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Abstract

Music source separation aims to extract and reconstruct individual instrument

sounds that constitute a mixture sound. It has received a great deal of attention

recently due to its importance in the audio signal processing. In addition to its

stand-alone applications such as noise reduction and instrument-wise equaliza-

tion, the source separation can directly affect the performance of the various

music information retrieval algorithms when used as a pre-processing. How-

ever, conventional source separation algorithms have failed to show satisfactory

performance especially without the aid of spatial or musical information about

the target source. To deal with this problem, we have focused on the spectral

and temporal characteristics of sounds that can be observed in the spectrogram.

Spectrogram decomposition is a commonly used technique to exploit such char-

acteristics; however, only a few simple characteristics such as sparsity were uti-

lizable so far because most of the characteristics were difficult to be expressed

in the form of algorithms. The main goal of this thesis is to investigate the pos-

sibility of using generalized Dirichlet prior to constrain spectral/temporal bases

of the spectrogram decomposition algorithms. As the generalized Dirichlet prior

is not only simple but also flexible in its usage, it enables us to utilize more

characteristics in the spectrogram decomposition frameworks. From harmonic-

percussive sound separation to harmonic instrument sound separation, we apply

the generalized Dirichlet prior to various tasks and verify its flexible usage as

well as fine performance.
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Chapter 1

Introduction

1.1 Motivation

Source separation in a digital signal processing aims to recover original signals of

interest from given signal mixtures. It has been attracted considerable attention

as a research topic in the past few decades and applied to many research fields

[1]. The applications of source separation include music and audio analysis such

as instrument-wise equalizing, stereo-to-surround up-mixing, karaoke systems,

and crosstalk cancellation, biomedical signal analysis such as electroencephalo-

graphic (EEG) and electromyographic (EMG) [2, 3, 4], and chemical signal

analysis [5]. Nevertheless, the mainstream of the recent source separation re-

search focuses on the audio signal due to the easily overlapping nature of sound

and its diverse applications.

In almost every situation we hear a variety of sounds that occur simulta-

neously, and humans are able to find meaningful information in the sounds.
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Fig. 1.1 Concept of music source separation.

“Cocktail party problem” demonstrates an interesting phenomenon concerning

the human’s capability of listening. Even in a noisy environment like the cock-

tail party, people are able to concentrate on a sound that they want to attend

such as the voice of a person they are in conversation. This selective attention

enables humans to catch crucial auditory information, with being insensitive

to the magnitude of the sound. As this process happens in a human brain

unconsciously, machines are not capable of imitating their magnitude-robust

operation. Hence, in order to make the machines work correctly, pre-processing

to amplify, or separate, the sounds of interest is necessary. This leads to the

necessity of audio source separation, and this is why the source separation al-

gorithms have an enormous impact on the audio signal processing and machine

learning research.

In particular, the source separation has been extensively used in the field

of music signal analysis. Music source separation can be comprehended as the

opposite process of audio mixing that combines multitrack recordings as shown

in Fig. 1.1. As a pre-processing method, it has contributed to the improvement

of the various music information retrieval (MIR) algorithms enabling the ex-
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Fig. 1.2 Applications of source separation in music and audio research.

traction of musical information to work with high accuracy as shown in Fig.

1.2. Such algorithms include low-level music analyses such as pitch detection,

tempo estimation, and instrument identification, and high-level analyses such

as genre classification, music identification, and copyright monitoring [6]. Be-

sides, it has also assisted music generation algorithms such as automatic music

composition as well as music enhancement algorithms such as up-mixing, time-

stretching, instrument-wise equalization, and noise reduction [7, 8]. In addition,

the spectral and temporal characteristics of music signals are often considered

stationary. Hence the algorithms to analyze the music signals can be extended

to other applications to investigate noisier signals such as EEG signal.

According to the aforementioned necessity of music source separation, we

have investigated its essential problems and presented the works in this thesis.

In the rest of this chapter, we introduce problems in music source separation

and describe the scope of our research. Then the motivation of our approach is

presented. Finally, we summarize our major focuses and outline the following

chapters.

3



1.2 Task of interest

In this section, we introduce the focus of our research in the music source sepa-

ration field. To this end, we first categorize conventional approaches according

to the two criteria: the number of channels and the use of side-information.

Then our main task of interest is introduced as single-channel blind source

separation.

1.2.1 Number of channels

When the input mixture signal is composed of multiple channels, the estimation

of original sources can be achievable via spatial filtering. Conventional studies

that use spatial filtering assume that the mixture signal is the linear combi-

nation [9] or convolutional mixing of [10, 11] of the individual sounds. In this

case, the separation process is identical to obtaining the inverse of the actual

mixing matrix. When the number of channels is equal to the number of original

sources, the task is categorized as the determined case since the perfect recon-

struction of the original sounds is theoretically available. This is also applied

to the overdetermined case where the number of channels exceeds the number

of sources. However, when the number of channels is smaller than the number

of sources, which is referred to as underdetermined case, the perfect reconstruc-

tion is not possible via spatial filtering; hence, the assistance of spectro-temporal

characteristics is necessary.

Since most of the music signals are comprised of a single-channel (mono)

or two channels (stereo), the music source separation task is often presumed as

underdetermined. Accordingly, intensive study about the single channel-based

4



music source separation methods is essential, and it is commonly utilized as

an essential background of the multi-channel music source separation [12]. In

this thesis, we concentrate on the single-channel scenario. We aim to show that

proper utilization of the spectro-temporal information can greatly improve the

separation performance even without the aid of spatial information.

1.2.2 Utilization of side-information

Meanwhile, the amount of spectro-temporal information we use is considered

as an important criterion to categorize single-channel source separation stud-

ies. In the early stage of the music source separation, the blind approach was

intensively investigated [13], where no additional information about the tar-

get source exists. These blind source separation (BSS) studies often assume

that the target sound has certain statistical features such as non-Gaussianity

and independence [14] or sparsity [15, 16, 13, 17]. BSS techniques are useful

in some cases; however, such statistical assumptions cannot be guaranteed in

many practical situations, which eventually causes performance degradation.

To overcome their low performance, informed source separation (ISS) was

widely studied [18]. These studies assume situations where side-information

about the target sources is available. Such information includes spectro-

temporal characteristics such as music score [6, 19, 20], partial information

such as onset [21], and direct information such as manually provided annota-

tions [22, 23, 24] and user-guided audio signal [25]. Some studies even assumed

that the information about the sources can be embedded inside the music signal

by employing watermarking or encoding step [26, 27, 28].

Especially, recent approaches have examined the effect of artificial neural

5



Fig. 1.3 Focus of our research.

network-based methods on the source separation tasks. While some of the re-

search efforts directly applied the deep learning-based techniques like autoen-

coder as Lim and Lee’s work [29], Osako et al.’s work [30], and Grais and

Plumbley’s work [31], others attempted to enhance conventional approaches

like matrix decomposition [32] and time-frequency mask [33].

However, it is still a big issue to reduce the amount of information needed

for successful separation, as the situation where side-information can be suffi-

ciently provided is highly limited. Especially in deep learning-based approaches,

a significant amount of training data is required for each sound source. In this

thesis, we focus on using a least amount of side-information while maintaining

satisfactory performance. Fig. 1.3 summarizes the focus of our research.

1.3 Approach

In this section, our approach to the unsupervised single-channel music source

separation is described. This section consists of three subsections that intro-
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Fig. 1.4 Generation of a spectrogram with a time-domain signal.

duce constrained spectrogram decomposition techniques, Dirichlet prior, and

our contribution.

1.3.1 Spectrogram decomposition with constraints

As most of the conventional approaches concerning the single-channel music

source separation problem, we focus on the spectro-temporal characteristics of

the music signals. However, it is unable to examine the spectral characteristics

with the time-domain signals. Hence, we often convert the input audio signal to

spectrogram in the first step. Fig. 1.4 describes how a spectrogram is generated

from a time-domain signal. The input time-domain signal is windowed and

transformed to the frequency domain via fast Fourier transform (FFT). As the

transform is carried out for all segments of short duration, the spectrogram can

represent temporal transitions as well as spectral characteristics.

In other MIR-related studies, other two-dimensional representations such as

mel-spectrogram [34], constant-Q spectrogram [35], and mel-frequency cepstral

coefficients (MFCC) [36] were used for the same purpose. However, feasibility of

7



inverse operation is also important for the source separation, since the output

spectrograms have to be converted to time-domain signals in the end. As the

spectrogram is invertible unlike other two-dimensional representations, it is

generally used for the source separation research.

As Fourier transform is one of the linear transformations, linearity of the

sound signals is preserved. The spectrogram components are complex numbers,

however, the phase information is generally removed to simplify the analy-

sis. By doing so, the linearity is no longer preserved, but conventional studies

have often assumed that the linearity between the magnitude spectrograms is

approximately preserved. In this case, a magnitude spectrogram is mathemat-

ically interpreted as a non-negative matrix. In the rest of this thesis, the term

“spectrogram” is used to indicate magnitude spectrogram.

In order to separately investigate and utilize the spectral and temporal char-

acteristics of the spectrogram, matrix decomposition is widely used. The matrix

decomposition aims to obtain matrices that approximate the original spectro-

gram when multiplied. From a practical point of view, it is equivalent to learning

the spectral and temporal bases that represent characteristics of each side from

the given spectrogram. Probabilistic latent component analysis (PLCA), proba-

bilistic latent semantic analysis (PLSA), and non-negative matrix factorization

(NMF) are the representative matrix decomposition algorithms. The algorithms

use iterative update to estimate matrices that can accurately approximate the

spectrogram.

Fig. 1.5 shows the illustration of a spectrogram and the results of the matrix

decomposition. As shown in the figure, a spectrogram can be approximated as a

multiplication of spectral bases (W) and corresponding activations (H). Then

8



Fig. 1.5 Illustration of spectrogram decomposition.

Fig. 1.6 Overall procedure of source separation based on spectrogram decom-

position.

the estimated bases are clustered to reconstruct the spectrogram of each source

as in [37, 38]. The overall procedure of the spectrogram decomposition-based

source separation is shown in Fig. 1.6.

Nevertheless, this decompose and cluster strategy does not guarantee stable

performance. In general, the matrix decomposition has infinite number of solu-

tions because sufficient number of bases are often given. This is due to the fact

that the optimal number of bases cannot be predicted in advance. Therefore,

the random initialization of the bases causes the spectrogram decomposition to

make different outputs each time. Fig. 1.7 illustrates the unstableness of the
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Fig. 1.7 Illustration of (b) original spectrogram, (a) undesired decomposition,

and (c) intended decomposition.

spectrogram decomposition. In this illustration, sounds from two instruments

are assumed to be mixed with partial overlap as Fig. 1.7 (c). As can be con-

firmed in the figure, the decomposition can result in learning musically mean-

ingless bases as Fig. 1.7 (a). These bases can interrupt the clustering process

and result in the degradation of the separation performance.

To alleviate this problem, constraints are often imposed to the spectral and

temporal bases during the iteration. Fig. 1.8 illustrates the effect of constraint

imposition. The constraints prevent bases from converging to the meaningless

points that are close to the initial location. Instead, they enforce the bases to

have a certain structure, which may reflect the characteristics of the target

source. In order to make the constraint imposition work properly, the bases

are partitioned into several groups in advance and enforced with different con-

straints. Through the constrained iteration, we can estimate and cluster the

bases simultaneously.
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Fig. 1.8 Effect of imposing prior as a constraint.

1.3.2 Dirichlet prior

Our approach uses Dirichlet prior as it is the simple but effective constraint

imposition. The term “prior” is originated from the probability theory and

refers to the predetermined probability of an event to occur. In the PLCA or

PLSA framework, constraints can be imposed in a form of prior probability.

Since their iterative update equations can be derived by applying the principle

of maximum likelihood (ML), including prior probability makes the estimation

follow maximum a posteriori (MAP) estimation criterion.

Dirichlet prior has been adopted in the source separation as in Smaragdis

and Mysore’s work [25] and Kim and Smaragdis’ work [39]. However, its appli-

cations were limited to shaping the bases like the trained ones [25] and mak-

ing the bases to have sparse structure [39]. According to our observation, the

Dirichlet prior has much more potential to be used for various purposes. This

can be clearly addressed with the comparison with other constraint imposition

methods. Table 1.1 shows the comparison between the Dirichlet prior and the

entropic prior which is used to enforce the basis sparseness. It can be seen that

not only the Dirichlet prior is more flexible, it also requires less computations.

Motivated by these advantages of using the Dirichlet prior, we aim to apply it to

11



Table 1.1 Comparison of Dirichlet prior and entropic prior.

Entropic prior Dirichlet prior

Flexibility Low (Only for sparsity

imposition)

High (Can be used for

many purposes)

Computation

complexity

High (Includes iterative

operation)

Low (Simple weighted

summation)

various tasks from harmonic-percussive sound separation (HPSS) to harmonic

instrument sound separation (HISS).

1.3.3 Contribution

The major contributions of the studies presented in this thesis can be summa-

rized as follows:

1. Unsupervised approach: Unlike conventional studies that focus on the

informed source separation task and the neural network-based source sep-

aration methods, our approach concentrates on the blind case where least

information is required. Through the efficient utilization of the suitable

spectro-temporal information, we can achieve fine performance with the

reduced amount of information. To this end, we investigate the spectro-

temporal characteristics and use it for the separation. This approach also

differs from the conventional statistical characteristics-based blind source

separation methods [40] such as independent component analysis (ICA)

in that the features used are predefined by humans.
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2. Utilization of novel spectro-temporal characteristics: The spectro-

temporal characteristics of the musical sources used in the studies – har-

monicity, sparsity, unsparsity, continuity, discontinuity, and spectral en-

velope – are not only musically meaningful but also novel; especially,

harmonicity, continuity, and discontinuity were never considered in the

conventional studies. With the aid of these characteristics, we can achieve

significant performance improvement.

3. Simple implementation: The implementation of the algorithms is sim-

plified using the concept of the Dirichlet prior. Conventional studies have

often reinduced the iterative update formula because they often attempted

to give constraints by modifying the cost function and the changes in the

cost function require the entire formula to be reinduced. In this thesis, we

use the Dirichlet prior to simplify the implementation of the constraint

imposition. By adopting the Dirichlet prior, we do not have to reinduce

the entire equations to impose constraints; we can achieve it by setting

the exemplar hyperparameters to the values suitable to the task. Further-

more, we extend the concept of the Dirichlet prior to the NMF framework,

which enables further reduction of the computational complexity.

1.4 Outline of the thesis

Chapter 2 provides mathematical descriptions about the core concepts –

PLCA, NMF, and Dirichlet prior – that are frequently used in the following

chapters. Derivations of the matrix decomposition algorithms are presented in

the first place. Next, how the Dirichlet prior changes the iterative update equa-
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tions of PLCA is described. Then the application of Dirichlet prior is extended

to the NMF according to the equivalence of PLCA and NMF. This extension

is meaningful in that it dramatically reduces the computational cost.

Chapter 3 examines the HPSS problem focusing on the spectral-side differ-

ence of the harmonic and percussive sounds. As the harmonic sounds appear to

have periodical energy distribution in the spectral domain whereas the percus-

sive sounds have flat spectrum, these characteristics are imposed through the

Dirichlet prior. Conventional HPSS methods have focused on temporal conti-

nuity of the harmonic components and spectral continuity of the percussive

components. However, it may not be appropriate to use them to separate time-

varying harmonic signals such as vocals, vibratos, and glissandos, as they lack

in temporal continuity. With the proposed algorithm, we successfully separate

the rapidly time-varying harmonic signals from the percussive signals by im-

posing different constraints on the two disjoint groups of the spectral bases.

Experiments with real recordings as well as synthesized sounds show that the

proposed method outperforms the conventional methods.

Chapter 4 also discusses HPSS and presents a novel method that exploits

continuity/discontinuity properties in the matrix decomposition framework. It

is widely accepted in the HPSS research that the harmonic and percussive com-

ponents have anisotropic characteristics; the spectra of the harmonic sounds and

the time activations of the percussive sounds have uneven energy distribution,

whereas the spectra of the percussive sounds and the time activations of the

harmonic sounds are smooth in their shapes. However, conventional methods

fail to fully utilize the characteristics leading to the suboptimal performance.
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Based on the observations that not the degree of sparseness but the degree of

fluctuation is an accurate measure for distinguishing the harmonic and per-

cussive components, we propose a novel HPSS algorithm by incorporating the

continuity control in the iterative update formula of the matrix decomposition

algorithm. The comparative evaluation results show that the proposed method

outperforms conventional methods in terms of both objective and subjective

evaluation.

Chapter 5 presents an informed approach to HISS problem. As the HISS is

a more complicated task compared to the HPSS, we use the assistance of side-

information. Since spectral envelope is one of the features that best represent an

instrument according to the source-filter model, it is imposed on the spectral

bases in the NMF algorithm in order for them to have the spectral envelope

of the target instrument. In so doing, the spectral envelopes are estimated via

linear predictive coding (LPC). As the iteration proceeds, the spectral bases are

shaped to have the extracted envelope of the target instrument. The proposed

approach is evaluated using the real recordings and shows outperforming results

over the conventional methods.

Chapter 6 extends the HISS method presented in the previous chapter to

the blind approach. Unlike the informed approach, the spectral envelope of the

target instrument is not given. Instead, spectral bases of the NMF algorithm

are grouped in advance, and the bases belong to a group are forced to have the

same spectral envelope. In this way, the spectral envelopes and the details of the

bases simultaneously converge to the target instruments’ envelopes and details,

respectively. In addition, the proposed method does not require pre-training
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or post-processing because the estimation and the clustering of the spectral

bases can be performed simultaneously in a single spectrogram decomposition

framework. The comparative evaluation results with real recordings show that

the proposed method outperforms the conventional methods.
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Chapter 2

Theoretical background

In this chapter, we present descriptions about the important definitions and

theories related to the matrix decomposition techniques. This chapter is com-

posed of two categories: matrix decomposition techniques and their variations

with the Dirichlet prior. As aforementioned in the introduction, spectrogram

decomposition-based method is one of the major approaches in the source sep-

aration. Hence, we first describe two spectrogram decomposition techniques –

PLCA and NMF – with derivations. In the next section, how the update equa-

tions of the matrix decomposition methods change with the application of the

Dirichlet prior is described.

This chapter is organized as follows. At first PLCA and NMF algorithms are

described in detail with mathematical derivations. Then we present the concept

of Dirichlet prior followed by its application to the PLCA framework. Finally,

we generalize the concept of the Dirichlet prior to the NMF framework on the

basis of the duality between PLCA and NMF.

17



2.1 Probabilistic latent component analysis

The central concept of the PLCA algorithm is to estimate the latent distribu-

tions that constitute the parameter model θ. This method interprets a magni-

tude spectrogram as a multivariate distribution representing a histogram that

is generated from the one-dimensional marginal probability distributions [41].

The generative model of the PLCA can be easily explained with the concept

shown in Fig. 2.1 (a). According to it, the generation of the magnitude spec-

trogram is modeled with the following steps: 1. Draw z with the probability

p (z) 2. Draw f and t with the marginal probability distributions p (t|z) and

p (f |z) 3. Iterate step 1 and step 2. Mathematically, the latent variable z is

determined at first, and then the frame index t and the frequency bin index f

is simultaneously determined. This is discriminated from the PLSA of which

generative model is presented in Fig. 2.1 (b). Each z is considered to have a

two-dimensional probability distribution, and the magnitude spectrogram can

be generated via weighted sum of them. According to this model, the magnitude

spectrogram can be mathematically interpreted as

Xt,f = p (f, t)

=

K∑
z=1

p (z) p (f, t|z)

=

K∑
z=1

p (z) p (t|z) p (f |z)

(2.1)

where Xt,f denotes the (t, f)-th element of the magnitude spectrogram X, p (z)

denotes the marginal distribution of the latent variable z, and p (t|z) and p (f |z)

denote the marginal distributions of t and f (respectively) for the given value

of z. This is due to our assumption that t and f are independently determined.
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(a) (b)

Fig. 2.1 Generative model of (a) PLCA and (b) PLSA.

Unlike PLSA that assumes t, z, and f are determined sequentially, PLCA as-

sumes the two-dimensional normalization of the spectrogram because t and f

are simultaneously determined.

According to this analysis, X can be represented as the multiplication of

three matrices as

X = VSG (2.2)

where V is a (F ×K) matrix of which k-th column is p (f |z = zk), and G is

a (K × T ) matrix of which k-th row is p (t|z = zk), and S is a diagonal matrix

of which (k, k)-th element is p (z = zk). Note that this is the linear algebraic

expression and will be compared to the NMF later. From this formula, it can

be observed that it can have multiple solutions including the extraordinary and

meaningless solutions as V = X, and S = G = IT×T when K = T .

To derive the iterative update equations, we maximize the log-likelihood

that can be represented as

L = κ log p (X|θ)

= κ
K∑
z=1

∑
f,t

Xf,tp (z|f, t) log {p (z) p (f, t|z)}
(2.3)

where κ is the normalizing constant of X. We define the re-scaled log-likelihood
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as L′ = L/κ. Now, we aim to get the variables maximizing this log-likelihood

by means of an expectation-maximization (EM) algorithm. For the expectation

step, the a posteriori probability is given as

p (z|f, t)← p (z) p (f |z) p (t|z)∑
z
p (z) p (f |z) p (t|z)

. (2.4)

To derive the maximization step equations, we adopt a Lagrange multiplier

method with normalization constraints. The Lagrange function can be repre-

sented as

fLagrange
(
L′, p (f |z) , p (z) , p (t|z) , λf , λz, λt

)
= L′ + λf

1−
∑
f

p (f |z)

+ λz

(
1−

∑
z

p (z)

)

+ λt

(
1−

∑
t

p (t|z)

)
.

(2.5)

To maximize the Lagrange function, the partial derivatives of fLagrange must

be zero, which can be calculated as

∂fLagrange
∂p (f |z)

=
∑
t

Xf,tp (z|f, t)
p (f |z)

− λf (2.6)

∂fLagrange
∂p (z)

=
∑
f,t

{
Xf,tp (z|f, t)

p (z)

}
− λz (2.7)

∂fLagrange
∂p (t|z)

=
∑
f

{
Xf,tp (z|f, t)

p (t|z)

}
− λt. (2.8)

According to the normalization condition, the Lagrange multipliers are obtained

as

λf =
∑
f

{∑
t

Xf,tp (z|f, t)

}
(2.9)

λz =
∑
z

∑
f

∑
t

Xf,tp (z|f, t)

 (2.10)
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λt =
∑
t

∑
f

Xf,tp (z|f, t)

. (2.11)

Thus, the iterative update equations of the maximization step of PLCA are

derived as

p (f |z)←

∑
t
Xf,tp (z|f, t)∑

f

{∑
t
Xf,tp (z|f, t)

}
(2.12)

p (z)←

∑
f

∑
t
Xf,tp (z|f, t)

∑
z

{∑
f

∑
t
Xf,tp (z|f, t)

}
(2.13)

p (t|z)←

∑
f

Xf,tp (z|f, t)

∑
t

{∑
f

Xf,tp (z|f, t)

} .
(2.14)

Alteration of the expectation step and the maximization step makes the vari-

ables converge.

Note that the iterative update equations require the parameters to be initial-

ized in advance of the iteration. Also, the decomposition results vary according

to the initial condition, since it can have multiple valid solutions. Among the

possible solutions, it is important to distinguish meaningful information.

2.2 Non-negative matrix factorization

The NMF algorithm aims to decompose a matrix that contains non-negative

elements as multiplication of two non-negative matrices. It is commonly used for

the audio source separation by interpreting magnitude or power spectrogram as

a matrix to be decomposed [42], [43] similar to PLCA algorithm. In such cases,

the outputs of the NMF would be the matrix of spectral bases whose columns
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may denote the frequency domain representation of the source sounds, and the

matrix of temporal bases whose rows denote the time activations or mixture

weights of the corresponding frequency bases. In mathematical formula, it can

be represented as

X ≈ X̃

= WH

(2.15)

where X denotes the estimated magnitude spectrogram, W = [w1,w2, ...,wK ]

denotes an (F ×K) non-negative matrix where wk is its k-th column, and

H = [h1,h2, ...,hK ]H denotes an (K × T ) non-negative matrix where hk is its

k-th row that denotes the temporal activation of wk. The number of bases K is

often considered to be much smaller than the number of frequency bins F and

the number of frames T .

The error between the original matrixX and the reconstructed one X̃, which

is measured by cost function, converges to the minimum value as iteration pro-

ceeds. The multiplicative update rule for NMF algorithm was presented by Lee

and Seung [44] for the case where Euclidean distance or Kullback-Leibler (KL)

divergence was used. Here, we consider KL divergence for the cost function,

which is widely used in conventional source separation methods [45] since it

is better to be used to approximate the spectrogram. The KL divergence of

arbitrary matrices A and B is represented as

DKL (A||B) =
∑
m,n

{
Am,n log

Am,n

Bm,n
−Am,n +Bm,n

}
(2.16)

where m and n are the row and column index, respectively.

The multiplicative update rule for the minimization of KL divergence is
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represented as

H
(l+1)
k,t ←

H
(l)
k,t

∑
f

{
W

(l)
f,kXf,t

/
X̃f,t

}
∑
f ′

W
(l)
f ′,k

(2.17)

W
(l+1)
f,k ←

W
(l)
f,k

∑
t

{
H

(l+1)
k,t Xf,t

/
X̃f,t

}
∑
t′
H

(l+1)
k,t′

. (2.18)

where l denotes the iteration index. Note that each update equation is computed

for all elements before we move on to the next equation. These two equations are

iteratively calculated until the matrices converge. We can either set the number

of iterations as in [37] or let the iteration stop when the distance between X

and X̃ falls below the certain threshold as in [46].

From 2.2 and 2.15, the similarity of PLCA and NMF is intuitively observed.

As S is a diagonal matrix, its function is limited to scaling up or down the bases.

Hence, if we define W = VS and H = G, PLCA becomes equivalent to NMF.

On the other hand, If we normalize each of the columns of W and each of the

rows of H, they can be interpreted as V and G, respectively. From these facts,

we can say that there is a duality between PLCA and NMF. Further analysis

about this equivalence is described in Ding et al.’s work [47].

2.3 Dirichlet prior

In probabilistic analysis framework, imposition of Dirichlet prior is a proper and

convenient method for shaping spectral/temporal bases of the matrix decompo-

sition techniques. By giving the prior information about the bases’ shapes, we

can roughly determine the bases where to converge. This is due to the fact that

the probabilistic analysis-based matrix decomposition techniques such as PLCA
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or PLSA interpret the magnitude spectrogram as a histogram of the multino-

mial distribution, and Dirichlet prior is a conjugate prior of the multinomial

distribution.

Without the use of Dirichlet prior, several methods have been frequently

used to shape the bases. As in the [48], we can reinduce the update equations

to make bases sparse/smooth. Or, as in the Shashanka [49] and Smaragdis’s

method [50], we can impose entropic prior to obtain sparse bases. However,

they are limited to the sparsity imposition, so it is not appropriate to use them

to impose continuity and discontinuity characteristics. For these reasons, we

have chosen to use the Dirichlet prior in our research.

2.3.1 PLCA framework

In many applications, it is desirable to shape the marginal distributions repre-

senting the spectral or temporal bases to assign their characteristics. In such

cases, additional information about the marginal distributions must be provided

as a form of prior distribution. When the log-prior R is given, we can maximize

the log-posterior P , which is represented as

P = L′ +R

= log p (X|θ) + log p (θ)

(2.19)

where θ denotes the set of parameters. Now, we aim to get the variables maxi-

mizing this log-posterior by means of EM algorithm. Here, we assume that the

prior distribution is determined in the form of a Dirichlet distribution as

p (θ) =
∏
z

∏
f

p(f |z)cf ξ(f |z) × p(z)czψ(z) ×
∏
t

p(t|z)ctζ(t|z)
 (2.20)
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where cf , cz, and ct are the constant coefficients, and ξ (f |z), ψ (z), and ζ (t|z)

are the exemplar hyperparameters.

In this case the Lagrange function in the former formation changes as

fLagrange (P, p (f |z) , p (z) , p (t|z) , λf , λz, λt)

= P + λf

1−
∑
f

p (f |z)

+ λz

(
1−

∑
z

p (z)

)

+ λt

(
1−

∑
t

p (t|z)

)
.

(2.21)

To maximize this Lagrange function, the partial derivatives of it must be zero,

which is represented as

∂fLagrange
∂p (f |z)

=
cfξ (f |z)
p (f |z)

+
∑
t

Xf,tp (z|f, t)
p (f |z)

− λf (2.22)

∂fLagrange
∂p (z)

=
czψ (z)

p (z)
+
∑
f,t

{
Xf,tp (z|f, t)

p (z)

}
− λz (2.23)

∂fLagrange
∂p (t|z)

=
ctζ (t|z)
p (t|z)

+
∑
f

{
Xf,tp (z|f, t)

p (t|z)

}
− λt. (2.24)

According to the normalization condition, the Lagrange multipliers are obtained

as

λf =
∑
f

{
cfξ (f |z) +

∑
t

Xf,tp (z|f, t)

}
(2.25)

λz =
∑
z

czψ (z) +
∑
f

∑
t

Xf,tp (z|f, t)

 (2.26)

λt =
∑
t

ctζ (t|z) +∑
f

Xf,tp (z|f, t)

. (2.27)
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Thus, the iterative update equations of the maximization step of PLCA are

derived as

p (f |z)←
cfξ (f |z) +

∑
t
Xf,tp (z|f, t)∑

f

{
cfξ (f |z) +

∑
t
Xf,tp (z|f, t)

}
(2.28)

p (z)←
czψ (z) +

∑
f

∑
t
Xf,tp (z|f, t)

∑
z

{
czψ (z) +

∑
f

∑
t
Xf,tp (z|f, t)

}
(2.29)

p (t|z)←
ctζ (t|z) +

∑
f

Xf,tp (z|f, t)

∑
t

{
ctζ (t|z) +

∑
f

Xf,tp (z|f, t)

} .
(2.30)

Alteration of the expectation step and the maximization step makes the vari-

ables converge. In these equations, the prior information is reflected in the form

of a weighted sum in the iterative update formula.

2.3.2 NMF framework

The term Dirichlet prior is used in the probabilistic analysis as it is a kind

of probability distribution. Hence, it is impossible to apply it to the linear

algebraic approach as NMF. However, when we focus on the duality between

PLCA and NMF, it can be observed that it is possible to make the NMF

function like Dirichlet prior-applied PLCA. In this subsection, the application

of the Dirichlet prior is investigated in detail, and how it can be extendedly

applied to the NMF is described. We define this extended utilization of the

concept of Dirichlet prior as generalized Dirichlet prior

In the PLCA framework, Dirichlet prior is a kind of “prior distribution” that

contains prior knowledge about the distributions to be estimated – (f |z), (z),
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(t|z). As we can confirm in the Eq. 2.19, if any kind of prior distribution is not

used, maximization of the posterior probability will become same as maximizing

the likelihood. For this reason, the iterative update formula will remain same

as the original PLCA update formula. Meanwhile, the use of Dirichlet prior

changes the update formula of PLCA to be the weighted sum of the original

formula and the hyperparameters. For example, Eq. 2.28 can be disassembled

into the following three equations.

p (f |z)←
∑
t

Xf,tp (z|f, t) (2.31)

p (f |z)← cfξ (f |z) + p (f |z) (2.32)

p (f |z)← p (f |z)∑
f ′
p (f ′|z)

(2.33)

Here, only Eq. 2.32 is the newly added equation by imposing Dirichlet prior. As

it has a form of weighted sum, we have directly applied it to the NMF’s update

equations. Note that Eq. 2.31 and 2.33 correspond to the NMF’s spectral basis

update equation presented in Eq. 2.18. To adopt the Dirichlet prior imposition

as its post-processing, we assume that switching Eq. 2.32 and 2.33 does not

interfere the variables’ long-term convergence.

When the Dirichlet prior is extensively applied, the spectral basis update

equation of the NMF is converted into the following equations as

W̃f,k ←
W

(l)
f,k

∑
t

{
H

(l+1)
k,t Xf,t

/
X̃f,t

}
∑
t′
H

(l+1)
k,t′

(2.34)

W
(l+1)
f,k ← w(freq)W̃f,k +

(
1− w(freq)

)
Ξf,k (2.35)

where Ξ and W̃ are the temporarily adopted variables each has the same size

as W, and w(freq) is the mixing weight. These two equations replace the Eq.
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2.18. Similarly, the update equation of the time activation is changed as

H̃k,t ←
H

(l)
k,t

∑
f

{
W

(l)
f,kXf,t

/
X̃f,t

}
∑
f ′

W
(l)
f ′,k

(2.36)

H
(l+1)
k,t ← w(time)H̃k,t +

(
1− w(time)

)
Zk,t (2.37)

where H̃ and Z are the temporarily adopted variables each has the same size

as H, and w(time) is the mixing weight. These two equations replace the Eq.

2.17. Note that these equations are equivalent to the original update equations

when Ξ = W and Z = H.

The proposed reformulation is partially heuristic, however, this can reduce

the computational complexity dramatically. As PLCA requires massive compu-

tation, reducing it is one of the main focuses to have them used in the realistic

environment. By using this NMF with the generalized Dirichlet prior, we can

both get the similar results to the Dirichlet prior-applied PLCA.

2.4 Summary

In this chapter, we have given an overview of the theoretical backgrounds that

are crucial to describe our following studies. To this end, we have reviewed

the representative matrix decomposition algorithms – PLCA and NMF – and

investigated their equivalence. Then the Dirichlet prior imposition is studied

in the probabilistic framework followed by examining the transition of PLCA’s

iterative update equations. By the fact that the Dirichlet prior imposition is

equivalent to adding the weighted summation formula with the exemplar hy-

perparameter in the post-processing step, we could generalize it to be applied

28



to the NMF framework. It is meaningful in that it significantly reduces the

computational complexity.

The four main topics will be discussed in detail in the following chapters. In

the first half of the chapters, we deal with the harmonic-percussive sound sepa-

ration problem with two different approaches. In Chapter 3, the first approach

is presented that focuses on the spectral aspects of the harmonic and percussive

sounds. On the other hand, in Chapter 4, we focus on both spectral and tempo-

ral characteristics of the harmonic and percussive sounds. In the second half of

the chapters, we examine the harmonic instrument sound separation problem.

As it is a comparatively difficult problem, we first present informed approach

in Chapter 5 that uses pre-trained envelope information. Then it is extended

to the blind approach in Chapter 6. All of these studies are based on the basis

shaping using the generalized Dirichlet prior.
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Chapter 3

Harmonic-Percussive Source
Separation Using Harmonicity and
Sparsity Constraints

3.1 Introduction

In this chapter, based on the original work by Park et al. [51], we describe

the first HPSS method that uses spectral characteristics of the harmonic and

percussive sounds. Recently, musical signal processing has received a great deal

of attention especially with the rapid growth of digital music sales. Automatic

musical feature extraction and analysis for a large amount of digital music data

has been enabled with the support of computational power. The major purposes

of such tasks include extracting musical information such as melody extraction,

chord estimation, onset detection, and tempo estimation.

Because most music signals often consist of both harmonic and percussive

signals, the extraction of tonal attributes is often severely degraded by the pres-
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ence of percussive interference. On the other hand, when we analyze rhythmic

attributes such as tempo estimation, the harmonic signals act as interference

that may prevent accurate analysis. Consequently, the separation of harmonic

and percussive components in music signals will function as an important pre-

processing step that allows efficient and precise analysis.

For these reasons, many researchers have focused on investigating HPSS

using various approaches. Uhle et al. performed singular value decomposition

(SVD) followed by independent component analysis (ICA) to separate drum

sounds from the mixture [52]. Gillet et al. presented a drum-transcription algo-

rithm based on band-wise decomposition using sub-band analysis [53].

Other researchers have employed matrix factorization techniques such as

NMF. Helen et al. proposed a two-stage process composed of a matrix-

factorization step and a basis-classification step [54]. Kim et al. employed the

matrix co-factorization technique, where spectrograms of the mixture sound

and drum-only sound are jointly decomposed [55]. NMF with smoothness and

sparseness constraints was utilized by Canadas-Quesada et al. [48]. The algo-

rithm was developed based on assumptions regarding the anisotropic character-

istics of the harmonic and percussive components; harmonic components have

temporal continuity and spectral sparsity, whereas percussive components have

spectral continuity and temporal sparsity.

Most HPSS algorithms have employed the same assumption. Ono et al.

presented a simple technique to represent a mixture sound spectrogram as a

sum of harmonic and percussive spectrograms based on the Euclidean distance

[56]. Their technique aims to minimize the temporal dynamics of harmonic

components and the spectral dynamics of percussive components. They fur-
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ther extended their work to use an alternative cost function based on the KL

divergence [57]. More recently, FitzGerald presented a median filtering-based

algorithm [58], where a median filter is applied to the spectrogram in a row-wise

and column-wise manner for the extraction of harmonic and percussive sounds,

respectively. Gkiokas et al. also proposed a non-linear filter-based HPSS algo-

rithm [59].

However, the assumption regarding the temporal continuity, which is con-

sidered to be crucial for conventional harmonic-percussive studies, does not

account for the rapidly time-varying harmonic signals often present in vocal

sounds and musical expressions such as slides, vibratos, or glissandos. This is

because their spectrograms often fluctuate over short periods of time. Thus, it

may degrade the performance of the algorithms, particularly when loud vocal

components or such musical expressions are mixed.

In this chapter, we propose a HPSS algorithm that is classified as a spec-

trogram decomposition-based method. We consider the spectrum of harmonic

components to have a harmonic and sparse structure in the frequency domain,

whereas the spectrum of percussive components to have an unsparse structure.

To realize the successful separation of harmonic/percussive sounds, we apply

constraints that impose a particular structure of the spectral bases. The novelty

of the proposed method resides in the harmonicity constraint, which is an exten-

sion of the sparsity constraint presented in previous works [39]. The constraint

is closely related to the Dirichlet prior, which is frequently used in probabilistic

analysis. Because the proposed algorithm does not assume temporal continuity

for the separation of harmonic signals, we can successfully separate harmonic

signals from the mixture sound, even when there are significant fluctuations
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over time.

The rest of this chapter is organized as follows. Section 3.2 explains in

detail how the proposed method works. In Section 3.3, we present experimental

results, and in Section 3.4, we draw our conclusion.

3.2 Proposed method

In this section, we present a detailed explanation of the proposed HPSS method.

The proposed algorithm uses the spectrogram-decomposition technique, NMF,

with the harmonicity and sparsity constraints based on the Dirichlet prior.

For the efficient description of the proposed method, we first introduce the

algorithm description for the proposed method. Then, the theoretical relations

of the proposed method to the Dirichlet prior are described.

3.2.1 Formulation of Harmonic-Percussive Separation

We present a modified NMF algorithm to impose the characteristics of har-

monic/percussive sounds. The update rule is separately represented for the

harmonic source basis and percussive source basis as follows:

H
(l+1)
k,t ←

H
(l)
k,t

∑
f

{
W

(l)
f,kXf,t

/
X̃f,t

}
∑
f ′

W
(l)
f ′,k

(3.1)

W̃f,k ←
W

(l)
f,k

∑
t

{
H

(l+1)
k,t Xf,t

/
X̃f,t

}
∑
t′
H

(l+1)
k,t′

(3.2)

ŵk ←
(
1− γHH

)
w̃k + γHH ifft ({fft (w̃k)}p) , k ∈ ΦH (3.3)
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ŵk ← max (ŵk, 0) , k ∈ ΦH (3.4)

 w
(l+1)
k ←

(
1− γHS

)
ŵk + γHS (ŵk)

q, k ∈ ΦH

w
(l+1)
k ←

(
1− γPS

)
w̃k + γPS (w̃k)

r, k ∈ ΦP

(3.5)

where w̃k, ŵk, and w
(l+1)
k denote the k-th column of W̃, Ŵ, and W(l+1), re-

spectively, ΦH and ΦP denote a set of harmonic bases and percussive bases,

respectively, fft (·) and ifft (·) denote the functions of the fast Fourier trans-

form (FFT) and the inverse FFT (IFFT), respectively, wk denotes the kth

column of W, γHH denotes the harmonicity weight parameter for the harmonic

signal, and γHS and γPS denote the sparsity weight parameters for harmonic and

percussive signals, respectively. Note that Eq. 3.1 and 3.2 are identical to the

original NMF update equations. Eq. 3.3–3.5 contribute to shaping the spectral

bases as desired as the iteration proceeds.

Mixing weights that have values between 0 and 1 represent the importance

of each constraint imposition, and indicate the degree to which we need to

impose the characteristic. To enable the harmonic bases to have a harmonic

and sparse structure while preserving the original figures of spectral bases, γHH

and γHS are set to have small positive numbers, as the effect of the constraint

is accumulated over the iteration.

The exponents p, q, and r have to be determined considering the range of

each parameter, 0 ≤ r ≤ 1 ≤ p, q. Here, p and q respectively reflect the degree of

harmonicity and sparsity of the destination, and they have to be controlled con-

sidering the spectral characteristics of the original harmonic sources. Likewise,

r reflects the degree of “unsparsity” of the percussive sources.
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Among the update equations shown above, the function of the conventional

NMF update equations is to minimize the error between X and its estimation

X̃. On the other hand, the remainders of the equations aim to shape the spec-

tral bases. The sparsity constraint in Eq. 3.5 has been similarly adopted for the

matrix decomposition [39], and it is based on the fact that the square operation

increases the differences among the vector components. If the square root op-

eration is used instead, as in the percussive case of Eq. 3.5, unsparsity can be

imposed to the basis. Similarly, we can extend this concept to the harmonicity.

The second term in Eq. 3.5 denotes the harmonics-emphasized basis, which is

due to the fact that the spectrum of the spectrum is sparse. To prevent ele-

ments from being negative, the max (·, ·) operation in Eq. 3.4 has to be jointly

involved.

The harmonic and percussive sounds are reconstructed using the corre-

sponding bases as follows:

X(Harmonic) =
∑
k∈ΦH

wkhk (3.6)

X(Percussive) =
∑
k∈ΦP

wkhk (3.7)

where hk denotes the kth row of H.

3.2.2 Relation to Dirichlet Prior

The proposed update equations can be intuitively comprehended. However, the

equations are based on a firm theoretical background presented in section 2, not

heuristically induced. In this subsection, we investigate the relations between

the generalized Dirichlet prior and the proposed method.
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As shown in the previous chapter, we can generalize the Dirichlet prior of

the PLCA by applying it to the NMF algorithm as follows:

Hk,t ← (1− γ1)
Hk,t

∑
f

{
Wf,kXf,t

/
X̃f,t

}
∑
f ′

Wf ′,k
+ γ1Ak,t (3.8)

Wf,k ← (1− γ2)
Wf,k

∑
t

{
Hk,tXf,t

/
X̃f,t

}
∑
t′
Hk,t′

+ γ2Bf,k (3.9)

where A and B denote the matrices of hyper parameters with respect to H

and W, respectively, and γ1 and γ2 denote the mixing weights. In our research,

we focus only on the spectral bases, and thus Eq. 3.8 is discarded. As can be

observed, the proposed update equations, Eq. 3.1–3.5, have the same form as

Eq. 3.9, and the way in which we shape the spectral bases depends on the form

of B matrix.

Frequency-domain sparsity imposition can be easily achieved by setting the

hyper parameter B as [39]

bk = (wk)
u (3.10)

where bk denotes the kth column of B, and u denotes an exponent that controls

the degree of sparsity of bk.

On the other hand, harmonicity imposition can be achieved when the hyper

parameter is represented as

bk = ifft ({fft (wk)}v) (3.11)

where v denotes the exponent that controls the degree of harmonicity of bk. This

is because a periodic signal can be represented as a sum of sinusoids, and the

spectrum of the periodic signal is sparse. Conversely, if a spectrum is sparse, we
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can assume that the original signal has a strongly periodic characteristic. Thus,

we aim to make the spectrum of the spectrum to be sparse in order to shape

a signal such that it has a harmonic structure. Note that in order to prevent

destructive interference caused by phase distortion, we have to manipulate only

the magnitudes within the IFFT function, preserving the original phases of

fft (wk).

3.3 Performance evaluation

3.3.1 Sample Problem

In this section, we apply the proposed method and the conventional methods

to simple sample examples, which is suitable for showing the novelty and va-

lidity of the proposed method. Spectrograms of synthesized sounds that consist

of horizontal and vertical lines are presented in Fig. 3.1 (a) and Fig. 3.2 (a).

Fig. 3.1 (a) models the case where a pitched harmonic sound is sustained for

a certain period. The sounds of harmonic instruments such as guitars, pianos,

flutes, and violins fall within this scenario. On the other hand, Fig. 3.2 (a)

illustrates the case where a harmonic signal alters its frequency over time. In

this case, vibratos, glissandos, and vocal signals correspond to the harmonic

components. We compare the performance of the proposed method to the sepa-

ration results obtained using three conventional methods: Ono et al.’s Euclidean

distance-based method [56], Ono et al.’s KL divergence-based method [57], and

FitzGerald’s method [58].

As shown in Fig. 3.1 (b), both the conventional methods and the proposed

method are able to successfully separate the sounds. This is because the hori-
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zontal lines in this example have horizontally continuous characteristics, which

are assumed by the conventional methods to be present. However, when the

harmonic sound vibrates and the horizontal lines fluctuate, as shown in Fig. 3.2

(a), conventional methods cannot distinguish the horizontal lines from vertical

lines. As we can see in Fig. 3.2 (b), the estimated percussive components of con-

ventional methods contain harmonic partials, and only the proposed method

can successfully separate them. Thus, we can claim that the proposed method

is not affected by variations in the pitch because it relies on the harmonic

structure of the vertical axis, and not the degree of horizontal transition.

3.3.2 Qualitative Analysis

We evaluated the performance of the proposed method using a real recording

example. Fig. 3.3 shows a log-scale plot of the spectrogram of an excerpt from

“Billie Jean,” by Michael Jackson. The signal was sampled at 22,050 Hz, and

the frame size and overlap size were set to 1,024 and 512, respectively. We can

observe from the spectrogram that the excerpt contains both harmonic and

percussive components. The harmonic components can be seen as horizontally

connected lines, whereas the percussive components are seen as vertical lines as

in the sample examples.

Fig. 3.4 (a) and (b) show the separation results of the harmonic sound (up)

and percussive sound (down), which were obtained using Ono et al.’s Euclidean

distance-based method and KL divergence-based method, respectively. Here,

we set the parameters to the values recommended in the references. We observe

that the estimated percussive components still contain harmonic components

that may correspond to the vocal components. This is because Ono et al.’s algo-
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(b) Separation results of Ono’s Euclidean distance-based method, Ono’s KL divergence-

based method, FitzGerald’s method, and the proposed method (from top to bottom)

Fig. 3.1 Sample example of separating straight horizontal lines and vertical

lines.
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(b) Separation results of Ono’s Euclidean distance-based method, Ono’s KL divergence-

based method, FitzGerald’s method, and the proposed method (from top to bottom)

Fig. 3.2 Sample example of separating fluctuating horizontal lines and vertical

lines.
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Fig. 3.3 Spectrogram of a real audio recording example (“Billie Jean” by Michael

Jackson).

rithms aim to minimize the temporal transition of the harmonic spectrogram.

However, vocal components in the original spectrogram do not match well with

the underlying assumption.

Fig. 3.4 (c) shows the result of FitzGerald’s method with a median filter

length of 17 and when the exponent for the Wiener filter-based soft mask is two,

as recommended by FitzGerald [58]. We also observe that the separated per-

cussive components still contain harmonic components, as in the previous case.

This is because of the use of a one-dimensional median filter, which assumes

that the harmonic components are sustained for several periods.

Fig. 3.4 (d) shows the performance of the proposed method. We observe

that the harmonic and percussive components are clearly separated, and the

percussive components do not have any vocal components in these results. This

is because unlike conventional methods, the proposed algorithm does not rely

on the horizontal continuity principle. Rather, the proposed algorithm tries to

account for the harmonic components using the harmonic and sparse spectral

bases.
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(a) Ono’s Euclidean distance-

based method
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(b) Ono’s KL divergence-based

method
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(c) FitzGerald’s method
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(d) Proposed method

Fig. 3.4 Qualitative performance comparison of conventional and proposed

methods.

3.3.3 Quantitative Analysis

We performed a quantitative analysis to verify the validity of the proposed al-

gorithm. First, we compiled a dataset that consists of 10 audio samples, which

is a subset of the MASS database [60], but two sets of data, namely tamy-

que pena tanto faz 6-19 and tamy-que pena tanto faz 46-57, were excluded in

this experiment because they lack percussive signals. Then, we obtained a spec-

trogram for each audio sample with the frame size and hop size set to 2,048 sam-

ples and 1,024 samples, respectively. Note that the sampling rate of the songs in
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the MASS dataset is 44,100 Hz. Finally, we measured the signal-to-distortion ra-

tio (SDR), signal-to-interference ratio (SIR), and signal-to-artifact ratio (SAR)

using the BSS EVAL toolbox (http://bass-db.gforce.inria.fr /bss eval/) sup-

ported by [61]. They are mathematically defined as

SDR = 20log10

(
||starget||

||sinterf + sartif ||

)
(3.12)

SIR = 20log10

(
||starget||
||sinterf ||

)
(3.13)

SAR = 20log10

(
||starget + sinterf ||

||sartif ||

)
(3.14)

where starget, sinterf , and sartif denote the target sound, interference, and arti-

fact, respectively. SIR and SAR have a performance trade-off relationship with

each other; thus, we consider SDR as the representative performance value.

Table 1 shows the parameter values of the proposed method used in this exper-

iment. The parameters of the conventional methods are set to the recommended

values, as in the previous experiment.

The evaluation results are summarized in Fig. 3.5. We can see that the pro-

posed method guarantees a better average SDR result compared to conventional

methods, even though the proposed method has a lower SIR performance than

Ono et al.’s Euclidean distance-based method. This is because the proposed

method far outperforms other methods with respect to the SAR, which has a

trade-off relation with the SIR [62].

3.4 Summary

In this chapter, we proposed a novel HPSS algorithm based on NMF with

harmonicity and sparsity constraints. Conventional methods assumed that the
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Parameter Value

p 1.1

q 1.1

r 0.5

γHH 0.001

γHS 0.001

γPS 0.1

Number of bases (H,P) (300,200)

Table 3.1 Experimental parameters.

harmonic components were represented as horizontal lines with temporal con-

tinuity. However, such an assumption could not be applied to the vocal compo-

nents or various musical expressions of harmonic instruments. To overcome this

problem, we presented a harmonicity constraint, which is a generalized Dirich-

let prior. By letting the spectrum of the spectrum be harmonic and sparse,

we could refine the harmonic components and eliminate inharmonic compo-

nents. The experimental results showed the validity of the proposed method by

comparing it with conventional methods.
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Fig. 3.5 Quantitative performance comparison of conventional and proposed

methods.
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Chapter 4

Exploiting
Continuity/Discontinuity of Basis
Vectors in Spectrogram
Decomposition for
Harmonic-Percussive Sound
Separation

4.1 Introduction

In this chapter, the former HPSS algorithm is extended to employ tempo-

ral characteristics. To this end, spectral/temporal continuity is controlled by

means of Dirichlet prior. This chapter is based on the research published in the

IEEE/ACM Transactions on Audio, Speech, and Language Processing [63].

Recently, the digital music sales market has grown rapidly because of the use

of smart devices and high-speed wireless internet connectivity. Consequently, it

has become an important task to automatically extract musical information for
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massive databases. This information includes tonal attributes such as pitches,

chords, and keys and rhythm-related features such as beat and tempo.

In the general case, musical signals are composed of harmonic sounds pro-

duced by pitched instruments, and percussive sounds such as those produced by

drums. The difference between harmonic and percussive sounds may cause se-

vere performance degradation of the musical information extraction algorithms,

because percussive signals act as interference when analyzing tonal features, and

vice versa. For this reason, HPSS functions as an essential pre-processing step in

a number of music information retrieval (MIR) tasks, such as tempo estimation

[64], music structural segmentation [65], chord estimation [66], vocal separation

[67], and melody line estimation [68].

Other research efforts related to digital audio effects have also used HPSS

algorithms. Tachibana et al. applied the HPSS algorithm to singing voice en-

hancement [69]. Driedger et al. used HPSS for time-scale modification to reduce

artifacts [70]. Buyens et al. also used HPSS for music pre-processing for cochlear

implant users [71].

In the early stage of HPSS research, drum sound transcription and sep-

aration was studied. Uhle et al. applied an independent component analysis

for the drum track extraction [52]. Helen and Virtanen used NMF followed

by a SVM [54]. Gillet and Richard presented subband analysis and a Wiener-

filtering-based drum separation and transcription method [72].

Recent studies interpret the magnitude spectrogram as a non-negative ma-

trix and often utilize matrix decomposition algorithms. Kim et al. proposed an

NMF-based partial co-factorization algorithm for drum separation [55]. To fully

utilize this algorithm, drum-only sounds must be jointly provided. Other studies
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focus on the characteristics of the harmonic and percussive components present

in the spectrogram. Ono et al. presented a matrix division method based on

row-wise and column-wise continuity [56]; they extended their work to the case

in which Kullback-Leibler divergence was used as a cost function [57]. They

also presented a real-time equalizer for harmonic and percussive sounds in the

paper. Ono et al.’s algorithms were further analyzed and evaluated in a review

paper [73].

Fitzgerald applied a one-dimensional median filter to the magnitude spec-

trogram to exploit the anisotropy of the harmonic and percussive components

[58]; a post-processing method to refine the separated sounds was presented

by Thoshkahna and Ramakrishnan [74] and Driedger et al. [75]. Fitzgerald et

al. also applied kernel additive modeling (KAM) to the HPSS problem, which

can be interpreted as a generalization of the median filtering [76]. Gkiokas and

Papavassiliou used non-linear image filtering that includes morphological op-

eration [59]. Canadas-Quesada et al. re-derived the update equations of the

NMF algorithm by inserting sparseness and smoothness constraints into the

cost function [48]. Park and Lee focused on the spectral aspects of harmonic

and percussive components targeting the successful separation of the vocal com-

ponents that may lack the feature of smooth time activation [51]. Duong et al.’s

method focused on the multichannel HPSS environment [77].

Most of the conventional research efforts considered the anisotropic charac-

teristics of the harmonic and percussive components presented in the spectro-

gram. Especially, Ono et al.’s methods, Fitzgerald’s median filter-based method,

and KAM-based method rely on the assumption that the harmonic components

are continuous in the temporal domain, whereas the percussive components are
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continuous in the spectral domain. However, these methods are not able to sep-

arate vocal components, as the bases of the vocal components do not remain

for a sufficient time due to its rapidly time-varying nature like vibrato or slur.

Park and Lee’s method focused on the spectral aspects of the harmonic and

percussive components, attempting to clearly separate the vocal components.

They assumed that only a few harmonically distributed frequency bins of the

harmonic components possess a large portion of the frame energy, where the

spectrum of the percussive components was flat and non-sparse. However, their

assumption cannot be applied to the case in which the kick drum is mixed,

since most of the energy of the kick drum’s spectrum is concentrated in the low

frequency band.

Canadas-Quesada et al.’s method presents a different approach to vocal sep-

aration: it fully utilizes the sparseness and smoothness characteristics for both

harmonic and percussive components, which had been only partially adopted

in previous studies. Their method aims to shape the bases such that they have

sparse or smooth structures that satisfy the anisotropic characteristics of the

harmonic and percussive components. Here, the smoothness was measured us-

ing the sum of squared differences with the adjacent components, whereas the

sparseness was measured using L1-norm.

Canadas-Quesada et al.’s approach partially solves the problem of vocal

component separation, because the sparseness constraint applied to the har-

monic spectrum might compensate for the mismatch of on temporal side. How-

ever, whether it is accurate to use the sparsity measures to distinguish the har-

monic and percussive components is unclear. Harmonic sounds are naturally

“harmonic”, which means they contain energy not only at the fundamental fre-
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quency but also at integer multiples of the fundamental. Clearly, the sparseness

would be increased if the energy spread through the harmonic frequency bins

were concentrated in a single bin. However, both the pure sinusoidal wave and

the kick drum signal have this spectral structure, which may cause difficulty in

distinguishing harmonic and percussive spectra when using only the sparseness

measure.

In this chapter, we exploit continuity control to separately estimate the har-

monic and percussive bases when performing the matrix decomposition. This

method is based on our observation that not the sparsity but rather the conti-

nuity is a representative indicator to better differentiate the harmonic and per-

cussive spectra. The proposed algorithm can be derived using PLCA enforced

with Dirichlet prior. The reason is that in probabilistic analysis framework, the

imposition of Dirichlet prior is a proper and convenient method for shaping

spectral/temporal bases of the matrix decomposition techniques [25]. By giving

the prior information about the bases’ shapes, we can roughly determine the

bases where to converge. This is due to the fact that the probabilistic analysis-

based matrix decomposition techniques such as PLCA interpret the magnitude

spectrogram as a histogram of the multinomial distribution, and that Dirichlet

prior is a conjugate prior of the multinomial distribution. In so doing, we design

the algorithm to control the basis convergence point such that the continuity

is minimized or maximized. However, the PLCA algorithm requires far more

computations than the NMF, which causes slower iteration and convergence.

To solve this problem, we reformulate the PLCA with Dirichlet prior in a NMF

framework. Because the update formulas use the weighted sum with the hy-

perparameters, they can be easily extended to the NMF algorithm which is
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mathematically identical.

The remainder of this chapter is organized as follows. Section 2 gives a

detailed description of the proposed algorithm. In Section 3, performance eval-

uation results are presented. Conclusions follow in Section 4 with directions for

future work.

4.2 Proposed Method

4.2.1 Characteristics of harmonic and percussive components

Fig. 4.1 (a) and (b) show the spectrograms of the kick drum sound and the

piano sound, respectively. Both sound sources are from “bearlin-roads 85-99”

in the music audio signal separation (MASS) database [60]. We can confirm the

anisotropic characteristics of the harmonic and percussive components from

the figures: the kick drum’s spectrogram is seen as a group of vertical lines

and the piano’s spectrogram is seen as a group of horizontal lines. The conven-

tional assumptions about the harmonic and percussive components seem to be

confirmed.

However, closer observation reveals that most of the kick drum energy is

concentrated in the low frequency band. This property may cause the sparsity

of the kick drum’s spectrum to be higher than that of the piano spectrum.

The more obvious measure is the energy concentration, because the activated

frequency bins are harmonically distributed in the piano’s spectrum. As the

dominant peaks concentrate in a narrow region, the average difference between

the adjacent values (or the degree of fluctuation) in the spectrum decreases as

kick drum’s spectrum.
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Fig. 4.1 Spectrograms of representative (a) percussive sound (kick drum) and

(b) harmonic sound (piano).

To find out relevant measures that appropriately distinguish the harmonic

and percussive spectra, we have inspected the spectral bases of a few sound

samples: a kick drum, snare drum, hi-hat, piano, violin and pure tone sound

samples. Before the analysis, a single basis was trained using the NMF algo-

rithm. The trained bases are shown in Fig. 4.2. For the piano, violin, and pure

tone samples, the E4 note was used. As shown in Fig. 4.2 (a), (b), and (c), the

kick drum is an extreme case of percussive instruments, because most of the

other percussive instruments usually have a flatter spectrum.

The considered measures are the L1-norm normalized with the L2-norm,

the Gini index, entropy, and the degree of fluctuation (DF) normalized with

the L1-norm. Note that the L1-norm measure is used in Canadas-Quesada et

al.’s method, by modifying the cost function of the NMF algorithm by adding

the L1-norm term. The Gini index originated from economics, but it also acts

as a representative sparsity measure, according to Hurley and Rickard [78].

In the paper, the inverse term of the L1-norm measure was also investigated.
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Fig. 4.2 Spectral bases trained from (a) a kick drum, (b) a snare drum, (c) a

hi-hat, (d) a piano, (e) a violin and (f) a pure tone sounds.

Exploitation of the entropic prior in the matrix decomposition algorithm was

presented by Smaragdis et al. [79].

The measures are mathematically defined for a spectral vector w as

σL1−norm =

M∑
m=1

wm√
M∑
m=1

w2
m

, (4.1)

σGini =
M + 1

M
−

2
M∑
m=1

(M + 1−m)w
(sorted)
m

M
M∑
m=1

w
(sorted)
m

, (4.2)
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σEntropy = −
M∑
m=1

 wm

M∑
m′=1

wm′

log
wm

M∑
m′=1

wm′

, (4.3)

σDF =

M−1∑
m=1
|wm −wm+1|

M∑
m=1

wm

, (4.4)

where w(sorted) denotes w sorted in ascending order. Note that the small values

of σL1−norm and σEntropy imply sparsity, whereas the large value of σGini indi-

cates sparsity. A large value of σDF implies discontinuity between the adjacent

vector elements, which the harmonic bases are thought to have.

Fig. 4.3 shows the features computed from the spectral bases of a kick drum,

snare drum, hi-hat, piano, violin, and pure tone signal. Dotted lines in the fig-

ures are virtual thresholds to distinguish the harmonic and percussive sounds.

It can be observed that all the measures – the L1-norm, Gini index, entropy,

and DF values – successfully distinguish the piano, violin, and pure tone sounds

from the snare drum and hi-hat sounds, confirming our sparsity[continuity] as-

sumption for separating the harmonic and percussive sounds. When comparing

a kick drum sound to a piano and a violin sounds, however, all the measures

but a proposed DF measure fail to discriminate the sounds.

The results presented in Fig. 4.3 can be easily understood via simplified il-

lustrations presented in Fig. 4.4. Fig. 4.4 (a), (b), (c), and (d) correspond to the

normalized spectra of the kick drum, hi-hat, harmonic instruments (piano and

violin), and pure tone sounds, respectively. Table 4.1 shows the corresponding

values of the illustrations measured using the same sparsity[continuity] mea-

sures used in Fig. 4.3. It is interesting that all of the three sparsity measures
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Fig. 4.3 Spectral measures of harmonic and percussive sounds.

showed the same values for illustrations (a) and (c). This is due to the fact

that the sparsity measures consider the energy distribution inside the vector,

which corresponds here to the number of peaks, regardless of their positions.

However, as the DF measure can consider the relative positions of the activated

frequency bins – whether they are consecutive or separated – it can contribute

to distinguishing illustrations (a) and (c), as shown in Table 4.1. In addition,

the DF value of (c) remains the same as (d), which is the maximum DF value.

From the results, it can be predicted that the DF value would not be affected

by the pitch of harmonic instruments, if the harmonic peaks are sufficiently

spaced.
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Fig. 4.4 Illustrations of harmonic and percussive spectra.

According to these observations, the sparsity measures might cause inac-

curate separation of the harmonic and percussive bases when they are used

as costs in a spectrogram decomposition algorithm; only the DF measure can

correctly discriminate these bases. The similar observation can be found in the

case of temporal bases, the only difference being the lower DF measure for the

harmonic components. On the basis of this experiment, the proposed method is

derived so as to increase or suppress the DF measure for harmonic-percussive

sound separation.

4.2.2 Derivation of the proposed method

In this subsection, we present the proposed method using the theories pre-

sented in chapter 2. We utilize matrix decomposition techniques that have been

widely used in audio source separation studies: PLCA and NMF. These tech-

niques learn spectral bases and their corresponding temporal activations, which
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Table 4.1 Spectral measures of illustrations.

Percussive Harmonic

(a) (b) (c) (d)

L1-norm measure 1.41 3.16 1.41 1

Gini index 0.8 0 0.8 0.9

Entropy 0.69 2.30 0.69 0

Degree of fluctuation 1 0 2 2

enables one to observe the features of each side. Moreover, we can separately

reconstruct the estimated source components using basis selection. The PLCA

algorithm is used with the concept of Dirichlet prior imposition first, and then

it is extended to the NMF framework. We assume that the harmonic compo-

nents are discontinuous in the spectral domain and continuous in the temporal

domain. We also assume that the percussive components are continuous in the

spectral domain and discontinuous in the temporal domain.

The iterative update equations of PLCA algorithm have been presented in

chapter 2. When the Dirichlet prior is imposed, it requires three hyperparam-

eters – ξ (f |z), ψ (z), and ζ (t|z) – and three corresponding coefficients – cf ,

cz, and ct – to be determined. The prior information is reflected in the form

of a weighted sum in the iterative update formula. The proposed method is a
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special case, in which the hyperparameters are determined as
ξ (f |z) = p (f − 1|z)

ψ (z) = 0

ζ (t|z) = p (t− 1|z)

. (4.5)

The constant coefficients are generally defined to be non-negative. However,

we can extend this concept to the point where negative coefficients are used

in order to make it possible to impose discontinuity. In such cases, we have

to prevent the probability values from being negative by adding an additional

formula as

p (x)← max (p (x) , ϵ) (4.6)

where p (x) can be p (f |z), p (z), or p (t|z), and ϵ is a small positive number.

The iterative update equations of the proposed method is represented as

p (z|f, t)← p (z) p (f |z) p (t|z)∑
z
p (z) p (f |z) p (t|z)

(4.7)

p (f |z)←
cfp (f − 1|z) +

∑
t
Xf,tp (z|f, t)∑

f

{
cfp (f − 1|z) +

∑
t
Xf,tp (z|f, t)

}
(4.8)

p (z)←

∑
f

∑
t
Xf,tp (z|f, t)

∑
z

{∑
f

∑
t
Xf,tp (z|f, t)

}
(4.9)

p (t|z)←
ctp (t− 1|z) +

∑
f

Xf,tp (z|f, t)

∑
t

{
ctp (t− 1|z) +

∑
f

Xf,tp (z|f, t)

} .
(4.10)

where Eq. 4.7 and 4.9 are identical to the original PLCA’s update equations as

we do not impose any constraints on p (z|f, t) and p (z). Random variables f , t,
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and z have the interval of 1 ≤ f ≤ F , 1 ≤ t ≤ T , and 1 ≤ z ≤ K, respectively.

Accordingly, it is unable to define p (f − 1|z) and p (t− 1|z) in case of f = 1 or

t = 1. In order to simplify the notation, we define p (f − 1|z) = 0 when f = 1,

and p (t− 1|z) = 0 when t = 1.

Next, we extend the PLCA-based update formula to the NMF framework.

As we have proven in the section 2, assigning basis-related information to the

matrix decomposition algorithm can be induced in a probabilistic framework

such as PLCA that has a thorough theoretical background. However, the PLCA

algorithm requires four marginal distributions for estimation, which is a signifi-

cant amount of computation, especially compared to the NMF algorithm, which

requires the estimation of only two matrices. For this reason, the proposed

method is extended to work in the NMF framework.

NMF has duality with the PLCA algorithm and is even equivalent to it when

the KL divergence is used as the cost function [47]. According to the PLCA-

based derivation, imposing the Dirichlet prior modifies the update formulas to

the form of a weighted sum with hyperparameters. Because of its simplicity, the

Dirichlet prior can easily be extended to the NMF. We have added the weighted

sum formulas after the standard NMF’s update equation as follows:

H̃k,t ←
H

(l)
k,t

∑
f

{
W

(l)
f,kXf,t

/
X̃f,t

}
∑
f ′

W
(l)
f ′,k

(4.11)

Ĥ
(Harm)
k,t ← αH̃

(Harm)
k,t + (1− α) H̃(Harm)

k,t−1 (4.12)

Ĥ
(Perc)
k,t ← βH̃

(Perc)
k,t + (1− β) H̃(Perc)

k,t−1 (4.13)

H(l+1) ← max
(
Ĥ, ϵ

)
(4.14)
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W̃f,k ←
W

(l)
f,k

∑
t

{
H

(l+1)
k,t Xf,t

/
X̃f,t

}
∑
t′
H

(l+1)
k,t′

(4.15)

Ŵ
(Harm)
f,k ← γW̃

(Harm)
f,k + (1− γ)W̃(Harm)

f−1,k (4.16)

Ŵ
(Perc)
f,k ← δW̃

(Perc)
f,k + (1− δ)W̃(Perc)

f−1,k (4.17)

W(l+1) ← max
(
Ŵ, ϵ

)
(4.18)

where α, β, γ, and δ denote weightings, X̃
(
∆
= WH

)
denotes the estimated

spectrogram, H̃ and Ĥ denote temporarily adopted variables each of which has

the same size as H, and W̃ and Ŵ denote temporarily adopted variables each

of which has the same size as W̃. As the variables are not defined when their

subscript is 0, we newly define H̃k,0
∆
= H̃k,1, and W̃0,k

∆
= W̃1,k. By defining

so, we can maintain a consistent notation. Note that all matrix elements are

calculated before it proceeds to the next equation, and Eq. 4.11 and 4.15 are

the update algorithms of the original NMF.

Prior to the iteration, W and H are often initialized to randomized values.

Here, we consider the bases to be separated into two disjoint groups, i.e., har-

monic and percussive groups; the superscripts (Harm) and (Perc) indicates

which group the bases belong to. The spectral bases of percussive components

can also be initialized to flat vectors, of which the components are all equal. It

will lead to faster convergence compared to random initialization.

After iteration, the harmonic and percussive spectrograms are reconstructed

as

X(Harm) = W(Harm)H(Harm) (4.19)

X(Perc) = W(Perc)H(Perc). (4.20)

60



The phase of the original spectrogram is directly multiplied by each of the

harmonic and percussive spectrograms. Finally, the harmonic and percussive

audio signals are reconstructed by the inverse STFT.

4.2.3 Algorithm interpretation

The proposed update equations can be interpreted as a matrix decomposition

process that controls the continuity of the basis vectors so as to shift the con-

vergence point. As we have discussed for the case of the PLCA, the constraints

prevent the NMF algorithm from converging to the local minima that is closest

to the initialized values. Instead, the constraints shift the convergence point to

the intended area. Accordingly, the weighting parameters α, β, γ, and δ affect

the degree of the convergence point transition.

When the values of α and δ become smaller, the time activations of the

harmonic components and the spectral bases of the percussive components are

more likely to be shaped such that they have a continuous structure where

the fluctuation is minimized. On the other hand, when β and γ become larger,

the spectral bases of the harmonic components and the time activations of the

percussive components may become discontinuous.

The role of the parameters can be explained using the mathematical formu-

las. Eq. 4.18, 4.19, 4.22, and 4.23 can be directly switched to alternative forms

as follows:

Ĥ
(Harm)
k,t ← H̃

(Harm)
k,t−1 + α

(
H̃

(Harm)
k,t − H̃

(Harm)
k,t−1

)
(4.21)

Ĥ
(Perc)
k,t ← H̃

(Perc)
k,t−1 + β

(
H̃

(Perc)
k,t − H̃

(Perc)
k,t−1

)
(4.22)
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Ŵ
(Harm)
f,k ← W̃

(Harm)
f−1,k + γ

(
W̃

(Harm)
f,k − W̃

(Harm)
f−1,k

)
(4.23)

Ŵ
(Perc)
f,k ← W̃

(Perc)
f−1,k + δ

(
W̃

(Perc)
f,k − W̃

(Perc)
f−1,k

)
. (4.24)

The above formulas are interpreted as forming continuities[discontinuities]

by suppressing[amplifying] the differences between the adjacent elements. If the

weighting parameter is larger than 1, the differences are amplified. Consider-

ing our principle that the spectral bases of the harmonic components and the

temporal bases of the percussive components are discontinuous, we can set the

scopes of the parameters as

β > 1, γ > 1. (4.25)

In this case, the matrix elements in the left side of the Eq. 4.13 and 4.16 may

become negative. The Eq. 4.14 and 4.18 can prevent the components from being

negative.

On the other hand, weighting parameters smaller than 1 shape the bases

such that they have less fluctuation. Based on our principle, the scopes of the

parameters are determined as

α < 1, δ < 1. (4.26)

4.3 Performance Evaluation

In this section, we evaluate the proposed method by comparing it to con-

ventional methods. To this end, the Signal Separation Evaluation Campaign

(SiSEC) dataset [80] and the QUASI dataset [81] are used to investigate the

objective and quantitative analysis results. To complement the weakness of the

objective measures, the result of a subjective scoring test is provided. Also, toy
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examples and audio demos will help intuitive understanding about the proposed

method.

In each subsection, we compare the performance of the proposed method

induced in the NMF-based framework using Ono et al.’s hard-mixing-based

method, Ono et al.’s MAP-estimation-based method, Fitzgerald’s median-filter-

based method, Canadas-Quesada et al.’s NMF-based method, and Fitzgerald et

al.’s KAM-based method. Experimental parameters for the conventional meth-

ods are set to the values presented in the literature, including the frame size,

hop size, and sampling frequency, so as to provide the evaluation environment

suitable for each method. For example, the sound mixtures and the ground

truths of the harmonic and percussive sounds are down-sampled to 16 kHz for

Ono et al.’s method.

The objective performances are measured using the BSS EVAL 3.0 toolbox,

which is supported by the reference [61]. The toolbox is generally used for the

evaluation of source separation algorithms. The considered measures include

SIR, SAR, and SDR.

4.3.1 Parameter setting

Prior to the performance comparison with conventional methods, we have de-

termined the evaluation parameters for the proposed method using the SiSEC

2015 dataset for professionally-produced music recordings (MUS) task [80]. The

dataset is composed of a development set, and a test set, each of which contains

50 songs. Here, only the development set was used for the parameter setting.

In the dataset, four sources—vocals, bass, drums, and other—are included for

each song. The sound sources are provided in stereo, but they have been con-

63



Table 4.2 Evaluation parameters.

Parameter Value

Frame size 4096

Hop size 1024

Window Hamming

Sampling frequency (Hz) 44,100

Number of iterations 100

Number of bases (H/P) 750 (500/250)

verted into mono sounds before the experiment, by averaging the left and right

channels. In the experiment, we assume that only drum sounds have percussive

characteristics; and that the others are harmonic. The harmonic and percussive

sounds are peak normalized and added to make a mixture.

Our main focus is to determine parameters that control continuity and dis-

continuity, whereas other variables are set to reasonable values. This is due to

the fact that joint optimization of all these variables requires too much compu-

tation quantity. Table 4.2 summarizes the parameters and their values used for

the experiment.

We have set the maximum iteration number to 100 by considering the com-

putation time of the NMF algorithm. More iteration will lead to more stable

performance by enabling the NMF algorithm to use sufficient time to converge.

However, since the increase in the number of iterations is linearly proportional
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to the increase in computation time, it has to be determined considering the

computation cost/performance trade-off. According to our observations, 100 it-

erations is sufficient for the NMF algorithm to converge, and more iterations did

not lead to better performance. This corresponds with the Canadas-Quesada et

al.’s work, which also used 100 iterations for the NMF.

Additionally, the frame size and the hop size when performing the short-time

Fourier transform (STFT) are set to 4,096 and 1,024, respectively. Not only does

setting the hop size to 1/4 of the frame size allow perfect reconstruction of the

separated audio signal when a Hamming window is used, but it also provides

fine time resolution, which provides clearer separation of the vocal components.

The sampling rate of the input data is 44,100 Hz.

The numbers of harmonic and percussive bases are set to 500 and 250, re-

spectively, which is the same condition as in Canadas-Quesada et al.’s method.

The optimal number of bases is difficult to estimate, even when the ground

truth signals are given. For that reason, the number of bases is often deter-

mined heuristically in the NMF-based source separation methods. If the num-

ber of bases is too small, the estimation error will still remain large even after

convergence. Hence, sufficient number of bases were used.

The basis vectors are initialized with random numbers that follow the uni-

form distribution of values defined over the interval (0, 1), except for the percus-

sive spectral bases: they are initialized to be flat vectors, i.e., the components

of the vectors are all equal. The effect of the initialization of percussive bases

will be discussed later.

In order to find the parameters that show the best SDR performance, we

have altered each continuity/discontinuity parameter with small step sizes;
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the parameter set with the maximum average SDR performance was finally

selected. The harmonic and percussive components’ SDRs are calculated for

each song and are averaged in a dB scale. For such grid search, the follow-

ing values were considered: α = {0.6, 0.7, 0.8, 0.9}, β = {1.01, 1.05, 1.1, 1.2},

γ = {1.01, 1.05, 1.1, 1.2}, δ = {0.8, 0.9, 0.95, 0.99}. The parameters were initially

tested in a fixed interval with a step size of 0.1, and were further investigated

with the values 1± 0.05 and 1± 0.01 for β, γ, and δ, since they showed highest

SDR with the values close to 1. Among the parameters, α, which indicates tem-

poral continuity, is proven to be most influential. The lower the value is, the less

time-varying components are classified as harmonic components. If all param-

eters are set to 1, then the proposed algorithm works exactly the same as the

standard NMF. Hence, they have to be finely tuned around 1. The maximum

SDR is achieved when α, β, γ, and δ are 0.7, 1.05, 1.05, and 0.95, respectively.

4.3.2 Toy examples

Performance comparison

In this subsection, we evaluate the HPSS methods with two mixture examples

of 10 seconds in duration. The first example consists of the piano sound and the

hi-hat cymbal sound. These sounds match the assumptions of the conventional

HPSS methods about sparsity well; thus, not only the proposed method but also

the conventional methods are expected to successfully separate the harmonic

components from the percussive components. The second example consists of

the singing voice sound and the kick drum sound. Because the singing voice

sound components often lack the temporal-side non-sparsity and the kick drum
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components lack the spectral-side non-sparsity, it is relatively difficult to clearly

separate them using the conventional methods. We observe the performance

for each case, and compare the gaps between the two cases to investigate the

robustness.

Note that the evaluation parameters were set to the same values used for

the SiSEC 2015 dataset evaluation. Here, we have tested with two initialization

methods: random initialization and flat initialization. “Random initialization”

refers to the case where the basis components are initialized with random num-

bers that follow the uniform distribution defined over the interval (0, 1). Mean-

while, “flat initialization” refers to the case where the vector components are

all equal.

Fig. 4.5 shows the ground truths and the separation results of the first toy

example. The piano attacks are mixed in the percussive spectrogram because

of their wideband characteristics. Nevertheless, the separation results are rela-

tively clear for all methods, as is confirmed in Table 4.3 (a), which shows the

corresponding quantitative performance measures. As for the proposed method,

flat initialization showed better performance in both harmonic and percussive

SDR, but the performance difference was not significant.

The results for the second toy example are presented in Fig. 4.6; the cor-

responding performance measures are presented in Table 4.3 (b). These data

show that the overall performances are lowered, as compared to the first ex-

ample. Because the vocal components lack temporal continuity and the kick

drum components lack spectral continuity, the conventional methods based on

the continuity principle—Ono et al.’s methods, Fitzgerald’s median filter-based

method, and Fitzgerald et al.’s KAM-based method—show significantly de-
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graded results. Canadas-Quesada et al.’s method partly covers the problem by

employing the sparsity assumptions. However, as the L1-norm sparsity is not a

suitable measure to distinguish between kick drums from other non-percussive

spectra, it does not result in sufficient performance improvement. However,

the proposed method still has higher performance by employing the continuity

control of bases, as can be confirmed from the figure and the table.

When the percussive spectral bases are flat initialized, the proposed method

shows improved performance of over 6dB compared to the conventional methods

in both harmonic and percussive cases. However, we can further improve the

performance with random initialization. This is due to the fact that the kick

drum’s spectra are not flat but rather sparse as shown previously. It results in

the increase of the required time to converge. According to our investigation,

the average SDR was improved to a level similar to that of random initialization

when the algorithm was iterated 200 times. Hence, this can be used to verify

that random initialization is more relevant to separating kick drum sounds,

since it requires fewer iterations.

As can be seen in the first example, a typical percussive sound, such as a hi-

hat drum, exhibits a clear separation performance regardless of the initialization

method. As can be seen in the second example, kick drum components are well

explained by a small number of iterations when randomly initialized, and more

iteration is required when flat initialization is used.

Parameter analysis

We can extract some important information about the continuity/discontinuity

parameters; how they affect the SDR, SIR, and SAR values of the har-

68



monic/percussive results. The second example was chosen to be used because

it is appropriate to show performance variations. The first example is excluded

because it can be separated well regardless of the parameter values. We aim to

examine the effects of continuity-related parameters, α and δ. The discontinuity-

related parameters have less effect on the performance because a perfectly con-

tinuous spectrum can be part of the percussive sound, but a perfectly discon-

tinuous spectrum is not part of the harmonic sound.

Fig. 4.7 (a) shows the effect of α, which controls the continuity of the har-

monic temporal bases. Strong imposition of the continuity prior (reduction of

α) results in the increase of harmonic SIR, which affects the decrease of percus-

sive SIR. It also decreases harmonic SAR because the ill-separated harmonic

components generate artifacts. Fig. 4.7 (b) shows the relations between δ that

regulates the continuity of percussive spectral bases and the SIR and SAR

performances. Contrary to the case of α, the SIR of the percussive estimates

increased as δ became smaller (when the continuity of the percussive basis was

strongly imposed). Besides, these results also show the trade-off relations of

SIR and SAR in both harmonic and percussive cases. Using the characteristics

of the parameters derived from these analyses, the proposed method can be

applied for various purposes, especially for tasks that require high SIR results.

4.3.3 SiSEC 2015 dataset

Performance comparison

In Table 4.4 (a), the performance of the maximal average SDR point is compared

to that in other methods when they are measured in the SiSEC development set.
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Table 4.3 Performances measured with the toy examples [dB].

SDR SIR SAR

H P H P H P

Ono (hard mix.) 7.70 7.40 10.91 18.46 10.85 7.81

Ono (MAP esti.) 12.70 9.02 17.37 16.62 14.60 9.94

Fitzgerald (med filt.) 11.84 17.60 14.97 22.90 14.86 19.14

Canadas-Quesada 16.07 15.31 22.06 20.64 17.36 16.88

Fitzgerald (KAM) 5.62 13.02 7.34 26.91 11.21 13.21

Proposed (flat) 15.48 21.00 30.93 28.18 15.61 21.93

Proposed (random) 13.79 14.95 31.43 16.86 13.87 19.94

(a) Example1

SDR SIR SAR

H P H P H P

Ono (hard mix.) -15.15 7.61 -14.75 22.74 10.29 7.77

Ono (MAP esti.) -15.03 4.85 -14.92 18.62 15.79 5.10

Fitzgerald (med filt.) -15.33 7.71 -14.73 21.87 8.43 7.91

Canadas-Quesada -14.45 7.16 -14.21 31.59 12.63 7.18

Fitzgerald (KAM) -14.23 7.78 -13.75 26.11 9.49 7.85

Proposed (flat) -8.72 14.78 -6.75 21.47 3.41 15.88

Proposed (random) 1.63 19.41 25.16 20.44 1.66 26.24

(b) Example2
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Fig. 4.5 HPSS results of the conventional methods and the proposed method

with the mixture of piano and hi-hat sound. The harmonic spectrograms are

aligned on the left, and the percussive spectrograms are aligned on the right.
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Fig. 4.6 HPSS results of the conventional methods and the proposed method

with the mixture of singing voice and kick drum sound. The harmonic spectro-

grams are aligned on the left. The percussive spectrograms are aligned on the

right.
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Fig. 4.7 Effect of continuity parameters to SIR and SAR values.

The harmonic and percussive SDR, SIR, and SAR are calculated for each song,

and are then averaged. The proposed method shows the highest performance

in the average SDR values for both harmonic and percussive cases.

It is not fair to objectively compare the performance from the previous

experiment, because the parameters of the proposed method are the ones that

are already trained in the development set. Therefore, we performed another

experiment using the SiSEC test set.

Table 4.4 (b) shows the performance estimated in the SiSEC test set. Sim-

ilarly, we compared the SDR, SIR, and SAR of each method. The evaluation

parameters of the proposed method are set to the same values as those we used

for the development set evaluation. A similar tendency in performance obtained

in the previous experiment can be observed; the proposed method shows the

best SDR performance by preserving good SIR and SAR values.

Ono et al.’s algorithms clearly demonstrate the trade-off relationship be-

tween SIR and SAR. Ono et al.’s hard-mixing-based method shows the lowest

percussive SAR value among the algorithms. On the other hand, the percussive

SIR shows the second highest performance after the proposed method. Ono et
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al.’s MAP estimation-based method has the lowest percussive SIR, but it shows

high percussive SAR performance. This tendency is found in both development

and test sets. Thus, it is easy for us to obtain high values for either SIR or

SAR, but it is difficult to obtain high SDR values by obtaining both high val-

ues. HPSS methods based on smoothness in a local area can use the SIR/SAR

trade-off by broadening or narrowing the range of the area.

The most prominent advantage of the proposed method is clear separation

of percussive sound. The percussive SDR of the proposed method has outper-

formed that of Fitzgerald’s median filter-based method by 1.85dB in the test set.

Such result can be regarded as a significant difference, considering that Fitzger-

ald’s median filter-based method showed the second highest performance and

the energy of harmonic components is greater than that of percussive compo-

nents.

Two reasons can be suggested why the proposed method far outperforms the

conventional methods. First, the conventional methods, except for the Canadas-

Quesada et al.’s method, did not consider the frequency and time-side char-

acteristics at the same time. In the proposed method, the NMF has allowed

simultaneous observation of the frequency and time axis properties. Therefore,

different properties could be imposed separately to the bases of each side. This

has a strong effect on sources that have mismatch in the time domain (con-

tinuity in the time axis) and that we have to compensate the performance

loss by using characteristics in the frequency domain (discontinuity in the fre-

quency axis), such as vocal sounds. Secondly, we can impose the characteristics

of harmonic/percussive bases most successfully by using the DF measure. This

differentiates the proposed method from the conventional methods that uses
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sparsity measures including the Canadas-Quesada et al.’s method.

Effect of Wiener filter

We have investigated the effect of Wiener filtering, when it is applied at the

end of the spectrogram estimation step. In this case, X(Harm) and X(Perc) work

as the harmonic and percussive masks. The Wiener-filtered spectrograms are

defined as

G
(Harm)
f,t =

{
X

(Harm)
f,t

}2

{
X

(Harm)
f,t

}2
+
{
X

(Perc)
f,t

}2×Xf,t (4.27)

G
(Perc)
f,t =

{
X

(Perc)
f,t

}2

{
X

(Harm)
f,t

}2
+
{
X

(Perc)
f,t

}2×Xf,t (4.28)

where G(Harm) and G(Perc) denote the Wiener-filtered spectrograms of har-

monic and percussive components, respectively.

As we can see in Table 4.4, Wiener filtering has improved average SIR values

in both harmonic and percussive cases. This also leads to a decrease in SAR,

according to the SIR/SAR trade-off. Overall, this has a positive impact on the

harmonic SDR, but the SDR of the percussive components is decreased.

Effect of removing vocal components

We also analyze the case where vocal components are removed from the har-

monic side. We can expect that the SIR values of the percussive side will be

increased due to the fact that the estimated percussive sound will not contain

the vocals that used to be not fully separated. Besides, the SAR values of the

harmonic components will be also increased for the same reason.
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Table 4.4 Performances of HPSS methods with the SiSEC dataset [dB].

SDR SIR SAR

H P H P H P

Ono (hard mix.) 7.36 -2.80 10.65 8.10 11.05 -1.45

Ono (MAP esti.) 7.55 -3.32 10.50 0.17 11.73 2.86

Fitzgerald (med filt.) 8.77 -0.57 12.68 4.48 12.00 2.86

Canadas-Quesada 8.08 -1.72 9.22 8.04 16.00 0.36

Fitzgerald (KAM) 8.07 -2.17 9.90 6.41 13.91 -0.01

Proposed (flat) 9.39 1.44 11.22 9.24 15.28 3.09

Proposed (Wiener filt.) 9.56 0.89 12.46 9.97 13.94 2.31

(a) Development set

SDR SIR SAR

H P H P H P

Ono (hard mix.) 6.93 -3.90 10.32 6.07 10.57 -2.04

Ono (MAP esti.) 7.20 -4.35 10.10 -1.30 11.29 2.86

Fitzgerald (med filt.) 8.34 -1.38 12.20 3.13 11.66 2.77

Canadas-Quesada 7.57 -3.04 8.86 6.32 15.58 -0.11

Fitzgerald (KAM) 7.79 -2.94 9.78 5.19 13.44 -0.33

Proposed (flat) 8.87 0.47 10.41 7.63 15.38 2.69

Proposed (Wiener filt.) 9.28 0.14 11.55 8.83 14.13 1.89

(b) Test set
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Table 4.5 shows the experimental results when the vocal sound is removed

from the mixtures. It can be seen that the proposed method still outperforms

the conventional methods; however, the SDR performance differences have been

reduced. Hence, it can be inferred that the proposed method has strengths in

terms of separating vocal components. Moreover, the harmonic SAR and the

percussive SIR tend to be increased as expected previously.

Effect of initialization

As we have verified in the previous subsection, initialization of percussive spec-

tral bases can affect the performance. Moreover, the choice of initialization

method depends on instrument composition. We aim to investigate the general

effects and implications of altering initialization methods.

The previous experiment on the second example revealed that the randomly

initialized bases converge faster than the flat initialized bases, when the per-

cussive components contains kick drum components. If so, we can assume that

replacing a part of flat initialized bases with randomly initialized bases will

improve performance. Out of 250 spectral bases for percussive components, we

have initialized krand bases with random numbers and the rests with flat vectors,

and observed the changes occurred in the performance.

Fig. 4.8 (a) and (b) present the effect of presence of randomly initialized

bases in the percussive spectral basis group on the performance metrics when

investigated with the development set and the test set, respectively. It can be

seen that the percussive SDR shows insignificant difference when krand = 0, 5, 10

in both cases. Meanwhile, the performance variation of harmonic SDR is much

greater, and is maximized when krand = 10 in the development set and krand =
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Table 4.5 Performances of HPSS methods with the SiSEC dataset in the absence

of vocal sound [dB].

SDR SIR SAR

H P H P H P

Ono (hard mix.) 8.06 -2.51 11.13 9.43 11.85 -1.43

Ono (MAP esti.) 8.21 -3.14 11.1 0.5 12.35 2.79

Fitzgerald (med filt.) 9.59 -0.07 13.28 5.7 12.89 2.81

Canadas-Quesada 8.82 -0.41 9.86 11.90 17.07 0.67

Fitzgerald (KAM) 8.30 -2.20 10.29 6.19 13.95 0.25

Proposed (flat) 9.90 1.48 11.85 9.52 15.59 3.04

(a) Development set

SDR SIR SAR

H P H P H P

Ono (hard mix.) 7.61 -3.60 10.78 7.64 11.40 -2.14

Ono (MAP esti.) 7.73 -4.13 10.65 -0.95 11.77 2.90

Fitzgerald (med filt.) 9.13 -0.81 12.78 4.42 12.56 2.68

Canadas-Quesada 8.45 -1.62 9.28 11.01 17.36 -0.29

Fitzgerald (KAM) 8.29 -3.18 10.08 5.19 14.22 -0.79

Proposed (flat) 9.35 0.55 10.99 8.33 15.64 2.62

(b) Test set
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Fig. 4.8 Effect of randomly initialized bases on performance: (a) development

set and (b) test set.

20 in the test set. When the krand is greater than 20, the SDR declines sharply

in both harmonic and percussive cases. Hence, we can see that it is better to

use 10 to 20 randomly initialized percussive bases when applying the proposed

method to analyze real recordings. This is because some percussive components

that cannot be separated with the flat initialized bases can be explained with

randomly initialized bases. However, the randomly initialized bases show lower

performance in overall separation performance, hence they are inappropriate to

be used to replace the roll of flat initialized bases.

Another interesting effect of the initialization can be observed in the SIR

and SAR values. As the number of randomly initialized bases increases, the

harmonic SIR increases because fewer percussive components remain on the

harmonic side. On the other hand, the percussive SIR decreases as the amount

79



of harmonic interference in the percussive side increases. Due to the SIR/SAR

trade-off relationship, the harmonic SAR decreases and the percussive SAR

increases. In addition to adjusting the continuity/discontinuity-related param-

eters, we can obtain various harmonic and percussive separation results by

adjusting the basis initialization.

Effect of number of bases

As mentioned in the Chapter 1, the optimal number of bases cannot be predicted

in advance of the experiment and we often set it to be sufficient. This is why

we have used 750 bases (500 for harmonic, 250 for percussive) for the previous

experiments. Here, we investigate the effect of the number of bases. To this end,

we have set all parameters equivalent to Proposed (flat) in Table 4.4. For the

test data, “AM Contra - Heart Peripheral” in SiSEC dataset is used. We have

set the number of bases to 30, 45, 75, 150, 300, 450, 600, 750, 1500, 3000 and

observed the transition in the performance. Note that the ratio between the

number of harmonic and percussive bases is fixed to 2:1 in all cases as in the

case of 750 bases.

Fig. 4.9 (a) and (b) show the performance transition according to the num-

ber of bases. It can be seen that the percussive SDR is not degraded severely

when the total number of bases is larger than or equal to 300 (100 bases for

the percussive sound). Hence, it can be inferred that about 150 bases out of

250 percussive bases were redundant in the former experiments. In case of har-

monic components, more bases guarantee higher SDR performance due to the

description of vocal components requires sufficient number of bases. However, it

does not show meaningful performance gain when the harmonic basis number
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Fig. 4.9 Effect of number of bases.

exceeds 1000.

Imposing the constraints on the bases can affect the energy distribution of

the bases. Different from the standard spectrogram decomposition algorithms

that aim to find arbitrary bases that well describe the spectrogram, constrained

decomposition targets to find a small number of meaningful bases. Thus, the

constraint imposition makes the basis energy distribution be sparser. Inversely,

we can check the meaningfulness of the bases with their energy distribution.

Table 4.6 shows the sparsity of the energy of the NMF bases measured in

Gini index. It can be seen that the proposed method guarantees sparser energy

distribution, which may indicate it enforces NMF to learn a smaller number of

bases that have the meaningful structure. Note that the Gini index is larger in

the case of the percussive components than the harmonic components because

we have allocated fewer number of bases.

Iterative update process

Fig. 4.10 shows the change in the harmonic and percussive spectrograms, where

the iteration count i is 1, 5, 20, and 100, respectively. In the experiment, a snip-
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Table 4.6 Gini index of the energy distribution of the bases.

Harmonic Percussive Overall

Proposed NMF 0.58 0.33 0.52

Standard NMF - - 0.33

pet from “Skelpolu–Resurrection” is used. The spectral and temporal bases are

generally initialized to randomized values. Accordingly, the estimated spectro-

grams of the harmonic and percussive components show no directivity (i = 1).

As the iteration proceeds, however, the bases are shaped such that they have

spectral and temporal features that match our principle; thus, the spectrograms

show horizontal/vertical directivity.

Computation time

Average computation time of each algorithm measured in the SiSEC develope-

ment and test set is presented in Table 4.7. NMF-based algorithms shows slower

performance as predicted. This is because they estimate the bases using the en-

tire spectrogram. The difference between the speed of the Canadas-Quesada et

al.’s method and that of the proposed method is mainly due to the sampling

rate. Fitzgerald et al.’s KAM-based method also contains iterative update for-

mula, causing large computation amount. Note that the average length of the

100 experimental songs is 250.4 seconds.

The speed of the proposed method depends on the number of bases and the

spectrogram size. Our experiment reveals that the computation time is linearly
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Fig. 4.10 The estimated spectrograms of the harmonic components (left) and

percussive components (right) at the iteration number i = 1, i = 5, i = 20, i =

100 from top to bottom.

proportional to the time duration of the input sound. Nevertheless, since split-

ting the input sound into small segments also produces multiple input signals,

it does not guarantee reduction of computation time. However, less number of

bases can be used for shorter segments, which can lead to the computation

time decrease. The trade-off relation between the performance and the speed

exists because the bases can be estimated more accurately with the entire spec-

trogram, but the performance decrease is observed to be not severe when the
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Table 4.7 Average computation time of HPSS algorithms in the SiSEC devel-

opment and test set.

Algorithm Computation time (sec)

Ono(hard mix.) 17.7

Ono (MAP esti.) 26.7

Fitzgerald (med. filt.) 13.1

Canadas-Quesada 115.7

Fitzgerald (KAM) 473.1

Proposed 311.3

input signal is divided into 60 second length, and the numbers of harmonic and

percussive bases are set to 250 and 125, respectively. In this case, the average

computation time can be reduced to 35 seconds.

4.3.4 QUASI dataset

For further generalization of the performance, we evaluated the HPSS methods

using the QUASI dataset [81]. The QUASI dataset is composed of 11 songs

mixed by a professional sound engineer, in addition to their individual tracks.

Among the songs included, “Parting friends” by Emily Hurst is excluded in this

experiment, because it is a vocal-only song and does not contain any percus-

sive component. The considered percussive source list includes Drums, Drms,
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Table 4.8 Performances of HPSS methods with QUASI dataset [dB].

SDR SIR SAR

H P H P H P

Ono (hard mix.) 3.94 -1.53 7.09 7.39 8.30 0.31

Ono (MAP esti.) 4.18 -3.09 6.05 0.43 10.55 2.41

Fitzgerald (med filt.) 5.46 0.90 8.73 4.91 9.51 4.78

Canadas-Quesada 4.03 -2.15 4.72 9.11 14.88 -0.30

Fitzgerald (KAM) 4.83 -0.12 6.21 7.93 12.38 1.66

Proposed (flat) 6.17 2.50 7.95 9.06 12.50 4.65

Drums loop, kick, snare, kick snare, hihat, tamb blip, wood, 909, drms loop1,

drms loop2, OH1, OH2, shaker, tamb, drum kit, talk drum. Here, we compare

performance with other algorithms using only flat initialization.

The measured performances are summarized in Table 4.8. Fitzgerald’s me-

dian filtering-based method and Canadas-Quesada et al.’s method clearly show

the trade-off relation of SIR/SAR. Even though they have defeated the proposed

method in the SIR and SAR, the proposed method shows the best harmonic

and percussive SDR by achieving the high SIR and preserving a high SAR as

in the previous experiments. In general, we conclude that the proposed method

outperforms the conventional methods.

4.3.5 Subjective performance evaluation

In previous subsections, the objective scores of the proposed method were inves-

tigated. However, the perceived quality of the separated sounds can be assessed
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differently, according to Emiya et al. [82]. In this subsection, we describe the

methods of the subjective scoring test and discussions of the results.

A total of 33 normal-hearing subjects participated in the test. They were

requested to score the separated harmonic and percussive results on a 1 to 5

scale, which is largely known as the mean opinion score (MOS) test [83]. The

original mixture sound and the ground truth of the harmonic and percussive

sounds were provided along with the separated results. The English-translated

version of the test sheet is publicly accessible at http://marg.snu.ac.kr/

hpss_test_form/. Also, as indicated on the test sheet, sound examples used

for the test are provided on the website http://marg.snu.ac.kr/hpss_test/.

Randomly selected 10 songs from the SiSEC 2015 database were used for the

test, none of which belonged to the same genre. The songs were cut at random

positions to have duration of 20 seconds.

Table 4.9 shows the average subjective scores and the corresponding SDR

values of each algorithm. The average SDR values of the test songs show the

similar tendency to the total mean presented in Table 4.4, proving randomness

of the test song selection. The p-values in Table 4.9 are calculated to examine

the statistical difference between the conventional method and the proposed

method.

Focusing on the subjective scores of harmonic sounds, it can be observed

that the proposed method shows the best performance. A paired t-test revealed

that there is a significant difference (p < 0.06) between the proposed method

and other methods, except for the case of Fitzgerald et al.’s median filtering-

based method (p = 0.066). In the results of percussive sounds, the proposed

method outperforms all other methods with the significant difference.
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Table 4.9 Subjective scores and corresponding objective measures (SDR).

Average SDR [dB] Subjective score (p-value)

H P H P

Ono (hard mix.) 6.89 -3.86 3.15 (1.09 × 10−2) 2.54 (1.65 × 10−10)

Ono (MAP esti.) 6.90 -3.28 3.08 (9.27 × 10−4) 2.40 (2.66 × 10−9)

Fitzgerald (med filt.) 8.14 -1.31 3.22 (6.61 × 10−2) 2.45 (7.09 × 10−8)

Canadas-Quesada 7.43 -2.56 2.84 (2.38 × 10−9) 2.59 (2.22 × 10−10)

Fitzgerald (KAM) 7.68 -3.36 3.02 (8.62 × 10−5) 2.26 (3.66 × 10−13)

Proposed (flat) 8.13 0.56 3.34 3.44

4.3.6 Audio demo

The demo audio clips of the proposed method and conventional methods are

provided on the website http://marg.snu.ac.kr/hpss_audio_demo/. It also

consists of original mixture and harmonic/percussive sources of seven songs of

various genres. We believe a perceptual evaluation from these demos supports

the quantitative results presented in the previous sections.

4.4 Summary

In this chapter, we proposed a novel method for HPSS that exploits the con-

tinuity and discontinuity of the bases. Previous HPSS research studies have

claimed that the harmonic components have spectral sparsity and temporal

smoothness, whereas the percussive components have the spectral smoothness

and temporal sparsity. However, most of the conventional methods fail to fully
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consider these characteristics, which results in low performance.

A closer examination of the spectra of harmonic and percussive sounds

reveals that continuity measurement, rather than sparsity, is proven to be a

more appropriate feature to distinguish harmonic and percussive components.

Based on the observation, we proposed a novel HPSS algorithm that exploits

continuity control in the iterative update formula of the PLCA algorithm and

reformulated it in a NMF framework to reduce the computational cost.

The performance of the proposed method was verified both qualitatively

and quantitatively in comparison with the conventional methods. The results

showed that the proposed method outperforms conventional methods. Since we

can remove all kinds of percussive sound from the mixture using this method

using the proposed methods, we now focus on HISS problem in the next chap-

ters.
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Chapter 5

Informed Approach to Harmonic
Instrument sound Separation

5.1 Introduction

In this chapter, we present an informed approach to HISS problem. Music source

separation aims to restore original source sounds from a mixture sound. It can

be used as a pre-processing step for many music signal processing techniques

such as music transcription, remixing, up-mixing, instrument identification, and

equalization [6]. In particular, the task has been studied extensively in under-

determined scenarios where the number of channels is smaller than the number

of instruments, but still shows limited performance.

Recently, many studies that use additional information have been presented

such as music score [20], user-guided audio signals [25], and manually provided

annotations [23]. These types of information help overcome poor performance,

but the environment in which side-information is available is extremely limited.
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Thus, it is desirable that source separation methods use less side-information.

When only musical instrument sounds exist in the music, the use of side-

information use can be reduced by considering the timbre characteristics of the

musical instruments. Especially in cases in which harmonic instruments and

drums coexist, their characteristics that appear in the time-frequency represen-

tation have been used for separation. Our previous work focused on the spectral

features of harmonic and percussive sounds [51], and it was also extended to

simultaneously consider the time and frequency domain aspects of the instru-

ments [63].

The separation of harmonic instrument sounds is a more challenging prob-

lem as the differences of the spectral and temporal characteristics are less

obvious compared to the harmonic-percussive source separation. Spiertz and

Gnann presented the basis clustering algorithm as a post-processing of NMF

[84]. Fitzgerald et al. used shift-invariant non-negative tensor factorization [85].

Ozerov and Fevotte focused on the mixing procedure [11].

Other studies on harmonic instrument sound separation adopt source-filter

model. Heittola et al. trained bases for instruments and used them for sepa-

ration [86]. Rodriguez-Serrano et al. also made instrument-dependent models

and used them for separation [87]. However, the pre-training process is not

always available. Klapuri et al.’s work extended Heittola et al.’s method to

separately estimate approximated spectral envelopes and their corresponding

excitations without the pre-training process [88]. But their work fails to pre-

cisely assess spectral envelopes, since it roughly approximates the envelopes

using band-pass filter banks. Ozerov et al. developed flexible audio source sep-

aration toolbox (FASST), in which spectra are also split into excitations and
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filter parts [89] [90].

In this chapter, an informed approach to HISS problem is presented for

situations in which audio segments of the used instruments can be obtained.

From the segments, we can extract the spectral envelopes of the instruments,

which are used for the instrument sound separation. Clearly, this method is

based on the source-filter model with linear predictive coding (LPC), since the

envelopes are extracted via linear prediction. The spectral bases of the NMF

algorithm are partitioned ahead of the iteration and then forced to resemble

the envelopes. To this end, Dirichlet prior is also used for this basis shaping.

The comparative evaluation reveals that the proposed method outperforms the

other conventional methods.

The rest of the chapter is organized as follows. Section 5.2 describes the

proposed method in the matrix factorization framework. Section 5.3 shows the

experimental results with real recordings. Conclusions are presented in Section

5.4.

5.2 Proposed method

In this section, we present detailed description about the proposed HISS

method. This section is composed of three subsections that present excitation-

filter model, linear predictive coding, and the proposed NMF-based spectrogram

decomposition procedure.
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5.2.1 Excitation-filter model

The time domain mixture signal is generated by summing individual sources as

x =
I∑
i=1

xi (5.1)

where x denotes the mixture sound, xi denotes the sound of the i-th instrument,

and I denotes the number of instruments. When this time domain signal is

converted into a spectrogram, it can be similarly represented as

X =
I∑
i=1

Xi

≈
I∑
i=1

∑
k∈Φi

wkhk

(5.2)

where Xi denotes the magnitude spectrogram of instrument i, Φi denotes the

index set of bases that explain Xi, and wk and hk denote the k-th spectral

basis and its time activation, respectively. The spectrogram conversion error

is assumed to be small and negligible. For the convenience of description, we

assume that ||wk||1 = 1 for all k. w and h can be estimated with the matrix

decomposition algorithms such as PLSA, PLCA [41], and NMF [91].

We also assume that the instrument sounds can be represented using the

source-filter model, which we alternatively address as excitation-filter model

to avoid term collision. The excitation-filter model has been widely used to

analyze the speech production mechanism [92]. According to the excitation-

filter model, the timbre of an instrument is determined by its filter, whereas the

pitch is determined by the excitation signal. Fig. 5.1 illustrates the spectrum

and the corresponding LPC spectral envelope of violin and clarinet plotted on

a log-scale. As the excitation signal is filtered by the instrument’s resonant
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Fig. 5.1 Spectrum and corresponding spectral envelope computed via linear

prediction of (a) violin and (b) clarinet.

structure, a spectral basis (or a spectrum of an instrument, equivalently) wk

has to be represented as

wk = vi ⊙ ek (5.3)

where vi is the filter’s frequency response of instrument i that can be alterna-

tively referred to as spectral envelope, ek is the spectrum of the k-th excitation

signal, the operator ⊙ denotes the element-wise multiplication, and k ∈ Φi.

Note that the above Eq. 5.3 can be satisfied only if a proper source separa-

tion is applied. During the ongoing matrix decomposition iteration, the spectral

envelopes vary for each k. However, the proposed method focuses on the reverse

direction of this theory: Can a group of bases successfully reconstruct the sound

of an instrument, if we can make the basis envelopes equal to the true envelope

of the instrument? Since the proposed method requires the estimation of the

true spectral envelopes of the instruments and the basis envelopes, the represen-

tative spectral envelope extraction method is presented in the next subsection.
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5.2.2 Linear predictive coding

Spectral envelope can be obtained using LPC, which assumes that the filter can

be approximated by a finite number of poles. In this subsection, we describe

how we can obtain LPC coefficients and how they can be extensively applied

to the spectral bases of the NMF algorithm.

Calculation of LPC coefficients

LPC aims to calculate the infinite impulse response (IIR) filter coefficients

a = (a1, a2, ... , aM )T that best predict the signal value minimizing the energy

of the error signal, represented as

a = argmin
a
E
{
∥err (n)∥2

}
= argmin

a
E


∥∥∥∥∥y (n)−

M∑
m=1

amy (n−m)

∥∥∥∥∥
2
 ,

(5.4)

where y is a real, time domain signal, err is the error signal, and M is the

number of filter coefficients. The accurate estimation of LPC coefficients is

important, since the filter’s frequency response, namely spectral envelope, is

represented as

H (z) =
1

1−
M∑
m=1

amz−m
. (5.5)

The problem of computing LPC coefficients can be converted into an alter-

native form, which is referred to as autocorrelation method. It can be mathe-

matically represented as

Ra = r (5.6)

where r is a vector of autocorrelations of y defined as r =

(ryy (1) , ryy (2) , ... , ryy (M))T , and R is an autocorrelation matrix defined
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as

R =



ryy (0) ryy (1) · · · ryy (M − 1)

ryy (1) ryy (0) ryy (M − 2)

...
. . .

...

ryy (M − 1) ryy (M − 2) · · · ryy (0)


(5.7)

where ryy (m) = E {y (n) y (n−m)}. From the above formula, we can observe

that the calculation of LPC coefficients does not necessarily require the original

time domain signal y and that it can also be calculated by the autocorrelations.

As R is a Toeplitz matrix, a can be easily obtained using Levinson-Durbin

recursion [93].

Envelope of spectral bases

Consider the spectrum Y of a time domain signal y (n), and its magnitude

|Y|. The spectral envelope of the magnitude spectrum can be directly obtained

without the spectrum-to-time domain signal conversion process. According to

the Wiener-Khinchin theorem, the computation of autocorrelation is simplified

as

ryy = IFFT [Syy]

= IFFT [YY∗]

= IFFT
[
|Y|2

] (5.8)

where Syy is the power spectral density of y (n), ryy is defined as ryy =

(ryy (0) , ryy (1) , ... , ryy (M))T , IFFT [•] denotes the inverse fast Fourier trans-

form, and (•)∗ denotes the complex conjugate. Here, we can see that the mag-

nitude spectrum |Y| has sufficient information to attain the autocorrelations,

which in turn can be used to estimate LPC coefficients. These LPC coefficients

are finally used to estimate the spectral envelope.

95



5.2.3 Spectrogram decomposition procedure

According to the equivalence of PLCA and NMF that we have proven in the

chapter 2, we do not present how we can implement on the PLCA framework.

Instead, we describe our method on the NMF framework. Fig. 5.2 illustrates

the overall procedure of how the proposed method works. The input mixture

audio is transformed into a magnitude spectrogram and is decomposed using

the proposed modified NMF. In so doing, the bases are randomly initialized

first, and the spectral bases and their corresponding time activations are esti-

mated iteratively afterwards. After the estimation, w is divided into two parts,

envelope v and excitation e, by means of LPC. The envelopes of the bases that

belong to an instrument’s index set are replaced by the true envelope of the

instrument. The spectral bases are then reconstructed by multiplying the new

envelope and the excitation followed by the next iteration. After the iteration

is finished, the spectrograms are reconstructed for each instrument. Finally, the

audio signals are reconstructed.

The proposed method modifies the NMF update equations that minimize

the KL divergence. It can be mathematically represented as

Ĥk,t ←
H

(l)
k,t

∑
f

{
W

(l)
f,kXf,t

/
X̃f,t

}
∑
f ′

W
(l)
f ′,k

(5.9)

W̃f,k ←
W

(l)
f,k

∑
t

{
H

(l+1)
k,t Xf,t

/
X̃f,t

}
∑
t′
H

(l+1)
k,t′

(5.10)

H
(l+1)
k,t ← Ĥk,t

∑
f

W̃f,k (5.11)
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Fig. 5.2 Overview of the proposed method.

Ŵf,k ←
W̃f,k∑
f

W̃f,k

(5.12)

w
(l+1)
k ← ⌣

v
(i) ⊙ e(k), k ∈ Φi (5.13)

where H is the K × N matrix of time activations, of which k-th row is hk,

W is the M × K matrix of spectral bases, of which k-th column is wk, Ŵ

and W̃ denote the temporarily adopted variables, which have the same size

as W, Ĥ denotes the temporarily adopted variable that has the same size

as H, X̃ is the estimated spectrogram reconstructed with up-to-date W and

H, v(k) =
(
v
(k)
1 , ... , v

(k)
F

)T
and e(k) =

(
e
(k)
1 , ... , e

(k)
F

)T
denote the spectral

envelope and excitation spectrum of the k-th column of Ŵ represented as ŵk,

respectively,
⌣
v
(i)

is the true spectral envelope of instrument i, and f and t

denote the index of frequency bin and time frame, respectively. Note that Eq.

5.11 and 5.12 are the normalization stages for the spectral bases.
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Spectral envelope of bases

The spectral envelope of ŵk can be obtained as

r(k) ← IFFT
[
{ŵk}2

]
(5.14)

a(k) =
(
a
(k)
0 , a

(k)
1 , ... , a

(k)
M

)T
← LevinsonDurbin

(
r(k)
) (5.15)

v
(k)
f ←

∣∣∣∣∣∣∣∣∣
η(k)

1−
M∑
m=1

{
am exp

(
−i2π fF

)}
∣∣∣∣∣∣∣∣∣ (5.16)

e
(k)
f ←

Ŵf,k

v
(k)
f

(5.17)

where r(k) contains the autocorrelations of IFFT [ŵk], η
(k) is the normalization

constant to make ||v(k)||1 = 1, and LevinsonDurbin (•) is the function that

calculates the M + 1 dimensional vector a(k) of LPC coefficients by means of

Levinson-Durbin recursion. Note that the imaginary number i is differentiated

from the instrument index i, and a
(k)
0 = 1 by the definition of LPC.

True spectral envelope of an instrument

The true spectral envelope
⌣
v
(i)

is computed through the similar step. We assume

that an audio segment
⌣
xi is given for all i. First, it is converted to a magnitude

spectrogram
⌣

X and then the spectral envelopes
⌣
vt of each frame

⌣
xt is calculated.

Then they are averaged as

⌣
v
(i)

=

∑
t

∥∥∥⌣
xt

∥∥∥
1

⌣
vt∥∥∥∥∑

t

∥∥∥⌣
xt

∥∥∥
1

⌣
vt

∥∥∥∥
1

(5.18)
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Signal reconstruction

After the iteration, the estimated spectrograms of each instrument are recon-

structed as

X̂i =
∑
k∈Φi

wkhk (5.19)

where X̂i denotes the estimated spectrogram of instrument i. These spectro-

grams are converted to time domain signals by means of inverse short-time

Fourier transform.

5.3 Performance evaluation

In this section, the comparative evaluation is performed with the conventional

HISS methods. For the objective comparison of the performances, we have used

audio dataset of real recordings and the representative performance indicators.

5.3.1 Experimental settings

The performance of the proposed method is evaluated and compared with the

method of Klapuri et al. and the FASST of Ozerov et al. Bach 10 dataset which

consists of 10 pieces is used for the evaluation [94]. The dataset contains real

recordings of four instruments; violin, clarinet, saxophone, and bassoon. We

analyze a total of six cases where two out of four instrument sounds are linearly

mixed. Note that the sounds are amplified or suppressed in advance to have

same energies in the mixture.

Klapuri et al.’s method is based on two important assumptions; the number

of notes in a frame should remain constant for all frames, and the fundamental
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Table 5.1 Experimental parameters.

Parameter Value

Sampling rate (Hz) 44,100

Frame size / Hop size 4096 / 1024

Number of iterations 100

Number of bases (per instrument) 40

LPC order (M) 3

frequencies of the notes are known. Bach 10 dataset satisfies the conditions

because all the instruments in the dataset are monophonic and the ground

truth fundamental frequencies are provided in the dataset. FASST 2.0 provides a

number of options to perform sound separation. Among the options, we assumed

instantaneous mixing scenario with the fixed adaptability, while the rest options

are set adaptive. Two types of time-frequency representations, erb and stft, are

tested.

Table 5.1 shows the evaluation parameters used for the experiment of the

proposed method. The optimal number of bases may correspond to the number

of notes of an instrument. However, it is impossible to recognize it in advance.

Consequently, we set the number of bases so that it is sufficient to account for

every note in the music. Considered evaluation metrics are SDR, SIR, and SAR

as in the previous chapters. Note that SDR is the representative performance

measure.

The true spectral envelope is learned in a two different ways. At first, a

5 second audio clip of the mixed instruments are randomly picked and cut
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among the 9 other pieces. Because this can be considered not fair to the other

methods, we have also used an external dataset for the true envelope extraction:

real world computing (RWC) music database [95]. The various sounds of the

instruments that are mixed in the Bach 10 dataset are contained in the RWC

database. Among the available playing styles and dynamics, we have selected

the sounds with normal-playing style and piano-level dynamics. The sounds are

concatenated in advance and the true envelope is extracted with it.

5.3.2 Performance comparison

Table 5.2 shows the performance metrics averaged over the 10 pieces and 6 cases

of instrument combinations. It can be seen that the Klapuri et al.’s method

shows the highest SAR whereas the FASST with erb shows the lowest SAR.

Nevertheless, 8.95dB can be considered to be a high value hence no methods

seem to show defects in this result. Due to the SIR-SAR trade-off, FASST and

Klapuri et al.’s method shows the low SIR value considering the SAR value.

Especially, FASST shows the lowest performance among the methods. One pos-

sible reason for the low performance is its blindness: it lacks the aid of addi-

tional side-information. The proposed method shows better performance than

the conventional methods regardless of the method used to get the true enve-

lope. When the RWC database is used to compute true envelope, the proposed

method’s performance further increases compared to the case where Bach 10

dataset is used. This is because the lengths of the concatenated audio segments

are longer than 5 seconds, hence it might have gotten more chance to obtain

the envelopes close to the real one. This is meaningful in that it shows the pos-

sibility to accurately estimate the true envelope even with the external dataset.

101



Table 5.2 Performances measured with the Bach 10 dataset (dB).

SDR SIR SAR

FASST (stft) 0.50 1.80 9.17

FASST (erb) 0.18 1.44 8.95

Klapuri 1.37 1.79 15.29

Proposed (Bach 10) 4.00 7.01 9.80

Proposed (RWC) 4.52 7.23 10.63

Further investigation on the true envelope extraction method is presented in

the next subsection.

5.3.3 Envelope extraction

In the previous experiment, we have obtained the true envelope with the entire

audio clip in the RWC database. In this subsection, we investigate the effect

of the audio clip length and pitch that is used to calculate the true envelope.

This is important since how much data is required to precisely estimate the

true envelope has to be examined before we apply it to realistic environments.

Table 5.3 shows the performance transition according to the pitch of the

training data. We have performed four experiments each uses an audio segment

of 5 second for the envelope training. In the first experiment (Random pitch),

the training data is obtained via cutting the original audio clip used for the

envelope training in the previous experiment to 5 second at random position.

Other experiments divide the original audio clip into low, middle, and high

pitch parts and select one of them to cut the 5 second audio segment from the
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Table 5.3 Effect of pitch in envelope training.

SDR SIR SAR

Random pitch 2.74 5.61 10.64

Low pitch 3.30 5.62 10.51

Middle pitch 2.93 5.61 10.64

High pitch 1.93 5.49 11.18

Fig. 5.3 Method to select an audio clip for envelope training.

random position as can be seen in Fig. 5.3. First, we can see that the SDR

has decreased severely (from 4.52 to 2.74) when we only use a partial training

data compared to the previous experiment. Then we can confirm that using low

pitch part to train envelope shows better SDR performance even though the

SIR and SAR do not show meaningful difference in performance. This is due to

the fact that the high pitched sounds show sparser spectral energy distribution

and it can distort the envelope shape.
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5.4 Summary

In this chapter, we proposed a novel approach to separate harmonic instrument

sounds by applying envelope constraints to spectral bases in NMF. The pro-

posed approach focused on the spectral envelope which assigns distinct timbre

to a sound. On the basis of the excitation-filter model, we could decompose a

spectrum (or a spectral basis) to its spectral envelope and its excitation. The

modified iterative update equations of the NMF with the true envelope con-

straints led to the successful separation of the harmonic instrument sounds.

Performance evaluation with real recordings proved that it showed the highest

performance compared to the conventional methods. In the next chapter, this

method is extended to the blind scenario where no additional information is

available.
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Chapter 6

Blind Approach to Harmonic
Instrument sound Separation

6.1 Introduction

In this chapter, the previous approach to HISS problem is extended to the case

where no additional information is provided. The informed approach showed

high performance compared to the conventional ones, however, it requires users

to provide the sounds of each instrument. This enables the bases to have the

true envelope, which in turn makes the excitation parts adapted to represent

the pitch of the instrument.

In addition to this, the blind approach aims to let both spectral envelope

and excitation separately converge to the real ones. To this end, the bases in a

group are forced to have the same spectral envelope in performing the matrix

decomposition. The spectral envelope of each basis is calculated through LPC

and all envelopes of each basis in the same group are averaged. This is because
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the spectral envelope is determined for each instrument whereas the excitations

can differ from other bases that belong to the same group. As the iteration

proceeds, the average spectral envelopes of each group converge to the true

spectral envelopes of the instruments.

The strengths of the proposed method are its simplicity and flexibility; it

requires neither additional musical information such as musical scores and time-

frequency annotations nor assistance of f0-estimation techniques. Since it only

requires the provision of the number of instruments, it can be applied to the

various cases where the musical information is not available. Consequently, the

proposed method is applicable to multi-pitch scenario, regardless of the number

of simultaneously existing musical notes.

The rest of the chapter is organized as follows. Section 6.2 depicts the pro-

posed method in the NMF framework. Section 6.3 shows the experimental re-

sults with the dataset and compares the performance with the conventional

methods. Section 6.4 summarizes the chapter.

6.2 Proposed method

In this section, we describe how we extend the informed approach to the blind

scenario. As similar to the previous approach, it is mainly based on the NMF

with the generalized Dirichlet prior. Fig. 6.1 shows the structural overview of

the proposed method. Similar to the informed approach, the input signal is

converted into a spectrogram and decomposed using the NMF to minimize the

KL divergence between X and X̃. During the iteration, the spectral envelopes

of the bases belong to the same group are averaged. Then the mean envelope
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is applied to the bases in the next step. This process can be represented in the

mathematical formula as

Ĥk,t ←
H

(l)
k,t

∑
f

{
W

(l)
f,kXf,t

/
X̃f,t

}
∑
f ′

W
(l)
f ′,k

(6.1)

W̃f,k ←
W

(l)
f,k

∑
t

{
H

(l+1)
k,t Xf,t

/
X̃f,t

}
∑
t′
H

(l+1)
k,t′

(6.2)

H
(l+1)
k,t ← Ĥk,t

∑
f

W̃f,k (6.3)

Ŵf,k ←
W̃f,k∑
f

W̃f,k

(6.4)

vΦi ←

∑
k∈Φi

νkv
(k)

∑
k∈Φi

M∑
m=1

νkv
(k)
m

(6.5)

w
(l+1)
k ← vΦi ⊙ e(k) (6.6)

where vΦi is the average spectral envelope for instrument i, νk is the weight of

v(k) for the weighted mean. νk is heuristically determined as {∥hk∥1}
5, which

assumes the bases of which spectral envelopes are close to the actual envelope

have larger time activity.

Note that the Eq. 6.1 to 6.4 are identical to Eq. 5.9 to 5.12. The true spectral

envelope extracted from the given instrument sound is replaced by the group-

wise average envelope vΦi . Because the proposed method is an unsupervised

separation method, the ground truth spectral envelopes are not assumed to be

given in advance. We have made the bases in a group have a unified envelope and

the envelope converge to the ground truth envelope. Technically, there has been
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Fig. 6.1 Overview of the proposed method.

no technique that only estimates the envelopes of the mixed instruments, hence,

we have utilized the NMF algorithm that simultaneously learns the envelope

and the excitation. Enforcing the spectral envelopes in a group to be identical

can be interpreted as the imposition of Dirichlet prior, with the hyperparameter

and its weight in Eq. 2.35 determined as

ξk = vΦi ⊙ e(k) (6.7)

wfreq = 0 (6.8)

where ξk denotes the k-th column of Ξ.

Finally, the spectrograms of each instrument can be reconstructed in the
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same way we did in the previous chapter as

X̂i =
∑
k∈Φi

wkhk, (6.9)

followed by the inverse short-time Fourier transform.

6.3 Performance evaluation

In this section, we compare the performance of the proposed method in the

same environment that we have tested the our informed approach. Before we

present the SDR performances, we first optimize νk in a heuristic manner.

6.3.1 Weight optimization

In this subsection, the weight νk in Eq. 6.5 is optimized using the first piece in

the dataset; AchGottundHerr. We analyzed the case where weight is a function

of mean activation ∥hk∥1. The assumption is that the bases of which spectral

envelopes are close to the actual ones will have larger time activity in average.

Fig. 6.2 shows the performance transitions of the average SDR with the

increase of exponent p. Here, it is assumed that νk = {∥hk∥1}
p. The envelopes

are averaged with equal weights when p = 0. It can be observed that the average

SDR is maximized when p = 5. We use this value as the weight in the rest of

the experiments.

6.3.2 Performance comparison

Table 6.1 shows the performance metrics averaged over the 10 pieces and 6 cases

of instrument combinations. It can be seen that the Klapuri et al.’s method
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Fig. 6.2 Average SDR value with the increase of exponent p.

shows the highest SAR whereas the proposed method shows the lowest SAR.

Still, however, 7.77dB is considered as a high value in general, and artifacts are

hardly noticeable in the reconstructed audio. When the performances of the

informed approach that were already presented in the section 5 are excluded,

the proposed method shows the highest SIR value with a difference of more

than 4dB from the second-highest. This difference is quite noticeable and it also

causes the difference in SDR. Klapuri et al.’s method shows better performance

as it uses the fundamental frequency and initializes the excitation prior to the

expectation-maximization algorithm. However, it still shows lower performance

compared to the proposed method.
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The bottom two results show the performance of the proposed method when

pure sounds of the instruments are added in front of the mixture. The pro-

posed method was applied to test how the performance of the proposed method

changes when the solo part of a musical instrument is partially present. The

numbers in parentheses indicate the duration of each instrument’s solo part

added in front of the mixture. Note that the solo parts are the randomly se-

lected music segments in the dataset. It can be seen that the SAR remains

constant, whereas SIR increases as the length of the solo parts increases. This

also leads to the increase of the SDR. From this observation, we can claim that

the performance of the proposed method increases if solo parts exist in the

mixture.

When compared with the informed approach, it can be guessed that the

proposed blind approach’s performance has been degraded because of the lack

of side-information. However, it is difficult to distinguish whether it is due to

the existence of solo part or the effect of hand labeling. To answer to this

curiosity, we compare the performance of the informed approach (with Bach

10) to the blind approach with the concatenated 5 second solo parts. Then it

can be observed that the informed approach can be considered equal to the

case where the solo parts of the blind approach are labled by a human. It is

interesting in that the SDR performances of the two (the fourth and the last)

approaches make a gap of 0.82dB. This difference can be interpreted as the

influence of labeling.

On the other hand, the effect of the presence of the solo part can be inves-

tigated via comparing two blind approaches: the one without the solo part and

the one with the 5 second solo part. It can be seen that the presence of the
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Table 6.1 Performances measured with the Bach 10 dataset (dB).

SDR SIR SAR

FASST (stft) 0.50 1.80 9.17

FASST (erb) 0.18 1.44 8.95

Klapuri 1.37 1.79 15.29

Informed approach (Bach 10) 4.00 7.01 9.80

Informed approach (RWC) 4.50 7.22 10.60

Blind approach 2.57 5.91 7.77

Blind approach (+1s) 2.75 6.24 7.77

Blind approach (+5s) 3.18 7.08 7.86

solo part generates a SDR gap of 0.61dB. Also, it is interesting to observe that

the presence of solo parts mainly improves SIR whereas the labeling of the solo

part improves SAR.

Fig. 6.3 shows the average SDR of each case. FASST shows the lowest SDR

when separating bassoon and violin sounds. Meanwhile, Klapuri et al.’s method

and the proposed method work poorly when separating saxophone and violin,

whereas they work best in clarinet-violin separation. It can be also seen that

the proposed method shows the highest SDR for all combinations.

6.3.3 Effect of envelope similarity

In this subsection, we investigate the possibility to separate the instrument

sounds with little difference in the spectral envelope. To this end, we have used

RWC music instrument database as in the chapter 5. To generate mixtures, we
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Fig. 6.3 Average SDR values with varying instrument combinations.

have cut an audio clip to multiple segments, each of which contains the sound

of a single note. Then we have mixed the sounds of two instruments to have 10-

second duration with 20 notes (10 notes per an instrument) placed at random

positions.

Table 6.2 shows the separation performances. It can be seen that the SDR is

the lowest when we separate the mixture of violin and viola sounds. This may be

due to the fact that the spectral envelopes of violin and viola are similar as can

be seen from their shapes. However, cello has much bigger size compared to the

two, it is relatively easy to separate cello sound from the others. Especially, the

performance of separating cello sound from violin sound is the highest because

their envelopes are least similar. Thus, we can confirm that the envelope shape
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Table 6.2 Performance of separating instruments with similar envelope.

SDR SIR SAR

Violin+Viola -0.08 1.40 8.62

Violin+Cello 2.69 4.78 9.09

Viola+Cello 2.01 3.92 9.22

affects critically to the separation performance.

6.4 Summary

In this chapter, we proposed a novel blind approach to separate harmonic in-

strument sounds by applying envelope constraints to spectral bases in NMF.

Conventional research efforts regarding instrument sound separation often used

side-information such as musical score and pitch. By extending the spectral en-

velope constraint-based informed approach presented in the previous chapter,

the proposed method successfully minimized the required information by con-

straining the spectral bases, which were accurately obtained via LPC. Also, the

proposed method outperformed the conventional methods in the comparative

evaluation with real recordings.
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Chapter 7

Conclusion and Future Work

7.1 Contributions

The final purpose of this thesis was to present the possibility of reducing the

side-information in performing the source separation. This was enabled by

adopting the Dirichlet prior which is a powerful method especially to impose

spectral and temporal characteristics in spectrogram decomposition framework.

Even though it has been used in some conventional works, its application was

limited to several tasks such as sparsity imposition. We have discovered its ap-

propriateness to be applied for various tasks that require basis shaping and

proved it through the studies presented in this thesis. On the basis of the theo-

retical backgrounds (Chapter 2), we have applied the generalized Dirichlet prior

to the harmonic-percussive sound separation task in order to impose sparsity

and harmonicity characteristics (Chapter 3) or continuity and discontinuity

characteristics (Chapter 4). Also, focusing on the spectral envelope which is
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shared among the sounds generated by an instrument, we exploited envelope

constraints on the basis vectors for harmonic instrument sound separation. Con-

sidering the difficulty of the task, we first presented informed approach which

assumes the sounds of each instrument are obtainable (Chapter 5), followed by

its extension to the blind case where only the number of instruments are known

(Chapter 6).

The major contributions of this thesis can be summarized as follows:

• Generalization of Dirichlet prior to linear algebraic framework:

We have extended the concept of Dirichlet prior to the NMF framework.

Even though it had been applied to matrix decomposition techniques in

the probabilistic framework, computational complexity was one of the

bottlenecks that interfere its broader applications. Focusing on the effect

of the Dirichlet prior on the iterative update equations of PLCA algo-

rithm, we could generalize it to the NMF framework. By doing so, we

could dramatically reduce the amount of required computations.

• Harmonic-percussive sound separation based on their spectral

characteristics: We exploited the spectral characteristics of the har-

monic and percussive sounds to separate them through spectrogram de-

composition. Since conventional methods assumed that harmonic compo-

nents are sustained for a certain amount of time, they missed to separate

time-varying harmonic components such as vibrato, glissando, and human

voice. Our method overcame this problem by focusing on the spectral as-

pects of the sounds.

• Harmonicity constraint: Sparsity (or sparseness, equivalently) con-

116



straint has been widely studied in the conventional studies to shape the

bases to have sparse structure. However, none of them have succeeded

in making the bases to have harmonic structure. We found that we can

enforce a spectrum to have harmonic structure if we can make its spec-

trum (i.e., spectrum of spectrum) sparse. The harmonicity constraint is ex-

pected to be widely applied to tasks that require to separate harmonically-

distributed components.

• Harmonic-percussive sound separation based on continuity of

basis vectors: Spectral/temporal sparseness has been the major assump-

tions in HPSS research in conjunction with continuity. Our further inves-

tigation on harmonic and percussive spectra revealed that discontinuity

rather than sparsity is more appropriate to distinguish the harcmonic and

percussive spectra. Based on this observation, we presented a novel spec-

trogram decomposition algorithm that controls the degree of continuity of

the spectral and temporal bases. Comparative evaluations with the con-

ventional methods showed the outstanding performance of this method.

• Harmonic instrument sound separation based on spectral enve-

lope constraint: Spectral envelope is one of the most important features

that characterize the timbre of a sound. Accordingly, conventional works

tried to utilize it in their source separation framework. However, none of

them successfully utilized the spectral envelope because it did not seem to

harmonize well with the spectrogram decomposition framework. We have

overcome this problem by presenting a simple way to calculate the enve-

lope that uses linear prediction. For the first step, we verified the validity
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of our method by exploiting the pre-trained envelopes of the instruments.

Then we applied the same idea to the blind scenario that makes the en-

velope and the excitation of bases separately converge. The experimental

results revealed that the proposed HISS method works better than the

conventional methods.

Despite our contributions to the field of source separation research, our

works have limitations for the following parts. First, this study only considers

single-channel case. Even though the single-channel source separation is one of

the most important ground research for the multi-channel source separation,

how to jointly manage the spatial information has to be furtherly studied. Sec-

ond, application of our approach to vocal sound separation is necessary. Since

the vocal components do not show consistent spectro-temporal characteristics

because of the pronunciation that changes continuously, further study is ex-

pected to be necessary. Finally, based on the inspiration that we have obtained

about the spectro-temporal characteristics, it is necessary to extend our research

to the general audio source separation tasks such as audio event separation. The

need for detection and classification of audio scenes and events is rapidly rising

in conjunction with the increasing attention to the artificial intelligence. In the

next section, we suggest where to start further research with some important

points regarding the aforementioned problems.
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7.2 Future work

7.2.1 Application to multi-channel audio environment

Our research shows the new possibility of utilizing the spectro-temporal char-

acteristics in the single-channel environment. In addition to the works, joint

consideration of spatial information is necessary to further improve the per-

formance. Indeed, many music source separation algorithms are known to suc-

cessfully improve the performance by effectively utilize spatial information in

addition to the single-channel source separation algorithms. In our case, we

can directly extend the proposed methods to factorize the tensor in which the

spectrogram is three-dimensionally stacked, by replacing the NMF with the

non-negative tensor factorization (NTF).

However, as our methods assume that each instrument has a common

spectro-temporal characteristic, post-processings like mastering can affect the

performance in a negative way. This problem is expected to be severe with the

HISS methods presented in chapter 5 and chapter 6. When the microphones to

record the sounds are separately installed as in the case of analyzing multiple

youtube videos of a concert [96, 97, 98], the similar problem can happen because

they all go through the different filters. Compensation of these distortions and

effects is expected to be necessary.

7.2.2 Application to vocal separation

Human voice often contains the important information especially about the

melody. However, it shows intermediate characteristics in both spectral and

temporal side [99, 100], and does not show consistent spectral envelopes. Thus,
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it is expected that the characteristics containing meaningful musical information

such as MFCC can be alternatively used. However, the feature has to be inversed

to the spectral domain in order to be able to directly apply it to the Dirichlet

prior framework.

7.2.3 Application to various audio source separation tasks

Based on the knowledge gained from the instrument sound separation, we can

extend the research to more complicated sounds such as audio events that show

various spectro-temporal characteristics. Moreover, since audio events occur di-

verse and occasionally, it is impossible to pre-train all signals. Nevertheless, an-

alyzing such events can give meaningful information to people because they of-

ten contain crucial information about the surroundings. Especially, emergency-

related sound events like glass breaking sound and gun shot sound are even

more important [101]. The HPSS method presented in the chapter 4 has been

contributed to achieving rank 2 in the task1 of Detection and Classification of

Acoustic Scenes and Events (DCASE) 2017 [102]. As our approaches have as-

sumed, focusing on the spectro-temporal characteristics can be a fundamental

basis for the further research since such characteristics are maintained even for

sound events.
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초 록

음악 신호의 음원 분리는 개별 음원의 소리들을 추출해내고 재구성하는 것을 목

표로 한다. 최근 음원 분리는 오디오 신호 처리 분야에서의 중요성과 영향력으로

인해 많은 관심을 받아왔다. 잡음 제거나 악기 별 이퀄라이징과 같은 적용분야와

더불어, 음원 분리는 전처리로 사용되었을 경우에 다양한 음악 정보 분석 알고

리즘들의 성능에도 직접적인 영향을 미칠 수 있다. 그러나 현재까지의 음원 분리

알고리즘은 만족스러운 성능을 보여주지 못하고 있으며, 이러한 현상은 음원에 대

한 공간적인 또는 음악적인 정보가 주어지지 않았을 경우 더욱 심화된다. 우리는

음원에 대한 정보가 주어지지 않은 블라인드 환경에서 스펙트로그램에 표현되는

주파수 축과 시간 축 특성을 활용하였다. 스펙트로그램 분해 알고리즘은 시간/주

파수 특성을 활용하기 적합하여 널리 쓰이지만, 그 과정에 제약 조건을 주는 것은

몇몇의 특수한 특성들에 대해서만 가능하였다. 본 논문의 주요 목표는 스펙트로

그램 분해 알고리즘의 기저들을 제약하기 위한 방법으로서의 일반화된 디리클레

사전확률의 가능성을 살펴보는 것이다. 우리는 화성악기와 타악기 소리의 분리부

터 화성악기들 간의 음원 분리까지 다양한 과업에 일반화된 디리클레 사전확률을

적용하였으며, 디리클레 사전확률의 유연한 응용 가능성과 함께 높은 수준의 성능

까지 확인할 수 있었다.

주요어: 음원 분리, 비음수 행렬 분해, 확률적 은닉 성분 분석, 디리클레 사전 확률

학 번: 2012-31246
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