12,059 research outputs found

    A Review of Traffic Signal Control.

    Get PDF
    The aim of this paper is to provide a starting point for the future research within the SERC sponsored project "Gating and Traffic Control: The Application of State Space Control Theory". It will provide an introduction to State Space Control Theory, State Space applications in transportation in general, an in-depth review of congestion control (specifically traffic signal control in congested situations), a review of theoretical works, a review of existing systems and will conclude with recommendations for the research to be undertaken within this project

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201

    Vision-Based Lane-Changing Behavior Detection Using Deep Residual Neural Network

    Get PDF
    Accurate lane localization and lane change detection are crucial in advanced driver assistance systems and autonomous driving systems for safer and more efficient trajectory planning. Conventional localization devices such as Global Positioning System only provide road-level resolution for car navigation, which is incompetent to assist in lane-level decision making. The state of art technique for lane localization is to use Light Detection and Ranging sensors to correct the global localization error and achieve centimeter-level accuracy, but the real-time implementation and popularization for LiDAR is still limited by its computational burden and current cost. As a cost-effective alternative, vision-based lane change detection has been highly regarded for affordable autonomous vehicles to support lane-level localization. A deep learning-based computer vision system is developed to detect the lane change behavior using the images captured by a front-view camera mounted on the vehicle and data from the inertial measurement unit for highway driving. Testing results on real-world driving data have shown that the proposed method is robust with real-time working ability and could achieve around 87% lane change detection accuracy. Compared to the average human reaction to visual stimuli, the proposed computer vision system works 9 times faster, which makes it capable of helping make life-saving decisions in time

    Assessing the Impact of Game Day Schedule and Opponents on Travel Patterns and Route Choice using Big Data Analytics

    Get PDF
    The transportation system is crucial for transferring people and goods from point A to point B. However, its reliability can be decreased by unanticipated congestion resulting from planned special events. For example, sporting events collect large crowds of people at specific venues on game days and disrupt normal traffic patterns. The goal of this study was to understand issues related to road traffic management during major sporting events by using widely available INRIX data to compare travel patterns and behaviors on game days against those on normal days. A comprehensive analysis was conducted on the impact of all Nebraska Cornhuskers football games over five years on traffic congestion on five major routes in Nebraska. We attempted to identify hotspots, the unusually high-risk zones in a spatiotemporal space containing traffic congestion that occur on almost all game days. For hotspot detection, we utilized a method called Multi-EigenSpot, which is able to detect multiple hotspots in a spatiotemporal space. With this algorithm, we were able to detect traffic hotspot clusters on the five chosen routes in Nebraska. After detecting the hotspots, we identified the factors affecting the sizes of hotspots and other parameters. The start time of the game and the Cornhuskers’ opponent for a given game are two important factors affecting the number of people coming to Lincoln, Nebraska, on game days. Finally, the Dynamic Bayesian Networks (DBN) approach was applied to forecast the start times and locations of hotspot clusters in 2018 with a weighted mean absolute percentage error (WMAPE) of 13.8%

    A hybrid strategy for real-time traffic signal control of urban road networks

    Get PDF
    The recently developed traffic signal control strategy known as traffic-responsive urban control (TUC) requires availability of a fixed signal plan that is sufficiently efficient under undersaturated traffic conditions. To drop this requirement, the well-known Webster procedure for fixed-signal control derivation at isolated junctions is appropriately employed for real-time operation based on measured flows. It is demonstrated via simulation experiments and field application that the following hold: 1) The developed real-time demand-based approach is a viable real-time signal control strategy for undersaturated traffic conditions. 2) It can indeed be used within TUC to drop the requirement for a prespecified fixed signal plan. 3) It may, under certain conditions, contribute to more efficient results, compared with the original TUC method

    System analysis and integration studies for a 15-micron horizon radiance measurement experiment

    Get PDF
    Systems analysis and integration studies for 15-micron horizon radiance measurement experimen

    Effects of Transport Delays of Manual Control System Performance

    Get PDF
    Throughput or transport delays in manual control systems can cause degraded performance and lead to potentially unstable operation. With the expanding use of digital processors, throughput delays can occur in manual control systems in a variety of ways such as in digital flight control systems in real aircraft, and in equation of motion computers and computer generated images in simulators. Research has shown the degrading effect of throughput delays on subjective opinion and system performance and dynamic response. A generic manual control system model is used to provide a relatively simple analysis of and explanation for the effects of various types of delays. The consequence of throughput delays of some simple system architectures is also discussed

    Pose Detection and control of multiple unmanned underwater vehicles using optical feedback

    Get PDF
    This paper proposes pose detection and control algorithms in order to control the relative pose between two Unmanned Underwater Vehicles (UUVs) using optical feedback. The leader UUV is configured to have a light source at its crest which acts as a guiding beacon for the follower UUV which has a detector array at its bow. Pose detection algorithms are developed based on a classifier, such as the Spectral Angle Mapper (SAM), and chosen image parameters. An archive look-up table is constructed for varying combinations of 5-degree-of-freedom (DOF) motion (i.e., translation along all three coordinate axes as well as pitch and yaw rotations). Leader and follower vehicles are simulated for a case in which the leader is directed to specific waypoints in horizontal plane and the follower is required to maintain a fixed distance from the leader UUV. Proportional-Derivative (PD) control (without loss of generality) is applied to maintain stability of the UUVs to show proof of concept. Preliminary results indicate that the follower UUV is able to maintain its fixed distance relative to the leader UUV to within a reasonable accuracy

    Regional Data Archiving and Management for Northeast Illinois

    Get PDF
    This project studies the feasibility and implementation options for establishing a regional data archiving system to help monitor and manage traffic operations and planning for the northeastern Illinois region. It aims to provide a clear guidance to the regional transportation agencies, from both technical and business perspectives, about building such a comprehensive transportation information system. Several implementation alternatives are identified and analyzed. This research is carried out in three phases. In the first phase, existing documents related to ITS deployments in the broader Chicago area are summarized, and a thorough review is conducted of similar systems across the country. Various stakeholders are interviewed to collect information on all data elements that they store, including the format, system, and granularity. Their perception of a data archive system, such as potential benefits and costs, is also surveyed. In the second phase, a conceptual design of the database is developed. This conceptual design includes system architecture, functional modules, user interfaces, and examples of usage. In the last phase, the possible business models for the archive system to sustain itself are reviewed. We estimate initial capital and recurring operational/maintenance costs for the system based on realistic information on the hardware, software, labor, and resource requirements. We also identify possible revenue opportunities. A few implementation options for the archive system are summarized in this report; namely: 1. System hosted by a partnering agency 2. System contracted to a university 3. System contracted to a national laboratory 4. System outsourced to a service provider The costs, advantages and disadvantages for each of these recommended options are also provided.ICT-R27-22published or submitted for publicationis peer reviewe
    • …
    corecore