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Abstract: In many types of music, percussion plays an essential role to establish the rhythm and
the groove of the music. Algorithms that can decompose the percussive signal into its constituent
components would therefore be very useful, as they would enable many analytical and creative
applications. This paper describes a method for the unsupervised decomposition of percussive
recordings, building on the non-negative matrix factor deconvolution (NMFD) algorithm. Given a
percussive music recording, NMFD discovers a dictionary of time-varying spectral templates and
corresponding activation functions, representing its constituent sounds and their positions in the mix.
We observe, however, that the activation functions discovered using NMFD do not show the expected
impulse-like behavior for percussive instruments. We therefore enforce this behavior by specifying
that the activations should take on binary values: either an instrument is hit, or it is not. To this end,
we rewrite the activations as the output of a sigmoidal function, multiplied with a per-component
amplitude factor. We furthermore define a regularization term that biases the decomposition to
solutions with saturated activations, leading to the desired binary behavior. We evaluate several
optimization strategies and techniques that are designed to avoid poor local minima. We show that
incentivizing the activations to be binary indeed leads to the desired impulse-like behavior, and that
the resulting components are better separated, leading to more interpretable decompositions.

Keywords: NMFD; automatic drum transcription; automatic drum mixture decomposition;
regularization

1. Introduction
1.1. Drum Mixture Decomposition

In this paper, we consider the task of automatic unsupervised drum mixture decom-
position, in which a percussive recording is decomposed into its constituent parts, while
transcribing the onset locations of those instruments. A hypothetical example of such a
decomposition is shown in Figure 1.

Such a decomposition enables applications such as, e.g., automatic music transcription,
automatic drum sample extraction [1], or automatic redrumming [2].

The drum mixture decomposition problem described above is closely related to the
problem of automatic drum transcription (ADT). ADT aims to detect and classify drum
sounds events within a music recording, resulting in a list of onset locations for each
transcribed instrument. Wu et al. [3] give a comprehensive overview of the state-of-the-art
in ADT, and perform an in-depth comparison of these methods. They identify two classes
of “activation-based” methods that currently dominate the state-of-the-art, namely, on
the one hand neural network based systems using Recurrent Neural Network [4,5] or
Convolutional Neural Network [6] architectures, and on the other hand methods based on
non-negative matrix factorization (NMF) [3,7]. According to their analysis, neural network-
based approaches outperform NMF-based methods in terms of transcription accuracy
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when a large and diverse training dataset with high-quality annotations is available. Such
a dataset is not always available, however, and in the absence of such a dataset, NMF-
based approaches offer a good alternative, as they do not require a data-hungry training
procedure and still provide adequate performance if appropriately initialized. They are
also more robust for drum mixtures with previously unseen instruments [3]. Unsupervised
transcription systems, such as the ones based on NMF, can furthermore be used to improve
supervised approaches by leveraging them in semi-supervised learning schemes such as
student–teacher learning [8].

Icons made by Freepik from www.flaticon.com

(a)

(b) (c)

Figure 1. Conceptual illustration of the drum mixture decomposition problem: a percussive mixture (a) is decomposed into
prototypical samples of the used instruments (b) and the corresponding onsets (c).

In this work, we build upon the non-negative matrix factor deconvolution (NMFD)
algorithm, an extension of NMF that explicitly models sounds with a temporal structure [9].
We use NMFD not only to discover the onset locations within the mixture: at the same time,
it discovers a “template” of the constituent sounds that are responsible for each set of onsets.
We furthermore use NMFD in an unsupervised fashion, i.e., after a best-effort initialization
with templates of common percussive sounds, we allow the model to freely optimize the
discovered templates to the target mixture without imposing any constraints on the sonic
characteristics of the instruments that we expect to find. This is in contrast with most of
existing ADT work, where often a predefined and fixed set of percussive instruments is
considered. Therefore, we use the term automatic drum mixture decomposition in order
to distinguish this use case from ADT, which is concerned with discovering the onset
locations of an often predefined and fixed set of percussive instruments. In the next section,
we describe the NMFD algorithm and present an overview of related work using NMFD
for drum mixture transcription and decomposition.

1.2. Non-Negative Matrix Factor Deconvolution for Drum Mixture Decomposition

The non-negative matrix factor deconvolution (NMFD) algorithm [9] can be used for
the drum mixture decomposition problem introduced in Section 1.1. It decomposes a non-
negative matrix X ∈ RN×T

≥0 with N frequency bins and T time frames into a dictionary of K
time-varying spectral templates W(k) ∈ RN×L

≥0 , each L time frames long, and an activation
matrix H ∈ RK×T

≥0 . The matrix X is modeled as the convolution of the templates with the
activation matrix:

Xn,t ≈ X̂n,t =
K

∑
k=1

L

∑
τ=1

W(k)
n,τ Hk,t−τ , (1)
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where Hk,t−τ is zero when t < τ. W(k) and H are updated iteratively using multiplicative
updates in order to minimize a divergence measure L(X, X̂), typically the least squares
loss, Kullback–Leibler (KL) divergence or Itakura–Saito divergence [10]. There also exists a
two-dimensional variant of NMFD [11].

The templates W(k) can be interpreted as short spectrograms of length L that model the
constituent sounds of the mixture. The corresponding activation curves Hk, i.e., the rows
of H, describe where in the recording these sounds occur. In order for this interpretation to
make sense, each sound should repeat itself almost unaltered throughout the recording, so
that the templates captured by W(k) can be “copied and pasted” at locations specified by Hk.
This is a reasonable assumption for percussive instruments: hits on the same instrument
will all sound approximately the same and will decay approximately equally fast, provided
that the playing technique is consistent.

NMFD has already been applied successfully for automated drum transcription and
drum separation tasks [1,10,12–15]. For example, Laroche et al. [13] use a combination of
NMF and NMFD in order to perform harmonic-percussive sound separation, modeling the
non-percussive sounds using NMF and the percussive sounds using NMFD with predefined
and fixed templates W(k). The percussive template dictionary is constructed by hand prior
to decomposition, and the separated harmonic and percussive audio are obtained by means
of Wiener filtering [16]. Lindsay-Smith et al. [12] investigate the use of sparsity constraints
on the activations H in order to obtain impulse-like onsets. Ueda et al. [14] rewrite NMFD
for drum transcription within a Bayesian framework, and impose a constraint on the time-
quantized score S, which is derived from the activations H.

The aforementioned works apply NMFD to discover the activations H, for the purpose
of ADT or audio source separation. In other works, NMFD has also been applied to
capture the constituent drum samples in a recording as faithfully as possible in W; this is
typically done in a score-informed setting, wherein the exact onsets of each instrument
(and consequently H) are assumed to be known. NMFD is used as such in Dittmar and
Müller [15], where the extracted percussive sounds are subsequently used to validate a
transient restoration technique that is applied when converting spectral representation
back to an audible waveform. In Dittmar and Müller [1], the authors apply NMFD to
estimate the drum sounds in the Amen Break, a well-known drum solo recording, in a
score-informed setting. They observe that the unconstrained application of NMFD can lead
to cross-talk artifacts, and they therefore propose two extensions to purify the extracted
templates. Vande Veire et al. [17] apply NMFD in an uninformed setting, and they use an
ad hoc modification of the update procedure for the templates W(k) in order to ensure that
only a single drum hit is captured per template when using a long template length L.

While the cited works illustrate the effectiveness of NMFD for drum mixture transcrip-
tion and (score-informed) decomposition, they also share the shortcoming that NMFD is
usually applied in a constrained setting. When NMFD is applied for ADT, i.e., to discover
the activations H, then the templates W are usually predefined and kept fixed during
optimization. This limits the application to drum mixtures where a reasonably accurate
approximation of the constituent drum sounds is known in advance. On the other hand,
when NMFD is applied to discover the constituent sounds, i.e., the templates W, then this
is done in a score-informed setting, where H is assumed to be known in advance. With the
works in Ueda et al. [14] and Vande Veire et al. [17] as exceptions, we note the absence
in the literature of a successful application of NMFD where both W and H are optimized
jointly (Note that there are examples in the literature of the application of (regular) NMF for
automatic drum transcription with a joint optimization of the (one-dimensional) templates
W and the activations H [7,18]). Such a joint optimization could be useful, though, as it
would allow to decompose a drum mixture for which neither the exact onsets H nor a
sufficient approximation of W are available in advance.

In this paper, we therefore investigate the application of NMFD to jointly decompose
a drum mixture into its templates W and their activations H. However, we note from
previous work on NMFD for drum mixture decomposition [1,12,17] that applying NMFD
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unconstrainedly can lead to undesired artifacts or decompositions. Consequently, addi-
tional measures are required to guide the optimization to the desired, musically valid,
and informative solution. In this work, we therefore enforce impulse-like behavior on the
activations H, as detailed in Section 1.3.

1.3. Motivation for a Sigmoidal Model for the Activations

Percussive instruments are hit very briefly by some percussion mallet or beater; this
implies that the discovered activations should be impulse-like, as the produced sounds
results from an excitation that itself is an impulse. This is not enforced by the original
NMFD model, however; consequently, when applied to drum mixtures, we observe that
NMFD often does not lead to the expected impulse-like activations, as shown in Figure 2.
This example illustrates that NMFD discovers activations with a sharp initial peak when a
percussive hit occurs in the mixture, succeeded by a pseudo-exponentially decaying “tail’
of small activation values. There are also small activations throughout each activation
curve that do not succeed a larger peak, which makes the decomposition hard to interpret:
do these activations correspond to a detected drum hit, or not?

Figure 2. Decomposition of a percussive recording using non-negative matrix factor deconvolution
(NMFD). The activations are not impulse-like, and contain noisy regions where it is difficult to detect
individual drum hits.

To address these shortcomings, additional constraints are needed to guide the de-
composition process. One approach would be to enforce an L1 sparsity constraint on
the activations H [12,19]. This encourages the algorithm to “move” as much information
as possible from the activations H to the templates W, which would lead to sparser and
potentially more impulse-like activations. This approach has a drawback, however, i.e., it
also penalizes correct activations. This biases the model to capture sequences of succes-
sive drum strokes within a single template, in order to keep the activations as sparse as
possible [12,17].

In this paper, we use an alternative approach in order to achieve the desired impulse-
like behavior: we enforce that the activations take binary values, i.e., either an instrument
is hit, which yields an activation value of 1, or an instrument is not hit, which yields an
activation value of 0. The relation between this constraint and the desired impulse-like
behavior becomes clear when considering that enforcing such binary activations rules
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out the aforementioned “tails” and unclear activations: either an instrument is hit, or it is
not, and values in-between 0 (not hit) and 1 (hit) are discouraged. An advantage of this
constraint is that it does not penalize legitimate peaks, as opposed to a sparsity constraint.

To achieve the proposed binary activations, we redefine the activations in the model as
the logistic function of a logit-activations matrix, and we impose a regularization term that
pushes the activations towards the saturating regions of the logistic curve during optimiza-
tion. As such, non-binary activation values are discouraged, and the activation values will
be pushed to either 0 or 1 as much as possible. Of course, different sources can be present
in the mix at different volumes: this is modeled by multiplying the binary activations with
a per-component amplitude factor. A log-power spectrogram representation is used, as this
further reduces the impact of velocity differences and emphasizes the binary behavior
of the onsets. Note that we choose to maintain a continuous transition between the two
saturated states, instead of choosing for a fully discrete quantization of the activation
values: this ensures that the model and objective function remain differentiable so that the
optimization procedure is tractable, and additionally allows some flexibility in activation
values. Through evaluation on a public dataset, we show that these adaptations lead to
decompositions with the desired impulse-like activations, and we illustrate by means of an
example that this can make the obtained unsupervised decompositions more interpretable.

1.4. Contributions

The main contributions of this paper are the following.

• We reformulate the activations in the NMFD model as the product of a per-component
amplitude factor, representing the relative volume of each component, with the time-
varying activations for each component.

• These time-varying activations are defined as the output of a saturating sigmoidal
function, and we propose a novel regularization term that combined with these
saturating activations leads to binary activations. We show that in the context of
automatic drum mixture decomposition, the activations are not only binary, but also
become impulse-like as a consequence of this method.

• We propose different strategies and techniques to optimize the proposed model,
and we rigorously evaluate their efficacy in minimizing the overall objective function
for the decomposition.

• We propose metrics to evaluate the unsupervised decomposition of drum mixtures.
With these, we show that the proposed algorithm achieves more impulse-like activa-
tions compared to unconstrained NMFD and sparse NMFD, making it better suited
to the properties of percussive mixtures, while yielding a good decomposition and
spectrogram reconstruction quality.

1.5. Structure of This Paper

The remainder of this paper is structured as follows. Section 2 introduces the modified
NMFD algorithm and the procedure that is used to optimize this model. Section 3 de-
scribes the baseline models, dataset, metrics, and experimental details. Section 4 discusses
the experimental results, and Section 5 concludes the paper and outlines directions for
further research.

2. NMFD with Saturating Activations
2.1. Sigmoidal NMFD Model

The logistic function σ(·) is defined as

σ(x) =
1

1 + exp(−x)
. (2)

For large positive values of the input, σ(x) saturates to 1, and for large negative values
of the input, it saturates to 0. If y = σ(x), then x is also called the logit of y.
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We rewrite the NMFD model using saturating activations:

Xn,t ≈ X̂n,t =
K

∑
k=1

L

∑
τ=1

W(k)
n,τ σ(ak)σ(Gk,t−τ), (3)

with X ∈ RN×T
≥0 , W(k) ∈ RN×L

≥0 , G ∈ RK×T and a ∈ RK. X and W(k) are scaled to
maximum amplitude 1. By comparing Equations (1) and (3), we see that for the sigmoidal
model, Hk,t = σ(ak)σ(Gk,t). The sigmoidal activations σ(Gk,t) capture the onsets for each
component k, while the amplitudes σ(ak) capture the relative volume of each component,
as different components W(k) and W(l) can be present at different volumes in the mix. Note
that the logit-activations Gk,t and the logit-amplitudes ak can take negative values.

2.2. Objective Function

The main objective of the decomposition is to minimize the divergence between the
input spectrogram and the approximation. In this paper, we use the KL divergence:

LKL(X, X̂) = ∑
n,t

Xn,t ln
(

Xn,t

X̂n,t

)
− Xn,t + X̂n,t. (4)

We furthermore want the activations to be binary in nature: for each t, the template
W(k) should either be fully active, σ(Gk,t) ≈ 1, or not active at all, σ(Gk,t) ≈ 0 (Note that
the logistic function σ(x) is never exactly equal to either 0 or 1 for real values of the logit x;
this is only the case in the limit for x → −∞ and for x → +∞, respectively. Therefore, it
would be more correct to say that the activations take approximately binary values.). In other
words, σ(Gk,t) must be in a saturating region of σ for all k and t. To achieve this, we define
an additional regularization term LG:

LG(G) = ∑
k,t

exp

{
−
(

Gk,t − µk

2

)2
}

, (5)

µk = σ−1
(

αk max
t

(σ(Gk,t)) + (1−αk)min
t
(σ(Gk,t))

)
. (6)

Here, σ−1 is the inverse of the logistic function, and αk = 0.5. This regularization term
encourages all logit activations Gk,t of the kth component to lie as far away as possible from
the logit µk of the center activation value σ(µk), and LG(G) is minimal when all activations
saturate to either 0 or 1.

The sigmoidal NMFD model, Equation (3), thus optimizes the following objective
function:

Ltot(X, X̂, G) = LKL(X, X̂) + γLG(G). (7)

The hyperparameter γ weighs the relative importance of the regularization term LG
with respect to the spectrogram reconstruction objective LKL; in this paper, we set γ = 1.

2.3. Optimization Procedure
2.3.1. Optimization Procedure Overview

Like the original NMFD algorithm [9], the model parameters W(k)
n,τ , Gk,t and ak are

optimized in order to obtain a minimal loss Ltot by means of an iterative optimization
procedure. First, the parameters are initialized as explained in Section 3.2. Then, G, W and
a are updated iteratively as follows:

1. Calculate X̂ using the most recent estimates for W, G and a, as in Equation (3);
2. Update the logit-activations G, see Section 2.3.2, Equation (9);
3. Calculate X̂ again with the new estimate for G;
4. Update the templates W(k), see Section 2.3.3, Equation (12);
5. Calculate X̂ again with the new estimate for W;
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6. Update the component-wise amplitudes a, see Section 2.3.4, Equation (13);
7. Repeat these steps until convergence.

2.3.2. Additive Gradient-Descent Update for G

Ltot is minimized with respect to G using gradient-descent:

Gk,t ← Gk,t − ηG
∂Ltot(X, X̂, G)

∂Gk,t
(8)

= Gk,t − ηG

(
∂LKL

∂Gk,t
+ γ

∂LG
∂Gk,t

)
. (9)

The learning rate ηG is a hyperparameter of the optimization procedure. The partial
derivatives in Equation (9) expand to (see Appendix A.1):

∂LKL

∂Gk,t
= ∑

n,τ

(
1−Xn,t+τ

X̂n,t+τ

)
σ(Gk,t)σ(−Gk,t)W

(k)
n,τ σ(ak), (10)

∂LG
∂Gk,t

≈ −(Gk,t − µk) exp

{
−
(

Gk,t − µk

2

)2
}

. (11)

Note that we regard µk as a constant in the derivation of Equation (11). The expression
for ∂LG

∂Gk,t
is thus only approximately correct when Gk,t = maxt′(Gk,t′) or Gk,t = mint′(Gk,t′).

We do so in order to avoid instabilities in the updates for the ultimate values of the
activations, see Appendix A.1 for details.

2.3.3. Multiplicative Update for W

W is optimized using a multiplicative update rule, which ensures that W remains strictly
positive. Its derivation from Equation (7) is analogous to that in Schmidt and Mørup [11], see
Appendix A.2. This gives

W(k)
n,τ ←W(k)

n,τ

∑t σ(ak)σ(Gk,t−τ)
(

Xn,t
X̂n,t

)
∑t σ(ak)σ(Gk,t−τ)

. (12)

After each update, W(k) is scaled to maximum amplitude 1 for each k.

2.3.4. Additive Gradient-Descent Update for a

Ltot is minimized with respect to a using gradient-descent:

ak ← ak − ηa
∂Ltot(X, X̂, G)

∂ak
, (13)

where ηa is the learning rate and with ∂Ltot
∂ak

given by (see Appendix A.3)

∂Ltot

∂ak
= σ(−ak)∑

n,t

[(
1−Xn,t

X̂n,t

)
∑
τ

W(k)
n,τ σ(ak)σ(Gk,t−τ)

]
. (14)

2.3.5. Optimization Strategies to Escape Local Minima

The model parameters are updated by iteratively applying Equations (9), (12), and (13).
This is, however, a delicate task, as it is prone to converge to poor local minima due to the
regularization term LG. In the update for G, this regularization namely pushes Gk,t away
from µk, see Equation (11). If the algorithm has not converged yet, then this prevents new
peaks to grow or existing peaks to shrink, even if this would eventually lead to a better
optimum. Imposing LG too strongly or too early during optimization could therefore
hinder convergence to a better local minimum.
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We therefore propose and evaluate three optimization strategies that could help to find
better local minima, as detailed below. In general, the optimization happens in different
stages: an unconstrained warm-up stage , an explore-and-converge stage, and an ultimate
finalization stage.

The goal of the unconstrained warm-up stage is to make the algorithm converge
from its initialization (see Section 3.2) to a rough approximation of the spectrogram and a
first estimation of the activation functions. During this stage, γ = 0, so that in this initial
exploration, the activations are free to converge to the values that best approximate the
spectrogram. We furthermore set ηG = 0.5, and ηa is set to 0.02. The warm-up stage is
30 iterations long. Empirically, this leads to good results in our experiments.

After the warm-up stage comes the explore-and-converge stage, wherein the pro-
posed saturation regularization is applied and where an optimal solution is sought for
the decomposition problem. In this paper, we consider the following strategies to execute
this stage:

• Optimization strategy 0: straightforward optimization.
In this strategy, LG is applied with γ = 1.0 at each iteration, and µk is calculated as in
Equation (6) with αk = 0.5.

• Optimization strategy 1: staged application of LG.
In this strategy, we periodically enable and disable LG by alternating between “sat-
uration sub-stages” and “fine-tuning sub-stages”, which each last several iterations.
During a saturation sub-stage, γ = 1, so that the activations are pushed towards sat-
uration. During a fine-tuning sub-stage, γ = 0, so that the model has time to make
peaks grow or shrink against the direction imposed by LG, in order to escape poor
local minima.

• Optimization strategy 2: moving µk throughout optimization.
In this strategy, we imposeLG at each iteration, i.e., γ = 1.0 for each update. In order to
avoid squashing small peaks too early and additionally provide an incentive to escape
local minima, we move around the “center point”µk of LG (Equation (6)) by changing
αk in each iteration. More specifically, for each update of G and component k, we set αk
to a random value drawn from a uniform distribution over the interval (0.05, 0.25). We
hypothesize that setting αk to a relatively low value (αk < 0.5) helps to boost relatively
small peaks, and that randomly sampling αk could help to escape local optima.

• Optimization strategy 3: combine strategy 2 and strategy 3.
This strategy combines the two aforementioned strategies: LG is enabled and disabled
alternatingly, and when it is applied, µk is moved around by sampling αk from a
uniform distribution over (0.05, 0.25) for each update of G.

During the explore-and-converge stage, we set ηG = 0.2, as we find that this leads to a
good convergence in our experiments. The learning rate ηa for the amplitudes a remains
unchanged, i.e., ηa = 0.02. We perform 180 iterations in total during this stage. For strategy
1 and strategy 3, each sub-stage is 30 iterations long, so that the explore-and-converge stage
consists of three repetitions of alternating saturation and fine-tuning sub-stages.

The finalization stage concludes the optimization process. It consists of a final 30 iter-
ations, in which we set γ = 1, ηG = 0.1, ηa = 0.02, and αk = 0.5. This allows the algorithm
to converge to the final solution.

In our experiments, we found that normalizing the gradients of G and a in Equations (9)
and (13) to a maximum amplitude of 1 for each component is important to ensure that the
activations in each activation curve Gk grow equally quickly. Otherwise, one component
could grow much quicker than the others and start to dominate the decomposition, often
resulting in a poor local optimum of Ltot where only one component is active (also see
Section 4.2).
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3. Experimental Set-Up
3.1. Baseline Models

We consider two baseline models to compare with. The first baseline model uses the
original NMFD formulation from Equation (1) without additional constraints. The second
baseline adds an L1 sparsity constraint with weighing factor λ to the objective function,
Equation (4):

L(X, X̂, H) = LKL(X, X̂) + λLL1(H) (15)

= LKL(X, X̂) + λ ∑
k,t
|Hk,t|. (16)

In our experiments, we consider sparsity weights of λ = 1.0 (strong sparsity con-
straint), λ = 0.1 (medium sparsity constraint), and λ = 0.01 (weak sparsity constraint).

For both the unconstrained NMFD baseline and the L1-constrained baselines, we use
the update rules from Schmidt and Mørup [11], as we observed numerical instabilities
for the original NMFD update rules from the work in Smaragdis [9] when W(k) contains
columns that are much smaller in amplitude than other columns, i.e., when the sample
captured by W(k) is silent at certain points. Similar observations were made in Lindsay-
Smith et al. [12]. As for the sigmoidal model, 240 update iterations are performed. We
furthermore evaluate two optimization strategies for the sparse baselines. In the first, L1
regularization is applied throughout the entire optimization, starting from the first iteration.
In the second, the L1 regularization is disabled for the first 30 iterations, i.e., λ is set to
0. The reason for this second optimization strategy is that applying the L1 regularization
too early might hinder proper convergence. This allows to evaluate whether the baselines
would benefit from an “unconstrained warm-up stage” as used for the sigmoidal model.

For all baselines, the spectral templates W(k) are initialized in the same way as for the
sigmoidal model, see Section 3.2, and are scaled to max amplitude 1 after each update as in
the sigmoidal model. The activations H are initialized with random values drawn from a
uniform distribution over (0, 10−3).

3.2. Model Initialization

L is set to 50, which at a sample rate of 44,100 Hz and short-time Fourier transform
(STFT) hop size of 256 corresponds to a template length of 290 ms. We set the number of
components K to the number of percussive instruments in the mixture, which we assume
is known in advance.

The templates W(k) are initialized using an averaged spectrogram template of drum
hits of four common drum instruments: kick drum, snare drum, hi-hat, and crash cymbal.
These average templates are created using a small dataset of individual drum hits [20],
by averaging the aligned spectra of the single-hit samples of the desired instrument type.
The first four components are initialized with a kick, hi-hat, snare, and crash template;
if K > 4, then the excess components are initialized by alternating between the hi-hat
template and the snare drum template. Each W(k) is also rescaled to a maximum amplitude
of 1.

For the sigmoidal model, the logit-activations Gk,t are initialized with random values
drawn from a uniform distribution over the interval (−5,−4) so that σ(Gk,t) ∈ (0.0067, 0.018).
The logit-amplitudes ak are initialized to 2, so that σ(ak) ≈ 0.9.

3.3. Dataset

The algorithm is evaluated on the ENST dataset [21], which contains annotated
recordings of percussion-only pieces performed by three drummers on three different drum
kits using a variety of beaters (sticks, rods, mallets, and brushes). We only use the wet mix
of the “phrase” recordings, i.e., short drum sequences in various popular styles. There
are 135 phrases in total, varying in tempo (labeled “slow”, “medium”, and “fast” in the
dataset), and complexity (“simple”, i.e., straight and without ornaments, and “complex”,
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i.e., with fill-ins and ornaments). We modify the recordings slightly by cutting away the
last hit of each recording. The motivation for this is that the last hit often “rings out”, i.e., it
has a long decay, which cannot be appropriately modeled in the NMFD paradigm, given
the fixed and limited template length L (Note that, while hits on the same component as
the last hit should have the same decay time, we do not observe any issues with modeling
these hits throughout the mixture. We note two reasons for this. First, when an instrument
with a long decay is hit, it is typically hit again before the first hit can fully “ring out”, i.e.,
its decay is “cut short” by the second hit. Second, the low-volume “tail” of the decay is
often masked by the sound of subsequent hits on other components. These two effects
effectively reduce the template length L that is required to model the sounds in the mixture,
except for the last hit where these effects do not apply. An alternative solution would be to
increase L in order to fully capture these hits with a long decay within a single template.
We choose not to do so, however, as this makes the optimization of the NMFD algorithm
hard and prone to error, as discussed in Vande Veire et al. [17].).

3.4. Spectrogram Representation

For the experiments in this paper, we use a custom Mel-frequency-scale log-power
spectrogram representation. This spectral representation is designed to reduce computation
time to obtain the decomposition, while maintaining a sufficiently fine resolution in order
to distinguish all relevant sounds in the mixture.

The audio sample rate is 44,100 Hz. First, the STFT power spectrogram X = |STFT(y)|2
of the audio y is calculated using a frame length of 2048, a hop size of 256, and a Hann
window over the frames. Then, the values of the STFT spectrogram are rescaled to the range
(0, 1), and they are summed along the frequency axis over N adjacent, non-overlapping
frequency bands. The boundary frequencies of these bands are spaced according to a
Mel-scale between 0 Hz and 11,025 Hz. Finally, a small value εpre-dB is added to the power
spectrogram, which is then converted to a decibel scale and scaled to the range (εpost-dB, 1).

Using the Mel scale makes the low to mid frequencies much more prominent in
the resulting spectrogram as compared to a linear scale spectrogram, where a higher
proportion of the bins would be allocated for higher frequencies. Using non-overlapping
windows ensures that each STFT bin only contributes to one Mel-scale bin, so that the
resulting spectrogram is less blurred. We find that these properties help to better distinguish
between different instruments, especially those with a prominent presence in the low and
mid frequencies (kick drum, snare drum, toms, bongos, etc.). A small number of bins N
significantly reduces the time needed to decompose the spectrogram. We find that a limited
number of bins is sufficient for a good decomposition and choose N = 25. Adding a small
value εpre-dB before the decibel transformation masks low-valued noise, so that the resulting
dB-scale spectrogram optimally uses its value range to differentiate between relevant power
differences, making it clearer and easier to decompose. Scaling the spectrogram values to
values in (εpost-dB, 1) after transforming it to a dB scale is required for the sigmoidal model
to be able to approximate all spectrogram values, while a minimum value of εpost-dB is
used to avoid numerical instabilities in various computations. We set εpre-dB = 10−7 and
εpost-dB = 10−9.

3.5. Evaluation Metrics

In our evaluation, we wish to quantify the quality of unsupervised decompositions
of drum mixtures, and compare these quantities for the outcome of the sigmoidal model
and of the baseline models. Note that the unsupervised nature of the decomposition
makes it more difficult to rely on ground-truth transcriptions of the music, as due to the
unsupervised character there is no guarantee that the extracted components would match
one-to-one with instruments in the music. Turning NMFD into a transcription algorithm
would require incorporating some supervision mechanism that guides the components W(k)

to the desired musical interpretation, which is beyond the scope of this paper. Therefore,
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alternative evaluation metrics need to be used that quantify the quality or “usefulness” of
such unsupervised decompositions.

We consider a decomposition to be of a good quality if

• the spectrogram is approximated well;
• all onsets in the mixture are detected, with as few false onset detections as possible;
• different components have different activation patterns: this means they contribute to

the spectrogram at different times, which might indicate a more meaningful differenti-
ation between components; and

• the activations are impulse-like.

The metrics to quantitatively assess these criteria are described in the following
subsections. Some metrics are calculated over the activations Hk,t; when evaluated for the
sigmoidal model, Hk,t should be substituted by σ(Gk,t) in these metrics.

3.5.1. Spectrogram Reconstruction Quality

The spectrogram reconstruction quality is measured using the mean absolute error
(MAE) between the target spectrogram and its reconstruction:

MAE(X, X̂) =
1

NT ∑
n,t

∣∣Xn,t − X̂n,t
∣∣. (17)

As all spectrogram values are scaled between (εpost-dB, 1), MAE values of different
spectrograms can be compared.

3.5.2. Overall Onset Coverage

We measure whether each onset in the drum mixture is accounted for by the decom-
position, although without considering instrument information. First, peak picking is
performed on each row of H. A value Hk,t at an offset t is considered to be a peak if it
satisfies three conditions [22]:

1. Hk,t = max(Hk,t−τmax :t+τmax),
2. Hk,t ≥ mean(Hk,t−τavg :t+τavg) + θthr maxt(Hk,t),
3. t− tprev > τwait,

where tprev is the offset of the last peak detected before t and where the hyperparameters
are set as τmax = 5 (corresponding to 29 ms), τavg = τwait = 10 (58 ms). We vary the value
of the peak picking threshold θthr within the range of (0.1, 0.9) in order to evaluate its
influence on the metric proposed below.

The detected peaks are then shifted by the “template offset” τ
(k)
off , which is calculated

as the smallest value of τ for which the envelope of W(k), w(k)[τ] = ∑n W(k)
n,τ , is larger than

the average envelope value: τ
(k)
off = min

(
{τ : w(k)[τ] ≥ 1

L ∑τ w(k)[τ]}
)

. This is necessary

as the percussive hit modeled by W(k) might be shifted by some offset τ
(k)
off in the template.

These peaks are then compared with the ground-truth annotations. A peak in the de-
composition is considered a true positive if there is a ground-truth onset of any instrument
within the tolerance interval of 29 ms around that peak; otherwise, it is a false positive.
Ground-truth annotations for which there is no peak detected within the tolerance interval
around it are false negatives. The precision, recall, and F-measure are calculated using
these true positive, false positive, and false negative counts.

Note that this metric allows a ground-truth onset to be “covered” by multiple acti-
vation peaks and vice versa, and that peaks from any component can match with onsets
from any instrument. We do not attempt to match components with specific instruments
in the ground-truth annotations, as this is a difficult task that is prone to error and ambi-
guity, and we consider this beyond the scope of the unsupervised decomposition that is
considered in this paper.
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3.5.3. Activation Curve Similarity

This metric quantifies how different the activations from each component are from the
activations of any other component in the decomposition. We consider a decomposition to
be of higher quality if the different activation curves are disentangled, i.e., they activate
often at distinct times in the mixture. Each component then models drum hits that are not
modeled by other components. On the other hand, a high similarity between activation
curves indicates that multiple components often contribute to the same onsets, so that it
could be difficult to figure out the relationship between instruments in the mixture and
components in the decomposition.

Note that we expect the activations in the decomposition to have at least a low amount
of similarity, as the onsets in different rhythmic instruments are often correlated and will
coincide at least sometimes. However, an exceedingly high similarity value would be
unexpected, as we expect distinct instruments to have at least some degree of uniqueness
to their activations, and it is this undesired behavior that we wish to detect by using
this metric.

To quantify activation curve similarity for a given activation matrix H, each activation
curve is first smoothed and made non-zero using a running mean operation:

H̄k,t =
1

2M + 1

M

∑
u=−M

Hk,t+u + εH . (18)

We set M to 5, corresponding to a symmetric tolerance interval of 29 ms around each
t. This smoothing allows to better compare two activation curves that capture the same
onsets but that are slightly shifted with respect to each other. Then, the cosine similarity
is calculated between every pair of rows in H. The small value εH = 10−52 ensures that
comparing one row of H with an all-zero row in H still results in a meaningful metric value,
for example, comparing two all-zero rows in H should result in a similarity value of 1. After
calculating the pairwise similarity of all rows in H, we consider the minimum, mean and
maximum similarity between any pair of rows to quantify the amount of differentiation
between the activations for each decomposition.

A high value for the maximum similarity indicates that there are at least some com-
ponents that detect more or less the same hits in the mixture, which is undesirable.

3.5.4. Peakedness Measure

This metric quantifies to what extent a decomposition is impulse-like, by comparing
the original activation curve with a processed version in which peaks are accentuated and
small values are removed. We define the half wave rectification operation HWR(x)[t] as

HWR(x)[t] = max(x[t]− x̄[t], 0), (19)

in which x̄ is the smoothed version of x, see Equation (18). We furthermore define the
compansion (compression-expansion) operation compκ(x)[t] with exponent κ as

compκ(x)[t] = max
u

(x[u])
(

x[t]
maxu(x[u])

)κ

. (20)

If κ > 1, then compκ(x) makes relatively small values even smaller compared to the
maximum value of x, accentuating large values. If κ < 1, then compκ(x) makes relatively
small values larger. We then calculate the peak-accentuated version of Hk as

Hpeaks
k,t = compκ−1(HWR(compκ(Hk)))[t], (21)

with κ = 3. This operation should be understood as follows. First, the inner compansion
accentuates the highest peaks in Hk, while making smaller peaks even smaller. The HWR
operation then removes values that are smaller than the running mean around it, which
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further accentuates peaks and removes low-valued noise. The outer compansion then
restores the peaks to their original relative scale, as long as they were not removed by the
HWR operation.

The peakedness of an activation curve Hk,t is defined as the ratio ∑t H(peaks)
k,t /∑t Hk,t.

If the ratio of the sum of values of H(peaks)
k,t and Hk,t is close to 1, then Hk,t changed very

little by the impulse-accentuating operation, i.e., it was already quite impulse-like itself.
If the ratio is lower, however, then around the peaks in Hk,t there must be low values that

are removed by the HWR operation when calculating H(peaks)
k,t , meaning that the activations

are less impulse-like.
We report the average of the peakedness values of all activation curves of H.

3.6. Implementation Details

Our NMFD implementation is loosely based on the NMFD implementation from López-
Serrano et al. [23]. All code for this paper is made available on a public online reposi-
tory [24].

4. Results

This section presents the evaluation of our method. Sections 4.1 and 4.2 present the
evaluation on the ENST dataset. Section 4.3 presents a case study to visually illustrate the
effects of our method.

The purpose of our evaluation is twofold. The first objective is to compare the perfor-
mance of the sigmoidal model and of the baselines in terms of the proposed evaluation
metrics. This comparison is presented in Section 4.1 and Table 1. In this evaluation, the sig-
moidal NMFD model is optimized with a simplified and straightforward optimization
strategy, i.e., optimization strategy 0 with a constant learning rate ηG. Comparing with this
simplified algorithm helps us understand to what extent the observed improvements are
caused by the proposed model itself, rather than by certain elements in the optimization
strategy (also see Section 4.2). For completeness, Table 1 also reports the results for the
sigmoidal model optimized with the best performing optimization strategy, i.e., strategy 2
with γ set to 0.1 during the explore-and-converge stage.

The second objective of the evaluation is to provide an in-depth analysis of the
additional gains that can be achieved by using more advanced optimization strategies.
This analysis is provided in Section 4.2. We furthermore perform an ablation study to
quantify the impact of several techniques we use in the optimization of our model. From
this evaluation, we conclude that more advanced optimization strategies and techniques
help to achieve better local minima of the objective function Ltot.

4.1. Evaluation on the ENST dataset

Table 1 shows the results of the evaluation on the ENST dataset.
As discussed in Section 3.1, the baselines are evaluated once with and once without an

“unconstrained warm-up stage”. We found that performing a warm-up stage for optimizing
the sparse baselines leads to virtually the same results as not using that technique, i.e., the
outcome in terms of the metrics reported in Table 1 is exactly or almost exactly the same.
For the sake of conciseness and not cluttering the Table, we therefore omit the results for the
sparse baselines with a warm-up stage from Table 1. We conclude that the sparse baselines
are not hindered in their convergence by applying regularization from the beginning of
the optimization. The conclusions drawn in the following evaluation are therefore valid
for all sparse baselines, regardless of whether or not an unconstrained warm-up stage has
been applied.



Electronics 2021, 10, 284 14 of 26

Table 1. Comparison of the performance of the NMFD baseline, the sparse NMFD baselines, and the proposed sigmoidal
NMFD model on the evaluation metrics. For each metric, the mean value over all 135 phrases is shown (standard deviation
between parentheses). The results for the peakedness metric for the strong sparsity baseline (*) are computed after discarding
any all-zero activation curves in H. For each metric, the most optimal value is shown in bold in each column.

Algorithm MAE Overall Onset Coverage Activations Similarity Peakedness
Pr. Rec. F-Score F-Score

(θthr = 0.5)
Min Mean Max Mean

Unconstrained NMFD 0.025
(0.003)

0.76
(0.15)

0.94
(0.09)

0.83
(0.12)

0.63
(0.17)

0.45
(0.12)

0.63
(0.10)

0.79
(0.12)

0.42
(0.02)

NMFD + L1 sparsity
(λ = 0.01)

0.026
(0.003)

0.77
(0.15)

0.94
(0.09)

0.84
(0.12)

0.61
(0.18)

0.39
(0.13)

0.59
(0.10)

0.77
(0.12)

0.43
(0.02)

NMFD + L1 sparsity
(λ = 0.1)

0.037
(0.005)

0.76
(0.16)

0.91
(0.09)

0.82
(0.12)

0.50
(0.18)

0.04
(0.10)

0.19
(0.10)

0.65
(0.21)

0.45
(0.08)

NMFD + L1 sparsity
(λ = 1.0)

0.071
(0.009)

0.88
(0.15)

0.84
(0.13)

0.85
(0.13)

0.35
(0.17)

0.15
(0.31)

0.57
(0.25)

0.90
(0.26)

0.46 *
(0.13)

Sigmoidal NMFD
(strategy 0, γ = 1.0,

constant ηG)

0.044
(0.006)

0.83
(0.17)

0.78
(0.13)

0.79
(0.13)

0.70
(0.15)

0.07
(0.12)

0.23
(0.10)

0.51
(0.14)

0.72
(0.06)

Sigmoidal NMFD
(strategy 2, γ = 0.1)

0.035
(0.004)

0.79
(0.19)

0.88
(0.11)

0.82
(0.14)

0.73
(0.13)

0.12
(0.11)

0.28
(0.10)

0.56
(0.15)

0.67
(0.06)

Regarding the spectrogram reconstruction quality, the average MAE is low for most
models, i.e., all spectrograms are approximated well. For the high sparsity baseline,
the mean MAE is approximately twice as high as for the other models, suggesting that
the L1 regularization in this baseline is too strong and leads to a worse spectrogram
approximation. On average, the approximations by the medium sparsity baseline are
comparable to those by the sigmoidal model in terms of MAE, and slightly worse than
the unconstrained NMFD algorithm. This result is expected, as the unconstrained model
optimizes only the reconstruction loss LKL, while the other models have to take additional
constraints into account.

In terms of onset coverage, all algorithms perform similarly in terms of F-measure,
with slight differences in precision and recall. The baseline NMFD model and the weak
sparsity model give a better recall, while the sigmoidal model and the high sparsity baseline
lead to an improved precision. The sigmoidal model and high sparsity baseline thus yield
fewer false positives at the expense of missing more ground-truth hits (The precision is
equal to the ratio of the number of peaks in the activations that “match” a ground-truth hit
over the total number of detected peaks. Therefore, an improved precision means that a
higher proportion of peaks in the activations correspond with a ground-truth hit. The recall
is equal to the ratio of the number of ground-truth hits that were detected, i.e., that have a
“match” in the activations, over the total number of ground-truth hits. For the sigmoidal
model and high sparsity baseline, the recall is lower than for the other baselines, but the
precision is higher: hence, on average, fewer ground-truth hits are detected, i.e., a lower
recall, but the peaks that are detected in the activations are more likely to correspond with
a ground-truth hit, i.e., a higher precision). Based on the low-threshold onset coverage
metrics, all algorithms seem to perform approximately equally well in detecting the onsets
in the mixture.

This conclusion changes when a high threshold is used for peak picking. Table 1
shows the F-measure when the peak-picking threshold is changed to θthr = 0.5, i.e., in
each activation curve, a peak is only considered if it is at least half as high as the largest
value in the curve. In this case, the F-measure drops for all models; however, the decrease
is much more severe for the baseline models, whereas the performance of the sigmoidal
model remains relatively stable. The decrease in performance is most pronounced for
the strong sparsity baseline. In other words, the activations discovered by sigmoidal
NMFD are the least sensitive to the specific choice of peak picking threshold, which is an
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indirect indication that the activations are approximately equally high, i.e., they exhibit
binary behavior. In the other baselines, there is more variation in peak height within each
activation curve, and this increases with increasing L1 sparsity. For completeness, Figure 3
shows the evolution of the F-measure as a function of the peak picking threshold θthr.
This again shows that the performance decrease for increasing θthr is more severe for the
baselines with a stronger sparsity term, whereas the sigmoidal model maintains a much
more stable performance for increasing θthr.

Figure 3. Onset coverage F-measure as a function of the peak picking threshold θthr.

In terms of activation curve similarity, both the unconstrained NMFD baseline and
the low sparsity baseline (λ = 0.01) have an average minimum and mean similarity that
is considerably higher than of the other models. A non-zero minimum similarity is not
necessarily undesired: percussive events of different instruments in the same recording
are often correlated, so some similarity is to be expected. However, too much similarity
might indicate the undesired result that the discovered components all represent parts of
the same percussive onsets, leading to an entangled decomposition that is hard to interpret.
Visual inspection of the decompositions (see Section 4.3) will indeed show that this is the
case for the unconstrained and low sparsity baselines.

When the L1 sparsity is too high, we observe a substantial increase in mean and
maximum activation similarity. This is because in this case many activation curves are
effectively “disabled” by becoming monotonically zero, so that only a fraction of the
allocated number of activation curves is effectively used to capture onsets. All the “disabled”
activation curves of course show a high similarity between each other.

The best performing baseline is the medium sparsity baseline (λ = 0.1). This baseline
has a slightly lower average minimum and mean activation curve similarity than the sig-
moidal model. However, as mentioned in Section 3.5.3, a low value of the similarity metric
is to be expected, and it is hard to compare values of the metric when both comparands are
reasonably low; therefore, we do not draw any conclusions from this observation. Never-
theless, as with the other baselines, this baseline also shows a considerably higher average
maximum activation similarity compared to the sigmoidal model, indicating that it creates
decompositions that often contain at least some components that are highly correlated.

We conclude that in terms of activation curve similarity, the proposed sigmoidal
model outperforms all baselines in terms of average maximum activation curve similarity,
indicating that it on average makes better use of the allocated “capacity”, i.e., the number
of components K, to model distinct sound events in the mixture. This means that the
decompositions from the sigmoidal model are more disentangled and therefore more likely
to be interpretable.
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Finally, the results for the peakedness metric show that the proposed approach indeed
yields much more peaked activations than the non-regularized NMFD and sparse NMFD.
A perhaps surprising result is that enforcing L1 sparsity does not lead to a notable increase
in peakedness.

We conclude that the proposed sigmoidal model yields decompositions where the
activations are considerably more impulse-like than the considered baselines, which is the
desired outcome of the proposed approach. By design, the activation peaks are furthermore
more uniform in height, which makes performing peak picking on the obtained activations
less sensitive to the specific choice of the peak picking threshold. From the activation
curve similarity, we conclude that the components are better disentangled, while the
MAE and onset coverage metrics show that the algorithm maintains a good spectrogram
reconstruction and onset detection quality. Both of these conclusions hold when the model
is optimized with the simplified optimization strategy, as well as when a more advanced
optimization strategy is used, suggesting that the improvements are not caused by the
particular optimization strategy but rather by the model itself. However, applying a more
advanced optimization strategy does help the model to achieve slightly better local minima
of the loss function Ltot, as will be shown in Section 4.2.

In Section 4.3, we show by example that these results can improve the interpretability
of the decomposition.

4.2. Evaluation of the Optimization Strategies and Techniques

In this section, we evaluate the efficacy of the optimization strategies proposed in
Section 2.3.5. The goal of this analysis is to evaluate to what extent more advanced
optimization schemes lead to a better minimization of the loss Ltot, compared to a more
straightforward optimization strategy. More specifically, we consider the following settings:

• strategy 0, i.e., straightforward optimization with γ = 1.0 and “static” µk;
• strategy 1, i.e., a staged application of LG;
• strategy 2, i.e., setting µk to a random and relatively small value for each update of G;
• strategy 3, i.e., the combination of strategy 1 and strategy 2;
• each of the above, but with γ = 0.1 during the explore-and-converge stage, in order to

evaluate the effect of applying the regularization less strongly during the exploration
stage (for strategies 1 and 3, γ remains 0 during the fine-tuning sub-stages). Note that
the performance of these strategies will still be evaluated with the original formulation
of LG, i.e., with γ = 1.0.

We furthermore perform ablation experiments in order to assess the importance of

• the component-wise normalization of the gradients of G and a when performing
the updates;

• the unconstrained warm-up stage, i.e., performing a few iterations of unconstrained
optimization before LG is applied; and

• the step-wise adaptation of the learning rate ηG throughout the optimization procedure.

We evaluate each strategy by their ability to minimize the objective function Ltot. To
do so, we calculate the loss per timestep Ltot/T for each decomposed spectrogram, and then
report the average loss per timestep over all 135 examples in the ENST dataset. Dividing the
loss of each decomposed spectrogram by the number of timeframes T of that spectrogram
results in a quantification of the decomposition loss that is insensitive to the duration of the
decomposed drum recording, so that we can appropriately average over all examples in
the dataset, as the dataset contains recordings of varying lengths (a recording that is twice
as long as another, but that is decomposed equally well, is expected to have a loss Ltot that
is twice as high as the decomposition of the shorter recording, as Ltot scales linearly with
the length of the decomposed mixture if a constant decomposition quality is assumed.).
We also report on the different metrics defined in Section 3.5.

The results of this evaluation are shown in Table 2. We observe that both strategy 1 and
2 are effective by themselves, as both techniques lead to a lower average loss per timestep
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than the straightforward optimization of Ltot, i.e., strategy 0 with γ = 1.0. Strategy 2 is
most effective, as it obtains the lowest loss on average. It also leads to a lower standard
deviation of the average loss, implying that it finds better local minima more consistently.
Furthermore, combining strategy 1 and 2, i.e., strategy 3, results in a further decrease of the
total loss only when γ = 1.0, but not for γ = 0.1. This means that alternatingly enabling
and disabling LG does not necessarily offer an additional advantage compared to only
moving around µk throughout optimization.

Setting γ = 0.1 during the explore-and-converge stage does not lead to a consistent
improvement. For strategy 0 and strategy 2, it seems to lead to slightly better results. For
strategy 1, it does not seem to make a difference, i.e., using both γ = 1.0 and γ = 0.1
leads to the same average loss per timestep. For strategy 3, using γ = 0.1 even leads to a
slight increase in average loss per timestep. The best results in terms of the average loss
per timestep are obtained for strategy 2 with γ = 0.1 during the explore-and-converge
stage, closely followed by strategy 3 with γ = 1.0. In terms of the metrics from Section 3.5,
all variants seem to perform comparably well, and better than the baseline models, see
Table 1. On average, the strategies with γ = 1.0 often lead to better separated components
as indicated by the mean and maximum activation similarity, and also a slightly higher
peakedness, which might be a desirable property of the decomposition.

We repeat the experiment for the best performing setting in terms of average loss per
timestep, i.e., strategy 2 with γ = 0.1, but without the component-wise normalization of
the gradients of G and a when performing the updates. This leads to the highest mean
and standard deviation for the loss per timestep, indicating that normalizing the gradients
component-wise indeed makes the algorithm’s performance more consistent and reliable.

We furthermore perform an ablation study in order to assess the importance of the
unconstrained warm-up stage at the beginning of the optimization. To do so, we repeat
our experiments, but wherein LG is enforced during the first 30 iterations, i.e., γ = 0.1 or
γ = 1.0 (depending on the particular experiment) instead of γ = 0. The results are reported
in Table 2 for the best performing original setting, i.e., strategy 2 with γ = 0.1, as well as
for the most simple optimization strategy, i.e., strategy 0; the results of the other strategies
are omitted in Table 2 for conciseness, but are described in the following discussion.

For the strategies with γ = 1.0, not performing an unconstrained warm-up leads to
considerably worse results. For strategies 0 and 2, there is a severe increase in the mean loss
per timestep (from 0.26 to 5.90 for strategy 0, from 0.23 to 3.97 for strategy 2). For strategies
1 and 3, there is also a considerable increase in mean loss per timestep, but it is not as severe
as for the other two strategies (from 0.24 to 0.73 for strategy 1, from 0.21 to 0.34 for strategy
3); periodically disabling the regularization term during the explore-and-converge stage,
a technique that is used in both strategy 1 and strategy 3, seems to help to recover from the
poor initial convergence due to applying LG too early in the optimization process.
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Table 2. Optimization strategy evaluation results: comparison of the metrics evaluated on the outcome of each optimization strategy. For each metric, the mean value over all 135 phrases
is shown (standard deviation between parentheses). For each metric, the most optimal value is shown in bold in each column.

Optimization Strategy Loss Per Timestep MAE Overall Onset Coverage Activations Similarity Peakedness
Ltot/T Pr. Rec. F-Score F-Score (θthr = 0.5) Min Mean Max Mean

Strategy 0, γ = 1.0 0.26
(0.08)

0.041
(0.006)

0.82
(0.18)

0.81
(0.13)

0.80
(0.14)

0.71
(0.16)

0.07
(0.10)

0.23
(0.10)

0.56
(0.17)

0.74
(0.05)

Strategy 0, γ = 0.1 0.24
(0.09)

0.035
(0.004)

0.78
(0.19)

0.89
(0.10)

0.82
(0.14)

0.72
(0.14)

0.12
(0.12)

0.31
(0.11)

0.60
(0.14)

0.69
(0.05)

Strategy 1, γ = 1.0 0.24
(0.08)

0.039
(0.005)

0.83
(0.18)

0.82
(0.13)

0.81
(0.13)

0.68
(0.16)

0.08
(0.09)

0.24
(0.09)

0.55
(0.17)

0.70
(0.04)

Strategy 1, γ = 0.1 0.24
(0.06)

0.034
(0.004)

0.79
(0.18)

0.90
(0.09)

0.83
(0.13)

0.73
(0.13)

0.14
(0.13)

0.32
(0.11)

0.61
(0.14)

0.67
(0.05)

Strategy 2, γ = 1.0 0.23
(0.04)

0.042
(0.006)

0.85
(0.17)

0.79
(0.15)

0.80
(0.14)

0.74
(0.16)

0.06
(0.08)

0.18
(0.09)

0.45
(0.16)

0.71
(0.07)

Strategy 2, γ = 0.1 0.20
(0.03)

0.035
(0.004)

0.79
(0.19)

0.88
(0.11)

0.82
(0.14)

0.73
(0.13)

0.12
(0.11)

0.28
(0.10)

0.56
(0.15)

0.67
(0.06)

Strategy 3, γ = 1.0 0.21
(0.03)

0.039
(0.005)

0.84
(0.18)

0.82
(0.13)

0.82
(0.13)

0.73
(0.13)

0.08
(0.08)

0.20
(0.09)

0.48
(0.17)

0.68
(0.07)

Strategy 3, γ = 0.1 0.22
(0.03)

0.034
(0.004)

0.80
(0.19)

0.90
(0.09)

0.83
(0.13)

0.74
(0.12)

0.14
(0.12)

0.31
(0.11)

0.59
(0.15)

0.66
(0.05)

No normalization of
the gradients of G
(strategy 2, γ = 0.1)

0.38
(0.21)

0.041
(0.02)

0.64
(0.17)

0.92
(0.13)

0.74
(0.15)

0.60
(0.20)

0.11
(0.10)

0.27
(0.10)

0.54
(0.17)

0.71
(0.06)

No warm-up
(strategy 0, γ = 1.0)

5.90
(4.15)

0.170
(0.10)

0.66
(0.26)

0.73
(0.28)

0.65
(0.23)

0.23
(0.27)

0.71
(0.29)

0.81
(0.23)

0.90
(0.19)

0.23
(0.24)

No warm-up
(strategy 2, γ = 0.1)

0.23
(0.13)

0.035
(0.004)

0.76
(0.18)

0.89
(0.09)

0.81
(0.13)

0.73
(0.13)

0.12
(0.12)

0.29
(0.10)

0.57
(0.13)

0.69
(0.05)

Constant ηG
(Strategy 0, γ = 1.0)

0.28
(0.06)

0.044
(0.006)

0.83
(0.17)

0.78
(0.13)

0.79
(0.13)

0.70
(0.15)

0.07
(0.12)

0.23
(0.10)

0.51
(0.14)

0.72
(0.06)

Constant ηG
(Strategy 2, γ = 0.1)

0.21
(0.03)

0.036
(0.004)

0.78
(0.18)

0.87
(0.10)

0.81
(0.12)

0.73
(0.12)

0.11
(0.12)

0.28
(0.11)

0.54
(0.13)

0.69
(0.07)
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For the strategies with γ = 0.1, the mean loss per timestep also increases, although not
as drastically as with γ = 1.0. More specifically, in this case, not performing an initial
convergence stage leads to a mean loss per timestep of 0.46, 0.35, 0.23, and 0.24 for strategies
0, 1, 2, and 3 respectively, compared to a mean loss per timestep of 0.24, 0.24, 0.20, and 0.22
originally. We suspect that setting γ relatively low at the beginning of the optimization
and during the explore-and-converge stage allows the algorithm to still converge to a
reasonable approximation of the spectrogram before LG is applied with γ = 1.0 in the
finalization stage, which leads to better results compared to setting γ = 1.0 throughout the
entire optimization process.

We conclude that an unconstrained warm-up stage is essential for a proper optimiza-
tion of the sigmoidal model if the regularization strength is relatively large. If LG is applied
less strongly during the earlier iterations of the optimization, then it still is beneficial to
perform a warm-up stage, although the performance decrease when not doing so is not
as severe, and with more advanced optimization techniques (e.g., strategy 2 or 3) the
results become comparable with those for the algorithms with an initial convergence stage.
Note that these observations contrast with the conclusion for the sparse baselines, which
do not seem to benefit from using a similar unconstrained warm-up stage, as evaluated
in Section 4.1.

Finally, we perform an ablation study in order to better understand the impact of fine-
tuning the learning rate ηG of the logit-activations throughout the optimization procedure.
As discussed in Section 2.3.5, ηG is set to 0.5 in the warm-up stage, then decreased to 0.2 for
the explore-and-converge stage, and is finally set to 0.1 for the finalization stage.

In this ablation test, ηG is set to 0.2 throughout the entire optimization procedure. This
is done for strategy 0 with γ = 1.0 and for strategy 2 with γ = 0.1. The former experiment
yields an evaluation of the sigmoidal algorithm optimized in a most straightforward way,
i.e., without varying learning rates and with the most simple optimization strategy, i.e.,
strategy 0. Note that this is the simplified algorithm with which the baselines are compared
in Section 4.1. The latter experiment shows the impact of keeping ηG constant on the
best performing model in terms of average loss per timestep. The results are reported
in Table 2.

In short, we find that using a more fine-tuned optimization scheme for G is effective,
as it leads to slightly lower mean loss per timestep (mean loss per timestep 0.28 without
tuning vs. 0.26 with tuning for strategy 0 with γ = 1.0 and 0.21 vs. 0.20 for strategy 2 with
γ = 0.1). We repeated this experiment with the learning rate ηG set to the smaller constant
value of 0.1, which performed consistently worse than setting ηG to a constant value of
0.2 (average loss per timestep 0.26 for ηG = 0.1 vs. 0.21 for ηG = 0.2 for strategy 2 with
γ = 0.1; average loss per timestep 3.41 for ηG = 0.1 vs. 0.28 for ηG = 0.2 for strategy 0 with
γ = 1.0). This shows that, when ηG is kept constant, it is furthermore important to choose
an appropriate value for ηG to ensure a proper convergence of the optimization process.

4.3. Example Decomposition

Figures 2 and 4–6 show the decomposition of an example drum loop using, respec-
tively, unconstrained NMFD, sparse NMFD with λ = 0.1, sparse NMFD with λ = 1.0,
and sigmoidal NMFD (more examples of decompositions are provided as Supplementary
Material to this paper). We do not show the decomposition using the weak sparsity base-
line, λ = 0.01, as the results are almost identical to those by the unconstrained model. Note
that all decompositions reconstruct the spectrogram approximately equally well, except the
reconstruction with high sparsity (Figure 5).

As mentioned in the introduction (Section 1.3), the activations discovered by unregu-
larized NMFD (Figure 2) have two undesirable properties. The first is that the activations
are rather “smeared out”, with a sharp initial onset followed by a slowly decaying am-
plitude. Some small activations are even not preceded by a sharp initial onset, making it
hard to determine whether they correspond to a detected drum hit or not. This does not
correspond with the expected impulse-like nature of activations of percussive instruments.
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The second problem is that the activation curves are highly correlated, so that many drum
hits are modeled by a mixture of all of the components. This makes it difficult to interpret
the resulting decomposition.

Figure 4. Decomposition of a drum loop using sparse NMFD, λ = 0.1. Although slightly more
peaked than the activations for unconstrained NMFD (Figure 2), the activations do not show impulse-
like behavior, and still contain noisy regions where it is difficult to detect individual drum hit onsets.
The third component has become “inactive” in order to minimize the sparsity constraint.

Figure 5. Decomposition of a drum loop using sparse NMFD, λ = 1.0. The decomposition fails
because the sparsity constraint is too strong, so that only one component remains active.
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Figure 6. Decomposition of a drum loop using sigmoidal NMFD. The activations show impulse-like
behavior, and each component captures different parts of the spectrogram, leading to an interpretable
decomposition. The dashed line indicates the amplitude ak for each component.

When considering the decompositions by sparse NMFD (Figures 4 and 5), it becomes
clear that imposing L1 sparsity does not lead to significantly more impulse-like activations.
Even more troublesome is that imposing more sparsity by increasing λ actually hinders a
good decomposition: Figure 5 illustrates that a high λ causes all but one of the components
to become inactive, i.e., their activations are monotonically zero, in order to minimize
the (extreme) sparsity constraint as much as possible. This effect is unfortunately also
sometimes observed even for reasonable values of λ (Figure 4), so that the effective capacity
of the NMFD model is reduced in order to minimize the sparsity constraint.

The aforementioned problems are solved by using the sigmoidal NMFD model
(Figure 6). The activations are highly peaked, and each component models distinct parts of
the spectrogram. The allocated capacity, i.e., the number of components K, is used effec-
tively, and it is now very clear where specific sounds are repeated in the mixture. It is worth
noting that the proposed regularization term LG only provides a direct bias towards binary
“on–off” behavior, and that the impulse-like behavior emerges spontaneously when this bias
is applied to the decomposition of a percussive mixture. In this example, the components
even lend themselves to a musically meaningful interpretation: the first component cap-
tures the low end of the kick drum, the second captures the mid- and high-end of the kick
drum and snare drum, the third component captures hi-hat hits, and the fourth component
models the snare drum hits. Note that the second component thus contributes to both the
kick drum and the snare drum; unfortunately, some entanglement between components is
always possible in an unsupervised decomposition. Nevertheless, the decomposition by
the sigmoidal model yields much more interpretable results, with activation curves that
show to the expected impulse-like behavior.

5. Conclusions

In this paper, we have approached NMFD as an unsupervised decomposition algo-
rithm for percussive music mixtures. Such an unsupervised decomposition is valuable
in application scenarios where the exact instruments in the mixture are unknown, or to
bootstrap semi-supervised learning approaches such as the one in Wu and Lerch [8]. We
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investigated an adapted NMFD model where the activations are biased to be binary in
nature, by defining them as the output of a sigmoidal function and by applying a regular-
ization term to push their values to saturation. We observe that this results in activations
that are highly impulse-like, which correspond to the expected properties of percussive
activations, and we have shown that the proposed approach is more effective at obtaining
such impulse-like behavior as compared to a sparse NMFD baseline using an L1 sparsity
constraint. By means of a case study, we illustrated the potential of our approach to yield
more interpretable decompositions.

Regarding future work, we remark that our method, like the original NMFD algorithm,
is unsupervised, so that the optimization procedure is free to adapt the templates W(k)

without considering their musical validity. Even in an informed setting, where each W(k)

is initialized with a template of the desired instrument, there is no guarantee that it will
converge to a solution where the components map to individual instruments. This issue
could be addressed by adding some kind of supervision to the NMFD framework; this
could be a supervised learning algorithm that imposes certain musical constraints learned
from data, or an interface where a user can guide the decomposition interactively. A
related direction for further research would be to investigate other and more informed
initialization strategies for the templates W(k), and to research how the initialization of the
templates impacts the outcome of the optimization process. A second limitation is that
this work assumes that the number of components K is known in advance. A next step
could therefore be to reliably estimate this number of components prior to decomposition,
or to use an iterative decomposition strategy, where K is increased progressively until
the full mixture has been decomposed. Finally, we propose that the idea of combining a
regularization term that encourages diverging activation values with saturating activations
could be incorporated in other models and use cases where binary activations are desired,
for example, in the context of music transcription beyond percussive recordings, or even
for sound event detection in general.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figures S1–
S135: side-by-side comparison of the decompositions by the baseline models and the proposed
sigmoidal NMFD model, for all 135 phrases in the ENST dataset.
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Abbreviations
The following abbreviations are used in this paper:

ADT Automatic Drum Transcription
KL divergence Kullback–Leibler divergence
MAE Mean Absolute Error
NMF Non-negative matrix factorization
NMFD Non-negative matrix factor deconvolution
STFT Short-Time Fourier Transform

Appendix A. Derivation of the Update Rules for Sigmoidal NMFD

The sigmoidal NMFD model with saturating activations is defined by Equation (3).
Note that the logit-activations Gk,t and the logit-amplitudes ak can take negative values. The
objective function for the optimization, Ltot, is given by Equation (7), with its constituent
terms LKL and LG given Equations (4) and (5), respectively. The inverse of the logistic
function, σ−1, is given by

σ−1(y) = ln
(

y
1− y

)
. (A1)

Appendix A.1. Additive Gradient-Descent Update for G

G minimizes Ltot using gradient-descent, see Equation (9). The derivative of the
logistic function, Equation (2), with respect to its argument, is

dσ(x)
dx

=
exp(−x)

(1 + exp(−x))2 = σ(x)(1− σ(x)) = σ(x)σ(−x). (A2)

From Equations (4) and (A2), the partial derivative ∂LKL
∂Gk,t

is given by

∂LKL

∂Gk,t
= ∑

n,τ

(
1−Xn,t+τ

X̂n,t+τ

)
σ(Gk,t)σ(−Gk,t)W

(k)
n,τ σ(ak). (A3)

From Equation (5), ∂LG
∂Gk,t

can be calculated:

∂LG
∂Gk,t

=
∂

∂Gk,t
∑
k′ ,t′

exp

(
−
(

Gk′ ,t′ − µk′

2

)2
)

(A4)

=
∂

∂Gk,t

[
exp

(
−
(

Gk,t − µk

2

)2
)]

+
∂

∂Gk,t

[
∑
t′ 6=t

exp

(
−
(

Gk,t′ − µk

2

)2
)]

(A5)

= −(Gk,t − µk) exp

(
−
(

Gk,t − µk

2

)2
)
+ ∑

t′

(
Gk,t′ − µk

)
exp

(
−
(

Gk,t′ − µk

2

)2
)

∂µk
∂Gk,t

. (A6)

The right-hand term in Equation (A6) is non-zero when Gk,t is used in the calculation
of µk, see Equation (6):

∂µk
∂Gk,t

=


αk

σ(µk)σ(−µk)
σ(Gk,t)σ(−Gk,t), Gk,t = maxt′(Gk,t′)

1−αk
σ(µk)σ(−µk)

σ(Gk,t)σ(−Gk,t), Gk,t = mint′(Gk,t′)

0, otherwise

, (A7)

in which we used the derivative of the logit function, Equation (A1):

dσ−1(y)
dy

=
1

y(1− y)
=

1
σ(x)(1− σ(x))

=
1

σ(x)σ(−x)
, with y = σ(x). (A8)
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Note that the left-hand term in Equation (A6) is always negative when Gk,t > µk and
always positive when Gk,t < µk. In the gradient-descent updates, Equation (9), this will
always cause Gk,t to grow away from µk, i.e., it pushes Gk,t towards saturation.

However, when Gk,t = mint′(Gk,t′) or Gk,t = maxt′(Gk,t′), the right-hand term in
Equation (A6) can have the opposite sign of the left-hand term, potentially canceling it
out or even updating Gk,t in the other direction, i.e., away from saturation. LG is then
minimized not by pushing the activations towards saturation, i.e., moving Gk,t away from
µk, but instead by moving µk away from Gk,t′ . This might lead to unstable updates where
the ultimate values of Gk,t are hindered from growing to saturation, an undesired effect
which we wish to prevent. Therefore, we regard µk as a constant when applying the
updates, i.e., we ignore the right-hand term in Equation (A6). This gives the expression
from Equation (11) for the derivative of LG with respect to Gk,t:

∂LG
∂Gk,t

≈ −(Gk,t − µk) exp

(
−
(

Gk,t − µk

2

)2
)

. (A9)

The expression is exact for all Gk,t, except when Gk,t = maxt′(Gk,t′) or Gk,t = mint′(Gk,t′).

Appendix A.2. Multiplicative Update for W

The derivation of the multiplicative updates for W(k)
n,τ is analogous to the derivation

in Schmidt and Mørup [11] and Lee and Seung [25]. Consider the gradient-descent updates
for W(k)

n,τ that minimize Ltot with learning rate η:

W(k)
n,τ ←W(k)

n,τ − η
∂Ltot(X, X̂, G)

∂W(k)
n,τ

. (A10)

If we rewrite ∂Ltot

∂W(k)
n,τ

as the difference of two strictly positive terms ∂L+tot

∂W(k)
n,τ

and ∂L−tot

∂W(k)
n,τ

,

∂Ltot

∂W(k)
n,τ

=
∂L+tot

∂W(k)
n,τ

− ∂L−tot

∂W(k)
n,τ

, (A11)

then we can choose η = W(k)
n,τ / ∂L+tot

∂W(k)
n,τ

as in Lee and Seung [25] and Schmidt and Mørup [11]

so that the first term in Equation (A10) cancels out. This gives

W(k)
n,τ ←W(k)

n,τ

∂L−tot

∂W(k)
n,τ

∂L+tot

∂W(k)
n,τ

. (A12)

The derivative of Ltot(X, X̂, G) with respect to W(k)
n,τ is given by

∂Ltot

∂W(k)
n,τ

=
∂LKL

∂W(k)
n,τ

= ∑
t

∂LKL

∂X̂n,t

∂X̂n,t

∂W(k)
n,τ

. (A13)

Calculating ∂LKL
∂X̂n,t

from Equation (4) gives

∂LKL

∂X̂n,t
= 1− Xn,t

X̂n,t
. (A14)
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Calculating ∂X̂n,t

∂W(k)
n,τ

from Equation (3) gives

∂X̂n,t

∂W(k)
n,τ

= σ(ak)σ(Gk,t−τ). (A15)

Substituting Equations (A14) and (A15) in Equation (A13) gives

∂Ltot

∂W(k)
n,τ

=
∂LKL

∂W(k)
n,τ

= ∑
t

(
1− Xn,t

X̂n,t

)
σ(ak)σ(Gk,t−τ), (A16)

so that

∂L+tot

∂W(k)
n,τ

= ∑
t

σ(ak)σ(Gk,t−τ),
∂L−tot

∂W(k)
n,τ

= ∑
t

Xn,t

X̂n,t
σ(ak)σ(Gk,t−τ). (A17)

Substituting Equation (A17) in Equation (A12) gives the update rule for W(k)
n,τ :

W(k)
n,τ ←W(k)

n,τ

∑t σ(ak)σ(Gk,t−τ)
(

Xn,t
X̂n,t

)
∑t σ(ak)σ(Gk,t−τ)

. (A18)

Appendix A.3. Additive Gradient-Descent Update for a

Ltot is minimized with respect to a using gradient-descent, see Equation (13). The par-
tial derivative ∂LKL

∂ak
given by

∂LKL

∂ak
= ∑

n,t

∂LKL

∂X̂n,t

∂X̂n,t

∂ak
, (A19)

with
∂X̂n,t

∂ak
= ∑

τ

σ(ak)σ(−ak)σ(Gk,t−τ)W
(k)
n,τ . (A20)

Substituting Equations (A14) and (A20) in Equation (A19) and rearranging gives the
following expression for the derivative of Ltot with respect to ak:

∂Ltot

∂ak
=

∂LKL

∂ak
= σ(−ak)∑

n,t

(
1−Xn,t

X̂n,t

)
X̂(k)

n,t , (A21)

with X̂(k)
n,t = ∑

τ

σ(ak)σ(Gk,t−τ)W
(k)
n,τ . (A22)
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