355 research outputs found

    An review of automatic drum transcription

    Get PDF
    In Western popular music, drums and percussion are an important means to emphasize and shape the rhythm, often defining the musical style. If computers were able to analyze the drum part in recorded music, it would enable a variety of rhythm-related music processing tasks. Especially the detection and classification of drum sound events by computational methods is considered to be an important and challenging research problem in the broader field of Music Information Retrieval. Over the last two decades, several authors have attempted to tackle this problem under the umbrella term Automatic Drum Transcription(ADT).This paper presents a comprehensive review of ADT research, including a thorough discussion of the task-specific challenges, categorization of existing techniques, and evaluation of several state-of-the-art systems. To provide more insights on the practice of ADT systems, we focus on two families of ADT techniques, namely methods based on Nonnegative Matrix Factorization and Recurrent Neural Networks. We explain the methods’ technical details and drum-specific variations and evaluate these approaches on publicly available datasets with a consistent experimental setup. Finally, the open issues and under-explored areas in ADT research are identified and discussed, providing future directions in this fiel

    Sigmoidal NMFD : convolutional NMF with saturating activations for drum mixture decomposition

    Get PDF
    In many types of music, percussion plays an essential role to establish the rhythm and the groove of the music. Algorithms that can decompose the percussive signal into its constituent components would therefore be very useful, as they would enable many analytical and creative applications. This paper describes a method for the unsupervised decomposition of percussive recordings, building on the non-negative matrix factor deconvolution (NMFD) algorithm. Given a percussive music recording, NMFD discovers a dictionary of time-varying spectral templates and corresponding activation functions, representing its constituent sounds and their positions in the mix. We observe, however, that the activation functions discovered using NMFD do not show the expected impulse-like behavior for percussive instruments. We therefore enforce this behavior by specifying that the activations should take on binary values: either an instrument is hit, or it is not. To this end, we rewrite the activations as the output of a sigmoidal function, multiplied with a per-component amplitude factor. We furthermore define a regularization term that biases the decomposition to solutions with saturated activations, leading to the desired binary behavior. We evaluate several optimization strategies and techniques that are designed to avoid poor local minima. We show that incentivizing the activations to be binary indeed leads to the desired impulse-like behavior, and that the resulting components are better separated, leading to more interpretable decompositions

    Blind source separation using statistical nonnegative matrix factorization

    Get PDF
    PhD ThesisBlind Source Separation (BSS) attempts to automatically extract and track a signal of interest in real world scenarios with other signals present. BSS addresses the problem of recovering the original signals from an observed mixture without relying on training knowledge. This research studied three novel approaches for solving the BSS problem based on the extensions of non-negative matrix factorization model and the sparsity regularization methods. 1) A framework of amalgamating pruning and Bayesian regularized cluster nonnegative tensor factorization with Itakura-Saito divergence for separating sources mixed in a stereo channel format: The sparse regularization term was adaptively tuned using a hierarchical Bayesian approach to yield the desired sparse decomposition. The modified Gaussian prior was formulated to express the correlation between different basis vectors. This algorithm automatically detected the optimal number of latent components of the individual source. 2) Factorization for single-channel BSS which decomposes an information-bearing matrix into complex of factor matrices that represent the spectral dictionary and temporal codes: A variational Bayesian approach was developed for computing the sparsity parameters for optimizing the matrix factorization. This approach combined the advantages of both complex matrix factorization (CMF) and variational -sparse analysis. BLIND SOURCE SEPARATION USING STATISTICAL NONNEGATIVE MATRIX FACTORIZATION ii 3) An imitated-stereo mixture model developed by weighting and time-shifting the original single-channel mixture where source signals can be modelled by the AR processes. The proposed mixing mixture is analogous to a stereo signal created by two microphones with one being real and another virtual. The imitated-stereo mixture employed the nonnegative tensor factorization for separating the observed mixture. The separability analysis of the imitated-stereo mixture was derived using Wiener masking. All algorithms were tested with real audio signals. Performance of source separation was assessed by measuring the distortion between original source and the estimated one according to the signal-to-distortion (SDR) ratio. The experimental results demonstrate that the proposed uninformed audio separation algorithms have surpassed among the conventional BSS methods; i.e. IS-cNTF, SNMF and CMF methods, with average SDR improvement in the ranges from 2.6dB to 6.4dB per source.Payap Universit

    Audio source separation for music in low-latency and high-latency scenarios

    Get PDF
    Aquesta tesi proposa mètodes per tractar les limitacions de les tècniques existents de separació de fonts musicals en condicions de baixa i alta latència. En primer lloc, ens centrem en els mètodes amb un baix cost computacional i baixa latència. Proposem l'ús de la regularització de Tikhonov com a mètode de descomposició de l'espectre en el context de baixa latència. El comparem amb les tècniques existents en tasques d'estimació i seguiment dels tons, que són passos crucials en molts mètodes de separació. A continuació utilitzem i avaluem el mètode de descomposició de l'espectre en tasques de separació de veu cantada, baix i percussió. En segon lloc, proposem diversos mètodes d'alta latència que milloren la separació de la veu cantada, gràcies al modelatge de components específics, com la respiració i les consonants. Finalment, explorem l'ús de correlacions temporals i anotacions manuals per millorar la separació dels instruments de percussió i dels senyals musicals polifònics complexes.Esta tesis propone métodos para tratar las limitaciones de las técnicas existentes de separación de fuentes musicales en condiciones de baja y alta latencia. En primer lugar, nos centramos en los métodos con un bajo coste computacional y baja latencia. Proponemos el uso de la regularización de Tikhonov como método de descomposición del espectro en el contexto de baja latencia. Lo comparamos con las técnicas existentes en tareas de estimación y seguimiento de los tonos, que son pasos cruciales en muchos métodos de separación. A continuación utilizamos y evaluamos el método de descomposición del espectro en tareas de separación de voz cantada, bajo y percusión. En segundo lugar, proponemos varios métodos de alta latencia que mejoran la separación de la voz cantada, gracias al modelado de componentes que a menudo no se toman en cuenta, como la respiración y las consonantes. Finalmente, exploramos el uso de correlaciones temporales y anotaciones manuales para mejorar la separación de los instrumentos de percusión y señales musicales polifónicas complejas.This thesis proposes specific methods to address the limitations of current music source separation methods in low-latency and high-latency scenarios. First, we focus on methods with low computational cost and low latency. We propose the use of Tikhonov regularization as a method for spectrum decomposition in the low-latency context. We compare it to existing techniques in pitch estimation and tracking tasks, crucial steps in many separation methods. We then use the proposed spectrum decomposition method in low-latency separation tasks targeting singing voice, bass and drums. Second, we propose several high-latency methods that improve the separation of singing voice by modeling components that are often not accounted for, such as breathiness and consonants. Finally, we explore using temporal correlations and human annotations to enhance the separation of drums and complex polyphonic music signals

    Real-time detection of overlapping sound events with non-negative matrix factorization

    Get PDF
    International audienceIn this paper, we investigate the problem of real-time detection of overlapping sound events by employing non-negative matrix factorization techniques. We consider a setup where audio streams arrive in real-time to the system and are decomposed onto a dictionary of event templates learned off-line prior to the decomposition. An important drawback of existing approaches in this context is the lack of controls on the decomposition. We propose and compare two provably convergent algorithms that address this issue, by controlling respectively the sparsity of the decomposition and the trade-off of the decomposition between the different frequency components. Sparsity regularization is considered in the framework of convex quadratic programming, while frequency compromise is introduced by employing the beta-divergence as a cost function. The two algorithms are evaluated on the multi-source detection tasks of polyphonic music transcription, drum transcription and environmental sound recognition. The obtained results show how the proposed approaches can improve detection in such applications, while maintaining low computational costs that are suitable for real-time

    일반화된 디리클레 사전확률을 이용한 비지도적 음원 분리 방법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 융합과학기술대학원 융합과학부, 2018. 2. 이교구.Music source separation aims to extract and reconstruct individual instrument sounds that constitute a mixture sound. It has received a great deal of attention recently due to its importance in the audio signal processing. In addition to its stand-alone applications such as noise reduction and instrument-wise equalization, the source separation can directly affect the performance of the various music information retrieval algorithms when used as a pre-processing. However, conventional source separation algorithms have failed to show satisfactory performance especially without the aid of spatial or musical information about the target source. To deal with this problem, we have focused on the spectral and temporal characteristics of sounds that can be observed in the spectrogram. Spectrogram decomposition is a commonly used technique to exploit such characteristicshowever, only a few simple characteristics such as sparsity were utilizable so far because most of the characteristics were difficult to be expressed in the form of algorithms. The main goal of this thesis is to investigate the possibility of using generalized Dirichlet prior to constrain spectral/temporal bases of the spectrogram decomposition algorithms. As the generalized Dirichlet prior is not only simple but also flexible in its usage, it enables us to utilize more characteristics in the spectrogram decomposition frameworks. From harmonic-percussive sound separation to harmonic instrument sound separation, we apply the generalized Dirichlet prior to various tasks and verify its flexible usage as well as fine performance.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Task of interest 4 1.2.1 Number of channels 4 1.2.2 Utilization of side-information 5 1.3 Approach 6 1.3.1 Spectrogram decomposition with constraints 7 1.3.2 Dirichlet prior 11 1.3.3 Contribution 12 1.4 Outline of the thesis 13 Chapter 2 Theoretical background 17 2.1 Probabilistic latent component analysis 18 2.2 Non-negative matrix factorization 21 2.3 Dirichlet prior 23 2.3.1 PLCA framework 24 2.3.2 NMF framework 26 2.4 Summary 28 Chapter 3 Harmonic-Percussive Source Separation Using Harmonicity and Sparsity Constraints . . 30 3.1 Introduction 30 3.2 Proposed method 33 3.2.1 Formulation of Harmonic-Percussive Separation 33 3.2.2 Relation to Dirichlet Prior 35 3.3 Performance evaluation 37 3.3.1 Sample Problem 37 3.3.2 Qualitative Analysis 38 3.3.3 Quantitative Analysis 42 3.4 Summary 43 Chapter 4 Exploiting Continuity/Discontinuity of Basis Vectors in Spectrogram Decomposition for Harmonic-Percussive Sound Separation 46 4.1 Introduction 46 4.2 Proposed Method 51 4.2.1 Characteristics of harmonic and percussive components 51 4.2.2 Derivation of the proposed method 56 4.2.3 Algorithm interpretation 61 4.3 Performance Evaluation 62 4.3.1 Parameter setting 63 4.3.2 Toy examples 66 4.3.3 SiSEC 2015 dataset 69 4.3.4 QUASI dataset 84 4.3.5 Subjective performance evaluation 85 4.3.6 Audio demo 87 4.4 Summary 87 Chapter 5 Informed Approach to Harmonic Instrument sound Separation 89 5.1 Introduction 89 5.2 Proposed method 91 5.2.1 Excitation-filter model 92 5.2.2 Linear predictive coding 94 5.2.3 Spectrogram decomposition procedure 96 5.3 Performance evaluation 99 5.3.1 Experimental settings 99 5.3.2 Performance comparison 101 5.3.3 Envelope extraction 102 5.4 Summary 104 Chapter 6 Blind Approach to Harmonic Instrument sound Separation 105 6.1 Introduction 105 6.2 Proposed method 106 6.3 Performance evaluation 109 6.3.1 Weight optimization 109 6.3.2 Performance comparison 109 6.3.3 Effect of envelope similarity 112 6.4 Summary 114 Chapter 7 Conclusion and Future Work 115 7.1 Contributions 115 7.2 Future work 119 7.2.1 Application to multi-channel audio environment 119 7.2.2 Application to vocal separation 119 7.2.3 Application to various audio source separation tasks 120 Bibliography 121 초 록 137Docto

    Sequential decision making in artificial musical intelligence

    Get PDF
    Over the past 60 years, artificial intelligence has grown from a largely academic field of research to a ubiquitous array of tools and approaches used in everyday technology. Despite its many recent successes and growing prevalence, certain meaningful facets of computational intelligence have not been as thoroughly explored. Such additional facets cover a wide array of complex mental tasks which humans carry out easily, yet are difficult for computers to mimic. A prime example of a domain in which human intelligence thrives, but machine understanding is still fairly limited, is music. Over the last decade, many researchers have applied computational tools to carry out tasks such as genre identification, music summarization, music database querying, and melodic segmentation. While these are all useful algorithmic solutions, we are still a long way from constructing complete music agents, able to mimic (at least partially) the complexity with which humans approach music. One key aspect which hasn't been sufficiently studied is that of sequential decision making in musical intelligence. This thesis strives to answer the following question: Can a sequential decision making perspective guide us in the creation of better music agents, and social agents in general? And if so, how? More specifically, this thesis focuses on two aspects of musical intelligence: music recommendation and human-agent (and more generally agent-agent) interaction in the context of music. The key contributions of this thesis are the design of better music playlist recommendation algorithms; the design of algorithms for tracking user preferences over time; new approaches for modeling people's behavior in situations that involve music; and the design of agents capable of meaningful interaction with humans and other agents in a setting where music plays a roll (either directly or indirectly). Though motivated primarily by music-related tasks, and focusing largely on people's musical preferences, this thesis also establishes that insights from music-specific case studies can also be applicable in other concrete social domains, such as different types of content recommendation. Showing the generality of insights from musical data in other contexts serves as evidence for the utility of music domains as testbeds for the development of general artificial intelligence techniques. Ultimately, this thesis demonstrates the overall usefulness of taking a sequential decision making approach in settings previously unexplored from this perspectiveComputer Science
    corecore