
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2020-09

ARTIFACT MITIGATION IN HIGH-FIDELITY HYPERVISORS

Norine, Christopher R.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/66119

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

ARTIFACT MITIGATION IN HIGH-FIDELITY
HYPERVISORS

by

Christopher R. Norine

September 2020

Thesis Advisor: Alan B. Shaffer
Co-Advisor: Gurminder Singh

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2020 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
ARTIFACT MITIGATION IN HIGH-FIDELITY HYPERVISORS 5. FUNDING NUMBERS

 6. AUTHOR(S) Christopher R. Norine

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 The use of hypervisors for cyber operations has increased significantly over the past decade, resulting in
an associated increase in the demand for higher-fidelity hypervisors. These hypervisors would not exhibit
the markers, or artifacts, that expose the presence of the virtualized environments present in most currently
available virtualization solutions. To address this, we present an in-depth examination of a subset of
virtualization artifacts in order to design and implement a software solution that will reduce the detectability
via mitigation of these artifacts. Our analysis includes performant measures of a bare metal machine, a
virtualized machine without our mitigations, and a virtualized machine with our mitigations. The analysis
also includes a measure of our implemented system's simulated sensor output. Results of the implementation
are analyzed to determine the potential performance impact, the accuracy of our system's simulated output,
and whether our mitigation technique is appropriate for extending high-fidelity hypervisors.

 14. SUBJECT TERMS
high fidelity hypervisors, virtualization, artifact mitigation 15. NUMBER OF

PAGES
 69
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ARTIFACT MITIGATION IN HIGH-FIDELITY HYPERVISORS

Christopher R. Norine
Lieutenant Commander, United States Navy

BA, University of Rochester, 2009

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2020

Approved by: Alan B. Shaffer
 Advisor

 Gurminder Singh
 Co-Advisor

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The use of hypervisors for cyber operations has increased significantly over the

past decade, resulting in an associated increase in the demand for higher-fidelity

hypervisors. These hypervisors would not exhibit the markers, or artifacts, that expose

the presence of the virtualized environments present in most currently available

virtualization solutions. To address this, we present an in-depth examination of a subset

of virtualization artifacts in order to design and implement a software solution that will

reduce the detectability via mitigation of these artifacts. Our analysis includes performant

measures of a bare metal machine, a virtualized machine without our mitigations, and a

virtualized machine with our mitigations. The analysis also includes a measure of our

implemented system's simulated sensor output. Results of the implementation are

analyzed to determine the potential performance impact, the accuracy of our system's

simulated output, and whether our mitigation technique is appropriate for extending

high-fidelity hypervisors.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. RESEARCH PURPOSE ..1
B. RESEARCH OBJECTIVE ...2
C. RESEARCH QUESTIONS ...3

1. Primary Question ...3
2. Secondary Question ...3
3. Tertiary Question ...3

D. BENEFITS OF STUDY ...3
E. THESIS ORGANIZATION ..3

II. BACKGROUND ..5
A. INTRODUCTION..5
B. HYPERVISOR OVERVIEW ...5

1. Terminology..5
2. Technology ..7
3. Methods of Virtualization ...8

C. POPULAR HYPERVISORS ..9
1. Type 1 Hypervisors ..9
2. Type 2 Hypervisors ..11

D. HYPERVISOR ARTIFACTS ...12
1. Service/Process/File System Artifacts ..12
2. Random Access Memory Artifacts ...12
3. Virtualization-Specific Hardware Artifacts13
4. Virtualization-Specific Capability Artifacts13

E. HYPERVISOR DETECTION ..13
1. Detection Techniques ...14
2. Detection Software ...15

F. CURRENT ARTIFACT MITIGATION SOFTWARE AND
TECHNIQUES ...16
1. VMmutate ...16
2. Hypervisor Configuration Modification16

G. OTHER RELATED WORK ...17
1. LibVMI ...17
2. DRAKVUF..17

H. SUMMARY ..18

viii

III. SYSTEM DESIGN AND IMPLEMENTATION ..19
A. OVERVIEW ...19
B. HOST SYSTEM ...19
C. HYPERVISOR ...20
D. DRAKVUF..20

1. Rekall ..20
2. LibVMI ...21
3. Plugin System ...21

E. PLUGIN IMPLEMENTATION ...22
1. Hardware Component Emulation ..22
2. Software Component ...23
3. Means of Implementation..26

F. SUMMARY ..30

IV. SYSTEM TESTING ..31
A. TESTING METHODOLOGY ..31

1. Performance Testing ..31
2. Accuracy Testing ..31

B. PERFORMANCE TESTING ...32
1. Bare Metal Machine ..32
2. Hypervisor without Mitigations Present33
3. Hypervisor with Mitigations Present ...34

C. ACCURACY TESTING ..35
D. ANALYSIS OF RESULTS..36

1. Performance Analysis ..36
2. Accuracy Analysis ..37

E. TESTING LIMITATIONS ...38
F. SUMMARY ..38

V. CONCLUSIONS AND FUTURE WORK ...41
A. CONCLUSIONS ..41

1. Artifact Mitigation ...41
2. Performance ...42
3. Accuracy ...43

B. LESSONS LEARNED ...43
C. FUTURE WORK ...43

1. Process Injection ..44
2. Mitigation of Other Types of Artifacts44
3. Additional Characteristics of High-Fidelity Hypervisors44

ix

LIST OF REFERENCES ..45

INITIAL DISTRIBUTION LIST ...49

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Type 1 Hypervisor. Source: [7]. ..7

Figure 2. Type 2 Hypervisor. Source: [7]. ..8

Figure 3. Microsoft Hyper-V Architecture. Source: [10]. ...10

Figure 4. HVM I/O Support. Source [26]. ..22

Figure 5. Thermal Test Vehicle Thermal Profile for PCG 2015C Processor
(Intel Core i7-6700). Source [27]...23

Figure 6. General Execution Flow of sensors Binary. ..24

Figure 7. Modified sensors Execution Flow. ..25

Figure 8. C Implementation of the Modeling Function. ..25

Figure 9. Smokescreen Execution Flow ...28

Figure 10. Code to Lock the VM and Extract Pathname ..29

Figure 11. Code to Find a Pathname Match. ...29

Figure 12. Code to Modify Pathname. ..30

Figure 13. System Performance Results. ...36

Figure 14. System Accuracy Results. ..37

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF TABLES

Table 1. Bare Metal Timing Results. ...33

Table 2. Virtual Machine Timing (No Introspection) Results.34

Table 3. Virtual Machine Timing (with Introspection) Results.34

Table 4. Lookup Function Accuracy Results. ..35

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

ARM Advanced RISC (Reduced Instruction Set Computing) Machine
CPU Central Processing Unit
DOD Department of Defense
HFH High-Fidelity Hypervisor
HVM Hardware Virtual Machine
IDT Interrupt Descriptor Table
IDTR Interrupt Descriptor Table Register
JSON JavaScript Object Notation
KDBG Kernel Debugging
KVM Keyboard, Video, and Mouse
NOP No Operation
OCO Offensive Cyber Operations
OS Operating System
PCG Platform Compatibility Guide
PID Process Identification
PV Paravirtualization
QEMU Quick EMUlator
RAM Random Access Memory
SIDT Store Interrupt Descriptor Table
SOSP Symposium on Operating Systems Principles
VM Virtual Machine
VMM Virtual Machine Monitor
VMX Virtual Machine eXtensions

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

I would like to thank my wife, Samantha, for her patience, support, motivation to

persevere regardless of the circumstances, and willingness to juggle two young girls on her

own so I could read, write, and code whenever I needed. Without her willingness to help,

especially in the middle of a pandemic, I doubt I would be where I am today or accomplish

that which I have.

I would also like to thank my advisors, Alan Shaffer and Gurminder Singh, who

provided the seed for my thesis and offered their support, guidance, and the occasional

reminder that there is always still work to be done.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. RESEARCH PURPOSE

Virtualization has become a common asset in the cyber operations community.

From malware analysis and honeypot operations to training environments for testing

cutting-edge cyber tools and techniques, virtual machines (VMs) created and managed by

hypervisors offer a safe and isolated environment within which to research and test new

methods. A downside to operating within virtual machines is that they often lead to artifacts

(or markers) that, upon discovery, may allow an observer to realize they are not operating

on a bare metal machine. Another downside is that virtual machines do not faithfully

replicate the full functionality of the physical computer.

Ingraham et al. [1] described five major categories of hypervisor characteristics—

artifacts, behavior, performance, security, and functionality—that can lead to limitations

and problems in virtualization. From his research, it is clear that these characteristics must

be evaluated for mitigation to achieve high-fidelity virtualization. While most of these

characteristics are a byproduct of tighter host-guest integration and proper separation

between the host machine and the guest virtual machine, there may be a desire to hide or

mitigate virtualization artifacts. The following describes reasons why this is true.

First, malware analysis can greatly benefit from a high-fidelity hypervisor (HFH).

For this research, we define an HFH as a hypervisor that is able to present a VM that

exhibits behavior in each of the five previously discussed categories to be indistinguishable

from a bare metal machine (i.e., a digital twin). Dinaburg et al. [2] described how “malware

authors are incentivized to complicate attempts at understanding the internal workings of

their creation.” These complications include techniques that can be described as anti-

debugging, anti-instrumentation, and anti-VM to frustrate would-be analysts and prevent

deeper understanding of the malware. Indeed, Chen et al. [3] characterized the prevalence

of evasion techniques in modern malware. According to their research, over 40% of the

6,900 total malware samples they examined reduced their malicious behavior whenever a

debugger was attached, or when the malware suspected it was executing within a virtual

2

machine. Artifact mitigation enables an HFH to show no signs of its virtualized

environment, allowing analysts to more fully explore the functionality of target malware.

Second, an organization running a honeypot would benefit greatly from an HFH. A

virtualized environment is ideal for the execution of a honeypot, therefore malware that

encounters such a system will likely attempt to determine if the environment is virtualized

or not [3]. An HFH with artifact mitigation would be a better environment for honeypots

to operate in, as they would exhibit the behaviors of a bare metal machine without any of

the artifacts typically present in virtual machines.

Lastly, it is essential for cyber operators to have a holistic environment in which to

develop, test, train, and rehearse their cyber tools and techniques. From an offensive

standpoint, it would be impractical to test certain offensive cyber operations (OCO) on a

bare metal machine, since the results will likely damage or corrupt these test systems.

Recovery will ultimately take time away from the cyber operators, and either reduce the

total time spent training and testing or increase the time taken to reach a working solution.

Neither scenario is ideal nor desirable. By offering an HFH that is able to present a system’s

“digital twin,” it can be possible to suppress the artifacts that affect feedback to the operator

while still providing a target environment that behaves exactly as its bare metal equivalent

would.

For these reasons, it is essential to examine different aspects that reduce the fidelity

of an off-the-shelf hypervisor. In doing so, we need to design and implement mitigation

measures that can increase the overall fidelity of hypervisors, while ensuring that the

execution of the hypervisors and guest operating systems are not compromised.

B. RESEARCH OBJECTIVE

In this thesis, our research objective is to design and implement a software solution

to increase the fidelity of hypervisors by decreasing or eliminating the likelihood of

detecting certain virtualization artifacts. In particular, this research is focused on supporting

user programs that rely on data generated by sensors embedded in computers, such as a

temperature or ambient light sensor. This solution, when encountered by the user, would

3

produce simulated sensor data that would be consistent with a bare metal system’s current

operating conditions and environment.

C. RESEARCH QUESTIONS

In our research, we investigate whether it is possible to mitigate virtualization

artifacts in a manner that is transparent to a guest VM, while still maintaining the

appearance of a bare-metal machine in terms of performance and artifact detectability. The

following questions are addressed by this research:

1. Primary Question

What techniques can be implemented within a hypervisor to decrease detectable

artifacts present in guest host virtual machines?

2. Secondary Question

How can we apply specific techniques to an open-source hypervisor to increase the

overall fidelity of virtual machines managed by that hypervisor?

3. Tertiary Question

How accurately will these techniques replicate a bare metal machine’s state and

environment during its mitigation of artifacts, and how can we measure this accuracy?

D. BENEFITS OF STUDY

This research will benefit the Department of Defense (DOD)by offering a solution

that will enhance the readiness and training of both offensive and defensive cyber operators

as well as providing more appropriate testing and production environments for operations

executed by the Cyber Warfare community.

E. THESIS ORGANIZATION

This thesis is organized into four additional chapters: background, system design

and implementation, system testing, and conclusions and future work.

4

The next chapter provides a baseline understanding of the various virtualization

options available to both the DOD and private industry. It defines key terminology related

to virtualization and establishes an unambiguous set of terms and concepts as a foundation

for this thesis. It also includes a high-level overview of the different hypervisor solutions

available as well as the capabilities and drawbacks of each. Then, it introduces the various

types of virtualization artifacts alongside an overview of the methods to detect these

artifacts and potentially mitigate them. Lastly, additional software that can be useful, but

not directly related to, our research is discussed.

Chapter III outlines the design and implementation of a system dedicated to

mitigating VM artifacts with no modification to the guest VM. First, a specific type of

artifact is targeted for our system, and a testbed system is described that facilitated our

research. Next, a specific subset of VM artifacts is targeted and our mitigation technique

is discussed. Lastly, the technical design of our system and the artifact mitigation process

is presented.

Chapter IV discusses the methodology of the testing of our implemented system.

We present our results with regards to both performance and accuracy by comparing the

results of a bare-metal machine to a VM with no mitigation in place, as well as to a VM

with the mitigation measures in place. We also examine limitations to our experimentation

as well as possible effects of those limitations.

Finally, we present our conclusions in the final chapter, along with suggestions for

future work to extend this research.

5

II. BACKGROUND

A. INTRODUCTION

Since any work in artifact mitigation depends on the underlying hypervisor

implementation, it is important to explore the key concepts of hypervisors and the

technology enabling them. The multitude of hypervisors and their unique implementations

lends a complexity to the subject that requires a review of concepts central to hypervisors

and virtualization. By working through the many aspects of virtualization, an appropriate

base is set upon which work involving the mitigation of artifacts can be appropriately

described and implemented.

B. HYPERVISOR OVERVIEW

The following section is a brief overview of key terminology and principles of

hypervisors and their functionality.

1. Terminology

The following section introduces and explains terminology common to hypervisors

and discussions of their functionality.

a. Hypervisor

Hypervisors are a specific, special form of system software designed to run virtual

machines with low overhead. Typical hypervisors can operate on a single machine or can

utilize cloud/distributed resources to support a large number of virtual machines that can

be operated concurrently. For the purposes of this thesis, the hypervisor operates on a single

machine along with any virtual machines that it is managing. Hypervisors can run at the

layer between the hardware and operating system (Type 1), or as user-level applications

operating in the user space of an operating system (Type 2). These distinctions are

discussed later in this chapter. Hypervisors are also known as virtual machine monitors

(VMMs).

6

b. Virtualization

Virtualization is defined as “nothing more than an instance of layering for which

the exposed abstraction is equivalent to the underlying physical resource”[4]. Furthermore,

Singh defines it as such:

Virtualization is a framework or methodology of dividing the resources of
a computer into multiple execution environments, by applying one or more
concepts or technologies such as hardware and software partitioning, time-
sharing, partial or complete machine simulation, emulation, quality of
service, and many others. [5]

For this thesis, virtualization is defined as the layering of execution environments such that

no translation or cross-architectural execution between the guest system and the host

system is required to ensure execution on the host system.

c. Emulation

Emulation is “a level of indirection in software to expose a virtual resource or

device that corresponds to a physical device, even if it is not present in the current computer

system” [4]. Emulation incurs a significant overhead cost, as the underlying execution

environment must translate instructions from the emulated CPU architecture to instructions

native to the host CPU architecture. This overhead is not required in a virtualized

environment. A common example of an emulator is QEMU (Quick EMUlator), which will

be discussed below under Type 2 hypervisors [6].

d. Simulation

Simulation is typically performed in a user-level application that aims to provide a

very accurate replica of a given architecture. While the level of accurate execution typically

found in simulators would normally make them very desirable, they often come with a

slowdown factor of anywhere between 5x and 1000x, depending on the level of detail in

the simulation. This constraint makes them undesirable other than in scenarios that

prioritize accuracy over speed and usability [4].

7

2. Technology

The following section briefly describes the underlying technology and functionality

found in most hypervisors.

a. Type 1 Hypervisor

Type 1 hypervisors operate directly between the virtualized machine and the

hardware. Most Type 1 hypervisors operate as both the host operating system and the

virtual machine monitor. This allows them to have full control of the host machine and its

resources, and thus they do not need to do additional coordination of system resources with

a host operating system. Since Type 1 hypervisors operate at the OS level, there is less

overhead compared to operating as an application within an OS, as is the case with Type 2

hypervisors. A few examples of Type 1 hypervisors include The Xen Project, Microsoft

Hyper-V, and VMware vSphere.

Figure 1. Type 1 Hypervisor. Source: [7].

b. Type 2 Hypervisor

Type 2 hypervisors operate at the application layer, although they have full control

of the host machine CPU during execution of the guest OS. Additional overhead is incurred

as the host OS and hypervisor execute switches similar in nature to CPU context switches

to achieve virtualization [4]. Some popular examples of Type 2 hypervisors include

VMware Workstation and Fusion, QEMU with KVM, and Oracle VirtualBox.

8

Figure 2. Type 2 Hypervisor. Source: [7].

3. Methods of Virtualization

a. Binary Translation

Binary translation is a form of recompilation which “enables code written for a

source architecture (or instruction set) to run on another destination architecture, without

access to the original source code” [8]. The two types of binary translation are static (the

program is translated prior to runtime) and dynamic (the program instructions are translated

as they are read). Binary translation is generally considered difficult from an engineering

point of view as a translator is very specialized and it may not be possible to re-target a

given translator to a different architecture without a significant amount of extra work [8].

b. Full Virtualization

Full virtualization (also referred to as hardware virtualization) is where the guest

system is unaware of the hypervisor. Instructions that are sensitive or privileged must be

caught by the hypervisor without causing issues or being observable inside the virtualized

environment. Full virtualization does not require specialized instructions or device drivers

but can inflict performance penalties since the hypervisor has to handle sensitive or

privileged instructions without impacting the guest system.

9

c. Paravirtualization

In paravirtualization (PV), the virtualized system is “aware” that it is running within

a hypervisor. PV requires specialized kernels and other device drivers that take advantage

of communication channels present between the virtual machine and the hypervisor. This

significantly reduces the level of overhead required in full virtualization; however this is

at the cost of requiring special PV-aware device drivers.

C. POPULAR HYPERVISORS

This next section describes several popular open- and closed-source hypervisors

along with a high-level overview of their implementation approaches.

1. Type 1 Hypervisors

The following are various Type 1 hypervisors that are commonly found in-use in

both commercial and personal usage.

a. Xen (The Xen Project)

The Xen hypervisor was introduced in 2003 in the Symposium on Operating

System Principles (SOSP) paper “Xen and the Art of Virtualization” and is consistently

regarded as the best example of an open-source Type 1 hypervisor. As one of the first

hypervisors to introduce the concept of paravirtualization, Xen presents a virtualization

solution that incurs low overhead compared to other software solutions or virtualization

methods. The design team of Xen focused on four major design principles [9]:

1. Running binaries without modification was essential.

2. Supporting full-fledged modern operating systems to allow complex

server configurations.

3. Utilizing paravirtualization to the maximum extent to obtain the best

performance.

4. Masking the effects of virtualization risked correctness and performance

of the virtual machines.

10

b. Microsoft Hyper-V

Microsoft’s Hyper-V is a “hypervisor-based virtualization technology for certain

x64 versions of Windows” [10]. Like Xen, Hyper-V is a Type 1 hypervisor where the

VMM OS (currently Windows 10) coordinates and manages guest “partitions” that are

analogous to virtual machines in other virtualization technologies. Normally, full

virtualization is executed unless Microsoft’s proprietary “Hyper-V Integration Services”

are installed within the guest OS, which bypasses the device emulation layer, allowing

guests to execute as paravirtualized guests [10].

Figure 3. Microsoft Hyper-V Architecture. Source: [10].

c. VMware vSphere / ESXi

ESXi is VMware’s proprietary bare-metal hypervisor, intended to be used in

conjunction with its vSphere and vCloud products. ESXi offers VMM capabilities across

distributed computing resources while offering a web-based user interface, along with

various other methods of control. Although available for free with certain editions of

VMware vSphere, it is a closed-source software solution.

11

2. Type 2 Hypervisors

The following are Type 2 hypervisors typically found in commercial and personal

settings.

a. VMware Workstation

As VMware’s proprietary single-machine Type 2 hypervisor solution, VMware

Workstation offers multiple implementations of virtualization, including full virtualization

with binary translation, hardware-assisted virtualization, and paravirtualization, utilizing a

hosted (by the host operating system) hypervisor. The Workstation hypervisor runs on

Windows host systems, while the similar VMware Fusion is designed for MacOS systems.

The original VMware Workstation was one of the first platforms enabling x86

virtualization in 1999 [7].

b. Oracle VirtualBox

Oracle’s hypervisor solution is an open-source Type 2 hypervisor called

VirtualBox. It relies on the hardware virtualization capabilities of the host processor

providing either fully virtualized or paravirtualized guest systems. Guest function calls that

cause a “VM exit” are captured by the host, processed appropriately, and then control is

returned to the guest via “VM entry.” VirtualBox also provides multiple paravirtualization

interfaces, depending on the guest OS, to increase overall performance while hosting

virtual machines [11].

c. QEMU with KVM

The “kernel-based virtual machine” (or KVM) is a Linux kernel module that acts

by extending a standard Linux kernel with virtualization capabilities. It accomplishes the

task of virtualization via exposed functionality through a character device (/dev/kvm) and

by implementing a new operating mode called “guest mode” [12]. These virtual machines

can execute natively through a series of system calls to the KVM kernel module and run

as individual QEMU processes on the host machine. Without this tie-in to the Linux kernel,

QEMU acts as an emulator, as the program on its own does not have virtualization

capabilities.

12

D. HYPERVISOR ARTIFACTS

Virtualization artifacts are markers or indicators of the presence of a VMM or a

guest VM. Most of these artifacts fall within one of three categories: service, process, or

file system artifacts; random access memory artifacts; and virtualization-specific artifacts,

which are further broken down into hardware and capability artifacts. This section will

discuss the characteristics and differences between these categories of hypervisor artifacts.

1. Service/Process/File System Artifacts

Most modern hypervisors benefit from the guest OS being aware that it is

virtualized. By utilizing paravirtualization and allowing usage of guest-hypervisor

communication channels, the overhead usually incurred during full virtualization is

reduced or even eliminated. But most hypervisors are also transparent about their PV-

specific drivers, which is a large source of artifacts within the guest OS. For example, a

VMware Workstation guest running Windows XP with vmtools present (VMware’s

proprietary PV setup) has over 50 references to “VMware” in the file system and over 300

references in the registry [13]. Although plentiful, these references are not reliable, as

researchers have been able to utilize techniques similar to those found in malicious rootkits

to readily fool mechanisms looking for these types of artifacts [13].

2. Random Access Memory Artifacts

The following types of artifacts are commonly grouped together as they all involve

artifacts that can be discovered through inspection of a VM’s random access memory

(RAM).

a. Memory References

Hypervisors also insert references to themselves within the guest OS’s memory,

providing another artifact for possible detection if someone were to dump and search the

guest’s memory. Researchers discovered over 1500 references to “VMware” within the

memory of the guest described in the previous section [13]. It is, however, not trivial or

feasible to discover quickly but can be made more effective if the detection mechanism

knows which specific segments of memory need to be inspected [13].

13

b. Pointer Examination

Most modern operating systems utilize tables in memory that are critical to their

operation. One example is the Interrupt Descriptor Table (IDT), which holds pointers to

various operating system interrupts located within memory [13]. Since the hypervisor and

guest both must maintain their own tables, their location within memory cannot be the

same, so tools exist (e.g., The Red Pill [14]) that examine the pointer, and determine

whether it is operating within a virtual machine or not.

3. Virtualization-Specific Hardware Artifacts

The Linux OS virtual /proc directory can have a wealth of virtualization artifacts.

Paravirtualized guests, by definition, utilize virtual device drivers designed to facilitate

communication with the hypervisor, along with reducing latency. Within a Linux OS guest,

there are multiple references to virtual device drivers, typically found in locations such as:

the system’s logs, dmesg command output, and as files within virtual file directories (like

/proc). Windows OS guests are not immune to this phenomenon as the registry also

contains multiple device registry keys that reference the hypervisor [13].

4. Virtualization-Specific Capability Artifacts

Paravirtualized guests also contain additional machine language instructions that

extend the instruction set of the virtualized hardware. Like the PV device drivers, these

instructions are meant to facilitate communication and performance with the hypervisor.

VMware and Xen are both examples of hypervisors that extend the instruction set

architecture, and tools like VMDetect are designed to attempt to run these expanded

instructions. A tool can recognize it is operating within a virtualized environment by the

fact that the system does not treat these expanded instructions as errors but will accept and

continue operating gracefully [13].

E. HYPERVISOR DETECTION

It is important to understand the techniques and software used to detect the

existence of hypervisors if we hope to realize the goal of a higher-fidelity hypervisor. From

a security standpoint, it is essential that malware not be made aware of the presence of a

14

hypervisor, since this could allow unwanted system analysis and also present a whole new

attack surface through the VMM [15]. Analysis of these techniques and software can

potentially open new avenues of artifact mitigation, thus coming close to realizing a

hypervisor that is indistinguishable from a bare metal machine.

1. Detection Techniques

This section describes various high-level techniques that can be utilized to discover

the presence of a hypervisor or a VM.

a. Count-Based Detection

At the University of Minnesota, research was conducted to quantify timing artifacts

present within various VMMs, as compared to bare metal hardware. Thompson et al. [16]

experimented by comparing the ratios of NOP instructions to CPUID instructions executed

on various VMMs, discovering detectable differences in behavior that are indicative of a

VMM. The underlying implementation utilized the fact that the CPUID instruction is

privileged and thus adds additional latency since it must be trapped by the hypervisor and

handled before returning control back to the guest [17]. Thompson et al. [16] discovered

that even in cases of full virtualization like VMware Workstation, the ratio of instructions

executed differed noticeably from the bare metal control and with a baseline understanding

of how the system should be performing, detection of a VM is likely.

b. Register Inspection-Based Detection

Research by Robin and Irvine [18] found that processors must meet certain

requirements to be considered able to support hypervisors. One of these requirements is

that there must be a mechanism in place to automatically signal the hypervisor whenever a

guest attempts to execute sensitive instructions. Similarly, a more specific instance of

“sensitive instructions” includes those “that read or change sensitive registers and/or

memory locations such as … interrupt registers” [18]. They further discovered multiple

instructions within the Pentium instruction set that violated this rule, allowing a guest OS

access to registers such as the Interrupt Descriptor Table Register (IDTR) which, as

15

discussed below, may allow an outside observer to recognize that they are operating within

a virtualized environment.

2. Detection Software

The following are software implementations of various VM detection techniques

that are commonly used to determine if a system is virtualized or not.

a. Red Pill

The Red Pill is a small 4-line program written by Rutkowska [14] that executes the

SIDT (Store Interrupt Descriptor Table Register) machine instruction. Since a hypervisor

and guest OS must both have an IDT, and the CPU only has a single IDTR, the hypervisor

must store the guest’s IDTR value somewhere else in memory. The instruction itself is not

privileged, so the guest is able to retrieve the relocated address which, regardless of the

hypervisor present, is in a different location in memory than a bare metal machine would

have it located [14].

b. ScoopyNG

ScoopyNG is a collection of tests written by Klein [19] that probe the same sort of

artifacts that the Red Pill examines, while also attempting to run VMware-specific machine

instructions to access the hypervisor-guest communication channel. Typically, successful

detection of a VM by any of these tests is considered proof enough that the system is

running in a virtualized environment [13], [19].

c. VMDetect

VMDetect is another collection of tests meant to expose a hypervisor through use

of hypervisor-specific machine instructions [13]. It works by registering its own unique

handler for invalid OpCodes, then executes hypervisor-specific (i.e., non-standard)

machine instructions [13]. If the unique handler is executed after an invalid machine

instruction, then the machine in question is either virtualized using full virtualization and

is unaware it is virtualized or is a bare metal machine. This technique is effective for both

VMware.

16

d. Paranoid Fish

Paranoid Fish (also known as Pafish) is a “demonstration tool that employs several

techniques to detect sandboxes and analysis environments in the same way that malware

does” [20]. Since it is primarily designed to ensure that analysis environments are properly

implemented to defeat a piece of malware’s detection techniques, it is also effective at

evaluating a virtual machine and detecting hardware and software-based artifacts that are

present.

F. CURRENT ARTIFACT MITIGATION SOFTWARE AND TECHNIQUES

The following section contains a high-level overview of artifact mitigation

techniques and software implementations of those techniques.

1. VMmutate

VMmutate is a proof-of-concept application that attempts to mitigate two common

techniques for detecting a VMware hypervisor. First, it modifies the VMX configuration

parameters in such a way that it can defeat The Red Pill and portions of the ScoopyNG test

[15]. Second, it attempts to alter and/or disable the VMware “magic value,” which is a

specific value loaded into a CPU register when attempting to call hypervisor-specific

machine codes that would normally be invalid. Both modifications combined have the

consequence of requiring modification to the hypervisor as well as the paravirtualization

tools and drivers.

The drawback to this software tool is that it requires an extensive search and replace

operation within the VM disk image, which has the potential to be very large. As well, it

is possible to encounter the “magic value” in a non-VMware context, requiring the software

to be designed well enough to know which values to alter and which to ignore [13].

2. Hypervisor Configuration Modification

A mitigation technique is the modification of configuration files within the

hypervisor to remove artifacts either through obscuration or the breakage of the hypervisor-

guest communication channel. For example, Liston and Skoudis [13] discovered several

17

undocumented configuration options that, when set a certain way, broke the hypervisor-

guest communication channel, rendering the hypervisor undetectable through The Red Pill

or ScoopyNG. The drawback to this technique is that these modifications are neither

documented nor officially supported, thus there is no guarantee that these mitigation

techniques will remain effective given that future updates can often break undocumented

features [15].

G. OTHER RELATED WORK

Although not designed for detection mitigation, there are software libraries and

software tools that were originally intended to examine virtual machines and aid in their

analysis, but that could also be used as a means of obfuscating nontrivial artifacts within

the guest system or the hypervisor. An example of this might be artifacts present in the

Linux /proc virtual filesystem. Since any mitigation technique implemented within the

guest system could be classified as an artifact, by virtue of its presence within the guest

filesystem, it is also worthwhile to examine solutions that are employed from outside the

virtual machine.

1. LibVMI

LibVMI is an offshoot of the XenAccess Project, which is meant to be a means of

virtual machine introspection focused on Xen hypervisors. Specifically, LibVMI aims to

be less platform dependent and able to support multiple different hypervisor solutions. It

provides a means of monitoring (by reading memory values) and control (by writing new

values to memory) from outside the guest virtual machine and is thus able to remain

undetected from the perspective of the guest system [21].

2. DRAKVUF

DRAKVUF is an “agentless black-box binary analysis system” designed to utilize

LibVMI and the Xen hypervisor to monitor and trace binary execution of a virtual machine

from outside the guest itself [22]. It is traditionally used for stealthy malware analysis, but

also has the ability to trap specific system calls, giving it the potential for arbitrary

data/process injection in Windows guest systems. DRAKVUF also utilizes a plugin-based

18

system that is much less complicated to utilize, as compared to modifying a hypervisor’s

source code directly. DRAKVUF currently requires the use of Intel x86 processors to

leverage virtualization technology present, but there has also been initial development of

an ARM-based version [23].

H. SUMMARY

As the survey of hypervisor technology shows, many different hypervisors are

available for implementation, some potentially along the path toward a high-fidelity

hypervisor. These hypervisors are designed to operate either directly above the hardware

level or as applications within another operating system. The guest systems may also be

operated at different “levels” of virtualization, ranging from fully translated hosts that are

completely unaware of the hypervisor to paravirtualized hosts that are able to capitalize on

communication channels and achieve near-native speed and latency. However, all these

implementations create virtualization artifacts, which must be mitigated to prevent

identification of virtualization. Although detection techniques have evolved and become

better over the last fifteen to twenty years, our goal is to implement techniques that are able

to avoid detection by commonly employed hypervisor detection programs.

19

III. SYSTEM DESIGN AND IMPLEMENTATION

In this chapter, we discuss the detailed design of the system for this research,

focusing on the rationale behind specific design choices as well as assumptions made.

A. OVERVIEW

In our research, we have decided to extend the Xen hypervisor that leverages

DRAKVUF and LibVMI’s introspection abilities to create a plugin named smokescreen.

Smokescreen works by mitigating device and capability-specific virtualization artifacts

present in a VM. It does so by performing introspection on each system call that attempts

to execute a program and, if smokescreen matches a pre-determined list of artifact-

exposing binaries, it replaces the path and redirects the system to execute a modified

version of the program to obscure the VM artifact. This obscuration is achieved by having

the modified program present seemingly legitimate output in the same fashion as the

unmodified program. Since all calls to execute programs are monitored, any calls that do

not require redirection are immediately released back to VM execution to minimize

performance penalties within the system, which may themselves indicate the existence of

a virtual environment.

B. HOST SYSTEM

One of the more important decisions made during our research was the

configuration of the test system. Both the hypervisor and the guest system were configured

to be representative of a majority of different configurations found on web servers utilized

within the last decade.

According to W3Techs, the majority of web servers have operated utilizing some

form of Unix-based operating system, with a further breakdown showing that the Ubuntu

OS (a Debian-based derivative) was the most likely Linux operating system used [24]. We

elected to utilize Ubuntu 16.04.6 LTS since this version continues to enjoy long term

support via its owner, Canonical, so it is likely to be encountered “in the wild” quite often.

The fact that the DRAKVUF/Xen combination has been tested and confirmed to work on

20

Ubuntu-based installations reinforced our decision to utilize Ubuntu 16.04.6 LTS as both

the Hypervisor (to ensure compatibility with DRAKVUF and Xen) and the guest OS (to

ensure a representative system). As far as the guest system was concerned, the only

modification required to ensure correct smokescreen execution was that any modified

binary must reside within the guest OS due to current limitations of the DRAKVUF system.

C. HYPERVISOR

We utilize a Type-1 hypervisor for our system since they are more typical in

commercial settings compared to the application-based Type-2 hypervisor. The Xen

hypervisor was chosen due to its open-source nature and the fact that it is widely adopted

as a hypervisor solution in the tech sector. Additionally, since DRAKVUF and LibVMI

were originally designed to work in conjunction with the Xen hypervisor, we were able to

leverage that inherent compatibility to achieve a stable platform for our research.

D. DRAKVUF

According to the author and maintainer of the DRAKVUF software suite, it is a

“virtualization based agentless black-box binary analysis system” [23]. A key feature of

DRAKVUF is its ability to examine and manipulate the execution of arbitrary binaries

within a guest operating system without having to install any additional analysis software

within the VM. Our end goal, the mitigation of device and capability-based artifacts, was

achieved through three separate components found within the DRAKVUF system.

1. Rekall

Rekall is an open-source Python-based framework utilized for “the extraction and

analysis of digital artifacts (in) computer systems” [25]. It works by analyzing the currently

running kernel on the system to determine the kernel configuration as well as the kernel

source headers to map out the locations of essential kernel structures and outputs the

locations of these structures as a standardized JSON (JavaScript Object Notation) file. This

tailored profile contains key information such as the base memory address of the kernel

structure, as well as important address offsets of kernel memory objects and, most

21

importantly, system call locations. Armed with these memory locations, DRAKVUF is

able to leverage LibVMI to trap these system calls.

2. LibVMI

LibVMI is a critical component of DRAKVUF that enables the implementation of

Virtual Machine Introspection, specifically allowing access to a live (i.e., running) VM

through physical or virtual memory addresses and kernel symbols. The Rekall profile

allows LibVMI to “bypass the use (of) the in-memory KdDebuggerData (KDBG) structure

normally used by memory forensics tools and thus allows introspecting domains where this

structure is either corrupted or encoded (like in the case of Windows 8 x64)” [21]. For our

research, LibVMI is the primary means of ensuring that the specific system calls we desire

to intercept are correctly identified, located, and properly trapped. We then analyze these

system calls and, if modification is determined to be necessary, modify the appropriate

parameters. This ensures that any artifact-exposing binaries will be properly intercepted

and mitigated through redirection to our modified binaries.

3. Plugin System

DRAKVUF’s last essential component to our research involves the powerful plugin

system implemented as part of the analysis suite. Through a minor modification of

DRAKVUF’s source files, we were able to build and integrate various plugins that are

initialized and executed during DRAKVUF’s main program loop. These plugins are

written in C/C++ and utilize a callback function to perform introspection and modification

of VMs while they are running. At DRAKVUF initialization these plugins are initialized

as well, and the various callback functions are registered to be executed whenever the

program’s main loop determines it to be appropriate. In the case of our research, these

callbacks were configured (via a command-line interface with DRAKVUF) to be executed

whenever the desired system calls are executed within the guest operating system’s kernel.

22

E. PLUGIN IMPLEMENTATION

The following section describes the components and implementation of

smokescreen. We present the hardware and software components followed by a detailed

description of the plugin implementation and other implemented software components.

1. Hardware Component Emulation

One particularly interesting application of our research into mitigating device and

capability artifacts is the mitigation of artifacts that arise from a VM not having direct

access to the host hardware devices (as shown with VM1 in Figure 4). In most cases, these

devices are emulated by the hypervisor to provide a seamless experience to the user, but

that is not always the case. For example, most VMs do not have the ability to query physical

data such as CPU temperature, or other less often encountered sensors (such as light sensors

or motion detectors) that even when present on the host system may not be exposed to the

guest system.

Figure 4. HVM I/O Support. Source [26].

We chose to implement a CPU temperature sensor since it is almost universally

found on modern processors but is typically not exposed to guest VMs. To do this, we

examined the datasheets of the specific processor used as our testbed (an Intel Core i7-

6700) to determine if a temperature model could be ascertained. Upon inspection of the

23

processor specifications [27], we noted references to the TCASE of the processor. Further

inspection of the processor datasheet [28] showed that TCASE corresponds to “Case

Temperature [which] is the maximum temperature allowed at the processor Integrated Heat

Spreader (IHS)” [27]. It is typically used by designers of cooling systems to ensure that

their products are working safely. As shown in Figure 5 of the technical datasheet, the

thermal profile is a linear model.

Figure 5. Thermal Test Vehicle Thermal Profile for PCG 2015C Processor

(Intel Core i7-6700). Source [27].

From this linear model, we were able to calculate a reasonable CPU temperature

profile, based solely on the processor utilization of the guest machine.

2. Software Component

Our system’s software component is based on a widely utilized Linux program

called sensors, from the set of software tools known as lm-sensors [29]. As shown in Figure

6, this program works through the examination of system files found in a system’s virtual

file systems (i.e., /proc or /sys). These files contain raw sensor output for various types of

24

sensors including, but not limited to, temperature sensors. The program collects the data

from these sensors, formats it to be human readable, and then outputs it for the user to

examine. A VM that does not have access to the underlying system’s sensors will report

an error condition upon execution of the sensors binary since, from the VM’s perspective,

the sensors do not exist. However, most modern CPUs have a temperature reporting sensor

implemented, as it is an essential piece of the architecture’s thermal management

processes. This lack of reporting on the part of the VM presents itself as both a device and

a capability artifact of virtualization.

Figure 6. General Execution Flow of sensors Binary.

Therefore, we decided to implement a modified version of the sensors binary that

could report temperature to the end user, as shown in Figure 7. While this could be

accomplished simply by having the modified binary output a static value, the goal of

implementing a HFH means that the output value should reasonably reflect the current state

of the apparent bare metal machine and its environment, even in the context of it being a

VM and environment.

25

Figure 7. Modified sensors Execution Flow.

To this end, our goal was to implement a subroutine or library that, when executed,

would sample current conditions within the VM and use those conditions to execute a

lookup from the linear temperature model, given system utilization (in watts). To do this,

we utilized the TCASE model published by the processor manufacturer, along with the

current utilization of the system as determined by the contents of the /proc/loadavg system

file. This system file is common to Linux operating systems, and reports running 1-, 5-,

and 10-minute processor load averages of the system as floating-point numbers between

0.0 and 1.0 per CPU core/thread (for example, a single core operating at 75% will report a

value of 0.75). As shown in Figure 8, by using the 1-minute average as an approximation

of current system utilization and the 5- and 10-minute averages to influence the “effect” of

cooling solutions (for instance, when longer-term utilization is higher, it is likely that

cooling fans have also been working to manage temperature for some amount of time), we

were able to implement a simple lookup function that scaled appropriately with system

utilization.

result = 45.6 + ((POWER*one_min_avg)*0.41);
result -= ((1.0-five_min_avg) + ((1.0-ten_min_avg)*10));

Figure 8. C Implementation of the Modeling Function.

26

3. Means of Implementation

Smokescreen was developed as a plugin for DRAKVUF, primarily implemented

in C/C++. DRAKVUF and the parent plugin class are implemented in this language so that

extension of the class is easier in the same language. For the actions taken by smokescreen

during execution, knowledge of Sysv 64-bit calling conventions was also required, as

memory and register introspection/manipulation require knowledge of CPU registers and

their contents prior to kernel system calls.

The plugin itself was implemented as an extension of the plugin class (per

DRAKVUF requirements) and consists of a total of seven files. Two of the files contain

the plugin implementation itself, and one is a header file containing our temperature

calculation function. The third file is a patch file for the source files for sensors. The fourth

and fifth files describe the system calls and executable paths to be trapped and modified,

and finally the modified (i.e., recompiled) version of sensors.

The plugin files are found in src/plugins/smokescreen and consist of

smokescreen.cpp and smokescreen.h per plugin specification. The temperature lookup

function consists of a single file temp_lib.h and is required to be in the sensors/lib folder

of the lm-sensors source code to ensure proper recompilation of the sensors binary. The

patch file must be applied to sensors/prog/sensors/main.c of the lm-sensors source code

prior to compilation to ensure that our temperature function is called, and to prevent

leakage of VM artifacts when the modified sensors binary is executed. The system call list

is passed as a command line argument to drakvuf (via the -S flag) which expects an absolute

or relative path and can be located wherever the end user desired, and the binary list must

be located at /home/xen/xen/binary_list.txt, but that location is modifiable if required.

Finally, the modified sensors binary must be located on the guest VM at /fake/usr/bin/,

but this location is completely modifiable within the source code for smokescreen.

For the implementation of smokescreen, the Linux system call execve() requires

three parameters: a pointer to the fully qualified path name as a string, a pointer to an

argument vector, and a pointer to an environmental variable vector. According to AMD64

Sysv calling conventions, these parameters are found in the CPU registers RDI, RSI, and

27

RDX, respectively. For our research, the argument and environmental variable vectors are

not modified at any time nor require modification for smokescreen to execute. Since

modification of the argument vector (i.e., the command line arguments) would likely

expose our modifications, it is best to leave it untouched as this will ensure that our

modified version will preserve functionality not directly related to our emulated sensor

such as printing a help or version message. The environmental variable vector is not used

directly by the sensors program, and modification may lead to system instability.

Our plugin follows a simple execution flow, shown in Figure 9, whenever the

callback function is invoked, as described in the following steps:

1. Retrieve and lock (pause) the instance of the VM being monitored.

2. Identify the pathname of the binary about to be executed through

introspection.

3. Compare the pathname to a predefined list of fully qualified pathnames to

original binaries that contain virtualization artifacts.

4. Extract the pathname if a match is found and modify it to be the fully

qualified path of our modified binary. If not a match, execution will be

resumed with no modifications made.

5. Release (un-pause) the VM and allow execution to resume.

We provide further detail on this execution flow in the following.

28

Figure 9. Smokescreen Execution Flow

During step 1, the VM instance allows access to, among other things, the values

stored within individual CPU registers along with both physical and virtual memory

addresses. Since we are concerned with the Linux kernel’s execve() call, we must be able

to extract the pathname from the VM’s RDI register for the calling process. As

DRAKVUF/LibVMI traps these calls, smokescreen’s callback function is able to query

LibVMI for a vmi_instance_t struct named vmi. With this struct, in conjunction with the

drakvuf_trap_info_t struct that is passed to the callback function as a parameter, we are

able to extract information from the VM’s memory to accomplish our introspection. This

extracted information includes data such as the calling process PID (Process Identification)

and a complete snapshot of CPU registers and their values for the calling process. When

the system call is invoked, RDI contains a pointer to a string representation of the file path

to be executed.

As shown in Figure 10, we executed step 2 of our process by utilizing LibVMI’s

function vmi_read_str_va() which returns a pointer to the string containing the fully

qualified pathname.

29

printf(“smokescreen activated.\n”);
vmi = drakvuf_lock_and_get_vmi(drakvuf);
pathname = vmi_read_str_va(vmi, info->regs->rdi, info->proc_data.pid);

if (pathname == NULL) {
 drakvuf_release_vmi(drakvuf);
 fprintf(stderr, “[Warning] Captured NULL pathname.\n”);
 return 0;
}

Figure 10. Code to Lock the VM and Extract Pathname

Next, as shown in Figure 11, we execute step 3 by comparing our captured

pathname and comparing it to our list of pathnames to be intercepted. The list of binaries

is loaded at initialization of the plugin and resides outside of the VM.

bool found = false;
for (int i = 0; I < s->binaries.size(); i++) {
 printf(“Comparing %s with %s.\n,” s->binaries [i].c_str(), pathname);
 if (s->binaries [i].compare(pathname) == 0) {
 found = true;
 break;
 }
}
if (!found) {
 drakvuf_release_vmi(drakvuf);
 fprintf(stderr, “[Info] No match found.\n”);
 return 0;
}

Figure 11. Code to Find a Pathname Match.

If a matching pathname is found, step 4 is executed by constructing a modified

pathname and writing it back to the original memory location that still resides in the VM’s

RDI register. Otherwise, we immediately release the lock on the VM and return, allowing

execution to resume.

From there, the final step is executed by releasing the VM instance, allowing

execution to continue in the VM. From the perspective of the executing VM, it is unlikely

that this process will be observed unless the user is meticulously monitoring execution of

the system in real time.

30

fakepath = (char*) malloc(sizeof(char)*4096);
strcpy(fakepath, “/fake”);
strcat(fakepath, pathname);
printf(“smokescreen attempting to change path to… %s.\n,” fakepath);
vmi_write_va(vmi, info->regs->rdi, info->proc_data.pid,

strlen(fakepath)+1, fakepath, c);
free(fakepath);

Figure 12. Code to Modify Pathname.

F. SUMMARY

In conclusion, we have designed a system that can obfuscate virtualization device

and capability artifacts, with minimal impact to the guest VM. By placing modified binaries

that mitigate artifacts on our guest VM alongside utilizing VM introspection and

DRAKVUF on the hypervisor, we can redirect execution and obfuscate the presence of the

modified binaries, as the guest VM believes it is executing the original files. Therefore,

even if an interested party were to examine the original files that are still present, there

would be no outward or obvious indications that they were not the files being executed.

Although the modified binaries are present on the guest VM (thus introducing additional

virtualization artifacts), there is no requirement that the modified binaries follow any sort

of naming convention which can further obfuscate their presence on the guest VM.

In the next chapter, we present the testing methodology and results of the testing of

our system.

31

IV. SYSTEM TESTING

In this chapter, we present and discuss our methodology for performance and

accuracy testing of our system, followed by analysis of their results.

A. TESTING METHODOLOGY

In order to test our system’s ability to achieve artifact mitigation, we needed to

examine the detectability of VM introspection when redirecting guest VM execution, as

well as the accuracy of our sensor data lookup function compared to the bare metal sensor

output. We achieved each of these by executing two tests.

1. Performance Testing

First, we tested the performance of our system by examining our modified sensors

program in three environments: a bare metal machine, a VM where no introspection

occurred, and a VM where introspection did occur. Within each environment, we extracted

the following data, respectively: the average runtime of sensors, the performance overhead

of virtualization alone, and the performance overhead of smokescreen and its VM

introspection. The performance test was considered successful if the introspected VM in

our system executed with runtimes similar to those of the other two environments.

To measure the timing of our three environments, we created a Python script to

perform multiple system calls that execute sensors, both modified and unmodified. For

each execution, the individual runtime was calculated and stored. After all test iterations

were completed, statistics were extracted from each environment and analysis was

conducted to calculate average runtime, standard deviation, and 95% confidence interval

for the average. For the purposes of our research, negative timing results were considered

invalid and discarded to prevent data skew.

2. Accuracy Testing

We tested the accuracy of our temperature lookup function by building a program

that would output our estimate alongside the actual sensor data (i.e., the truth value). More

32

specifically, we compared the results of our lookup function to the output of the CPU

temperature sensor within the /sys filesystem. Success was indicated if the lookup function

produced similar values to the actual temperatures measured while conducting our test.

To measure the values, we created a C program that executed the lookup function

then read the actual sensor output. Both values were then redirected to an output collection

file. Since our goal is to provide an accurate estimation for the entire range of utilization,

we wanted to ensure the widest range of possible values were passed to the lookup function.

To accomplish this, NOP loops were executed concurrently with our test program to drive

up CPU utilization, simulating the transition from idle to full utilization. The test then

halted operations to capture the ramp down to system idle. After testing was complete, the

utilization amounts (i.e., output of /proc/loadavg), estimated temperature (from our

function), and actual temperature (from the sensors) were extracted and analyzed to

calculate the average deviation between the estimated values and the actual values, both as

a raw value (degrees Celsius) and percentage.

B. PERFORMANCE TESTING

In testing the performance of our system, we found it necessary to compare it to

both a bare metal machine and a non-introspected VM. With the bare metal machine, we

were able to establish a baseline performance, and by including a non-introspected VM,

we were then able to determine how much impact from our system could be attributed to

virtualization overhead. With these two additional pieces of data, we were able to

accurately measure the cost of smokescreen in terms of performance.

1. Bare Metal Machine

Our bare metal machine was configured to utilize the same hardware configuration

and the same Ubuntu 16.04.6 LTS distribution that were used for the virtual machine. Lm-

sensors was installed and executed with no modification to the sensors program. Several

sensors, including the processor temperature sensor, were detected out-of-the-box (i.e.,

without additional configuration required).

33

In testing the bare metal machine, as the results show in Table 1, we were able to

establish that sensors executed for an average of 2.886ms, with most values falling within

0.5ms of that time. Based on the number of iterations executed, we were able to establish

a 95% confidence interval of +/-0.00986ms, making us very sure about the accuracy of our

average execution time.

Table 1. Bare Metal Timing Results.

Total Iterations 9,944
Average Execution Time 2.886ms
Standard Deviation 0.5ms
95% Confidence Interval +/- 0.00986ms

2. Hypervisor without Mitigations Present

To establish the cost of hypervisor overhead, we needed to measure the

performance difference between an introspected and a non-introspected VM. To do this,

we used the Dom0 VM, which is the VM that acts as our user interface to the Xen

hypervisor directly (i.e., the environment that DRAKVUF runs in while introspecting a

guest VM). We chose the Dom0 VM, as opposed to our guest VM, for two reasons: first,

the Dom0 VM is defined by the Xen hypervisor as being another virtual machine that has

elevated access to the hardware level, which is not available in the guest VM [9]. Although

the Dom0 VM does not have access to the CPU temperature sensor, it does have access to

other sensors (which our guest host does not) and it still provides a similar flow of

execution for the unmodified sensors program when compared to the bare metal machine.

Second, our test system was designed intentionally to ensure that the VMM and the guest

VM were executing identically-configured kernels, and that both had access to similar

resources through the hypervisor, providing a nearly identical environment when compared

to the guest VM.

The performance of this test system is shown in Table 2. We see that execution

time increased by approximately 1.2ms on average over the bare metal system, and resulted

34

in a wider standard deviation. Due to the increased standard deviation, our 95% confidence

interval with regards to execution time increased to +/-0.01425ms.

Table 2. Virtual Machine Timing (No Introspection) Results.

Total Iterations 9,953
Average Execution Time 4.022ms
Standard Deviation 0.73ms
95% Confidence Interval +/- 0.01425ms

3. Hypervisor with Mitigations Present

Finally, the guest VM was tested with DRAKVUF running on the hypervisor, with

smokescreen implemented and executing as a part of the DRAKVUF instance. The guest

VM also executed the modified version of sensors. As shown in Table 3, execution times

for this system increased by a relatively large amount over the other test systems, with

average execution time increasing by 5.964ms over the bare metal system, and by 4.828ms

over the non-introspection system. In addition, this performance resulted in a wider range

of observed execution times, as seen by the higher standard deviation of 1.493ms. Here we

experienced the widest of our 95% confidence intervals, with a value of +/-0.04816ms.

Although this is significantly larger of an interval compared to the other two environments,

it still shows that we can reasonably expect execution to fall within a small range of

possible times.

Table 3. Virtual Machine Timing (with Introspection) Results.

Total Iterations 9,959
Average Execution Time 8.850ms
Standard Deviation 1.493ms
95% Confidence Interval +/- 0.04816ms

35

C. ACCURACY TESTING

Another important metric in determining success in our system is whether our

temperature function accurately reflects the bare metal system’s state without direct access

to the sensors. To test this, we compared our lookup function output to the bare metal

system’s temperature sensor raw output, as stored in the /sys folder (in Ubuntu 16.04.6

LTS). The results are broken down into three categories as shown in Table 4. Overall, we

saw consistent underestimation, with our lookup function typically returning values around

13°C, or 16.28%, lower than the raw sensor values. By also considering the calculated

standard deviation of the differences, most estimation differences were anywhere between

-22.3917°C and -4.0739°C too low. When broken down by utilization transition, the idle

to full transition saw much larger underestimations up to 35°C with an average difference

of 21.9% between the estimated and actual values. Underestimations seen here typically

fell within a range of -20.503°C and -11.799°C. The full to idle transition saw both under

and overestimations with deviations between -15°C and +17°C, but an average difference

of only 0.52% and most differences falling within between -3.4256°C and +2.7884°C.

Table 4. Lookup Function Accuracy Results.

Overall Results (3600 data points)
Average Difference -13.2328°C
Standard Deviation 9.1589°C
Average Difference Percentage -16.28%
Largest Underestimation -35.000°C
Largest Overestimation 17.000°C

Idle to Full Utilization Transition (2403 data points)
Average Difference -17.8244°C
Standard Deviation 4.3521°C
Average Difference Percentage -21.94%
Largest Underestimation -35.000°C
Largest Overestimation N/A*

Full to Idle Utilization Transition (1196 data points)
Average Difference -0.3186°C
Standard Deviation 3.1070°C
Average Difference Percentage 0.51%
Largest Underestimation -15.000°C
Largest Overestimation 17.000°C
*No overestimations occurred.

36

D. ANALYSIS OF RESULTS

In this section, we analyze the results of the performance and accuracy testing, and

present possible explanations of these results.

1. Performance Analysis

Initial examination of the performance statistics shows that there is a measurable

impact of both virtualization and VM introspection. A histogram of the three test systems’

execution times is shown in Figure 13. In Table 2 we saw an increase of ~1.1ms average

execution time (from 2.886ms to 4.022ms), a roughly 39% increase, in a virtual machine

over a bare metal machine. We also saw an increase in the range of values encountered

within one standard deviation. It is possible that this increase in execution time was due to

resource sharing between the various VMs as well as context switching (for example, due

to sensitive or privileged instructions that much be trapped) between the hypervisor and

guest VM that is required for normal virtualization operations.

Figure 13. System Performance Results.

Comparing the results of the guest VM alongside smokescreen operating, we saw

a relatively large increase in the execution time for sensors. The average execution time

was 8.850ms with a standard deviation of 1.493ms. This difference in timing compared to

the bare metal system can likely be attributed to not only the overhead incurred by

virtualization, but also to the processing time of smokescreen and the lookup function

executed by sensors. Since the results from the previous two environments show that

sensors takes approximately 2.886ms to execute, and virtualization overhead added an

37

additional 1.136ms, then the 8.850ms execution time we observed shows that smokescreen

increased average execution time by 4.828ms compared to an unmodified VM and

increased by 5.964ms compared to a bare metal system. These times correspond to a

roughly 83% and 206% increase in average execution time compared to the non-

introspected VM and the bare metal machine respectively.

2. Accuracy Analysis

In comparing our lookup function to the actual sensors on the bare metal system,

our modelling function followed the overall trend of the actual sensor data. As temperature

sensor readings increased, our function returned steadily increasing results, and when the

actual temperature decreased, our function also showed a decrease in returned values.

Although our function produced a similar temperature curve to that of the actual

sensor data, it consistently underestimated the actual temperature values, as can be seen in

Figure 14. This was likely due to a combination of the use of the TCASE temperature as an

upper limit to calculatable temperatures, along with the influence of the five- and ten-

minute averages on the calculated value. Although TCASE is described by Intel as “the

maximum temperature at the integrated heat spreader” [27], it should not be considered an

upper limit to temperatures that could be encountered in reality. Next, the intention of the

five- and ten-minute averages was to estimate the effect of CPU cooling over time, but as

average CPU utilization grew and plateaued, those averages capped the estimated

temperature even lower than TCASE (71° C in the case of our Intel i7-6700).

Figure 14. System Accuracy Results.

38

E. TESTING LIMITATIONS

The version of DRAKVUF that we used limited introspected VMs to a single

virtual CPU per VM (which is assigned to a single physical CPU thread by the hypervisor).

Additionally, the output of /proc/loadavg is a combined total of the load average for all

present CPU threads, so a 4-core/8-thread CPU (such as the Intel i7-6700) would return

values ranging from 0.00 to 8.00 (i.e. 0% to 800%) to signify no utilization on any core to

full utilization on all cores, respectively. Since our design assumed access to only a single

CPU thread from the start, it did not account for the presence of multiple cores or multiple

threads. However, our temperature accuracy testing was performed on a bare metal

machine that had access to all eight processor threads in order to have actual sensor data.

To account for this, we modified our temperature lookup function for testing as follows:

1. Multiple NOP loops were utilized to ensure 100% utilization across all

CPU threads.

2. The /proc/loadavg output was normalized to a range of 0.0 to 1.0,

producing values that would be expected by smokescreen.

By ensuring that all CPU threads were operating at near-identical utilization, and

by normalizing the load averages to that of a single core processor, we were able to produce

the range of values that smokescreen would expect and would accurately reflect the results

produced by the plugin.

F. SUMMARY

In this chapter, we presented the testing methodology and results of our

implemented system, smokescreen. From a performance point of view, the introduction of

our system onto a VM resulted in an average execution time increase of 5.964ms,

representing a 206% increase over a baseline bare metal machine. Of that time, 38% of the

increase can likely be attributed to the virtualization overhead, and an increase of 167%

that can be attributed to smokescreen.

From an accuracy point of view, our smokescreen system closely followed the

temperature curve of the bare metal machine sensor data, however our lookup function

39

consistently underestimated the CPU temperature. This was likely because of the use of

TCASE as a maximum temperature value combined with the usage of higher utilization over

time (the five- and ten-minute load averages) acting to further depress on our estimated

values.

In the next chapter, we present our conclusions as well as recommendations for

future work in VM artifact mitigation.

40

THIS PAGE INTENTIONALLY LEFT BLANK

41

V. CONCLUSIONS AND FUTURE WORK

At the beginning of our research, we set out to answer three important research

questions. We sought to 1) identify techniques utilized to mitigate hypervisor artifacts, 2)

design and implement chosen techniques that would mitigate these artifacts, and 3) ensure

that our mitigations could accurately estimate the actual state of the underlying system,

without access to the sensors that describe that state. Our mitigation tool, smokescreen,

answers these questions, providing artifact mitigation with a performance cost measured

in milliseconds, while being able to provide sensor data that follows the temperature curve

of a bare metal system during normal use.

In this chapter, we present our conclusions as well as recommendations for follow-

on research and other future work.

A. CONCLUSIONS

In this thesis we designed and implemented smokescreen as a DRAKVUF plugin

with the goal of mitigating capability and device artifacts common within modern VMs. In

particular, we were able to modify a VM’s system calls to replace the path of specific

programs which produce virtualization artifacts and replace them with modified versions

that did not exhibit those artifacts. The artifacts are mitigated by having the modified

program estimate the system’s state through use of other system information that is present.

Although other solutions exist that also provide increased fidelity [30], our goal was to

implement a solution that existed mostly outside the guest VM in order to achieve our view

of a high-fidelity hypervisor. Our results indicated that smokescreen provides increased

fidelity but at the expense of increased execution times and potentially introducing other

VM artifacts in order to mitigate those we targeted in our system.

1. Artifact Mitigation

By utilizing DRAKVUF [22], we were able to keep most of our software solution

outside of the guest VM. The implementation showed that it is possible to redirect

execution of some artifact-leaking programs in a way that is difficult to detect, even when

42

examining execution from within the VM. This results from the fact that the guest VM has

no potential indicators that the original program is not being executed.

However, smokescreen’s implementation and its interactions with LibVMI’s API

started to make the limitations of VM introspection more apparent. Through smokescreen

we were able to access CPU register and memory contents, but the plugin could not directly

access devices or files in order to modify them. As a result of this, our implementation

needed to introduce additional file system artifacts into the guest VM. Since our

modifications to the guest VM were limited to data in or pointed at by CPU registers, we

were unable to directly manipulate the programs which cause artifact leakage and must

instead redirect execution to our own modified versions of the programs which reside

within the guest VM to mitigate potential leakage. Similarly, since we were unable to

manipulate the system files that contain sensor values, we were forced to ensure that our

modified programs also calculated the estimated value inside the guest VM rather than

doing so from without and passing that data to the original program.

2. Performance

Overall impact to performance is an important consideration when determining

whether smokescreen would be an appropriate building block for an HFH. Our solution’s

cost to performance is a 206% increase in the execution time of the sensors program.

However, when considered in terms of the actual amount of time to run (roughly 3ms to

9ms), the actual execution time would be unlikely to raise suspicions of the presence of a

hypervisor, as that difference could easily be attributed to other causes, such as resource

sharing among processes, context switches, or other high-priority processes preempting

these programs during execution. However, as the number of VMs present on a machine

increase (increasing the demand on system resources) or as the number of programs that

require redirection increase, it is possible that the introspections could cause a more

noticeable system slowdown over time. This could be a limiting factor for deployment of

our solution.

43

3. Accuracy

The accuracy of our system is also an important consideration for deployment

within an HFH. Overall, our solution was able to generally follow the temperature curve

of the actual CPU temperature, but typically underestimated the values by around 16°C on

average. However, when examined by the utilization trend (idle to full and full to idle), it

was seen that almost all of the significant underestimations occurred during the idle to full

transition, with the estimations staying relatively close (within 3°C on average) during the

full to idle transition. With additional research, a more representative linear model can be

created and applied, resulting in a temperature curve that not only follows the correct

temperature curve, but is also more accurate in its estimations.

B. LESSONS LEARNED

During our research and implementation of smokescreen, we encountered a few

teachable moments. First, implementation of a system that operates outside a guest VM but

affects operation within that VM can be problematic. DRAKVUF and LibVMI are able to

make access to CPU registers and memory contents possible, but only when system calls

are executed. From a semantic point of view, we were required to bridge the gap between

the high-level execve() call and the low-level view presented during introspection. Intimate

knowledge of assembly code and the relationship between a process’s virtual memory

space and the VM’s system memory is required in order to correctly (and safely)

manipulate that memory during introspection.

Also, it is important for an appropriate amount of research to be conducted to ensure

models being implemented, such as CPU temperature, are able to accurately reflect the

actual state of the bare metal machine, in both general curve of the values and accuracy of

those values.

C. FUTURE WORK

In this section, we present potential future work that may augment or improve

smokescreen’s mitigation techniques as well as for high-fidelity hypervisors overall.

44

1. Process Injection

At the present time, DRAKVUF is limited in how it can allow manipulation of

memory during VM introspection. While manipulation is possible, it can only occur when

system calls are executed and trapped through LibVMI. However, a future capability of the

system under development called Process Injection could enable plugins (like

smokescreen) to replace the contents of a process’s memory space with that of a different

process which exists outside the guest VM. Once this capability has been implemented,

smokescreen will act as a natural building block, where our modified programs are able to

exist outside the guest VM and remove the requirement of having the modified programs

present within the guest VM. This would eliminate the file system artifacts, in particular

the modified programs, that were introduced by smokescreen’s current implementation.

2. Mitigation of Other Types of Artifacts

Another limitation of smokescreen is that it is only designed to mitigate device and

capability artifacts that are present in common programs found within virtual machines. As

described earlier, there are other types of artifacts, such as service, process, and file system

artifacts, and random access memory artifacts. A system implemented to be an HFH will

ultimately need to include mitigations for all these other types of artifacts.

3. Additional Characteristics of High-Fidelity Hypervisors

As described in Chapter I, Ingraham et al. [1] initially described five categories of

characteristics of HFHs: artifacts, behavior, performance, security, and functionality.

Smokescreen’s mitigations are focused on increasing the overall fidelity of a hypervisor’s

characteristics with regards to artifacts. The other four categories will also require

additional research in order to develop a hypervisor that is truly an HFH.

45

LIST OF REFERENCES

[1] C. Ingraham, A. Shaffer, and G. Singh, “High-fidelity virtualization for cyber
operations,” in 2019 International Conference on Computational Science and
Computational Intelligence (CSCI), Dec. 2019, pp. 196–201,
doi: 10.1109/CSCI49370.2019.00040.

[2] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis via
hardware virtualization extensions,” in Proceedings of the 15th ACM Conference
on Computer and Communications Security, New York, NY, USA, 2008,
pp. 51–62, doi: 10.1145/1455770.1455779.

[3] Xu Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and anti-debugging behavior in modern
malware,” in 2008 IEEE International Conference on Dependable Systems and
Networks With FTCS and DCC (DSN), Jun. 2008, pp. 177–186, doi:
10.1109/DSN.2008.4630086.

[4] E. Bugnion, J. Nieh, and D. Tsafrir, “Hardware and software support for
virtualization,” Synth. Lect. Comput. Archit., vol. 12, no. 1, pp. 1–206, Feb. 2017,
doi: 10.2200/S00754ED1V01Y201701CAC038.

[5] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik, “Supporting
soft real-time tasks in the Xen hypervisor,” in Proceedings of the 6th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
New York, NY, USA, 2010, pp. 97–108, doi: 10.1145/1735997.1736012.

[6] F. Bellard, “QEMU, a fast and portable dynamic translator,” USENIX Annu. Tech.
Conf., vol. 41, pp. 41–46, Apr. 10, 2005.

[7] “Understanding full virtualization, paravirtualization, and hardware assist.”
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-
paravirtualizat-1008.html (accessed Oct. 09, 2019).

[8] S. Bansal and A. Aiken, “Binary translation using peephole superoptimizers,” in
Proceedings of the 8th USENIX conference on Operating systems design and
implementation, 2008, pp. 177–192, Accessed: Jan. 20, 2020. [Online]. Available:
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/bansal/bansal.pdf.

[9] P. Barham et al., “Xen and the art of virtualization,” in Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, New York, NY,
USA, 2003, pp. 164–177, doi: 10.1145/945445.945462.

46

[10] S. Cooley, H. Juarez, and J. Terry, “Hyper-V architecture.” Microsoft Docs,
January 10, 2018. [Online]. Available: https://docs.microsoft.com/en-
us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture

[11] Oracle, “Oracle® VM VirtualBox®.” (accessed Jan. 14, 2020). [Online].
Available: https://www.virtualbox.org/manual/

[12] Jun Zhang, Kai Chen, Baojing Zuo, Ruhui Ma, Yaozu Dong, and Haibing Guan,
“Performance analysis towards a KVM-based embedded real-time virtualization
architecture,” in 5th International Conference on Computer Sciences and
Convergence Information Technology, Nov. 2010, pp. 421–426, doi:
10.1109/ICCIT.2010.5711095.

[13] T. Liston, E. Skoudis, “On the cutting edge: Thwarting virtual machine
detection,” presented at SANS at Night, 2006. [Online]. Available:
https://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

[14] J. Rutkowska, “Red Pill... or how to detect VMM using (almost) one CPU
instruction,” The Invisible Things, Nov. 2004. [Online]. Available:
http://web.archive.org/web/20110726182809/http://invisiblethings.org/papers/red
pill.html

[15] M. Carpenter, T. Liston, and E. Skoudis, “Hiding virtualization from attackers
and malware,” IEEE Secur. Priv., vol. 5, no. 3, pp. 62–65, May 2007, doi:
10.1109/MSP.2007.63.

[16] C. Thompson, M. Huntley, and C. Link, “Virtualization detection: New strategies
and their effectiveness,” Univ. of Minn., Minneapolis, MN, USA, 2010. [Online].
Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.7877&rep=rep1&t
ype=pdf

[17] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility is not
transparency: VMM detection myths and realities” in Proc. of the 11th Work. On
HotOS, 2007. [Online]. Available:
https://www.usenix.org/legacy/events/hotos07/tech/full_papers/garfinkel/garfinke
l_html/index.html

[18] J. Robin and C. Irvine, “Analysis of the Intel Pentium’s ability to support a secure
virtual machine monitor,” Defense Technical Information Center, Fort Belvoir,
VA, Aug. 2000. doi: 10.21236/ADA423654.

[19] T. Klein, “trapkit.de - ScoopyNG.” Trapkit, Accessed Jan. 14, 2020. [Online].
Available: http://www.trapkit.de/tools/scoopyng/index.html

[20] A. Ortega, “a0rtega/pafish,” GitHub. Accessed on Jan. 14, 2020. [Online].
Available: https://github.com/a0rtega/pafish

47

[21] GitHub, “libvmi/libvmi: The official home of the LibVMI project is at
https://github.com/libvmi/libvmi.” Accessed Feb. 04, 2020. [Online]. Available:
https://github.com/libvmi/libvmi

[22] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A. Kiayias,
“Scalability, fidelity and stealth in the DRAKVUF dynamic malware analysis
system,” in Proceedings of the 30th Annual Computer Security Applications
Conference, New York, NY, USA, Dec. 2014, pp. 386–395, doi:
10.1145/2664243.2664252.

[23] T. K. Lengyel, “DRAKVUFTM Black-box Binary Analysis System.” DRAKVUF,
Accessed on Feb. 04, 2020. [Online]. Available: https://drakvuf.com/

[24] W3Techs, “Usage of web servers broken down by operating systems.” Accessed
Jun. 15, 2020. [Online]. Available:
https://w3techs.com/technologies/cross/web_server/operating_system

[25] Rekall Forensics, “Rekall Forensics.” Accessed Jun. 19, 2020. [Online].
Available: http://www.rekall-forensic.com/

[26] Xen Project, “Xen project software overview - Xen.” Accessed Jun. 23, 2020.
[Online]. Available:
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview#HVM_I.2FO_
Support

[27] Intel, “Intel® CoreTM i7-6700 Processor (8M Cache, up to 4.00 GHz) product
specifications.” Accessed May 09, 2020. [Online]. Available:
https://ark.intel.com/content/www/us/en/ark/products/88196/intel-core-i7-6700-
processor-8m-cache-up-to-4-00-ghz.html

[28] Intel, “6th Generation Intel® processor families for S-Platforms, datasheet,
volume 1 of 2.” Accessed: May 09, 2020. [Online]. Available:
https://cdrdv2.intel.com/v1/dl/getContent/332687.

[29] GitHub, “lm-sensors/lm-sensors.” Accessed Jun. 19, 2020. [Online] Available:
https://github.com/lm-sensors/lm-sensors

[30] Y. Zhang, F. Xie, Y. Dong, G. Yang, and X. Zhou, “High fidelity virtualization of
cyber-physical systems,” Int. J. Model. Simul. Sci. Comput., vol. 04, no. 02, p.
1340005, May 2013, doi: 10.1142/S1793962313400059.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	20Sep_Norine_Christopher_First8
	20Sep_Norine_Christopher
	I. Introduction
	A. Research Purpose
	B. Research Objective
	C. Research Questions
	1. Primary Question
	2. Secondary Question
	3. Tertiary Question

	D. Benefits of Study
	E. Thesis Organization

	II. BACKGROUND
	A. Introduction
	B. Hypervisor overview
	1. Terminology
	a. Hypervisor
	b. Virtualization
	c. Emulation
	d. Simulation

	2. Technology
	a. Type 1 Hypervisor
	b. Type 2 Hypervisor

	3. Methods of Virtualization
	a. Binary Translation
	b. Full Virtualization
	c. Paravirtualization

	C. Popular Hypervisors
	1. Type 1 Hypervisors
	a. Xen (The Xen Project)
	b. Microsoft Hyper-V
	c. VMware vSphere / ESXi

	2. Type 2 Hypervisors
	a. VMware Workstation
	b. Oracle VirtualBox
	c. QEMU with KVM

	D. Hypervisor Artifacts
	1. Service/Process/File System Artifacts
	2. Random Access Memory Artifacts
	a. Memory References
	b. Pointer Examination

	3. Virtualization-Specific Hardware Artifacts
	4. Virtualization-Specific Capability Artifacts

	E. Hypervisor detection
	1. Detection Techniques
	a. Count-Based Detection
	b. Register Inspection-Based Detection

	2. Detection Software
	a. Red Pill
	b. ScoopyNG
	c. VMDetect
	d. Paranoid Fish

	F. current artifact mitigation software and techniques
	1. VMmutate
	2. Hypervisor Configuration Modification

	G. other related work
	1. LibVMI
	2. DRAKVUF

	H. Summary

	III. System design and implementation
	A. Overview
	B. Host System
	C. Hypervisor
	D. DRAKVUF
	1. Rekall
	2. LibVMI
	3. Plugin System

	E. Plugin Implementation
	1. Hardware Component Emulation
	2. Software Component
	3. Means of Implementation

	F. Summary

	IV. System Testing
	A. Testing Methodology
	1. Performance Testing
	2. Accuracy Testing

	B. Performance Testing
	1. Bare Metal Machine
	2. Hypervisor without Mitigations Present
	3. Hypervisor with Mitigations Present

	C. Accuracy Testing
	D. Analysis of Results
	1. Performance Analysis
	2. Accuracy Analysis

	E. Testing Limitations
	F. Summary

	V. Conclusions and Future Work
	A. Conclusions
	1. Artifact Mitigation
	2. Performance
	3. Accuracy

	B. Lessons Learned
	C. Future Work
	1. Process Injection
	2. Mitigation of Other Types of Artifacts
	3. Additional Characteristics of High-Fidelity Hypervisors

	List of References
	initial distribution list

