted that without the auto input feature many
times this number of operations would have been required
for entering programs into the computer.

1,4.2 Logical design of the Auto Input
The sector number generator announces the sector

number of the next word to be presented to the read-write
heads of the main memory. Hence, when sectors 0, 1 and 2
are being played back, the sector number announces 25, 26 and
27, respectively. If the binary counter outputs of the
sector number generator are w^ , w^ , w^ , wg and w^g ,
the relevant sectors are represented by the following :-

Sector played back Sector number announcement
0 wi CM

lb W4 W8 w^g (sector 25)
1 r~

\

lb W2 W4 W8 w16 (" 26)
2 W - . w„ w., w 0 wn r (" 27)1 2 4 8 16
3 "i W2 W4 W 8 w16 (" 2 8)
4 wi W2 W4 W8 W16 (" 29).

It can readily be seen that w^ alone distinguishes sectors
0, 1 and 2 from sectors 3 and 4.

After 'the auto input button has been pressed, the
3 flip-flop is set to the ONE state, and while this flip-flop
is in this state, the normal V playback from sectors 0, 1
and 2 (and other sectors but not sectors 3 and 4) is inhibited.
The conditions to be satisfied while V’ is inhibited are
therefore represented by w^•B = 1 .

The normal V playback is replaced by a pattern of
digits generated from the timing unit. For example, an input
order 00400000 is represented by a single digit 2^2 , and
the order 00N00030 is represented by the 4 digits :-

S4D3 + si|D2 + S1D1 + SlDo

- 17 -

Using
0, 1 and 2 ; and

w.
w,

and w, to distinguish between sectors
to distinguish sectors 0, 1 and 2 from

sectors 3 and 4, the pattern of digits to be generated from
the timing unit may be represented by

S1(D2w 1w 2w 1)
+ CS^Dg + S4D2 + S1D1 + S1D0) wx„2w4

+ S4D2w 1w 2”4
The digits from sectors 0, 1 and 2 have in

common. Also, as the address portion of an input order has
no significance, the digits S-̂ D̂ and S,Dq may be added
to the input orders without harm. The pattern therefore may
be simplified to

(2^2 + + SiD0> + ^4^3W1W 2W4 *

The auto input logic is introduced into the main
machine logic by replacing the normal V playback by a new
variable which is equal to V under normal conditions,
but equal to the digits generated from the timing unit under
the conditions of Auto Input (i.e. when w^*B = 1) . Hence

vb - V,vV B + ' V B<S4D2 + S1D1+S1Do+SliD3w1w2) .

The B flip-flop is set to ONE when the auto input
button is depressed, and is reset to ZERO when a ONE is de
tected in the waste digit of the accumulator in <J>̂ . It is
also reset to ZERO when the initial set button is depressed
so that the computer may be used without the Auto Input
operation. Hence

B ’ = auto input button
B ’ = <j>_t A + initial set button.JL W

A logic diagram corresponding to the above equations
is shown in Fig. 1.3.

- 1 8 -

AUTO INPUT INITIAL SET

Figure 1.3 - SNOCOM fs AUTO INPUT LOGIC

- 1 9 -

1.5 CONCLUSIONS

1.5.0 Usefulness of the Auto Input feature
Some simple magnetic drum computers (such as the

LGP-30) require an undesirably long sequence of console
operations to enter programs into the main store. One possible
solution to this problem would be to have a bootstrap routine
or an assembly routine permanently recorded on one track of
the drum. As this track cannot be used for any other purpose,
one track of the drum is the price paid for the simpler
loading procedure. The most desirable arrangement would be
one (like SNOCOM’s Auto Input) which requires very little
additional hardware and which does not in any way diminish
the capabilities of the computer.

Since its installation the Auto Input feature of
SNOCOM has been found to be an extremely useful feature and
almost all programs are entered this way.

1.5.1 Design approach to minimize hardware
The approach taken by Frankel (Ref. 3) in the design

of the LGP-30 had as one of its main objectives the minimiz
ation of hardware. One design approach which significantly
contributed to the attainment of this objective was the
allocation, to computing elements (especially flip-flops), of
active functions in as many of the machine phases as possible.
For example, the K flip-flop is used to search for the
correct sector in phases one and three, to increment the
sequence counter in phase two and to lock out the computer
when peripheral units are not ready. Another example is the
use of the flip-flop as a means of stopping the computer
as well as one of four order flip-flops which determine the
type of instruction which is to be obeyed.

Another useful design approach was the appropriate
grouping of instructions so that complete decoding of the
order flip-flops would not be required as the flip-flop out
puts themselves would provide effective control signals,

A close examination of the design of the LGP-30 and
SNOCOM would reveal some of the subtleties which enabled the
designers to produce remarkably economical designs.

For a commercial computer like the LGP-30 the
economies gained by an ingenious design would be extremely
desirable because of the saving of cost. For a custom-built
computer like SNOCOM (of which only one was built) some of
these economies may well prove to be false economies. A case
in point is the multiple use of the Qg flip-flop. When

- 2 0 -

the computer stops (e.g. on single-shot operation), the Q
indicators only reveal that the last instruction obeyed was
one of two possible instructions. The additional complexity
in interpreting the console indicators would provide a strong
case for another flip-flop.

It appears that as computing elements become less
expensive, the designer’s objective should not be a minimal
hardware design but rather an efficient (near minimal) design
which considers simplicity of understanding and use as well.
Other considerations, of course, include simplicity of con
struction, commissioning and maintenance procedures.

1.5.3 Flexibility of a serial arithmetic and control unit
Starting from the general framework of the LGP-30

design, it has been found relatively simple to introduce a
number of desirable features into SNOCOM. These features
include (i) the allowable selection of the number of' characters
entered by an input instruction, (ii) the auto input feature,
(iii) the reduction of the operand search phase (phase three)
to one word period for some instructions and (iv) the buffer
ing of all peripheral units and the modification of the phase
logic to enable simultaneous operation of all peripheral units
and the central processing unit.

As SNOCOM is a serial computer, it would be expected
that relatively small amounts of hardware would be necessary
to introduce new features, as in many cases only a single
signal line is affected. It would, for example, be relatively
simple to extend the order code of the computer by providing
a large number of variants of some of the instructions.

By making use of recent advances in semiconductor
devices, it would be possible to construct a central processing
unit similar to SNOCOM’s which was significantly more powerful
and several orders of magnitude faster. However, as SNOCOM
is already "memory-limited", there would be little point in
doing this without changing the organization of the computer
and the form of the memory. These observations would suggest
that a good design could be obtained by combining a parallel,
ferrite-core store with a serial central processing unit. This
approach has, in fact, been taken by designers of some
commercial computers (Ref. 10).

- 2 1 -

CHAPTER 2
THIJ EDUCATIONAL DIGITAL COMPUTER NIMBUS

2.0 LIST OF SYMBOLS USED IN THIS CHAPTER

2.1 INTRODUCTION

2.2 BRIEF DESCRIPTION OF NIMBUS

2.3 THE DESIGN OF A SIMPLE COMPUTER

2.4 CONCLUSIONS
2.4.0 Usefulness of machines like NIMBUS for teaching
2.4.1 Usefulness of machines like NIM3US for research

2.4.1.0 NOR configurations
2.4.1.1 High-speed circuit configurations.
2.4.1.2 Multi-function computer elements
2.4.1.3 Testing computer peripherals

- 2 2 -

2 . 0

B1 - B
A *4

A *16 I.S.
*1»$o
G • o
Co
CM
c d
Po
P"

- P

V<
w15
o
R"
R - R o

RAd
4

R"
R4 - R

Rod
Ao - A
A"

Ad
So
S"

Sd
KT

- S

K
K
L
b
V
J

LIST OF SYMBOLS USED IN THIS CHAPTER
Clock pulse (Figs. 2.0 and 2.1)
3inary counter drive pulse (Figs. 2.0 and 2.1)

ĝ Binary counter outputs (Figs. 2.0 and 2.1)
3^ waveform differentiated (Figs. 2.0 and 2.1)
B-̂ g waveform differentiated (Figs. 2.0 and 2.1)
Initial set (Fig. 2.0)
Signals which stop the timing unit (Fig. 2.0)

2 Machine phases 0-3 (Fig. 2.1)
2 Function toggle outputs
2 Sequence counter outputs

Sequence counter input
Sequence counter drive input

2 Address register outputs
Address register input
Address register drive input
Fixed store output
Word 15 (= PQP0P1P)3 2 1 o
Instruction register (address) outputs
Instruction register (address) input
Instruction register (address) drive input
Instruction register (order) outputs
Instruction register (order) input
Instruction register (order) drive input
Accumulator outputs
Accumulator input
Accumulator drive input
Store register outputs
Store register input
Store register drive input
Signal which sets the K flip-flop (to 1)
Signal which resets the K flip-flop (to 0)
Counter augmentation flip-flop output
Carry/borrow flip-flop output
Sum/difference digit
Store output
Counter augmentation and carry/borrow flip-flop

- 2 3 -

2.1 INTRODUCTION
As a result of the rapidly increasing use of digital

equipment both for research and industrial applications, there
is great demand for personnel trained in digital systems
engineering. Training in this field can be carried out quite
effectively with the use of "educational digital computers"
(Refs. 5 and 6). These are experimental units which have been
specifically designed with the specification of a complete
computer in mind. The number, type and arrangement of logical
circuits provided in the experimental unit enable the synthesis
not only of various combinational and sequential switching
circuits, but also of a complete stored-program computer.

The first digital-logic training devices were marketed
in 1960, and now a large range is commercially available
(Refs. 11 and 12). The function of these devices is of course
to provide training in the fundamentals of digital circuits.
Educational digital computers must also be able to do this,
but they go one step further. The synthesis of a complete
digital computer would be extremely useful to teach engineers
computer design techniques and to help programmers visualize
the internal organization of a computer.

Some of the desirable features of a digital-logic
training device or an educational digital computer are as
follows:- the equipment should contain standard transistorized
digital circuits (or integrated circuits) for good simulation
of actual design problems; the circuit modules may be either
fixed or removable, but the arrangement must be flexible so
that many circuits may be synthesized; logic panels must be
clearly engraved and extensive monitoring facilities must be
provided to facilitate the understanding and testing of circuit
configurations; the main control unit must enable the monitor
ing of memory states after each state-change (i.e. after each
clock pulse); and finally the device, must be "student-proof"
so that any interconnection may be made without damage to the
equipment.

Most of the above features have been incorporated
into the educational digital computer NIMBUS. This machine
has been used since 1962 by final-year students of electrical
engineering of the University of Sydney. A brief description
of NIMBUS is presented in section 2.2; an outline of the design
of an extremely simple computer is presented in section 2.3;
and finally conclusions concerning the usefulness of machines
like NIMBUS for teaching and research are presented in section
2.4.

- 24-

2.2 BRIEF- DESCRIPTION OF NIMBUS
A photograph of NIMBUS appears on page iv , and a

reproduction of a paper (Ref. 6) containing a description of
this machine appears in the Appendix.

In essence, the machine consists of several sub-
assemblies and a large number of logical and storage elements
which may be readily patched together. The sub-assemblies
provided in NIMBUS enable experiments on serial, synchronous,
digital systems to be carried out.

One of the main sub-assemblies is the control and
timing unit. A logic diagram of this unit is shown in Figure
2.0, and timing waveforms are shown in Fig. 2.1. When the
START button is depressed, the timing unit generates one pulse,
eight pulses, thirty-two pulses or a train of pulses depending
on whether the MODE-SELECTION switch is in the BIT, PHASE,
ORDER or NORMAL positions, respectively. When this switch
is in the MONITOR position, the unit runs continuously and all
waveforms may be monitored. The ability to change the mode of
operation in this way is an extremely useful and almost indis
pensable feature of a training device.

To demonstrate the principles of operation of a
stored-program computer, some storage device must be provided
in the educational machine.

In NIMBUS a sixteen word pinboard-store is provided,
and this is supplemented by a very limited amount of erasable
storage in the form of a one-word flip-flop register. The
outputs of the four-stage address register are decoded into
sixteen lines which drive the WORD-busses of the pinboard-store.
Component plugs containing sub-miniature diodes may be inserted
to bridge the WORD-busses with the eight BIT-busses at
appropriate places. The pinboard, together with component
plugs, forms a diode-matrix which produces (in parallel) the
eight bits of the word specified by the contents of the address
register. The diode-matrix outputs are combined with the timing
waveforms B-̂ , B2 and B̂ in parallel-to-serial conversion
circuits to produce the serial store output VQ . The selection
of either the pinboard-store output or the flip-flop register
output may be readily carried out using the outputs of the
address register as the gating signals.

Other sub-assemblies take the form of self-contained
shift registers. The arrangement of these sub-assemblies were
chosen with the organization of a simple computer in mind;
for example, a four-stage register for the (sequence) counter
is provided and the panel for this sub-assembly is accordingly
engraved with this function in mind. Other registers are

- 2 5 -

provided for the address register, the instruction register
and the accumulator.

The sloping panels of the' machine contain storage
and logical elements. Each of the existing panels contains
two flip-flops, three invert circuits and nineteen NOR circuits.
Other circuits may be used as the panels are self-contained
and readily interchangeable.

The inputs and outputs of all elements in the
machine are brought to sockets on the panels so they may be
interconnected with flexible leads.

- 26 -

Figure 2.0 :- NIMBUS CONTROL $ TIMING UNIT

^ 0 0 --- i— 01--------02--- f ---03--- 1

juuijjjuijjuu^^

J L
1________ 1________ 1________ L
_____________________ L

B.

B.

B

B,

16

’4 '

16

Figure 2.1 NIMBUS TIMING WAVEFORMS

2.3 THE DESIGN OF A SIMPLE DIGITAL COMPUTER
The sub-assemblies and logic circuits briefly des

cribed in the preceding section may be interconnected to form
a simple digital computer. Computers with different order

codes may be constructed, the only restriction being the amount
of hardware which is necessary for their implementation. An

example of a computer which may be constructed is a fixed-point,
binary, serial, single-address digital computer with a storage

capacity of sixteen eight-bit words of which fifteen are fixed
and one is erasable. The computer is capable of carrying out

only eleven basic instructions, although four stages in the

order part of the instruction register make provision for six

teen. The order code is shown in Table 2.0. A complete des

cription of the functional and logical design of this computer
appears in the paper which is reproduced in Appendix K .

The Boolean equations of Table 2.1 represent a

summary of this design. The symbols used in these equations

are listed in section 2.0.

TABLE 2.0 : ORDER CODE OF A SIMPLE COMPUTER

Code Order

0000
0001
0010
0011
0100
0101
0110

0111

INPUT :—Illuminate the Z, monitor light and stop the computer so that eight digits may be sot into the accumulator.
OUTPUT :—Illuminate the Z2 monitor light and stop the computer so that the accumulator may be monitored.
TRANSFER IF NEGATIVE :—Transfer control to the address specified by the instruction if the accumulator is negative.
UNCONDITIONAL TRANSFER :—Transfer control to the address specified by the instruction.
STORE :•—Store the contents of the accumulator into the store register (address 15).
BRING :■—Bring the word specified by the address of the instruction into the accumulator.
ADD :—Add the word specified by the address of the instruction to the contents of tho accumulator retaining the result in the

accumulator. *
SUBTRACT :—Subtract the word specified by the address of the instruction from the contents of the accumulator retaining

tho result in the accumulator.
1010
1100

1110

TRANSFER IF ZERO :—Transfer control to the address specified by the instruction if the accumulator is zero.
ACCUMULATE IN STORE :—Add the contents of the accumulator to the contents of the store register (address 15) retaining

the result in the store register.
EXTRACT :—Obtain the logical product of the word specified by the address of the instruction and the contents of the accumu

lator retaining the result in tho accumulator.

TABLE 2.1 : BOOLEAN EQUATIONS FOR A SIMPLE COMPUTER

c , = B 4T 0 K ' = B 8T 0

C" = BgCo + B16B8 (fc; + KC0) k ' = b 8c ; t 0

+ B ieB8 |R#C0 + R6C0 + R8R6R4R 0 a = A 7A 6 A 5A4 A 3 A jA jA,,

-f- R 8R #R 4(A 7R 0R 7 4* A 7C0R 7 -}- aC0R 7 -f- aR 0R 7)] B-od = B 18B 8B4T 0

Ad = B 16B 8R 6T0
R "„ = V

A = R 5R 4A 0 4* B 5R4V -}■ R 7R 8b -)- R 7R jR 4A„V Bjd = B4T 0

b = AoV 1 7 + A 0 V L > X 0 V L + A 0 V L B a — B 18B 8V 4" B18R 0

L' = B gT 0 -f- (R4 A 0 V 4* B 4A„V) B g T 0 I’d = B 8B4T 0

L' = (R4A 0V 4- R 4Â 0V) BgT0 • B " = B18C0 4" B 18R 0

Sd = W 16BgT0 V = W 15S0 4" W 16v 0 Z 1 — R 8 R # R 4 /dB18

S” = B 18S04-B 16RgR5 R 4S04-B 16R 6R 6 R 4(A0R 7 4-b R 7) Z 2 «a R 8 R 6 R 4 /1B1G

Logic configurations using NOR circuits and flip-flops

with transient storage gates may be readily derived from the

above Boolean equations. From the logic circuit diagrams, wiring
lists may be obtained if they are felt to be necessary. The com

puter may then be patched-up and "commissioned". Simple programs
may be run by inserting the appropriate pins in the pinboard.

- 28 -

2 .4 CONCLUSIONS
2.4.0 Usefulness of machines like NIH3US for teaching:

The development of a new computer is in almost every
case a group effort. As members of the group may have respon
sibilities in restricted (and often mutually exclusive) areas
(such as integrated circuit manufacture and compiler writing),
it is necessary to bring the group’s understanding of all com
puter fundamentals and techniques to a level where every member
of the group can contribute to the overall project and also
where there is a strong likelihood of some cross-fertilization
of ideas. Here machines like NIMBUS have an important role.

In the university environment, training is carried
out at various levels. At the undergraduate level, NIMBUS has
been used very successfully to give students some insight into
computer design techniques. At the honours student level,
NIMBUS has been used as part of a more complex digital control
system (Ref. 13). At the research assistant level, all
personnel associated with the current research project have
made use of NIMBUS as part of their training. Finally, at the
professional engineer level, NIMBUS provided preliminary training
for engineers who were to be responsible for a computer data
logging system in a modern power station.

Since 1962, when it was put into operation, NIMBUS
has proved to be very effective for teaching computer funda
mentals, and there is a strong case for the continuation and
expansion of this educational approach.

2.4.1 Usefulness of machines like NIMBUS for research
2.4.1.0 NOR configurations

Many papers have been written on the design and
application of NOR and NAND circuits (Refs. 14-19). Reference
14 contains an annotated bibliography. Reference 15 is an
example of a paper on the design of diode-transistor NOR cir
cuits; this is the type of circuit used in NIM3US.

The dual polarity logic suggested by Kintner (Ref.16)
has been found to be extremely useful. As its name implies,
this type of logic represents binary signals using both positive
and negative logic. A change in representation occurs when
signals pass through a NOR circuit, and the NOR circuit performs
the OR function when the input signals are represented in
positive logic, while the application of*De Morgan’s theorem
shows that the NOR circuit performs the AND function when the
input signals are represented in negative logic.

- 2 9 -

The implementation of NOR and NAND logic is des
cribed in Maley and Earle’s book (Ref. 17) and this has been
found to be very helpful. Hellerman’s catalogue of three-
variable NOR and NAND circuits (Ref. 18) and Smith’s table of
minimal three-variable NOR and NAND circuits (Ref. 19) have
been noted for future reference. Variations of these circuits
such as the NAND-AND configuration suggested by Burke and Bosse
(Ref. 20) could be quite useful.

Logic circuits composed of NOR and NAND elements are
now being used extensively in digital systems. As many inte
grated circuits carry out the NOR or NAND function, and are
being used as the major logical element in many (if not most)
digital research projects, machines like NIMBUS, which enable
configurations of circuit elements with these logical functions
to be readily constructed, must become useful research tools.
At the time of writing a second educational computer (NIMBUS II)
containing integrated circuits (instead of discrete component
circuits) is in its course of construction.

2.U.1.1 High-speed circuit configurations
NIMBUS was used for testing circuit configurations

for the computer ARCTURUS (Ref. 21). These included circuits
for a rapid multiplication procedure and a parallel, reversible
counter.

2.4.1.2 Multifunction computer elements
The minimization of hardware is one of the designer’s

objectives. One way of doing this is to time-share computer
elements so that ‘they carry out many functions. An example of
what can be done is provided by the design of section 2.3.

The K flip-flop is used for incrementing the sequence
counter in phase 1 and is idle at other times. The L flip-flop
is used to hold the carry/borrow digit in the addition/sub-
traction process in phase 3 and is idle at other times. One
flip-flop (say J) can carry out both functions. The setting
and resetting equations for K and L (Table 2.1) are now
replaced by the setting and resetting equations for J viz.:-

J ’

J'
V o + (W + R4Ao V) W o

B1 6 B8CoTo + (IW + W o •

From the above equations it can be seen that one
flip-flop has been saved at the cost of the additional B^g
and Blg gating. Examples like this provide the designer
with a clear understanding of the advantages and additional
complexities of logical systems in which computer elements
are time-shared. Armed with this knowledge, he will be in a

- 3 0 -

better position to decide when to apply this approach in more
complex research projects.

2 . *4.1,3 Testing computer peripherals
NIMBUS was used to test a high-speed paper tape

reader (Ref. 7). One of the tests carried out consisted of
placing a tape loop of pairs of complementary-characters in
the reader and arranging the logic in NIMBUS to read a pair of
characters from the tape into two flip-flop registers (formed
by cross-coupling NOR circuits) and to test if they were comple
mentary. If they were complementary, the test would be repeated
automatically; if not, the test would stop. The reader was tested
for periods of many hours in this way.

In the context of time-sharing systems much research
effort has been directed at special peripheral devices for
improving man-machine communication (Ref. 22), and it is very
likely that research along these lines will continue for some
time (Ref. 23) .

Towards the broad objective of developing a time-
shared, digital process controller, a remote-console is being
constructed for ARCTURUS (Ref. 2U). The logic for the remote
console is treated as a complex sequential circuit and a state-
flow-diagram approach is being taken for its design. Some of
the sequential circuits (consisting of NOR circuits with some
feedback connections) which are described in Maley and Earle's
book (Ref. 17) have already been synthesized on NIMBUS, and it
is planned to test the remote console logic (which utilizes
integrated circuits) in the same way.

Based on experience with NIMBUS, it seems very likely
that machines like NIMBUS (but perhaps with a little more
computing power) would be extremely useful for testing special
peripheral devices for computers, and they could become
standard (and almost indispensable) items of test equipment
for digital research laboratories.

- 31 -

CHAPTER 3

ARCTURUS - SYSTEM DESIGN

3.0 LIST OF SYMBOLS
3.0,0 Symbols used in the diagrams,

3.1 APPROACH TO SYSTEM DESIGN
3.1.0 Background and objectives
3.1.1 Design considerations
3.1.2 Chronology

3.2 GENERAL DESCRIPTION OF ARCTURUS
3.2.0 Word formats
3.2.1 Register configuration
3.2.2 Arithmetic unit
3.2.3 Memory
3.2.4 Peripherals
3.2.5 Instruction Code
3.2.6 Programmed operators and indirect addressing
3.2.7 Machine phases
3.2.8 Control console
3.2.9 Summary of machine specification

3.3 IMPLEMENTATION OF SYSTEM SYSTEM
3,3,0 An introduction to following chapters

3.0 LIST OF SYMBOLS

3.0,0 Symbols used in the diagrams

J Memory register
K Accumulator
L Multiplier - quotient register
R Instruction register
S Sequence counter
U Operand counter
V Number of times counter

DFS Distribution function selector
AS Address selector
T Timing signals
C Control signals
0 Phase signals
X Absolute address signals

X,Y Selection lines of coincident-current memory system
Z Inhibit lines of coincident-current memory system

- 33 -

3.1 APPROACH TO SYSTEM DESIGN

3.1.0 Background and objectives
The ARCTURUS project was initiated with the background

of many years of computer research and development within
the School of Electrical Engineering of the University of
Sydney. With the Mathematical Instruments Section of the
Commonwealth Scientific and Industrial Research Organisation
playing a major role, this School took part in the development
of the C.S.I.R.O. mechanical differential analyser (Ref. 8),
the digital differential analyser ADA (Ref. 1) and the digita 1
computer SNOCOM (Ref. 4).

Towards the end of 1959 the Mathematical Instruments
Section of C.S.I.R.O. closed down, and further computer work
was carried out by a very small group of University personnel.
SNOCOM was commissioned in August 1960; early in 1961, it was
decided to retire ADA. At this time the objective was to
utilise ADA’s electronic components by building a SNOCOM-type
computer. A later objective was the connection of this computer
to the analogue computer EEDAC.

Very limited resources were available to the computer
group. This was responsible for the objectives of the group
to be changed several times, and affected the sequence in
which the various stages of the project were carried out.

The peripheral units of ARCTURUS were the first units
to receive attention. A relay system for a monitor printer and
a high-speed paper tape reader (Ref. 7) were developed leaving
the Teletype BRPE paper tape punch as the only item of major
expenditure.

Former experience with the peripheral units of SNOCOM
suggested that the peripheral units (being electro-mechanical)
were the least reliable units of a computer and hence some
built-in checking procedure was desirable. This was carried
out by arranging the peripheral units in such a way that they
could operate off-line as a comparator-reperforator-printer. *

The decision to change the form of storage from a magnetic
drum to ferrite-cores was responsible for abandoning the plans based
on a SNOCOM-type computer. At this stage the digital computer
CIRRUS (Ref. 25, 26), which was being constructed at the
University of Adelaide, stimulated interest in "micro-programming"
(Ref. 27-32) and its logical extension "stored-logic" (Ref 33-36).
Hence the objective changed to one of building a stored-logic com
puter.

- 3 4 -

With a full appreciation of the capabilities of
an extremely small computer group with very limited
resources, the group*s objective was finally changed to one
of building a reasonably powerful general-purpose
digital computer with some novel and new features. The
usefulness of the computer for teaching and research
purposes supported this final decision concerning main
objectives.

The approach taken with the design of the
arithmetic and control units of ARCTURUS was first to
examine the specifications of a number of recent, commercial
computers and to select some of the useful features. To
these were added features suggested by the computer group’s
experience with former projects and by information in
j ournals.

With the performance characteristics of the
peripheral units, the memory and the logical elements in
mind, several forms of machine organisation were considered,
and some idea of the best attainable specification for a
computer using these units was obtained. Because of the
very limited resources available to the group, the
construction of such a computer proved to be quite a challenge.
However no relaxation of this specification was found to be
necessary and the ARCTURUS computer was subsequently completed
and commissional successfully.

Some features not incorporated into ARCTURUS
but which received some consideration are listed in section
3.1.1, and a chronology of the various phases of the project
are listed in section 3.1.2. A general description of
ARCTURUS appears in section 3.2.

3.1.1______ Design considerations
Some of the computer systems and computer features

which were considered but which were not incorporated into
ARCTURUS are indicated below. This list is not exhaustive
as many other features received cursory consideration.

Hybrid computer: Papers on hybrid computers (Refs. 37-40)
stimulated an interest in the possibility of connecting the
new digital computer (ARCTURUS) with the. analogue computer
EEDAC, and the hardware requirements of such a hybrid computer
system were considered.

- 3 5 -

Control computer: An interest in adaptive control systems
and the knowledge that digital computers were

being used extensively for process control
resulted in some attention being given to the requirements
of a control computer.

Stored-logic: The conception of the micro-programmed
control unit (Refs. 27-32) has led to the development of a
number of computers using this method of control. A logical
extension of this method of control utilises a modifiable
control memory, and results in a '’program-modifiable” or
"stored-logic” computer (Refs. 33-36). Such a method of
control was considered for ARCTURUS.

Minimal computer: Papers on the minimal logical complexity
for a computer (Ref . 41) resulted in consideration being
given to a minimal parallel computer containing only three
registers.

Parallel-serial system: Papers on high-speed logic circuits
capable of operating at pulse repetition rates of 160 MHz
(Ref . 42) stimulated some interest in a system containing
a parallel (ferrite-core) store and a serial arithmetic unit.

Asynchronous adder: An appreciation of the advantages of
the asynchronous adder over the synchronous (ripple-carry)
adder resulted in a proposed system containing
both asynchronous and synchronous elements. The asynchronous
adder was later replaced by a carry-lookahead adder .

Small fast memory: The use of a small fast memory either
as a nesting store or as a scratch-pad store

was considered.

Fast program loops: The obvious advantages of being able to
hold complete programs in flip-flop registers resulted in an
investigation of a proposed "micro-mode” (Ref. 36). Micro-mode
instructions were addressless and hence several could be stored
in each word-length register. It was hoped that the micro-mode
feature would enable small program loops to be obeyed very
rapidly.

- 36 -

Number formats: Features which would facilitate double
length, floating-point and complex number operations
received some attention.

High-level languages: List-processing operations (Refs. 43-44),
recursive operations and other features which would facilitate
the development of high-level languages were also given some
consideration.

3.1.2_____ Chronology
The following is a chronology of events leading to

the commissioning of ARCTURUS. The dates shown are completion
dates, and are only approximate as there was much overlapping
of the various stages of the project.

Late -1960

Mid-1961

Late-1961

Early-1962
Late -1962

Mid-196 3
Late -1963

Early-1964

Mid-1964

Early-1965

Late-1965

Early-1966

SNOCOM was installed. The next major computer
project was considered.
The relay system for the monitor printer was
developed. The printer logic was designed and
constructed. The printer unit was tested.
The punch logic was designed and constructed.
The punch unit was tested.
NIMBUS was designed, constructed and commissioned.
The high-speed paper tape reader was developed.
The reader logic was designed and constructed.
The reader unit was tested.
A range of 4 MHz logic circuits was developed.
The input-output console for ARCTURUS was
designed, constructed and tested. This console was
arranged so that the input-output units could
operate off-line as a punched paper tape editing
set.
The circuitry for the ferrite-core store was
designed, constructed and tested.
The specification of the arithmetic and control
units of ARCTURUS was completed.
The design'of the arithmetic and control units of
ARCTURUS was completed.
The construction of the arithmetic and control units
of ARCTURUS was completed.
ARCTURUS was commissioned.

3.2 GENERAL DESCRIPTION OF ARCTURUS
ARCTURUS is a fixed-point binary, parallel, single

address, general-purpose digital computer using packaged diode-
transistor circuits, ferrite-core storage and paper-tape
peripheral units.

3.2.0 ______ Word formats
The instruction and number formats, which use a word

length of 20 bits, are shown in Figure. 3.0. An operation code
of 5 bits provides 32 distinct instructions. Some of these
have a large number of variants specified by the bits normally
used as an address, A 13 bit address enables 8192 words to
be directly addressed, although at present only 1024 words are
available. Bit 6 of an instruction word specifies indirect
addressing while bit 5 specifies a programmed-operator (see
Section 3.2.6). A single-length number consists of a sign bit
and 19 magnitude bits; a double-length number (such as the product
formed by the multiplication of two single-length numbers)
consists of a sign bit and 38 magnitude bits as shown in the figure
A twofs complement representation of negative numbers is used.

3.2.1 Register configuration
A block diagram of ARCTURUS is shown in Figure 3.1.

The memory-output register (J), the accumulator (K), the
multiplier-quotient register (L) and the instruction register
(R) are all full-length registers, while the sequence counter (S)
and the operand counter (U) are only address-length.

The ADDRESS SELECTOR (AS) selects the memory address,
from U, S or R. The contents of K or L, or the output of the
ADDRESS SELECTOR may be set into J prior to an arithmetic or
logical operation being carried out on the contents of J and K.
The results of this operation may be set into any register via
the DISTRIBUTOR.

3.2.2 ______Arithmetic unit
The arithmetic unit makes extensive use of a high

speed carry-lookahead-adder which can be used to accumulate
numbers in ̂ us. By appropriate selection of its inputs, the
adder can be used for instruction modification as well as for
arithmetic operations. The DISTRIBUTOR FUNCTION SELECTOR (DFS)
selects arithmetic or logical functions of register outputs
and distributes these signals to all registers. This produces an
arithmetic unit which is quite powerful (in terms of arithmetic
and logical functions which are possible), and it makes good
utilization of the fast adder.

- 38 -

0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19

a n n o p c c OR V Ä D T A KITQ— OP. CODE.

PROGRAMMED
OPERATOR

INDIRECT
ADDRESSING

0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19

L SIGN

I 1 U U C

0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19

t_r MAGNITUDE (SECOND HALF)

WASTE

F ig u r e 3 .0 INSTRUCTION $ NUMBER FORMATS

GA
TE
S

S
DR
IV
ER
S

- 39 -

Fi
gu
re

3.
1
-

BL
OC
K

DI
AG
RA
M

OF
 A

RC
TU
RU
S

- 40 -

Multiplier recoding produces a multiplication
time between 5/** and 7̂ /** depending on the multiplier, and
a non-restoring procedure for division produces a divide
time of 10/xs . The contents of the two arithmetic
registers K and L may shift in either direction at a rate
of 4 MHz.

3.2.3 ______Memory
A ferrite-core memory using coincident-current-

selection is used. The memory cycle may be either a normal
(READ-WRITE) or a split (READ-EXECUTE-WRITE) cycle. The
latter is used by instructions with execution phases which
modify storage locations in one memory cycle. The memory
cycle time is about 3̂ us and the access time 1m$. The
execution of some instructions may be carried out simul
taneously with the regeneration of information in the store.

The replacement of the 1024 word store by a
4096 word (2/*S) store is planned, and a recently acquired
(7 million word) disc file will be added at a later stage.

3.2.4 ______ Peripherals
The peripheral units consist of a 1000 characters-

per-second paper-tape reader, a 100 characters-per-second
paper-tape punch and a 10 characters-per-second type-writer
printer. Each of these units has a one-character buffer,
and hence all units and the central processing unit may
operate simultaneously. All peripheral units are connected
to the computer via the K register.

3.2.5 ______ Instruction code
The ARCTURUS instruction code is shown in Table

3.0. A detailed definition of these instructions appear in
Appendix A.

- 41-

TABLE 3.0
ARCTURUS Instruction Code

BITS 0-4 BITS 7-19
Instruction T ypeO peration

C ode
A ddress (A)
V ariants (V)

00000 v Stop
00001 V Input-O utput
00010 v R egister T ransfer
00011 V Shift
00100 A T ransfer U n con d ition a l
00101 A T ransfer if N egative
00110 V Skip
00111 (S p are)
01000 A A dd Index
01001 A Subtract Index
01010 A Index Skip
01011 A Jum p to Subroutine
01100 A C om pare Skip
01101 A Load K
o m o A Load L
O l i l i A Add
10000 A Subtract
10001 A And
10010 A M ultip ly
10011 A D ivid e
10100 A Store K
10101 A Store L
10110 A Store K A ddress
10111 A A ccu m ulate
11000 (S p are)
11001 (S p are)
11010 A Push
n o n A Pop
11100 A D ecrem en t H ierarchy
11101 A Increm ent H ierarchy
m i o V Return H ierarchyinn A E xecute

The majority of instructions use bits 7-19 to
specify a memory address. When these bits are not used
in this way but rather to specify variants of the
instruction, a large number of variants is possible.
For example, during the execution of a REGISTER TRANSFER
instruction, the variant bits determine the main control
signals of the DISTRIBUTOR-FUNCTION-SELECTOR. As these
signals, produce all the arithmetic and logical operations
required during all phases of machine operation, all these
operations (together with some additional ones, such as
absolute-value operations) may be executed as variants of a
single instruction. Tables of instruction variants are
presented in Appendix E.

Several variants of instructions have been
suggested by programming experience. For example, the
SKIP IF NORMALISED variant of the SKIP instruction was
found to be very useful for floating-point subroutines
and was very simple to implement.

Most of the arithmetic instructions are quite
standard. Some utilize the READ-EXECUTE-WRITE feature
of the memory.

- 42-

For example, during the execution of the ACCUMULATE instruction,
the operand is read from memory into the memory output register;
the contents of the accumulator are added to the operand and
the result is written back into memory. These operations
require only a single memory cycle.

Sub-routine entry is simplified using the
JUMP TO SUB-ROUTINE instruction. This instruction plants the
return link in the location specified by the address in the
instruction and then transfers control to the next location
(following the link).

An instruction may be indexed by preceding the
instruction with an ADD INDEX/SUBTRACT INDEX instruction.
In this way any location in memory may be used as an index
register, but of course an additional instruction is required
for every indexed instruction.

The programming of loops associated with an index is
facilitated using the INDEX SKIP instruction. The programming
of loops associated with a memory-search is facilitated using
the COMPARE-SKIP instruction.

Nesting operations may be carried out using the PUSH
and POP instructions.

A hierarchical structure of sub-routines in which a
sub-routine may return to any higher or lower level sub-routine
may be programmed using the INCREMENT HIERARCHY,DECREMENT
HIERARCHY and RETURN HIERARCHY instructions.

The EXECUTE instruction causes a specified instruction
to be executed without altering the normal sequencing of the
sequence counter.

3.2.6 Programmed operators and indirect addressing
Programmed operators are a feature of computers

marketed by Scientific Data Systems (S.D.S.) (Ref. 10).
This feature enables a single instruction to specify the
address of an operand, to store the sequence counter (return
link) and to transfer control to a sub-routine determined by
the operation code of the instruction.

- 4 3 -

Using a simple assembly program (see Chapter 7), such an
instruction could be coded like a normal machine language
instruction but in fact could cause quite a complex sub
routine to be executed. This feature provides the programmer
with a modifiable extension of the order code.

The programmed operator feature in ARCTURUS
is slightly superior to the feature in S.D.S. computers
as programmed operator instructions in ARCTURUS may be
indirectly addressed. In ARCTURUS the indirect-addressing
bit (bit 6) is sensed before the programmed operator bit
(bit 5). If bit 6 is ONE the computer enters an indirect
addressing phase in which a new operand address is read
from memory and set into the instruction register (the R
register). Bit 6 is again sensed and the above procedure
may be repeated until bit 6 of the operand address is ZERO.
When this condition is satisfied, the final (effective)
operand address is set into the U register, (as well as
into the R register) where it may be found at a later stage
by the programmed operator sub-routine.

When the programmed operator bit (bit 5) is a ONE,
the incremented sequence counter is stored in location 0, and
control is transferred to location 32 plus the binary number
represented by the operation code (bits 0-4). Locations 32
to 63 would contain a directory of starting addresses for
the programmed operator sub-routines. This may be stored in
the form of a list of UNCONDITIONAL TRANSFER OF CONTROL
instructions.

The programmed operator sub-routine finds the operand
address in the U register and normally returns to the main
program via the link in location 0. If programmed operator
sub-routines are nested, each sub-routine must provide
internal storage for its link to the next higher level.

Due provision is made for programmed operators
by the simple assembly program described in chapter 7.

- 4 4 -

5.2.7________ Machine phases
There are eleven possible machine phases viz : -

(i) fetch instruction
(ii) indirect addressing

(iii) programmed operator
(iv) indexing
(V) execute

(Vi) execution - 0
(vii) execution - 1

(viii) execution - 2

(ix) execution - 3
(X) clear store

Cxi) auto input

Phases (i) - (ix) in the above list are each
associated with a single memory cycle. The CLEAR STORE
phase and AUTO INPUT phase may be associated with niany
memory cycles in which locations are cleared (for the former
phase) and in which information read from tape is stored
(for the latter phase).

Every machine cycle must contain a FETCH
INSTRUCTION phase. In this phase the sequence counter
specifies the location from which the instruction is to be
read and to be set into the instruction register. If this
instruction does not require a memory cycle for its
execution (eg. SHIFT, SKIP instruction), the machine
remains in the FETCH INSTRUCTION phase during the execution
of the instruction. If the instruction requires a single
memory cycle for its execution (eg. ADD, STORE instructions),
the machine enters the EXECUTION-O phase. On the completion
of a machine cycle, the machine returns to the FETCH INSTRUCTION
phase for t-he start of another cycle. The phases EXECUTION - 1,
EXECUTION - 2 and EXECUTION - 3 are required by some instructions
(eg. PUSH, RETURN HIERARCHY instructions) which require three
or four memory cycles for their execution.

Before the operation code of an instruction is used
to initiate the execution of the instruction, bit 6 (which
specifies indirect addressing) and bit 5 (which specifies a
programmed operator) are sensed. When these bits are
non-ZERO, the machine may enter the INDIRECT ADDRESSING or
PROGRAMMED OPERATOR phases during which the procedure already
described in section 3.2.6 is carried out.

- 4 5 -

When the operation code specifies either an
ADD INDEX or SUBTRACT INDEX instruction, the machine
enters the INDEXING phase during which the index is read
from memory for use in the modification of the following
instruction.

When the operation code of the instruction
specifies an EXECUTE instruction, the machine enters the
EXECUTE phase to read an instruction into the instruction
register without any further change being made to the
sequence counter.

3.2.8 ___Control console
The control console for ARCTURUS has been divided

into two sections; one section contains all the controls
such as SENSE-SWITCHES, BREAK-POINT SWITCHES, START BUTTON ,
STOP BUTTON etc. which are frequently used by the machine
operator; the other section contains MONITOR LIGHTS
for all registers and important flip-flops as well as all
controls required by the maintenance engineer for carrying
out tests on the machine.

More details and a photograph of the control
console are presented in a later chapter.

3.2.9 ___Summary of machine specification

Parallel
Fixed-point, binary
Word-length : 20 bits
Single-address
Number of basic instructions : 32
Addressless instructions have a large number

of variants
Indirect addressing
Programmed operators
Ferrite-core memory
Present memory capacity : 1024 words
Designed memory capacity : 8192 words
Memory cycle time : 3yas
Memory access time : 1/̂s
Accumulate time : /̂*s
Multiply time : 5 - 7̂ /*5 (depending on multiplier)
Divide time : 10/*s
Shift time : |

- 46 -

Simultaneous instruction execution
memory regeneration

Buffered input and output
Reader speed : 1000 char./sec
Punch speed : 100 char./sec
Printer speed : 10 char./sec
Packaged diode-transistor circuits
Auto input .

and

- 4 7 -

CHAPTER 4
ARCTURUS - FUNCTIONAL AND LOGICAL DESIGN

4.0 LIST OF SYMBOLS
4.0. 0 Symbols for logical elements
4.0. 1 Symbols used in diagrams and text

4.1 APPROACH TO FUNCTIONAL AND.LOGICAL DESIGN

4.2 TIMING UNIT
4.2.0 Memory timing
4.2.1 Main timing unit
4.2.2 Repeated operations loop

4.3 MACHINE PHASES
4.3.0 Flow diagram
4.3.1 Implementation

4.4 CONTROL
4.4.0 Arithmetic unit control
4.4.1 Memory control
4.4.2 Miscellaneous control signals

4.5 CARRY LOOKAHEAD ADDER
4.5.0 Brief description
4.5.1 Selection of adder inputs
4.5.2 Alternative configurations
4.5.3 Final adder configuration

4.6 MACHINE REGISTERS
4.6.0 Distributor function selector
4.6.1 Memory input output register
4.6.2 Main arithmetic registers
4.6.3 Counters
»

4.7 MULTIPLICATION PROCEDURE
4.7.0 General principles
4.7.1 Implementation
4.7.2 Multiplication time

4.8 DIVISION PROCEDURE
4.8.0 General principles
4.8.1 Implementation
4.8.2 Division time

- 48 -

4.9 PROGRAMMED OPERATORS
4.9.0 Implementation
4.9.1 Extensions

4.10 PERIPHERAL UNITS
4.10.0 Block diagrams
4.10.1 Off-line tape editing
4.10.2 Input-output logic
4.10.3 The ARCTURUS Auto Input

4.11 COMMENTS ON FUNCTIONAL AND LOGICAL DESIGN

- 49 -

4.0 LIST OF SYMBOLS

4.0,0 Symbo-ls for logical elements

AND gate

OR gate

INVERT circuit

'NOR gate

NAND gate

F’ F

F F

0C

FLIP-FLOP

f F* sets flip-flop to ONE
F* resets flip-flop to ZERO
F ONE output of flip-flop
F ZERO output of flip-flop

DIFFERENTIATE circuit

RD trigger input
(ZERO -►ONE)

(POSITIVE-TRIGGER) < t QNE Qutput
MONOSTABLE-MULTI ZERO output

NEGATIVE-TRIGGER
MONOSTABLE-MULTI

STORAGE GATE

T* trigger input
(ONE-^ ZERO)

T 0 ONE output

(g* gate input

V clock
g gate output

(to flip-flop)

- 5 0 -

4.0.1

Symbols

T ’s

RD
EP

t pwd

t hx
Taem
TASSS
To
T], * T2 ' T

3’s
^REW

Symbols used in diagrams and text

used in Fig. 4.0 follow : •

All subscripted T ' s are timing waveforms
clock pulses
(Memory) X-Y Read timing waveform
Execute period timing wareform
Delay timing waveform
(Memory) X-Y Write timing waveform
Post-write-disturb timing waveform
Execute clock
End-of-memory-cycle
Start-strobe-spacing timing waveform
(Memory) Strobe
Clocks
All subscripted 3's are control signals
Read-execute-write contrcl signal

and/or

Additional symbols used in Fig. 4.2 follows : -

^RO

ÎA.
Ri (i

R0'R4
/*i (i
T1 CRT
TaDE
F *s

FER0
FEM
S 1 s

SMCI
TST
fasp

Repeated operations contiol signal
Transfer control signal
Instruction assembled cortrol signal

0 -- 19) Flip-flop outputs of the instruction
register (the R register)

Operation code
0 -- 31) Decoded operation code signals
Change phase after register transfer pulse
Delayed end of memory pulse
All subscripted F ’s are flip-flops
End of repeated operatiors flip-flop
End of memory flip-flop
All subscripted S 's are switches
Memory cycle inhibit switchy
Start pulse
Abnormal stop flip-flop

- 51-

FrSPS Stop start flip-flop

SBS Break start switch

tpg Pulse generator clock pulse

SPGS Pulse generator start switch

SBPC Break phase clock switch
0 ' s Subscripted 0 ’ s are phase flip-flops

0 Phase

T0C Phase clock

TS0
^SA

Start phase pulse
Store using address selector control signal

^SD Store using distributor control signal
Fetch control signal

AvS Address selector settling timing waveform

4\S2 Second address selector settling timing waveform

tero End of repeated operations pulse

t ads Address selector or distributor settling timing
waveform

tds Distributor settling timing waveform

Additional symbols used in Fig. 4.3 follow : -

V. =
l

= 0--4) Flip-flop outputs of the number-of-times
counter (the V register)

oII
> Signal which senses condition V = 0

o

> Signal which senses condition V £ 0

T0P Operate pulse of repeated operations loop

T12 5 Pulse which follows 125 ns after Tqp
G Control flip-flop whose main function is to

T1 250

determine whether a or pulse follows TQp
Pulse which follows 250 ns after T^p

T1D5 Delay pulse for
T*500 Pulse which follows 500 ns after T^p

Additional symbols used in Fig. 4.4 follow :-

B 's All subscripted B ’s are push-buttons

BIS Initial set push-button

bai Auto-input push-button

- 5 2 -

0 / a i

0C5CS
X)MNMC

A ii

Auto-input phase
Clear store phase
No memory cycle (required for execution of
instruction) control signal
Hierarchy etc. control signal (i.e. instruction
requires more than one memory cycle fcr its
execution)
End of bootstrap (auto-input) flip-flcp

U^i (i = 10 -- 19) Flip-flop outputs of the operand register
(the U register)

F 7 EEB

TTuu Signal which senses condit

0f5fi Fetch instruction phase

^ E O Execution-0 phase

0e’ei Execution-1 phase

0E’E2 Execution-2 phase

0e’e3 Execution-3 phase •

0PPO Programmed operator phase

0I ID Indirect addressing phase

0I IX Indexing phase

0EEX Execute phase

A 8-9 Either or ̂ signal

Addditional symbols used in Fig. 4.6

A 28-31 /*2 s to A l Cinclusive) sign

/*12-15 and /16-23^
?2 26-7 Either /*26 or /<2? signal
A. . (i =ii .10 -- 19) Address selector
S. . (i =ii 10 -- 19) Flip-flop outputs

(the S régis■ ter)

A s s Control signal which selects S for memory address

A u u Control signal which selects U for memory address

a r r Control signal which selects R for memory address

A s/SA Control signal which restricts the selection of S
for memory address to the perio d A s

a u a i a Control signal which restricts the selection of IJ
for memory address to the period AAS

- 53-

AUAI

a rai

h

Control signal which restricts the selection of

U for memory address to the period A,^

Control signal which restricts the selection

of R for memory address to the period A/^

10 -- 19) Control signals for specifying an

absolute address (only is used)

Additional symbols used in Table 4,0 follow : -

a ,s ,r ,k

'20

T2

EX

Control signals for selection of adder inputs

(see Section 4.5.1)

Control signal which selects adder output

Carry digit into least significant stage of

adder

Flip-flop for changing control signals at

time

Add/subtract flip-flop for multiplication and

division

Flip-flop for changing control signals at

time

(i = 0 -- 19) Flip-flop outputs of the memory input-

output register (the J register)

Additional symbols used in Fig. 4.7 follow :

(i = 0 -- 19) Flip-flop outputs of the accumulator

(the K register)

TT K Signal which detects condition TT" K. = ONE
o 1

(i.e. zero accumulator)

O/F Overflow signal (to be specified)

SSI, SS2, SS3 Sense switches

ascs Skip condition satisfied signal

Additional symbols used in Fig. 4.8 follow : -

Af, (i = 0 -- 19) Adder inputs

P^ (i = 0 -- 19) Propagate function

(i = 0 -- 19) Generate function

P^* (n = 1,2,3) First-level generate function

C^ (i = 0 -- 19)Carry digit

- 54-

(i = 0 -- 19) Sum digit

Additional symbols used in Fig. 4.9 follow : -

T Terminate function
Control signal equal to £ + ?
Control signal equal to ai + k?

Additional symbols used in Fig. 4.10 follow : -

T^ (i = 0 -- 19) Terminate function
(i = 0 -- 19) Output of distributor-function-selector

Additional symbols used in Fig. 4.11 follow : -

Jm Memory strobe pulse
Jji Distributor to J clock for stages 0 - 4
T »1 »1 I f r

J (12 . *
J , _ " " ” 6 - 19

d3

Jas Address selector to J clock
Jr Reset J clock

Additional symbols used in Fig, 4.12 follow : -

r^n (n = 1 -- 5) Buffer flip-flops of reader 1
Fifth bit input clock

K. .l Input clock

D -i Digit shifted into KQ during right shift

Kr Right shift K clock

Kd Distributor to K clock
Left shift K clock

°20 Digit shifted into during left shift

Additional symbols used in Fig. 4.13 follow : -

FOP Flip-flop set by TQp

V4M Special stage used for multiplication

L -1 Digit shifted into Lq during right shift

L2 0 Digit shifted into L^g during left shift

Lr Right shift L clock

L, Left shift L clock

- 5 5 -

Additional symbols used in Fig. 4.14 follow : -

The following three symbols are applicable only to the
description of the binary counter.
Gn Binary counter gate signal
Bn Binary counter output
F Forward-backward control signal

Additional symbols used in Fig. 4.15 follow : -

tsro Start repeated operation pulse

fsro Flip-flop set by T<,̂ q

Additional symbols used in Fig. 4.16 follow : -

T s Clock triggered by T^
V State of V register

Additional symbols used in Table 4.1 follow :

DR Divisor
DD Dividend
FR First remainder

Additional symbols used in Fig. 4,17 follow : -

These symbols are applicable only to this figure.
* Inhibit brake signal
SCR Silicon Controlled Rectifier

Additional symbols used in Fig. 4.21 follow : -

A A delay
W Bit counter

- 5 6 -

4,1_____ APPROACH TO FUNCTIONAL ANTD LOGICAL DESIGN
Functional design consists of the specification in

words, timing diagrams, tables or any other convenient form,
of all the functions which are to be performed by the
computer’s hardware in every distinct time period of the
computer’s operation. Logical design consists of imple
menting the functional design using configurations of logical
elements.

The approach which must be taken to the functional
and logical design of a complex digital system like a
computer is firstly to break up the system into a number
of distinct sections with well-defined links between
sections. The separate requirements and design of each
section are co-ordinated and these evolve into a general frame
work for the whole system. Redesign of each section must
then be carried out to fit in with the framework as much as
possible.

Examples of sections of the computer for which a
first design can be carried out independently of the
remainder of the computer are the memory unit and the input-
output unit. With the former, the main links with other
sections would be in the form of the memory address signals,
the START add END pulses of the memory cycle and the memory
input-output register. With the latter, the links would be
the information busses and the START and END pulses of the
input-output cycle.

Examples of sections of the framework which carry
out many functions include the REPEATED OPERATIONS LOOP
and the CARRY-LOOKAHEAD-ADDER. The former is used to
count the number of SHIFT operations, to count the number
of characters read from tape and to terminate the multi
plication and division processes. The latter is used not
only for the arithmetic processes but for indexing
instructions and for incrementing the contents of a memory
location. The first design for the last mentioned operation
required additional logic to enable the memory output register
to operate as a parallel binary counter. After the decision
to build a fast CARRY-LOOKAHEAD-ADDER was made, a more
economical design was found.

- 5 7 -

Thc TIMING and CONTROL sections form a major part of
the main framework of the computer. The design aim taken
with the TIMING unit was to produce as fast a computer
as possible. This meant that operations could not be
tied rigidly to a clock common to all instructions as this
inevitably would result in some wasted time periods.
Instead, a minimum time was allowed for each elementary
operation, and the computer’s operation would consist of
time periods during which only useful operations were
carried out. Ths timing unit was realized using a system
of gated monostable multis. The system produced is still
synchronous as a specific amount of time is allowed for each
elementary operation but the system is similar to an
asynchronous system as an END OF OPERATION PULSE is produced
to trigger the next useful operation. The design aim
taken with the CONTROL unit was to produce a computer with
as much flexibility as possible. As the computer would be
useful for teaching and research purposes, future modifications
to the order code and other design changes were likely.
To facilitate this, complete, decoding of the OPERATION CODE
and the EXECUTION PHASES was carried out and the control
signals are formed by diode ENCODE MATRICES. Changes to
these matrices can be readily carried out.

Design examples are presented in the following sections.

- 58-

4,2 TIMING UNIT

4.2.0 Memory timing
A logic diagram of the memory timing unit is

shown in Fig. 4.0. The unit consists essentially of
a chain of gated monostable multis. Two types of
monostablc multis are used. The first type triggers off
the front edge of signals (i.e., when the input changes
from ZERO to ONE). With this type, both the normal
and inverted outputs are available, and a timing
chain is obtained by arranging each monostable multi
to be triggered by the inverted output of the preceding
stage. With this arrangement, the READ, DELAY, WRITE
and POST-WRITE-DISTURB waveforms (shown in Fig. 4.1)
which are necessary for memory timing may be obtained.

Alternative chains of timing waveforms may be
obtained by gating the trigger signals of monostable
multis by control signals. An example of this is shown
in Fig. 4.0. When the READ-EXECUTE-WRITE signal
is a ONE, specifying a split memory cycle, an additional
period, the EXECUTE PERIOD is inserted in the timing
chain as shown in Fig. 4.1.

The second type of monostable multi triggers
off the back edge of signals (i.e. when the input changes
from ONE to ZERO) and is very convenient for constructing
timing chains. An example of the application of this type
of monostable multi is the timing chain of
Fig. 4.0.

4.2.1 Main timing unit
From an examination of the timing requirements of

each machine phase, it was decided that the main timing
unit should be built on the framework of the memory
timing unit. In all cases except one (the auto-input)
this has resulted in a very satisfactory arrangement.
For the auto-input (to be described later), the arrange
ment is still quite acceptable, although it is not ideal.

A logic diagram of the main timing unit is shown
in Fig. 4.2. In this unit, the READ pulse (TpD) and the
POST-WRITE-DISTURB pulse (Tp^p) are the first and last
pulses produced by the memory timing unit. At the end
of Tp^p, an END-OF-MEMORY pulse (T^) is produced.
In many cases, this pulse initiates the next phase by
firstly producing a PHASE-CLOCK pulse (T^) and a little
later a START-PHASE pulse (T^) .

- 5 9 -

The delay a^ ows the memory
settle before the memory cycle is

address circuits
initiated.

to

At the end of the memory cycle, clock pulses
Tads ^ds anc* ^crt ma^ Pr°duced for the register
TRANSFER instruction.

Before a memory cycle, an additional delay
may be inserted if the ADDRESS-SELECTOR is used to
transfer information to the MEMORY-INPUT-OUTPUT register
(the J register) before it is changed to the memory address
where the information is to be stored.

If the REPEATED OPERATIONS LOOP (described in
the next section) is initiated (e.g. for a SHIFT
instruction) the timing unit must wait for an END-OF-
REPEATED-OPERATIONS pulse (T^pq) before initiating the
next phase. As shifting can occur simultaneously with
memory regeneration, the initiation of the next phase
must be inhibited until after both of the T^o anc* ^em
pulses have been produced. This is the function of the
FERO and FEM fliP-flops.

4.2,2 Repeated operations loop
A logic diagram of the REPEATED OPERATIONS LOOP

is shown in Fig. 4.3. This circuit operates in conjunction
with the five-stage V counter which is used to terminate
the loop.

One of the applications of this circuit is to
generate the clock pulses for the multiplication process.
This process involves "multiplier-recoding” and is
described in a later section. In this application, the
circuit generates a specified number of pulses with
each pulse following either 250 ns or 500 ns after the
preceding one, depending on the setting of a control
flip-flop G. The state of G may change during the
generation of pulses.

The circuit utilises monostable multis which
trigger off the back edge of signals. As flip-flop
start switching on the front edge of signals, a
careful examination of the times allowed for circuit
switching must be made.

- 60 -

G is clocked by the OPERATE pulse Tq p , and it is
gate ^ 1 2 5 Pu^ses* The important point to note i
the time which is allowed for the G flip-flop to
to its new state and to carry out the gating of
successfully is the period of the T^p pulses (no
A similar comment applies to the V counter. Thi
counter is initially set to the number of pulses
to be generated. The counter is decremented by
pulses and it is used to gate to T^^ pulse
As the front edge of T^5 changes V to its new s
and T0,-q is triggered by the back edge o£ T1 2 5 ’
the period of T-^5 which is allowed for the sett
of V and its associated circuits.

used t
s that
settle
12 5

t T125

which
125

s .

tate
it is
ling

o

is

ST
AR
T

Vn
rn

r
.
RE
AD
 -
 E

XE
CU
TE
 -
 W

RI
TE

I
RE
W

- 6 1 -

r&
CO
cO:dH
LO

I
Q LU 2= H
O h t— i

E—* 1 CO

iH
LOo
C m

LUHCtJ *-h3: oi H 2c
>-iX

€>
tu_3U>-__ u
>~

:s cdtu oH ¡2
LJ

U mO
iQZtu

Fi
gu
re

4.
0
-

LO
GI
C
DI
AG
RA
M
OF
 M

EM
OR
Y

TI
MI
NG
 U
NI
T

- 6 2 -

- 6 3 -

64-

TSRO (start>

Figure 4.3 - REPEATED OPERATIONS LOOP

- 6 5 -

4.3 MACHINE PHASES

4.3.0 Flow diagram
A flow diagram of machine phases is shown in

Fig. 4.4. Every machine cycle begins with a FETCH
INSTRUCTION phase (0pj). During this phase the
instruction is read from memory into the instruction
register (the R register). If the INSTRUCTION ASSEMBLED
signal (Is ONE and the instruction does not
require a memory cycle for its execution (i.e. = ONE),
the machine will remain in 0pj during the execution of
the instruction and hence will be in this phase at the
beginning of the next machine cycle. If the instruction
does require a memory cycle for its execution (e.g.^,^= ZERO
for an ADD instruction) , the machine will enter the
EXECUTION-O phase (0£q) from where it will return to 0pj
at the beginning of the next machine cycle.

If an instruction requires more than one memory
cycle for its execution (i.e. if ̂ = ONE), the
EXECUTION-1 phase (0pp) will follow 0pQ, and from 0p^
the machine proceeds to 0p^. If the instruction is a
RETURN HIERARCHY instruction (i.e. if / ^ q = ONE), the
machine enters a further execution phase 0p^ from where
it returns to 0pj. If /^q = ZERO, the machine returns
to 0pj from 0p9.

The INSTRUCTION ASSEMBLED signal (^ IA) may be
ZERO for a number of reasons viz : -

(i) the instruction uses INDIRECT ADDRESSING
(i.e. R6 = ONE)

(ii) the instruction specifies a PROGRAMMED OPERATOR
(i.e. R5 = ONE)

(iii) the instruction is an ADD-INDEX or SUBTRACT-INDEX
instruction (i.e.^g_g = ONE)

(iv) the instruction is an EXECUTE instruction
(i.e. = ONE)

(v) the machine is in the AUTO-INPUT phase
(1,e* 0AI = ONE)

(vi) the machine is in the CLEAR STORE phase
(i.e. 0CS = ONE)

- 6 6 -

The conditions (v)
so that the AUTO-INPUT and
quite independently of the
register.

and (vi) above are included
CLEAR STORE logic may operate
contents of the instruction

The remaining conditions (i) - (iv) are sensed
in a definite sequence. Condition (i) has the highest
priority and is sensed first; this is followed by
condition (ii) and finally the mutually exclusive
conditions (iii) or (iv).

If condition (i) is satisfied, the machine
will enter the INDIRECT ADDRESSING phase in which a
new address (including the INDIRECT ADDRESSING
bit - (bit 6) -is read into the instruction register.
If condition (i) is again satisfied, this procedure
is repeated.

If condition (ii) is satisfied, the machine
will enter the PROGRAMMED OPERATOR phase (0pq) in which
the incremented sequence counter is stored in location
0 and is then filled with the binary number represented
by the operation code of the instruction plus thirty-
two. From 0pQ the machine returns to 0pj.

If condition (iii) is satisfied, the machine will
enter the INDEXING phase (0j^) in which the index or
negated index is read into the instruction register
depending on whether the instruction was ADD-INDEX or
SUBTRACT-INDEX respectively. A flip-flop is set so that
the following instruction is added to the contents of the
instruction register instead of being set into this
register. From 0-^ the machine returns to 0Fi-

If condition (iv) is satisfied, the machine will
enter the EXECUTE phase (0p^) in which a new instruction
is read into the instruction register. Interpretation
of this instruction is then carried out just as if it
had been read fromnemory on a FETCH INSTRUCTION phase.

- 67-

4,3.1 Implementation
A diagram of the phase logic is shown in Fig. 4.5.

The eleven machine phases are represented by eleven
flip-flops, only one of which can be in the ONE state at
any one time. With only minor variations for 0^j and 0^,
all flip-flops have transient storage gates in their setting
(ONE-input) and resetting (ZERO-input) lines, and these
are clocked by the PHASE CLOCK (T^) .

The transient storage gates require signals
which determine the next phase into which the machine
will proceed when the next PHASE CLOCK is produced.
The signals are established at sometime in the current
phase. For example during the FETCH INSTRUCTION phase
the instruction is clocked into the instruction register
(the R register) by the T̂ clock. Several levels of logic
circuits are required to form the storage gate signals
in terms of the outputs of the R flip-flops and other
signals. Hence the time between the T^ clock and the
next PHASE-CLOCK (which is produced after the current
memory cycle) is the time allowed for the above circuits
to settle and to charge up the appropriate storage gates
in readiness for the PHASE CLOCK.

Storage gates are used to advantage. For example
the connection of the ONE-output to the ZERO-input line
of a flip-flop ensures that the flip-flop cannot be in the
ONE state for two consecutive memory cycles. This is the
requirement for 0pQ, 0IX, 0po, 0pl, 0p2 and 0p3. The
derivation of the ZERO - input signals for the 0pj> 0jp
and 0px flip-flops using inverters enables these flip-
flops to remain in their ONE states for any number of
consecutive memory cycles.

The connection of the ONE - output of one flip-flop
to the ONE - input of another flip-flop ensures that one
phase is followed by another (e.g. 0p2 is followed by ^E2 ̂ *
The cascading of several flip-flops in this way produces a
chain of consecutive phases. Such an arrangement is used
for instructions which require more than one memory cycle for
their execution.

The passage from one phase to two alternative
phases depending on some machine condition can be easily
arranged with simple gating.

- 68 -

For example the two AND gates with ^ and as
inputs ensure that after leaving 0^q , the machine enters

or depending on whether a)h is ZERO or ONE
respectively.

Conditions which can exist simultaneously can
be sensed in a definite sequence by arranging each
condition to be inhibited by all others of higher
priority. For example the conditions R̂ = ONE,
Rt- = ONE and /*g_g = ONE can all exist simultaneously.
The condition R̂ = ONE which requires the machine to
enter the INDIRECT ADDRESSING phase has priority
over the other two, and the condition R<- = ONE
which requires the machine to enter the PROGRAMMED OPERATOR
phase (0po) has priority over the last. This can be
arranged by using the signals R̂ lT̂ Rf. and R̂ I\g f 8-9
(together witli signals necessary for other reasons)
as setting inputs for the 0pQ and the 0 ^ flip-flops
respectively.

An alternative arrangement for the phase logic
which used only four phase flip-flops was considered, but
was not used because it required complete decoding of the
flip-flop outputs and the logic for changing the states
of the flip-flops was quite complex. The arrangement
used was found to be very flexible as it enabled quite a
fundamental change to the phase sequencing to be carried
out by a relatively small change in hardware. It was also
found to be quite a powerful method for phase sequencing
as many complex sequences are possible, and yet the logic
is relatively simple to understand and to implement.

- 69 -

IS AI BCS

Figure 4.4 FLOW DIAGRAM OF MACHINE PHASES

70

F
i
g
u
r
e

4
.
5

-
P
H
A
S
E

L
O
G
I
C

- 71 -

4.4 CONTROL

4,4.0 Arithmetic unit control
The control signals of the arithmetic unit are

functions of the PHASE signals (0*s), the OPERATION CODE
section of the instruction register (R̂ - R̂) and
other machine signals. Not all the thirty-two signals
/•q “/^x are Pr°duced by a complete decoding of RQ - R̂ ;
instead, most are combined with some of the 0 *s
to produce signals which specify every distinct machine
phase. For example the signal is produced to
specify the EXECUTION-O phase of the ADD instruction.
Signals such as 5 _23 ^EO are aiso produced to specify
the EXECUTION-O phase of a group of instructions.

With every distinct machine phase specified
by theyU.0 signals, machine control signals may be formed
by ENCODE circuits. Tables, like Table 4.0, in which the
ONES indicate the phases in which the control signals
(ap,a,s etc.) are equal to ONE, can be used to specify
these circuits. Entries such as F or F indicate
additional restraints and hence represent AND gates.
Hence Table 4.0 represents a circuit with at most two
levels of logic.

The generation of the control signals for the
REGISTER TRANSFER instruction requires some explanation.
At the end of the FETCH INSTRUCTION memory cycle of
the.REGISTER TRANSFER instruction,the 0p ̂ flip-flop is
reset and additional timing waveforms T^^^, T ^ and
are produced. As all phase flip-flops are in their ZERO-
states all the 0 and y*0 signals are ineffective, and
hence control signals and clocks may be defined in terms
of the above timing waveforms. This is the reason for
the Tpp entry in the last row of Table 4.0.

4.4.1 Memory control
Control signals are required to specify the different

types of memory cycles. For example specifies a FETCH cycle,
^SD a STORE-USING-DISTRIBUTOR cycle, ^ SA a STORE-USING-ADDRESS-
SELECTOR cycle and 3REW a (split) READ-EXECUTE-WRITE cycle. As
these signals are functions of the 0 and /0 signals, they are
produced in the same way as the control signals of the arithmetic
uni t.

- 72-

The memory address may be specified by the SEQUENCE
COUNTER (the S register), the OPERAND COUNTER (the U register)
or the address section of the INSTRUCTION RESISTER (the R
register). The ADDRESS SELECTOR shown in Pig. 4.6 determines
this address.

During a STORE-US ING-ADIRESS-SELECTOR cycle,
the ADDRESS SELECTOR is used to transfer information
to the MEMORY-INPUT-OUTPUT register (the J register)
before it is used to specify the memory address
where this information is to be stored. The timing
signal which determines which of these two functions
the ADDRESS SELECTOR has during the cycle is A iK
(see Fig. 4.2). A general expression for the
outputs of the ADDRESS SELECTOR vould then be : -

An (fl A AS + f2 A AS^ Sn + (f3 AAS + f4 A AS} Un

+ (f5AAS + f6 ¿AS) Rn + Yn

In the above equation f][- f6 are functions of the
0 and signals. It is to be noted that a direct
implementation of the above equation would require
the AAS ând A a s) signals to pass through four levels
of logic before reaching the output. A slight
improvement in circuit configuration can be obtained
by utilising the fact that in the machine design,
the conditionsfx = ONE, f2 = ONE are mutually
exclusive, and this is also so for the pairs of
conditions f3 = ONE, f4 = ONE and f̂ = ONE, f6 = ONE
An equivalent exprès sion for An miy now be derived :

An ■ (fi + f2) C V A AS)<*2 + ÂAS5 Sn

+ Cf 3 + f4)C?3 + A a s 1̂ ^ 4 + Â AS) Un

+ Cf5 + + AAsK ?6 + Â AS) Rn + ■

It is now to be noted that the (and ¡\ ̂) signals must
pass through only three levels of logic before reaching
the output. The inverters necessary for the generation
of the inverse functions ?1 etc. do not come into
consideration here, as the ̂ 0 and f signals are assumed
to settle well before the /[̂ signal is produced.

- 7 3 -

The circuit configuration suggested by the last
equation is only slightly superior to the one suggested
by the first A equation as there are other much larger
delays associated with the memory address circuits.
However only a slight increase in hardware was
involved and hence the slightly superior configuration
for the ADDRESS SELECTOR was used. This is shown in Fig.4.6.

4.4.2 Miscellaneous control signals
The computer utilises a large number of

miscellaneous control sginals. Examples of these are
signals which determine when binary counters are to be
pulsed, signals which determine whether a counter runs
forwards or backwards, signals which determine whether a
clock pulse is to be produced and a signal which determines
when the peripheral units are ready.

A logic diagram showing how one of these signals
is generated is shown in Fig. 4.7. The SKIP CONDITIONS
SATISFIED signal (is used by the SKIP instruction
logic to determine whether or not the SEQUENCE COUNTER
is to be incremented. Bits 7-19 of the SKIP instruction
do not specify an operand address but rather the machine
conditions which are to be sensed. Complete decoding
of these bits would produce an enormous number of possible
conditions, but of course is out of the question because
of the amount of hardware involved. As in many
engineering designs a compromise is made, and decoding
for pairs of bits is provided to increase the number of
conditions sensed without an appreciable increase in
hardware. The problems of circuit fan-in is solved
by using a NOR-NAND configuration with the outputs of the
NOR gates represented in negative logic. As these
outputs are transmitted some distance to another
package via the base-wiring, the signal regenerative
property of the NOR gate is used to advantage.

- 7 4 -

TABLE 4 . 0

SPECIFICATION OF SONE CONTROL SIGNALS

y’ 0 a l a s C20 r k

0 FI FT2 1

0 ID 1 1

0 IX 1

y 80 IX 1

W90 IX 1 1

0EX

y lO^EO 1 1

y l l 0EO 1 1 1

y 12^EO 1

y 150EO 1

U1 2 - 1S 0EO 1 1

y160EO 1 1 1

y17^EO 1

M1 8 - 190EO G F F F

y2O0£O 1

y2 20EO 1

y2 3^EO 1 1

U1 6 - 230EO 1

U2 6 - 270EO 1 1 -

y2 8 - 31^EO 1 1

U2 70E 1 1 1

y2 6^E2 1 1 1

W2 70 E2 1 1 1 1

U2 80 E2 1 F
r EX 1

re x

U2 90 E2 1 F
r EX

F
cX ? EX

0 E3 1 1

t ds 1 R +R-,^j g 1 2 o R-, n + iL -7 J 10 12 o R +R J 0 R13 R14

fN |

- 7 5 -

S Lcn

Fi
gu
re

4.
6

-
AD
DR
ES
S

SE
LE
CT
OR

LO
GI
C

SE
NS
E
SW
IT
CH

/S
SI

/ S
S2

/
SS
3

76

zo

Fi
gu
re

4.
7

-
SK
IP
 L

OG
IC

- 7 7 -

4.5 _____CARRY LOOKAHEAD ADDER

4.5 .. 0 Brief description
■ ■ — ■ ■■ ■ ■■■ ■■ ■ ■■ ■- ■■ j . ..

A discussion of the CARRY LOOKAHEAD principle and
a more detailed description of the adder used in ARCTURUS
appears in the Appendix L . A brief description
fol]Iows.

A block diagram of the adder is shown in Fig. 4.8.
The adder stages are numbered 0 to 19, with stage 0
being the most significant and stage 19 the least
significant. The adder inputs are A^ and B. (i = 0 -- 19).
and the carry digit into the least-significant stage is
designated C2Q. The SUM and CARRY digits are designated

aind C* respectively.

PROPAGATE and GENERATE functions (P. and G.)
are first formed for each stage. The adder is then
divided into four groups each of 5 stages; and first-level
PROPAGATE and GENERATE functions are formed for the three
least significant groups. These functions are designated
Pn* and G * (n = 1,2,3) with n = 3 corresponding to the
least significant group.

By using FIRST-LEVEL-LOOKAHEAD, i.e. by applying
the lookahead principle to groups of stages,the CARRY digits
C15, C^q and Cç- may be formed. Then with the CARRY digits
C20* C15, C1Q and Ĉ either known or established, the
remaining CARRY signals may be formed using ZERO-LEVEL-
LOOK.AHEAD. Finally, the SUM digits are formed in terms of
the CARRY digits and PROPAGATE functions.

The advantage of the CARRY-LOOKAIIEAD-ADDER over the
conv<entional RIPPLE-CARRY-ADDER is that in the latter, the
CARR'Y and SUM digits of each full-adder stage are formed
in succession as CARRY digits of less significant stages
ripple through to more significant stages, whereas in
the former, the CARRY and SUM digits of almost all stages
are formed simultaneously. Hence, the CARRY-LOOKAHEAD-ADDER
is miuch faster but requires more hardware.

4.5.1 Selection of adder inputs
The adder is used for carrying out arithmetic

operations on -instructions (e.g. INDEXING instructions)
as well as on numbers held in machine registers.

- 78 -

A large number of different operations (such as CLEAR,
SUBTRACT, DECREMENT, etc.) are required. Both these
requirements may be satisfied by the appropriate selection
of adder inputs.

Control signals, a,s,r and k are used to select
J,J,0 or 1 as the first adder input and R,K,0 or 1 as the
second adder input. The defining equations are

A = aJ + sJ
B = rR + kK + rk .

Different combinations of the control signals
a,s,r,k and C2Q produce many useful functions as the
adder output. For example, the combination ZERO, ONE, ZERO,
ONE, ONE respectively for these signals produces the
function K - J which is required by the SUBTRACT instruction;
the combination ONE, ZERO, ZERO, ZERO, ONE produces the
function J + 2 ^ which is required by the INCREMENT SKIP
instruction; and the combination ZERO, ZERO, ONE, ZERO, ONE

-19produces the function R + 2 which is required by the
JUMP TO SUB-ROUTINE instruction. ,A table containing a
list of these functions wduIU have bsen produced by the
designer soon after the adder inputs were defined, and
the machine design was carried out to take full advantage
of the flexibility and speed of the adder.

4.5.2 Alternative configurations
A number of logic circuit configurations for the

adder were considered; alternative :onfigurations for
obtaining the PROPAGATE and GENERATE functions are shown
in Fig. 4.9.

Configuration I represents the most direct
approach. The adder inputs A and B are formed;
PROPAGATE (P) and GENERATE (G) signils are then formed in
terms of the adder inputs, and are tompletely regenerated
using double invert circuits.

Configuration II is a simplification of configuration I
but allows an AND-OR circuit for fo-ming P.

Configuration III is derive! from the Boolean
equations for the inverses of the T3RMINATE (T) and
GENERATE (G) functions written in SUM-OF-PRODUCTS form.

- 79 -

This configuration was chosen because the number of cascaded
INVERT circuits was smaller than the number in other config
urations. Hence the use of Configuration III would result in
a faster adder. The smaller number of INVERT circuits would
also compensate for the increase in the number of AND gates
over that of Configuration II.

A slight relaxation of the speed specification
of the computer would possibly make Configuration II
very attractive. The selection of adder inputs is more
straight-forward and hence more flexible than in
Configuration III. If Configuration II had been chosen,
a wider choice of adder inputs might have been provided.

4.5.5 Final adder configuration
A skeletal logic diagram of the adder configuration

is shown in Fig. 4.10. This diagram is intended to give
some indication of the signal attenuation and time
delays which are involved.

Time delays introduced by INVERT circuits are
much greater than those introduced by AND or OR circuits.
However, INVERT circuits do regenerate signals while diode
AND and OR gates cause signal deterioration in the form of
attenuation and level-shift.

Circuit tests showed that the configuration AND-
OR-EF-AND-OR-EF (wheie EF represents an emitter follower)
was quite satisfactory, but that further cascading of
logic circuits without regeneraticn was unwise.

Hence the aim was to obtain a circuit arrangement
for obtaining the SUM digits with the minimum number of
INVERT circuits in cascade and with the restriction that
the AND-OR-EF-AND-OR-EF-circuit ccnfiguration is the
longest chain of logic circuits through which signals
must pass before they are regenerated.

The choice of the circuit configuration for
the P and G functions was discussed in the last section.
This is followed (in Fig. 4.10) by configurations for the
FIRST-LEVEL PROPAGATE and GENERATE functions (P 1 and G T)
the FIRST-LEVEL-LOOKAHEAD circuits which produce
^15* ^10 anĉ ^ 5 > an<̂ by t îe ZERO-LEVEL-LOOKAHEAD circuits
which produce the remaining CARRY signals.

- 80-

The SUM digits which are functions of the CARRY signals
and the PROPAGATE functions may be selected by the
DISTRIbUTOR-FUNCTION-SELECTOR (DFS) and distributed
(i.e. transmitted) to all machine registers.

From Fig. 4.10, it can be seen that from the
effective selection of adder inputs to the complete
regeneration of the DFS output, the maximum number of
INVERT circuits in cascade is seven. Allowing a delay
of 40 ns for an AND-OR-EF-INVERT-EF circuit, a reasonable
estimate for the total delay of the adder circuits
would be 280 ns. Allowing an additional 200 ns for
charging transient storage gates, an estimate for the
’’accumulate time” (i.e. the time required to add the
contents of J to K and to place the answer in K)
would be about 1 yus. This figure was achieved in practice.

81

CT
rH

CQ1
l O

CQ

CT
CQ

I
LO

CQ

CT<
I

<

j-
CQ
IO

CQ

=r<io<

CT
rHCO
I
uO
i—Í

CO

CO
I
O

CO

CTCO
lO

CO

CO
I
O

CO

Fi
gu
re

4.
8

-
BL
OC
K

DI
AG
RA
M

OF
 C

AR
RY
-L
OO
KA
HE
AD

-A
DD
ER

- 83 -

Figure 4♦ 10” - SKELETAL LCGIC DIAGRAM OF ADDER

- 8 4 -

4.6 MACHINE REGISTERS

4.6.0 Distributor Function Selector

The DISTRIBUTOR FUNCTION SELECTOR (DFS) was
introduced in the last section. Its function is
to select arithmetic and logical functions of register
outputs and to distribute these functions to all registers.

The DFS may select the ADDER output in which
case the nominal time of ̂/*s is allowed. However the
ADDER may be by-passed (as required by the high-speed mul
tiplication process) in which case the DFS selects a
register output and the nominal time of ̂/ ¿ s is allowed.

The DFS output is fully regenerated and is used
to feed all types of logical elements including transient
storage gates, AND gates, R-S flip-flops and binary
counters.

4.6.1 Memory Input Output Register
A logic diagram of the MEMORY INPUT OUTPUT REGISTER

(the J register) is shown in Fig. 4.11.

A RESET-SET cycle using the CLOCKS J and J is° r m
used for sensing the memory output.

Two pairs of transient storage gates are connected
to the inputs of each stage of the register. To these
gates are connected the outputs of the DISTRIBUTOR
FUNCTION SELECTOR and the ADDRESS SELECTOR. In this way
the contents of all the main machine registers,
as well as arithmetic and logical functions of these contents
may be set into J and subsequently stored in the main memory.

An earlier machine configuration required J
to be a very powerful register which could count and shift
in either direction and which had the peripheral units
connected to it. After the high-speed ADDER was
designed, it was decided to use this unit for incrementing
and decrementing. The design of the other arithmetic
sections of the computer suggested that it was better to
carry out shifting in the main arithmetic registers
(K and L); this then led to the decision to connect the
peripheral units to the K register.

ME
MO
RY

SE
NS
E

AM
PL
IF
IE
R

OU
TP
UT
S

- 85-

Fi
gu
re

4.
11
 -

LO
GI
C

DI
AG
RA
M

OF
 T

HE
 J
 R

EG
IS
TE
R

- 86 -

4,6.2 Main Arithmetic Registers
The main arithmetic registers to which programmers

have access are the ACCUMULATOR (the K register) and
the MULTI PLI HR-QUOTIENT-REGISTER (the L register) .
The OPERAND-REGISTER (the U register) is also available
for limited use.

A logic diagram of the K register is shown in
Fig. 4.12. Three pairs of transient storage gates are
connected to each stage of the K register. To these
gates are connected the output of the corresponding
DISTRIBUTOR-FUNCTION-SELECTOR (DFS) and the outputs of
the two adjacent DFS’s. In this way, all the arithmetic
and logical functions produced by the DFS may be set
into K in one of three positions : - the UNSHIFTED
position, the LEFT SHIFT position and the RIGHT SHIFT
position. This is controlled by three separate CLOCK
pulses. Hence the ADD-SHIFT or SUBTRACT-SHIFT operations
required by the multiplication and division procedures
may be carried out by the generation of a single CLOCK
pulse.

When the ADDER is by-passed, both the K and L registers
may shift (in either direction) at the rate of 4 MHz. All the
variants of the SHIFT instruction and all the SHIFT-modes re
quired by the multiplication, division and input-output pro
cedures may be obtained by supplying the appropriate signals
to the transient storage gates at the extremities of the K and
L registers and by supplying the appropriate CLOCK. The former
section of the SHIFT logic is shown in Fig. 4.13.

A relatively simple modification to the logic
represented by Fig. 4.13 was carried out quite late in
the project to incorporate an ILLOGICAL SHIFT variant
which was suggested by programming experience. This
variant shifts ONES (compared with ZEROS for the
LOGICAL SHIFT) into the extremities of the registers,
and has proved to be very useful on a number of occasions.

The logic diagram of the K register (Fig. 4.12)
shows AND gates connected to the ONE-sides of flip-flops.
These are for the connection of the input buffers to the
K register. A LOGICAL SHIFT operation, which clears the
appropriate stages of K, precedes a pulse which clocks
the buffers into K. The outputs of the least

8 7 -

CT>
r-4

oo
U6

O

F
i
g
u
r
e

4
.
1
2
-

L
O
G
I
C

D
I
A
G
R
A
M

O
F

T
H
E

K

R
E
G
I
S
T
E
R

88

Fi
gu

re

4,

1J
 -

SH
IF

T
LO

GI
C

- 89 -

4.6.3 Counters
Parallel binary counters are used for the ten-stage

SEQUENCE COUNTER (the S register), the ten-stage OPERAND COUNTER
(the U register), the five-stage NUMBER-OF-TIMES-COUNTER (the
V counter) and the three-stage BIT COUNTER (the W counter). The
SEQUENCE COUNTER runs forwards; the OPERAND COUNTER is revers
ible and the remaining two run backwards.

In the design of the counters, it was decided
that the same types of packages should be used in all
cases, and that the only difference should be in their
method of interconnection. The logic circuit configuration
for a parallel, reversible binary counter is shown in
Fig. 4.14. The COMPLEMENTER is omitted if the counter
is not required to be reversible, and the ONE-outputs or
ZERO-outputs of the BINARY COUNTERS are connected to the
NOR gates of the COUNTER GATING depending on whether the
counter is to run backwards or forwards respectively.

The counter configuration of Fig. 4.14 (of which
a slightly more detailed description appears in
Appendix . L .) was found to be very flexible
and produced compact standard packages. The complete
circuit easily satisfied the design requirement of <
reliable operation at 4 MHz.

90

CO 'cc CJW z{—• Q¿ * -*
H z U) HU <
CO o z CJu UÍJ 5 : cc
< > - UJ wt—« caí - j HH < a . z*—i z 2 : 3zr. 1—4 o o>—i CQ <-> u
« « « «
« « « «

ZD CQOu

F
i
g
u
r
e

4
.
1
4
-

L
O
G
I
C

D
I
A
G
R
A
M

O
F

P
A
R
A
L
L
E
L

t
R
E
V
E
R
S
I
B
L
E

B
I
N
A
R
Y

C
O
U
N
T
E
R

- 9 1 -

4.7 MULTI PLIC/ATION PROCEDURE

4,7,0 General PTrinci £les
Extremely fast multipliers using only com

binational circuitts have been proposed (Ref. 45)t
but are not commorn because of the amount of hardware
involved. Most miultiplication procedures involve a
sequence of ADDITIIONS and SHIFTS in which the product
of the numbers is formed as the accumulated sum of a
number of partial products.

A common ttechnique is to utilise a double
length ACCUMULTAOFR-MQ REGISTER configuration which
holds the growing ACCUMULATED PARTIAL PRODUCT and
the diminishing MIULTIPLIER, The MULTIPLIER digits are
sensed one at a tiime, and used to determine whether or
not the MULTIPLICAND is to be added to the ACCUMULATED
PARTIAL PRODUCT. After this the double-length register is
shifted, and the procedure repeated until all MULTIPLIER
digits have been ssensed.

The arrangement of the inputs to the K register
in ARCTURUS (descriibed in Section 4.6) enables the ADD-
SIIIFT and PASS-SHI FT operations to be carried out by a
single CLOCK pulse?. This speeds up the multiplication
procedure.

In most arithmetic units the SHIFT operation
requires less time? than the ADD operation. Hence
the multiplicationt procedure may be again speeded up
by "by-passing'* thie adder and consequently allowing
less time for the (PASS)-SHIFT operation.

The number* of SHIFT operations may be increased
and the number of ADD operations reduced by MULTIPLIER
RECODING. This produces a further speeding up of the
multiplication procedure.

The procedture used in ARCTURUS is to sense
MULTIPLIER digits two at a time. These are used to
determine which of three operations are to be performed
during each stage <of the multiplication procedure.
The three possible operations are (i) ADD-SHIFT
(ii) SUBTRACT-SHIF7T and (iii) PASS-SHIFT. The last
of these does not require the use of the ADDER, and
hence if adder-bypiassing is available, this operation
requires less time than either of the other two.

- 92 -

As the procedure allows three different operations
rather than two, it corresponds to a recoding of the
MULTIPLIER from a BINARY to TERNARY system. This
recoding is carried out so that (as far as possible)
the number of PASS-SHIFT operations is maximised.
This results in a significant reduction of the average
multiplication time.

4.7.1 Implementation
The implementation of the multiplier recoding

procedure in ARCTURUS is fully described in Appendix L.
A very brief summary follows.

The multiplication logic makes use of the
REPEATED OPERATIONS LOOP (Fig. 4.3). Typical timing
waveforms are shown in Fig. 4.15.

When the REPEATED OPERATIONS LOOP is started
by a Tĉ q pulse, it generates several pulse trains.
Passage through the loop always produces a TQp pulse,
while the generation of a T^^q or T<-qq pulse (250 ns or
500 ns respectively after T^p) depends on the setting of
a control flip-flop (G). Appropriate delays are
introduced by the T^ 5 and T̂ j. pulses’.

The CLOCK pulses required by the multiplication
procedure (e.g. Lr, Kr and L̂) may be generated from
the pulses produced by the REPEATED OPERATIONS LOOP
and from various control signals.

Some of the problems involved in the design of
the multiplication logic were : -

(i) the critical timing of the CONTROL signals and
CLOCK pulses required by the MULTIPLIER RECODING
and ADDER BY-PASSING operations

(ii) the correct treatment of positive and negative
operands

and
(iii) the correct positioning of the result with the

specified DOUBLE LENGTH NUMBER format.
All of these problems were of course solved; and the
design has been verified by tests and operating experience.

SR
O

93

Fi
gu
re

4.

IS

-

TI
MI
NG
 W

AV
EF
OR
MS

FO
R
MU

LT
IP

LI
CA

TI
ON

- 94-

4,7.2 Multiplication time
The nominal times allowed for an ADD/SUBTRACT-SHIFT

operation and a PASS-SHIFT operation are 500 ns and
250 ns respectively. The multiplication time depends on
the multiplier and varies between the time required for
twenty PASS-SHIFT operations (i.e. 5/*s) and the time
required for ten PASS-SHIFT operations plus ten ADD/
SUBTRACT-SHIFT operations (i.e. 7.5 /*s).

The above times exclude one memory cycle time
required to fetch the instruction and one memory access
time required to fetch the

• multiplicand. The
multiplication process may proceed while the multiplicand
is being regenerated in the memory.

- 95-

4.8_____ DIVISION PROCEDURE

4,8,0 General Principles

Many early computers and even some second
generation computers such as the IBM 1620 (Ref. 46)

required a program to carry out division. The

incorporation of the division function into the

hardware of the computer can be carried out in a

number Of ways (Ref. 47). NON-RESTORING procedures

are invariably faster than RESTORING procedures
and hence they are used unless the register configuration

or other reasons strongly favour some other procedure.

In a parallel, binary computer, the basic requirements
for hardware division are a double-length ACCUMULATOR-MQ

REGISTER which can shift left (i.e. in the opposite
direction to that required for multiplication) and a

control unit which enables the DIVISOR to be added to
or substracted from the REMAINDER held in the ACCUMULATOR.

A number of methods (Ref. 48) have been used
for nneeding up the division procedure in large-scale,

scientific computers. Some methods (Ref. 49) are
analogous to those used for multiplier recoding in that

they utilise adder bypassing; however these methods assume

normalised operands and hence are only applicable to
floating-point arithmetic units.

A high-speed procedure for division is not as
important as it is for multiplication as most programs
do not use division instructions as often as multiplication
instructions.

>

Although some attention was given to the possibility
of incorporating a high-speed division unit into the
ARCTURUS structure, it was finally decided to use a
conventional NON-RESTORING technique.

4.8.1 Implementation

A very brief outline of the implementation of
the division procedure in ARCTURUS follows.

This procedure makes use of the REPEATED OPERATIONS LOOP
(Fig. 4.3); timing waveforms are shown in Fig. 4.16.

- 96-

For division, the G flip-flop is always in the
ZERO state; hence the REPEATED OPERATIONS LOOP produces
a train of equally spaced pulses with a pulse spacing of
500 ns. These are used to generate the CLOCK pulses for
the K - L registers and for the F flip-flop. Except
for the final CLOCK pulse for K, all CLOCK pulses effectively
shift the new contents of the double-length K - L register
one place to the left. Hence each pair of ADD/SUBTRACT
and SHIFT operations required by the NON-RESTORING
division procedure is carried out by a single CLOCK pulse.
The F flip-flop determines whether the DIVISOR is added
to or subtracted from the REMAINDER held in the K register.

Some of the problems involved in the design of the
division logic were : -

(i) the detection of an incorrect result (by the
DIVISION HANG-UP logic)

(ii) the correct timing of CONTROL signals and CLOCK
pulses

and
(iii) the correct positioning of REMAINDER and QUOTIENT

in the K - L registers.

The DIVISION HANG-UP conditions warrant further
comment. These are shown in Table 4.1 . The fourth
column of this table shows whether the NON-RESTORING
division procedure produces the correct result for
different relative magnitudes and different signs of the
DIVISOR and DIVIDEND . For the detection of an incorrect
result, three machine conditions were considered. These
were : -

(i) DIVIDEND and FIRST REMAINDER have same sign
(column 5)

(ii) DIVISOR and DIVIDEND are equal (column 6)
(iii) FIRST REMAINDER is zero (column 7)

The entries in each of the columns 5, 6 or 7
do not correspond exactly to those in column 4. A
composite condition consisting of either condition (i)
or condition (iii) (above) was considered preferable to
any one condition alone. This composite condition is
represented by the last column of the table. It shows
that the DIVISION HANG-UP condition is satisfied (with
the consequent stopping of the computer) if the absolute

- 97-

value of the DIVISOR is less than or equal to the absolute
value of the DIVIDEND. The logic configuration of that part
of the computer required for division requires that the two
conditions (i) and (iii) above be sensed at two different times.
This is shown in Fig. 4,16. The latter condition makes
use of thelTK gate which is used for sensing when the
ACCUMULATOR is ZERO. It was found that only a small
amount of additional logic was necessary for the
DIVISION IIANG-UP logic but extreme care was necessary for
the interpretation of machine signals at various stages
of the division procedure.

4.8.2 Division time
The nominal time allowed for an ADD/SUBTR ACT-SHIFT

operation is 500 ns. The division procedure requires
twenty of these operations. Hence the division time is 10/us.
This time excludes one memory cycle time required to fetch
the instruction and one memory access time required to
fetch the divisor. The division procedure may proceed
while the divisor is being regenerated in the memory.

CL
OC
K

DI
VI
SO
R

IN
TO
 J

98

Fi
gu
re

4.

16
-

TI
MI
NG
 W

AV
EF
OR
MS
 F

OR
 D

IV
IS
IO
N

99

ce
tu• •

CU u7
Z
U Q

os Z Q
tu <
Q z oo ce
Z z tu
HH Z CD co co co co co co co co
< O *-h o O o o o tu tu tu tu tu tu tu tu
Z HH co ce Z z z z >- >* >" >H >H ><
tU CO tu
os HH U N

H»
H HH < CS

co CO Q CO O
Z OS
o HH
HH Ph
H O co co co CO
HH II ce ce o o o o o o o o tu tu tu tu
O w tu z z z z z z z z >* >* >*Z Pi tvj
O tu
U
CL. Q
3 Z Q
CD tu -3 Q
Z Q < co co
*< HH Z o o o o o o o o tu o o tuZ > O ' z z z z z z z z z z

HH tu ce
Z Q Q
O
HH II
CO
HH Q
> Q
HH CO
Q A z ce

os o turH O HH
• CO CO co co co co co co

HH uff o o o o tu tu tu tu tu o tu o> tU z z z z >« >- >* >« >* z ztu
■-J

HH
Q <î QPû CO Q

< II
H /-N

ce tuQ co
V— / o

1—3H CJU
tU H
OS J co co co co co co
ce z • o o o o tu tu tu tu tu o o tuo co
U tu
z os

z z z z >< >~ >* >+ z z >*

HH

CO Q
Z Q + 1 ♦ 1 ■f 1 ♦ 1 ♦ 1 -fCD
HH ce
CO Q ♦ ♦ 1 • ♦ ■f 1 1 • f ♦ • •

co
- *

tu Q Q Qtu Q
> z

Q Q Q
HH H
H hh

A V N

< Z ce os os-3 CD Q Q Qtu <
CS S

- 1 0 0 -

4.9 PROGRAMMED OPERATORS

4,9.0 Implementation
The PROGRAMMED OPERATOR feature of ARCTURUS

was described in section 3.2.6, A brief description
of the hardware necessary for the feature follows.

At the end of a FETCH INSTRUCTION phase, the
sequence counter is incremented, and the (incremented)
sequence counter is then stored in location 0 during the
PROGRAMMED OPERATOR phase. This is carried out by firstly
transferring the sequence counter via the ADDRESS SELECTOR
to the memory input-output register (the J register), and
then initiating a STORE cycle in which the ADDRESS SELECTOR
outputs are all ZERO. This last condition is readily
obtained by ensuring that all the control signals
associated with the ADDRESS SELECTOR are ZERO.

Transferring control to the address determined
by the OPERATION CODE of the instruction plus 32 is carried
out by SELECTION CIRCUITS connected to the setting lines
of the sequence counter (the S register). During the
PROGRAMMED OPERATOR phase, these SELECTION CIRCUITS
set Rq - R̂ into S ^ - S^; S ^ is forced to ONE and
all other stages of S are forced to ZERO.

Setting the effective operand address into the
operand register (the U register) is readily accomplished
by clocking the address portion of the instruction register
(the R register) via the DISTRIBUTOR into the U register
during the PROGRAMMED OPERATOR phase.

4.9.1 Extensions
The amount of hardware required for the PROGRAMMED-

OPERATOR feature (in relation to its usefulness) is very
small. In particular, the extension of the feature in
ARCTURUS which enabled indirect addressing to be used with
PROGRAMMED-OPERATOR routines which referred to multi-word-
length operands required an insignificant amount of hardware,
as the only operation involved was the setting of the
effective operand address into the U register.

- 1 0 1 -

A further improvement, which incidentally is
utilised in later Scientific Data Systems computers
(Ref. 60), is to use a hardware register instead
of location 0 to hold the return link. In terms of
the ARCTURUS structure, this would completely eliminate
the PROGRAMMED OPERATOR phase and of course speed up
the computer.

An even better arrangement would be one which
allowed lists of return links to be stored either in
flip-flop registers or some (fast) scratch-pad memory.
This arrangement would allow PROGRAMMED OPERATOR
routines to be nested without the necessity to store the
return links within the routines. With costs of computer
components (including scratch-pad memories) continuously
decreasing, this arrangement may become quite attractive.

- 1 0 2 -

4.10 PERIPHERAL UNITS

4.10.0 Block Diagrams
Block diagrams of the logic required for the

reader, printer and punch are shown in Figs. 4.17,
4.19 and 4.18 respectively. Brief descriptions
follow.

The reader logic has been designed to assemble
the last character read from tape into the flip-flop
BUFFER where it is ready for use by the computer.
Having sensed the state of the BUFFER, the computer
produces a START pulse. This resets the READY flip-flop
and puts the CLUTCH-BRAKE flip-flop into the state
which removes the brake and applies power to the clutch.
As the tape moves forward, the amplified LOCATION PHOTO
CELL output is used to clock the BUFFER, to set the
READY flip-flop and (normally) to.apply the brake.
Improved performance can be obtained (Ref. 7) by requiring
the computer to produce an INHIBIT BRAKE SIGNAL (o')
when it requires and can handle the information assembled
into the BUFFER at the maximum rate of the reader.

The CLOCK 5 START pulse of the punch logic (Fig. 4.18)
is used firstly to clock the signal lines representing
the CHARACTER TO BE PUNCHED into the flip-flop BUFFER,
and secondly to start the punch cycle. The READY flip-flop
is reset by the CLOCK $ START pulse and set at the end of
the timing waveform produced by the TIMING MULTI. The
SYNCHRONISING flip-flop is used to trigger the TIMING MULTI
at the correct instant in the punch cycle. Under normal
conditions, the outputs of the BUFFER are gated, by the
timing waveform (produced by the TIMING MULTI), and the
gated outputs are used by the POWER DRIVERS for the FEED
§ DIGIT SOLENOIDS. When the RUN-OUT button is depressed,
a pre-determined character (e.g. a DELAY character for
5-channcl tape or a DELETE character for 8-channel tape)
is punched continuously. The TEST SWITCH represents hardware
for carrying out simple tests on the punch and its
associated logic.

- 1 0 3 -

The printer logic of Fig. 4.19 assumes that
the computer produces a CLOCK BUFFER pulse before a
START pulse. The states of the BUFFER which represent
the CHARACTER TO BE PRINTED are decoded into 32
lines by 32 x 5-input NOR gates. These lines are then
gated by TIMING WAVEFORMS which specify either a
FIGURE-SHIFT character, a LETTER-SHIFT character or a
character common to both shifts. The outputs of the
SHIFT GATING are then used by the POWER DRIVERS of the
SOLENOIDS (and relays) attached to the IBM ELECTRIC
TYPEWRITER. FIGURE-SHI FT/LETTER-Sill FT operation is
provided (electronically) by the use of the SHIFT
flip-flop, and UPPER-CASE/LOWER-CASE operation is
provided (mechanically) by the use of the mechanical lock
on the typewriter together with a sensing micro-switch.
The function of the START INHIBIT logic is to inhibit
the START pulse if the BUFFER contains an UPPER-CASE
character or a LOWER-CASE character, and the printer is
in the same case. The TIMING MULTI produces the (65 ms)
signal required by the SOLENOIDS. The LOCKOUT MULTIS cause
the printer to be locked out (i.e. for the READY flip-flop
to be in the ZERO state) for 100 ms for most characters,
and for 1 sec for the CARRIAGE-RETURN/LINE-FEED character,
the UPPER-CASE•character and the LOWER-CASE character.
The printer logic also contains test circuits (not represented
in Fig. 4.19) which enables every SOLENOID to be operated
under single-shot or dynamic conditions.

The approach taken with the reader, punch and
printer has been to design self-contained units with
autonomous timing and control. This minimises the problems
associated with the design of the interface between the
computer and the peripheral units. With the examples given,
it appears that there are four basic signals (or groups of
signals) which the designer of such an interface must
consider. These are : -

(i) the START signal from computer to peripheral unit,
(ii) the READY signal from peripheral unit to computer,

(iii) the DATA signals between the computer and the
BUFFER of the peripheral unit,

and
(iv) the SENSE signal or CLOCK signal associated with

the BUFFER.

- 1 0 4 -

A brief account of how these signals are treated in
the design of an off-line tape editing set and in the design
of the input-output logic for ARCTURUS appear in
following sections.

4,10,1 Off line tape editing
A block diagram of the logic which enables the

computer’s peripheral units to operate as an off-line
tape editing set is shown in Fig.2.20. The basic inter
face signals described in the last section are switched
by a RELAY SELECTION system. This consists of a relay
network containing many change-over contacts under
the control of a single-toggle switch. The EDITING SET
LOGIC receives READY signals from all units, and generates
CLOCK $ START signals of those units selected by the
operator. This logic is arranged to operate the units
as fast as possible. For example, comparison of two
tapes takes place at reader speed, reperforation of a
tape at punch speed•reperforation and printing at printer
speed and so on.

Since ARCTURUS was commissioned, the off-line
tape editing unit has been found to be extremely useful.
As the amount of hardware required for this unit was
extremely small, it is considered that designers of
computers similar to ARCTURUS should seriously consider
this worth-while feature.

ST
AR
T

IN
HI
BI
T

BR
AK
E

SI
GN
AL

RE
AD
Y

SI
GN
AL

DI
GI
T

SI
GN
AL
S

(P
UL
SE
)

(o
C
)

(T
O

CO
MP
UT
ER
)

(T
O

CO
MP
UT
ER
)

- 105 -

L _______

~ 1

CC
tu
Q
<
tu

CC

tu

tu

<
f-

•

ec
tu
Cu

<
Cu

Fi
gu
re

4,
17
 -

BL
OC
K

DI
AG
RA
M

OF

RE
AD
ER

LO
GI
C

RE
AD
Y

SI
GN
AL

CL
OC
K

$
ST
AR
T

RU
N-
OU
T

CH
AR
AC
TE
R

TO
 B

E
PU
NC
HE
D

(T
O
CO
MP
UT
ER
)

(P
UL
SE
)

(P
US
H-
BU
TT
ON
)

(8
 L

IN
ES
)

- 1 0 6 -

u
E—4
IO

IUZz<Xu

Xu

CO
E—COtuH

oo

DÌo
LO

r

toClO-J
li
ce
t—IJÜ-
oo

to

i
l
1■ totu 1 oH H-4< to 1 oo cc 1 zIU tuH > 1 XX 1 oo DC to• Q 1z 1 E—ZD ceOC IU | o2= 1 *—»uy o Qce IX uyZ*—i | Qz IU»—4 IUf—1 1
i

u-

1

UCt_>O
—JU CL,o

lice
I—*►jic
Hxo•zIDDi

ce
•ecu

E—IUz
<

Xuzx
ce
tu
ce
ocCQ
ID
ce

Stux
tu(—

I_________ I

I © -
H
oC
<H
CO

CeO_)
li
ce
t—,Xu-
>*Q<
tuoc

ceoX
li
ce *—»
— i li-
CS
Zt—»
to
t—(zoDC
uz>-J£-

E-—3
s:
oz

Fi
gu
re
 4

.1
8

-
BL
OC
K

DI
AG
RA
M

OF

PU
NC
H

LO
GI
C

CH
AR
AC
TE
R

TO
 B

E
PR
IN
TE
D

CL
OC
K

BU
FF
ER

ST
AR
T

RE
AD
Y

SI
GN
AL

(S
 L

IN
ES
)

(P
UL
SE
)

(P
UL
SE
)

(T
O

CO
MP
UT
ER
)

- 107 -

L

Fi
gu
re

4.
19
 -

BL
OC
K

DI
AG
RA
M

OF

PR
IN
TE
R

LO
GI
C

TO
 C

OM
PU
TE
R'
S

•
FR
OM
 C

OM
PU
TE
R'
S

FR
OM
 C

OM
PU
TE
R'
S

TO
 C

OM
PU
TE
R'
S

AC
CU
MU

LA
TO

R
AC
CU
MU
LA
TO
R

1-
0

LO
GI

C'
1-
0

LO
GI
C

108

u
CJo
•J
h-U]in
ID
2:
HH

»— IQW

Fi
gu
re

4,
20
 -

BL
OC
K

DI
AG
RA
M

OF
 I

NP
UT
-O
UT
PU
T

UN
IT

- 1 0 9 -

4.10.2 Input-Output Logic
A block diagram of the input-output logic is

shown in Fig. 4.21. A brief description follows.

Reference to the ’’description of instructions"
(Appendix C) shows that, for an input-output instruction,
bit 9 specifies a 4-bit or 5-bit character, bits 12, 13
and 14 specify reader 1, printer and punch respectively,
and bits 15-19 specify the number of times the input-
output operation is carried out.

The NUMBER OF TIMES COUNTER (V) is used to count
the number of input-output operations. This is set initially
to correspond to bits 15-19 of the instruction; V is
decremented during the input-output operation; and the
condition V = 0 is used to terminate the execution of
the instruction.

The 1-0 READY LOGIC produces a composite READY
signal which depends only on those input-output units
specified by the instruction. This is the feature
which enables all input-output units to operate
simultaneously.

The presence of an UNWANTED CHARACTER in the reader
buffer (c.g. a 5th - bit character when a 4 - bit
character is specified) is treated as a NOT READY condition
for the reader. When this condition exists, the reader
is started to assemble the next character.

A cyclic left shift of the accumulator (K) precedes
each operation. The number of places shifted is 4 or 5
depending on whether bit 9 is 0 or 1 respectively.
This shift operation is under the control of the W counter.

After the contents of K have been correctly
positioned, the appropriate input-output cycles are
started. If the reader is involved, the reader buffer is
clocked into the least significant stages of K, and
the reader is then started to assemble the next character.
If the printer and/or punch are involved, the logic
generates the appropriate CLOCK 5 START pulses to output
the character represented by the least significant 4 or 5
stages of K.

- 1 1 0 -

The independent specification of input-output units
by individual bLts of the instruction is a most flexible
arrangement, andl produces many useful variants of the
instruction. Other bits of the instruction have been
reserved for reaider 2, a comparison of reader buffers
and 8-bit operation. These extensions will require little
or no change to the existing logic.

- 111-

Figure 4.21 BLOCK DIAGRAM OF INPUT-OUTPUT LOGIC

- 1 1 2 -

4.10.3 The ARCTURUS Auto Input
The ARCTURUS Auto Input is a special mode of operation

which causes information on tape to be read and stored in
consecutive memory locations. Such a feature is essential
for loading an assembly program into the computer.
The hardware for the Auto Input may be represented by the
following itemised steps : -

*START Press AUTO INPUT push-button to put the
computer into the AUTO INPUT phase.
Press START push-button.

*STORE Store K in location specified by contents
of U.

^INCREMENT Increment U.

*READ Read five non-fifth bit characters from
tape into K.

*TEST If terminating character # has been
read, go to * SET ; if not, go to * STORE.

*SET Set K into U and S.

*EXIT Leave the AUTO INPUT phase; enter the
FETCH INSTRUCTION phase.

*STOP. Stop.

The OPERAND COUNTER (the U register) is used to
specify the memory address. The operations "within the
loop" are (i) store K, (ii) increment U and (iii) read a
word into K. This is repeated until the terminating
character # (a fifth-bit character) has been sensed while
reading into K. When this happens, K is stored into U
as well as into the SEQUENCE COUNTER (the S register).
Before stopping, the computer leaves the AUTO INPUT
phase and enters the FETCH INSTRUCTION phase. This is
the normal "idling" position and represents the beginning
of a normal machine cycle.

- 1 1 3 -

The setting of K into U after If is sensed enables
the programmer to specify where the assembly program is
to be stored. The setting of K into S enables him to
specify the starting address.

Other ’’bootstrap" methods which have been used in
various computers include (i) the setting of an instruction
pair into the instruction register by a bootstrap push
button (Ref. 51) and (ii) the use of the input typewriter
for loading the assembly program (Ref. 46) . The use of
a pin-board store for the bootstrap routine also appears
to be a satisfactory arrangement.

The ARCTURUS Auto Input feature has made operating
procedures for the computer extremely simple. It did
not require an appreciable amount of hardware for its
implementation, but is as good as, if not superior to,
any of the schemes mentioned above.

- 1 1 4 -

4.11 COMMENTS ON FUNCTIONAL 5 LOGICAL DESIGN
A number of examples of the functional and

logical design of various sections of ARCTURUS have
been given. These designs have not been described in
detail but rather an outline of the design and a discussion
of some of the salient points have been presented. Because
of space limitations, descriptions of the design of other
sections of ARCTURUS must be omitted.

From the experience gained with the functional
and logical design of ARCTURUS, several general comments
and conclusions can be made.

A good design attempts to make good utilisation of
all the electronic circuits in the machine. While these
circuits have adequate margins for reliable operation, they
must be operated in such a way that the computing power
of the over-all machine is maximised as far as possible.
Towards this objective, the time delays associated with
every elementary operation, such as the time between
the setting and sensing of a flip-flop, must be known;
nominal times must be allocated to these operations to
ensure reliable operation, and then the design is carried
out so that as far as possible operating times equal to
the nominal values are allowed for every computer operation
irrespective of how elementary this may be. There is
no point in allowing more time than the nominal value as
this slows down the computer, and the hopeful expectation,
that the use of an operating time less than the nominal
value for perhaps only one of several hundred similar
circuit configurations will not depreciate the reliability
of the over-all system, is completely unfounded, as we
cannot assume that the worst-case conditions will not be
met by the circuit configuration in question.

There should be as much concurrency of operations
as possible. This is related to the aim of eliminating
unnecessary delays or the aim of allocating active
functions to all computer elements in as many computer
phases as possible. The degree to which this principle
can be applied, of course, depends on the structure of
the computer (in particular, the autonomy of component units)
and on the amount of buffering between the units.

- 1 1 5 -

In ARCTURUS, the multiplication and division procedures
can proceed concurrently with the regeneration of the
operand in memory, and the buffering of all peripheral
units enables the concurrent operation of all peripheral
units and the central processing unit.

A computer should contain well-matched
component units. There is, for example, little point
in providing extensive hardware for speeding up the
arithmetic unit if the computer is already severely
limited by the speed of its memory. A possible
mis-match between the peripheral units and the
central processing unit should also be considered.
In ARCTURUS, the arithmetic unit has an accumulate
time of \ / u s and a multiply time of 5 - /*s>
these speeds reasonably match the 3 /is cycle time
of the memory, and the unit can well accommodate
the 2 /is memory which is planned for the near future.
The peripheral units of ARCTURUS (see Section 4.10)
are adequate for a scientific computer of its class.

The designer of digital equipment must of course
give due consideration to the problems of circuit
delays and signal deterioration. As circuit speed is
an important design criterion, the problems of timing
often become critical, and a sound knowledge of all
circuit delays involved becomes very important.
This was particularly so for the design of the timing
and control units of ARCTURUS. In systems which use
diode-transistor logic, diode gates are found to be
fast and cheap, and the over-all speed of a circuit
configuration often depends to a great extent on the
number of transistor invert circuits in cascade,
(see Section 4.5). Hence configurations are chosen
to take full advantage of the speed of the diode gates and
the regenerative property of transistor invert circuits.
The regeneration problem does not exist with systems
which use integrated circuits as regeneration does in
fact take place in every circuit, and the main design
criterion for maximum speed is a minimum number of
circuits in cascade.

- 1 1 6 -

A thorough understanding of both the algorithms for
carrying out machine functions and the hardware required to
implement these algorithms is extremely important for the
:machine designer. The situation is not a static one as the
availability of new logical elements provides the designer
'with a challenge to make full utilisation of these elements
in the production of faster and more powerful digital
»computers .

- 117 -

CHAPTER 5
ARCTURUS - CIRCUIT DESIGN

5.0 ____ DESIGN APPROACH
5.0. 0 General considerations
5.0. 1 ARCTURUS circuit design

5.1 ____ CIRCUIT TYPES $ CHARACTERISTICS
5.1.0 Characteristics of selected circuits
5.1.1 Summary of types 5 characteristics

- 1 1 8 -

5. Q DESIGN APPROACH

5,0,0 fieneral Considerations
There is a wealth of information in the literature

on the design of transistorized circuits for digital
computers , This information is in the
form of books, papers, correspondence, design handbooks
and manufacturer’s application notes,

"Proper functioning" of the circuit
is, of course, the primary requirement to be satisfied
by any design procedure. This requirement may narrow
the choice of circuit types and may introduce constraints
on the parameters of the circuit, but it does not lead to
a specific set of parameters. Some form of "optimisation"
must be applied or additional design criteria must be
satisfied to oroduce a specific set of parameters from
which an actual circuit may be constructed.

Optimisation in computers is that mechanization
of equipment which results in maximum performance at
minimum cost , To achieve such an objective,
designers of computer circuits not only must be
proficient in electronic circuitry, but must understand
logical design, and must be familiar with manufacturing
techniques - both for the basic electronic components
and for the synthesis of the complete computer system.
This is clearly so as the minimisation of over-all costs does
not depend solely on the cost minimisation of isolated
electronic circuits. Costs can be reduced, for example,
by a simplification of packaging techniques or by a
relaxation of specifications and tolerances of power
supplies, or again by an increase in reliability as this
reduces commissioning and servicing costs.

The first step in the design of logical circuits
for a computer is the derivation of circuit specifications.
For example, the objectives for the delay per gate, fan-in
and fan-out must be specified. These specifications
can be obtained only by an examination of the logical
design of those sections of the computer which demands
the severest circuit requirements. In a conventional
computer configuration, the adder could well be expected
to determine these requirements.

- 1 1 9 -

The next two stteps invol\e an evaluation of
components and types off circuits. Simple procedures
for checking transistorr parameteis, and possibly a
computer program to corrrelate these parameters with
the delay produced when i inserted in circuit would be
extremely useful. For the development of a large-scale
system, the evaluation cof types of circuits could even
involve the constructionn of small prototype systems using
different circuits.

With the type otf circuit ;elected, the final
step in the design is ann optimisa:ion of this circuit.
This could be carried ouut using a "worst case design"
procedure (Ref. 52). The desigi of the basic logical gate
for the UNIVAC-LARC (Reff. 53) .s an example of a
worst-case design. Worsst-case coisiderations produced
6 equations in 14 indepeendent unkiowns. Some of these
unknowns were selected sso that a ligh percentage of diodes
and transistors from thee manufactirers could be used;
others were selected to minimise jower requirements.
Other criteria were intrroduced until 6 equations in 9
unknowns remained. Thesse were then determined through
an optimization of speedd.

As systems becomme larger aid design problems more
complex, the circuit dessigner must take full advantage
of the digital computer to assist in the design.
Programs have been writtcen for the design of computer
circuits (Ref. 54) ; sonme of thes? use linear
programming techniques (fRef. 55). Circuit design using
graphical input-output ddevices (Ref. 56) seems to
have an exciting future.

5.0.1 ARCTURUS Circuit. Design

The circuit desi^gn for ARCnURUS was carried out
with the background knowlledge of a complete range of
computer circuits used ir.n two earl.er computers, viz ; -
the digital differential analyser aDA (Ref. 1) and
the general purpose digittal computer SNOCOM (Ref. 4).
All three computers make use of the same type of basic
logic circuitry viz : - ppositive lcgic diode AND-OR gates
and P.NP transistor INVERTT circuits. However the circuits
in ARCTURUS utilise betteer semiconcuctor devices and circuit
modifications have been mmade to male these circuits far
superior to those in the earlier machine.

- 1 2 0 -

There was much overlapping of logical design
and circuit design in the ARCTURUS project. An
appreciation of the circuit requirements of a tentative
logical design enabled diode and transistor types to
be selected and a range of logical circuits to be
constructed. An appreciation of the circuit capabilities
by the logical designer enabled final improvements to the
design to be made by making full utilisation of the
circuits.

The design criteria of maximising speed, fan-in,
fan-out, noise rejection, component tolerances
and supply tolerances, and of minimising power requirements,
heat dissipation, temperature sensitivity, component
rejection and constructional costs were all considered
in varying degrees to obtain a range of logical circuits
which could be produced in quantity using the facilities
of a small research laboratory.

The development of these circuits was carried
out by Mr. K.R. Rosolen. The author is deeply indebted
to Mr. Rosolen not only for developing these circuits
but for the role he played in all stages of the ARCTURUS.
project. Examples of these circuits and a brief
description of their characteristics follow.

- 1 2 1 -

5.1_____ CIRCUIT TYPES AND CHARACTERISTICS

5.1.0 Characteristics of Selected Circuits
Examples of circuit configurations are shown in

Figs. 5.0, 5.2, 5.4 and 5.6, All circuits operate
with + 1 volt and -1 volt as the ONE and ZERO signals.
Positive logic is assumed unless otherwise stated.

The logic circuit of Fig. 5.0 shows a typical
configuration containing an AND-OR-EF-AND-OR-EF-INVERT-EF
logic chain. Typical waveforms through such a chain are
shown in Fig. 5.1. An evaluation of waveforms like this
indicated that the longest logic chain without
regeneration should be limited to an AND-OR-EF-AND-OR-EF
configuration. This limitation was never exceeded in the
design of the computer; moreover regeneration after fewer
logical circuits in cascade was considered wise for some
important, heavily-loaded circuits.

The output of the INVERT circuit is a 0 volt/ -2
volts signal. This is shifted positively (by 1 volt) by
the divider circuit associated with the final emitter
follower. The use of diodes in this circuit produces a
voltage shift without an attenuation of signal amplitude.
The use of dividers in the outputs of INVERT circuits
rather than in the outputs of the AND gates (which was the
method used in ADA and SNOCOM) has resulted in a significant
component reduction.

Resistor values of approximately double those
indicated in Fig. 5.0 were in fact used in earlier circuit
configurations. The reduction of these resistor values
has increased speed at the expense of increased power
requirements.

Typical waveforms associated with the storage
gate flip-flop of Fig. 5.2 are shown in Fig. 5.3. A storage
gate consists of a resistor-capacitor network which
operates on the flip-flop input as an integrating circuit.
The output of this circuit is sensed (i.e. gated)by the
clock, and the clocked signal is applied to the input of the
flip-flop.

- 122-

The use of storage gates enables setting and resetting
signals to flip-flops to be removed at clock time.
This property is required by designers of single-phase,
synchronous logic systems. Storage gates are used
extensively in ARCTURUS for accumulating, shifting and
counting.

The waveforms C and D of Fig. 5.3 show the
delays involved in the clocking and sensing of a
storage-gate flip-flop. These waveforms were generated
by the REPEATED OPERATIONS LOOP. In this part of
.the machine, the G flip-flop (which is a storage-gate
flip-flop) is clocked by a T^p pulse, and is used
to gate a T - ^ ^ 5 pulse which follows 125 ns after T^p
(see section 4.2.2). The waveforms show that the G
flip-flop has settled well in advance of the T - ^ 5

pulse. Waveforms like these indicate the circuit
tolerances which exist in the computer.

The binary counter circuit of Fig. 5.4 essentially
consists of a storage-gate flip-flop whose inputs and outputs
are cross-coupled. The addition of the GATE input
(see Fig. 5.4) and the associated diode-AND gate enables
parallel binary counters to be constructed using
the basic binary counter circuit (see Section 4.6.3).
The RESET, INPUT and CLOCK inputs enable the binary
counter to be initially set to either state using a
reset-set cycle. Waveforms associated with a ten-stage,
parallel, binary counter are shown in Fig. 5.5. As
GATE signals are established for all stages of the
counter in the bit-period prior to the activating COUNT
pulse, all stages switch almost simultaneously.
There is no appreciable delay between the switching of
the least-significant stage and the most-significant stage
(as there is with a serial counter formed by cascading a
number of stages), and depending on variations in
switching speed, it is even quite possible for the most-
significant stage to switch just before the least-significant
stage. The waveforms of Fig. 5.5 verify these remarks.

A circuit diagram of a positive trigger monostable
multi is shown in Fig. 5.6. Such a circuit can have
several trigger inputs each of which can be controlled by
a gate signal. As the resistor-capacitor network used for
this purpose represents an integrating circuit

- 123 -

when viewed froim the gate terminal, the gate signals
must be established well before the front edge of the
trigger input pulse. When these conditions are satisfied,
the monostable multis with their gated input signals are
extremely useful for the insertion or deletion of timing
waveforms in chains of timing waveforms. This requirement
was met several times in the design of the timing unit
for ARCTURUS. Typical waveforms produced by a chain of
monostable multis are shown in Fig. 5.7 . All waveforms
are variable in period with a minimum of about ̂ s >
and a maximum determined by the value of the capacitor
which is shown with the typical value of 470 pf in Fig. 5,6

A second type of monostable multi which triggers
off the back edge of the input signal can have a period
down to 100 ns, and is used extensively in the timing
unit of ARCTURUS, Typical waveforms produced by this
type of circuit are shown in Fig. 5.7.

- 124-

>NO
♦

<V|
fNl

>NO♦

COE~*IDcxz

onHIDXZ

onF—ID
CLz

Fi
gu
re

5,
0

-
TY
PI
CA
L

DI
OD
E-
TR
AN
SI
ST
OR

LO
GI
C

CI
RC
UI
T

CO
NF
IG
UR

AT
IO
N

- 125 -

/
: \

1 11 f ■
■"T-f t "T

/

" T - f - f f T f t T " r - T ' t t M M (" f f t fill

»

:

(A) Input waveform

(B) Waveform after AND-OR-EF

(D) Waveform after AND-OR-EF-AND-OR-EF-INVERT-EF

Figure 5.1 - WAVEFORMS OF DIODE-TRANSISTOR LOGIC CIRCUITS
(10 ns/cm, 1 volt/cm)

126

Fi
gu
re

5.
2

-
CI
RC
UI
T

DI
AG
RA
M

OF

ST
OR
AG
E-
GA
TE

FL
IP
FL
OP

- 127 -

1 ft ! ft ft ft ft ft i i I a r
M ! ! f t 1 f 1 1 1 1 t t t t i H i r r 1 1 f T f t M 1 t

- J

I
1

V

(A) Flip-flop operating at 4 MHz clock-rate
(100 ns/cm)

(B) Flip-flop operating at 12 MHz clock-rate
(100 ns/cm)

Top.
* ^ 1 2 5

. r " - "

■ • ■ i ft • ft fti1t i f f t t f f t t f t • I f 1 ■T t t f f ' T T " f f f f

•
*

---------------- "J

(C) Flip-flop clock-pulses (from repeated-
operations loop) - (50 ns/cm)

G

1
ft ft i i

t i l l f i l l t i l l t * t t

(D) Flip-flop switching (50 ns/cm)

Figure 5.3 - STORAGE-GATE FLIP-FLOP WAVEFORMS
(1 volt/cm)

♦
6

v

128

H=>Cu
H
O
Wzo

Fi
gu
re

5,
4

-
CI
RC
UI
T

DI
AG
RA
M

OF

BI
NA
RY

CO
UN
TE
R

- 129 -

(A) Count pulse (50 ns/cm)

• -H

i m i "
r i t l i i i i i 1 I 1-4-M M M M f 1 t 1 ♦ t t ♦ M M /M M f t T'"t • I f f

j
(B) Switching of least-significant stage

(50 ns/cm)

{
I f f ! tT T T I I I I • H T t 1 1 I I 1 1 - r t '

1

(C) Switching of most-significant stage
(50 ns/cm)

(D) Least-significant stage operating at 4 MHz
(100 ns/cm)

Figure 5.5 - WAVEFORMS OF TEN-STAGE, PARALLEL BINARY COUNTER

130

Fi
gu
re

5.
6

-
CI
RC
UI
T

DI
AG
RA
M

OF

PO
SI
TI
VE
-T
RI
GG
ER

MO
NO
ST
AB
LE

MU
LT
I

- 131 -

(A) Superimposed memory timing waveforms generated by a
train of positive-trigger monostable multis (500 ns/cm)

TRIGGER
ONE OUTPUT

(B) Switching delays of positive-trigger monostable multis
(100 ns/cm)

(C) Superimposed timing waveforms generated by a train of
negative-trigger monostable multis (100 ns/cm)

(D) A train of four pulses produced by negative-trigger
monostable multis and a binary counter (200 ns/cm)

Figure 5.7 - WAVEFORMS OF MONOSTABLE MULTIS (1 volt/cm)

- 132 -

5.1,1 Summary of circuit characteristics
The characteristics of the logical circuits used

in ARCTURUS are summarised in Table 5.0. Only those
parameters which are representative of over-all circuit
performance, and which are of major importance to the
logical designer are listed in this table. For example,
although the output of an AND gate may feed one OR gate,
one flip-f-lop or one emitter follower, these do not
represent the maximum fan-out of the gate, and the use
of the basic AND-OR-EF and AND-OR-INVERT-EF configurations
in a large part of the machine makes figures for the
fan-out of individual AND and OR gates of much less
importance than figures for the over-all circuit configuration.
It is, however, to be noted that where individual AND or OR
gates generate signals which are transmitted through the base
of the computer, emitter followers are always used. Under
these circumstances, the stray capacitance of the signal
wire to ground and to other signal wires is often of more
importance than the load introduced by other logical circuits.
It is also to be noted that emitter followers are used with
all outputs of all monostable and bistable circuits.

Although tests on circuit characteristics such
as noise rejection, power supply tolerance, component
tolerance, temperature sensitivity and vibration
sensitivity were carried out on the logical circuits,
no attempt has been made in Table 5.0 to list these
characteristics quantitatively.

It can be seen from Table 5.0 that the number of
basic circuit types used in ARCTURUS is not large.
However these circuits may be arranged into an unlimited
number of different configurations. The size of the
package used to hold the circuits and the number of pins
in the package connectors introduce constraints. As well
as satisfying these constraints, circuit configurations
for the packages are designed to maximise switching
capabilities of the package and to provide the logical
designer with larger, functional building blocks. These
topics will be treated in the next chapter.

- 133 -

TABLE 5.0
Summary of Circuit Characteristics

CIRCUIT TYPE CHARACTERISTIC

AND Fan-in : 2-8 (typical)
: 20 (special gate)

Delay : 2-4 ns
OR Fan-in : 2-10

Delay : 2-4 ns
INVERT Delay : 30-40 ns

EF(Emitter follower) Fan-out: >15
Delay : 2-4 ns

AND-OR-EF Delay : 5-8 ns
AND-OR-INVERT-EF Delay : 35-45 ns
R-S flip-flop 1
Storage-gate FF (
Binary counter f

Shift register J

Turnover time : 80 ns (typical)
Max. repetition rate:

4 MHz (design spec.)
8 MHz (typical)

Positive-trigger Min.pulse period : ̂ ys
monostable multi Pulse rise time : 30 ns

Mark-space ratio : > 2:1
Negative-trigger Min. pulse period:
monostable multi 125 ns (design spec.)

90 ns (typical)
Pulse rise time : 12-15 ns
Mark-space ratio: > 2:1

Clock driver Load: .0015 yf (typical)
Pulse rise time 10-20 ns
Pulse width 125 ns

Memory driver Current output 100 ma
Pulse rise time 80 ns
Pulse width 1 ys

- 1 3 4 -

CHAPTER 6

ARCTURUS - CONSTRUCTIONAL TECHNIQUES $ COMMISSIONING

6.0 PACKAGING
6.0. 0 Standard packages
6.0. 1 The KL package
6.0. 2 Package tests

6.1 BASE-WIRING
6.1.0 Specification
6.1.1 Noise minimisation
6.1.2 Base-wiring checks

6.2 ENGINEERING CONSTRUCTION
6.2.0 Machine layout
6.2.1 Consoles
6.2.2 Auxiliaries

6.3 COMMISSIONING PROCEDURE
6.3.0 Sectional tests
6.3.1 Built-in engineering tests
6.3.2 Total system tests
6.3.3 Test programs

- 135-

6.0 PACKAGING

6.0. 0 Standard Packages
The method of package construction was essentially

the same as that used in ADA and SNOCOM. The electronic
components are pushed into holes in a polythene card
which is held in juxtaposition with one or more Cannon
plug(s) by a stainless-steel band. Two sizes of packages

7 ttare used ; their dimensions are approximately 1? x 4"3»» i»» 4and 3̂ x 4̂ ; and they contain 15 pins and 55 pins
respectively. Photographs of packages are shown in
Fig. 6.0 and Fig. 6.1. Examples of component layout diagrams
which are required for the construction of the packages
are shown in Appendix A.

The majority of packages in ARCTURUS are of the
15-pin type. In the design of these packages, the main
objectives were to construct as much of the computer as
possible using a small number of different types of
packages, and to keep all non-standard packages as simple
as possible. Logic diagrams of the standard packages
used in ARCTURUS are shown in Appendix B.

6.0. 1 The KL Package
The 55-pin, KL package contains one stage each

of the K register, the L register, the ADDER and the
DISTRIBUTOR-FUNCTION-SELECTOR. These large packages
which are innovations found only in ARCTURUS, were used
to minimise inter-package wiring (base-wiring). This
results in a reduction of signal delays and pick-up
of extraneous noise. In the design of fast computers,
long inter-package wiring introduces significant delays,
and hence the layout of the packages within the main-frame is
extremely important. An extension of the principle used
in the KL packages, viz. the packaging of corresponding
stages of all registers and the adder in the same package
might be a worth-while consideration. The use of integrated
circuits would make this idea quite feasible , and the
resultant package would not be unmanageably large.

A logic diagram of the KL package is shown in
Fig. 6.2. Most of the symbols used in this diagram are
listed in Section 4.0. As the present discussion is
concerned with the principles of packaging rather than
details of logical design, the remaining symbols will not be

- 1 3 6 -

Fig. 6.0 - PHOTOGRAPHS OF PACKAGES

inch 1 2 3
I_________I_________I_________ I

- 138-

6.0.2_____ Package Tests
As part of the commissioning procedure, all

packages were subjected to the following tests : -
(i) Visual inspection of all soldered joints.

(ii) Visual check of wiring according to the
component layout diagram.

(iii) Static tests to check the logical functioning
of the package according to the logic diagram,

(iv) Dynamic tests to check the dynamic performance
of the package with every input of every gate
connected to a pulse generator in turn.
Unacceptable circuit delays, oscillations
and ringing were detected by this test.

In addition to the above tests, selected
packages were given temperature and vibration tests.
These packages were subjected to alternate blasts of
hot and cold air generated by a hot air blower and an
improvised blower system using liquid air. Results of
these tests were very favourable, and indicated that
temperature sensitivity of the circuits was not a major
problem. Vibration tests using a motor operated cam
were used to check the performance of plugs and sockets and
to locate suspected dry joints. Combined temperature and
vibration tests gave some indication of the durability of
the complete package. These tests, which often lasted
many hours, augmented confidence in the circuits and in
their method of construction.

- 139 -

6.1 BASE-WIRING

6.1.0 Specification
Wiring lists were obtained from the logic

diagrams of functional units of the computer (such as
the timing unit diagram and the input-output unit
diagram). This information was transferred to a
large 10* x 3* base-wiring diagram, which contained
information about every package in the main-frame
of the computer. An extract from this diagram which
shows information pertaining to a particular package
is shown in Fig. 6.3.

To minimise errors in the large base-wiring
diagram, a system of cross-referencing was introduced.
This diagram contains not only a list of destination-
points to which the package outputs are connected,
but also a list of source-points from which signals
are derived for the package inputs. Discrepancies in
the system clearly reveal errors in wiring or in
specification; these are checked out thoroughly and
eliminated.

The large base-wiring diagram has proved
useful in another way. The diagram provides a picture
of the layout of the entire main-frame, and is extremely
useful for choosing the optimum position of a package.
The KL clock driver package is a good example of a
package where, operation can depend on its position within
the ma‘in-frame. As the KL packages are arranged in line,
and extend over several feet of the main-frame, the
positioning of the clock drivers near the centre of
these packages would minimise wire lengths for the clock
lines. This would minimise signal overshoot, and also
minimise the variation of the signals applied to each
KL package. The above considerations were found to be
extremely important, as the KL clock driver package
was in fact moved to a position near the centre of the
KL packages to improve the reliability of the computer.

6.1.1 Noise minimisation
Tests on the main-frame of the computer showed

that the transmission of a 100 ns pulse (with a rise
time of 10-15 ns) from one end of the main-frame to the
other produced severe ringing.

- 1 4 0 -

To overcome this and other noise problems, it was
decided to introduce a ground-plane. Unfortunately,
when this decision was made, most of the base-wiring
had already been carried out, and hence it was necessary
to form the ground-plane by inserting a grid of copper
strips (with silver and gold flashing) behind the wires,
and by soldering the strips at all cross-over points.

Noise on voltage lines has been minimised by
providing an even distribution of filter capacitors
through-out the main-frtf^^. These capacitors are
connected between all voltage lines and the ground
plane.

Where capacitive loading is important, wires
are held well clear of the ground-plane and well clear
of other wires by threading them through a number of
stainless-steel wire-mesh brackets.

The above features for noise minimisation are
illustrated in the photographs of Fig. 6.4. Since the
incorporation of these features, most signal waveforms
have been extremely "clean", and pickup of self-induced or
extraneous noise has not been a problem.

6.1.2 Base-wiring Checks
As part of the commissioning procedure, a

thorough check of the base-wiring was made. All points
in the base were firstly inspected for dry or badly
soldered joints. As all wires in the base were colour
coded (e.g. blue-white wires for J signals, green-yellow
wires for clocks and so on), a joint with two different
coloured wires connected to it was immediately suspected
of being wired incorrectly, and a thorough check of all
wires connected to this joint would be made.

A check on the continuity of wires according
to the base-wiring diagram was made using a system of
probes and a buzzer. The cross-referenced specification
of base wires (mentioned earlier) revealed many mistakes.
A test for the discontinuity of every pair of signal
lines was not attempted because of the time required for
such a test. However all voltage lines and some important
signal lines were in fact checked for discontinuity.

PACKAGE NO DESCRIPTION

PACKAGE TYPE

PIN NO.

06-6 p p K Î5 K I0
07

/ H to
z — 6 v R,s3
4-

3A/h - t
- 2 v

D* 34/22- 4
2!*/2S 4

¿4/2J- 8

s £ 54/21 8^ / 4 ^2 1 -f 5.«
7
8
q

3A/2I-7
14/14-G

o /p ■
o/p

14-ftf21-7
O/p
o /p

I 4 / / 4 G

TNU,o
Ratz.

JÒ 14

IO
U
IZ
/ 3
14-
15

R /o R/o

V »

Rdz.

3ft/2t- 4
10/02 <7
m /2 4 4
lfi/2t <7
54/ 21-7

If/02 <7
¿4/21-7

OUTPUT

DESTINATION
POINTS

SOURCE
POINTS INPUTS

POINT SPECIFICATION : S A / 21 . 7

Lt— BLOCK NO.
PACKAGE NO.

—SOCKET (IF NECESSARY)
— PIN NO.

Figure 6.3 BASE WIRING SPECIFICATION

- 1 4 2 -

Fig. 6.4 - PHOTOGRAPHS OF BASE-WIRING

- 143-

6.2 ENGINEERING CONSTRUCTION

6.2.0 Machine Layout
Photographs of ARCTURUS appear in Fig. 6.5.

The main-frame of the computer containing the memory,
arithmetic and control units rests on top of a
Steelbilt desk. The main console which is connected
to the main-frame by short cables is located
centrally on the desk for the convenience of the
machine operator. The pedestals of the desk and the
section between the pedestals contains power controls,
power supplies»cooling fans and metering facilities.

The input-output unit consists of a long,
narrow desk and a small cabinet. The reader and printer
rest on top of this desk and the pedestal contains
the Teletype BRPE punch. The small cabinet contains
the input-output console and all the electronic
circuitry required for the autonomous operation of the
peripheral units. The layout of the input-output unit
was suggested by experience with SNOCOM, and has been
found to be very convenient for the efficient handling
of paper tape,

6.2.1 Consoles
A photograph of the main console is shown in

Fig. 6.6. There are two sections of this console.
The lower section contains all the pushbuttons and
switches which are frequently used by the machine
operator. This section i6 clearly engraved and the
console arrangement is kept as simple as possible.
The upper section contains monitors for all machine
registers and the controls for built-in engineering
tests (see Section 6.3.1). A toggle register in this

t
section of the console is also used occasionally by
the machine operator.

A photograph of the input-output console is shown
in Fig. 6.7. The engraving of this console is illuminated
in sections.

- 144-

Each section contains the monitors and controls
for each peripheral unit, and only those sections
corresponding to operative peripheral units are illumin
ated. The data flow between these units is also represented
by illuminated engraved lines. This feature was found
to be very useful particularly when the peripheral units
were operated off-line as an editing set. Under these
conditions, such a feature would significantly reduce
operators* errors.

6,2,2 Auxiliaries
The power supply required by ARCTURUS is a

single-phase, 240 V A.C. supply which is readily
available from a wall outlet. The A.C. power controls
are housed in the left-hand pedestal of the Steelbilt
desk. Experience with SNOCOM suggested that a Variac
control of the A.C. power to the D.C. power supplies
was wise (if not absolutely necessary) to minimise
the effects of switch-on and switch-off transients.
A Variac for this purpose was used in ARCTURUS.

The D.C. power supplies were constructed as
separate, modular units. Design of power supplies for
general-purpose, laboratory use (Ref # 57) were
utilised, but modifications to these designs were
required by some high-current, high voltage supplies.
Potentiometer controls to vary the output voltage of
each supply within a limited range are provided, and are
used in marginal tests on the computer. Metering
facilities to monitor currents and voltages of all
supplies are housed in the right-hand pedestal.

Cooling fans for the general cooling of the
main-frame and for the cooling of specific components
(such as the resistors in the memory drive amplifiers)
are mounted at strategic points throughout the computer.
Forced air ducts are also used in the main-frame.

The transistor amplifiers for the monitor
lamps are mounted in units located as close to the
base of the main-frame as possible. This arrangement
minimises the capacitive loading of signal lines.

- 1 4 5 -

Fig. 6.5 - PHOTOGRAPHS OF ARCTURUS SHOWING MACHINE LAYOUT

- 1 4 6 -

Fig. 6.6 PHOTOGRAPHS OF MAIN CONSOLE

& & & & < & < « > (& < & S
1 SHOT

8 7 6 5 4 3 2 1
---------------------- MANUAL OUTPUT------------------------- I____

/ —
M O D E

---------- \

5 N O R M A L A
1 1 V t ?

& & f e)

8 A OK b B

V J

POWER START STOP 1 SHOT COMPUTER

t f ’ ?

OFF P U N C H

READY •

RU N
OUT

r OFF P R IN T E R

READY •

UPPER Ä LETTER -
C ASE w SHIFT

' j

\ ____

• •
5 4

• • •

3 2 1

Fig. 6.7 - PHOTOGRAPH OF INPUT-OUTPUT CONSOLE

- 147 -

6.3_____ COMMISSIONING PROCEDURE

6.3.0 ___ Sectional Tests
After the package and base-wiring tests

described in Sections 6.0.2 and 6.1.2 had been carried
out, the next stage of the commissioning procedure
involved groups of packages plugged into the main
frame. Groups of packages representing, for example
the main timing unit or a complete binary counter
were tested in their correct positions in the main-frame,
but the control signals and drive pulse were produced
externally.

The tests carried out on the first few groups
of packages were initially very simple, but as more
and more packages were gradually plugged into the
main-frame, tests involved larger sections of the
machine and hence became more comprehensive.

When sufficient packages were in the main-frame
to enable the built-in engineering tests to become
effective, the following stages of the commissioning
procedure made full utilisation of these tests. They
were, in fact, sufficient for testing the remaining
sections of the machine prior to tests on the total-
system.

6.3.1 ___Built-in Engineering Tests
The built-in engineering tests are basically

very simple, but are extremely useful. These tests
require a small amount of additional logic to inhibit
some important machine signals, and to insert, in their
place, some test signals in the form of a single pulse
or a pulse train. These tests are carried out under
the control of toggle-switches and push-buttons located
in the top section of the main console.

As the functioning of the computer depends so heavily
on the correct functioning of the main timing unit, a
built-in test of this unit is provided. By replacing the
normal START pulse by a train of pulses from a pulse
generator, all timing waveforms may be monitored.

- 148-

With the timing unit operating satisfactorily,
single-shot tests can be carried out to check every
machine function. Extensive use is made of a toggle
register which enables information to be set into
all registers. By setting the instruction register
(the R register) to hold different machine instructions
in turn, all instructions may be checked out on a
single-shot basis. By inhibiting the R clocks (at
present carried out by removing the R clock package),
all instructions may be obeyed repeatedly to enable
all relevant control and timing waveforms to be
monitored.

As test switches are used to break not only the
main timing unit but also the V and W loops as well,
elementary steps involved in the execution of a complex
instruction (such as the INPUT-OUTPUT instruction)
may be tested on a single shot basis.

The MJI (Memory-to-J Inhibit) switch has been
found to be extremely useful. By using this switch,
tests on the arithmetic and control sections of the
machine can be carried out quite independently of the memory,
as the required instruction or operand may be set up
artificially in J using the toggle register.

Although the tests described above are basically
very simple, they were found to be extremely useful in
the early stages of commissioning for the location of
machine faults. The additional' controls required by these
tests also provided a means for storing information,
and this resulted in the first operation of ARCTURUS
as a stored-program computer.

6.3.2 Total-system Tests
Prior to a series of tests using programs read

from tape, tests on the "total-system” were carried
out with the machine executing simple programs stored
a word at a time using the console switches. The aim
of these tests was firstly to determine the optimum
settings of important adjustable controls, and secondly
to obtain some indication of the sensitivity of the
total system to temperature changes and to external
noise sources

- 1 4 9 -

Marginal tests involving a variation of all
voltages in turn were carried out to determine the
range of voltages over which reliable operation was
produced. '’Optimum” settings of these voltages were
then chosen near the middle of these ranges.

Some voltages used only by the memory unit determine
the memory drive currents, and hence were very critical.
To determine the optimum settings of these voltages,
modifications were made to the machine to read from (and
write into) all locations of the memory in turn. In this
way, superimposed playback waveforms from all locations could
be viewed on a C.R.O., and optimum settings not only of the
memory voltages, but also of the important STROBE pulse, could
be determined. It is anticipated that modifications
for this test will be incorporated into the "built-in
engineering tests” at a later date.

Temperature sensitivity tests involved blasts
of hot and cold air directed at sections of the machine.
These tests were useful for locating several marginally
faulty circuits.

Noise immunity tests involved turning equipment
in the computer room on and off. The machine was only
affected when the same A.C. line was used. This suggested
that a further improvement in machine reliability could be
obtained by the use of an isolating transformer and/or
line-filter.

6,3.3 Test Programs
A whole range of very simple test programs each

involving only one or two words was written to check the
execution of every instruction. As the instruction under
test was obeyed repeatedly, all timing and control signals
associated with this instruction could be monitored. These
programs were found to be very useful.

Memory dumps were found to be useful not only for
debugging programs, but also for testing the machine.
The more complex output formats which are useful for
debugging programs were, of course, not necessary for
testing purposes, and the sexadecimal dump was invariably
used.

- 150 -

A memory test program tested every location with
different test patterns • With the test program stored
in the first half of the memory, the test pattern (read
from tape) was stored in every location of the second
half of the memory; the fetch-and-compare operation was
then applied to each location in turn, and a print-up of
all faulty locations (if any) was produced. By copying
itself into the second half of the memory, the test
program can test the first half. The whole procedure was
repeated many times using different test patterns.

It is to be noted that, with the memory test
program described above, the test pattern is stored
in many locations before any fetch-and-compare operation
is carried out. This is a more severe test than one
which consists of a succession of store-fetch-and-compare
operations. This is so because in the program which is
described, all ferrite-cores corresponding to the test
location are subjected to many half-read pulses before a
full-read pulse is applied.

During its first five months of operation, ARCTURUS
was found to be very reliable, and extensive test
programs have not been found necessary. However, the use
fulness of a single, comprehensive test program which
tests all machine functions and produces a diagnostic
print-up is fully appreciated; and in anticipation of
an increased work-load for the machine, which puts more
emphasis on the machine’s reliability, such a test program
is being planned.

CHAPTER 7
ARCTURUS - PROGRAMMING

7.0 THE ASSEMBLY PROGRAM API
7.0. 0 Introduction § description
7.0. 1 Program structure Ç coding

7.1 ___PROGRAMMED-OPERATORS
7.1.0 Programming arrangements using API
7.1.1 Examples - Double-length arithmetic
7.1.2 Examples - Floating-point arithmetic

7.2 SUB-ROUTINE HIERARCHY
7.2.0 Jump-to-subroutine instructions
7.2.1 Subroutine hierarchy instructions

7.3 ___ SOFTWARE DEVELOPMENT
7.3.0 Present situation
7.3.1 Plans for the future

- 152 -

7.0 THE ASSEMBLY PROGRAM API

7.0,0 Introduction § Description
Prior to the development of API, all programs

for ARCTURUS were written in binary. This entailed
working out, from the description of ARCTURUS instructions
(Appendix C) , the binary patterns (or sexa
decimal characters) corresponding to every instruction
in the program.

Assembly Programs simplify program preparation
for digital computers. One of the main reasons for
their use would be to facilitate the use of the program
library. The Assembly Program API is a basic assembly
program in that only the features which were considered
"essential" for the efficient programming of a small
scientific computer with limited storage capacity were
incorporated. A description of this program follows.

Instructions in API use the sexadecimal character set
0-“9, + ,-,N,J,F,L. The format of these instructions is :

TYPE INDIRECT
ADDRESS

DECIMAL
ADDRESS

TERMINATOR

TT J AAAA

+ (31 Characters)
- SS
N
F
L

The symbols used in the above instruction format
are defined below : -
TT The symbols TT represent two sexadecimal characters

which specify the instruction type. The characters,
for machine instructions, range from 00 to 1L; and
for programmed operators from 20 to 3L.

J The character J specifies indirect addressing. If
indirect addressing is not required, this character
is omitted.

- 153-

AAAA

♦

(i)

(ii)

(iii)

(iv)

(V)

- SS

N

F

L

The symbols AAAA represent a decimal number
which specifies an address or a pseudo-address
representing an instruction variant. The number
may contain any number of decimal digits from zero
to six inclusive, but must be less than or equal to
524287. If no address is specified it is assumed
to be zero.

The terminator ♦ specifies a change of directive.
Details of the operations initiated by this
terminator are as follows : -

The block number is incremented by one.

The block number is printed. Blocks are
numbered 20 (sexadecimal) onwards to correspond to
the locations in which their starting addresses
are stored.

The 31 five-bit characters on the tape following
the character ♦ which constitute a "program-
identifier” are read and printed, but not stored.

The block-start-address is printed. The block-
start-addresses are stored as a list starting
from location 20 (sexadecimal). These addresses
may form part of unconditional-transfer instructions
required by programmed-operators.

The block-start address specifies the location in
which the first assembled word of the next block is
to be stored.

The terminator - specifies that the address which
it follows is to be considered relative to the
starting address of the block specified by the
two sexadecimal characters SS.

The terminator N specifies that the instruction is
to be obeyed and not to be stored.

The terminator F specifies that the address which
it follows is a fixed address (i.e. relative to
address zero).

The terminator L specifies that the address, which
it follows is to be considered relative to the
starting address of the current block.

- 1 5 4 -

After API is loaded, the initial conditions of
the program are : -

(i) The address of the instruction which stores
the assembled-instruction is 32 (decimal).

(ii) The block number is 1L (sexadecimal).

Features of API are : -

(i) The operation codes for "programmed operators"
form a logical extension of the operation codes
used for machine instructions.

(ii) Indirect addressing may be specified independently.

(iii) Operand addresses are specified in decimal.
(iv) Programs may be readily assembled using blocks of

instructions with each block consisting of either a
library sub-routine or one section of the user’s
program.

(V) Relative addressing with respect to the beginning
of the block being currently assembled or with
respect to the beginning of any specified block
is provided.

(vi) Closed sub-routines may be assembled and then
executed before the rest of the program is assembled
under the control of API.
(This is accomplished by terminating a JUMP TO SUB
ROUTINE instruction with the character N).

(vii) Program identifiers are printed to provide a permanent
record of the programs being used.

(viii) The assembled program may be started at any fixed
address or at the beginning of any specified block.

Some instructions, such as the REGISTER TRANSFER
instruction, use individual bits of the instructions to specify
independent•control functions. This results in a large
number of variants for these instructions. No provision is made
in API for the independent specification of control functions.
However, the severity of this limitation is significantly reduced
by the extensive use of the pre-compiled lists of corresponding
instruction variants and pseudo-addresses. Examples of these
lists are shown in Appendix E.

- 155 -

7.0.1______Program Structure $ Coding
The program structure of API is shown on page 1 5 6

the detailed coding is shown in Appendix

There is some difference of opinion concerning
the usefulness of flow diagrams for the description of
computer programs. One world-renowned computer authority
(Ref. 58) has stated that their usefulness has been
over-rated, while other experienced programmers continue
to make extensive use of them.

In an attempt to find a suitable substitute for
the flow diagram, the Author has made use of what he calls
a ’’program structure". This consists of a list of program
statements, some of which are associated with a label.
Program statements are to be considered sequentially (from
top to bottom), unless a break in sequence is called for by
a GO TO or IF-GO TO statement.

The API program contains 57 words. As this
program is to be used many times and memory space is at a
premium, considerable effort was directed at the production
of an optimised coding for this program. By using various
coding tricks, the number of words was reduced several times
While a further reduction may still be possible, it can
be said with confidence that at least a "near-optimum"
coding has been produced.

- 156 -

THE API PROGRAM STRUCTURE

* ENTRY

CLEAR
READ

Read two sexadecimal characters.
Assemble operation code and programmed-operator
bit in location reserved for the assembled-
instruction.
Clear K and L,

* TERMINATOR -

Read one sexadecimal character,
IF decimal GO TO * CONVERT
IF +,-tN,J,F,L, GO TO * TERMINATOR ♦,
* TERMINATOR -, * TERMINATOR N, * CHARACTER J,
* TERMINATOR F, * TERMINATOR L respectively.

* CONVERT: Convert decimal address to binary assembling address
in L.

: GO TO * READ.
* TERMINATOR + : Operate carriage return/line feed on printer.

Set printer to figure shift.
Set printer to lower case.
Increment block number.
Print block number.
Read and print program identifier.
Set block-start-address in instruction which
stores assembled-instruction.
Print block-start-address.
GO TO * ENTRY.
Read two sexadecimal characters specifying
a block number.
Fetch into K the block-start-address of
specified block.
Remove from K all but address bits.
GO TO * TERMINATOR F.
Add address in L to assembled-instruction.

: GO TO * ASSEMBLED-INSTRUCTION.
* ASSEMBLED-INSTRUCTION : Obey assembled-instruction.

: GO TO * ENTRY.
Add indirect address bit to assembled-
instruction.
GO TO * CLEAR.
Add address in L and block-start-address
in K to assembled-instruction.
Store assembled instruction.
Increment address of instruction which
stores assembled-instruction.
GO TO * ENTRY.
Fetch into K the block-start-address of
the current block.
GO TO * COLLATE.

* COLLATE

* TERMINATOR N:

* CHARACTER J

* TERMINATOR F:

* TERMINATOR L:

- 157 -

7. 1______ PROGRAMMED-OPERATORS

7. 1.0_____Programming Arrangements Using API
It will be recalled from previous descriptions,

that the programmed-operator feature is a hardware innovation
which facilitates the use of sub-routines and which provides
effectively a powerful extension of the machine’s repertoire
of instructions. Programmed-operators carry out these
functions, viz : -

(i) PLANT LINK - The incremented sequence counter
is stored in location 0.

(ii) STORE OPERAND ADDRESS - The operand address is
stored in the U register. (N.B. the operand
may be indirectly addressed to any number of levels),

(iii) TRANSFER CONTROL TO SUB-ROUTINE - The next instruction
is taken from location 32 plus the number represented
by the operation code.

The operations involved in the execution of
programmed-operators using the facilities of the assembly
program API are illustrated by Fig. 7.0. This figure is
concerned with an indirectly addressed programmed-operator
which requires a double-length operand* The programmed-
operator (21 J 70F) is stored in location 500 of the
main program. When a programmed-operator is indirectly
addressed, the hardware of ARCTURUS has been designed to treat
the requirements of indirect addressing before those of
the programmed-operator. Indirect addressing may be carried
out to any level (as with a normal machine instruction),and
the final effective operand address is stored in the U
register. In satisfying the programmed operator requirements
of the example represented by Fig. 7.0, the address 501
(the incremented sequence counter) is stored in location 0,
and control is transferred to location 21 (sexadecimal).
The use of API requires a directory of starting addresses of
the program blocks to be stored in the locations starting
from 20 (sexadecimal). If a programmed-operator is used as one
of these blocks, an UNCONDITIONAL TRANSFER OF CONTROL instruction
is used as its entry in the directory. This instruction
causes the computer to obey the programmed operator, which, in
the example of Fig. 7.0, is a sub-routine for carrying out
some operation on a double-length operand.

- 158-

The first word of this operand may be obtained by planting
the operand address from U into a FETCH instruction;
the second word may be obtained using an ADD INDEX instruction.
The link back to the main program may be carried out by
indirectly addressing location 0.

159-

Figure 7.0 THE OPERATIONS INVOLVED IN THE
EXECUTION OF PROGRAMMED-OPERATORS

- 1 6 0 -

7 ̂ 1 X______Examples - Poub le-length Arithmetic
All double-length programmed-operators (as well as

all floating-point programmed-operators) make use of a'
double - lerigth/floating-point accumulator in memory. For
example, the double-length-add-subtract programmed-operator,
which is described in Appendix F,
causes the double-length number specified by the programmed-
operator instruction to be added to or subtracted from the
contemts of the double-length accumulator. This is an example
of a programmed-operator with two entry points. This
arrangement is used, of course, to take full advantage of the
similarity between the programs for the two individual functions.

One precaution which had to be taken with the above
program was that of making the overflow logic ineffective
for all intermediate arithmetic operations but effective for
the final operation as a safeguard against producing incorrect
results.

Another precaution was that of making the arrangements
for the "directive print-out" of programmed-operators with multiple
entry compatible with those required by API.

A full description of the double-length-multiply
programmed operator also appears in the Appendix (Appendix G)
This and other double-length programmed-operators have been checked
on the machine. However, at the time of writing, a better
algorithm for double-length division is being considered. The
number of words in these programs are shown below: -

Double-length store : 10 words
Double-length fetch: 8 words
Double-length add-subtract:25 words
Double-length multiply: 46 words
Double-length divide : 53 words

7.1.2 Examples-Floating-point Arithmetic
The format of a floating-point number in ARCTURUS is

shown below : -

j-<— Si gn bit

19

-»-Waste

1 1 1 8

Mantissa — 8 - b it
Exponen t

- 161 -

The mantissa is a normalised, 30-bit fraction
represented by the two's complement system. The 8-bit
"exponent" is a positive integer, C, which defines
the factor 2 by which the mantissa must be multiplied
to obtain the true value of the number.

All floating-point programmed-operators assumed
that the operands are in the above format, and they convert
results into this format before storing them in memory.
The waste bit was used to make the format compatible
with that of a double-length number in so far as double-
length-store and double-length-fetch programmed operators
may be used for floating-point numbers.

The normalisation process in the above programs
makes good utilisation of the SKIP IF NORMALISED variant
of the SKIP instruction. A SHIFT UNTIL NORMALISED variant
of the SHIFT instruction (using the U register to count
the number of shifts) has been proposed, but has not yet
been incorporated in the hardware. This variant would
produce a significant improvement in all floating-point
programs.

Much programming experience was gained by writing
the floating-point programmed-operators. Many coding
tricks making use of the subtleties of the machine design
were discovered, and many coding problems suggested
worthwhile modifications to the hardware. A full description
of all these points is beyond the scope of this section.
An example of the floating-point programmed-operators is, however,
presented in the Appendix (Appendix H). Although these
programs have not yet been checked thoroughly on the machine,
an advanced stage has been reached in their development.
At present, the number of words in these programs are as
follows : -

F1oating-point -add-subtract-
multiply-divide : - 143 words
Floating-point-input : - 99 words
Floating-point-output: - 85 words

- 1 6 2 -

7. 2 SUB-ROUTINE HIERARCHY

7.2.0 ____Jump-to-Sub-routine Instructions
In early machines like SILLIAC (Ref. 51)

the absolute or relative address of a sub-routine-link
had to be planted in one of the machine registers
by the programmer before the sub-routine was entered.

In machines like the LGP-30 (Ref. 3)
and SNOCOM, which were designed in the late 1950's,
instructions like the RETURN ADDRESS instruction were
introduced to store the link (e.g. sequence counter
plus two) in the location specified by the instruction.
This made the sub-routine entry instructions independent
of their locatio n , but the UNCONDITIONAL TRANSFER OF
CONTROL instruction (for entering the sub-routine) which
followed immediately after the RETURN ADDRESS instruction
was still necessary.

In machines like ARCTURUS and some commercial
machines designed in the early 1960's, instructions like
the JUMP-TO-SUB-ROUTINE instruction were introduced to
carry out both functions of "planting the link" and
"entering the sub-routine". With the use of the JUMP-TO-
SUB-ROUTINE instruction in ARCTURUS, the sub-routine entry
point immediately follows the location in which the link is
stored. On first contact, this may not appear to be an
ideal arrangement; however, with indirect addressing, there
is no disadvantage, and the instruction has proved to be
extremely satisfactory.

7.2.1 ____Sub-routine Hierarchy Instructions
Computer programs frequently use nested sub-routines.

If conventional JUMP-TO-SUB-ROUTINE instructions (described
above) are used, each sub-routine is only provided with a
link back to the sub-routine of the next higher level. It has
been suggested (Ref. 59) that "recursive" operations
could be readily programmed, if each sub-routine were
provided with links to both the next lower and next higher
levels of the sub-routine hierarchy. If these facilities are
to be provided, it appears that all sub-routine links should be
best stored in some list, and a "hierarchy counter" should be
provided to specify the level.

- 1 6 3 -

In ARCTURUS, the INCREMENT HIERARCHY, DECREMENT
HIERARCHY and RETURN HIERARCHY instructions (see Appendix c)

use location 1 as the hierarchy counter.
This location contains an address which "points" to one
sub-routine link in a list of links. As the hierarchy
counter may be incremented or decremented many times,
not only do these hierarchy instructions enable sub-routines
to return to either a lower or higher level, but also
the number of levels traversed may be specified.

The execution of the hierarchy instructions require
either three or four memory cycles. Although several
interesting problems were encountered in the design of the
hardware for these instructions, the amount of hardware
was not excessive.

Because of the infrequency of their use, these
hierarchy instructions may not save much computing time.
However, they were introduced, not for this purpose but for
the purpose of stimulating thought on special instructions
(in particular those required for‘recursive operations).
It is hoped that this will lead to hardware innovations in
later machines.

- 1 6 4 -

7.3________SOFTWARE DEVELOPMENT

7.3.0______Present Situation

Descriptions of test programs, assembly programs
and programmed-operators have been presented in earlier

sections. Apart from these, programs have been written
by two research students working for higher degrees.

These programs are concerned with : -
(i) preliminary studies leading to research work on

the processing of recordings from radio telescopes
(Ref. 60)

and
(ii) the addition of a remote console to ARCTURUS

(Ref. 24)

ARCTURUS has also supported several Electrical
Engineering Honours projects. These were concerned
with : -

(i) a digital differential analyser simulator
(Ref. 61)

(ii) a floating-point coding system similar to the A9

system (Ref. 51) used with SILLIAC and the
KDF9 (Ref. 36)

(iii) the computer requirements of a remote console
(Ref. 62)

and (iv) a logic simulator for testing the d e s i g m o f a

digital control system (Ref. 63).

7. 3.1

(i)

(ii)
(iii)
(iv)

and (v)

Plans for the Future

Short-range plans for the future include : -

the further development of programmed-operators,
the full development of an A9-type coding system,

the extension of testing and diagnostic facilities,
the development of software (together with hardware
modifications) to enable a remote console to be
added to the machine,

the development of software (together with

hardware modifications) to make efficient use of
a recently acquired disk file.

Long-range plans centre around the proposed use
of ARCTURUS- in a multi-level digital control system.

The efficient communication between computers and the
control strategies to be used at the various levels of the
hierarchical structure will pose many software and
hardware problems.

- 1 6 5 -

The solutions of these problems will be topics of future
research projects.

A computer-bureau-type installation was not the main
objective of the ARCTURUS project, as a very good computing
service was already being provided by commercial machines
within the University environment. The main objective was
the construction of a computing installation for research
purposes. This could take the form of the evaluation of
hardware innovations,the stimulation of research work on
computer organisations, and the development of both the
hardware and software required by complex digital computer
control systems. The support of research projects at the
levels of both the Honours Bachelor's degree and the Master's
degree has already proved that ARCTURUS is a very useful
research tool; and its continued use in this role for
projects planned for the Ph.D. level will confirm the fact
that the ARCTURUS project has been a success.

- 1 6 6 -

CHAPTER 8

REVIEW AND APPRAISAL

8.0 PREFACE TO FINAL CHAPTER

8.1 REVIEW OF COMPUTER DEVELOPMENTS
8.1.0 History and introduction
8.1.1 Logical organisation and systems
8.1.2 Logical design and switching theory
8.1.3 Logical elements and circuits
8.1.4 Memories
8.1.5 Input-output systems
8.1.6 Constructional techniques
8.1.7 Software
8.1.8 Time-sharing
8.1.9 Computer control
8.1.10 Miscellaneous applications and

concluding remarks

8.2 APPRAISAL OF SNOCOM, NIMBUS 5 ARCTURUS PROJECTS
8.2.0 Computer development in Australia
8.2.1 SNOCOM
8.2.2 NIMBUS
8.2.3 ARCTURUS
8.2.4 Concluding remarks

- 167-

8.0 PREFACE TO FINAL CHAPTER
The objective of this final chapter is to present

an appraisal of the computer projects described in this
thesis. This is carried out by firstly presenting
(in Section 8.1) a review of digital computer developments
on a world-wide basis, and secondly discussing (in Section
8.2) some of the features of the SNOCOM, NIMBUS and
ARCTURUS projects in relation to the computer environment
in which these projects were carried out.

There are nearly 200 books and innumerable papers
written on various aspects of digital computer technology.
Because the technology is so extensive, an outline (in
several pages) of the developments in all aspects of the
technology can only be a superficial one. However some
sections of the outline represent summaries of experience
gained in particular aspects of the technology which had
to be studied in depth, and the remaining sections have
evolved from numerous journals, reprints, books and notes
which were accumulated during the course of the projects.

To place the SNOCOM, NIMBUS and ARCTURUS projects
in proper perspective, a brief survey of the development
of digital computers in Australia is presented in Section
8.2. An appraisal of these projects is then made.

- 1 6 8 -

8.1 REVIEW OP COMPUTER DEVELOPMENTS

8.1.0 History and Introduction (Refs. 68-69)

The early computers which played major roles in

the evolution of the modern digital computer include

the electro-mechanical Harvard Mark I (which brought

Babbage's ideas into being), the relay computers built

by the Bell Telephone Laboratories and the first electronic

computer ENIAC. Early stored-program computers include

the EDVAC, the EDSAC and the IAS computer.

Probably the most significant single concept

which resulted in the rapid growth of computer technology

was that of the "stored-program computer". Since its

development by von Neumann and others in

the late 1940's, almost all later computers have utilised

this concept. However, there have been some important

conceptual refinements which include micro-programmable

organisations, push-down memories, associative memories and

multi-computer systems.

The developments of computer hardware have seen

the shift from "first-generation" computers using vacuum-

tubes through "second-generation" computers using discrete

semiconductor components to "third-generation" computers

using integrated circuits.

Since about 1958 computer technology has

made extensive use of three major components: the magnetic

core, the transistor and the magnetic surface (in the form

of drums, tapes and discs). Other components have been used,

but at present there are no serious contenders for the roles

played by the above three.

The development of computer software has seen the

trend towards the increased use of "problem-oriented languages".

These have been written for commercial, scientific and other

applications, and have resulted in a significant increase in

"programmer productivity".

More details of the above aspects of digital computer

technology, viz: - systems, hardware, software and applications,

are presented in following sections. They are treated in

approximately this order.

8.1.1 Logical Organisation and Systems (Refs. 70-73)

Since the early 1950fs there have been many

developments in the logical organisation of digital computers.

These have resulted in an increase in the power and speed

of computers, a simplification of programming, and an

extension, of the computer from a computational tool to a

- 1 6 9 -

A wide variety of word-lengths, word formats

and instruction repertoires are to be found in today's

computers. Many contain features which enable numerous

different arithmetic and logical operations to be carried

out on fixed and floating-point numbers, bits, bytes,

data fields and lists. Many of the more sophisticated

features are first found only in the large computers,

but as these features become established, the trend is

towards the incorporation of modest versions of these features

in the smaller machines.

Various forms of memory addressing techniques

(including indirect and relative addressing) are in use,

and much research effort is being directed at content-

addressable or associative memories for information storage

and retrieval and other applications.

For the specification of instruction sequencing

many forms of branching instructions (such as the skip

instruction in ARCTURUS) have been used, and features have

been introduced for the efficient programming of loops and

sub-routines. For real-time applications a priority interrupt

system is important.

Microprogramming was proposed as an efficient and

flexible means of control for a digital computer. Research

effort directed at the production of cheap and fast read-only

stores has resulted in this method of control being adopted

for some commercial computers (including the lower range of

the IBM System/360). The use of a fast-read-slow-write

control-memory has resulted in several program-modifiable

or stored-logic computers.

As the mismatch between fast central-processing-

units and slow peripheral devices increased, the advantages

of multiprogramming became apparent. To produce efficient

multiprogramming^features such a priority interrupts,

memory protection, real-time clocks and program relocation

were introduced.

As new logical and memory devices are developed

and hardware costs are reduced, computer designers will

take full advantage of these advances in the technology,

and the trend will inevitably be the production of faster,

more powerful^cheaper and more reliable computers. The

mastery of the batch fabrication of logical and memory

elements will result in a radical change in computer

organisations. Networks of a large number of interconnected

computers (which have already been proposed) may then

represent another major break-through in computer technology.

- 1 7 0 -

8.1.2 Logical Design and Switching Theory (Refs.74-7 7 ̂ 4 8)
There have been a number of clever methods for

speeding up the arithmetic operations in digital computers.
Erxamples of these are the "carry-lookahead" and"multiplier-
recoding" methods described in an earlier chapter. With
the exclusion of the smaller computers, most computers
now have floating-point hardware. In general, no macro
instructions such as square-root or sine are provided,as
rapidly converging algorithms for these functions are
available.

Boolean algebra has been found to be adequate
for the specification of combinational circuits. Many
Boolean minimisation techniques, such as those for
minimising contact springs, diodes, gates, feedback loops,
states, hazards, inverters and logical levels, have been
applied. However, even the best computerized techniques
(which are far more powerful than the well known Quine
method) can only handle 20 to 30 variables because of
storage and computing time .limitations. Hence the classical
minimisation techniques are inadequate for many complex
design problems in existing large computers.

The mathematical model of the digital computer
as a complex sequential switching circuit may be useful
for small machines. However the application of the state
diagram approach to the design of large systems is limited
because the individual steps, such as the state assignment
for circuit minimisation, are complex and an exhaustive
treatment (even by computers) is prohibitive.

It appears that switching theory is adequate
for small logical design problems, but large systems cannot
be synthesised by a direct application of this theory.
For large systems, the designer must be guided by the principles
established by the switching theory, but often experience and
intuition play important roles, and a useful approach is the
partitioning of the system into a number of interconnected,
readily-designable sections.

8.1.3 Logical Elements and Circuits (Refs. 78-81)
Since the invention of the transistor in 1948,

and its subsequent introduction into commercial equipment
around 1954, semiconductor technology has progressed so
rapidly that semiconductor devices are now being used in
high-speed switching circuits that require not only transition
times as short as one nanosecond but also repetition rates
above 100 MHz.

- 1 7 1 -

Other logical elements have been used for various
reasons; for example magnetic logical elements because
of their reliability, magnetic thin films, cryogenic
devices and tunnel diodes because of their speed and so on.
However the transistor either as a discrete component or as
part of an integrated circuit still remains the most important
logical element for digital computers.

Integrated electronics technology, which was given
substantial support because of the requirements of the
aerospace industry, has made a great impact on digital
computers.

As well as being fast, small, cheap, low-power-
consumption logical elements, integrated circuits can
provide the designer with more powerful functional units
such as full adder stages and shift registers. As nanowatt
devices are feasible-,, and as many as 1000 logic circuits
may go on a single monolithic integrated circuit chip and
switch at subnanosecond speeds, integrated microelectronic
circuits provide a great promise for the development of more
powerful computers.

Other logical elements which have some promise for
computers of the future include batch fabricated thin film
elements and optical logical elements. The latter may solve
some of the problems of interconnecting fast logical elements.

8.1.4 Memories (Refs. 82-85)
The types of memories used in the early computers

include the mercury delay-line ,the cathode-ray-tube store
and the magnetic drum. From these early forms of memories,
other types (notably the ferrite core memory) have emerged
with greater speeds and capacities, and have played major
roles in the development of the modern digital computer.

Most large systems use a hierarchy of storage in
which a combination of different types of storage techniques
are used to achieve the necessary capacity and speed at a
reasonable cost. The present state-of-the-art is represented
by the following : - magnetic thin-film scratch-pad memories
of 2500 to 2X10^ bit capacity have been constructed with a
cycle time of 100 ns to 500 ns at a cost of $0.50 to $2.00
per bit; magnetic core main memories with capacities of 10,000
to 2X10^ bits have been constructed with 0.7 ys to 4 ys cycle
time at a cost of 5* to 25* per bit; and magnetic disc file
auxiliary storage with capacities of 2X107 to 2X109 bits
have been constructed with 15 ms to 150 ms access time at a
cost of 0.01* to 0.2* per bit.

- 172-

While block transfer of information is usually
adopted between auxiliary (backing) stores and the main
internal memory, additional hardware can be designed to
produce an effective one-level storage system. An example is
the "one-level" core-drum system used in ATLAS.

Monolithic integrated circuit arrays (as high
speed control or scratch-pad memories) and magnetic thin
film main internal memories have already been used in
commercial computers. Further improvements in magnetic
core technology and batch fabrication techniques will result
in higher performance scratch-pad and main memories of the
near future. However it does appear that moving-magnetic-
media type electromechanical memories will still be used
for auxiliary stores with capacities in excess of 10^ bits.

8.1.5 Input-output systems (Refs. 86-88,56)
Conventional input-output devices for computers

include paper tape, punched cards, magnetic tape, typewriters
and line printers. More recent or more specialised devices
include non-impact printers, visual character display consoles,
optical character readers, magnetic-ink character recognition
systems and graph plotters.

Graphical devices such as Sutherland's Sketchpad
have significantly improved man-machine communication,
and have introduced a new generation of extremely promising
input-output devices. Graphical devices have been used for
automotive styling, for the design of electronic circuits
and civil engineering structures and for computer-assisted
instruction. It appears that it is in the area of
"machine-aided design" that graphical man-computer
communication devices hold the greatest promise.

Research work on the computer recognition of speech
and handwriting have been carried out, but it does appear
that useful operating systems will not be available in
the foreseeable future.

8.1.6 Constructional Techniques (Refs. 89-92)
Modular construction for complex systems is of

course necessary because of manufacturing, installation
and maintenance requirements. Discrete semiconductor
components are usually mounted on a printed circuit card,
and the cards are interconnected via the printed circuit
connectors by the base wiring of the main frame. The
base wiring is carried out by hand on a point-to-point
basis or by some automatic wire-wrapping machine. To
reduce the number of the less-reliable printed circuit
connectors, individual printed circuits are sometimes

- 173-

connect ed permanently to a mother-board to form larger
functional units.

When integrated circuits are mounted on a
mother-board, multi-layer printed interconnections are
often used. As integrated circuits become faster (with
switching times of the order of several nanoseconds),
the effects of the interconnections on the operation of
the circuits become extremely important. The interconnections
must be considered as transmission lines and all lines must
be properly terminated to minimise signal reflections.
When the layout of the integrated circuits is important,
computers can be used to examine all possible layouts to
minimise wiring delays and crosstalk.

Trends in constructional techniques point to
an increase in the number of circuit functions per chip
and possibly the use of a "three dimensional" interconnection
technique.

8.1.7 Software (Refs, 93-94)
Automatic programming, which may be defined as

all those methods which attempt to shift the burden of
formulation and programming of problems for computers onto
the machine themselves, has evolved from various assembly
programs, interpretive programs and machine-oriented languages
to the powerful problem-oriented languages in use today.
It has been estimated that by the use of FORTRAN, programmer
productivity is increased by a factor of 50 over that
resulting from the use of machine language, and a further
improvement by a factor of 10 or more is still possible.

Since its inception in 1954, FORTRAN has had
extensive use (especially in the United States) as a
scientific programming language. However ALGOL is gaining
wide-spread acceptance as a common, international programming
language for mathematical problems, and is being used
extensively as a medium of human communication of algorithms
in published form.

Other problem-oriented languages include COBOL
for commercial applications, SOL for systems simulation,
LISP for list processing, FORMAC for the manipulation of
mathematical expressions, PERT for planning and controlling
large military and engineering programs, LOTIS for simulating
digital systems and DAS for simulating analogue computers.
The above examples represent only a small percentage of the
program-oriented languages in use today but give some
indication of their diversity.

- 1 7 4 -

To cater for the diverse requirements of a
larger percentage of the users of a scientific computing
centre,IBM has introduced PL/1. The potential and scope
of this language together with the ability to use subsets
of the language will ensure its wide-spread use for many
years to come.

8.1.8 Time-sharing (Refs. 95-97,22)
Aspects of computer utilisation which are

associated with time-sharing include multi-access systems,
multiprogramming, multiprocessing, real-time processing,
interactive (on-line) processing and remote processing.
In general the main objective is the sharing of computing
resources among a number of users. Systems which contain
a large centralized computer or a multiprocessor network which
is connected to a large number of remote user terminals
may be conveniently described as computer "utilities" which
provide adjustable amounts of computing power to individual
users whenever it is required.

Not only is the potential of the entire central
processor made available to individual users, but also
time-sharing provides an "interactive", "personalized"
computer usage. Greater efficiency results from a more
intimate collaboration between the computer and an individual
user, or between the computer and several users working on
different aspects of a common problem.

Some of the requirements of time-shared systems
include dynamic program relocation, memory protection,
priority interrupts, large memories, complex scheduling
logic, reliable communications equipment and so on. These
represent enormous hardware and software costs to system
planners. However these costs are spread over many users,
and the many advantages of time-shared systems have created
a trend towards centralization. If Grosch’s law (which states
that a computers potential is proportional to the square of its
cost) is true, the computer cost structure will favour the
time-shared large machine in preference to a large number of
small, decentralised machines.

8.1.9 Computer Control (Refs. 98-101)
Since computers were first used for industrial

control about eight years ago,the world-wide tally of process
computer installations has grown to over 1,300. Computer
control has had its longest history in the oil, chemical, steel •
and power industries, but its application to other industrial
processes is progressing very rapidly.

- 1 7 5 -

Various approaches taken with the use of
computers in control systems include data acquisition
systems, closed-loop supervisory computer control,
direct digital control and direct digital supervision.
A hierarchical structure of control computers has
been suggested for some complex systems. Whatever
the approach taken, the main objective is of course
to improve efficiency. As anticipated improvements
are seldom greater than five per cent, and the cost of
the control computer together with sensing and control
equipment represents a significant proportion of overall
costs, planning of the overall system must be carried out
very carefully.

The computer requirements for real-time operation
include priority interrupts and special input-output
instructions. However the instruction repertoire of ’’control
computers" is essentially the same as that of any general-
purpose computer used for scientific computation. Reliability
is of paramount importance in most computer control systems.
Redundancy techniques applied even to the extent of
providing parallel computing systems have been used to increase
reliabili ty .’’Back-up" systems in case of failure include the
use of manual or analogue controllers. The failure of
some early computer control systems (especially in the power
supply industry), which were due to unreliable hardware and
software, has resulted in computer control being applied
with more caution and with a greater emphasis on reliability.

In the computer control field, the relationship
between theory and practice is remote. Sophisticated theories
and mathematical techniques such as sampled-data theory,
dynamic programming and optimal control theory are available,
but there seems to be many difficulties in the application
of these theories to the analysis, little own the synthesis,
of computer control systems. Until there is a stronger bond
between theory and practice, computer control will remain an
art rather than a science.

8.1.10 Miscellaneous Applications and Concluding Remarks
(Ref . 102)

Computers are extremely versatile as indicated
by their use in science where they have been active partici
pants in the analysis of results and in the development of

- 176 -

new theories, in technology where they have become indis
pensable for the design and control of complex systems, in
organisations where they have provided improved communication
and control resulting in increased efficiency, in education
where they have provided personalised tuition adjusted
to the capabilities of individual students, in information
storage and retrieval where they have improved the efficiency
of libraries and have assisted in research and development,
and in the field of artificial intelligence where they have
provided an understanding of human mental processes. As
the potential of computers increases because of reduced
cost, increased speed, increased reliability, increased
capacity and improved man-machine communication, their
application areas will certainly increase. Many benefits
to humanity have resulted from the use of computers, and
continued progress in computer technology holds great promise
for the future.

- 177 -

8,2 APPRAISAL OF SNOCOM, NIMBUS $ ARCTIJRUS PROJECTS

8,2,0 Computer Development in Australia
Apart from SNOCOM, NIMBUS and ARCTURUS, the

only other digital computers constructed in Australia
were CSIRAC (Ref. 64), SILLIAC (Ref. 51)
ADA (Ref. 1), ATROPOS (Ref. 65) and
CIRRUS (Ref. 25-26).

CSIRAC was a serial, general-purpose digital
computer using vacuum-tube elements and mercury delay-line
storage. It was constructed in the early 1950?s by the
Radio Physics Laboratory of C.S.I.R.O., and although it
suffered from problems of unreliability during its early
years, it gave good service within C.S.I.R.O. and at the
University of Melbourne before it was retired several
years ago.

SILLIAC is a parallel general-purpose digital computer
using vacuum-tube elements and cathode-ray-tube storage. Its
design was based on that of the ILLIAC with minor modifications,
and'was constructed under the supervision of the Basser
Computing Department within the School of Physics of the
University of Sydney. It was commissioned in 1956 and has
given sterling service; its retirement is imminent.

ADA was a serial, digital differential analyser
using semiconductor circuits and magnetic-drum storage.
It was constructed by the Mathematical Instruments Section
of C.S.I.R.O. within the School of Electrical Engineering of
the University of Sydney. It was commissioned in 1958,
but because of unreliable operation, it was given a premature
retirement several years later.

ATROPOS was a parallel, digital computer using
semiconductor circuits and ferrite-core storage. It was
constructed as an impact-prediction computer by the
Weapons Research Establishment. Papers on its design appeared
around 1960, but its usefulness and future are not known.

CIRRUS is a parallel, general-purpose digital computer
using semiconductor circuits and ferrite-core storage. The
computer, which uses a micro-program control unit and has multi
program features, was constructed by the University of Adelaide.
It was completed by 1963, and it has had extremely good use as
a service computer.

- 1 7 8 -

8 . 2 . 1 SNOCOM

SNOCOM was the first general-purpose digital
computer constructed and installed in Australia which
utilised semiconductor components and which has had
extensive use. Its construction demonstrated that a
useful computer can be built in Australia starting from
the description of the logical organisation of a computer
which appeared in a single publication. It was also
demonstrated that useful features, such as the auto-input,
could be designed to fit within the framework of this
organisation.

SNOCOM established the suitability of constructional
methods which were developed for ADA, and which were later
used and extended in ARCTURUS and CIRRUS. It also established
the potential (and also some weakness) of circuit designs.
These were used as a guide to the development of the faster
circuits used in ARCTURUS.

In the course of the SNOCOM project, a SILLIAC
program for simulating SNOCOM was written so that SNOCOM
programs could be developed even before this machine was
completed. Extensions to the simulator program enabled
proposed SNOCOM design modifications to be assessed (Rèf. 66).
The SNOCOM project also stimulated some thought on machine
organisation and order codes (Ref. 67).

The success of the SNOCOM project was directly
responsible for the continuation of computer research
and development at the School of Electrical Engineering of
the University of Sydney.

8.2.2 NIMBUS
NIMBUS is the first educational computer of its

kind to be built in Australia (and possibly in the world).
It represents the first serious attempt to build laboratory
equipment for teaching computer fundamentals and digital
techniques. Its usefulness in this role has been established
during the past four years; and this has encouraged the
extension of this educational approach.

It has been established that NIMBUS and similar
machines are extremely useful research tools. Applications
include the evaluation of logical circuit designs and the
bread-board construction of special test equipment.

The success of the NIMBUS project has resulted
in the decision to build a similar but more powerful machine
(NIMBUS II).

- 179 -

8,2.3 ARCTURUS
With the use of advanced techniques of logical

design such as carry-lookahead and multiplier-recoding
which produce an accumulate time of hvsec and a multiply
time (for 20 bits) of 5 to 7hvsec (depending on the
multiplier, the arithmetic unit of ARCTURUS is the fastest
of all computer arithmetic units constructed in Australia.

Techniques for the provision of a large number
of useful instruction variants (such as those of the
register transfer instruction) have been established and
a computer with a flexible and reasonably powerful instruction
repertoire has been produced.

The ARCTURUS project has demonstrated that
relatively advanced concepts such as programmed-operators
can be implemented with small amounts of hardware, and it
has also demonstrated the usefulness of such concepts.

Aspects of the ARCTURUS design, such as the
auto-input and the register configuration, have made some
contribution to the solutions of logical organisation problems
which affect overall efficiency.

The ARCTURUS project has established methods
for designing complex timing units. Configurations
of gated monostable-multis (of both positive-trigger and
negative-trigger types) and storage-gate flip-flops have
been established for timing the micro-steps such as shifting
and counting etc. as well as the complex phase sequences
which are possible in a digital computer.

The ARCTURUS project has established the usefulness
of the completely autonomous input-output unit which can
be used for off-line tape editing as well as for checking
the computer peripherals.

The ARCTURUS project has made some contribution
to the art of constructing systems which use very high
speed logical circuits. Functional packaging, ground planes
and special mounting arrangements for important signal lines
are examples of the techniques established.

ARCTURUS has stimulated thought on logical
organisations. Many suggestions concerning useful instructions
(such as the detour, set and repeat instructions) have been
made. Some of these suggestions have already been
incorporated into the machine and their usefulness has been
demonstrated. However studies of the proposed ’’micro-mode"
and of the existing hierarchy instructions have indicated
that these features are not extremely useful in their
present form.

- 1 8 0 -

ARCTURUS provides a research tool for advanced
work on digital control, and plans for the control of a
model power system have already been considered. For
this application ARCTURUS will be more useful than a
commercial machine of comparable cost,as extensions and
modifications to the machine to incorporate the interface
between the system and the computer may be made more
readily.

The success of the ARCTURUS project has
demonstrated that a very useful computer can be built
within the environment of Australian universities with a
component cost of less than $A 10,000. This money was
obtained over a period of about 5 years, and the very
restricted budget necessitated the salvaging of many
diodes and transistors from old equipment. Despite the very
difficult conditions, a fast and powerful digital computer
incorporating some original and advanced concepts has
been constructed.

8.2.4 Concluding Remarks
This thesis has been an account of the development

of the three computers SNOCOM, NIMBUS and ARCTURUS. The
main objectives have been to describe the original features
incorporated in the computers, to present examples of
new design techniques and to outline some of the novel
engineering details of construction, installation and
utilisation.

An outcome of the SNOCOM, NIMBUS and ARCTURUS
projects has been that a small but effective research group
has been formed. This group has shown that it is capable
of taking full advantage of progress in computer technology,
and of establishing advanced concepts and techniques.
The merit of this thesis lies firstly in the fast that the
author has been the principle investigator of this research
group, and secondly in the fact that the success of the
SNOCOM, NIMBUS and ARCTURUS projects has been a significant
contribution to the development of computers in Australia.

- 1 8 1 -

REPERENCES

INTRODUCTION

1. ALLEN, M , W ., ADA- A Transistor Decimal Digital Differ
ential Analyser, Jour.I.E.Aust., Vol.29, No.10-11,
Oct.-Nov., 1957, pp 255-262.

2. WONG, D.G., The Investigations Leading to the Specif
ication of a Digital Computer for Power System Operat
ional Studies, M.Eng.Sc. thesis, School of Electrical
Engineering, University of Sydney, May, 1959.

3. FRANKEL, S.P., The Logical Design of a Simple General
Purpose Computer, Trans.I.R.E., PGEC, Vol.EC-6, No.l,
Mar., 1957.

4. WONG, D.G., The Logical Design of the General Purpose
Digital Computer SNOCOM, Jour.I.E.Aust. , June 1962 ,
pp 125- 136.

5. WONG, D.G., An Educational Digital Computer, Confer
ence Papers, Australian Computer Conference, Melb
ourne, 1963.

6. WONG, D.G., Laboratory Equipment for Teaching Digital
Computer Fundamentals, Proc.I.R.E.E.Aust., Feb., 1965,
(Special Issue on Education), pp 77-83.

7. ROSOLEN, K.R., Development of a High-Speed Paper Tape
Reader, Proc.I.R.E.Aust., Dec., 1963, pp 866-970.

21. WONG, D.G., The Design and Construction of the Digital
Computer ARCTURUS, Proceedings of the Third Australian
Computer Conference, Canberra, May, 1966.

CHAPTER 1

8. MYERS, D.M. $ BLUNDEN, W.R., The C.S.I.R.O. Differ
ential Analyser, Jour.I.E.Aust., Oct.-Nov., 1952.

9. MESSERLE, H.K., Differential Analyser Solution of
Hydraulic Problems in Hydro-electric Systems,
La Houille Blanche, Dec., 1956, No.6, pp 813-836.

- 182-

10. SCIENTIFIC DATA SYSTEMS, SDS 920 Computer reference
Manual.

References 1, 2, 3 £ 4.

CHAPTER 2

11. GRAY, S.B., A Survey of Digital-Logic Training Devices,
Electronics, Aug. 24, 1964, pp 71-83.

12. KASHMAN, M.J., What’s Available in Digital and Logic
Trainers, Control Engineering, April, 1965, pp 73-81.

13. McKENSEY, I.R., A Digital Position Control Servo System
Suitable for Steel Mill Screw Down Control, B.E. Hons,
thesis, School of Electrical Engineering, University of
Sydney, 1965.

14. TODD, C.D., An Annotated Bibliography on NOR and NAND
Logic, IEEE Trans., Vol.EC-12, No.5, Oct.1963, pp 462-4.

15. MASHER, D.P., The Design of Diode-Transistor NOR Circuits,
IRE Trans., Vol.EC-9, No.l, March 1960, pp 15-24.

16. KINTER, P.M., Dual Polarity Logic as a Design Tool, IRE
Trans., Vol.EC-8, No.2, June 1959, pp 227-8.

17. MALEY, G.A. § EARLE J., The Logical Design of Transistor
Digital Computers, (Book), Prentice-Hall, 1963.

18. A Catalog of Three-Variable OR-INVERT and AND-INVERT
Logical Circuits, IEEE Trans., Vol.EC-12, No.3, June 1963,
pp 198-223.

19. SMITH, R.A., Minimal Three-Variable NOR and NAND Logic
Circuits, IEEE Trans., (Short Notes), Vol.EC-14, No.l,
Feb., 1965 , pp 79-81.

20. BURKE, R.E., 6, van BOSSE, J.G., NAND-AND Circuits, IEEE
Trans., (Short Notes), Vol.EC-14, No.l, Feb., 1965, pp 63-5.

21. WONG, D.G., The Design and Construction of the Digital
Computer ARCTURUS, Proceedings of the Third Australian
Computer Conference, Canberra, May, 1966.

- 1 8 3 -

22. FANO, R.M., The MAC System; The Computer Utility Approach
IEEE Spectrum, Jan., 1965, pp 56-64.

23. HUNT, E.B., Computer Science and Services, Vestes (The
Australian Universities’ Review), March, 1965.

24. COWELL, I.M., The Application of State Diagram Methods
to the Design of a Remote Console for the Digital Comp
uter ARCTURUS, M,Eng.Sc. thesis, University of Sydney,
(in preparation).

References 5, 6 § 7.

CHAPTER 3

25. ALLEN, M.W., PEARCEY, T., PENNY, J.P., ROSE, G.A. $
SANDERSON, J.G., CIRRUS, An Economical Multiprogram
Cpmputer with Microprogram Control, IEEE Trans., Vol.
EC-12, No.6, Dec., 1963, pp 663-671.

26. ALLEN, M.W. $ ROSE, G.A., A Flexible and Economic
Approach to Digital System Design with Particular
Reference to CIRRUS, Australian Computer Conference,
Melbourne, 1963.

27. WILKES, M.V. § STRINGER, J.B., Micro-programming and
the Design of the Control Circuits in an Electronic
Digital Computer, Proc. Cambridge Philosophical Soc
iety, April, 1953, pp 230-238.

28. WILKES, M.V., Microprogramming, Proc. EJCC 1958, pp 18-20

29. MERCER, R. Micro-programming, J.ACM, Vol.4, April, 1957.

30. GERACE, G., Micro-programmed Control for Computing Syst
ems, IEEE Trans. Vol.EC-12, Dec. 1963.

31. BLANKENBAKER, J., Logically Programmed Computers, IRE
Trans., Vol.EC-7, June, 1958.

32. KAMPE, T.W., The Design of a General-Purpose Microprogram
Controlled Computer with Elementary Structure, IRE Trans.
Vol.EC-9, No.2, June, 1960, pp 208-213.

- 184-

33. GRASSELLI , A., The Design of Program-Modifiable Micro
programmed Control Units, IRE Trans., Vol.EC-11, No.3,
June, 1962, pp 336-339.

34. BOUTWELL, E. § HOSKINSON, E.A., The Logical Organisat
ion of the PB 440 Microprogrammable Computer, Proc.
1963 FJCC, pp 201-213.

35. THOMPSON RAMO WOOLDRIDGE INC., TRW-530 Stored Logic
Control Computer Manual.

36. ROGERS, J., Micro-programming, Stored Logic and Program-
med-Operator Instructions, B.E. Hons, thesis, School of
Electrical Engineering, University of Sydney, 1964.

37. SPECIAL ANALOG-HYBRID COMPUTER ISSUE, IRE Trans.,
Vol.EC-11, No.1, Feb., 1962.

38. CONNELLY, M.E., Real-Time Analog-Digital Computation,
IRE Trans., Vol.EC-11, No.l, Feb., 1962, pp 31-41.

39. TRUITT, T.D., Hybrid Computation - What is it ? -
Who needs it ? Proc. 1964 Spring JCC, Vol.25.

40. RICHARDS, R.K., Combined Analog 5 Digital Techniques,
Ch.6, Electronic Digital Systems, (Book), Wiley, 1966.

41. FRANKEL, S.P., On the Minimum Logical Complexity Required
for a General Purpose Computer, IRE Trans., Vol.EC-7,
No.4, Dec., 1958, pp 282-5.

42. GIGUERE, W.J., JAMISON, J.H. $ NOLL, J.C., Transistor
Pulse Circuits for 160 Me Clock Rates, IRE Trans., Vol.
EC-8, No.4, Dec., 1959, pp 432-438.

43. MUTH, V.O. $ SCIDMORE, A.K., A Memory Organisation for
an Elementary List-Processing Computer, IEEE Trans.,
Vol.EC-12, No.3, June, 1963, pp 262-5.

44. WILKES, M.V., Lists and Why They Are Useful, The Computer
Journal, Vol.7, No.4, Jan., 1965, pp 278-281.

References 1, 4, 7, 8 $ 10.

- 185-

CHAPTER 4

45. WALLACE, C.S., A Suggestion for a Fast Multiplier,
IEEE Trans., Voi.EC-13, Feb., 1964, pp 14-17..

46 INTERNATIONAL BUSINESS MACHINES, IBM 1620 Manual.

47. ROBERTSON, J.E., A New Class of Digital Division Methods,
IRE Trans., Voi.EC-7, No.3, Sept., 1958, pp 218-222.

48. MacSORLEY, O.L., High Speed Arithmetic in Binary Comp
uters, Proc. IRE, Jan., 1961, pp67-90.

49. LEDLEY, R.S., Digital Computer and Control Engineering,
(Book), McGraw-Hill, 1962.

50. The SDS Sigma 7, Datamation, March, 1966, pp 53-7.

51. BASSER COMPUTING DEPARTMANT, UNIVERSITY OF SYDNEY,
SILLIAC Programming Manual.

Reference 7.

CHAPTER 5

52. ATKINS, J.B., Worst-Case Circuit Design, IEEE Spectrum,
Mrach, 1965, pp 152-161.

53. PRYWES, N.S. , LUKOFF, H. § SCHWARZ, J., UNIVAC-LARC
High-S^eed Circuitry; Case History in Circuit Design,
IRE Trans., Voi.EC-10, No.3, Sept., 1961, pp 426-438.

54. SEDORE, S.R., Automatic Programs in Circuit Analysis
and Design, Elctronic Design, 14, No.l, Jan.4, 1966,
pp 96-99.

55. GOLDSTICK, G.H. $ MACKIE, D.G., Design of Computer
Circuits Using Linear Programming Techniques, IRE Trans.,
Voi.EC-11, No.4, Aug.,1962, pp 518-530

56. NINDGREN, -N., Human Factors in Engineering, Part II,
Advanced Man-Machine Systems and Concepts, IEEE Spectrum,
April, 1966, pp 62-72.

References 1 5 4,

- 1 8 6 -

CHAPTER 6

57. AITCHISON, R.E.,General Purpose Regulated Power Supplies
Using Transistors, Elect. $ Mech. Trans, of I.E.Aust.,
May„ 1962, pp 15-20.

CHAPTER 7

58. BROOKS, F.P., Symposium, Third Australian Computer Con
ference, Canberra, May, 1966.

59. GRAB'-BE, RAMO § WOOLDRIDGE, Handbook of Automation, Comp
utation $ Control, Voi.2, Chapter 2, Section 15.

60. COOK, R.S., A Completely Digitised Radio Telescope
System, M.Eng.Sc., thesis, School, of Electrical Eng
ineering, University of Sydney, (in preparation).

61. COOK, R.S., DIAMOND - A Digital Differential Analyser
Simulator Routine, B.E. Hons, thesis, School of Elect
rical Engineering, University of Sydney, 1964.

62. LIN,P., Preliminary Investigations on the Design of an
Electronic Calculating Machine for Inclusion in Each Con
sole of a Multi-Console Time-shared Computer System,1965
B.E. Hons, thesis, School of Elect.Eng., Univ. of Sydney.

63. PRICE,M.P., The Development § Design of a Digital Control
System, B.E. Hons, thesis, School of Electrical Engin
eering, University of Sydney, 1966.

References 3, 24, 36 § 51,

CHAPTER 8

64. PEARCEY, T., CSIRAC Down Under, Datamation, March, 1965
pp 37-8.

65. HINCKFUSS, I.C., KEITH, R.J. $ MACAULAY, I.J., Design
of a High Speed Parallel Solid State Digital Computer,
Proc.IRE Aust., Sept., 1960, pp 581-

66. BENNETT, J.M. § DAKIN, R.J., Computers as an Aid in
Computer Design Assessment, The Computer Journal,
Voi.3, No.4, pp 253-5.

67. CHAPPELL, M., (Snowy Mountains Hydro Electric Authority),
yPersonal communication.

- 187-

CHAPTER 8 - REVIEW

68. SERRELL, R., ASTRAHAN, M.M., PATTERSON, G.W.,
PYNE, I.B., The Evolution of Computing Machines
and Systems, Proc. IRE, May 1962, pp 1039-1058.

69. KNIGHT, K.E., Changes in Computer Performance,
Datamation, September, 1966, pp 40-54.

70. RICHARDS, R.K., Electronic Digital Systems (Book),
John Wiley, 1966.

71. THE COMPUTER SYSTEM ISSUE, IEEE Trans., Vol. EC-12,
No.6, December 1963.

72. BECKMAN, F.S., BROOKS, F.P., LAWLESS, W.J.,
Developments in the Logical Organisation of
Computer Arithmetic and Control Units, Proc. IRE,
January, 1961, pp 53-65.

73. AMDAHL, G.M., BLAAUW, BROOKS, F.P., Architecture
of the IBM System/360, IBM J. of R. § D., Vol.8,
No.2, April 1964, pp 87-101.

74. FLORES, I., The Logic of Computer Arithmetic, (Book),
Prentice-Hall, 1963.

75. HOLST, P.A., Bibliography on Switching Circuits and
Logical Algebra, IRE Trans., Vol. EC-10, No.4,
December 1961, pp 638-661.

76. NETHERWOOD, D.B., Logical Machine Design II:
A Selected Bibliography, IRE Trans., Vol.EC-8,
No.3, September, 1959, pp 367-380.

77. RICHARDS, R.K., Electronic Digital Systems, (Book),
Wiley, 1966, Ch.ll The Automatic Design of Digital
Systems.

Reference 48.
78. REICH, B., Advances in Discrete Semiconductor Devices,

SCP $ Solid State Technology, February 1966, pp 19-26.

79. KOEHLER, D., Semiconductor switching at high pulse
rates, IEEE Spectrum, November, 1965.

- 1 8 8 -

80. EARLE, J., Digital Computers - The Impact of
Microelectronics - A Special Report, Electronic
Design, December 7, 1964, pp 33-52.

81. SPECIAL ISSUE ON INTEGRATED ELECTRONICS, Proc. IEEE,
Vol. 52, No.12, December, 1964.

82. HOBBS, L.C., Present and Future State-of-the-Art
in Computer Memories, IEEE Trans., Vol. EC-15, No.4,
August, 1966, pp 534-550.

83. RAJCHMAN, J.A., Memories in present and future
generations of computers, IEEE Spectrum, November,
1965, pp 90-95.

84. LOUIS, H.P., § SHEVEL, W.L., Storage Systems -
Present Status and Anticipated Development, IEEE
Trans, on Magnetics, Vol. MAG-1, No.3, September, 1965
pp 206-211.

85. KILBURN, T., EDWARDS, D.B.G., LANIGAN, M.J.,
SUMNER, F.H., One level storage system, IRE Trans.,
Vol.11, April 1962, pp 223-235.

86. STATLAND, N., HILLEGASS, J., A Survey of Input-
Output Equipment, Computers Automn., Vol.13, pp 16-20,
28; July 1964.

87. SUTHERLAND, I.E., Sketchpad - A Man-Machine,
Graphical Communication System, Proc. AFIPS, 1963,
SJCC.

88. LINDGREN, N., Machine recognition of human languages,
Part I - Automatic speech recognition, IEEE Spectrum,
March, 1965, pp 114-136.

Reference 56

89. 2 SPECIAL ISSUES ON INTERCONNECTIONS, PACKAGING AND
ENCAPSULATION OF SOLID STATE DEVICES f, CIRCUITS,
Semiconductor Products $ Solid State Technology,
May § June 1965.

- 189 -

90. NEEDHAM, G.A., Advanced Integrated Circuit Packaging,
SCP and Solid State Technology, June 1965, pp 22-29.

91. RIDER, D.K., A survey of printed circuit processes,
SCP ̂ Solid State Technology, June 1966, pp 29-34.

92. JARVIS, D.B., The Effects of Interconnections on
High Speed Logic Circuits, IEEE Trans., Vol. EC-12,
No.5, October 1963, pp 476-487.

93. RICHARDS, R.K., Electronic Digital Systems, (Book),
Wiley, 1966, Ch.4 Automatic Programming.

94. THE SPECIAL ISSUE ON COMPUTER LANGUAGES, IEEE Trans.,
Vol. EC-13, No.4, August 1964.

95. CORBATO, F.J., The compatible time-sharing system -
a programmer's guide, The MIT Computation Center,
MIT Press, 1963.

96. CRITCHLOW, A.J., Multiprogramming and multiprocessing,
IEEE- Spectrum, March, 1964, pp 192-8.

97. TIME-SHARING COMPUTERS (SPECIAL REPORT), Electronics,
November, 29, 165, pp 71-89.

Reference 22.
98. PROCESS COMPUTER SCOREBOARD, Control Engineering,

September 1966, pp 73-82.

99. DIGITAL COMPUTERS IN INDUSTRY-A CONTROL ENGINEERING
SPECIAL REPORT, Control Engineering, September 1966,
pp 83-142.

100. COMPUTER EQUIPMENT FOR DIRECT DIGITAL CONTROL,
(17 papers), 1965 IEEE International Convention Record.

101. RICHARDS, R.K., Electronic Digital Systems, (Wiley 1966)
Ch.10, Digital System Reliability.

102. SPECIAL ISSUE ON INFORMATION AND ITS PROCESSING BY
COMPUTERS, Scientific American, September 1966.

- 1 9 0 -

103. SALTON, G., Progress in Automatic Information Retrieval,
IEEE Spectrum, August, 1965, pp 90-103.

104. FEIN, L., The Artificial Intelligentsia, IEEE Spectrum,
February, 1964, pp 74-87.

105. COMPUTER SYSTEMS FOR APPLICATION AREAS, Proc. IEEE,
December, 1966, (Previous issues October, 1953
January, 1961).

- 1 91 -

APPENDIX

CONTENTS

APPENDIX A - Component Layout Diagrams -192-

APPENDIX B - Logic Diagrams of Standard Packages -194-

APPENDIX C - Description of ARCTURUS Instructions -199-

APPENDIX D - Coding of the Assembly Program API -203-

APPENDIX E - Details of ARCTURUS Instruction Variants -205-
- ARCTURUS API § Sexadecimal Operation Codes
- Variants of the Stop Instruction
- Variants of the Skip Instruction
V Variants of the Input-Output Instruction
- Printer Code
- Variants of the Shift Instruction
- Variants of the Register Transfer Instruction

APPENDIX F - Double-length Add-Subtract
Programmed Operator -211-

APPENDIX G - Double-length Multiply Programmed Operator -213-

APPENDIX H - Floating-point Input Programmed Operator -217-

APPENDIX J - Paper : The Logical Design of the General
Purpose Digital Computer SNOCOM

APPENDIX K - Paper : Laboratory Equipment for Teaching
Digital Computer Fundamentals

APPENDIX L - Paper : The Design and Construction of the
Digital Computer ARCTURUS

- 192 -

APPENDIX A

F
i
g

u
r
e

6

.9
A

-

C
O
M

P
O
N

E
N

T

L
A

Y
O
U

T

O
F

Z
E
R

O
-

L
E
V

E
L

C
A
R
R
Y
 -
 L

O
O

K
A

H
E
A

D

P
A

C
K

A
G

E

- 1 9 3 -

Fi
gu
re

6.
9B

-

CO
MP
ON
EN
T

LA
YO
UT
 O

F
ST
OR
AG
E

GA
TE

FL
IP
-F
LO
P

PA
CK
AG
E

- 1 9 4 -

APPENDIX B

(B) COMPLEMENT GATE OR SELECTION PACKAGE

Figure 6,10 - LOGIC DIAGRAMS OF STANDARD PACKAGES

- 195 -

APPENDIX B

(G) J REGISTER PACKAGE
Figure 6.10 - LOGIC DIAGRAMS OF STANDARD PACKAGES

- 1 9 6 -

APPENDIX B

(H) POSITIVE TRIGGER MONOSTABLE MULTI PACKAGE

(I) NEGATIVE TRIGGER MONOSTABLE MULTI PACKAGE

(X indicates an internai connection)

Figure 6.10- LOGIC DIAGRAMS OF STANDARD PACKAGES

- 197-

APPENDIX B

(K) NOR DECODE PACKAGE

(L) AND DECODE PACKAGE

igure 6.10 - LOGIC DIAGRAMS OF STANDARD PACKAGES

- 1 9 8 -

APPENDIX B

(N) SHIFT REGISTER PACKAGE

(0) ALTERNATIVE BINARY COUNTER PACKAGE

Figure 6.10 - LOGIC DIAGRAMS OF STANDARD PACKAGES

- 1 9 9 -

APPENDIX C

APPENDIX C - DESCRIPTION OF ARCTURUS INSTRUCTIONS
LIST OF SYMBOLS

J
K
L
R
S
U
V
DFS
D
AS
A
AU
V R
KL
N

19

<K>
M = <A>
I
()

O ’

() i

°i-3

Memory output register.
Accumulator.
Multiplier-quotient register.
Instruction register.
Sequence counter.
Operand counter.
Number of times counter.
Distributor function selector.
Output of DFS.
Address selector.
Address R7 - R-̂ g .
Arithmetic Unit.
Instruction register outputs.
Double length register formed by KQ-K^g > ^l”^19 *
Number of times an operation is executed (specified
by R15 - Rig). •
Memory location with address - K^g .
Memory location with address R7 - R,p .

-19Number increment = 2
Contents of a register or a memory location before
an operation.
Contents of a register or a memory location after an
operation.
Bit i of a register or a
memory location before/after an operation.
Bits i to j (inclusive) of a register or a memory
location before/after an operation.

- 200 -

APPENDIX C

DESCRIPTION OF INSTRUCTIONS

CODE INSTRUCTION DESCRIPTION

OOOOO 00 Unconditional
■n o ; 01 Contingent on BP1 ON
18 19 ï 10 Contingent on BP2 ON

11 Continue
00001 INPUT-

OUTPUT
i 0
\ 1

4- bits
5- bits
Reader 1
Printer
Punch
Number of times

R<
R12r!
R14 d
R15"R19
A cyclic left shift of K 4 or 5 places
depending on Rg precedes each oper
ation. Reading overwrites K, r or
K16 to K19 * If Rg = 0 , the
character read is the next non-fifth bit
character in the buffer or on the tape.
The character printed or punched is
either
Reading

0 » K16~K19 or K15"K19 *
precedes printing or punching.

REGISTER- f 00 Transfer L to J first
TRANSFER R _ Í? J 01 Transfer K to J first

| 7 8 10 Transfer U to J first
11 Transfer U to J first

CMi—1
0

4

<+HM = 0 , Rg and R10 specify the

00010

first AU input as follows:

R9R10

f 00 Zero
j 01 One’s complement of J
10 J
11 All ones (-1)

If R,0 = 0, R‘12
crement is
output.

11 specifies that an in-

R11
If R,

Í ?
= o,

to be added to the adder

Add I to adder output
R, = 0, R, , = 0 , R.g - w j " ^9 R11 ” Ki2 speci

fies that the first AU input is the ab
solute value of J .

R12 f i Absolute value of J
specify the second AU in

put as follows:-
(00 Zero
01 K
10 R*
11 All ones (-1)
specify the distributor output

as follows :-

R-̂ g and R ^

R13R14

R15R16

- 201-

APPENDIX C

[00 Adder output
n p j 01 Exclusive OR of AU inputs
15 16 \ 10 AND of AU input?

[11 Inclusive OR of AU inputs
17
18
19

Clock distributor into U
Clock distributor into K
Clock distributor into L

00011, SHIFT
R8R9

R
R
R

10
11
12

R
R
13
14

Ris-R19

00 Logical
01 Cyclic
10 Arithmetic
11 Illogical
0 Separate
1 Double
Shift L
0 L left
1 L right
Shift K
0 K left
1 K right
Number of times

00100 TRANSFER,
j UNCON

DITIONAL
00101! TRANSFER IF

NEGATIVE

(S)’ = A

(S) T = A If K = 1

00110; SKIP Rn Accumulator normalised

R10R11

R13R14

R15“R19

00 -

01 Accumulator < 0
10 Accumulator = 0
11 Accumulator ̂0
00 -

01 Sense switch 1 ON
10 Sense switch 2 ON
11 Sense switch 3 ON
Number of times

00111 (SPARE)
01000! ADD INDEX
------------------1---------------------------------
010011 SUBTRACT

INDEX

Add (M) to address of next instruction
Subtract (M) from address of next
instruction

01010 j INDEX
SKIP (M)» = (M) + I

(S)1 = (S) + 1 if (M)T = 1 o
01011 JUMP TO

SUBROUTINE (M)T = (S)
(S)’ = A + 1

01100 COMPARE
SKIP

(S)f = (S) + 1
if (M). = (K). for all i
(L)i=l 1 1

such that

- 2 0 2 -

APPENDIX C

01101 LOAD K (K)' = CM)
o m o LOAD L (L)» = (M)
Olili ADD (K)' = (K) + (M)
10000 SUBTRACT (K)’ = (K) - (M)
10001 AND (K)| = (K)i.(M)i (i = 0 — 19)

10010 MULTIPLY (KL)' = (L) x (M)
Lq = 0

10011 DIVIDE (L)T = (KL) * (M)
10100 STORE K (M)* = (K)
10101 STORE L (M) 1 = (L)
10110 STORE K

ADDRESS (M)6-19 = (K)6-19

10111 ACCUMULATE (M)T = (M) + (K)
11000 (SPARE)
11001 (SPARE)
11010 PUSH (<(M)>)' = (K)

(M)f = (M) + I
11011 POP (M)' = CM) - I

CK)' = (<(M)>)
11100 DECREMENT

HIERARCHY (<(!)>)’ = (S)
(l)r = (1) - I
(S) ' = A

11101 INCREMENT
HIERARCHY

(<(1)>)’ = (S)
(1)’ = (1) + I
(S)T = A

11110 RETURN
HIERARCHY

R (0 Decrease
k13 1 1 Increase
R-^ Change hierarchy
R̂ -̂R-̂ g Number of times
(<(1)>)' = (S)
(l)f = (1) + I (N times)
(S)T = (<(1)>)

11111 EXECUTE Execute instruction in M

- 2 0 3 -

APPENDIX D

APPENDIX D - CODING OF THE ASSEMBLY PROGRAM API

LOCATION LABEL INSTRUCTION REMARKS
DEC. SEXAD.

. # 003N6 Load from 3N7
967 3N7 * ASSEMBLED - 00000 Obey instruction

INSTRUCTION
968 3N8 * ENTRY 08082 Read op. code
969 3N9 10021 (IO ’ = (K)
970 3N+ 1810F Sh.L + 14 logical
971 3N- 18341 Sh.K + 1 logical
972 3NN 1804F Sh.K + 14 logical
973 3NJ + 03N7 Store bits 0-5
974 3NF * CLEAR 10003 Clear K and L
975 3NL * READ 08081 Read 1 sexad, char.
976 3 JO 803L7 Subtract 10
977 3J1 283LJ Go to * CONVERT
978 3J2 . 203F6 Go to 3F6
979 3J3 * TERMINATOR + 683L+ Fetch CR-FS-LC-LC char.
980 3J4 08444 Print
981 3J5 503L9 Increment block number
982 3J6 683L9 Fetch block number
983 3J7 1804N Sh.K + 12 logical
984 3J8 08042 Print block number
985 3J9 084JL Read/print program-

identifier
986 . • 3J + 203FF Go to 3FF
987 3J- * TERMINATOR - 08082 Read block number
988 3JN + 0 3F0 Store temporary
989 3JJ 6 + 3F0 Fetch indirect block no.
990 3JF * COLLATE 883F1 Remove all but address
991 3JL 203L3 Go to * TERMINATOR F
992 3F0 00000 Temporary store
993 3F1 01LLL Address mask
994 3F2 02000 Indirect address bit
995 3F3 ^TERMINATOR N 10402 (K)’ = (L)
996 3F4 -83N7 Accumulate address
997 3F5 203N7 Go to * ASSEMBLED-

INSTRUCTION
998 3F6 18043 Sh.K + 3 logical
999 3F7 + 03F0 Store temporary
1000 3F8 10002 Clear K
1001 3F9 403F0 Add index

- 2 0 4 -

APPENDIX D

1003 3F- * CHARACTER J 683F2 Fetch indirect address
bit

1004 3FN -83NF Accumulate 1
1005 3FJ 203NF Go to * CLEAR
1006 3FF 6 + 3L9 Fetch indirect block no.
1007 3FL 883F1 Remove all but address
1008 3L0 -03L5 Set block-start-address
1009 3L1 08045 Print block-start-address
1010 3L2 203N8 Go to * ENTRY
1011 3L3 * TERMINATOR F 10422 /—

\
J+/*—

\

v__/II

1012 3L4 783N7 Add bits 0-6
1013 3L5 •►0020 Store assembled-instruc-

tion
1014 3L6 503L5 Increment address
1015 3L7 0000 + Number 10
1016 . 3L8 203N8 Go to * ENTRY
1017 3L9 0001L Block number
1018 3L + 96F10 CR-FS-LC-LC char.
1019 3L- * TERMINATOR L 6 + 3L9 Fetch indirect block no.
1020 3LN 203JF Go to.* COLLATE
1021 3LJ * CONVERT 783L7 Add 10
1022 3LF 903L7 (KL) ' = 10(L) + (K)
1023 3LL 203NL Go to * READ

003N8 Start at 3N8

-205-
APPENDIX E

APPENDIX E - DETAILS OF ARCTURUS INSTRUCTION VARIANTS

- ARCTURUS API AND SEXADECIMAL OPERATION CODES

API INSTRUCTION SEXADEC.*
00 Stop 00
01 Input-output 08
02 * Register transfer 10
03 Shift 18
04 Transfer unconditional 20
05 Transfer if negative 28
06 Skip 30
07 (Spare) 38
08 Add index 40
09 Subtract index 48
0 + Index skip 50
0- Jump to subroutine 58
ON Compare skip 60
0J Load K 68
OF Load L 70
0L Add 78
10 Subtract 80
11 And 88
12 Multiply 90
13 Divide 98
14 Store K + 0
15 Store L + 8
16 Store K address -0
17 Accumulate -8
18 (Spare) NO
19 (Spare) N8
1 + Push JO
1- Pop J 8
IN Decrement hierarchy F0
1J Increment hierarchy F8
IF Return hierarchy L0
1L Execute L8

* The sexadecimal operation codes given above assume
that bits 5-7 of the instruction are zero.

- 2 0 6 -

APPENDIX E
VARIANTS OF THE STOP INSTRUCTION

TYPE SEXADEC. API •

Unconditional stop 00000 00 F
Stop contingent on BP1 ON 00001 00 IF
Stop contingent on BP2 ON 00002 00 2F
Continue 00003 00 3F

VARIANTS OF THE SKIP INSTRUCTION

TYPE SEXADEC. API

Skip once if K is norma-
lised 30401 06 1025F
Skip once if (K) < 0 30101 06 257F
Skip once if (K)= 0 30201 06 513F
Skip once if (K) > 0 30301 06 769F
Skip once if SSI is ON 30021 06 33F
Skip once if SS2 is ON 30041 06 65F
Skip once if SS3 is ON 30061 06 97F

- 2 0 7 -

APPENDIX E

VARIANTS OF THE INPUT-OUTPUT INSTRUCTION

TYPE SEXADEC. API

Read one sexadecimal
(4-bit) char. 08081 01 129F

Read one 5-bit char. 08481 01 115 3F

Print one sexadecimal char. 08041 01 65F

Print one 5-bit char. 08441 01 1089F

Punch one sexadecimal char. 08021 01 33F

Punch one 5-bit char. 08421 01 1057F

Read and print one sexa
decimal char. 080N1 • 01 193F

Read and print one 5-bit
char. 084N1• 01 1217F

Read and punch one sexa
decimal char. 080 + 1 01 161F

Read and Punch one 5-bit
char. 084 + 1 01 1185F

Read* print and punch
one sexadecimal char. 080F1 01 225F

Read, print and punch
one 5-bit char. 084F1 01 1249F

Print and punch one
sexadecimal char. 08061 01 97F

Print and Punch one
5-bit char. 08461 01 1121F

-203-
APPENDIX E

VARIANTS OF THE SHIFT INSTRUCTION
L Logical I 11logical A Arithmetic
C Cyclic S Separate D Double
0 Zero places + Left - Right

VARIANT ,SEXAD. API , INTEGER1
SH L s K+ 0 1 $940 03 0064 +098368
SH L s K- 0 13o60 03 0096 +098400
SH L s L+ 0 13100 03 0256 +O9356O
SH L s L- 0 18180 03 0334 +098633
SH L s L+ K+ 0 18l 40 03 O32O +098624
SH L s L+ K- 0 18160 03 0362 +093656

; SH L s L- K+ 0 181 nO 03 0448 +O98752
SH L s L- K- 0 i8 i f0 03 0430 +098784
SH L D K+ 0 18240 03 0576 +098380
SH L D K- 0 13?60 03 0603 +098912
SH L D L+ 0 I83OO 03 0768 +099072
SH L D L- 0 1 8380 03 0896 +099200
SH L D L-f K+ 0 I834O 03 0852 +099156
SH L D L+ K- 0 I836O 03 0364 +099163
SH L D L- K+ 0 I83n0 03 0960 +099264
SH L D L- K- 0 i83fO 03 0992 +099296
SH I S K+ 0 18n4o 03 3136 + 101440
SH I s K- 0 18n60 93 3163 +101472
SH I S L+ 0 18 jOO 03 3323 +101632
SH I S L- 0 I8 j80 03 31*56 +101760
SH I S L+ K+ 0 18 j 40 03 3392 +101696
SH I S L+ K- 0 18,j60 03 3424 +IOI728
SH I S L- K+ 0 13 jnO 03 3620 +101324
SH I S L- K- 0 I8 j f0 03 3552 +101356
SH I D K+ 0 l8 f4 o 03 3648 +101952
SH I D K- 0 I8 f60 03 3680 +101984
SH I D L+ 0 18100 03 3840 +102144
SH I D L- 0 18180 03 3968 +102272
SH I D L+ K+ 0 13l4o 03 3904 +102208
SH I D L+ K- 0 18160 03 3936 +102240
SH I D L- K+ 0 I8 ln0 03 4032 +102336
SH I D L- K- 0 18 l fO 03 4064 +102368
SH A S K+ 0 18840 03 2112 +100416
SH A S K- 0 13860 03 2144 +100443
SH A S L+ 0 18900 03 2304 +IOO608
SH A S L- 0 13980 93 2432 +100736
SH A S L+ K+ 0 18940 03 2368 +100672
SH A S L+ K- 0 18960 03 2400 +100704
SH A S L- K+ 0 139nO 03 2496 +100300
SH A s L- K- 0 I39 f0 . 03 2528 +IOO832
SH A D K+ 0 18+40 03 2624 +100923
SH A D K- 0 13+60 03 2656 +100960
SH A D L+ 0 18-OO 03 2816 +101120
SH A D L- 0 18-80 03 2944 +101248
SH A D L+ K+ 0 13-40 03 2330 +101184
SH A D L+ K- 0 18-60 03 2912 +101216
SH A D L- K+ 0 18-nO 03 3OO8 +IO I3 I2
SH A D L- K- 0 13-fO 03 3040 +IOI344
SH C s K+ 0 18440 03 1038 +099392
SH C S K- 0 13460 03 1120 +099424
SH c S L+ 0 18500 03 1230 +099584
SH c S L- 0 18580 03 1 4oS +099712
SH c S L+ K+ 0 13540 03 1344 +099648
SH c S L+ K- 0 18560 03 1376 +099680
SH c S L- K+ 0 I85n0 03 1472 +099776
SH c S L- K- 0 I85 f0 03 1504 +099808
SH c D K+ 0 18640 03 1600 +099904
SH c D K- 0 18660 03 1632 +099936
SH c D L+ 0 18700 03 1792 +100096
SH c D L- 0 18780 03 1920 +100224
SH c D L+ K+ 0 18740 03 1856 +100160
SH c D L+ K- 0 18760 03 1338 +100192
SH c D L- K+ 0 I87n0 03 1934 +100283
SH c D L- K- 0 I87 f0 03 2016 +100320

-209-
APPENDIX E

VARIANTS OF THE REGISTER TRANSFER INSTRUCTION
For L= Add 1 For K= Add 2
For U= Add 4 For KLU= Add 7

LOGICAL OPERATIONS
VARIANT SEXAD A P I INTEGER
= 0 10018 02 0024 +065560
= I 10613 02 1360 +067096
= U 11413 02 3144 +070630
= L ' 0413 02 1043 +066534
= K 10n13 02 3096 +068652
=NU 1 213 02 4632 +070163
=NL 10213 02 0336 +066072
=NK 10+13 02 2534 +068120
= U*K 1 1 430 02 3163 +070704
= L * K 104^0 02 1072 +066603
=NU*K 11230 02 4656 +070192
=NL*K 10230 02 0560 +066096
= U@K 11 423 02 5160 +070696
= L ©K 1 0428 02 1064 +066600
= N U @ K 11223 02 4648 +070184
=NL®K 10223 02 0552 +066033
= U/K 1 1433 02 5176 +070712
= L / K 10438 02 1080 +066616
=NU/K 11238 02 4664 +070200
=NL/K 10253 02 0563 +066104

ARITHMETIC OPERATIONS
. VARIANT SEXAD A P I INTEGER

= 0 10000 02 0000 +0655:56
=+1 10100 02 0256 +06579?
=-1 10600 02 1556 +067072
= -2 1066O 02 1632 +067168
=MU 11000 02 4224 +069760
=+U 11400 02 5120 +070656
=-U 11300 02 4864 +070400
=ML 10030 02 0123 +065664
=+L 10400 02 1024 +066560
= -L 10300 02 0763 +066504
=MK 10380 02 2176 +067712
=+K 1 OnOO 02 3072 +068608
= -K 10 -00 02 2816 +068552
=MU-1 1 1 0 f0 02 4320 +069856
= + U -1 11460 02 5216 +070752
=-U -1 11360 02 4960 +070496
=ML-1 1 0 0 f0 02 0224 +065760
= + L - 1 10460 02 1120 +066656
= -L -1 10360 02 0864 +o664oo
=MK-1 1 0 8 f0 02 2272 +067808
=+K-1 10n60 02 3163 +063704
= -K -1 10 -6 0 02 2912 +068443
=MU+K 110+0 02 4266 +069792
=+U+K 11420 02 5152 +070683
=-U+K 11320 02 4896 +070452
=ML+K 100+0 02 0160 +065696
=+L+K 10420 02 1056 +06659?
= -L+K 10320 02 0S00 +0665j56
=MK+K 103+0 02 2203 +0677^4
=+K+K 10n20 02 3104 +068640
=K-U-1 11220 02 4640 +070176
=K -L -1 10220 02 05^4 +066080
= -U -2 11260 02 4704 +070240
= - L - 2 10260 02 o6 os +066144
= -K -2 10+60 02 2656 +063192
=U +1 11500 02 5376 +070912
=L +1 10500 02 1230 +066816
=K +1 10J00 02 3323 +063364
=U+K+1 11520 02 5408 +070944
=L+K+1 10520 02 1312 +066848
=K+K+1 10,]20 02 3360 +068896

- 210-

APPENDIX E

PRINTER CODE

D e c im a l FIGURE SHIFT. LETTER SHIFT. B i n a r y
Bumbe r . Lorne r C a s e . U pper C a s e . Lo” ’ e r C o s e . Upper C a s e . C o d e .

0 0 i P P 0 0000
1 1 * 1 Q 00001
2 2 © w 17 00010

3 3 / e E 00011
4 4 4i> r R 00100

5 5 . i t T 00101
6 6 & y Y 0 0110
7 7 f u U 00111
8 8 (i I 01000
9 9) 0 0 01 COI

10 = + k K 01010
11 - r* s S 01011
12 n I'T n N 01 10 0
13 j j d • J 01101
14 f F f . F 0 1110
15 1 L 1 L 01111
16 Low er C a s e . L ow er C a s e . 10000
17 d D 10001
18 C R/LF. C R/LF. 10010
19 b 3 10011
20 L e t t e r S h i f t . L e t t e r S h i f t . 10100
21 9> V V 10101 ■
22 a A 10110
23 3 1

8 8 X X 10* 11 •
24 S p a c e . Space m 11000
25 g G 11001
26 • • El M 11010
27 F ig u r e S h i f t . F ig u r e S h i f t . 11011
28 ! M h H 11100
29 O 0

5» d c C 11101
30 z z 11110

L

Upper C ase . Upper C a se . 11111

- 2 1 1 -

APPENDIX F

APPENDIX F - DOUBLE-LENGTH-ADD-SUBTRACT PROGRAMMED-OPERATOR

Specification : - This program causes the double
length number specified by the programmed-operator
instruction to be added to or subtracted from the number
in the double-length accumulator (locations 4 and 5).
The add-entry is the first word of the routine and the
subtract-entry is the fourth. The overflow logic is
effective with the last arithmetic instruction; this is
stored in the 20th word of the program.

Method : - The instructions immediately
following the different entry points set into internal
temporary storage either a waste order (for addition) or
a ’’negate K” order (for subtraction). This instruction
causes the double-length operand to pass unchanged or to be
negated before it is added to the double-length accumulator.

The program assumes that the waste bits of
both the operand and the number in the double-length
accumulator are zero. Hence a carry into the sign
position is a true carry digit, 'and does not represent
an overflow condition. To inhibit the stopping of the
computer when such a carry digit is produced, a ’’register-
transfer-add" instruction rather than an "add from memory"
instruction is used, as the overflow logic is not effective
during the execution of the former instruction. The same
precaution is taken when the carry digit is added to the
first half of the operand. However for the final addition,
an "add from memory" instruction is required as the overflow
logic should be used as a safeguard against the generation
of incorrect results.

- 2 1 2 -

APPENDIX F

. DOUBLE-LENGTH ADD-SUBTRACT PROCRAMMED-OPERATOR CODING : -

00 + DOUBLE LENGTH ADD

REL.LOC. REMARKS

ADD ENTRY
0 0J 22L Set waste order in 24L
1 14 24L
2 04 5L

SUBTRACT.
ENTRY

3 0 J 23L Set KT * -K order in 24L
4 14 24L
5 02 5122F K' - U
6 16 16L Obtain operand address
7 OF 5F
8 08 16L Fetch second half
9 00 IF
10 1L 24L Execute 24L
11 02 1058F Kf * K + L Add second halves
12 02 IF L - 0
13 • 03 1857F Sh.C.D.L + K + 1 Form carry §
14 03 97F Sh.L.S, K - 1 set waste bit = 0
15 14 5F Store second half result
16 OJ (F) Add carry to
17 • 02 1058F K' = K + L first half
18 1L 24L Execute 24L
19 OL 4F Add first half of DL acc.
20 14 . 4 F Store first half result
21 04 JF Link
22 02 F Waste order
23 02 2818F k * -
24 00 F Temp, store
25 00 + DOUBLE LENGTH SUBTRACT

00 2N

- 2 1 3 -

APPENDIX G

APPENDIX G - DOUBLE-LENGTH-MULTIPLY PROGRAMMED-OPERATOR

Specifications : - This program multiplies the
number (the multiplicand) in the double-length accumulator
(locations 4 and 5) by the double-length number (the
multiplier) specified by the programmed-operator instruction,
and places the quadruple-length product in locations 4,5,6
and 7. Bit 0 of location 4 is the sign bit of the product,
while locations 5,6 and 7 contain waste bits (set to zero)
in the sign position.

Method : - In the following description,
a superscript * indicates a double-length number, and
subscripts 1 and 2 indicate the more-significant and less
significant halves of the double-length number. Hence :

D*
Di
°2
M*
M1M„

double-length multiplicand
more-significant half of multiplicand
less-significant half of multiplicand
double-length multiplier
more-significant half of multiplier
less-significant half of multiplier

From the above definitions we obtain : -

D* - Dx + 2'19 D_

M* = Mx + 2*19 M,

Hence the double-length product M* D* is
given by : -
M* D* « M, D, + 2’19 (M1 D2 + M7 D,) + 2‘38 M„ D.1 1 2 ~1 ‘2 2

All the partial products (M̂ D2,
M2 and M2 D2) are double-length numbers and may be
represented by a single symbol superscripted with a *.
Let

p* - Mx Dx
Q* " M1 D2
R* ' M2 D1
S* ‘ M2 °2
Hence the

2'19(Q*

Hence the equation for M* D* becomes : -
X*) * 2*38 S*

- 214-

APPENDIX G

Two major problems in the summation of the
partial-products are : -

(i) incorrect results produced by overflow
and (ii) arithmetic shifting of double-length numbers

-19required by the factor 2

It is to be noted that S* is always positive, but
P*, Q* and R* may be positive or negative.

To overcome the above problems, equivalent
expressions for M* D* may be derived as follows : -

M * D* = p* + 2‘19 (Q * + T*) ♦ 2 ”57 <. 52

where x* * R* + 2"19 S1

M * D* = p* + w* + 2"19 U* + 2-57 S2

where IV* = 2-19Qi + 2-19 T1

and u * = 2‘19 (Q 2 + T
l 2)

M * D* = V* + w* + 2-38
U2 2-57 S2

where v* = P* + 2’19 U1

M* D* = xi + 2'19 X- + 2"38 U2 + 2'57 S2

where X* s V* + W*

The above expressions give, an outline of the
steps required to produce four single-length numbers
X2 , ^ 2 anc* ^2 represent the quadruple-length product
of two double-length numbers. It is to be noted that
overflow during intermediate steps of the process cannot
occur, and arithmetic shifting of only single-length numbers
is required.

The detailed coding of this programmed
operator follows.

- 2 1 5 -

APPENDIX G

DOUBLE-LENGTH MULTIPLY PROGRAMMED-OPERATOR CODING

00 + DOUBLE LENGTH MULTIPLY

REL.LOC.
r

REMARKS

0
1

0J
16

F
40L

Plant Link

2
3
4
5

02
16
02
16

5122F
20L

3330F
9L

Kf « U .Obtain
. * Operand

K’ ■ K *■ 1 Address

6
7

OJ
14

4F
45L

Temp. Store D1

8 02 2F K - 0
9 OF (F) L' = M2
10 12 5F Form S* » M 2 D2

11 15 7F Store S2

12
13

OF
12

J 9L
45L

L * « M2
Form T* = M2 Dx + 2"19 S!

14 15 42L Store T2
15 03 3059F SH.ADL-K-19
16
17

03
14

385F
43L

SH LSL-1 STORE
2 T1

18 15 44L
19 02 2F K = 0
20 OF (F) L» = Mx
21 12 5F Form Q* *= M^ D2
22 15 41L Store Q2
23 03 3059F SH ADL-K-19 ST0RE
24
25

03
14

385F
4F

SH LSL-1 , Q
2“iy Q1 IN

26
27

15
22

5F
43L

D.L. ACC.
DL ADD : W* = 2'19Q. + 2’19T1

28 OF 42L
29 OJ 4 IL
30 02 1057F Lf » K + L FORM
31
32

02
03

2F
833F

K “ 0 U*=2“19
SH LDL + K + 1 (q 2 + t 2)

33 03 385F SH LSL - 1
34 15 6F Store U2
35
36

OF
12

J 2OL
45L

L1 = M1
Form V* * P* + 2"l9U1

37
38

14
15

4 IL
42L

Temp. Store

- 2 1 6 -

APPENDIX G

39 22 41L DL ADD : Form X* = y* + w*
40 04 (F) Link
41 oo F) Temp. store:
42 (00 F) Temp. store: T2
43 oo F) Temp. store: -192 iyTn
44 (00 F) Temp. store: l
45 (00 F) Temp. store: Di

00 2N

- 217-

APPENDIX II

APPENDIX H - FLOATING-POINT INPUT PROGRAMMED-OPERATOR

Specification : - The input number fdrmat
which this program assumes is : -

± DDDDDDDDD ± DD
MANTISSA MANTISSA EXPONENT EXPONENT
SIGN (DECIMAL FRACTION) SIGN (DECIMAL INTEGER)

The mantissa sign would normally be either + or -.
However any even sexadecimal character is interpreted as + ,
and any odd sexadecimal character as - .

The mantissa may consist of 0 to 9 (inclusive)
decimal digits. The program assumes that the digits
represent a decimal fraction with the decimal point occurring
before the first digit.

The exponent sign must be either + or -.

The exponent must consist of two decimal
digits. A decimal integer is assumed, and this specifies
an exponent of 10.

The program will convert a number in the above
format into an equivalent number

with the format of a binary floating-point
number. This number will then be stored in the double-
length/floating point-accumulator (locations 4 and 5) as
well as in locations n and n + 1, where n is the address
specified by the programmed-operator instruction.

Method : - At each stage of the input process, a complete
representation of the number is produced by the contents of
the double-length accumulator and two integers and C 2 .
These integers are exponents of 10 and 2 respectively,
and determine numbers by which the double length accumulator
is to be multiplied. Initially = 0 and = 38 + 128.
The number 38 is necessary as the decimal to binary conversion
process produces a double-length integer of 38 magnitude bits,
and the number 128 is .required as a scaling in the exponent
part of a binary floating-point number. As each digit of
the mantissa is read, is decremented, and a corresponding
double-length integer is produced using double-length
programmed-operators.

- 218-

APPENPIX H

The exponent digits are converted into a
binary integer which is used to modify C^.

The double-length accumulator is normalised
(by shifting left) but a complete representation of
the number is maintained by adjusting C2 during the
shifting process.

At this stage, the aim is to reduce
to zero. If is positive, this is carried out by
multiplying the double-length accumulator by 10 i 2̂ ,
adding 4 to C2 abd subtracting 1 from C^. If
is negative, the double-length accumulator is multiplied

3by 2 i 10, 3 is subtracted from C2 and 1 is added to C^q .

After the final normalisation process, the
mantissa is combined with C2, and the floating-point number
is stored in the floating-point accumulator, as well as
in the locations specified by the programmed-operator
instruction.

The program structure of the floating-point
programmed-operator follows, and this in turn is followed by
the detailed coding.

- 2 1 9 -

APPENDIX II

Program structure : -

* P.0. ENTRY : Obtain link
: Obtain operand address
: Read mantissa sign and set MNS

(Mantissa Negative Switch)
: Clear DL accumulator
: Set to zero
: Set to 166

* READ : Read 1 sexad
: If exponent sign go to * EXP. SIGN
: Convert mantissa to binary integer
: Decrement C^q
: Go to * READ

* EXP. SIGN

* TEST C1Q

** I

* NEG.

* ZERO MANT.

* COMBINE
* DL STORE

Set ENS (Exponent Negative Switch)
If MNS is negative, negate DL accumulator
If mantissa is zero, go to * ZERO MANT.
Normalise mantissa adjusting C£

(Jump to sub-routine * NORM.)
Read and convert exponent to binary integer
Use exponent to form new C^q
If C1Q = 0, go to * COMBINE
If C1Q < 0, go to *C1Q NEG.
Multiply mantissa by 10 i 24
Add 4 to C 2

Subtract 1 from C^Q
Normalise mantissa adjusting C 2

(Jump to sub-routine * NORM.)
Go to * TEST C1Q
Multiply mantissa by 2^ i 10
Subtract 3 from C 2

Add 1 to C^0
Go to **1
Read 2 sexads
Go to * DL STORE
Combine mantissa and C 2

DL store
Go to main program (LINK)

- 2 2 0 -

APPENDIX II

* NORM. Sub-routine link
Set in U
Fetch DL accumulator in K, L'
Shift out waste digit

* TEST If normalised, go to * END
Shift K, L left
Decrement U
Go to * TEST

* END Introduce waste digit
Store KL in DL accumulator
Store U in
Sub-routine Link

- 2 2 1 -

APPENDIX H

FLOATING-POINT INPUT PROGRAMMED-OPERATOR CODING : -

00 + FLOATING PT INPUT

REL.LOC. REMARKS
* P.O. ENTRY
0 0J F Obtain link
1 16 68L
2 02 5122F (K)' - (U)
3 16 67L
4 02 3F K = 0, L = 0 Read
5 01 129F Read 1 sexad. mantissa sign
6 03 1121F Sh.C.S.K - 1
7 14 85L set MNS
8 15 4F Clear DL accumulator
9 15 5F
10 15 87L C10 = 0
11 OJ 89L C~ = 166
12
* READ

14 88L L

13 02 2F OIIX

14 01 129F Read 1 sexad
15 14 92L
16 10 96L Subtract 10 Test
17 06 774F exponent sign
18 24 95L DL Mult. convert
19 21 6F DL Fetch mantissa to
20 • 22 91L DL Add binary integer
21 02 1538F ̂ * Decrement C^q
22 17 87L
23

* EXP. SIGN
04 13L Go to * READ

24 03 1125F Sh. C.S.K-5
25 14 86L Set ENS
26 OJ 85L Test MNS
27 06 771F Skip K> 0, 3
28 20 6F DL Store MNegate
29 23 6F DL Sub. DL accumulator
30 23 6F DL Sub.
31 OJ 4F
32 OF 5F Test
33 02 1082F ̂ m zero mantissa
34 06 538F Skip K = 0, 26 Cond. go to * ZERO
35 0- 69L MANT.Normalise mantissa

- 2 2 2 -

APPENDIX H

36 02 3F
37 01 129F
38 03 1012F
39 01 129F
40 12 96L
41 0J 87L
42 15 87L
43 08 86L
44 0L 87L
45 14 87L
TEST C1Q
46 0J 87L
47 06 527F
48 05 56L
49 24 90L
50 0J 98L
51 17 88L
52 02 1538F

*1
53 17 87L
54 0- 69L
55 04 46L
C1Q NEG.
56 24 93L
57 0J 97L
58 17 88L
59 02 258F
60 04 53L
ZERO MANT.
61 01 130F
62 04 67L
COMBINE
63 03 3180F
64 11 5F
65 0L 88L
66 14 5F

DL STORE
67 20 • (F)
68 04 (F)
NORM.
69 00 (F)
70 0J 88L
71 02 3076F
72 0J 4F
73 OF 5F
74 03 257F

K = 0, L = 0
Read 1 sexad
Sh. C.D.L-K-20
Read 1 sexad
KL * 10L + K

Read 7
convert
exponent to
binary
integer in L

Form
Add index ENS new C^

§

Test C1Q = 0
Skip K = 0, 15 Cond. go to * COMBINE
Cond. go to * C10 NEG.
DL mult, by 10 ? 2^

Add 4 to

K * -1

Accumulate
Normalise mantissa
Go to * TEST C1Q

DL Mult, by 23i 10

Subtract 3 from
K = + I
Go to **1

Read 2 sexads
Go to *DL STORE

Sh.I.S.K - 12
Set bits 12 to 19 to zero
Add Combine mantissa

and

DL store
Link to main program

Sub-routine link
it *

Set C? in U
U = K z

v * .

Fetch DL acc. in KL

Sh.L.S.L + 1 Shift out waste bit

- 2 2 3 -

APPENDIX H

* TEST
75 06 1027F Skip K = norm, 3 Cond. go to*END
76 03 8 33F Sh.L.D.L + K ♦ 1

Shift KL left
77 02 5220F Decrement U
78 04 75L Go to * TEST
79 • 03 385F Sh.L.S.L-1 Introduce waste bit
80 14 4F Store KL in DL acc.
81 15 5F
82 02 5122F K * U c ? « . I T • /-Store U m C~
83 16 88L L

84 04 J 69L Sub-routine link
85 (00 F) MNS .

86 (00 F) ENS
87 (00 F) C10
88 (00 F) C2
89
90

00 166F
0+ F

Initial C2
DL 10 4 2 4

91 00 F •

92 (00 F) DL mantissa digit
93 2N J 1638F DL 23i 10
94 06 J 4915F
95 00 F DL integer 10
96 00 10F
97 3L J 8189F integer 3̂
98 00 4F integer 4

00 2N

THE LOGICAL DESIGN OF SNOCOM— Wong. 125

The Logical Design of the General Purpose Digital Computer SNOCOM
By D. G. Wong, B.Sc., M.Eng.Sc.

(Graduate)*

Summary.—SNOCOM is a general-purpose digital computer based on the logical design of the LGP-30. In this paper, a description of the functional
and logical design of SNOCOM is presented.

A working machine with many desirable features has been produced. The main purpose of this paper has been to illustrate how some of these features
have been arranged to fit into the general framework of the LGP-30 design.

L ist of Symbols.
f
F
F'
F'
F .
F, G, H
</>! ~ 8̂
K
L
Q i - Q *
Q2
P i - P »
A"

A
A*
C"
C
R ’
R
V

f
V
v„
B* ~ B32
B /P
O /F
R ll
R i
z 3
Zj
D0- D s
50 ~ S6
5 1 or u
S3 or z
Si or x
S s or y
w
w,
t„
t ,
To, Ti
v
«>1 - wlt
Z0
b J
b
S
P
r
X
B

“ 1 ” output of the F flip-flop.
“ 0 ” output of the F flip-flop (complement of F).
Signal which sets F (to 1).
Signal which resets F (to 0).
“ 1 ” output of the early F flip-flop.
Phase flip-flops.
Phases (defined by Table III).
Sector search, lock-out and augmentation flip-flop.
Carry-borrow flip-flop.
Order flip-flops.
Blocked state flip-flop.
Track selection flip-flops.
Accumulator input (i.e., signal to accumulator record

amplifier).
Accumulator playback flip-flop.
Double length accumulator playback flip-flop.
Counter input.
Counter playback flip-flop.
Instruction register input.
Instruction register playback flip-flop.
Digits to be recorded (in the main store).
Duration of recording (in the main store).
Store playback flip-flop.
Auto input store playback signal (see Section 7.1).
Outputs of the BP (break-point) switches.
Break point stop signal (see Section 7.3).
Overflow stop signal (see Section 7.3).
Ready ready signal.
Weight 5 reader buffer flip-flop.
Printer ready signal.
Punch ready signal.
Digit timing waveforms.
Segment timing waveforms.
Sector number waveform.
Track number waveform.
Order number waveform.
Second sector number waveform.
Full address waveform.
Early full address waveform.
Waste digit.
Sign digit.
Interleaved clock pulses.
Sector number generator output.
Binary counter outputs of the sector number generator.
Output of the Z0 (or external transfer) switch.
Adder-subtracter inputs.
Adder-subtracter output.
Add or subtract signal.
Duration of the shift register operation of the P flip-flops.
Either R or C depending on the phase.
Stroke (/) character flip-flop.
Auto input flip-flop.

NOTE : The complement of a Boolean variable is represented
in bold type (or in the illustrations by a bar over the symbol).

1.—Introduction.

In 1957, the System Operational Problem was programmed
for its solution on SILLIAC, the general-purpose digital computer
within the Basser Computing Department of the University of
Sydney. The success of the SILLIAC studies led to the recom
mendation that the specification of the computer to be built for the
Snowy Mountains Authority be changed from a digital differential
analyser to a general-purpose digital computer.

After ADA was completed and officially opened in March, 1958,
the logical design of the computer which was to be known as
SNOCOM was commenced. The availability of Frankel’s design
of the LGP-30 (Ref. 3) and the realization that essentially the same
circuit and constructional techniques developed for ADA could be
used with the second machine, were the main reasons for basing
SNOCOM on the logical design of the LGP-30.

The purpose of this paper has been to describe some of the
computer processes which were not covered in any detail in Frankel’s
paper, and also to present some of the features which have been
incorporated into the design of SNOCOM.

2.—G eneral D escription.
SNOCOM is a fixed-point, binary, serial, stored-program,

single-address, general purpose digital computer using transistor
circuits and magnetic drum storage. The storage capacity of the
computer is 2,048 words, each of 32 binary digits. These are
arranged on 64 tracks of die drum with 32 words per track. The
Model 512-A Bryant magnetic drum (5 in. dia., 12 in. long) runs
at 6,000 r.p.m., giving a clock rate of 102.4 kc/s, a word time
of 312 microseconds and a mean access time of 5 milliseconds.
The accumulator, instruction register and instruction counter are
in the form of recirculating registers, with the spacing between
record and playback heads corresponding to one word period. The
addition of a second playback head on the accumulator recirculating
register enables double length numbers to be stored for use in the
multiplication and division processes. The computer logic is
synchronised by clock pulses derived from a clock track and a once-
per-revolution marker permanently recorded on the drum.

An interlaced sector number system enables simple instructions
to be obeyed within nine word periods. Another sixty four word
periods are required for the multiplication and division instructions.
Hence the addition and multiplication times are 2.8 milliseconds
and 22.8 milliseconds, respectively. The bench-mark time (i.e.,
the time to carry out ten additions and one multiplication) is about
51 milliseconds.

The peripheral units consist of (1) a Ferranti TR5 paper tape
reader which operates at 300 characters per second, (2) a Teletype
BRPE paper tape punch which operates at 50 characters per second,
and (3) a modified IBM electric typewriter which operates at
10 characters per second. Both output units are computer-
controlled and all units may operate simultaneously.

N U M B E R WORD

I 2 3 * S 6 7 3 9 ¡0 U H ¡3 H IS /6 !7 18 0 2D 2! 72 23 2H 25 2b 27 28 2q 30

SIGN 30 M AG N ITU D E B ITS SPACER

In 1955, the development of the Digital Differential Analyser
“ A.D.A. ” (Refs. 1,2) was commenced by the Mathematical Instru
ments Section of C.S.I.R.O. under the direction of the Professor
of Electrical Engineering of the University of Sydney. This
project was supported by the Snowy Mountains Hydro-Electric
Authority and it was understood that a second D.D.A. was to be
built and installed in the S.M.H.E.A. offices in Cooma North,
N.S.W. This second computer was to be specifically designed for
the solution of a System Operational Problem, which had previously
taken many “ man-years ” of manual calculations for its solution.

This problem had been formulated, not as a set of ordinary
differential equations, but as a long sequence of simple arithmetic
and logical operations on whole numbers. It was shown that a
D.D.A. solution was possible, but about 400 integrators would
have been required and the computation time might have been
prohibitively long.

•This paper, No. 1625, was presented before the Engineering Conference, 1962,
in Cooma from 19th to 23rd March, 1962.

The author is Lecturer, School of Electrical Engineering, The University of Sydney.

IN STR U C TIO N W ORD

0 2 * 6 8 10 // 12

~L
l i 16 n 8 19 2 21 72 3 24 2 26 77 28 / X

Zo SPA CER'oRDEF TRACK SECTOR

ADDRESS
Fig. 1.—SNOCOM Number and Instruction Words.

A SNOCOM number word consists of a sign bit, thirty magni
tude bits and a spacer bit as shown in Fig. 1. The binary point is
assumed to be between bit 0 and bit 1, and the normal two’s com
plement system for the representation of negative numbers is used.
Hence, all machine variables (x) lie in the range:

-1 < x < 1 - 2-30

The Journal, June, 1962

126 THE LOGICAL DESIGN OF SNOCOM— Wong.

A SNOCOM instruction word consists of four order bits,
six track bits and five sector bits as shown also in Fig. 1. The
track and sector bits together constitute the full address of the
instruction. Apart from the sign bit which is used in conjunction
with the conditional transfer of control order for external program
control, the remaining bits have no significance. Corresponding
to the different combinations of the four order bits, there are
sixteen basic instructions which SNOCOM is capable of executing.

3.—T he SNOCOM Order Code.

The order code for SNOCOM’s sixteen basic instructions
is shown in Table I. These instructions are defined in detail in
Table VII (Appendix IV) and a brief discussion of these is presented
in following sections.

TABLE I.
T he SNOCOM Order Code.

(Simplified.)

Code
Order

Sexadecimal Binary

1 0001 Bring
F 1110 Add
L 1111 Subtract
7 0111 Multiply fractions
6 0110 Multiply integers
5 0101 Divide
9 1001 Extract
-f 1010 Unconditional transfer
— 1011 Conditional transfer
N 1100 Store
J 1101 Store and clear
2 0010 Store address
3 0011 Return address
4 0100 Input
8 1000 Output
0 0000 Stop

3.1.—Arithmetic and Logical Instructions :
The arithmetic operations of addition, subtraction and division

are carried out with an accuracy of 30 binary digits plus sign.
For multiplication, the complete product consisting of 60 binary
digits plus sign is formed (by the use of a second playback head
on the accumulator track), and the most significant 30 bits plus
sign or the least significant 30 bits are left in the accumulator,
depending on whether a 7 order or a 6 order is being executed.

The augend, minuend, multiplier or dividend is entered into
the accumulator by a 1 order, while the address of the addend,
subtrahend, multiplicand or divisor is specified in the single
address instruction. The results of the arithmetic operations are
left in the accumulator.

As the accumulator is used to hold both the multiplier and the
product, with a suitable choice of constants for the multiplicand,
7 and 6 orders can be used as right and left shift orders, respectively.
For example, a 7 order multiplication by 08000000 (sexadecimal)
is equivalent to multiplication by 2-4 and this results in the contents
of the accumulator being shifted 4 binary places to the right.
On the other hand, a 6 order multiplication by 08000000 is equiva
lent to multiplication by 231-4 and this results in the contents of the
accumulator being shifted 27 binary places to the left.

The 9 order obtains the bit-by-bit logical product of the
contents of the accumulator and the contents of the location specified
by the instruction, and retains the result in the accumulator. Used
in conjunction with “ masking ” numbers which contain l ’s in
certain bit positions and 0’s elsewhere, the 9 order makes possible
the storage of several pieces of information in the same storage
location, as each piece of information may be isolated (or extracted)
and used individually.
3.2— Transfer of Control Instructions :

Interconnection of routines and branching of a program
depending on intermediate results are made possible by the
unconditional transfer and conditional transfer instructions. Manual
control of a program in the computer is also made possible by the
external transfer switch Z0. Reference to Table VII shows that the
order 80-0ABC0 transfers control to ABC if the accumulator is
negative or if the switch Z0 is “ on ” . It should be noted that if
branching of a program is to be made contingent only on the Z0
switch setting, it is necessary to ensure that the accumulator is
positive when the above conditional transfer order is obeyed.
This may be carried out by preceding the order with a J order
(store and clear), as zero is interpreted as a positive number.

3.3— Record Instructions :
Intermediate results are recorded on the magnetic drum using

the N order (store) or the J order (store and clear), and addresses
of instructions in the store are modified using the 2 order (store
address). The 3 order (return address) is used for “ planting ”
the (return) “ link ” between a subroutine and the main program.
The order immediately following the 3 order is usually an uncon
ditional transfer order which transfers control to the first order in
the subroutine. The address of the second order after the 3 order
is planted into the last order of the subroutine (also an unconditional
transfer order) which transfers control back to the main program.

3.4— Input Instruction :
Reference to Table VII shows that it is possible to enter a single

character (four bits) or a complete word (eight characters) on the
execution of a single 4 order. The eight characters of a word are
enclosed within two control characters, / (stroke) and # (number),
which direct the input logic to repeat the input process (to be
described) until all characters enclosed by the two control characters
have been entered into the accumulator. It is to be noted that all
5th bit characters (including the control characters / and #) never
enter the accumulator.

3.5— Output Instruction :
If bit No. 17 (see Fig. 1) of an 8 order is 0, bits 18-22 are

punched as a character on the output tape; if bit 17 is 1, and if
bits 18-22 correspond to one of the nineteen decoded characters,
the output printer will be activated. A program may be written
to either punch or print the results of a computation depending
on the setting of the Z0 switch. This may be carried out very
simply as the only difference between a print and a punch order is
the constant 00004000 (sexadecimal) which may or may not be
added to the output order depending on the Z„ setting.

3.6.—Stop Instruction :
The conditional stop orders may be very useful in code-checking

a new program. If 0 orders with different track numbers are
scattered throughout a program, the programmer may stop the
computation just before the suspected faulty section of the program
by setting the appropriate break-point switches. The computer
may then be switched over to single operation mode, and the error
located by monitoring the contents of the three main registers and
the states of the main flip-flops after the execution of each
instruction.

4.—T he T iming U n it .

Waveforms generated by the timing unit are used (1) to
synchronise the operation of the logic circuits, (2) to maintain the
correct interpretation of digits in a word by extracting the appro
priate digits to be used in the machine logic and (3) to announce the
number of the sector which is next to appear under the read-write
heads of the main store.

The interleaved clocks T0 and T2 of Fig. 2 are derived from a
clock track on the drum, and are used in the double flip-flop arrange
ment of Fig. 5. A once-per-revolution marker synchronizes the
segment and digit ring counters described in Section 4.1. and the
sector number generator described in Section 4.2.
4.1. — The Segment and Digit Timing Waveforms:

To maintain complete flexibility so that any digit within a
word may be specified, a word period has been divided into six
segments with each segment containing either four, five or six
digits. The segment waveforms S0 — S 5 and the digit waveforms
D0 — D5 of Fig. 2 are generated by two ring counters and inter
connecting logic. Any digit within a word is specified in terms of
these waveforms. For example, the waste digit and the sign digit
are the first and last digits in the word and may be specified as
S 0D2 and S qD ĵ respectively.
4.2. — The Sector Number Generator :

In SNOCOM, consecutive addresses do not correspond to
consecutive locations on a track of the drum, but to locations which
are spaced nine word periods apart. In this way, an instruction
which refers to an operand, which is appropriately located between
itself and the next instruction, is obeyed in nine word periods rather
than the minimum time of thirty-two word periods (corresponding
to one drum revolution) which would otherwise be required. To
make the above interlaced system possible, a sector number must be
formed by subtracting seven from the number of the preceding
sector (modulo 32). This results in the sector number sequence
shown in Table II.

Two three-stage binary counters are used in the generation
of the sector number sequence. The first counter corresponds
to the three least significant digits of the sector number and is
pulsed to count forwards every word period. The second counter
corresponds to the two most significant digits of the sector number
plus an additional (more significant) digit which effectively counts
odd and even drum revolutions. This second counter is pulsed
to count backwards on every word period except every eighth
when the first counter changes from the state 111 to 000. With the
above arrangement, one is added to the weight one position of the
sector number and one is subtracted from the weight eight position;
this results in a sector number being formed which is seven less than
the preceding one. The second counter is inhibited from changing
when the first has changed from 111 to 000 as this already repre
sents a subtraction of seven.

The binary counters are pulsed early in the word period and
their states are gated by the digit waveforms (D0 - - Ds) so that their
representation is converted into the serial form required by the
machine logic.

In the LGP-30, the sector number pattern is recorded per
manently on one track of the drum. This is not the case for
SNOCOM, and the parallel representation of the sector which is
next to be presented by the store playback amplifier is utilized in the
auto input logic.

The instruction search (</>l), instruction setting (</>2) and
operand search (</>3) operations require a minimum time of three

THE LOGICAL DESIGN OF SNOCOM— Wong. 127

word periods. As consecutive addresses are nine word periods
apart, there are six optimum sector numbers for instructions which
require one word period for their execution. As an example,
sectors 18, 11, 4, 29, 22 and 15 would be optimum for an “ add ”
instruction stored in sector 0. Sectors 25 and 8 are excluded as
these correspond to the operand search (</>3) of the current instruc
tion, and the instruction search (</>l) of the next instruction
respectively. Type 7, 6 and 5 instructions require 66, 64 and 67
word periods for their execution and there are correspondingly
five, seven and four optimum sectors for these instructions.

5.—M anual Controls for Starting a Program.

Because the three operations for initial filling described in
Section 5.1 were designed to share common timing circuits, it is
necessary for the machine operator to select the required operation
by pressing the appropriate button, before initiating the operation
by pressing the “ operate ” button. Buttons on the machine
console must be pressed 28 times in the correct sequence before the
bootstrap routine described in Section 5.2 could be initially filled
to input a new program. It was realized very early in the develop
ment of the computer that this would cause a great deal of incon
venience. To overcome this, “ block record ” toggle switches with

Interleaved Clock Pulses
j m i M n i L L i i n m i i i i m i n i i i m n t0
1111II11111111H 1111111111111 irji i 11 i t2

J1______ Rev. Marker_______________________ RT
i

J~1_
Ln

J1____PL J T

j t

_r

JT

JJT.

n__Ln J T
j i __ n _
-Itt—Ltl

_n___1 n I n i n
_nJ__n_
n

j t

j t L__ TL
_n___t l _
_!__ _ n

~i----- Do
J T _ D|
__TL D2
_ _ D3
___ Ü4
------D5

Waste
¡Sector No.

Ifrack No.

..Waste
Order

Second Sector No.

So
S,(u)

Ŝ iz)
S3
S4(x)

s5(y)
•One word period—

IWaste Digit SoP2

^iqn Digit S0D|

H
— TL tw
J~i— ts

Sector No. Generator (typical section of w/f.)

Fig. 2.—Timing Waveforms.

TABLE II.
SNOCOM Sector N umber Sequence.

Sector Number Binary Equivalent

0 00000
25 11001
18 10010
11 01011
4 00100

29 m oi
22 10110
15 01111
8 01000
1 00001

26 11010
19 10011
12 01100
5 00101

30 11110
23 10111
16 10000
9 01001
2 00010

27 11011
20 10100
13 01101
6 00110

31 m i l
24 11000
17 10001
10 01010
3 00011

28 11100
21 10101
14 01110
7 00111
0 nonnn

associated logic were introduced to safeguard the unscheduled
mutilation of an input routine which was to be stored permanently
at the beginning of the store. Control was to be transferred to this
routine by simply pressing the “ clear C ” button. SNOCOM’s
auto input described in Sections 5.3 and 7.1 has been extremely
effective in simplifying the procedure for starting a program, and it
has not been necessary to develop programs using the block record
feature.

5.1. —Initial Filling:
The three operations provided for initially filling the magnetic

drum store with a bootstrap routine are as follows.—
(1) Fill the accumulator with the character(s) presented by the tape

reader ; i.e., obey an input instruction (-> A).
(2) Transfer the contents of the accumulator into the instruction

register (A -> R).
(3) Execute the instiuction held in the instruction register (Ex.R).

As an example, to fill the word 00+00000 (sexadecimal) into
location 004 (sexadecimal), the input tape would contain the word
pair :

/00N 00040# /00 + 00000#
and the manual operations would be as follows.—

1. Fill Accumulator (-> A)
2. Transfer A to R (A-> R)
3. Fill Accumulator (-»■ A)
4. Execute R (Ex.R)

Steps 1 and 2 put the “ store ” order (type N) into the instruction
register. The word 00+00000 is entered into the accumulator in
step 3, so that on the execution of the store order in step 4, this word
is filled into location 004 in the main store.

5.2. —A Bootstrap Routine :
With SNOCOM’s order code, the minimum number of

instructions required for a bootstrap or short input routine is three.
In sexadecimal, these instructions are as follows.—

Location Instruction
000 00400000
001 00N00030
002 00400000

The first two words on the input tape must be :
/00N00040 # /00 + 00000 #

and the routine must be started at location 000 by pressing the
“ clear C ” button on the control console. The latter word is
stored in location 004 on the execution of the former (instruction)
word which had previously been stored in location 003 by the three
orders of the initial bootstrap routine. On the execution of the
latter (instruction) word in location 004, control is transferred to
location 000, and the following program on the input tape is then
effectively under the control of the following routine.-—

Location Instruction

000 -» 00400000

001 00N00030

002 00400000

003 ()

004 — 00+00000

This routine may be used to fill a program into the store when
each word of the program is preceded by a “ store ” or “ store and
clear ” instruction whose operand address corresponds to the
location in which the word is to be stored.

The execution of the bootstrap routine can be terminated if the
first order of an order pair is an unconditional transfer of control
order.

5.3.— The Auto Input:
After the auto input button has been pressed, the normal

store playback (F) from sectors 0, 1 and 2 is inhibited and replaced
by a pattern of digits generated from the timing unit. This pattern
of digits is equivalent to the following three orders.—

00400030 (from sector 0)
00N00030 („ „ 1)
00400030 („ „ 2)

If the first two words on a program tape are :
/00N00040 # /0 0 +00000 #

and the computer is started after pressing the “ clear C ” button,
the word 00+00000 will be stored in 004, and the program will
then be effectively under the control of the following bootstrap
routine.—

Location Instruction

000 -> 00400030 1

001 00N00030 From
’ timing unit

002 00400030

003 < n - From store
004 — 00+00000 J!

The Institution o f Engineers, Australia

128 THE LOGICAL DESIGN OF SNOCOM— Wong.

The normal store playback from sectors 0, 1 and 2 (track 0)
is not inhibited permanently, conditions being returned to normal
immediately a “ 1 ” is sensed in the waste digit position of the
accumulator in phase 1.

It is to be noted that, because of a simplification of logical
design, the normal store playback is inhibited whenever the sector
number generator announces a number whose binary equivalent
contains a “ 0 ” in the weight 4 position, and this applies not only to
track 0 but to all tracks. To eliminate these abnormal conditions
as soon as possible, it is recommended that all program tapes should
begin with the following eight words.—

/00N00040 #
/00N00000 #
/00N00010 #
/00N00020 #

/ 0 0+ 00000 #

/00400000#
/00N00030 #
/00400001 #

When this is done, the bootstrap routine discussed above will be
actually written into the store, and conditions will be returned to
normal by the “ 1 ” in the waste digit position of the eighth word.

After the program tape has been placed in the tape reader, the
normal procedure for inputting a program using the auto input is as
follows.—

1. Press the initial set button.
2. Press the clear C button.
3. Press the auto input button.
4. Press the operate button.

6.— F unctional D esign.

The execution of each instruction stored on the magnetic
drum takes place in four to eight phases. During computation,
information is held on the drum, in the recirculating registers
and in flip-flops. The definition of the operations which are to be
executed in each phase, such as the transfer of information from
drum to recirculating register or from recirculating register to
flip-flop, constitutes the functional design of the computer. The
multiplication and division processes which require the additional
phases (five to eight) are not described in this paper, and for these
the reader is referred to Reference 3.

6.1. —Phase 1.—Instruction Search :
The address digits of the instruction counter specify the

address of the next instruction which is to be obeyed. In phase 1
(abbreviated </>l), the track digits of the instruction counter are set
into six flip-flops (P1 — P 6) which control the track selection cir
cuits during the subsequent phase {<f>2); the sector digits are used
in conjunction with the sector number generator of the timing
unit to terminate <f> 1 so that the correct instruction is presented by
the store during $2.

6.2. —Phase 2.—Instruction Setting and Counter Address Aug
mentation :

In <¡>2 which lasts only one word period the instruction to be
obeyed is transferred from the store to the instruction register.

As the instructions in the store are normally obeyed sequen
tially, the address of the instruction counter must be augmented
by one at some time in the machine cycle after it has directed the
logic to set the current instruction into the instruction register.
This is carried out in <f>2, and the new augmented address will be
effective in the next <f>\ unless the current instruction is an uncon
ditional transfer of control order or a successful conditional transfer
of control order, in whir’ _ase the augmented address is overwritten
in a later phase (</>4).
6.3. —Phase 3.—Order Setting, Operand Search and Lock-out:

In (f)3, the order digits of the instruction register are set into
four flip-flops (<2i — Q4), and these control the logic in the execu
tion phases which are to follow.

The track digits of the instruction register are set into the same
six flip-flops P1- - P 6 which were used in<f>l. For the orders which
specify the address of an operand (order types 1, 2, 3, 5, 6, 7, 9,
N, J, F and L), the P flip-flops are used to control the track selection
circuits during the subsequent phase (<£4), and the sector digits of the
instruction register are used in conjunction with the sector number
generator to terminate <f>3 so that the correct operand is presented
by the store during <£4.

For order types 0, + and —, which do not refer to the store,
cf>3 is terminated after one word period.

For order types 4 and 8, <f>3 is terminated after one word
period provided the peripheral units are not operated at their
maximum speeds. However, if a program attempts to operate
any of the peripheral units at greater than its maximum speed, the
computer will “ lock-out ” (i.e., wait) in </>3 until that particular
unit is ready. It is to be noted that there are one character buffer
registers associated with each peripheral unit, so that it is possible
for the reader, printer, punch and the computer itself to operate
simultaneously. For an input order (type 4), the track digits in
Px - P4 are overwritten by the character (consisting of four bits)
which is to be input and this character is shifted into the accumulator
in </>4.
6.4. —Phase 4.—Execution :

In (f>4, which lasts only one word period, the order specified
by the states of the four Q flip-flops is executed.

As SNOCOM is a single-address machine, the contents of the
accumulator are used as the second operand of instructions requiring

two operands (e.g., addition, subtraction, multiplication and
division), and the accumulator is also used to store the results of the
computation.

For the transfer of control instructions (types + and —),
the augmented address of the instruction counter may be over
written by the address digits of the instruction register.

For the record orders (types 2, 3, N and J), the store record
amplifier is activated and information is written onto the magnetic
drum.

For the .input order (type 4), the accumulator digits are
effectively shifted four places to the left and the four digits held in
Pi — P 4, which had previously (in </>3) been set according to the
character to be input, are shifted into the four least significant
places. The input logic has been designed so that any number of
characters (up to 8) can be entered into the accumulator on the
execution of a single input order. This is accomplished by using
two control characters (/ and #) on the input tape. After a /
character has been detected in <f>3, cf>3 and not <¡>1 is made to follow
<f)4 so that the </>3 - </>4 input process (described above) is repeated.
After a # character has been detected in </>3, </>l and not cf>4 is made to
follow (f>3. For example, if the input tape contained /L3F #, the
machine would cycle through the following phases on the execution
of a single input order.—

<f> 1 —> <j>2 —*■ <j>3 —> <f>4 —> tf>3 —*■ <¿4 —> <f>3 —> (£4 - > <j>3 —> <f> 1
It is to be noted in the above example that the machine enters
(f>4 three times and hence three sexadecimal characters are entered
into the accumulator. It is also to be noted that all 5th bit characters
(including / and #) are excluded from entering the accumulator.

For the print or punch order (type 8), the character to be
printed or punched is determined by the track digits of the in
struction. These have already been set into the P flip-flops (in rf>3).
The flip-flop Pi is used to determine whether the printer or the
punch is activated : if Px = 0, the 5 bit character P2P3P4P5P6 is
punched ; if Px = 1 the character corresponding to P2P 3P4P5P6 is
printed.

For a stop order (type 0), the computer completes (f>4 and remains
in >̂1 until instructed (manually) to continue its computation. A
detection of overflow or division hang-up will also stop the computer.

7.—L ogical D esign.

The following brief description refers to the simplified block
diagram of Fig. 3. More details appear in Appendices I, II and III.

The logical design of the LGP-30 as described by Frankel
in Reference 3 consists primarily of (1) the specification of the
conditions under which each of the main fifteen flip-flops is set and
reset, (2) the specification of the digits to be recorded in the
recirculating registers in each digit period and (3) the specification
of the exact location on the magnetic drum in which specified
digits are to be recorded.

Three flip-flops (P, G, H) are used to define the eight machine
phases (see Table III). Some improvement in machine specifica
tion has resulted from changing the conditions under which phase
three is terminated in SNOCOM. The additional logic described
in Section 7.2 utilizes the multi-purpose flip-flop K which is used
(1) for sector search, (2) for peripheral unit lock-out and (3) for
augmenting the counter address. The L flip-flop is used to delay
the carry or borrow digit in the adder-subtracter described in
Appendix II. The four flip-flops QiQ2Qz and Q4 are used to hold
the order digits during the execution phases. The flip-flop Q2
is also used in the blocked-state logic to be described in Section 7.3.
The main purpose of the six flip-flops P 15 P2, P 3, P4, P 5 and P 6
is to select the correct track while recording on or playing-back
from the magnetic drum.

A signal-flow and block diagram for the recirculating registers
is presented in Fig. 7. The derivation of the Boolean equations
representing the digits (A", C" and R") presented to the record
amplifiers of the recirculating register is briefly described in
Appendix II. The equations are essentially the same as those
described by Frankel, with minor modifications. No modifications
to the multiplication and division processes were made and hence
these are not described.

The V logic representing the digits to be recorded and the /
logic representing the duration of recording ensure the correct
execution of the four record instructions.

Two significant improvements over the LGP-30 design which
have been incorporated in SNOCOM are described in Sections 7.1
and 7.2. The logic in Section 7.3 was not described in any detail in
Frankel’s paper. In these sections, it is assumed that die reader
is familiar with the material in the Appendices I, II and III.

7.1.—The Auto Input:
As the sector number generator announces the sector number

of the next word, when sectors 0, 1 and 2 are being played back,
the sector number generator announces 25, 26 and 27, respectively.
If the binary counter outputs of the sector number generator are
zou zv2, k>4, zvB, and zu1G, the relevant sectors are represented by the
following.—

Sector played back Sector number announcement
0 to i z v 2 u>4 Wg W i g (sector 25)
1 W i w2 U>1 W g W i g („ 26)
2 W i Wo w t W g W i g (« 27)
3 w . IV 2 »4 W g W i g (» 28)
4 W i VO 2 W t W g W i g (» 29)

THE LOGICAL DESIGN OF SNOCOM— Wong. 129

TIMING UNIT
^ ----7---- r

D's S's v

TAPE-READER

-Clock Track
Rev Marker

J ± L

MAGNETIC DRU M

(INPUT LOGIC K A* LOGIC 1 |C LOGIC | | f? LOGIC (
T
Q’s

i ---------?— r
Cfe vb R

Q’s
i

C R v K

MANUAL CONTROL MONITOR

Qs

FGH

V & f LOGIC

AUTO-INPUT LOGICI----------- —t—----------

R* LO G IC | p U F - P.|+
vb

R Cfe* i____ r
i-Q’s 1ö l 1 PUNCH LOG 1C | 1 PRINTER LOGIC

TAPE PUNCH] (TYPEWRITER]

Fig. 3.—Simplified Block Diagram of SNOCOM.

It can readily be seen that wA alone distinguishes sectors 0, 1 and 2 from sectors 3 and 4.
After the auto input button has been pressed, the 8 flip-flop

is set to the “ 1 ” state, and while this flip-flop is in this state, the
normal V playback from sectors 0, 1 and 2 (and other sectors but
not sectors 3 and 4) is inhibited. The conditions to be satisfied
while V is inhibited are therefore represented by iu4 . B = 1.

The normal V playback is replaced by a pattern of digits
generated from the timing unit. For example, an input order
00400000 is represented by a single digit S iD2, and the order
OON00030 is represented by the 4 digits :

S 4D3 + S4D3 + S1D1 + SiD0
Using zVi and w2 to distinguish between sectors 0, 1 and 2 and

a>4 to distinguish sectors 0,1 and 2 from sectors 3 and 4, the pattern
of digits to be generated from the timing unit may be represented by : SiD3wliv2w t

+ (S4D3 + S4D2 + SlDl + SjDq) tu1zv2tvi-f S iDizv1w2u>i
The digits from sectors 0, 1 and 2 have S 4D2 in common.

Also, as the address portion of an input order has no significance,
the digits SiDx and S tD 0 may be added to the input orders without
harm. The pattern therefore may be simplified to :

(54D2 + SjDi + S4D0) w 1 + S4-D3 wlw2tvi
The auto input logic is introduced into the main machine

logic by replacing the normal V playback by a new variable V b
which is equal to V under normal conditions but equal to the
digits generated from the timing unit under the conditions of auto
input (i.e., when w 4 . B = 1). Hence :

Vt, — V . w 4 . B + tv4 . B(S4D3 + + .Si-Do + SiD3tViW3)
The B flip-flop is set to “ 1 ” when the auto-input button is

depressed, and is reset to “ 0 ” when a “ 1 ” is detected in the waste
digit of the accumulator in <f>l. I t is also reset to “ 0 ” when the
initial set button is depressed so that the computer may be used
without the auto input operation. Hence :

B' = auto input button
B' = <t>i tw A + initial set button.

A logic diagram corresponding to the above equations is shown
in Fig. 4.
7.2.— Termination of Phase 3 :

In the logical design of the LGP-30 as described by Frankel’s
summary of equations, </>3 is terminated by sector number agree
ment for all orders. However, for five of the sixteen orders (viz.,
0, 4, 8, + and — orders) reference is not made to the store
immediately following the termination of cf>3 (i.e., in f 4).

In SNOCOM, <f>3 is terminated after one word period for 0,
4- and — orders by setting K to “ 1 ” at S bD3 in </>3. This setting

of K to “ 1 ” must occur after S J} when K might be reset to “ 0 ”
by the operand search logic, and also after <S4 during which time the
order digits in the R register are set into the Q flip-flops. The
states of the Q flip-flops corresponding to 0, + and — orders are
Q 1Q 2Q3Q 4> Q 1Q 2Q3Q 4 and QiQzQsQi respectively. The termination of <f)3 after one word period for 0, + and — orders may
therefore be represented b y :

K ' = (Q1Q2Q3Q4 + Q1Q2Q3) <t>3 SbD3 +
For type 4 and 8 orders, termination of <f>3 is controlled by

“ reader ready ” (R LLR 5)} “ printer ready ” (Z3) and “ punch
ready ” (Zj) signals, and provided the computer program does not
attempt to operate the peripheral units faster than their maximum
operating speeds, SNOCOM* S logic is such that <f>3 for these orders
will last only one word period. The K flip-flop is reset to “ 0 ”
at S 6D1 in <f>3 as it might have been left in the “ 1 ” state by sector
agreement. The “ ready ” signal o f the unit specified by the Q’s
and is then sensed; if the vmit is ready, <£3 is terminated by
setting K to 1 at S bD3; i f the unit is not ready, the machine will
repeatedly lock-out and sense the ready signal at following S 5D3
times until the unit is ready to initiate another input or output cycle.
The above arrangement is represented by the equations :
K' = (Q!Q2Q3Q4 + Q1Q2Q3Q4) ¿ 3 SsD, +
K' = Q!Q2Q3Q4 • ¿3S6D3 (z 3p i + z 2p i) + Q1Q3Q3Q4 • <I>3S 3D3R llR 3 +

Auto Input Initial Set

0 1 0 1

In the above, R LL equals 1 when any character has been correctly
assembled in the input buffer. The significance of R-a is that
only a correctly assembled non-5th bit character will terminate
<j>3, as these are the only characters which are permitted to enter the
accumulator in <f>4.

I t is to be noted that only the “ ready ” signal corresponding
to the current input or output instruction is sensed. Hence, the
computer and all three peripheral units may be in operation
simultaneously.
7.3.— The Blocked State :

In the blocked state, the computer remains in <j> 1. This is
accomplished by making the transfer from 1 to <f>2 contingent on
the occurrence of Q2 — 1. The flip-flop Q2 is always found in the
1 state when <f> 1 is entered. However, it is reset to 0 later in the
first word period of ̂ 1 if the stop computer cycle has been previously
initiated by (1) the detection of overflow in an addition or sub
traction, (2) the detection of an improper division, (3) the execution
of a break point order or (4) the setting of the computer in the single
operation mode.

Each of the fifteen main flip-flops in the computer is repre
sented by a pair of flip-flops operating with inter-leaved clocks,
as shown in Fig. 5. The Q2 flip-flop is set to 1 when <f> 1 is entered by adding a term F eF to the Q \ equation.—

Q \ = FJP +
where F e and F are the 0 and 1 sides of the early and late F flip-
flops, respectively. The term F eF produces a 1 output only when
the phase changes from <f>4 to f l , cf>4 to <f>5 and <f>7 to <f>8. It is to be
noted that <22 — 1 for multiplication and division orders. Hence
on entering f l from </>4, </> 6, </>7 or f 8, Q2 will be found in the 1 state.

7.3.1.—Overflow.—The normal two’s complement repre
sentation of negative numbers is used. Hence overflow is detected
by the presence or absence of the carry or borrow digit into the
sign digit position. The four conditions under which over-flow
occurs is represented by :
O/ F = F G H t 3QlQ3Q3(Qi A V L + Qi A V L + Q i A V L + Q4 A V L)

130 THE LOGICAL DESIGN OF SNOCOM— Wong.

F F
Fig. 5.—Flip-flop Pair with Interleaved Clocks.

The above O/F signal is used to set a flip-flop which illuminates
the O/F monitor light and causes the machine to idle in the next
>̂1 by resetting Q2 to 0. An overflow on-off switch is provided to

inhibit the stopping of the machine when overflow occurs.

7.3.2.—Break Point Stop.—The track number of a 0 order is
held in the P flip-flops during 4. Reference to Table VII shows
that the computer is to stop unconditionally when all P ’s are in the
0 state. Otherwise, stopping is contingent on the setting of a BP
switch and the setting of the corresponding P flip-flop in the 1 state.
These conditions are represented b y :
B /P = F G H Q 1Q2Q 3Q 1 {PlP iP iP iP iP , + P1B 32 + P 2B lt + P aB a +

P 4 B t + P 5B2)
where P32----- Bz are the outputs of the BP switches.

The above B /P signal is used to set a flip-flop which illuminates
the B/P monitor light and causes the machine to idle in the next

by resetting Qz to 0.

8.— Conclusions.

The problem of starting programs on simple magnetic drum
computers has been overcome in SNOCOM by the incorporation
of the “ Auto Input ” feature.

The “ Lock-out ” circuitry necessary for the simultaneous
operation of the computer and the peripheral units has been found
extremely effective. This feature, together with the relatively
high operating speeds of the peripheral units, has effectively
increased the computational speed of the computer for problems
involving large amounts of input data and output results.

Starting from the general framework of the LGP-30 design,
it has been found relatively simple to introduce a number of desirable
features into SNOCOM. These features include the computer
control of both the printer and the punch, the allowable selection
of the number of characters entered on the execution of an input
order, and the reduction of computational time by minimizing the
period of the operand-search and lock-out phase (</>3).

SNOCOM had run satisfactorily for several months within the
Electrical Engineering School of the University of Sydney before
its installation within the main offices of the Snowy Mountains
Authority in Cooma North, N.S.W. Since the beginning of 1961,
its operation in its new environment has also been found satisfactory.

The design, construction, testing and installation of SNOCOM
were carried out by an extremely small group of qualified personnel
and technicians, some of whom had teaching commitments as well.
The success of the SNOCOM project has shown that substantial
contributions can be made by such groups in the computer field,
and it is the opinion of the author that computer research and
development (even by small groups) at the University should be
encouraged.

9.— Acknowledgments.

The construction of SNOCOM was made possible by the
generous support given by the Snowy Mountains Hydro-Electric
Authority to computer development within the Electrical
Engineering School of the University of Sydney.

Many of the transistor circuits and engineering methods which
were developed by Dr. M. W. Allen*, of the Mathematical Instru
ments Section of C.S.I.R.O., for the construction of ADA were
utilized in SNOCOM. Dr. Allen was also directly responsible for
the initial stages of development of SNOCOM, and he is to be
given much of the credit for its success.

The assistance given by Messrs. W. S. Lamond, L. G. Bellamy,
J. E. Todd, R. B. White and K. R. Rosolen during various stages
of the project is gratefully acknowledged.

Messrs. P. T. Brown and D. Linsten, of the Snowy Mountains
Authority, assisted in the final stages of testing and installation.
Their assistance and that of other members of staff within the
Snowy Mountains Authority, the Basser Computing Department
and the Electrical Engineering School of the University of Sydney,
who have contributed to the SNOCOM project, are also gratefully
acknowledged.

•Now Senior Lecturer, Electrical Engineering Departm ent, University o f Adelaide*

References.
1. Allen, M. W.—A Decimal Addition-Subtraction Unit. Proc.l.E.E.

Pt.B. Supplement— Convention on Digital Computer Techniques, Apr.,
1956.

2. Allen, M. W.—A.D.A.—A Transistor Decimal Digital Differential
Analyser. Jour.I.E.Aust., Vol. 29, No. 10-11, Oct.-Nov., 1957,
pp. 255-262.

3. F rankel, Stanley P.—The Logical Design of a Simple General Purpose
Computer. Trans.I.R.E. Professional Group on Electronic Computers,
Vol. EC-6, No. 1, Mar., 1957.

4. Frankel, S. and Cass, T.—The Librascope General Purpose Computer
LGP-30. Instruments and Automation, Vol. 29, No. 2, Feb., 1956,
pp. 264-270.

5. Frankel, S.—Useful Applications of a Magnetic Drum Computer.
Elec. Engg., Vol. 75, No. 7, July, 1956, pp. 834-9.

6. R ichards, R. K.—Arithmetic Operations in Digital Computers. Princeton,
N.J., Van Nostrand, 1955.

7. Phister, M.—Logical Design of Digital Computers. New York, Wiley,
1958.

APPENDIX I.
Phase L ogic.

A block diagram of the phase logic is shown in Fig. 6. The eight
machine phases are defined in terms of the settings of the F, G and H flip-
flops in Table III.

TABLE IU.
D efinition of Phases in T erms of F, G and H.

Phase F, G, H States

4> i F G H
F G H

<¿3 F G H
4>i F G H
4>s F G H
4* 8 F G H
4*7 F G H
fa F G H

By virtue of the double flip-flop arrangement (Fig. 5) the outputs of a
particular flip-flop (for example F and F) may be used in the setting and
resetting logic of the same flip-flop. (A single flip-flop with input storage
gates would also have been satisfactory.)

The conditions under which a flip-flop (e.g., F) are set (to “ 1 ”)
and reset (to “ 0 ”) are denoted by F' and F ', respectively. The sign
digit t , is the last digit of a word period; hence, the term t ,T 2 will be
included in all the setting and resetting expressions for F, G and H.

As <f>2 and <f>4 consist of only one word period, the change in F at the
end of these phases is represented by :

F' = F G H t , T 2 +
F' = F G H t, T2 +

i B P TOGGLES 1

I
I BREAK POINT LOGIC

OVERFLOW LOGIC

I D IV IS IO N H A N G -U P LOGIC

------------J I BLOCKED-STATE j------- -»{COM

C

PUTE]---------- Terminate &

Sector No. Agreem ent]---------------------- x [Terminate 02 after 1 word period ~~|
Prolonged-^

^ ' I Sector No Agreement I ^ excePt — -*| Terminate 63 \
j Prolonged-^

[Terminate after 1 word period |

Reader Ready S ign al-------Terminate after 1 word period— Lockout if not ready]

Printer Ready S ignal-------— | Terminate after 1 word period— Lockout if not ready |

[Terminate 64 after 1 word period"]
j All except 5 6 7

[Terminate 65 after 2 word periods!I
|Terminate 16 a fte r 61 word periods |

Ì----------------- I &
Punch Ready Siqnal--------H Terminate after 1 word period— Lockout if not ready|— i - l / | Terminate »7 after 2 word periods |

--------- “ ' ! V — ^______________, , - f J
^ I Second Sector No. Agreement I--------- ^ iTerminate OS after 1 word period I

--------------- ------- I 5 J
Fig. 6.— Block Diagram of the Phase and Blocked State Logic.

THE LOGICAL DESIGN OF SNOCOM— Wong. 131

A* H e a d __________ A Head______ ____A*Head

I REC- AMPL~1 I P/B AM PL-FF | | P/B AMPL.-FF |

ill. 02. «3
04 (+ .-.N .2 .3 .8 .0)

^ ----------- Vb

1.9) / O — Vb

04(F,L) ADDITION
SUBTRACTION

-Vb

I Omit sign digit

MULTIPUCATION
DIVISION

tU (All except ♦ and successful -)

------------- 1 « order~ |-— R

I
0 * LOGIC

Change - order into
♦ order in 03

-Ats
-Rts
- Z 0

R Head

, T
1 RB AMPL.-FF

0a (prolonged U)

02____
(order to be obeyed)

0 ^ (All except prolonged 4)

I Qt-a ,-o T : Q

To all lo g ic
where order type
nas been specified

Fig. 7.—Signal-Flow and Block Diagranl of the Recirculating Register Logic.

TABLE IV.
In the above and following equations, a + following an expression indicates
that other equations show contributions to that input.

At the end of <f>2 and <t>4, G is set to 0, hence :
G = G H t, T2 +

The K flip-flop is used in the instruction search process of or the
operand search and lock-out processes of <j>3. It is found in the “ 1 ”
state at the end of the word period if the phase is to be terminated. Hence
the transfer from <¿1 to <f>2 and from </>3 to 4>4 may be represented by :

G' = F G H K Q i t , T i + F G H K t , T z +
= G H K t s T2 (F + Q2) +

The K flip-flop is set to 1 at the beginning of each word period, i.e.,
during the waste digit period. Hence :

K ' = t w
Disagreement between the sector number generator digits and the

sector digits of C during <f>l or the sector digits of ft during <¿3 or the second
sector digits of C during <f>6 resets the K flip-flop to 0. The conditions are
represented by the equations :

K ' = (G H u + H y) (v r +t> r)
r = F H R + (F + H) C

where r is C during <¿>1 and <f>6, and R during 4>3. The terms within the
first set of brackets of the K ' equation ensure that the detection for dis
agreement between the sector number generator digits and r takes place
during the sector digits of <f>l and f 3, and during the second sector digits
of <f>6.

It is apparent from previous descriptions that the sector number
generator generates patterns of five digits during the sector digit period u
and patterns of six digits during the second sector digit period y . The
six digit pattern is required for the termination of <f>6, 26 = 64 word periods
after the termination of <j>3 (as described in Frankel’s paper).

APPENDIX II.
Recirculating R egister L ogic.

The following descriptions refer to the signal flow and block diagram
for the recirculating registers (Fig. 7).
Instruction Register Input :

The digits corresponding to the instruction to be obeyed are presented
by the main store and set into the instruction register during every <f>2.
During multiplication and division orders, the multiplicand or divisor is
presented by the main store and set into the instruction register during
<j>4. For the prolonged input order, the instruction register must recirculate
unchanged in <f>4, as its order digits will be repeatedly set into the Q flip-
flops on each return to <f>3. The X flip-flop is found in the 1 state after the
detection of a / (stroke) character on the input tape, and while in this state,
the prolonged input order is to be executed. Under all other conditions
(viz., during <j> 1, f3 , <f>5, <f>6, <f>7 and <j>8) the instruction register recirculates
unchanged. Hence :

R " = F G H V + F G H (V X + R X) + (G + H)R
Order Setting :

The order digits of R are set into the Q flip-flops by connecting these
flip-flops as a shift register during the order digit period of <f>3. Hence :

Q'i = <f>3 x R Q \ = <t>3 x R
Q\ = ¿ 3 * Qi + Q\ = ¿3 * Qi + etc.

Counter Inpu t:
The address digits of the C (counter) register are recirculated unchanged

in and <j>3. The second sector announcement digits are copied into C
during these two phases; the digits copied during the last word period of
<¡>3 are used in the multiplication and division process to terminate <f>6.

C" = G H(wC + vy) +
Complete recirculation of C is carried out during every <f>5, <¡>6, <f>7

and <¿>8, and also during <i4 of all orders except + and successful —, in
which case the digits from R are entered into C. It is to be noted that
when a successful — order is detected at the end of <f>3, the — order repre
sented by the state of the Q flip-flops is actually changed into a f order.
The decision to recirculate C or to enter R into C during <j>4 therefore
depends only on whether or not the Q flip-flops represent a + order.
Hence:

C = H C + F G H [QiQtQzQt C + QiQzQzQi ^] +
The address in C is augmented by unity in <f>2. This operation is

carried out with the help of the K flip-flop which is always found in the 1
state at the beginning of each word period. While K = 1, the complement
of the address digits of C are recirculated. However, the first 0 in the
address digits of C resets K to 0, and from the next digit onwards, the digits
are recirculated unchanged. That this process adds 1 to the address digits
can be seen from Table IV. It is to be remembered that the digits pre
sented to the serial logic are in the sequence from the least significant
to the most significant. In the table, this sequence is represented by the
digits running from right to left. The dashes represent digits which are
recirculated unchanged.

Counter Address Augmentation Examples.

Example 1 Example 2 Example 3 Example 4

c ---------------- 0 ---------------01 --------------Oil -------------- 0111

C ' ---------------- ! ---------------10 --------------100 ---------------1000

The above procedure is represented by the equations :
K = G H w C +
C" = F G H w (K C + K C) +

The double flip-flop arrangement for K (with interleaved clocks)
ensures that the first 0 is complemented.

Conditional Transfer Orders :
A — order is changed into a + order if the sign digit of A is 1 or if the

sign digit of ft is 1 and the Z0 switch is on. As Qt alone distinguishes a
— order from a + order, the above procedure is simply represented by

Q 't = QiQiQs 0*4 + R z 0) t , +
Accumulator In p u t:

The accumulator recirculates unchanged during every <pl, <j>2, <j>3 and
during <f>4 of + , —, N , 2, 3, 0 and 8 orders. Hence :

A ' = A H [F + G + QiQsQ* + Q2 (Q3 + Q«)] +
During <f>4, the accumulator input is V b for a 1 order, A V h for a 9 order

and b (the output of the adder-subtracter) for F or L orders. The multipli
cation and division processes require that the accumulator recirculates
unchanged in <f>4 for 5, 6 and 7 orders, except for the omission of the sign
digit. During <j>4 of a 4 order, the accumulator recirculates through
P„ P2, P 3 and P , (connected as a shift register). Hence, the accumulator
input is P t. The accumulator input during f 4 of 1, 9, F, L , 5, 6, 7 and 4
orders may therefore be described by :
A ” ^ A H Q t Q A Q ' + Q J t , + F G H I Q ^ Q ^ Q , + A) V b + Q .Q ^ b

+ Q 1Q2Q 3Q 1P 4] +
It is to be noted that the two A" equations (above) describe the <fA

accumulator input for all 16 orders, although only 15 are mentioned
explicitly. For a J order, the accumulator is cleared during ¿4 simply by
omitting a term involving Q1Q2Q 3Q4 in the A" equations.
Addition and subtraction :

The two inputs to the adder-subtracter are denoted by i and j, and the
output by b. In the execution of F and L orders occurring in <fA, the two
inputs are the A (accumulator) and V (store) digits, respectively. Hence :

i = A H +
j = V H +

Control signals S = 1 or 5 = 0 are used to indicate whether sub
traction or addition (respectively) is to be performed. Q t alone dis
tinguishes an F order from an L order. Hence :

S = H Q , +
The truth table for the formation of the sum and carry digits from the

augend digit (»), the addend digit (j) and the carry digit from the next lower
order (L) is shown as Table V (see Ref. 6).

TABLE V.
T ruth T able for F ull Adder.

i 0 1 0 1 0 1 0 1

j 0 0 1 1 0 0 1 1

L 0 0 0 0 1 1 1 1

Sum 0 1 1 0 1 0 0 1

Carry 0 0 0 1 0 1 1 1

The truth table for the formation of the difference and borrow digits
from the minuend digit (*), the subtrahend digit (j) and the borrow digit
from the next lower order (L) is shown as Table VI.

TABLE VI.
T ruth T able for F ull Subtracter.

i 0 1 0 1 0 1 0 1

j 0 0 1 1 0 0 1 1

L 0 0 0 0 1 1 1 1

Difference 0 1 1 0 1 0 0 1

Borrow 0 0 1 0 1 0 1 1

132 TH E LOGICAL DESIGN OF SNOCOM— Wong.

It can be seen from the tables, that for the eight different combinations
of i , j and L, the sum and difference digits are the same. Hence the following
equation for b does not involve 5. The terms in the equation represent
combinations of i, j and L which make the sum or difference digit equal to 1
Hence :

b = i j L + i j L + i j L + i j L
The most straightforward way of completing the design of the full

adder-subtracter would be to derive an expression for the carry/borrow
digit (which would depend on the control signal S). This digit would be
delayed by 1 digit period and the output of the delay unit used as the
L (and L) signal in the above expression. A slight simplification in the
logic is possible using the method described by Frankel. The carry/borrow
flip-flop (L) is initially set to 0, and the conditions for setting and resetting
the flip-flop are derived.

From the truth table, it can be seen that the L and carry digits differ
only for two cases : a Carry is “ initiated ” for the condition i j L and
“ terminated ” for i j L . Similarly, a borrow is “ initiated ” for i j L and
“ terminated ” for i j L. L and L may be omitted from the above con
ditions as the extra pulses will not change the state of the flip-flop. Hence
the setting and resetting of the carry/borrow flip-flop may be represented
by :

L ' = (i j S + i j S) t w
L" = (i j S + i j -(- r„

(N .B .—The waste digit t w is the first digit in the word.)

APPENDIX HI.
M ain Store L ogic.

The following descriptions refer to the signal flow and block diagram
for the main store record and playback logic (Fig. 8).

Shift Register Operation of the P Flip-flops :
The six P flip-flops are connected as a shift register during the track

digits of <¿1 and j>3, and during </>4 of an input order. The digit periods
during which this shift register operation takes place are denoted by p.
H ence:

P — G H z + F G H Q ,Q2Q 3Q4
The input to the shift register is represented by the two conditions

P \ and P \ (i.e., the conditions for setting and resetting the first stage).
The input digit is r (which is C during <f> 1 and R during <f>3), while G = 1
(i.e., dining 4>l and <f>3), and it is A during <f>4 (represented by the con
dition G = 1). Hence :

P \ = p G r + p G A +
P \ = p G r + p G A +

The P 2 flip-flop follows P , one digit later while P 3 follows P 2 and so
on. H ence:

P \ = P P i +
P \ = p P j + etc.

It is to be noted that the shifting operation takes place by virtue of the
fact that each of the main flip-flops is actually represented by a pair of
flip-flops operating with interleaved clocks.

Fig. 8.—Signal-Flow and Block Diagram of the Main Store Logic.

Record Orders :
The time during which recording takes place is denoted / , and

corresponds to all of <f>4 for N and J orders but only the address part of
<t>4 for 2 and 3 orders. Hence :

/ = FG (QiQjQs + Q iQ 2Q .w)
The digits to be recorded are denoted V". For N, J and 2 orders

they are the digits presented by the accumulator. For 3 orders, the address
digits of C augmented again by 1 are to be recorded. This is carried in
exactly the same way as the formation of C" in <f>2. Hence :

V = (Ql + Q J A + Q, Qt (K C + K C) +
It is to be noted that the K ' equation in Appendix II does not involve F.
Hence this equation will be effective in <f>2 for the formation of C" as well
as in <jA for the formation of V" on a 3 order.

APPENDIX IV.
TABLE VB.

T he SNOCOM Order Code.

Instruction
(Sexadecimal) Effect

0010/1BC0
“ Arithmetic and logical instructions ”
Bring . Replace the contents of the accumulator by the
contents of memory location A B C (sexadecimal).

OOFOABCO Add . Add the contents of location ABC to the contents
of the accumulator and retain the sum in the accumulator.

00L0ABC0 Subtract. Subtract the contents of location A BC
from the contents of the accumulator and retain the
difference in the accumulator.

OOlOABCO M ultiply F ractions. Multiply the contents of loca
tion A B C by the contents of the accumulator, and
retain the sign and most significant 30 bits of the product
in the accumulator.

0060ABC0 M ultiply Integers. Multiply the contents of location
A B C by the contents of the accumulator and retain the
least significant 30 bits of the product in the accumulator
(bit positions 0-29), making bit 30 of the accumulator
equal to zero.

0050ABC0 D ivide. Divide the contents of the accumulator by
the contents of location A BC and retain the quotient
(rounded to 30 bits plus sign) in the accumulator.

0090ABC0 Extract. Obtain the “ logical product ” of the contents
of the accumulator and the contents of location A BC and
retain the result in the accumulator.

00+0ABC0
“ Transfer of control instructions ”
U nconditional T ransfer. Transfer control to A BC
unconditionally, i.e., execute next the instruction in
location ABC.

00-0 A BCO Conditional T ransfer. Transfer control to A BC
only if the number in the accumulator is negative.

80-0 A BCO C onditional T ransfer D epending on E xternal
T ransfer Switch Z 0. Transfer control to A BC if the
number in the accumulator is negative or if the external
transfer switch Z 0 is “ on ” ,

Instruction
(Sexadecimal) Effect

00N0ABC0
“ Record instructions ”
Store. Store the contents of the accumulator in
location A B C leaving the accumulator unchanged.

00J0ABCO Store and Clear. Store the contents of the accumulator
in location A B C leaving the accumulator cleared.

0020ABC0 Store Address. Replace the address digits of the
word in location A BC by the address digits of the word
in the accumulator, leaving the accumulator and the
remaining digits of A BC unchanged.

0030A BCO Return Address. Replace the address digits of the
word in location A BC by the address digits of the
instruction counter augmented by “ one ”, leaving the
instruction counter and the remaining digits of ABC
unchanged. (During the execution of this instruction,
the instruction counter holds the address of the next
instruction to be executed.)

00400000 Input. Shift the contents of the accumulator 4 places
to the left, transfer the first non-5th-bit character
assembled in the input flip-flops into the 4 least significant
places of the accumulator and then assemble the next
character from the tape reader into the input flip-flops.
If the first control character / (stroke) has been read
before the first non-5th-bit character, then repeat the
above procedure until the second control character #
(number) has been read.

0080ZBOO Output. Punch or print the character specified by the
least significant 5 bits of the track number portion of the.
output instruction. The character is punched if the
most significant bit of the track number portion of the
output instruction is “ 0 ” and printed if this bit is “ 1

OOOOABOO Stop. Stop unconditionally if the track number digits
of the stop instruction are zero. Stop if a break point
switch on the console is “ on ” and the corresponding
binary digit of the track number is a “ 1

THE LOGICAL DESIGN OF SNOCOM—Wong. 133

Discussion
Dr. M . W. Woods (Member, Adelaide Division).—Can the author give

any statistical information on the reliability of the computer in service,
expressed as a percentage of hours out of service against total working
hours ? Such a figure is, to some extent, a “ figure of merit ” for the
machine.

Mr. M . Kovarik (Senior Research Officer, Engineering Section,
C.S.I.R .O .).—In coupling relatively slow output devices, such as the
electrical typewriter mentioned in the paper, to computers, it is necessary
to make sure that the computer is not trying to output a new message
element before the output device is ready to accept it. In some output
devices a special signal is available for the “ ready ” condition; otherwise
a delay must be generated between message elements to be output by the
computer. In the case of a typewriter, a delay long enough to cope with
the carriage return function would slow down the machine operation
excessively. How has this problem been solved in the SNOCOM design,
and if the delay method has been used, what safety margins in the delay
period have been found sufficient for trouble-free operation ?

Professor A. R. Billings (Department of Electrical Engineering, The
University of Western Australia).—I will first disobey the chairman’s
instructions, and congratulate the author and his co-workers on achieving
so much so soon with so little and so few. Having said that, I would like
to take issue with him on his contention that similar work in University
departments deserves support. I think that in the late forties and early
fifties, when computers were in their infancy, much valuable work could
be and was contributed from Universities such as Manchester, Illinois
and others. I now very seriously doubt whether the construction and design
of computers is a proper function for a University.

Commercially the principle is unsound. If computer manufacturers
with their vast resources can only succeed in producing computers which
are obsolete before they are sold, what chance does a University depart
ment with its limited resources have of producing something which is
not even less in keeping with current trends by the time it is finished.
However, quite regardless of this, I think the exercise of producing a full
scale computer has little to commend it as a contribution to fundamental
research and scholarship, the furtherance of which are the principle ob
jectives of a University. This is not so say that Universities cannot con
tribute to computer technology. They can, but in more profitable ways
than producing computers. There is a large field where useful and realistic
contributions can be made. In particular that part of Mr. Wong’s paper
concerned with logical design is an example of success in such a field,
others are the development of numerical techniques and their application
to unsolved scientific and engineering problems and the discovery and
exploitation of new logical circuit elements.

I will concede that some small scale computer construction and design
can be useful as a laboratory teaching aid to familiarise students with com
puter philosophy, but this is quite different from the building of large
machines for their own sake.

Air. B. Z. de Ferranti (Associate Member, Melbourne Division).—
May I congratulate Mr. Wong on his most comprehensive paper and on
its excellent presentation.

SNOCOM has been the outcome of the excellent work which for quite
some time has been associated with the Electrical Engineering Depart
ment at the University of Sydney. However, despite my own association
with similar projects in universities I do not wish to enter into discussion
as to whether universities should build computers. I should perhaps,
however, point out there have been some significant examples of great success
in this field, such as the University of Manchester.

I would like to raise two particular questions which arise from Mr.
Wong’s paper. The first would be to ask if he could explain the main
reasons for building the timing unit rather than using a track on the drum
and if this provides great advantages over the LGP 30 design. The second
is to ask how the selection from several available data locations on the drum
which are optimum for any instruction could best be handled by the pro
grammer. Is there an optimum assembly programme and are there features
of the design which make SNOCOM easy to use in this respect ?

I would like to comment on the question of reliability which has been
raised. Reliability of machines like SNOCOM are usually a function of
their peripheral equipments. It has been said that the internal electronics
of the machine have required next to no attention tor some months, but
that input and output equipment have required maintenance. In this
context, input is critical (on SNOCOM there is only one continuous input
device but two output devices). Peripheral equipments can be expected
to break down at some tim e; they are not infallible. This is understand
able as they are mechanical, not electronic, and require mechanical adjust
ment from time to time. Hence it is good policy to have spare units or,
even better, alternative input channels with a spare unit to attach as required.
Hence two input readers and one spare might be preferred. From a design
point of view, alternative input channels are not difficult, and they provide

a degree of flexibility which is highly desirable from the user’s point of
view.

T h e A u th o r in R ep ly :
I would like to thank Dr. Woods, Mr. Kovarik, Prof. Billings and

Mr. de Ferranti for their congratulations and very interesting discussion,
and also Mr. Brown for his contribution in reply to some of the questions.

To Mr. Kovarik.—After the initiation of a print cycle, the printer-
ready signal mentioned in' Section 7.2 inhibits the initiation of a second
print cycle for a period which depends on whether or not the carriage-
return-line-feed operation is to be executed during the current print
instruction. The delay or lock-out periods corresponding to these two
conditions are nominally 2 seconds and 100 milliseconds respectively.
These delay periods are generated by monostable-multis whose periods
may be continuously adjusted. The nominal figures quoted above include
a safety margin of up to 50 per cent to ensure trouble free operation.

To Professor Billings.—I agree with Prof. Billings in that there is little
case for university computer groups to compete with industry in building
larger, faster and more reliable computers of the von Neumann type, as
resources of industry are much greater and the building of such a machine
in itself will not contribute to fundamental research.

There is no doubt that university groups do contribute substantially
to computer technology without having to build large-scale machines.
There is, however, some case for building small relatively inexpensive
machines at the university for both teaching and research purposes. The
teaching computer should be as simple as possible so that the fundamentals
of a von Neumann type machine may be readily demonstrated. Such a
machine has been constructed within the Electrical Engineering School
of the University of Sydney. The construction of a computer for research
may be justified in two ways. Firstly, if the digital computer forms part
of a more complex, larger system such as a hybrid analogue-digital system
in which adaptive control systems (for example) are being studied, then I feel
that the construction of the digital machine is completely justified if for any
reason (including available finance) commercial machines are unsatisfactory.
Secondly, if a fundamentally new computer organisation using new circuit
elements promises to have advantages over existing systems, then I feel
that these advantages should be established without any doubt by the con
struction of a complete machine. If a significant “ break-through ” in
computer design can be made, there is less likelihood of the machine being
obsolete when it is completed.

To Mr. de Ferranti.—The main reason for generating the segment and
digit waveforms of Fig. 2 in a timing unit instead of recording the relevant
waveforms on several tracks of the drum was that any digit within a word
period could be readily derived from these waveforms. This made possible
the generation of the bootstrap instructions of the auto input and the
interconnection of the asynchronous peripheral units with the computer
proper. A timing unit to generate the sector number pattern had to be
initially constructed even if this pattern eventually were to be recorded
permanently on one track of the drum. The decision not to do this was
made when the parallel representation of the sector which was next to be
presented by the store playback amplifier was utilized by the auto input
logic. This method of starting programs proved superior to that used in
the LPG-30, and was only possible by using waveforms from the timing
unit.

A significant improvement in SNOCOM’s reliability was made after
each peripheral unit together with its associated logic was adjusted and
checked out individually using special test sets before being interconnected
with the machine proper. I am in complete agreement with Mr. de Ferranti
in that computer designers should anticipate trouble with electro-mechanical
peripheral units, and it is certainly good policy to have alternative input/
output channels with spare units to attach as required.
M r. P . T . B ro w n in R ep ly :

To Dr. Woods.—During the period of a little more than a year for which
SNOCOM has been in service, the computer has undergone unscheduled
maintenance, principally associated with the reader and punch, for approxi
mately 5 per cent of working hours. Routine maintenance, training main
tenance personnel and minor design modifications to improve reliability
occupied an additional 15 per cent of total working hours.

To Mr. de Ferranti.—An optimum assembly program for SNOCOM
has been written and this will automatically place a constant or variable
in a location which is optimal with respect to a single selected instruction.
However, because a variable is always referred to by at least two instructions,
better results can always be obtained by hand optimisation. SNOCOM
is easier to use in this respect than some computers because there are six
locations on each track of the drum which are optimal with respect to a given
instruction, instead of only one. Also the physical arrangement on the drum
of sequentially numbered locations is such that instructions which are three
or four locations apart in the command sequence have respectively one and
two optimal locations in common.

Laboratory Equipment for Teaching Digital
Computer Fundamentals

D. G. WONG*

Summary
Digital computer fundamentals may be taught more effectively

by the use of especially designed educational digital computers.
These are experimental units containing sufficient logic and storage
elements for the synthesis of a complete stored-programme com
puter.

This paper contains a description of the educational digital
computer which has been used for the last three years by final-year
students of electrical engineering at the University of Sydney.
A detailed description of the logical design of a simple computer
and a game-playing programme for this computer are also provided.
Conclusions concerning the suitability of educational units like
the one described for undergraduate courses in digital computers
are made in the final section of the paper.

List of Symbols
(N.B. The complement of a Boolean variable is

represented by a bar over the symbol.)
T0 Clock pulse.
t 2 Binary counter drive pulse (see figs. 2 and 3).

® 1 ®16 Binary counter outputs (see figs. 2 and 3).
B4 waveform differentiated.

zlB16 B1 6 waveform differentiated.
I.S. Initial set.

Zi, z 2 Signals which stop the timing unit (see fig. 2).
^ 0 3̂ Machine phases 0-3 (see fig. 3).
G0 - G 3 Function toggle outputs.
c 0 - c 3 Sequence counter outputs.

C" Sequence counter input.
Cd Sequence counter drive input.

P 0 - P 3 Address register outputs.
P" Address register input.
p d Address register drive input.
V0 Fixed store output.
W15 Word 15 (= P3P2P1P0)-

R 0 R 3 Instruction register (address) outputs.
R", Instruction register (address) input.
R/fd Instruction register (address) drive input.

R 4 — R 7 Instruction register (order) outputs.
R”o Instruction register (order) input.
Rod Instruction register (order) drive input.

A0 A 7 Accumulator outputs.
A” Accumulator input.
Ad Accumulator drive input.

s 0 - s 7 Store register outputs.
S" Store register input.
Sd Store register drive input.
K ' Signal which sets the K flip-flop (to 1).
K' Signal which resets the K flip-flop (to 0).
K Counter augmentation flip-flop output.
L Carry/borrow flip-flop output.
b Sum/difference digit.
V Store output.

♦School of Electrical Engineering, The University of Sydney,
.S.W .
Manuscript received by The Institution December 14, 1964.
U.D.C. number 371.677 : 681.3.

1. Introduction
As a result of the rapidly increasing use of digital

equipment in Australia, there is a great demand for
personnel trained in the fields of electronic data processing
and digital systems engineering. Universities must play
a leading role in training these personnel1.

Training in digital computer fundamentals can be made
more effective by the use of “ educational digital com
puters ” . These are experimental units which have been
specifically designed with the specification of a complete
computer in mind. The number, type and arrangement
of logical circuits provided in the experimental unit
enable the synthesis not only of various combinational
and sequential switching circuits, but also of a complete
stored-programme computer.

The experimental unit to be described has been used
for the last three years by final-year students of electrical
engineering of the University of Sydney. Students are
given the functional design of a simple computer and
are asked to carry out the detailed logical design, to
construct their computers and also to test their designs
by writing and running a number of simple programmes.
A better understanding of digital computers is obtained
by most students who use the unit, and there is strong
justification for the continuation and expansion of this
educational approach.

2. Educational Digital Computers
The first digital-logic training devices were made

commercially available in 1960, and now they are manu
factured by about twenty companies2.

The main use of these devices is the teaching of digital-
circuit fundamentals to students doing digital computer
courses at places of tertiary education as well as to
engineers and technicians in industry who are engaged in
the design or maintenance o f computer systems. Other
uses include the bread-boarding of equipment either for
manufacture or for testing the performance of computer
peripherals.

Some of the desirable features of a digital-logic training
device are as follows : the trainer should contain standard
transistorized digital circuits for good simulation of
actual design problems ; the circuit modules may be
either fixed or removable, but the arrangement must
be flexible so that many circuits may be synthesized;
logic panels must be clearly engraved and extensive
monitoring facilities must be provided to facilitate the
understanding and testing of circuit configurations ; the
main control unit must enable the monitoring of memory
states after each state-change (i.e. after each clock pulse) ;
and finally the device must be “ student-proof ” so that
any interconnection may be made without damage to
the equipment.

Most digital-logic training devices only contain sufficient
logic modules for the synthesis of a computer sub-as
sembly. The synthesis of a complete digital computer
would be extremely useful to teach engineers computer

1. Bennett, J. M ., “ E .D .P .— the universities’ role ” , Australian
Computer Conference, Melbourne, 1963.

2. Gray, S. B., “ A survey of digital-logic training devices ” ,
Electronics, Aug. 24, 1964, 71-83.

Proceedings I.R.E.E. Australia 78February, 1965

WONG : Laboratory Equipment for Teaching Digital Computer Fundamentals

Figure 1.— Laboratory equipment for teaching digital computer
fundamentals.

Figure 2 .— Control and timing unit.

'i 11 n̂i 11 i'i 11A11 ['n n ì 1111! 11 in i i'.t0
ii ii ii ii ii ii ii ii in ii m in im a

Figure 3.— Timing waveforms.

February, 1965 Proceedings I.R.E.E. Australia 79

WONG : Laboratory Equipment for Teaching Digital Computer Fundamentals

design techniques and to help programmers visualize
the internal organization of a computer. The inter
connection of a number of training devices is possible2,
but the ideal seems to be an experimental unit containing
a combination of sub-assemblies and basic circuits. The
basic circuits are used to teach digital-logic fundamentals
such as the design of full-adders, counters and shift-
registers, etc., while the additional sub-assemblies enable
the synthesis of a complete computer. The sub-as
semblies provided could, for example, teach the tech
niques used for serial, synchronous systems ; others
could be used for asynchronous systems and so on. There
is no doubt that training in the digital computer field
would become more effective by the extensive use of
this approach.

Most of the above features have been incorporated in
an educational digital computer at the University of
Sydney. A photograph of the educational computer
is shown in fig. 1 and a brief description follows.

The educational computer consists essentially of a
large number of logical and storage elements which may
be readily patched together. The elements are arranged
in six vertical panels and six sloping panels. Each of
the twelve panels is removable after the disconnection
of a voltage cable, and a package construction for the
electronic circuitry is used. These features are desirable
from the point of view of construction, testing and main
tenance. The inputs and outputs of the elements are
brought to sockets on the panels. These are interconnected
using flexible leads with taper pins at both ends. Two
sockets are provided for each input and output on the
sloping panels so that a number of points may be linked
without the use of busses. However, twenty busses

which run the length of the unit are provided to eliminate
the need for long wires.

The six vertical panels (from left to right) are as fol
lows :—

(i) Control and timing unit (see figs. 2 and 3).
(ii) Function toggles (providing 0/1 output for toggle

up/down) and sequence counter (a 4-stage shift
register).

(iii) Address register (a 4-stage shift register) and
fixed store (see sect. 2.3).

(iv) Instruction register (two 4-stage shift registers).
(v) Accumulator (an 8-stage shift register).

(vi) Store register (an 8-stage shift register).
The six sloping panels contain logical elements such

as NOR circuits and flip-flops.

2.1 Control and timing unit
A control and timing unit is provided so that experi

ments on serial, synchronous, digital systems may be
carried out. A logic diagram of this unit is shown in
fig. 2, and timing waveforms are shown in fig. 3. The
repetition rate may be either 50 kc/s or 5 c/s, and is
determined by selecting the appropriate output from two
free running multivibrators. Under normal conditions,
interleaved clock pulses T 0 and T2 are generated by three
monostable multivibrators. A five-stage binary counter
is driven by T2.

When the START button is depressed, the timing unit
generates one pulse, eight pulses, thirty-two pulses or a
train of pulses depending on whether the MODE-SELEC

TION switch is in the BIT, PHASE, ORDER or
NORMAL positions, respectively. When this switch
is in MONITOR position, the unit runs continuously
and all waveforms may be monitored.

A signal appearing at the Zx or Z2 inputs wall stop
the timing unit. The unit may be started again by
depressing the RESET button and then the START
button.

2.2 Shift registers
Each shift register is associated with two signals.

One signal is the input to the first stage and represents
the information which is to be stored in the register.
The other is the SHIFT or DRIVE input and specifies
the period during which the register is to operate as a
shift register. This input usually consists of the clock
pulse T0 gated with other timing waveforms. When no
drive input exists, the information in the register re
mains in static form. Each stage is monitored by an
indicator light.

The eight-stage registers may be set initially to either
state by a number of toggle switches and a SET button.
The four-stage registers can only be initially set to zero
by a CLEAR button.

2.3 Fixed store
The outputs of the address register are decoded into

sixteen lines which drive the WORD-busses of the “ pin
board ” store. Component plugs containing sub-miniature
diodes may be inserted to bridge the WORD-busses
with the eight BIT-busses at appropriate places. The
pin-board, together with component plugs, forms a
diode-matrix which produces (in parallel) the eight bits
of the word specified by the contents of the address
register. The diode-matrix outputs are combined with
the timing waveforms Bl5 B2 and B4 in parallel-to-serial
conversion circuits to produce the serial store output V 0.
2.4 Logic panels

The four existing panels each contain two flip-flops
with (transient) storage-gates in both input lines, three
invert circuits and nineteen NOR circuits with either
three or five inputs.

With the use of NOR circuits, any number of stages of
logic may be cascaded without fear of error through cumu
lative voltage shifts. The circuits used also contain
some safe-guard against inadvertent short-circuiting of
two outputs.
3. The Design ofVSim ple DigitarComputer

The sub-assemblies and logic circuits described in
the preceding section may be interconnected to form a
simple digital computer. Computers with different
order codes may be constructed, the only restriction being
the amount of hardware which is necessary for their
implementation. The following sections are given as
an example of a complete design.

3.1 Functional design
The computer to be designed is a fixed-point, binary,

serial, single-address digital computer with a storage
capacity of sixteen eight-bit words of which fifteen are
fixed and one is erasable. The computer is capable of
carrying out only eleven basic instructions, although four
stages in the order part of the instruction register make
provision for sixteen. The order code is shown in table 1.

Table 1

Code Order

0000
0001
0010
0011
0100
0101
0110

0111

1010
1100

1110

IN P U T :— Illuminate the Z1 monitor light and stop the computer so that eight digits may be set into the accumulator.
O U TPU T :— Illuminate the Z 2 monitor light and stop the computer so that the accumulator may be monitored.
TRA NSFER IF N E G AT IVE :— Transfer control to the address specified by the instruction if the accumulator is negative.
UNCO N D ITIO N AL TRANSFER :— Transfer control to the address specified by the instruction.
STORE :— Store the contents of the accumulator into the store register (address 15).
BRIN G :■— Bring the word specified by the address of the instruction into the accumulator.
AD D —-Add the word specified by the address of the instruction to the contents of the accumulator retaining the result in the

accumulator.
SUBTRACT : Subtract the word specified by the address of the instruction from the contents of the accumulator retaining

the result in the accumulator.
TRANSFER IF ZERO :— Transfer control to the address specified by the instruction if the accumulator is zero.
ACCUM ULATE IN STORE :— Add the contents of the accumulator to the contents of the store register (address 15) retaining

the result in the store register.
E X TR A C T :— Obtain the logical product of the word specified by the address of the instruction and the contents of the accumu

lator retaining the result in the accumulator.

80 Proceedings I.R.E.E. Australia February, 1965

WONG : Laboratory Equipment for Teaching Digital Computer Fundamentals

The execution of each instruction takes place in four
phases designated cf>0, <f>x, <f>2 and </>3. These may be
specified in terms of the timing waveforms B8 and B16.

The counter specifies the address of the next instruction
which is to be obeyed. In <f>0, the counter digits are set
into the address register so that the correct instruction
is presented by the store in the next phase.

In (f>x, the instruction to be obeyed is transferred from
the store to the instruction register.

As the instructions in the store are normally obeyed
sequentially, the counter must be augmented by one at
some time in the machine cycle after it has directed the
logic to set the current instruction in the instruction
register. This is carried -out in <̂>l5 and the new aug
mented counter digits will be effective in the next
unless the current instruction is an unconditional transfer
or a successful conditional transfer order, in which case
the augmented counter digits will be over-written in a
later phase.

In f>2, the address digits of the instruction register are
set into the address register so that the correct operand
is presented by the store in the next phase.

In <f)3 (the execution phase), the order specified by
the order digits of the instruction register is carried out.
As only eleven of the sixteen different combinations of
R 7, R 6, R5 and R4 are used, the term R 7 is only included
when the remaining three order digits are associated
with two of the eleven instructions. The Z4 and Z2
computer stops are activated when R 6 R 5 R 4 = 1, and
R 6 R s R 4 = 1, respectively. When R 6 R 5 R 4 = 1, or
when R 7 R 6 R 5 R 4 A 7 = 1, or when R 7 R 6 R s R4 a = 1
(where a = A 7 A 6 A5 A4 A3 A2 Ax A 0), the address digits
of the instruction register are set into the counter.

When R 7 R 6 R 5 R4 = 1, the contents of the accumu
lator are stored into the store register (address 15).
When Rg R 5 R4 = 1, the word presented by the store is
brought into the accumulator. When R 7 R e R 5 R4 — 1,
or Rg R g R4 = 1, the word presented by the store is
added or subtracted (respectively) from the contents of
the accumulator and the result is retained in the accumu
lator. When R 7 R 6 R 5 R4 = 1, the contents of the
store register is added to the contents of the accumulator
and the result is retained in the store register. When
R 7 Rg R 6 R4 = 1, the logical product of the word pre
sented by the store and the contents of the accumulator
is obtained and retained in the accumulator.

3.2 Logical design
3.2.1 Counter
In the following design, the counter operates as a shift

register during the four least significant digit periods of
every word. During <f>0 and <f>2> if re-circulates un
changed. The K flip-flop is always found in the 0-state
when cf>1 is entered. While in this state, the complement
of the counter output (C0) is re-circulated. However, the
first 0 of the counter digits sets K (to 1), and from the
next digit onwards, the digits are re-circulated unchanged.
The above process augments the counter by unity3 in
<f>v During cf>g, the counter is re-circulated unchanged
for all orders except UNCONDITIONAL TRANSFER
orders, TRANSFER IF NEGATIVE orders when
A 7 = 1 and TRANSFER IF ZERO orders when a = 1.
For these three latter cases, the address digits of the
instruction register are entered into the counter. The
above procedures are represented by the following
equations :—

c d = ■ b 4t 0

C" = B ;c 0 + B16B8 (K C i - f KC0)

+ B16B8 |RgC0 + RgC0 + R 6R 5R4R 0

+ R 6R 5R4(A7R 0R 7 + A 7C0R 7 + aC0R 7 + aR0R 7)]

K ' = B8T0

K ' = B8CoT0

a = A 7 A 6 Ag A4 A3 A2A4 A 0

February, 1965

3.2.2 Instruction register
The instruction register actually consists of two four-

stage shift registers. The order digits of the instruction
to be obeyed are presented by the store during the most
significant four digit periods of </>4, and are set and held
in the first four-stage register. Hence :—

Rm = b 16b 8b4t 0

R" 0 = V
The second four-stage register holds the address digits

of the instruction, and its shift register operation is
required during the least significant four digit periods of
<f)x, <f>2 and </>3. In <f>x the address digits of the instruction
to be obeyed are presented by the store and are entered
into this register ; in </>2, the digits are entered into the
address register and in </>3, the digits in serial form may
be required for entering into the counter register on the
execution of TRANSFER orders. In <f>2, the digits
must be re-circulated unchanged because they may be
required again in <f>3. The digits are re-circulated un
changed also in cf)3 so that the complete instruction may
be monitored after its execution. The above conditions
are satisfied by the following :—

R̂ d = B4T0

R a = B16B8V -f- B16R 0

3.2.3. Address register
The counter digits and the address digits of the in

struction register are entered into the address register
during the least significant four digit periods of f>0 and
(f>2, respectively. Hence :—

B<i = B8B4T0

P” = B16C0 + B16R 0
3.2.4 Accumulator
The shift register operation of the accumulator is

required only in <j>3 of STORE, BRING, ADD, SUB
TRACT, ACCUMULATE IN STORE and EXTRACT
orders. Hence :—

Ad = B16B8R 6T0
For a STORE order the accumulator re-circulates

unchanged ; for a BRING order the digits (V) presented
by the store are entered into the accumulator ; for
ADD and SUBTRACT the accumulator input is the
output (b) of the serial adder-subtractor. For an E X
TRACT order the accumulator input is A 0V. Hence :—

A " = R 5R4A 0 + B 5R4V + R 7R 5b -f- R 7R 5R4A0V

3.2.5 Adder-subtractor
A flip-flop (designated L) is used to hold the carry-

borrow digit in the addition-subtraction process. The
inputs to the adder-subtractor are the digits presented
by the accumulator (A0) and store (V). The output (b)
is defined by the following equation3 :—•

b = A0V L + A0 V r + Âo T L + A0 V L
Following the design described in reference 3, the

setting and resetting equations for the carry-borrow
flip-flop are as follows :—

L' = B8T0 -f- (R4A0V + R4A0V) B8 T0

L' = (R4A0V + R 4A0V) B8T0

The B8T0 term in the L' equation resets the L flip-
flop (to 0) before the commencement of the addition-
subtraction operation in <f>3.

3.2.6 Store register
The store register operates as a shift register only

when word fifteen is indicated by the address register,
and also only during <j>1 and f>3 of the machine cycle.
During </>4 and also during <f>3 of all orders except STORE
and ACCUMULATE IN STORE orders, the contents
are re-circulated unchanged. During f>3 of a STORE
order, the contents of the accumulator are stored in this
register. During <f>3 of an ACCUMULATE IN STORE
order, the output of the adder-subtractor are entered

3. Wong, D . G., “ The logical
digital computer SNOCOM ” ,

design of the general purpose
J.I.E. Aust., June 1962, 125-136.

Proceedings I.R.E.E. Australia 81

WONG : Laboratory Equipment for Teaching Digital Computer Fundamentals

Table 2

Location Contents Remarks

0 -»• 1 1 0 0 m i Accumulate in store

1 0101 1010 Bring number “ 48 ”

2 0111 m i Subtract number removed

3 -> 0 1 1 1 1 110 Subtract numbér “ 11 ”

4 1 0 1 0 i o n Transfer if zero

5 0 0 1 0 0 1 1 1 — Transfer if negative

6 — 0 011 0011 Unconditional transfer

7 0 1 1 0 m o « - Add number “ 11 ”

8 - > 1 1 0 0 u n Accumulate in store

9 0 0 0 0 0 1 1 0 Input/Stop and number “ 6 ”

10 0011 0 0 0 0 Unconditional transfer and number “ 48 ”

11 0101 i n i « - Bring number removed

12 1 110 1001 Extract

13 — 0 011 1 000 Unconditional transfer

14 0 0 0 0 i o n Number “ 11 ”

15 Temporary storage = number removed

into this register. Hence :—
s* = w 16b 8t 0

S = B16Sq-|-B16R 6R 5 Bî A qR? “l~bR7)

3.2.7 Store logic
When word fifteen is specified by the address register,

the digit presented by the store (V) corresponds to the
output of the store register (S0). When word fifteen is
not specified, V corresponds to the output of the fixed
store (V0). Hence :—

• . ■ V = w15s0 + w15v0
3.2.8 Input and output
The computer may be stopped before the commence

ment of (f)0 by gating the ZlB16 signal with the appro
priate order digits and supplying this signal to the Z4
or Z2 stop computer inputs. Hence :—

Z1 = R 6R 5R4zlB16

Z2 — Rg Rg R4ÆBÎ6

3.3 Logical circuit configurations
The realization o f the Boolean equations of section

3.2 in terms of NOR circuits and flip-flops is straight
forward using the approach discussed in reference 4.

4. Programming the Computer
A number of programmes can be written to illustrate

some elementary aspects of programming. These in
clude :

(i) the manner in which transfer instructions break
the normal sequencing of instructions,

(ii) the modification of instructions, and
(iii) the use of computer words as both numbers and

instructions.
A programme which has provided some amusement dur

ing computer laboratory classes is shown in table 2. This
is a programme for the computer to play one version of the
game NIM. The player and the computer must alter
nately remove a number of pegs from a line. There are
49 pegs initially on the line and the maximum number
which may be removed in one turn is 10. The player
or computer that removes the last peg loses. The number
which the player removes is entered in the accumulator
and when the computer is started, it will calculate the
number it wishes to remove and will stop with this
number in the accumulator.

Features of the programme are
(1) if the computer goes first, it will always win,
(2) if the player is playing a winning game, the com

puter will output a different number each turn,

6. Corbato, F. J., “ The compatible time-sharing system— a
programmer’s guide ” , The M.I.T. Computation Center,
M.I.T. Press, 1963.

but refuses to take the last peg as it has been pro
grammed to win,

(3) the computer will take control and win once the
player makes a mistake.

This programme to play NIM is the most complex one
written for this simple computer. A severe restriction
is the amount of erasable storage. This restriction will
soon be removed by the addition of a small magnetic
drum.

5. Conclusions
With the ever increasing use of the digital computer

as a tool for problem-solving, it is becoming clear that
computers should be introduced as early as possible
in science and engineering courses.

With the use of problem-oriented programming langu
ages there is no reason why this cannot be carried out
at the first-year level. In the United States, first-year
elective courses in computing are offered at some world-
renowned universities and the trend is towards the intro
duction of computing into the secondary schools4 5.

For the efficient training of students in the use of
computers, good man-machine communication is
desirable. The multi-console, time-shared computer
system developed by project MAC at the Massachusetts
Institute of Technology® seems to be the ideal solution,
and should be used as a guide for future expansion in
computer facilities at Australian universities.

With the increasing use of digital equipment for
communication, for process instrumentation and control,
and for data acquisition and reduction, there is an in
creasing demand for personnel with training in “ digital
systems engineering ” . Here, the emphasis is on the
synthesis of digital systems, and training courses would
include electronic circuit design, switching circuit theory
and logical design of digital devices. For this training,
the educational computer would be an invaluable educa
tional aid. Combinational or sequential switching cir
cuits may be readily realized and tested ; and students
are shown how elementary logical circuits may be inter
connected to form a complex piece of equipment like a
stored-programme digital computer.

The computer field is expanding so rapidly that it is
inevitable that in the not too distant future computers
will be designed and built on a commercial scale in
Australia. This will significantly increase the demand
for computer personnel. It is a matter of some urgency
that Australian universities and Australian industry
should co-operate immediately to support .the develop
ment of more digital equipment designed specifically
for educational purposes. This will ensure the increasing
supply of adequately trained computer personnel.
4. Wong, D. G., “ An educational digital computer ” , Australian

Computer Conference, Melbourne, 1963.
5. Heller, G. C., “ A computer curriculum for the high school ” ,

Datamation, May 1962, 23-26. « 2

LIST OF SYMBOLSThe Design And
Construction Of

The Digital Computer
Arcturus

by
D. G. WONG,

School of Electrical Engineering,
The University of Sydney,
Sydney, N.S.W., Australia.

SUMMARY
T he A R C T U R U S com puter, w hich was developed w ith in the

Electrical Eng inee ring School of the U nive rsity of Sydney,
is a paralle l, b inary, gene ra l-purpose d ig ita l com puter u sing
p ackaged d iode-transistor circuits, ferrite-core sto rage and
paper-tape peripheral units. T h is paper conta in s a brief
description of the com puter, a su rvey of the design and
constructiona l techn iques, and a detailed description of
the im plem entation of the ca rry -lookahead -adde r and the
m ultip lication procedure u sing m ultip lier recoding.

I. INTRODUCTION
For the past two decades, the School of Electrical Engineer

ing of the University of Sydney has been engaged in computer
research and development. Computing equipment which has
been constructed include the C.S.I.R.O. mechanical differential
analyser(U, the digital differential analyser ADA*2> and the
general-purpose digital computer SNOCOM*3).

Computer teaching at the School has developed to the
stage where all under-graduates are introduced to the use of
both digital and analogue computers, and most final-year
students elect to take two courses in which the emphasis is
on computer design. An educational digital computer *4> 5>
(called NIMBUS) which was constructed by the School has
been found to be very effective for teaching digital computer
fundamentals.

The digital computer ARCTURUS is being constructed
to satisfy some of the ever-increasing teaching and research
requirements of the School. ARCTURUS is basically a
parallel, binary, general-purpose digital computer using
packaged diode-transistor circuits and ferrite-core storage. As
such it will be useful for teaching purposes. Elowever, the
computer does contain some new features, and the ability to
modify the computer’s hardware (perhaps to include an inter
face with other analogue/digital equipment) will make the
computer a useful tool for research.

The design and construction of the peripheral equipment
for ARCTURUS was commenced about five years ago. Work
on the memory followed, leaving the design and construction
of the central processing unit to be carried out last. At the
time of writing all units have been checked out separately and
an advanced stage has been reached with the commissioning
of the computer.

II. SYSTEM DESIGN
2.1 Approach to System Design

The approach which was taken for the system design of
ARCTURUS was determined largely by the aim of producing
a computer with the best possible specification by a small
group with very limited resources. The realization that the
construction of the computer would take many years deter
mined the sequence in which the units of the computer were
designed and built.

Former experience with the peripheral units of SNOCOM
and the availability of paper-tape preparation equipment
determined the specification of the peripheral units for
ARCTURUS. These took the form of a paper-tape reader*6>
(with the possibility of adding a second), a paper-tape punch
and a monitor printer. Being electro-mechanical, the peri
pheral units were expected to be the least reliable units of
the computer. Hence, a built-in check in the form of the
ability to run the peripheral units off-line as a comparator-
reperforator-printer was constructed. A relay network with
many change-over contacts under the control of a single toggle
switch was used to switch the signal and control lines as
shown in Figure 1.

The memory was the next unit to receive attention. A core
stack was purchased but the drive and sense circuits were
constructed. Load-sharing switches based on the design devel
oped for the CIRRUS computer*7.8’9) were used to drive
the cores.

The arithmetic and control sections of ARCTURUS were
the last to be specified. This reduced the likelihood of the
computer becoming obsolete before it was completed. The
approach taken here was first to examine the specifications of
a number of recent, commercial machines and to select some
of the useful features. Several forms of machine organization
(including a micro-programmed or stored-logic structure) were
considered at this stage. Flexibility of machine design and
construction to enable special instructions to be added or

F
F
F '
F ’
J
K
L
R
S
U
DFS
D
AS
A

B
C
Pn
Gn
Tn

ONE output of F flip-flop.
ZERO output of F flip-flop.
Signal which sets F to ONE.
Signal which resets F to ZERO.
Memory output register.
Accumulator.
Multiplier-quotient register.
Instruction register.

(Sequence counter (Figure 3).
(Sum digit (Figure 9).
Operand counter.
Distributor function selector.
Output of DFS.
Address selector.

(First adder input (Figure 9).
(Address R, — R1# (Appendix).
(Second adder input (Figure 9).
(Binary counter output (Figure 8).
Carry bit.
Propagate function.
Generate function.
Terminate function.
First level propagate function.

First level generate function.

a, s, r, k, alf K„, l, g, p, m Control signals.
H Toggle switch.
Kt Shift K left clock.
Kr Shift K right clock.
Kd Distributor to K clock.
Lt Shift L left clock.
L r Shift L right clock.
Ld Distributor to L clock.
T Timing waveforms.
V Number of times counter.
R0 — Rlg Instruction register outputs.
KL Double length register formed by K0 — K19, Lx — Llt.
N Number of times an operation is executed (specified by

Rit Ri»)-
< K > Memory location with address K1 — Klt.
M = < A } Memory location with address R, — R19.
I Number increment = 2-19.
() Contents of a register or a memory location before

an operation.
()' Contents of a register or a memory location after an

operation.
()i Bit i of a register or a
()'i memory location before /after an operation.
()(-i Bits i to j (inclusive) of a register or a memory
(Yi-j location before /after an operation.
EF Emitter follower.

modifications to be made readily for research purposes was
considered important. Some of the major decisions such as
the decision to use a carry-lookahead-adder instead of an
asynchronous adder were left until quite late in the project.
However, at this stage the specification of the machine had
to be temporarily frozen to enable the detailed functional and
logical design to be carried out. After the machine has been
commissioned according to the initial specifications, modifica
tions can then be made.

2.2 General Description
ARCTURUS is a fixed-point binary, parallel, single-address,

general-purpose digital computer using packaged diode-trans
istor circuits, ferrite-core storage and paper-tape peripheral
units.

The instructions and number formats, which use a word
length of 20 bits, are shown in Figure 2. An operation code
of 5 bits provides 32 distinct instructions. Some of these have
a large number of variants specified by the bits normally
used as an address. A 13 bit address enables 8192 words to
be directly addressed, although at present only 1024 words
are available. When the indirect address bit is a ONE, the
address in the instruction is the address of the address of the
operand. This indirect addressing may be carried to any level.
The “programmed-operator” feature*10) enables a single
instruction to specify the address of an operand, to store the
sequence counter (return link) and to transfer control to a
subroutine determined by the operation code of the instruction.
Such an instruction appears like a normal machine language
instruction but in fact could cause quite a complex operation
(e.g., floating-point sine) to be carried out. A single-length
number consists of a sign bit and 19 magnitude bits; a double
length number (such as the product formed by the multiplica
tion of two single-length numbers) consists of a sign bit and
38 magnitude bits as shown in the figure. A two’s comple
ment representation of negative numbers is used.

A block diagram of ARCTURUS is shown in Figure 3.
The memory output register (7), the accumulator (K), the
multiplier-quotient register (L) and the instruction register
(R) are all full-length registers, while the sequence counter
(S) and the operand counter ([/) are only address-length. The
arithmetic unit makes extensive use of a high-speed carry-
lookahead-adder. By appropriate selection of its inputs, the
adder can be used for indexing instructions as well as for the
arithmetic operations (such as adding, substracting and
incrementing, etc.) which are carried out on operands. The
“distributor-function-selector” selects arithmetic or logical
functions of register outputs and distributes these signals to all
registers. This produces an arithmetic unit which is quite
powerful (in terms of arithmetic and logical functions which

WONG - The Design and Construction of ARCTURUS.

Fig. 1. Input-Output- Unit.

<$>

$
$

GI53

AND gate

OR gitt

INVERT gate

NOR GATE

Differentiator

Negative trigger monostable multi

Transient storage gate

Positive trigger monostable multi

d a Flip-f

* 1 1 1 » I * I * * * T I » I « |ia |n |h |u |u |i> | i « | i t |h |h

Jt
AOOKÍSS OM «M IA U T »

K I I I I I > t I • 7 I I 1« n 11 11 U I t <• IT t i II

NORMAL MEMORY CYCLE

READ J

DELAY _________

W RITE -----------------

POST-WRITE-DISTURB ------------—

START-STROBE-SPACING J I—
STROBE TL
EXECUTE PERIOD -----------------

J~L
1__
_ n

SPLIT

J---
MEMORY

1
CYCLE

nr 1_n
1— 1__n_________

Fig. 5. Memory Timing Waveforms.

L I I 2 3 < t I 7 I I I 10 II 11 11 M It I I I 17 I I It

lib -M A tN lT U O f (SCCOND H A L F) -

Fig. 2. Instruction and Number Formats.

Fig. 6. Photograph of Computer Waveforms.
(A , B, C, D: Top to Bottom.)

TSro <start>

Fig. 8. Parallel, Reversible Binary Counter Logic. Fig. 7. The Repeated Operations Timing Loop.

wuNG The Design and Construction of ARCTURGS

are possible), and it makes good utilization of the fast adder.
The “address-selector“ selects the memory address from U,
S or R. The direct link between R and S is necessary for the
“programmed-operator” feature.

2.3 Instruction Code
The ARCTURUS instruction code is shown in Table 1.

More details are presented in the appendix.
When bits 7 to 19 are used to specify variants of an instruc

tion, a large number of variants is possible. For example,
during the execution of a REGISTER TRANSFER instruc
tion, the variant bits determine the main control signals of
the DISTRIBUTOR-FUNCTION-SELECTOR. As these
signals produce all the arithmetic and logical operations
required during all phases of machine operation, all these
operations (together with some additional ones, such as
absolute-value operations) may be executed as variants of a
single instruction.

A number of instructions have been included to simplify
looping and the use of subroutines. For example, the JUMP
TO SUBROUTINE instruction plants the return link in the
location specified by the address in the instruction and then
transfers control to the next location (following the link).

Most of the arithmetic instructions are quite standard.
Some utilize the READ-EXECUTE-WRITE feature of the
memory. For example, during the execution of the ACCUMU
LATE instruction, the operand is read from memory into the
memory output register; the contents of the accumulator are
added to the operand and the result is written back into
memory. These operations require only a single memory
cycle.

Some instructions (such as the nesting and hierarchy instruc
tions) require more than one memory cycle for their execu
tion. The usefulness of these instructions is still to be
established by programming experience. However, the imple
mentation of quite complex instructions has been instructive,
and if these prove to be useful, faster implementations
(requiring more hardware) or even new machine organizations
may evolve. If the inclusion of novel instructions will stimu
late either designer or user into thinking about new machine
organizations, at least one of the aims of building a computer
at the University will be fulfilled.

BITS 0-4 BITS 7-19
Instruction TypeOperation

Code
Address (A)
Variants (V)

00000 V Stop
0 0 0 0 1 V Input-Output
0 0 0 1 0 V Register Transfer
0 0 0 1 1 V Shift
0 0 1 0 0 A Transfer Unconditional
0 0 1 0 1 A Transfer if Negative
0 0 1 1 0 V Skip
0 0 1 1 1 (Spare)
0 1 0 0 0 A Add Index
0 1 0 0 1 A Subtract Index
0 1 0 1 0 A Index Skip
0 1 0 1 1 A Jump to Subroutine
0 1 1 0 0 A Compare Skip
0 1 1 0 1 A Load K
o m o A Load L
O l i l i A Add
1 0 0 0 0 A Subtract
10001 A And
1 0 0 1 0 A Multiply
1 0011 A Divide
1 0 1 0 0 A Store K
10101 A Store L
1 0 1 1 0 A Store K Address
1 0111 A Accumulate
1 1 0 0 0 (Spare)
1 1 0 0 1 (Spare)
1 1 0 1 0 A Push
n o n A Pop
1 1 1 0 0 A Decrement Hierarchy
11101 A Increment Hierarchy
i m o V Return Hierarchy
u m A Execute

TABLE I
III. FUNCTIONAL AND LOGICAL DESIGN

3.1 Approach to Functional and Logical Design
Functional design consists of the specification, in words,

timing diagrams, tables, or any other convenient form, of all
the functions which are to be performed by the computer’s
hardware in every distinct time period of the computer’s
operation. Logical design consists of implementing the func
tional design using configurations of logical elements.

The approach which must be taken to the functional and
logical design of a complex digital system like a computer
is firstly to break up the system into a number of distinct
sections with well-defined links between sections. The separate
requirements and design of each section are co-ordinated and
these evolve into a general framework for the whole system.
Redesign of each section must then be carried out to fit in
with the framework as much as possible.

Examples of sections of the computer for which a first
design can be carried out independently of the remainder of
the computer are the memory unit and the input-output unit.
With the former, the main links with other sections would be
in the form of the memory address signals, the START and
END pulses of the memory cycle and the memory output
register. With the latter, the links would be the information
busses and the START and END pulses of the input-output
cycle.

Examples of sections of the framework which carry out
many functions include the REPEATED OPERATIONS
LOOP and the CARRY-LOOKAHEAD-ADDER. The former
is used to count the number of SHIFT operations, to count

the number of characters read from tape and to terminate the
multiplication and division processes. The latter is used not
only for the arithmetic processes but for indexing instructions
and for incrementing the contents of a memory location. The
first design for the last mentioned operation required addi
tional logic to enable the memory output register to operate
as a parallel binary counter. After the decision to build a fast
CARRY-LOOKAHEAD-ADDER was made, a more econo
mical design was found.

The TIMING and CONTROL sections form a major part
of the main framework of the computer. The design aim taken
with the TIMING unit was to produce as fast a computer
as possible. This meant that operations could not be tied
rigidly to a clock common to all instructions as this inevitably
would result in some wasted time periods. Instead, a minimum
time was allowed for each elementary operation, and the
computer’s operation would consist of time periods during
which only useful operations were carried out. The timing unit
was realized using a system of gated monostable multis. The
system produced is still synchronous as a specific amount of
time is allowed for each elementary operation but the system
is similar to an asynchronous system as an END OF OPERA
TION PULSE is produced to trigger the next useful operation.
The design aim taken with the CONTROL unit was to produce
a computer with as much flexibility as possible. As the
computer would be useful for teaching and research purposes,
future modifications to the order code and other design
changes were likely. To facilitate this, complete decoding of
the OPERATION CODE and the EXECUTION PHASES
was carried out and the control signals are formed by diode
ENCODE MATRICES. Changes to these matrices can be
readily carried out.

Design examples are presented in the following sections.

3.2 Timing Unit Design
A logic diagram of the memory timing unit is shown in

Figure 4. The unit consists essentially of a chain of gated
monostable multis. Two types of monostable multis are used.
The first type triggers off the front edge of signals (i.e., when
the input changes from ZERO to ONE). With this type, both
the normal and inverted outputs are available, and a timing
chain is obtained by arranging each monostable multi to be
triggered by the inverted outout of the preceding stage. With
this arrangement, the READ, DELAY, WRTTE and POST-
WRITE-DISTURB waveforms (shown in Figure 5) which
are necessary for memory timing may be obtained.

Alternative chains of timing waveforms may be obtained by
gating the trigger signals of monostable multis by control signals.
An example of this is shown in Figure 4. When the READ-
EXECUTE-WRITE sienal vREw is a ONE, specifying a split
memory cycle, an additional period, the EXECUTE PERIOD is
inserted in the timing chain as shown in Figure 5.

The second type of monostable multi triggers off the back edge
of signals (i.e. when the input changes from ONE to ZERO). This
type is very convenient for constructing timing chains as illustrated
by the logic circuit diagram of Figure 4, and the waveforms of
Figure 6. As this type triggers off the back edge of signals, and
flip-flops start switching on the front edge of signals, a different
approach to design is necessary. One aspect of this approach may
be described in terms of the logic circuit diagram of Figure 7. This
represents a circuit for generating a specified number of pulses
with each pulse following either 250 ns or 500 ns after the preceding
one, depending on the setting of a control flip-flop G. The state
of G may change during the generation of pulses. In the design,
G is clocked by the OPERATE pulse Top, and it is used to gate
7,25 pulses. The important point to note is that the time which is
allowed for the G flip-flop to settle to its new state and to carry out
the gating of T12S successfully is the period of the Top pulses
(not r 125). A similar comment applies to the V counter. This
counter is initially set to the number of pulses which is to be
generated. The counter is decremented by 7’1,5 pulses and it is
used to gate T^„ or T-m pulses. As the front edge of T125 changes
V to its new state and 77 ̂ is triggered by the back edge of 7’,oS, it
is the period of Tx25 which is allowed for the settling of V and its
associated circuits.
3.3 Design of a Parallel Reversible Binary Counter

The design principle of a parallel, reversible binary counter is
illustrated in Figure 8. In this figure the binary counter stages have
OUTPUTS, which are designated B„ and Bv (n = 1 . . . N, where
N is the total number of stages). The stages consist of flip-flops
whose outputs are gated and cross-coupled to their inputs via
transient storage gates. When a GATE signal Gn is a ONE, the
next COUNT pulse will change the state of the stages. The counter
mav be set initiallv to anv state by using the RESET line and the
INPUT’gated by the CLOCK.

A parallel binary counter is characterized by the fact that
the same COUNT pulse is applied to all stages. Hence all
stages switch simultaneously. This, of course, is to be pre
ferred to the characteristics of a serial binary counter in
which each stage triggers the succeeding stages and switching
delays are cumulative.

Combinational circuits are used to form the GATE signals.
In a forward counter, a stage must switch when all less significant
stages are in the ONE state and in a backward counter when they
are in the ZERO state. The counter mode is determined by a control
signal F. The counter operates in the FORWARD or BACK
WARD mode depending on whether F is a ONE or ZERO
respectively._The COMPLEMENTER (of Figure 8) selects either
the signals Bn or Bn to enable the NOR gates to carry out the
appropriate AND function on signals Bn or Bn respectively. NOR
gates are used in preference to diode AND gates because of their
signal regenerative property.

The signals which determine whether a stage is to switch
when the next COUNT pulse arrives, start to settle to their
new values after the last COUNT pulse changes the states
of the counters. The combined settling time of the counters,
the complementer, the NOR gates and the storage gates
determines the time which must be allowed between successive

WONG - The Design and Construction of ARCTURUS 4

clock pulses and hence determines the maximum repetition
rates of the counter. As the total number of stages is increased,
the only limitation is the fan-in of the NOR gates. If the fan-in
is m, an extra two NOR delays are added to the GATE
settling time for every m - 1 stages added.
3.4 Carry-Lookahead-Adder
3.4.1. The Carry-Lookahead-Adder Principle

In a conventional RIPPLE-CARRY-ADDER, the carry and
sum bits of each full-adder stage are formed in succession as
carry bits of less significant stages ripple through to more
significant stages.

In a CARRY-LOOKAHEAD-ADDER, the carry bits of a
number of adder stages are formed simultaneously.

The increase in speed realized by such an adder can be seen by
first considering two adjacent stages n and n + 1 , where stage
n + 1 is less significant. Using the normal definitions of the
GENERATE and PROPAGATE functions (G„ and P„)n , the
relevant carry equations are:—

Cn = Gn + Pn Cn+1
,. . . ^ '« + .1 Gn+1 -f- P n + 1 C„+2.

The direct circuit equivalents of the above equations (as used in
the conventional ripple-carry-adder) would result in the Cn signal
settling after C„ + 1 has settled as the Cn+1 signal must pass through
an AND-OR circuit configuration to form Cn. Both carry signals
may be formed simultaneously by generating Cn directly in terms
of Cn+2. This may be done by using the direct circuit equivalents
of the following equations:—

C„ = Gn + Pn Gn+i + P„ Pn + 1 C„ + 2

. . Cn+1 Gn+i “f- Pn+1 C„+2.
A limitation to the application of the above principle to a

large number of adder stages is the fan-in of the circuits
used. A reasonable number of stages in a group to which the
above principle may be applied is five. GENERATE and
PROPAGATE signals may be derived for the group, and the
carry-lookahead principle may be applied to a number of
groups. This process may be continued by designating five
groups as a section12 and then using carry-lookahead circuits
between sections. Carry-lookahead between stages within a
group will be called ZERO-LEVEL-LOOKAHEAD, between
groups within a section will be called FIRST-LEVEL-LOOK-
AHEAD and between sections will be called SECOND-LEVEL-
LOOK AHEAD1!.
3.4.2 Description of Adder with Zero-Level and First-Level-

Lookahead
A block diagram of the adder is shown in Figure 7. A

description follows.
The adder stages are numbered 0 to 19, with stage 0 being the

most significant and stage 19 the least significant.
The adder inputs are A { and B, (/ = 0 . . . 19), and the carry digit

into the least-significant stage is designated C20. The sum and
carry digits are designated S{ and Ct respectively. PROPAGATE
and GENERATE functions (P, and GJ) are formed for each stage.

Pi — AiBt -f- A{B{
Gt = AiBi

The adder is divided into 4 groups each of 5 stages. PRO
PAGATE and GENERATE functions may be formed for the three
least significant groups. These first-level functions are designated
P 1 and G (n = 1, 2, 3) with n = 3 corresponding to the least-n n
significant group. The defining equations are:—
P = P 6P.P 7P 8P 9

G = G5 + P 5 G6 + P 6P 6 G7 + P 5P 6P 7 G8 + P 5P 6P 7P 8 G9

I
P = P

2

G = G,

loP llP 12 P 1 »P14

+ P i o G n + PioPiiC12 + P10P11P12G13 + PioPiiPi2G14

P — PibPioPnPisPio
G = Gis + P10G10 + Pi.Pi.G, 5Pl6F i7 G18 -f- P 1 rP 1 fiP 1 ?PirGils'-'ie "1“ -i'l5i'l6t-,17 + -P15l-16/-17l

By using FIRST-LEVEL-LOOKAHEAD, i.e. by applying th<
lookahead principle to groups of stages, we may look ahead tc
C1 5 , C10 and C6. The equations are:—

C15 = G + P C20

/ i l i i
— G + P G + P P C 20

i l lc5 = g| + P G 1 + P P G 1 + p'p'p'Cfc.
With the carry signals C20, C15, C10, C5 either8 known or estab

fished, the remaining carry signals may be formed using ZERO
LEVEL-LOOKAHEAD. The equations for C j-Q are:

C4 = G4 + P 4 C5

Cs = Gs + P*G4 + P aP4 C5 c2 = g 2 + p 2 g 3 + p 2p 3 g 4 + P 2P 3 C5

Cl = c a + P lG2 + P 4P 2 G3 + P jP 2P 3 G4 + P \P 2P3P 4C3.
Similar equations apply to C6-C 9, Cu-C 14 and C1 6-C19.
The sum digits are formed in terms of carry digits and PRO

PAGATE functions. The equations are:—
Sn = Pn Cn+1 + Pn Cn+1 (« = 0-19).

3.4.3 Selection of Adder Inputs
The adder is used for carrying out arithmetic operations on

instructions (e.g., INDEXING instructions) as well as on
numbers held in machine registers. A large number of different
operations (such as CLEAR, SUBTRACT, DECREMENT,
etc.) are required. Both these requirements may be satisfied
by the appropriate selection of adder inputs.

Control signals a, s, r and k are used to select J, 7, 0 or 1 as the
first adder input and R, AT, 0 or 1 as the second adder input. The

Fig. 9. Block Diagram of Carry-Lookahead-Adder.

Fig. 11. Logic Circuit Configuration of the Adder.

n k »>

Fig. 10. Logic Circuits of the Adder, Distributor and
K, L Registers.

J ______________________________
_ririJLJinjT_uiriJLJinjw^
_njuLjmjLJinjLJUiriiiJLJirm_j^__
_rin__an__rui__ruirin__tut__rin__

n _n_ n _n_ _n_
n

ur uiriiLJum uuin_jiiiim fi_nnh_jiruLJ^

k, __________________n_
_r

Fig. 12. Multiplication Timing Waveforms.

Fig. 13.

Typical Diode-Transistor Logic Circuit Configuration.

5WONG - The Design and Construction of ARCTURUS.

defining equations are
A = aJ + sJ
B — rR + k fi + rk.

From these equations the following expressions for the TERM
INATE, GENERATE and PROPAGATE functions (T, G, and P)
may be derived:—

T = aJ + sJ + rR + k K + rk
G = s J + a J + k R + ~r~K + ~RK 8 + a

P = T + G
where 9 = k + 7
and a = a s + r k.

The implementation of these equations is shown in Figure 10.
The additional L m gate shown in this figure is to be ignored in the
present context as it is only used for the COMPARE-SKIP
instruction.
3.4.4 The Distributor-Function-Selector

The distributor-function-selector selects various computer
signals for distribution to the main computer registers.

The logic diagram of one stage of the distributor-function-
selector, whose output is designated D{, is included in Figure 10.
The signals which may be selected are shown in the following
table:—

Signal selected Control signal

Adder output
K register output
L register output
Logical product or generate function G
Exclusive OR or propagate function P
Toggle register output

Ox
Ks
l
g
P

Toggle switch H
Table 2

The defining equation for Dt is as follows:—
Di = ax PiCi+1 + axP ,C <+i + K,Kt + ILi + gGi + pPt +

3.4.5 The Add-Shift Mechanism
Shifting of information in the K and L registers is accom

plished by having three pairs of transient storage gates con
nected to each register as shown in Figure 10.

The signals which may be set into the registers are specified
by the following table:—

REGISTER SIGNAL CLOCK

K ■®»+i Ki
K Di Kd
K Di-1 Kr
L C<+1 Li
L Di Ld
L Li-1 L r

Table 3
Shifting K left is carried out by specifying control signal Ks and

by providing a Kt clock. A Kr clock would be provided for shifting
K right. Shifting L left or right is carried out by providing clocks
L, or L r.

Adding and shifting in the one clock period may be carried out
by specifying the control signal a, and by providing the appropriate
K clock. This is used in the multiplication and division logic.

3.4.6 Logic Circuit Arrangement of Adder
The skeletal logic circuit diagram of Figure 11 is intended

to show how the logic elements of the adder are cascaded, and
hence gives some indication of the signal attenuation and time
delays which are involved.

Time delays introduced by INVERT circuits are much
greater than those introduced by AND or OR circuits. How
ever, INVERT circuits do regenerate signals while diode AND
and OR gates cause signal deterioration in the form of attenua
tion and level-shift.

Circuit tests showed that the configuration AND-OR-EF-
AND-OR-EF (where EF represents an emitter follower) was
quite satisfactory, but that further cascading of logic circuits
without regeneration was unwise.

Hence the aim was to obtain a circuit arrangement for
obtaining the SUM digits with the minimum number of IN
VERT circuits in cascade and with the restriction that the
AND-OR-EF-AND-OR-EF—circuit configuration is the long
est chain of logic circuits through which signals must pass
before they are regenerated.

3.5 The Multiplication Procedure Using Multiplier Recoding
3.5.1 A Simple Multiplication Procedure

A simple multiplication procedure using the ARCTURUS
arithmetic unit could be implemented as follows.

The multiplicand is held in register J and the multiplier is
held initially in register L. Registers K and L form a double
length shifting register, and hold the growing partial product
and the diminishing multiplier. Register K can be cleared
initially to correspond with an initial partial product of zero.
The least significant bit of L is used to control the adder.
If this bit is a ONE, the contents of J and the contents of
K are summed and the sum is placed in K. If the bit is a
ZERO, K is left unchanged. After either of the above steps,
registers K and L are shifted one place to the right. The
process is repeated until all multiplier bits have been sensed,
if the two’s complement is used for the representation of
negative numbers, a multiplier sign bit of ONE will cause the
subtraction of the multiplicand from the partial product.

The simplest system for timing the above muL.pl.catLii procedure
would involve n time-periods each of equal duration r, v here n is
the number of bits in each word and r is the time allowed for an
ADD/ADD ZERO operation followed by a SHIFT operation.

The time required for the multiplication processes would then be m .
3.5.2 Speeding Up the Multiplication Process

The multiplication time may be reduced by providing input
gates to each stage of the K register and the most significant
stage of L to enable the ADD/ADD ZERO and SHIFT opera
tions to be initiated by a single clock pulse.

The multiplication time may be further reduced by “by-passing
the adder” . This again involves providing additional input gates to
registers K and L to enable them to shift without using the adder,
thus eliminating the ADD ZERO operation. The multiplication
time is reduced because the SHIFT time ts may be significantly
less than the ADD time ta . The multiplier digit must control the
time interval (either ts or ta) between successive clock pulses.
The multiplication time would then vary between m s (correspond
ing to a multiplier of all ZEROS) and uta (corresponding to a
multiplier of all ONES).

The number of SHIFT operations may be increased (and
the number of ADD operations reduced) by “multiplier
recoding”. This produces a further reduction in the multiplica
tion time.
3.5.3 Multiplier Recoding(13)

By convention, the binary number 00111110 represents
25 + 24 + 23+ 22 + 21. A better understanding of the steps involved
in a multiplication process (when the number is used as the
multiplier) may be obtained by placing a PLUS SIGN (+) above
the bit position of the multiplier which requires an ADD-SHIFT
operation (assuming this is possible using a single clock pulse),
and a DOT (.) above the bit position which requires a PASS-
SHIFT operation (assuming the existence of gates for adder by
passing). The PASS part of the PASS-SHIFT operation indicates
that the partial product remains unchanged. The above number

• * + + + + + *

when used as a multiplier may then be coded as 0 0 1 1 1 1 1 0 ,
and the sequence of PLUS SIGNS and DOTS moving from right
to left (i.e. from the least to the most significant ends) would
indicate the steps involved in the multiplication process.

The binary number 00111110 contains a STRING OF ONES
and represents 26 — 21. This suggests an alternative multiplication
procedure requiring fewer arithmetic operations. The term — 21
represents a subtraction. This does not introduce a complication
as circuits for subtraction are provided, and are such that the
ADD and SUBTRACT operations take the same time. Using
a MINUS SIGN (—) above a bit position of the multiplier to
represent a SUBTRACT-SHIFT operation, the multiplier may be

recoded as 0 0 1 1 1 1 1 0 . It is to be noted that the process using
the recoded multiplier involves only two ADD-SHIFT or SUB
TRACT-SHIFT operations compared with five ADD-SHIFT
operations required by the process using the conventional coding
of the multiplier.

The decision to ADD-SHIFT, SUBTRACT-SHIFT or PASS-
SHIFT is made by sensing a number of multiplier bits starting from
the least significant end and progressing to the most significant end.
A good decision is one that will PASS-SHIFT the largest number
of times, i.e. it will postpone (as far as possible) any ADD-SHIFT
or SUBTRACT-SHIFT operation. When two multiplier digits are
sensed at each step, the decision is based on the concepts of
STRINGS of ONES, ISOLATED ZEROS and ISOLATED ONES.
These are defined as follows. Two or more adjacent ONES con
stitute a STRING OF ONES, and as noted above, the least
significant ONE of a STRING OF ONES is interpreted as 1 while
the ZERO to the left of the most significant ONE is interpreted

+
as 0. An ISOLATED ZERO is a zero which is flanked by ONES,
which form part of a STRING OF ONES, and is to be interpreted
as 0. An ISOLATED ONE is a ONE which is not a member of
a STRING OF ONES and which is flanked by ZEROS. An

ISOLATED ONE is interpreted as 1.
Based on the above definitions, the PRESENT OPERATION

TO BE PERFORMED is determined by the LAST OPERATION
PERFORMED and by the two multiplier digits Pi+1 and P{ which
are sensed in the T-th step (/ = ! . . . n). Before the first step, the
LAST OPERATION PERFORMED is assumed to be an ADD-
SHIFT operation. The following table defines the PRESENT
OPERATION TO BE PERFORMED.

MULTIPLIER
BITS

T A S T
OPERATION
PERFORMED

INTER
PRETATION

PRESENT
OPERATION

TO BE
PERFORMEDP i+ i Pi

1 1 ADD-SHIFT INITIATING
A STRING

SUBTRACT-
SHIFT

0 0 SUBTRACT-
SHIFT

TERMIN
ATING A
STRING

ADD-SHIFT

1 0 SUBTRACT-
SHIFT

ISOLATED
ZERO

SUBTRACT-
SHIFT

0 1 ADD-SHIFT ISOLATED
ONE

ADD-SHIFT

ALL OTHER CONDITIONS PASS-SHIFT

Table 4
A further saving of multiplication time may be obtained by

considering more than two multiplier digits in each step. How
ever, the greatest saving is obtained in going from a multiplier
with conventional coding to a r¿coded multiplier which con
siders two multiplier digits in each step, and the incremental
saving diminishes as more multiplier digits are considered.

3.5.4 An Implementation of a Multiplication Procedure Using
Multiplier Recoding

The repeated operations timing loop. The repeated operations timing
loop shown in Figure 7 is used to generate timing pulses required

6WONG - The Design and Construction of ARCTURUS.

by the multiplication process. The number of pulses produced is
determined by the V counter. This is set initially to 20 and is
decremented by r 125 pulses.
The F flip-flop. The F flip-flop is used to determine whether an
addition or a subtraction is to be carried out. The control signals
of the adder are set up to add or subtract depending on whether F
is ONE or ZERO respectively. The multiplier is held initially in
L and the two multiplier digits which are sensed are Lia and L19.
The setting and resetting expressions for F (i.e. expressions for F '
and F ') may be obtained in terms of Lia and Ll0 according to
table 4. After F has been set initially to ONE, the conditions which
change it to ZERO are LlaZ,18, and those which change it from
a ZERO to a ONE are L18L19. Hence

F — L iSL19
F — LxaL19.

Note that as L and F are to change at the same time, transient
storage gates are necessary to maintain the setting and resetting
signals while the flip-flop is turning. The clock for F is Top.
The G flip-flop. The G flip-flop is used to determine whether the
operation to be performed is an ADD/SUBTRACT-SHIFT
operation or a PASS-SHIFT operation. The former operation is
performed when G is ZERO and the latter when G is ONE.

Starting from the information in table 4, it can be shown that
an ADD/SUBTRACT-SHIFT operation is to be performed when
Ll9F + L l9F is ONE. Hence the setting and resetting signals for
G are as follows:—

G ' = L \9F + L19F
G ' = Lx9F + Lx9F.

As L, G, and F are to change at the same time, transient storage
gates are also required for G. The clock for G is Top.

The timing waveforms of Figure 12 correspond to a multiplier of

01 1 I 0 0 0 1 1 1 10 1 i lO 0 1 0 0 .
It can be seen that when an ADD/SUBTRACT-SHIFT operation
is to be performed, there is a period of 500 ns between Top and the
next clock pulse (Lr, Kr or Kd), but when a PASS-SHIFT operation
is to be performed, this period is reduced to 250 ns. Hence 500 ns
are allowed for the settling of the flip-flops F and G, the adder and
the register gates, while only 250 ns is allowed when the adder is
by-passed.
The Fsro flip-flop. The multiplication process requires 20 pairs of
consecutive multiplier digits. As the register L contains only 20
digits, an additional multiplier digit must be obtained. Consider
ation of negative multipliers requires a repetition of the multiplier
sign digit. Hence an initial arithmetic shift of one place is required,
during which process the information originally held in Lla is not
lost but is stored in the control flip-flops F and G.

During the flrst nineteen (of the twenty) steps in the multiplication
process, the output of the least signiricant stage of the adder {D19)
is set into L 0. By this process, the least significant half of the
product is gradually formed in L. During the twentieth step, K is
not shifted (hence the occurrence of a Kd pulse and not a Kr (pulse)
and a logical shift of one place is carried out in L. These steps
ensure the correct positioning of the double-length product in K
and L. (See Figure 2).

The Fsro flip-flop is used to generate the digit (L_x) which is
to be set into L 0 to satisfy the above requirements. As V is
decremented by T12& and the shift pulse may be a T2M pulse, only
125 ns would be allowed for the L 0 storage gates to settle if the
signal V=o were used to gate L_x- It would be better to sense the
condition V=1125 ns earlier and to record this information in Fsro -
However, Fsro alone cannot determine three different values for
L_x, viz. L 0, D19 and ZERO. A convenient signal which could be
used to complete the gating is V4, the most significant stage of V.

The flip-flop Fsro is initially set to ZERO by the INITIAL SET
BUTTON (B[S) and the START PHASE SIGNAL {Ts<)>). The
final equations for Fsro and L_x are as follows:—

_ F 'sro = Tsro
F 'sro = Bls_+ T<pc + V-i T2b0 + V-x Tbno

L-x = Fsro Vt, L0 + Fsr o L>19.
Negative partial products. The arithmetic (right) shifting of the
partial product requires the repetition of the sign digit. Hence

7>-i = D0.
The register clocks. TheG flip-flop is used to select either

the adder output or the K register output while the machine
is carrying out an ADD/SUBTRACT-SHIFT operation or a
PASS-SHIFT operation. Different times are allowed for the
circuits to settle but the same transient storage gates are
clocked.

The V counter is used to gate the nineteen RIGHT-SHIFT-A
pulses (K r) and the one DISTRIBUTOR-TO-A pulse (Kd). When
V = 0 and a T2b0 pulse is produced instead of a Th00 pulse, there is
no Kd pulse. There is no point making Kd equal to Tb20 as the
register remains unchanged. The twenty-one RIGHT-SHIFT-L
pulses (Lr) are readily generated from the pulse trains produced by
the repeated operations timing loop. The final equations are:—

Kr — J 'V o {T„, + T 5 0 0)
Kd = V=o (+ Tb00)

L r = Top + 7250 + Tb00.
Typical waveforms are shown in Figure 12.

Multiplication time. The nominal times allowed for an ADD/
SUBTRACT-SHIFT operation and a PASS-SHIFT operation are
500 ns and 250 ns respectively. The multiplication time depends on
the multiplier and varies between the time required for twenty
PASS-SHIFT operations (i.e. 5 ps) and the time required for ten
PASS-SHIFT operations plus ten ADD/SUBTRACT-SHIFT
operations (i.e. 7-5 ps).

The above times exclude one memory cycle time required
to fetch the instruction and one memory access time required
to fetch the multiplicand. The multiplication process may pro
ceed while the multiplicand is being regenerated in the
memory.

IV. LOGICAL CIRCUITS
The logical circuits used in the arithmetic and control

sections of the computer include positive-logic diode AND-
OR gates and transistor INVERT circuits. A typical circuit

configuration is shown in Figure 13. It is to be noted that
current amplification (using emitter followers) is provided after
signals pass through only two stages of diode gating, and
signal voltage regeneration (using invert circuits) is provided
after four stages of diode gating. The nominal voltage levels
representing the ONE and ZERO signals are -)-l volt and — 1
volt respectively. The 0 volt/—2 volt signal at the collector
of the INVERT transistor is shifted positively by 1 volt in the
last EMITTER FOLLOWER circuit. The two diodes in series
here produce the level shift without a reduction in signal
amplitude. An AND-OR-EMITTER FOLLOWER-INVERT-
EMITTER FOLLOWER circuit configuration would have a
typical delay of 50 ns.

Flip-flops, shift-registers and binary counters may be pro
duced by interconnecting the basic AND/OR/INVERT
circuits and resistor-capacitor transient storage gates. The
circuits so formed may operate at repetition rates up to 4
Mc/s.

The positive-trigger and negative-trigger monostable multis
used in the timing unit may have periods as short as 500 ns
and 100 ns respectively.

A brief description of the signal waveforms shown in Figure
6 follows:
Photograph A (500 ns/div., 1 volt/div.)

The READ, DELAY, WRITE and POST-WRITE-
DISTURB waveforms of the memory timing are super
imposed. These are generated by a train of positive
trigger monostable multis.

Photograph B (100 ns/div., 1 volt/div.)
Waveforms generated by a train of negative trigger
monostable multis are superimposed.

Photograph C (100 ns/div., X volt/div.)
This shows the COUNT pulse and one edge of the least
and most significant stages of a 10-stage parallel binary
counter.

Photograph D (200 ns/div., 1 volt/div.)
This shows a train of four pulses generated by negative
trigger monostable multis and a binary counter.

V. CONSTRUCTIONAL TECHNIQUES AND
COMMISSIONING

The problems involved in the commissioning of a computer
must be anticipated in the design and construction stages.
With such a complex piece of electronic equipment, of course,
some form of package construction is essential. It seems that
a good policy is to implement as much of the computer as
possible with the smallest number of package types, and to
keep all non-standard packages as simple as possible. With a
high-speed computer, the layout of the packages within the
main frame is very important. The aim here is to minimize
the length of inter-package wiring (base-wiring) reducing
signal delays and to minimize pickup of self-induced or
extraneous noise.

The method of package construction was essentially the
same as that used in two former machines2- 3. The electronic
components are pushed into holes in a polythene card which
is held in juxtaposition with one or more Cannon plug(s) by
a stainless-steel band. Two sizes of packages are used. The
small 15-pin package is approximately l i " x 4" which is
a convenient size for constructional and testing purposes, and
would hold, for example, two flip-flops or four negative-
trigger monostable multis. The large 55-pin package is approx
imately 3f" x 41". The aim here is to hold in the one
package one stage of each of the registers in the arithmetic
unit plus the interconnecting logic. This arrangement would
minimize base wiring and hence would reduce wire lengths
and increase speed.

To reduce pickup, a grid of copper strips with silver and
gold flashing is used as a ground plane close to the base
wires. Where capacitive loading is important, wires are held
well clear of the ground plane and well clear of other wires
by threading them through a number of stainless-steel wire-
mesh brackets.

In the early stages of commissioning, every soldered joint
in the packages and in the base was inspected and the wiring
checked. This was followed by a dynamic test of every input
of every logical element. Some packages were subjected to
hot-air-blast and vibration tests.

After every package had been checked individually, groups
of packages (for example, those forming the main timing
unit) were plugged into the base and tested. As an increasing
number of packages were plugged into the base, more com
plex tests requiring the combined operation of a larger part
of the machine were made possible.

Commissioning of the computer was facilitated by incorpor
ating into the design a number of engineering tests. Tests
such as the triggering of the main timing chain from a built-
in pulse generator to enable timing waveforms to be monitored
are carried out under the control of toggle switches and push
buttons on the maintenance engineer’s console. This console
monitors all registers and important flip-flops, and all arith
metic and logical operations may be checked under single
shot or dynamic conditions.

At the time of writing, an advanced stage has been reached
with the commissioning of ARCTURUS.

VI. CONCLUSIONS
The completion of ARCTURUS will support the case for

the continuation of computer hardware projects at Australian
Universities, ARCTURUS was produced with very limited
resources, and there is no doubt that in the three areas of
teaching, research and staff training, it will be far superior to

WONG - The Design and Construction of ARCTURUS 7

a commercially available computer of comparable cost.

Introductory courses on the use of computers can be
taught more effectively using an open-shop system with a small
(cheap) computer than with a closed-shop system with a
large (expensive) computer which does not have time-sharing,
multi-console facilities. Teaching in the field of computer
design which may be carried out at a more advanced level
(e.g., final-year, honours or post-graduate levels) can also be
taught more effectively as the staff concerned will have a more
intimate knowledge of the hardware of the computer, and
design examples involving diverse practical aspects will be
more readily available.

In the context of time-sharing systems, much research effort
has been directed at special peripheral devices for improving
man-machine communication14, and it is very likely that
research along these lines will continue for some time1®.
A home-made computer could be a very useful research tool
here, as modifications and additions to the computer could
be made readily to incorporate the device. A flexible computer
(i.e., one which can be modified easily) can also be useful for
research into the organization of computers. Special instruc
tions built into the computer could suggest different configura
tions or special hardware for improving its performance. Other
applications of a flexible computer would include on-line
processing of test data and research into the computer control
of complex systems. These applications would involve the
interconnection of computer and test set or system via
analogue-digital converters.

The third area in which the construction of a computer
would prove to be more beneficial than the purchase of a
commercial machine would be that of staff training. ARC
TURUS (like most computers) is a very complex piece of
equipment. The approach taken to its design and construction
with very limited resources was good engineering training.
Such training is essential if university lecturers are to reveal
to students scientific and engineering experience concerning the
application of abstract theories so that the students’ creative
abilities are developed as well as their memories1®.

The need for Computer Science courses, involving the
theory, design, control and application of information-process
ing systems, to provide adequately trained computer personnel
has been recognized for a number of years, Many of these
have been available only to post-graduate students or under
graduates in their final years, but it does appear that the trend
is towards courses which form a major part of a first-
degree program17. Logical design forms an important part of
these courses. A completely theoretical treatment of logical
design is not sufficient as it is closely related to circuit design
and the properties of components. These related subjects arc,
of course, treated in an Electrical Engineering course. Hence it

does appear that hardware projects (involving design) should
be carried out at Schools of Electrical Engineering at Aus
tralian Universities. Not only will this produce adequately
trained staff, but it is likely that computer teaching equip
ment will evolve as a by-product® and student interest will be
stimulated in an important area of Computer Science.

VII. ACKNOWLEDGEMENTS

I would like to thank Professor W. N. Christiansen, Head
of the School of Electrical Engineering, University of Sydney
for his encouragement and support of the ARCTURUS
project.

I am gratefully indebted to my colleagues Messrs. K. R.
Rosolen and I. M. Cowell for their assistance with the con
struction of ARCTURUS. Mr. Rosolen is to be given much of
the credit for the circuit design and constructional techniques.

Vffl. REFERENCES
(1) Myers, D. M. and Blunden, W. R. — The C.S.I.R.O. Differential

Analyser, J.I.E. Aust., Oct.-Nov., 1952.

(2) Allen M W — A.D A. — A Transistor Decimal Digital Differen
tial Analyser,’ J.I.E. Aust., Oct.-Nov., 1957, pp. 255-262.

m Wone D G — The Logical Design of the General Purpose
(3) c K íim in i T F Aust "" ns-1-u;

(4) Wong, D. G. — An Educational Digital Computer, Australian
Computer Conference, Melbourne, 1963.

(5) Wong, D. G., Laboratory Equipment for Teaching Digital Com
puter Fundamentals, Proc. I.R.E.E. Aust., Feb., 1965.

(6) Rosolen, K. R. — Development of a High Speed Paper Tape
Reader, Proc. I.R.E. Aust., Dec., 1963.

(7) Allen. M. W„ Pearcey, T„ Penny, J. P., Rose, G. A., Sanderson,
J. G., CIRRUS, An Economical Multiprogram Computer with
Microprogram Control. I.E.E.E. Trans, on Electronic Computers,
Dec., 1963, pp. 663-671.

(8) Allen M W., Rose, G. A., A Flexible and Economic Approach to
Digital System Design with Particular Reference to CIRRUS.
Australian Computer Conference, Melbourne, 1963.

(9) Butcher, I. R., A Survey of High Speed Random Access Storage
Techniques. Proc. I.R.E.E. Australia, Feb., 1965, pp. 81-89.

(10) Scientific Data Systems, SDS 920 Computer Reference Manual.

(11) Flores, I., The Logic of Computer Arithmetic (Prentice-Hall,
1963).

(12) MacSorley. O. L„ High-Speed Arithmetic in Binary Computers,
Proc. I.R.E., Jan., 1961, pp. 67-91.

(13) Ledley, R. S„ Digital Computer and Control Engineering (McGraw-
Hill, 1962).

(14) Fano, R. M.. The MAC System; the Computer Utility Approach,
I.E.E.E. Spectrum, Jan., 1965, pp. 56-64.

(15) Hunt, E. B„ Computer Sciences and Services, Vestes (The Aus
tralian Universities’ Review), March, 1965.

(16) Patterson, J„ Theory and Practice:—A View on Teaching and
Research in Engineering. Vestes (The Australian Universities’
Review), Dec., 1965.

(17) Buckingham, R. A., The Computer in the University, The Com
puter Journal, April, 1965, pp. 1-7.

WONG - The Design and Construction of ARCTURUS
O3

IX. APPENDIX

TABLE 5. DESCRIPTION OF INSTRUCTIONS TABLE 5 (continued)

CODE INSTRUCTION DESCRIPTION

00000 STOP (00 Unconditional
r r 101 Contingent on BP 1 ON

j 10 Contingent on BP2 ON
[l l Continue

00001 INPUT-
OUTPUT

(0 4-bits
R * 11 5-bits
R u Reader 1
R ia Printer
R l t Punch
R i i - R n Number of times
A cyclic left shift of K 4 or 5 places
depending on R 9 precedes each
operation. Reading overwrites K 1& or
K l t to K 19. If R 9 = 0, the character
read is the next non-fifth bit character
in the buffer or on the tape. The
character printed or punched is either
0, K ie- K 19 or K 1S- K 19. Reading
precedes printing or punching.

00010 REGISTER-
TRANSFER

(00 Transfer L to J first
r . r . 01 Transfer K i o J first

110 Transfer U to J first
(11 Transfer U to J first

R 9 a if R l t = 0
Rio if R l2 “ 0
R ll C20 if R ia = 0
D Id = Jo, s — Jo, C9o — J 0
12 (if R 9 = 0, Rio = 0, R n = 0

R13 r
R n k

(00 Ö! =5 1 g = 0 p — 0
* i 5* .e = S g = (i P = \| 10 a1 = 0 g = 1 p — 0

(11 d \ — 0 g = 1 p = 1
R i7 Clock distributor into U
R lg Clock distributor into K
R 19 Clock distributor into L

00011 SHIFT (000 Logical
r r r 1100 Arithmetic
8 9 1 010 Cyclic together

0̂01 Cyclic separately
Ru Shift L

|0 L left
R u (1 L right
R l3 Shift K

10 K left
R l1 (1 K right
R is - R i t Number of times

00100 TRANSFER
UNCON
DITIONAL

3 h

00101 TRANSFER IF
NEGATIVE

cs y = A if K 0 = 1

00110 SKIP R 9 Accumulator normalized
(00 —
101 Accumulator < 0

^ioRn 110 Accumulator = 0
(11 Accumulator > 0
00 —

01 Sense switch 1 ON
10 Sense switch 2 ON
11 Sense switch 3 ON

Rl&- R 19 Number of times

C O D E I N S T R U C T I O N D E S C R I P T I O N

00111 (S P A R E)

01000 A D D I N D E X A d d (M) to address o f n ext instruction

01001 S U B T R A C T
I N D E X

S u b tract (A/) fro m address o f next
instruction

01010 I N D E X
S K IP

(M Y = (A/) + /
(5) ' - (5) + 1 i f (A f) 0' = 1

01011 J U M P T O
S U B R O U T I N E

(A /)' = (5)
(5)' = A + 1

01100 C O M P A R E
S K IP

(5)' = (S) + 1
i f (M) i = (K) i fo r all i such that

(L), = 1

01101 L O A D K (K Y = (M)

o m o L O A D L (LY = (M)

O l i l i A D D CK Y = (K) + (M)

10000 S U B T R A C T (K Y = (K) - (A f)

10001 A N D (K) ' i = (K) i . (M) i (i = 0 - 19)

10010 M U L T I P L Y CKL Y = (Z.) X (A/)
L 0 = 0

10011 D I V I D E (LY = (KL) -=- (A/)

10100 S T O R E K (M Y = (K)

10101 S T O R E L (M Y = (L)

10110 S T O R E K
A D D R E S S

(M Y t - 19 = (X) 8_19

10 111 A C C U M U L A T E (M Y = (M) + (K)

11000 (S P A R E)

11001 (S P A R E)

11010 P U S H « (M) » ' = (K)
(M Y = (M) + /

n o n P O P (k y = « (m) >y
(M Y = (M) - /

11100 D E C R E M E N T
H I E R A R C H Y

« (1) » ' = (5)
(i y = a) - /
(S Y = A

11101 I N C R E M E N T
H I E R A R C H Y

« (l) >y = (s)
(iy = (D + /
(S Y = A

i m o R E T U R N
H I E R A R C H Y

(0 D ecrease

13 11 Increase
Ru C h a n g e h ierarch y
R15-Æ19 N u m b e r o f tim es
« (1) » ' = (S)
(1) ' = (1) ± I (N tim es)
(S Y = « (1) »

u m E X E C U T E E xecu te instruction in M

COPY

