83,307 research outputs found

    Dynamic code coverage with progressive detail levels

    Get PDF
    Tese de Mestrado Integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Patch-based Progressive 3D Point Set Upsampling

    Full text link
    We present a detail-driven deep neural network for point set upsampling. A high-resolution point set is essential for point-based rendering and surface reconstruction. Inspired by the recent success of neural image super-resolution techniques, we progressively train a cascade of patch-based upsampling networks on different levels of detail end-to-end. We propose a series of architectural design contributions that lead to a substantial performance boost. The effect of each technical contribution is demonstrated in an ablation study. Qualitative and quantitative experiments show that our method significantly outperforms the state-of-the-art learning-based and optimazation-based approaches, both in terms of handling low-resolution inputs and revealing high-fidelity details.Comment: accepted to cvpr2019, code available at https://github.com/yifita/P3

    The Application of the Montage Image Mosaic Engine To The Visualization Of Astronomical Images

    Get PDF
    The Montage Image Mosaic Engine was designed as a scalable toolkit, written in C for performance and portability across *nix platforms, that assembles FITS images into mosaics. The code is freely available and has been widely used in the astronomy and IT communities for research, product generation and for developing next-generation cyber-infrastructure. Recently, it has begun to finding applicability in the field of visualization. This has come about because the toolkit design allows easy integration into scalable systems that process data for subsequent visualization in a browser or client. And it includes a visualization tool suitable for automation and for integration into Python: mViewer creates, with a single command, complex multi-color images overlaid with coordinate displays, labels, and observation footprints, and includes an adaptive image histogram equalization method that preserves the structure of a stretched image over its dynamic range. The Montage toolkit contains functionality originally developed to support the creation and management of mosaics but which also offers value to visualization: a background rectification algorithm that reveals the faint structure in an image; and tools for creating cutout and down-sampled versions of large images. Version 5 of Montage offers support for visualizing data written in HEALPix sky-tessellation scheme, and functionality for processing and organizing images to comply with the TOAST sky-tessellation scheme required for consumption by the World Wide Telescope (WWT). Four online tutorials enable readers to reproduce and extend all the visualizations presented in this paper.Comment: 16 pages, 9 figures; accepted for publication in the PASP Special Focus Issue: Techniques and Methods for Astrophysical Data Visualizatio

    Radio Spectral Evolution of an X-ray Poor Impulsive Solar Flare: Implications for Plasma Heating and Electron Acceleration

    Full text link
    We present radio and X-ray observations of an impulsive solar flare that was moderately intense in microwaves, yet showed very meager EUV and X-ray emission. The flare occurred on 2001 Oct 24 and was well-observed at radio wavelengths by the Nobeyama Radioheliograph (NoRH), the Nobeyama Radio Polarimeters (NoRP), and by the Owens Valley Solar Array (OVSA). It was also observed in EUV and X-ray wavelength bands by the TRACE, GOES, and Yohkoh satellites. We find that the impulsive onset of the radio emission is progressively delayed with increasing frequency relative to the onset of hard X-ray emission. In contrast, the time of flux density maximum is progressively delayed with decreasing frequency. The decay phase is independent of radio frequency. The simple source morphology and the excellent spectral coverage at radio wavelengths allowed us to employ a nonlinear chi-squared minimization scheme to fit the time series of radio spectra to a source model that accounts for the observed radio emission in terms of gyrosynchrotron radiation from MeV-energy electrons in a relatively dense thermal plasma. We discuss plasma heating and electron acceleration in view of the parametric trends implied by the model fitting. We suggest that stochastic acceleration likely plays a role in accelerating the radio-emitting electrons.Comment: 22 pages, 10 figure

    Health Inequalities in Europe: Setting the Stage for Progressive Policy Action

    Get PDF
    While the health of Europeans has improved over recent years, differences by gender, birthplace, and/or socioeconomic background persist. This report maps the extent of such health inequalities, its determinants, and costs to society. The findings indicate that differences in health between and within countries are attributable not only to social and health policies, but also depend on economic policy and the social determinants of health. Thus, holistic policy interventions are required to tackle health inequalities

    Hierarchical progressive surveys. Multi-resolution HEALPix data structures for astronomical images, catalogues, and 3-dimensional data cubes

    Full text link
    Scientific exploitation of the ever increasing volumes of astronomical data requires efficient and practical methods for data access, visualisation, and analysis. Hierarchical sky tessellation techniques enable a multi-resolution approach to organising data on angular scales from the full sky down to the individual image pixels. Aims. We aim to show that the Hierarchical progressive survey (HiPS) scheme for describing astronomical images, source catalogues, and three-dimensional data cubes is a practical solution to managing large volumes of heterogeneous data and that it enables a new level of scientific interoperability across large collections of data of these different data types. Methods. HiPS uses the HEALPix tessellation of the sphere to define a hierarchical tile and pixel structure to describe and organise astronomical data. HiPS is designed to conserve the scientific properties of the data alongside both visualisation considerations and emphasis on the ease of implementation. We describe the development of HiPS to manage a large number of diverse image surveys, as well as the extension of hierarchical image systems to cube and catalogue data. We demonstrate the interoperability of HiPS and Multi-Order Coverage (MOC) maps and highlight the HiPS mechanism to provide links to the original data. Results. Hierarchical progressive surveys have been generated by various data centres and groups for ~200 data collections including many wide area sky surveys, and archives of pointed observations. These can be accessed and visualised in Aladin, Aladin Lite, and other applications. HiPS provides a basis for further innovations in the use of hierarchical data structures to facilitate the description and statistical analysis of large astronomical data sets.Comment: 21 pages, 6 figures. Accepted for publication in Astronomy & Astrophysic

    Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    Get PDF
    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial
    • …
    corecore