399 research outputs found

    Framework for botnet emulation and analysis

    Get PDF
    Criminals use the anonymity and pervasiveness of the Internet to commit fraud, extortion, and theft. Botnets are used as the primary tool for this criminal activity. Botnets allow criminals to accumulate and covertly control multiple Internet-connected computers. They use this network of controlled computers to flood networks with traffic from multiple sources, send spam, spread infection, spy on users, commit click fraud, run adware, and host phishing sites. This presents serious privacy risks and financial burdens to businesses and individuals. Furthermore, all indicators show that the problem is worsening because the research and development cycle of the criminal industry is faster than that of security research. To enable researchers to measure botnet connection models and counter-measures, a flexible, rapidly augmentable framework for creating test botnets is provided. This botnet framework, written in the Ruby language, enables researchers to run a botnet on a closed network and to rapidly implement new communication, spreading, control, and attack mechanisms for study. This is a significant improvement over augmenting C++ code-bases for the most popular botnets, Agobot and SDBot. Rubot allows researchers to implement new threats and their corresponding defenses before the criminal industry can. The Rubot experiment framework includes models for some of the latest trends in botnet operation such as peer-to-peer based control, fast-flux DNS, and periodic updates. Our approach implements the key network features from existing botnets and provides the required infrastructure to run the botnet in a closed environment.Ph.D.Committee Chair: Copeland, John; Committee Member: Durgin, Gregory; Committee Member: Goodman, Seymour; Committee Member: Owen, Henry; Committee Member: Riley, Georg

    Holistic Network Defense: Fusing Host and Network Features for Attack Classification

    Get PDF
    This work presents a hybrid network-host monitoring strategy, which fuses data from both the network and the host to recognize malware infections. This work focuses on three categories: Normal, Scanning, and Infected. The network-host sensor fusion is accomplished by extracting 248 features from network traffic using the Fullstats Network Feature generator and from the host using text mining, looking at the frequency of the 500 most common strings and analyzing them as word vectors. Improvements to detection performance are made by synergistically fusing network features obtained from IP packet flows and host features, obtained from text mining port, processor, logon information among others. In addition, the work compares three different machine learning algorithms and updates the script required to obtain network features. Hybrid method results outperformed host only classification by 31.7% and network only classification by 25%. The new approach also reduces the number of alerts while remaining accurate compared with the commercial IDS SNORT. These results make it such that even the most typical users could understand alert classification messages

    ARTIFACT MITIGATION IN HIGH-FIDELITY HYPERVISORS

    Get PDF
    The use of hypervisors for cyber operations has increased significantly over the past decade, resulting in an associated increase in the demand for higher-fidelity hypervisors. These hypervisors would not exhibit the markers, or artifacts, that expose the presence of the virtualized environments present in most currently available virtualization solutions. To address this, we present an in-depth examination of a subset of virtualization artifacts in order to design and implement a software solution that will reduce the detectability via mitigation of these artifacts. Our analysis includes performant measures of a bare metal machine, a virtualized machine without our mitigations, and a virtualized machine with our mitigations. The analysis also includes a measure of our implemented system's simulated sensor output. Results of the implementation are analyzed to determine the potential performance impact, the accuracy of our system's simulated output, and whether our mitigation technique is appropriate for extending high-fidelity hypervisors.Outstanding ThesisLieutenant Commander, United States NavyApproved for public release. distribution is unlimite

    Security challenges with virtualization

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2009Virtualização é uma palavra em voga no mundo das tecnologias de informação. Com a promessa de reduzir o constante crescimento das infra-estruturas informáticas dentro de um centro de processamento de dados, aliado a outros aspectos importantes como disponibilidade e escalabilidade, as tecnologias de virtualização têm vindo a ganhar popularidade, não só entre os profissionais de tecnologias de informação mas também administradores e directores. No entanto, o aumento da adopção do uso desta tecnologia expõe o sistema a novas preocupações de segurança que normalmente são negligenciadas. Esta tese apresenta o estado da arte das soluções actualmente mais usadas de virtualização de servidores e também um estudo literário dos vários problemas de segurança das tecnologias de virtualização. Estes problemas não são específicos em termos de produto, e são abordados no âmbito de tecnologias de virtualização. No entanto, nesta tese é feita uma análise de vulnerabilidades de duas das mais conhecidas soluções de virtualização: Vmware EXS e Xen. No final, são descritas algumas soluções para melhorar a segurança de acesso a banco online e de comercio electrónico, usando virtualização.Virtualization is a hype word in the IT world. With the promise to reduce the ever-growing infrastructure inside data centers allied to other important concerns such as availability and scalability, virtualization technology has been gaining popularity not only with IT professionals but also among administrators and directors as well. The increasingly rising rate of the adoption of this technology has exposed these systems to new security concerns which in recent history have been ignored or simply overlooked. This thesis presents an in depth state of art look at the currently most used server virtualization solutions, as well as a literature study on various security issues found within this virtualization technology. These issues can be applied to all the current virtualization technologies available without focusing on a specific solution. However, we do a vulnerability analysis of two of the most known virtualization solutions: VMware ESX and Xen. Finally, we describe some solutions on how to improve the security of online banking and e-commerce, using virtualization

    Network Traffic Measurements, Applications to Internet Services and Security

    Get PDF
    The Internet has become along the years a pervasive network interconnecting billions of users and is now playing the role of collector for a multitude of tasks, ranging from professional activities to personal interactions. From a technical standpoint, novel architectures, e.g., cloud-based services and content delivery networks, innovative devices, e.g., smartphones and connected wearables, and security threats, e.g., DDoS attacks, are posing new challenges in understanding network dynamics. In such complex scenario, network measurements play a central role to guide traffic management, improve network design, and evaluate application requirements. In addition, increasing importance is devoted to the quality of experience provided to final users, which requires thorough investigations on both the transport network and the design of Internet services. In this thesis, we stress the importance of users’ centrality by focusing on the traffic they exchange with the network. To do so, we design methodologies complementing passive and active measurements, as well as post-processing techniques belonging to the machine learning and statistics domains. Traffic exchanged by Internet users can be classified in three macro-groups: (i) Outbound, produced by users’ devices and pushed to the network; (ii) unsolicited, part of malicious attacks threatening users’ security; and (iii) inbound, directed to users’ devices and retrieved from remote servers. For each of the above categories, we address specific research topics consisting in the benchmarking of personal cloud storage services, the automatic identification of Internet threats, and the assessment of quality of experience in the Web domain, respectively. Results comprise several contributions in the scope of each research topic. In short, they shed light on (i) the interplay among design choices of cloud storage services, which severely impact the performance provided to end users; (ii) the feasibility of designing a general purpose classifier to detect malicious attacks, without chasing threat specificities; and (iii) the relevance of appropriate means to evaluate the perceived quality of Web pages delivery, strengthening the need of users’ feedbacks for a factual assessment

    Deteção de propagação de ameaças e exfiltração de dados em redes empresariais

    Get PDF
    Modern corporations face nowadays multiple threats within their networks. In an era where companies are tightly dependent on information, these threats can seriously compromise the safety and integrity of sensitive data. Unauthorized access and illicit programs comprise a way of penetrating the corporate networks, able to traversing and propagating to other terminals across the private network, in search of confidential data and business secrets. The efficiency of traditional security defenses are being questioned with the number of data breaches occurred nowadays, being essential the development of new active monitoring systems with artificial intelligence capable to achieve almost perfect detection in very short time frames. However, network monitoring and storage of network activity records are restricted and limited by legal laws and privacy strategies, like encryption, aiming to protect the confidentiality of private parties. This dissertation proposes methodologies to infer behavior patterns and disclose anomalies from network traffic analysis, detecting slight variations compared with the normal profile. Bounded by network OSI layers 1 to 4, raw data are modeled in features, representing network observations, and posteriorly, processed by machine learning algorithms to classify network activity. Assuming the inevitability of a network terminal to be compromised, this work comprises two scenarios: a self-spreading force that propagates over internal network and a data exfiltration charge which dispatch confidential info to the public network. Although features and modeling processes have been tested for these two cases, it is a generic operation that can be used in more complex scenarios as well as in different domains. The last chapter describes the proof of concept scenario and how data was generated, along with some evaluation metrics to perceive the model’s performance. The tests manifested promising results, ranging from 96% to 99% for the propagation case and 86% to 97% regarding data exfiltration.Nos dias de hoje, várias organizações enfrentam múltiplas ameaças no interior da sua rede. Numa época onde as empresas dependem cada vez mais da informação, estas ameaças podem compremeter seriamente a segurança e a integridade de dados confidenciais. O acesso não autorizado e o uso de programas ilícitos constituem uma forma de penetrar e ultrapassar as barreiras organizacionais, sendo capazes de propagarem-se para outros terminais presentes no interior da rede privada com o intuito de atingir dados confidenciais e segredos comerciais. A eficiência da segurança oferecida pelos sistemas de defesa tradicionais está a ser posta em causa devido ao elevado número de ataques de divulgação de dados sofridos pelas empresas. Desta forma, o desenvolvimento de novos sistemas de monitorização ativos usando inteligência artificial é crucial na medida de atingir uma deteção mais precisa em curtos períodos de tempo. No entanto, a monitorização e o armazenamento dos registos da atividade da rede são restritos e limitados por questões legais e estratégias de privacidade, como a cifra dos dados, visando proteger a confidencialidade das entidades. Esta dissertação propõe metodologias para inferir padrões de comportamento e revelar anomalias através da análise de tráfego que passa na rede, detetando pequenas variações em comparação com o perfil normal de atividade. Delimitado pelas camadas de rede OSI 1 a 4, os dados em bruto são modelados em features, representando observações de rede e, posteriormente, processados por algoritmos de machine learning para classificar a atividade de rede. Assumindo a inevitabilidade de um terminal ser comprometido, este trabalho compreende dois cenários: um ataque que se auto-propaga sobre a rede interna e uma tentativa de exfiltração de dados que envia informações para a rede pública. Embora os processos de criação de features e de modelação tenham sido testados para estes dois casos, é uma operação genérica que pode ser utilizada em cenários mais complexos, bem como em domínios diferentes. O último capítulo inclui uma prova de conceito e descreve o método de criação dos dados, com a utilização de algumas métricas de avaliação de forma a espelhar a performance do modelo. Os testes mostraram resultados promissores, variando entre 96% e 99% para o caso da propagação e entre 86% e 97% relativamente ao roubo de dados.Mestrado em Engenharia de Computadores e Telemátic
    corecore