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ABSTRACT 

 The use of hypervisors for cyber operations has increased significantly over the 

past decade, resulting in an associated increase in the demand for higher-fidelity 

hypervisors. These hypervisors would not exhibit the markers, or artifacts, that expose 

the presence of the virtualized environments present in most currently available 

virtualization solutions. To address this, we present an in-depth examination of a subset 

of virtualization artifacts in order to design and implement a software solution that will 

reduce the detectability via mitigation of these artifacts. Our analysis includes performant 

measures of a bare metal machine, a virtualized machine without our mitigations, and a 

virtualized machine with our mitigations. The analysis also includes a measure of our 

implemented system's simulated sensor output. Results of the implementation are 

analyzed to determine the potential performance impact, the accuracy of our system's 

simulated output, and whether our mitigation technique is appropriate for extending 

high-fidelity hypervisors. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 
A. RESEARCH PURPOSE ............................................................................1 
B. RESEARCH OBJECTIVE .......................................................................2 
C. RESEARCH QUESTIONS .......................................................................3 

1. Primary Question ...........................................................................3 
2. Secondary Question .......................................................................3 
3. Tertiary Question ...........................................................................3 

D. BENEFITS OF STUDY .............................................................................3 
E. THESIS ORGANIZATION ......................................................................3 

II. BACKGROUND ....................................................................................................5 
A. INTRODUCTION......................................................................................5 
B. HYPERVISOR OVERVIEW ...................................................................5 

1. Terminology....................................................................................5 
2. Technology ......................................................................................7 
3. Methods of Virtualization .............................................................8 

C. POPULAR HYPERVISORS ....................................................................9 
1. Type 1 Hypervisors ........................................................................9 
2. Type 2 Hypervisors ......................................................................11 

D. HYPERVISOR ARTIFACTS .................................................................12 
1. Service/Process/File System Artifacts ........................................12 
2. Random Access Memory Artifacts .............................................12 
3. Virtualization-Specific Hardware Artifacts ..............................13 
4. Virtualization-Specific Capability Artifacts ..............................13 

E. HYPERVISOR DETECTION ................................................................13 
1. Detection Techniques ...................................................................14 
2. Detection Software .......................................................................15 

F. CURRENT ARTIFACT MITIGATION SOFTWARE AND 
TECHNIQUES .........................................................................................16 
1. VMmutate .....................................................................................16 
2. Hypervisor Configuration Modification ....................................16 

G. OTHER RELATED WORK ...................................................................17 
1. LibVMI .........................................................................................17 
2. DRAKVUF....................................................................................17 

H. SUMMARY ..............................................................................................18 



viii 

III. SYSTEM DESIGN AND IMPLEMENTATION ..............................................19 
A. OVERVIEW .............................................................................................19 
B. HOST SYSTEM .......................................................................................19 
C. HYPERVISOR .........................................................................................20 
D. DRAKVUF................................................................................................20 

1. Rekall ............................................................................................20 
2. LibVMI .........................................................................................21 
3. Plugin System ...............................................................................21 

E. PLUGIN IMPLEMENTATION .............................................................22 
1. Hardware Component Emulation ..............................................22 
2. Software Component ...................................................................23 
3. Means of Implementation............................................................26 

F. SUMMARY ..............................................................................................30 

IV. SYSTEM TESTING ............................................................................................31 
A. TESTING METHODOLOGY ................................................................31 

1. Performance Testing ....................................................................31 
2. Accuracy Testing ..........................................................................31 

B. PERFORMANCE TESTING .................................................................32 
1. Bare Metal Machine ....................................................................32 
2. Hypervisor without Mitigations Present ....................................33 
3. Hypervisor with Mitigations Present .........................................34 

C. ACCURACY TESTING ..........................................................................35 
D. ANALYSIS OF RESULTS......................................................................36 

1. Performance Analysis ..................................................................36 
2. Accuracy Analysis ........................................................................37 

E. TESTING LIMITATIONS .....................................................................38 
F. SUMMARY ..............................................................................................38 

V. CONCLUSIONS AND FUTURE WORK .........................................................41 
A. CONCLUSIONS ......................................................................................41 

1. Artifact Mitigation .......................................................................41 
2. Performance .................................................................................42 
3. Accuracy .......................................................................................43 

B. LESSONS LEARNED .............................................................................43 
C. FUTURE WORK .....................................................................................43 

1. Process Injection ..........................................................................44 
2. Mitigation of Other Types of Artifacts ......................................44 
3. Additional Characteristics of High-Fidelity Hypervisors ........44 



ix 

LIST OF REFERENCES ................................................................................................45 

INITIAL DISTRIBUTION LIST ...................................................................................49 

 

 

  



x 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

  



xi 

LIST OF FIGURES  

Figure 1. Type 1 Hypervisor. Source: [7]. ..................................................................7 

Figure 2. Type 2 Hypervisor. Source: [7]. ..................................................................8 

Figure 3. Microsoft Hyper-V Architecture. Source: [10]. .........................................10 

Figure 4. HVM I/O Support. Source [26]. ................................................................22 

Figure 5. Thermal Test Vehicle Thermal Profile for PCG 2015C Processor 
(Intel Core i7-6700). Source [27]...............................................................23 

Figure 6. General Execution Flow of sensors Binary. ..............................................24 

Figure 7. Modified sensors Execution Flow. ............................................................25 

Figure 8. C Implementation of the Modeling Function. ............................................25 

Figure 9. Smokescreen Execution Flow ...................................................................28 

Figure 10. Code to Lock the VM and Extract Pathname ............................................29 

Figure 11. Code to Find a Pathname Match. ...............................................................29 

Figure 12. Code to Modify Pathname. ........................................................................30 

Figure 13. System Performance Results. .....................................................................36 

Figure 14. System Accuracy Results. ..........................................................................37 



xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



xiii 

LIST OF TABLES 

Table 1. Bare Metal Timing Results. .......................................................................33 

Table 2. Virtual Machine Timing (No Introspection) Results. ................................34 

Table 3. Virtual Machine Timing (with Introspection) Results. ..............................34 

Table 4. Lookup Function Accuracy Results. ..........................................................35 

 



xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 



xv 

LIST OF ACRONYMS AND ABBREVIATIONS 

ARM Advanced RISC (Reduced Instruction Set Computing) Machine 
CPU Central Processing Unit 
DOD Department of Defense 
HFH High-Fidelity Hypervisor 
HVM Hardware Virtual Machine 
IDT Interrupt Descriptor Table 
IDTR Interrupt Descriptor Table Register 
JSON JavaScript Object Notation 
KDBG Kernel Debugging 
KVM Keyboard, Video, and Mouse 
NOP No Operation 
OCO Offensive Cyber Operations 
OS Operating System 
PCG Platform Compatibility Guide 
PID Process Identification 
PV Paravirtualization 
QEMU Quick EMUlator 
RAM Random Access Memory 
SIDT Store Interrupt Descriptor Table 
SOSP Symposium on Operating Systems Principles 
VM Virtual Machine 
VMM Virtual Machine Monitor 
VMX Virtual Machine eXtensions 
  



xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xvii 

ACKNOWLEDGMENTS 

I would like to thank my wife, Samantha, for her patience, support, motivation to 

persevere regardless of the circumstances, and willingness to juggle two young girls on her 

own so I could read, write, and code whenever I needed. Without her willingness to help, 

especially in the middle of a pandemic, I doubt I would be where I am today or accomplish 

that which I have. 

I would also like to thank my advisors, Alan Shaffer and Gurminder Singh, who 

provided the seed for my thesis and offered their support, guidance, and the occasional 

reminder that there is always still work to be done.  

 



xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



1 

I. INTRODUCTION 

A. RESEARCH PURPOSE 

Virtualization has become a common asset in the cyber operations community. 

From malware analysis and honeypot operations to training environments for testing 

cutting-edge cyber tools and techniques, virtual machines (VMs) created and managed by 

hypervisors offer a safe and isolated environment within which to research and test new 

methods. A downside to operating within virtual machines is that they often lead to artifacts 

(or markers) that, upon discovery, may allow an observer to realize they are not operating 

on a bare metal machine. Another downside is that virtual machines do not faithfully 

replicate the full functionality of the physical computer.  

Ingraham et al. [1] described five major categories of hypervisor characteristics—

artifacts, behavior, performance, security, and functionality—that can lead to limitations 

and problems in virtualization. From his research, it is clear that these characteristics must 

be evaluated for mitigation to achieve high-fidelity virtualization. While most of these 

characteristics are a byproduct of tighter host-guest integration and proper separation 

between the host machine and the guest virtual machine, there may be a desire to hide or 

mitigate virtualization artifacts. The following describes reasons why this is true. 

First, malware analysis can greatly benefit from a high-fidelity hypervisor (HFH). 

For this research, we define an HFH as a hypervisor that is able to present a VM that 

exhibits behavior in each of the five previously discussed categories to be indistinguishable 

from a bare metal machine (i.e., a digital twin). Dinaburg et al. [2] described how “malware 

authors are incentivized to complicate attempts at understanding the internal workings of 

their creation.” These complications include techniques that can be described as anti-

debugging, anti-instrumentation, and anti-VM to frustrate would-be analysts and prevent 

deeper understanding of the malware. Indeed, Chen et al. [3] characterized the prevalence 

of evasion techniques in modern malware. According to their research, over 40% of the 

6,900 total malware samples they examined reduced their malicious behavior whenever a 

debugger was attached, or when the malware suspected it was executing within a virtual 
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machine. Artifact mitigation enables an HFH to show no signs of its virtualized 

environment, allowing analysts to more fully explore the functionality of target malware. 

Second, an organization running a honeypot would benefit greatly from an HFH. A 

virtualized environment is ideal for the execution of a honeypot, therefore malware that 

encounters such a system will likely attempt to determine if the environment is virtualized 

or not [3]. An HFH with artifact mitigation would be a better environment for honeypots 

to operate in, as they would exhibit the behaviors of a bare metal machine without any of 

the artifacts typically present in virtual machines. 

Lastly, it is essential for cyber operators to have a holistic environment in which to 

develop, test, train, and rehearse their cyber tools and techniques. From an offensive 

standpoint, it would be impractical to test certain offensive cyber operations (OCO) on a 

bare metal machine, since the results will likely damage or corrupt these test systems. 

Recovery will ultimately take time away from the cyber operators, and either reduce the 

total time spent training and testing or increase the time taken to reach a working solution. 

Neither scenario is ideal nor desirable. By offering an HFH that is able to present a system’s 

“digital twin,” it can be possible to suppress the artifacts that affect feedback to the operator 

while still providing a target environment that behaves exactly as its bare metal equivalent 

would.  

For these reasons, it is essential to examine different aspects that reduce the fidelity 

of an off-the-shelf hypervisor. In doing so, we need to design and implement mitigation 

measures that can increase the overall fidelity of hypervisors, while ensuring that the 

execution of the hypervisors and guest operating systems are not compromised.  

B. RESEARCH OBJECTIVE 

In this thesis, our research objective is to design and implement a software solution 

to increase the fidelity of hypervisors by decreasing or eliminating the likelihood of 

detecting certain virtualization artifacts. In particular, this research is focused on supporting 

user programs that rely on data generated by sensors embedded in computers, such as a 

temperature or ambient light sensor. This solution, when encountered by the user, would 
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produce simulated sensor data that would be consistent with a bare metal system’s current 

operating conditions and environment. 

C. RESEARCH QUESTIONS 

In our research, we investigate whether it is possible to mitigate virtualization 

artifacts in a manner that is transparent to a guest VM, while still maintaining the 

appearance of a bare-metal machine in terms of performance and artifact detectability. The 

following questions are addressed by this research: 

1. Primary Question 

What techniques can be implemented within a hypervisor to decrease detectable 

artifacts present in guest host virtual machines? 

2. Secondary Question 

How can we apply specific techniques to an open-source hypervisor to increase the 

overall fidelity of virtual machines managed by that hypervisor? 

3. Tertiary Question 

How accurately will these techniques replicate a bare metal machine’s state and 

environment during its mitigation of artifacts, and how can we measure this accuracy? 

D. BENEFITS OF STUDY 

This research will benefit the Department of Defense (DOD)by offering a solution 

that will enhance the readiness and training of both offensive and defensive cyber operators 

as well as providing more appropriate testing and production environments for operations 

executed by the Cyber Warfare community.  

E. THESIS ORGANIZATION 

This thesis is organized into four additional chapters: background, system design 

and implementation, system testing, and conclusions and future work. 
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The next chapter provides a baseline understanding of the various virtualization 

options available to both the DOD and private industry. It defines key terminology related 

to virtualization and establishes an unambiguous set of terms and concepts as a foundation 

for this thesis. It also includes a high-level overview of the different hypervisor solutions 

available as well as the capabilities and drawbacks of each. Then, it introduces the various 

types of virtualization artifacts alongside an overview of the methods to detect these 

artifacts and potentially mitigate them. Lastly, additional software that can be useful, but 

not directly related to, our research is discussed. 

Chapter III outlines the design and implementation of a system dedicated to 

mitigating VM artifacts with no modification to the guest VM. First, a specific type of 

artifact is targeted for our system, and a testbed system is described that facilitated our 

research. Next, a specific subset of VM artifacts is targeted and our mitigation technique 

is discussed. Lastly, the technical design of our system and the artifact mitigation process 

is presented. 

Chapter IV discusses the methodology of the testing of our implemented system. 

We present our results with regards to both performance and accuracy by comparing the 

results of a bare-metal machine to a VM with no mitigation in place, as well as to a VM 

with the mitigation measures in place. We  also examine limitations to our experimentation 

as well as possible effects of those limitations. 

Finally, we present our conclusions in the final chapter, along with suggestions for 

future work to extend this research. 
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II. BACKGROUND 

A. INTRODUCTION 

Since any work in artifact mitigation depends on the underlying hypervisor 

implementation, it is important to explore the key concepts of hypervisors and the 

technology enabling them. The multitude of hypervisors and their unique implementations 

lends a complexity to the subject that requires a review of concepts central to hypervisors 

and virtualization. By working through the many aspects of virtualization, an appropriate 

base is set upon which work involving the mitigation of artifacts can be appropriately 

described and implemented. 

B. HYPERVISOR OVERVIEW 

The following section is a brief overview of key terminology and principles of 

hypervisors and their functionality. 

1. Terminology 

The following section introduces and explains terminology common to hypervisors 

and discussions of their functionality. 

a. Hypervisor 

Hypervisors are a specific, special form of system software designed to run virtual 

machines with low overhead. Typical hypervisors can operate on a single machine or can 

utilize cloud/distributed resources to support a large number of virtual machines that can 

be operated concurrently. For the purposes of this thesis, the hypervisor operates on a single 

machine along with any virtual machines that it is managing. Hypervisors can run at the 

layer between the hardware and operating system (Type 1), or as user-level applications 

operating in the user space of an operating system (Type 2). These distinctions are 

discussed later in this chapter. Hypervisors are also known as virtual machine monitors 

(VMMs). 
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b. Virtualization 

Virtualization is defined as “nothing more than an instance of layering for which 

the exposed abstraction is equivalent to the underlying physical resource”[4]. Furthermore, 

Singh defines it as such:  

Virtualization is a framework or methodology of dividing the resources of 
a computer into multiple execution environments, by applying one or more 
concepts or technologies such as hardware and software partitioning, time-
sharing, partial or complete machine simulation, emulation, quality of 
service, and many others. [5] 

For this thesis, virtualization is defined as the layering of execution environments such that 

no translation or cross-architectural execution between the guest system and the host 

system is required to ensure execution on the host system. 

c. Emulation 

Emulation is “a level of indirection in software to expose a virtual resource or 

device that corresponds to a physical device, even if it is not present in the current computer 

system” [4]. Emulation incurs a significant overhead cost, as the underlying execution 

environment must translate instructions from the emulated CPU architecture to instructions 

native to the host CPU architecture. This overhead is not required in a virtualized 

environment. A common example of an emulator is QEMU (Quick EMUlator), which will 

be discussed below under Type 2 hypervisors [6]. 

d. Simulation 

Simulation is typically performed in a user-level application that aims to provide a 

very accurate replica of a given architecture. While the level of accurate execution typically 

found in simulators would normally make them very desirable, they often come with a 

slowdown factor of anywhere between 5x and 1000x, depending on the level of detail in 

the simulation. This constraint makes them undesirable other than in scenarios that 

prioritize accuracy over speed and usability [4].  



7 

2. Technology 

The following section briefly describes the underlying technology and functionality 

found in most hypervisors. 

a. Type 1 Hypervisor 

Type 1 hypervisors operate directly between the virtualized machine and the 

hardware. Most Type 1 hypervisors operate as both the host operating system and the 

virtual machine monitor. This allows them to have full control of the host machine and its 

resources, and thus they do not need to do additional coordination of system resources with 

a host operating system. Since Type 1 hypervisors operate at the OS level, there is less 

overhead compared to operating as an application within an OS, as is the case with Type 2 

hypervisors. A few examples of Type 1 hypervisors include The Xen Project, Microsoft 

Hyper-V, and VMware vSphere. 

 
Figure 1. Type 1 Hypervisor. Source: [7]. 

b. Type 2 Hypervisor 

Type 2 hypervisors operate at the application layer, although they have full control 

of the host machine CPU during execution of the guest OS. Additional overhead is incurred 

as the host OS and hypervisor execute switches similar in nature to CPU context switches 

to achieve virtualization [4]. Some popular examples of Type 2 hypervisors include 

VMware Workstation and Fusion, QEMU with KVM, and Oracle VirtualBox. 
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Figure 2. Type 2 Hypervisor. Source: [7]. 

3. Methods of Virtualization 

a. Binary Translation 

Binary translation is a form of recompilation which “enables code written for a 

source architecture (or instruction set) to run on another destination architecture, without 

access to the original source code” [8]. The two types of binary translation are static (the 

program is translated prior to runtime) and dynamic (the program instructions are translated 

as they are read). Binary translation is generally considered difficult from an engineering 

point of view as a translator is very specialized and it may not be possible to re-target a 

given translator to a different architecture without a significant amount of extra work [8]. 

b. Full Virtualization 

Full virtualization (also referred to as hardware virtualization) is where the guest 

system is unaware of the hypervisor. Instructions that are sensitive or privileged must be 

caught by the hypervisor without causing issues or being observable inside the virtualized 

environment. Full virtualization does not require specialized instructions or device drivers 

but can inflict performance penalties since the hypervisor has to handle sensitive or 

privileged instructions without impacting the guest system. 
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c. Paravirtualization 

In paravirtualization (PV), the virtualized system is “aware” that it is running within 

a hypervisor. PV requires specialized kernels and other device drivers that take advantage 

of communication channels present between the virtual machine and the hypervisor. This 

significantly reduces the level of overhead required in full virtualization; however this is 

at the cost of requiring special PV-aware device drivers. 

C. POPULAR HYPERVISORS  

This next section describes several popular open- and closed-source hypervisors 

along with a high-level overview of their implementation approaches. 

1. Type 1 Hypervisors 

The following are various Type 1 hypervisors that are commonly found in-use in 

both commercial and personal usage. 

a. Xen (The Xen Project) 

The Xen hypervisor was introduced in 2003 in the Symposium on Operating 

System Principles (SOSP) paper “Xen and the Art of Virtualization” and is consistently 

regarded as the best example of an open-source Type 1 hypervisor. As one of the first 

hypervisors to introduce the concept of paravirtualization, Xen presents a virtualization 

solution that incurs low overhead compared to other software solutions or virtualization 

methods. The design team of Xen focused on four major design principles [9]: 

1. Running binaries without modification was essential.  

2. Supporting full-fledged modern operating systems to allow complex 

server configurations.  

3. Utilizing paravirtualization to the maximum extent to obtain the best 

performance. 

4. Masking the effects of virtualization risked correctness and performance 

of the virtual machines. 
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b. Microsoft Hyper-V 

Microsoft’s Hyper-V is a “hypervisor-based virtualization technology for certain 

x64 versions of Windows” [10]. Like Xen, Hyper-V is a Type 1 hypervisor where the 

VMM OS (currently Windows 10) coordinates and manages guest “partitions” that are 

analogous to virtual machines in other virtualization technologies. Normally, full 

virtualization is executed unless Microsoft’s proprietary “Hyper-V Integration Services” 

are installed within the guest OS, which bypasses the device emulation layer, allowing 

guests to execute as paravirtualized guests [10]. 

 
Figure 3. Microsoft Hyper-V Architecture. Source: [10]. 

c. VMware vSphere / ESXi 

ESXi is VMware’s proprietary bare-metal hypervisor, intended to be used in 

conjunction with its vSphere and vCloud products. ESXi offers VMM capabilities across 

distributed computing resources while offering a web-based user interface, along with 

various other methods of control. Although available for free with certain editions of 

VMware vSphere, it is a closed-source software solution. 
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2. Type 2 Hypervisors 

The following are Type 2 hypervisors typically found in commercial and personal 

settings. 

a. VMware Workstation 

As VMware’s proprietary single-machine Type 2 hypervisor solution, VMware 

Workstation offers multiple implementations of virtualization, including full virtualization 

with binary translation, hardware-assisted virtualization, and paravirtualization, utilizing a 

hosted (by the host operating system) hypervisor. The Workstation hypervisor runs on 

Windows host systems, while the similar VMware Fusion is designed for MacOS systems. 

The original VMware Workstation was one of the first platforms enabling x86 

virtualization in 1999 [7]. 

b. Oracle VirtualBox 

Oracle’s hypervisor solution is an open-source Type 2 hypervisor called 

VirtualBox. It relies on the hardware virtualization capabilities of the host processor 

providing either fully virtualized or paravirtualized guest systems. Guest function calls that 

cause a “VM exit” are captured by the host, processed appropriately, and then control is 

returned to the guest via “VM entry.” VirtualBox also provides multiple paravirtualization 

interfaces, depending on the guest OS, to increase overall performance while hosting 

virtual machines [11].  

c. QEMU with KVM  

The “kernel-based virtual machine” (or KVM) is a Linux kernel module that acts 

by extending a standard Linux kernel with virtualization capabilities. It accomplishes the 

task of virtualization via exposed functionality through a character device (/dev/kvm) and 

by implementing a new operating mode called “guest mode” [12]. These virtual machines 

can execute natively through a series of system calls to the KVM kernel module and run 

as individual QEMU processes on the host machine. Without this tie-in to the Linux kernel, 

QEMU acts as an emulator, as the program on its own does not have virtualization 

capabilities. 
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D. HYPERVISOR ARTIFACTS 

Virtualization artifacts are markers or indicators of the presence of a VMM or a 

guest VM. Most of these artifacts fall within one of three categories: service, process, or 

file system artifacts; random access memory artifacts; and virtualization-specific artifacts, 

which are further broken down into hardware and capability artifacts. This section will 

discuss the characteristics and differences between these categories of hypervisor artifacts. 

1. Service/Process/File System Artifacts 

Most modern hypervisors benefit from the guest OS being aware that it is 

virtualized. By utilizing paravirtualization and allowing usage of guest-hypervisor 

communication channels, the overhead usually incurred during full virtualization is 

reduced or even eliminated. But most hypervisors are also transparent about their PV-

specific drivers, which is a large source of artifacts within the guest OS. For example, a 

VMware Workstation guest running Windows XP with vmtools present (VMware’s 

proprietary PV setup) has over 50 references to “VMware” in the file system and over 300 

references in the registry [13]. Although plentiful, these references are not reliable, as 

researchers have been able to utilize techniques similar to those found in malicious rootkits 

to readily fool mechanisms looking for these types of artifacts [13]. 

2. Random Access Memory Artifacts 

The following types of artifacts are commonly grouped together as they all involve 

artifacts that can be discovered through inspection of a VM’s random access memory 

(RAM).  

a. Memory References 

Hypervisors also insert references to themselves within the guest OS’s memory, 

providing another artifact for possible detection if someone were to dump and search the 

guest’s memory. Researchers discovered over 1500 references to “VMware” within the 

memory of the guest described in the previous section [13]. It is, however, not trivial or 

feasible to discover quickly but can be made more effective if the detection mechanism 

knows which specific segments of memory need to be inspected [13]. 
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b. Pointer Examination 

Most modern operating systems utilize tables in memory that are critical to their 

operation. One example is the Interrupt Descriptor Table (IDT), which holds pointers to 

various operating system interrupts located within memory [13]. Since the hypervisor and 

guest both must maintain their own tables, their location within memory cannot be the 

same, so tools exist (e.g., The Red Pill [14]) that examine the pointer, and determine 

whether it is operating within a virtual machine or not. 

3. Virtualization-Specific Hardware Artifacts 

The Linux OS virtual /proc directory can have a wealth of virtualization artifacts. 

Paravirtualized guests, by definition, utilize virtual device drivers designed to facilitate 

communication with the hypervisor, along with reducing latency. Within a Linux OS guest, 

there are multiple references to virtual device drivers, typically found in locations such as: 

the system’s logs, dmesg command output, and as files within virtual file directories (like 

/proc). Windows OS guests are not immune to this phenomenon as the registry also 

contains multiple device registry keys that reference the hypervisor [13]. 

4. Virtualization-Specific Capability Artifacts 

Paravirtualized guests also contain additional machine language instructions that 

extend the instruction set of the virtualized hardware. Like the PV device drivers, these 

instructions are meant to facilitate communication and performance with the hypervisor. 

VMware and Xen are both examples of hypervisors that extend the instruction set 

architecture, and tools like VMDetect are designed to attempt to run these expanded 

instructions. A tool can recognize it is operating within a virtualized environment by the 

fact that the system does not treat these expanded instructions as errors but will accept and 

continue operating gracefully [13]. 

E. HYPERVISOR DETECTION 

It is important to understand the techniques and software used to detect the 

existence of hypervisors if we hope to realize the goal of a higher-fidelity hypervisor. From 

a security standpoint, it is essential that malware not be made aware of the presence of a 
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hypervisor, since this could allow unwanted system analysis and also present a whole new 

attack surface through the VMM [15]. Analysis of these techniques and software can 

potentially open new avenues of artifact mitigation, thus coming close to realizing a 

hypervisor that is indistinguishable from a bare metal machine.  

1. Detection Techniques 

This section describes various high-level techniques that can be utilized to discover 

the presence of a hypervisor or a VM. 

a. Count-Based Detection 

At the University of Minnesota, research was conducted to quantify timing artifacts 

present within various VMMs, as compared to bare metal hardware. Thompson et al. [16] 

experimented by comparing the ratios of NOP instructions to CPUID instructions executed 

on various VMMs, discovering detectable differences in behavior that are indicative of a 

VMM. The underlying implementation utilized the fact that the CPUID instruction is 

privileged and thus adds additional latency since it must be trapped by the hypervisor and 

handled before returning control back to the guest [17]. Thompson et al. [16] discovered 

that even in cases of full virtualization like VMware Workstation, the ratio of instructions 

executed differed noticeably from the bare metal control and with a baseline understanding 

of how the system should be performing, detection of a VM is likely.  

b. Register Inspection-Based Detection 

Research by Robin and Irvine [18] found that processors must meet certain 

requirements to be considered able to support hypervisors. One of these requirements is 

that there must be a mechanism in place to automatically signal the hypervisor whenever a 

guest attempts to execute sensitive instructions. Similarly, a more specific instance of 

“sensitive instructions” includes those “that read or change sensitive registers and/or 

memory locations such as … interrupt registers” [18]. They further discovered multiple 

instructions within the Pentium instruction set that violated this rule, allowing a guest OS 

access to registers such as the Interrupt Descriptor Table Register (IDTR) which, as 
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discussed below, may allow an outside observer to recognize that they are operating within 

a virtualized environment.  

2. Detection Software 

The following are software implementations of various VM detection techniques 

that are commonly used to determine if a system is virtualized or not. 

a. Red Pill 

The Red Pill is a small 4-line program written by Rutkowska [14] that executes the 

SIDT (Store Interrupt Descriptor Table Register) machine instruction. Since a hypervisor 

and guest OS must both have an IDT, and the CPU only has a single IDTR, the hypervisor 

must store the guest’s IDTR value somewhere else in memory. The instruction itself is not 

privileged, so the guest is able to retrieve the relocated address which, regardless of the 

hypervisor present, is in a different location in memory than a bare metal machine would 

have it located [14].  

b. ScoopyNG 

ScoopyNG is a collection of tests written by Klein [19] that probe the same sort of 

artifacts that the Red Pill examines, while also attempting to run VMware-specific machine 

instructions to access the hypervisor-guest communication channel. Typically, successful 

detection of a VM by any of these tests is considered proof enough that the system is 

running in a virtualized environment [13], [19]. 

c. VMDetect 

VMDetect is another collection of tests meant to expose a hypervisor through use 

of hypervisor-specific machine instructions [13]. It works by registering its own unique 

handler for invalid OpCodes, then executes hypervisor-specific (i.e., non-standard) 

machine instructions [13]. If the unique handler is executed after an invalid machine 

instruction, then the machine in question is either virtualized using full virtualization and 

is unaware it is virtualized or is a bare metal machine. This technique is effective for both 

VMware. 
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d. Paranoid Fish 

Paranoid Fish (also known as Pafish) is a “demonstration tool that employs several 

techniques to detect sandboxes and analysis environments in the same way that malware 

does” [20]. Since it is primarily designed to ensure that analysis environments are properly 

implemented to defeat a piece of malware’s detection techniques, it is also effective at 

evaluating a virtual machine and detecting hardware and software-based artifacts that are 

present. 

F. CURRENT ARTIFACT MITIGATION SOFTWARE AND TECHNIQUES 

The following section contains a high-level overview of artifact mitigation 

techniques and software implementations of those techniques. 

1. VMmutate 

VMmutate is a proof-of-concept application that attempts to mitigate two common 

techniques for detecting a VMware hypervisor. First, it modifies the VMX configuration 

parameters in such a way that it can defeat The Red Pill and portions of the ScoopyNG test 

[15]. Second, it attempts to alter and/or disable the VMware “magic value,” which is a 

specific value loaded into a CPU register when attempting to call hypervisor-specific 

machine codes that would normally be invalid. Both modifications combined have the 

consequence of requiring modification to the hypervisor as well as the paravirtualization 

tools and drivers.  

The drawback to this software tool is that it requires an extensive search and replace 

operation within the VM disk image, which has the potential to be very large. As well, it 

is possible to encounter the “magic value” in a non-VMware context, requiring the software 

to be designed well enough to know which values to alter and which to ignore [13]. 

2. Hypervisor Configuration Modification 

A mitigation technique is the modification of configuration files within the 

hypervisor to remove artifacts either through obscuration or the breakage of the hypervisor-

guest communication channel. For example, Liston and Skoudis [13] discovered several 
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undocumented configuration options that, when set a certain way, broke the hypervisor-

guest communication channel, rendering the hypervisor undetectable through The Red Pill 

or ScoopyNG. The drawback to this technique is that these modifications are neither 

documented nor officially supported, thus there is no guarantee that these mitigation 

techniques will remain effective given that future updates can often break undocumented 

features [15].  

G. OTHER RELATED WORK 

Although not designed for detection mitigation, there are software libraries and 

software tools that were originally intended to examine virtual machines and aid in their 

analysis, but that could also be used as a means of obfuscating nontrivial artifacts within 

the guest system or the hypervisor. An example of this might be artifacts present in the 

Linux /proc virtual filesystem. Since any mitigation technique implemented within the 

guest system could be classified as an artifact, by virtue of its presence within the guest 

filesystem, it is also worthwhile to examine solutions that are employed from outside the 

virtual machine. 

1. LibVMI 

LibVMI is an offshoot of the XenAccess Project, which is meant to be a means of 

virtual machine introspection focused on Xen hypervisors. Specifically, LibVMI aims to 

be less platform dependent and able to support multiple different hypervisor solutions. It 

provides a means of monitoring (by reading memory values) and control (by writing new 

values to memory) from outside the guest virtual machine and is thus able to remain 

undetected from the perspective of the guest system [21]. 

2. DRAKVUF 

DRAKVUF is an “agentless black-box binary analysis system” designed to utilize 

LibVMI and the Xen hypervisor to monitor and trace binary execution of a virtual machine 

from outside the guest itself [22]. It is traditionally used for stealthy malware analysis, but 

also has the ability to trap specific system calls, giving it the potential for arbitrary 

data/process injection in Windows guest systems. DRAKVUF also utilizes a plugin-based 
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system that is much less complicated to utilize, as compared to modifying a hypervisor’s 

source code directly. DRAKVUF currently requires the use of Intel x86 processors to 

leverage virtualization technology present, but there has also been initial development of 

an ARM-based version [23]. 

H. SUMMARY 

As the survey of hypervisor technology shows, many different hypervisors are 

available for implementation, some potentially along the path toward a high-fidelity 

hypervisor. These hypervisors are designed to operate either directly above the hardware 

level or as applications within another operating system. The guest systems may also be 

operated at different “levels” of virtualization, ranging from fully translated hosts that are 

completely unaware of the hypervisor to paravirtualized hosts that are able to capitalize on 

communication channels and achieve near-native speed and latency. However, all these 

implementations create virtualization artifacts, which must be mitigated to prevent 

identification of virtualization. Although detection techniques have evolved and become 

better over the last fifteen to twenty years, our goal is to implement techniques that are able 

to avoid detection by commonly employed hypervisor detection programs. 
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III. SYSTEM DESIGN AND IMPLEMENTATION 

In this chapter, we discuss the detailed design of the system for this research, 

focusing on the rationale behind specific design choices as well as assumptions made. 

A. OVERVIEW 

In our research, we have decided to extend the Xen hypervisor that leverages 

DRAKVUF and LibVMI’s introspection abilities to create a plugin named smokescreen. 

Smokescreen works by mitigating device and capability-specific virtualization artifacts 

present in a VM. It does so by performing introspection on each system call that attempts 

to execute a program and, if smokescreen matches a pre-determined list of artifact-

exposing binaries, it replaces the path and redirects the system to execute a modified 

version of the program to obscure the VM artifact. This obscuration is achieved by having 

the modified program present seemingly legitimate output in the same fashion as the 

unmodified program. Since all calls to execute programs are monitored, any calls that do 

not require redirection are immediately released back to VM execution to minimize 

performance penalties within the system, which may themselves indicate the existence of 

a virtual environment.  

B. HOST SYSTEM 

One of the more important decisions made during our research was the 

configuration of the test system. Both the hypervisor and the guest system were configured 

to be representative of a majority of different configurations found on web servers utilized 

within the last decade.  

According to W3Techs, the majority of web servers have operated utilizing some 

form of Unix-based operating system, with a  further breakdown showing that the Ubuntu 

OS (a Debian-based derivative) was the most likely Linux operating system used [24]. We 

elected to utilize Ubuntu 16.04.6 LTS since this version continues to enjoy long term 

support via its owner, Canonical, so it is likely to be encountered “in the wild” quite often. 

The fact that the DRAKVUF/Xen combination has been tested and confirmed to work on 
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Ubuntu-based installations reinforced our decision to utilize Ubuntu 16.04.6 LTS as both 

the Hypervisor (to ensure compatibility with DRAKVUF and Xen) and the guest OS (to 

ensure a representative system). As far as the guest system was concerned, the only 

modification required to ensure correct smokescreen execution was that any modified 

binary must reside within the guest OS due to current limitations of the DRAKVUF system. 

C. HYPERVISOR 

We utilize a Type-1 hypervisor for our system since they are more typical in 

commercial settings compared to the application-based Type-2 hypervisor. The Xen 

hypervisor was chosen due to its open-source nature and the fact that it is widely adopted 

as a hypervisor solution in the tech sector. Additionally, since DRAKVUF and LibVMI 

were originally designed to work in conjunction with the Xen hypervisor, we were able to 

leverage that inherent compatibility to achieve a stable platform for our research. 

D. DRAKVUF 

According to the author and maintainer of the DRAKVUF software suite, it is a 

“virtualization based agentless black-box binary analysis system” [23]. A key feature of 

DRAKVUF is its ability to examine and manipulate the execution of arbitrary binaries 

within a guest operating system without having to install any additional analysis software 

within the VM. Our end goal, the mitigation of device and capability-based artifacts, was 

achieved through three separate components found within the DRAKVUF system. 

1. Rekall 

Rekall is an open-source Python-based framework utilized for “the extraction and 

analysis of digital artifacts (in) computer systems” [25]. It works by analyzing the currently 

running kernel on the system to determine the kernel configuration as well as the kernel 

source headers to map out the locations of essential kernel structures and outputs the 

locations of these structures as a standardized JSON (JavaScript Object Notation) file. This 

tailored profile contains key information such as the base memory address of the kernel 

structure, as well as important address offsets of kernel memory objects and, most 
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importantly, system call locations. Armed with these memory locations, DRAKVUF is 

able to leverage LibVMI to trap these system calls. 

2. LibVMI 

LibVMI is a critical component of DRAKVUF that enables the implementation of 

Virtual Machine Introspection, specifically allowing access to a live (i.e., running) VM 

through physical or virtual memory addresses and kernel symbols. The Rekall profile 

allows LibVMI to “bypass the use (of) the in-memory KdDebuggerData (KDBG) structure 

normally used by memory forensics tools and thus allows introspecting domains where this 

structure is either corrupted or encoded (like in the case of Windows 8 x64)” [21]. For our 

research, LibVMI is the primary means of ensuring that the specific system calls we desire 

to intercept are correctly identified, located, and properly trapped. We then analyze these 

system calls and, if modification is determined to be necessary, modify the appropriate 

parameters. This ensures that any artifact-exposing binaries will be properly intercepted 

and mitigated through redirection to our modified binaries. 

3. Plugin System 

DRAKVUF’s last essential component to our research involves the powerful plugin 

system implemented as part of the analysis suite. Through a minor modification of 

DRAKVUF’s source files, we were able to build and integrate various plugins that are 

initialized and executed during DRAKVUF’s main program loop. These plugins are 

written in C/C++ and utilize a callback function to perform introspection and modification 

of VMs while they are running. At DRAKVUF initialization these plugins are initialized 

as well, and the various callback functions are registered to be executed whenever the 

program’s main loop determines it to be appropriate. In the case of our research, these 

callbacks were configured (via a command-line interface with DRAKVUF) to be executed 

whenever the desired system calls are executed within the guest operating system’s kernel.    
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E. PLUGIN IMPLEMENTATION 

The following section describes the components and implementation of 

smokescreen. We present the hardware and software components followed by a detailed 

description of the plugin implementation and other implemented software components. 

1. Hardware Component Emulation 

One particularly interesting application of our research into mitigating device and 

capability artifacts is the mitigation of artifacts that arise from a VM not having direct 

access to the host hardware devices (as shown with VM1 in Figure 4). In most cases, these 

devices are emulated by the hypervisor to provide a seamless experience to the user, but 

that is not always the case. For example, most VMs do not have the ability to query physical 

data such as CPU temperature, or other less often encountered sensors (such as light sensors 

or motion detectors) that even when present on the host system may not be exposed to the 

guest system.  

 
Figure 4. HVM I/O Support. Source [26]. 

We chose to implement a CPU temperature sensor since it is almost universally 

found on modern processors but is typically not exposed to guest VMs. To do this, we 

examined the datasheets of the specific processor used as our testbed (an Intel Core i7-

6700) to determine if a temperature model could be ascertained. Upon inspection of the 
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processor specifications [27], we noted references to the TCASE of the processor. Further 

inspection of the processor datasheet [28] showed that TCASE corresponds to “Case 

Temperature [which] is the maximum temperature allowed at the processor Integrated Heat 

Spreader (IHS)” [27]. It is typically used by designers of cooling systems to ensure that 

their products are working safely. As shown in Figure 5 of the technical datasheet, the 

thermal profile is a linear model. 

 
Figure 5. Thermal Test Vehicle Thermal Profile for PCG 2015C Processor 

(Intel Core i7-6700). Source [27]. 

From this linear model, we were able to calculate a reasonable CPU temperature 

profile, based solely on the processor utilization of the guest machine. 

2. Software Component 

Our system’s software component is based on a widely utilized Linux program 

called sensors, from the set of software tools known as lm-sensors [29]. As shown in Figure 

6, this program works through the examination of system files found in a system’s virtual 

file systems (i.e., /proc or /sys). These files contain raw sensor output for various types of 
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sensors including, but not limited to, temperature sensors. The program collects the data 

from these sensors, formats it to be human readable, and then outputs it for the user to 

examine. A VM that does not have access to the underlying system’s sensors will report 

an error condition upon execution of the sensors binary since, from the VM’s perspective, 

the sensors do not exist. However, most modern CPUs have a temperature reporting sensor 

implemented, as it is an essential piece of the architecture’s thermal management 

processes. This lack of reporting on the part of the VM presents itself as both a device and 

a capability artifact of virtualization.  

  
Figure 6. General Execution Flow of sensors Binary. 

Therefore, we decided to implement a modified version of the sensors binary that 

could report temperature to the end user, as shown in Figure 7. While this could be 

accomplished simply by having the modified binary output a static value, the goal of 

implementing a HFH means that the output value should reasonably reflect the current state 

of the apparent bare metal machine and its environment, even in the context of it being a 

VM and environment.  
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Figure 7. Modified sensors Execution Flow. 

To this end, our goal was to implement a subroutine or library that, when executed, 

would sample current conditions within the VM and use those conditions to execute a 

lookup from the linear temperature model, given system utilization (in watts). To do this, 

we utilized the TCASE model published by the processor manufacturer, along with the 

current utilization of the system as determined by the contents of the /proc/loadavg system 

file. This system file is common to Linux operating systems, and reports running 1-, 5-, 

and 10-minute processor load averages of the system as floating-point numbers between 

0.0 and 1.0 per CPU core/thread (for example, a single core operating at 75% will report a 

value of 0.75). As shown in Figure 8, by using the 1-minute average as an approximation 

of current system utilization and the 5- and 10-minute averages to influence the “effect” of 

cooling solutions (for instance, when longer-term utilization is higher, it is likely that 

cooling fans have also been working to manage temperature for some amount of time), we 

were able to implement a simple lookup function that scaled appropriately with system 

utilization.   

 
result = 45.6 + ((POWER*one_min_avg)*0.41); 
result -= ((1.0-five_min_avg) + ((1.0-ten_min_avg)*10)); 

Figure 8. C Implementation of the Modeling Function. 



26 

3. Means of Implementation 

Smokescreen was developed as a plugin for DRAKVUF, primarily implemented 

in C/C++. DRAKVUF and the parent plugin class are implemented in this language so that 

extension of the class is easier in the same language. For the actions taken by smokescreen 

during execution, knowledge of Sysv 64-bit calling conventions was also required, as 

memory and register introspection/manipulation require knowledge of CPU registers and 

their contents prior to kernel system calls. 

The plugin itself was implemented as an extension of the plugin class (per 

DRAKVUF requirements) and consists of a total of seven files. Two of the files contain 

the plugin implementation itself, and one is a header file containing our temperature 

calculation function. The third file is a patch file for the source files for sensors. The fourth 

and fifth files describe the system calls and executable paths to be trapped and modified, 

and finally the modified (i.e., recompiled) version of sensors.  

The plugin files are found in src/plugins/smokescreen and consist of 

smokescreen.cpp and smokescreen.h per plugin specification. The temperature lookup 

function consists of a single file temp_lib.h and is required to be in the sensors/lib folder 

of the lm-sensors source code to ensure proper recompilation of the sensors binary. The 

patch file must be applied to sensors/prog/sensors/main.c of the lm-sensors source code 

prior to compilation to ensure that our temperature function is called, and to prevent 

leakage of VM artifacts when the modified sensors binary is executed. The system call list 

is passed as a command line argument to drakvuf (via the -S flag) which expects an absolute 

or relative path and can be located wherever the end user desired, and the binary list must 

be located at /home/xen/xen/binary_list.txt, but that location is modifiable if required. 

Finally, the modified sensors binary must be located on the guest VM at /fake/usr/bin/, 

but this location is completely modifiable within the source code for smokescreen. 

For the implementation of smokescreen, the Linux system call execve() requires 

three parameters: a pointer to the fully qualified path name as a string, a pointer to an 

argument vector, and a pointer to an environmental variable vector. According to AMD64 

Sysv calling conventions, these parameters are found in the CPU registers RDI, RSI, and 
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RDX, respectively. For our research, the argument and environmental variable vectors are 

not modified at any time nor require modification for smokescreen to execute. Since 

modification of the argument vector (i.e., the command line arguments) would likely 

expose our modifications, it is best to leave it untouched as this will ensure that our 

modified version will preserve functionality not directly related to our emulated sensor 

such as printing a help or version message. The environmental variable vector is not used 

directly by the sensors program, and modification may lead to system instability.     

Our plugin follows a simple execution flow, shown in Figure 9, whenever the 

callback function is invoked, as described in the following steps: 

1. Retrieve and lock (pause) the instance of the VM being monitored. 

2. Identify the pathname of the binary about to be executed through 

introspection. 

3. Compare the pathname to a predefined list of fully qualified pathnames to 

original binaries that contain virtualization artifacts. 

4. Extract the pathname if a match is found and modify it to be the fully 

qualified path of our modified binary. If not a match, execution will be 

resumed with no modifications made. 

5. Release (un-pause) the VM and allow execution to resume. 

We provide further detail on this execution flow in the following.  
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Figure 9. Smokescreen Execution Flow 

During step 1, the VM instance allows access to, among other things, the values 

stored within individual CPU registers along with both physical and virtual memory 

addresses. Since we are concerned with the Linux kernel’s execve() call, we must be able 

to extract the pathname from the VM’s RDI register for the calling process. As 

DRAKVUF/LibVMI traps these calls, smokescreen’s callback function is able to query 

LibVMI for a vmi_instance_t struct named vmi. With this struct, in conjunction with the 

drakvuf_trap_info_t struct that is passed to the callback function as a parameter, we are 

able to extract information from the VM’s memory to accomplish our introspection. This 

extracted information includes data such as the calling process PID (Process Identification) 

and a complete snapshot of CPU registers and their values for the calling process. When 

the system call is invoked, RDI contains a pointer to a string representation of the file path 

to be executed.  

As shown in Figure 10, we executed step 2 of our process by utilizing LibVMI’s 

function vmi_read_str_va() which returns a pointer to the string containing the fully 

qualified pathname.  
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printf(“smokescreen activated.\n”); 
vmi = drakvuf_lock_and_get_vmi(drakvuf); 
pathname = vmi_read_str_va(vmi, info->regs->rdi, info->proc_data.pid); 
 
if (pathname == NULL) { 
   drakvuf_release_vmi(drakvuf); 
   fprintf(stderr, “[Warning] Captured NULL pathname.\n”); 
   return 0; 
} 

Figure 10. Code to Lock the VM and Extract Pathname 

Next, as shown in Figure 11, we execute step 3 by comparing our captured 

pathname and comparing it to our list of pathnames to be intercepted. The list of binaries 

is loaded at initialization of the plugin and resides outside of the VM.  

 
bool found = false; 
for (int i = 0; I < s->binaries.size(); i++) { 
   printf(“Comparing %s with %s.\n,” s->binaries [i].c_str(), pathname); 
   if (s->binaries [i].compare(pathname) == 0) { 
       found = true; 
       break; 
   } 
} 
if (!found) { 
   drakvuf_release_vmi(drakvuf); 
   fprintf(stderr, “[Info] No match found.\n”); 
   return 0; 
} 

Figure 11. Code to Find a Pathname Match. 

If a matching pathname is found, step 4 is executed by constructing a modified 

pathname and writing it back to the original memory location that still resides in the VM’s 

RDI register. Otherwise, we immediately release the lock on the VM and return, allowing 

execution to resume. 

From there, the final step is executed by releasing the VM instance, allowing 

execution to continue in the VM. From the perspective of the executing VM, it is unlikely 

that this process will be observed unless the user is meticulously monitoring execution of 

the system in real time.  
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fakepath = (char*) malloc(sizeof(char)*4096); 
strcpy(fakepath, “/fake”); 
strcat(fakepath, pathname); 
printf(“smokescreen attempting to change path to… %s.\n,” fakepath); 
vmi_write_va(vmi, info->regs->rdi, info->proc_data.pid,  

strlen(fakepath)+1, fakepath, c); 
free(fakepath); 

Figure 12. Code to Modify Pathname. 

F. SUMMARY 

In conclusion, we have designed a system that can obfuscate virtualization device 

and capability artifacts, with minimal impact to the guest VM. By placing modified binaries 

that mitigate artifacts on our guest VM alongside utilizing VM introspection and 

DRAKVUF on the hypervisor, we can redirect execution and obfuscate the presence of the 

modified binaries, as the guest VM believes it is executing the original files. Therefore, 

even if an interested party were to examine the original files that are still present, there 

would be no outward or obvious indications that they were not the files being executed. 

Although the modified binaries are present on the guest VM (thus introducing additional 

virtualization artifacts), there is no requirement that the modified binaries follow any sort 

of naming convention which can further obfuscate their presence on the guest VM.  

In the next chapter, we present the testing methodology and results of the testing of 

our system. 
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IV. SYSTEM TESTING 

In this chapter, we present and discuss our methodology for performance and 

accuracy testing of our system, followed by analysis of their results. 

A. TESTING METHODOLOGY 

In order to test our system’s ability to achieve artifact mitigation, we needed to 

examine the detectability of VM introspection when redirecting guest VM execution, as 

well as the accuracy of our sensor data lookup function compared to the bare metal sensor 

output. We achieved each of these by executing two tests.  

1. Performance Testing 

First, we tested the performance of our system by examining our modified sensors 

program in three environments: a bare metal machine, a VM where no introspection 

occurred, and a VM where introspection did occur. Within each environment, we extracted 

the following data, respectively: the average runtime of sensors, the performance overhead 

of virtualization alone, and the performance overhead of smokescreen and its VM 

introspection. The performance test was considered successful if the introspected VM in 

our system executed with runtimes similar to those of the other two environments. 

To measure the timing of our three environments, we created a Python script to 

perform multiple system calls that execute sensors, both modified and unmodified. For 

each execution, the individual runtime was calculated and stored. After all test iterations 

were completed, statistics were extracted from each environment and analysis was 

conducted to calculate average runtime, standard deviation, and 95% confidence interval 

for the average. For the purposes of our research, negative timing results were considered 

invalid and discarded to prevent data skew. 

2. Accuracy Testing 

We tested the accuracy of our temperature lookup function by building a program 

that would output our estimate alongside the actual sensor data (i.e., the truth value). More 
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specifically, we compared the results of our lookup function to the output of the CPU 

temperature sensor within the /sys filesystem. Success was indicated if the lookup function 

produced similar values to the actual temperatures measured while conducting our test. 

To measure the values, we created a C program that executed the lookup function 

then read the actual sensor output. Both values were then redirected to an output collection 

file. Since our goal is to provide an accurate estimation for the entire range of utilization, 

we wanted to ensure the widest range of possible values were passed to the lookup function. 

To accomplish this, NOP loops were executed concurrently with our test program to drive 

up CPU utilization, simulating the transition from idle to full utilization. The test then 

halted operations to capture the ramp down to system idle. After testing was complete, the 

utilization amounts (i.e., output of /proc/loadavg), estimated temperature (from our 

function), and actual temperature (from the sensors) were extracted and analyzed to 

calculate the average deviation between the estimated values and the actual values, both as 

a raw value (degrees Celsius) and percentage. 

B. PERFORMANCE TESTING 

In testing the performance of our system, we found it necessary to compare it to 

both a bare metal machine and a non-introspected VM. With the bare metal machine, we 

were able to establish a baseline performance, and by including a non-introspected VM, 

we were then able to determine how much impact from our system could be attributed to 

virtualization overhead. With these two additional pieces of data, we were able to 

accurately measure the cost of smokescreen in terms of performance.  

1. Bare Metal Machine 

Our bare metal machine was configured to utilize the same hardware configuration 

and the same Ubuntu 16.04.6 LTS distribution that were used for the virtual machine. Lm-

sensors was installed and executed with no modification to the sensors program. Several 

sensors, including the processor temperature sensor, were detected out-of-the-box (i.e., 

without additional configuration required).  
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In testing the bare metal machine, as the results show in Table 1, we were able to 

establish that sensors executed for an average of 2.886ms, with most values falling within 

0.5ms of that time. Based on the number of iterations executed, we were able to establish 

a 95% confidence interval of +/-0.00986ms, making us very sure about the accuracy of our 

average execution time. 

Table 1. Bare Metal Timing Results. 

Total Iterations 9,944 
Average Execution Time 2.886ms 
Standard Deviation 0.5ms 
95% Confidence Interval +/- 0.00986ms 

 

2. Hypervisor without Mitigations Present 

To establish the cost of hypervisor overhead, we needed to measure the 

performance difference between an introspected and a non-introspected VM. To do this, 

we used the Dom0 VM, which is the VM that acts as our user interface to the Xen 

hypervisor directly (i.e., the environment that DRAKVUF runs in while introspecting a 

guest VM). We chose the Dom0 VM, as opposed to our guest VM, for two reasons: first, 

the Dom0 VM is defined by the Xen hypervisor as being another virtual machine that has 

elevated access to the hardware level, which is not available in the guest VM [9]. Although 

the Dom0 VM does not have access to the CPU temperature sensor, it does have access to 

other sensors (which our guest host does not) and it still provides a similar flow of 

execution for the unmodified sensors program when compared to the bare metal machine. 

Second, our test system was designed intentionally to ensure that the VMM and the guest 

VM were executing identically-configured kernels, and that both had access to similar 

resources through the hypervisor, providing a nearly identical environment when compared 

to the guest VM.  

The performance of this test system is shown in Table 2. We see that execution 

time increased by approximately 1.2ms on average over the bare metal system, and resulted 
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in a wider standard deviation. Due to the increased standard deviation, our 95% confidence 

interval with regards to execution time increased to +/-0.01425ms. 

Table 2. Virtual Machine Timing (No Introspection) Results. 

Total Iterations 9,953 
Average Execution Time 4.022ms 
Standard Deviation 0.73ms 
95% Confidence Interval +/- 0.01425ms 

 

3. Hypervisor with Mitigations Present 

Finally, the guest VM was tested with DRAKVUF running on the hypervisor, with 

smokescreen implemented and executing as a part of the DRAKVUF instance. The guest 

VM also executed the modified version of sensors. As shown in Table 3, execution times 

for this system increased by a relatively large amount over the other test systems, with 

average execution time increasing by 5.964ms over the bare metal system, and by 4.828ms 

over the non-introspection system. In addition, this performance resulted in a wider range 

of observed execution times, as seen by the higher standard deviation of 1.493ms. Here we 

experienced the widest of our 95% confidence intervals, with a value of +/-0.04816ms. 

Although this is significantly larger of an interval compared to the other two environments, 

it still shows that we can reasonably expect execution to fall within a small range of 

possible times. 

Table 3. Virtual Machine Timing (with Introspection) Results. 

Total Iterations 9,959 
Average Execution Time 8.850ms 
Standard Deviation 1.493ms 
95% Confidence Interval +/- 0.04816ms 
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C. ACCURACY TESTING 

Another important metric in determining success in our system is whether our 

temperature function accurately reflects the bare metal system’s state without direct access 

to the sensors. To test this, we compared our lookup function output to the bare metal 

system’s temperature sensor raw output, as stored in the /sys folder (in Ubuntu 16.04.6 

LTS). The results are broken down into three categories as shown in Table 4. Overall, we 

saw consistent underestimation, with our lookup function typically returning values around 

13°C, or 16.28%, lower than the raw sensor values. By also considering the calculated 

standard deviation of the differences, most estimation differences were anywhere between 

-22.3917°C and -4.0739°C too low. When broken down by utilization transition, the idle 

to full transition saw much larger underestimations up to 35°C with an average difference 

of 21.9% between the estimated and actual values. Underestimations seen here typically 

fell within a range of -20.503°C and -11.799°C. The full to idle transition saw both under 

and overestimations with deviations between -15°C and +17°C, but an average difference 

of only 0.52% and most differences falling within between -3.4256°C and +2.7884°C. 

Table 4. Lookup Function Accuracy Results. 

Overall Results (3600 data points) 
Average Difference -13.2328°C 
Standard Deviation 9.1589°C 
Average Difference Percentage -16.28% 
Largest Underestimation -35.000°C 
Largest Overestimation 17.000°C 

Idle to Full Utilization Transition (2403 data points) 
Average Difference -17.8244°C 
Standard Deviation 4.3521°C 
Average Difference Percentage -21.94% 
Largest Underestimation -35.000°C 
Largest Overestimation N/A* 

Full to Idle Utilization Transition (1196 data points) 
Average Difference -0.3186°C 
Standard Deviation 3.1070°C 
Average Difference Percentage 0.51% 
Largest Underestimation -15.000°C 
Largest Overestimation 17.000°C 
*No overestimations occurred. 
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D. ANALYSIS OF RESULTS 

In this section, we analyze the results of the performance and accuracy testing, and 

present possible explanations of these results. 

1. Performance Analysis 

Initial examination of the performance statistics shows that there is a measurable 

impact of both virtualization and VM introspection. A histogram of the three test systems’ 

execution times is shown in Figure 13. In Table 2 we saw an increase of ~1.1ms average 

execution time (from 2.886ms to 4.022ms), a roughly 39% increase, in a virtual machine 

over a bare metal machine. We also saw an increase in the range of values encountered 

within one standard deviation. It is possible that this increase in execution time was due to 

resource sharing between the various VMs as well as context switching (for example, due 

to sensitive or privileged instructions that much be trapped) between the hypervisor and 

guest VM that is required for normal virtualization operations. 

 
Figure 13. System Performance Results. 

Comparing the results of the guest VM alongside smokescreen operating, we saw 

a relatively large increase in the execution time for sensors. The average execution time 

was 8.850ms with a standard deviation of 1.493ms. This difference in timing compared to 

the bare metal system can likely be attributed to not only the overhead incurred by 

virtualization, but also to the processing time of smokescreen and the lookup function 

executed by sensors. Since the results from the previous two environments show that 

sensors takes approximately 2.886ms to execute, and virtualization overhead added an 
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additional 1.136ms, then the 8.850ms execution time we observed shows that smokescreen 

increased average execution time by 4.828ms compared to an unmodified VM and 

increased by 5.964ms compared to a bare metal system. These times correspond to a 

roughly 83% and 206% increase in average execution time compared to the non-

introspected VM and the bare metal machine respectively.  

2. Accuracy Analysis 

In comparing our lookup function to the actual sensors on the bare metal system, 

our modelling function followed the overall trend of the actual sensor data. As temperature 

sensor readings increased, our function returned steadily increasing results, and when the 

actual temperature decreased, our function also showed a decrease in returned values.  

Although our function produced a similar temperature curve to that of the actual 

sensor data, it consistently underestimated the actual temperature values, as can be seen in 

Figure 14. This was likely due to a combination of the use of the TCASE temperature as an 

upper limit to calculatable temperatures, along with the influence of the five- and ten-

minute averages on the calculated value. Although TCASE is described by Intel as “the 

maximum temperature at the integrated heat spreader” [27], it should not be considered an 

upper limit to temperatures that could be encountered in reality. Next, the intention of the 

five- and ten-minute averages was to estimate the effect of CPU cooling over time, but as 

average CPU utilization grew and plateaued, those averages capped the estimated 

temperature even lower than TCASE (71° C in the case of our Intel i7-6700). 

 
Figure 14. System Accuracy Results. 
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E. TESTING LIMITATIONS 

The version of DRAKVUF that we used limited introspected VMs to a single 

virtual CPU per VM (which is assigned to a single physical CPU thread by the hypervisor). 

Additionally, the output of /proc/loadavg is a combined total of the load average for all 

present CPU threads, so a 4-core/8-thread CPU (such as the Intel i7-6700) would return 

values ranging from 0.00 to 8.00 (i.e. 0% to 800%) to signify no utilization on any core to 

full utilization on all cores, respectively. Since our design assumed access to only a single 

CPU thread from the start, it did not account for the presence of multiple cores or multiple 

threads. However, our temperature accuracy testing was performed on a bare metal 

machine that had access to all eight processor threads in order to have actual sensor data. 

To account for this, we modified our temperature lookup function for testing as follows: 

1. Multiple NOP loops were utilized to ensure 100% utilization across all 

CPU threads. 

2. The /proc/loadavg output was normalized to a range of 0.0 to 1.0, 

producing values that would be expected by smokescreen. 

By ensuring that all CPU threads were operating at near-identical utilization, and 

by normalizing the load averages to that of a single core processor, we were able to produce 

the range of values that smokescreen would expect and would accurately reflect the results 

produced by the plugin. 

F. SUMMARY 

In this chapter, we presented the testing methodology and results of our 

implemented system, smokescreen. From a performance point of view, the introduction of 

our system onto a VM resulted in an average execution time increase of 5.964ms, 

representing a 206% increase over a baseline bare metal machine. Of that time, 38% of the 

increase can likely be attributed to the virtualization overhead, and an increase of 167% 

that can be attributed to smokescreen.  

From an accuracy point of view, our smokescreen system closely followed the 

temperature curve of the bare metal machine sensor data, however our lookup function 
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consistently underestimated the CPU temperature. This was likely because of the use of 

TCASE as a maximum temperature value combined with the usage of higher utilization over 

time (the five- and ten-minute load averages) acting to further depress on our estimated 

values.  

In the next chapter, we present our conclusions as well as recommendations for 

future work in VM artifact mitigation.  
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V. CONCLUSIONS AND FUTURE WORK 

At the beginning of our research, we set out to answer three important research 

questions. We sought to 1) identify techniques utilized to mitigate hypervisor artifacts, 2) 

design and implement chosen techniques that would mitigate these artifacts, and 3) ensure 

that our mitigations could accurately estimate the actual state of the underlying system, 

without access to the sensors that describe that state. Our mitigation tool, smokescreen, 

answers these questions, providing artifact mitigation with a performance cost measured 

in milliseconds, while being able to provide sensor data that follows the temperature curve 

of a bare metal system during normal use.  

In this chapter, we present our conclusions as well as recommendations for follow-

on research and other future work. 

A. CONCLUSIONS 

In this thesis we designed and implemented smokescreen as a DRAKVUF plugin 

with the goal of mitigating capability and device artifacts common within modern VMs. In 

particular, we were able to modify a VM’s system calls to replace the path of specific 

programs which produce virtualization artifacts and replace them with modified versions 

that did not exhibit those artifacts. The artifacts are mitigated by having the modified 

program estimate the system’s state through use of other system information that is present. 

Although other solutions exist that also provide increased fidelity [30], our goal was to 

implement a solution that existed mostly outside the guest VM in order to achieve our view 

of a high-fidelity hypervisor. Our results indicated that smokescreen provides increased 

fidelity but at the expense of increased execution times and potentially introducing other 

VM artifacts in order to mitigate those we targeted in our system.  

1. Artifact Mitigation 

By utilizing DRAKVUF [22], we were able to keep most of our software solution 

outside of the guest VM. The implementation showed that it is possible to redirect 

execution of some artifact-leaking programs in a way that is difficult to detect, even when 
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examining execution from within the VM. This results from the fact that the guest VM has 

no potential indicators that the original program is not being executed. 

However, smokescreen’s implementation and its interactions with LibVMI’s API 

started to make the limitations of VM introspection more apparent. Through smokescreen 

we were able to access CPU register and memory contents, but the plugin could not directly 

access devices or files in order to modify them. As a result of this, our implementation 

needed to introduce additional file system artifacts into the guest VM. Since our 

modifications to the guest VM were limited to data in or pointed at by CPU registers, we 

were unable to directly manipulate the programs which cause artifact leakage and must 

instead redirect execution to our own modified versions of the programs which reside 

within the guest VM to mitigate potential leakage. Similarly, since we were unable to 

manipulate the system files that contain sensor values, we were forced to ensure that our 

modified programs also calculated the estimated value inside the guest VM rather than 

doing so from without and passing that data to the original program. 

2. Performance 

Overall impact to performance is an important consideration when determining 

whether smokescreen would be an appropriate building block for an HFH. Our solution’s 

cost to performance is a 206% increase in the execution time of the sensors program. 

However, when considered in terms of the actual amount of time to run (roughly 3ms to 

9ms), the actual execution time would be unlikely to raise suspicions of the presence of a 

hypervisor, as that difference could easily be attributed to other causes, such as resource 

sharing among processes, context switches, or other high-priority processes preempting 

these programs during execution. However, as the number of VMs present on a machine 

increase (increasing the demand on system resources) or as the number of programs that 

require redirection increase, it is possible that the introspections could cause a more 

noticeable system slowdown over time. This could be a limiting factor for deployment of 

our solution.  
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3. Accuracy 

The accuracy of our system is also an important consideration for deployment 

within an HFH. Overall, our solution was able to generally follow the temperature curve 

of the actual CPU temperature, but typically underestimated the values by around 16°C on 

average. However, when examined by the utilization trend (idle to full and full to idle), it 

was seen that almost all of the significant underestimations occurred during the idle to full 

transition, with the estimations staying relatively close (within 3°C on average) during the 

full to idle transition. With additional research, a more representative linear model can be 

created and applied, resulting in a temperature curve that not only follows the correct 

temperature curve, but is also more accurate in its estimations. 

B. LESSONS LEARNED 

During our research and implementation of smokescreen, we encountered a few 

teachable moments. First, implementation of a system that operates outside a guest VM but 

affects operation within that VM can be problematic. DRAKVUF and LibVMI are able to 

make access to CPU registers and memory contents possible, but only when system calls 

are executed. From a semantic point of view, we were required to bridge the gap between 

the high-level execve() call and the low-level view presented during introspection. Intimate 

knowledge of assembly code and the relationship between a process’s virtual memory 

space and the VM’s system memory is required in order to correctly (and safely) 

manipulate that memory during introspection.  

Also, it is important for an appropriate amount of research to be conducted to ensure 

models being implemented, such as CPU temperature, are able to accurately reflect the 

actual state of the bare metal machine, in both general curve of the values and accuracy of 

those values.   

C. FUTURE WORK 

In this section, we present potential future work that may augment or improve 

smokescreen’s mitigation techniques as well as for high-fidelity hypervisors overall. 
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1. Process Injection 

At the present time, DRAKVUF is limited in how it can allow manipulation of 

memory during VM introspection. While manipulation is possible, it can only occur when 

system calls are executed and trapped through LibVMI. However, a future capability of the 

system under development called Process Injection could enable plugins (like 

smokescreen) to replace the contents of a process’s memory space with that of a different 

process which exists outside the guest VM. Once this capability has been implemented, 

smokescreen will act as a natural building block, where our modified programs are able to 

exist outside the guest VM and remove the requirement of having the modified programs 

present within the guest VM. This would eliminate the file system artifacts, in particular 

the modified programs, that were introduced by smokescreen’s current implementation.    

2. Mitigation of Other Types of Artifacts 

Another limitation of smokescreen is that it is only designed to mitigate device and 

capability artifacts that are present in common programs found within virtual machines. As 

described earlier, there are other types of artifacts, such as service, process, and file system 

artifacts, and random access memory artifacts. A system implemented to be an HFH will 

ultimately need to include mitigations for all these other types of artifacts.  

3. Additional Characteristics of High-Fidelity Hypervisors 

As described in Chapter I, Ingraham et al. [1] initially described five categories of 

characteristics of HFHs: artifacts, behavior, performance, security, and functionality. 

Smokescreen’s mitigations are focused on increasing the overall fidelity of a hypervisor’s 

characteristics with regards to artifacts. The other four categories will also require 

additional research in order to develop a hypervisor that is truly an HFH.  

 

 



45 

LIST OF REFERENCES 

[1] C. Ingraham, A. Shaffer, and G. Singh, “High-fidelity virtualization for cyber 
operations,” in 2019 International Conference on Computational Science and 
Computational Intelligence (CSCI), Dec. 2019, pp. 196–201, 
doi: 10.1109/CSCI49370.2019.00040. 

[2] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis via 
hardware virtualization extensions,” in Proceedings of the 15th ACM Conference 
on Computer and Communications Security, New York, NY, USA, 2008, 
pp. 51–62, doi: 10.1145/1455770.1455779. 

[3] Xu Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards an 
understanding of anti-virtualization and anti-debugging behavior in modern 
malware,” in 2008 IEEE International Conference on Dependable Systems and 
Networks With FTCS and DCC (DSN), Jun. 2008, pp. 177–186, doi: 
10.1109/DSN.2008.4630086. 

[4] E. Bugnion, J. Nieh, and D. Tsafrir, “Hardware and software support for 
virtualization,” Synth. Lect. Comput. Archit., vol. 12, no. 1, pp. 1–206, Feb. 2017, 
doi: 10.2200/S00754ED1V01Y201701CAC038. 

[5] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik, “Supporting 
soft real-time tasks in the Xen hypervisor,” in Proceedings of the 6th ACM 
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, 
New York, NY, USA, 2010, pp. 97–108, doi: 10.1145/1735997.1736012. 

[6] F. Bellard, “QEMU, a fast and portable dynamic translator,” USENIX Annu. Tech. 
Conf., vol. 41, pp. 41–46, Apr. 10, 2005. 

[7] “Understanding full virtualization, paravirtualization, and hardware assist.” 
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-
paravirtualizat-1008.html (accessed Oct. 09, 2019). 

[8] S. Bansal and A. Aiken, “Binary translation using peephole superoptimizers,” in 
Proceedings of the 8th USENIX conference on Operating systems design and 
implementation, 2008, pp. 177–192, Accessed: Jan. 20, 2020. [Online]. Available: 
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/bansal/bansal.pdf. 

[9] P. Barham et al., “Xen and the art of virtualization,” in Proceedings of the 
Nineteenth ACM Symposium on Operating Systems Principles, New York, NY, 
USA, 2003, pp. 164–177, doi: 10.1145/945445.945462. 



46 

[10] S. Cooley, H. Juarez, and J. Terry, “Hyper-V architecture.” Microsoft Docs, 
January 10, 2018. [Online]. Available: https://docs.microsoft.com/en-
us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture 

[11] Oracle, “Oracle® VM VirtualBox®.” (accessed Jan. 14, 2020). [Online]. 
Available: https://www.virtualbox.org/manual/ 

[12] Jun Zhang, Kai Chen, Baojing Zuo, Ruhui Ma, Yaozu Dong, and Haibing Guan, 
“Performance analysis towards a KVM-based embedded real-time virtualization 
architecture,” in 5th International Conference on Computer Sciences and 
Convergence Information Technology, Nov. 2010, pp. 421–426, doi: 
10.1109/ICCIT.2010.5711095. 

[13] T. Liston, E. Skoudis, “On the cutting edge: Thwarting virtual machine 
detection,” presented at SANS at Night, 2006. [Online]. Available: 
https://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf 

[14] J. Rutkowska, “Red Pill... or how to detect VMM using (almost) one CPU 
instruction,” The Invisible Things, Nov. 2004. [Online]. Available:  
http://web.archive.org/web/20110726182809/http://invisiblethings.org/papers/red
pill.html 

[15] M. Carpenter, T. Liston, and E. Skoudis, “Hiding virtualization from attackers 
and malware,” IEEE Secur. Priv., vol. 5, no. 3, pp. 62–65, May 2007, doi: 
10.1109/MSP.2007.63. 

[16] C. Thompson, M. Huntley, and C. Link, “Virtualization detection: New strategies 
and their effectiveness,” Univ. of Minn., Minneapolis, MN, USA, 2010. [Online]. 
Available: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.7877&rep=rep1&t
ype=pdf 

[17] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility is not 
transparency: VMM detection myths and realities” in Proc. of the 11th Work. On 
HotOS, 2007. [Online]. Available: 
https://www.usenix.org/legacy/events/hotos07/tech/full_papers/garfinkel/garfinke
l_html/index.html 

[18] J. Robin and C. Irvine, “Analysis of the Intel Pentium’s ability to support a secure 
virtual machine monitor,” Defense Technical Information Center, Fort Belvoir, 
VA, Aug. 2000. doi: 10.21236/ADA423654. 

[19] T. Klein, “trapkit.de - ScoopyNG.” Trapkit, Accessed Jan. 14, 2020. [Online]. 
Available: http://www.trapkit.de/tools/scoopyng/index.html  

[20] A. Ortega, “a0rtega/pafish,” GitHub. Accessed on Jan. 14, 2020. [Online]. 
Available: https://github.com/a0rtega/pafish 



47 

[21] GitHub, “libvmi/libvmi: The official home of the LibVMI project is at 
https://github.com/libvmi/libvmi.” Accessed Feb. 04, 2020. [Online]. Available: 
https://github.com/libvmi/libvmi 

[22] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A. Kiayias, 
“Scalability, fidelity and stealth in the DRAKVUF dynamic malware analysis 
system,” in Proceedings of the 30th Annual Computer Security Applications 
Conference, New York, NY, USA, Dec. 2014, pp. 386–395, doi: 
10.1145/2664243.2664252. 

[23] T. K. Lengyel, “DRAKVUFTM Black-box Binary Analysis System.” DRAKVUF, 
Accessed on Feb. 04, 2020. [Online]. Available: https://drakvuf.com/  

[24] W3Techs, “Usage of web servers broken down by operating systems.” Accessed 
Jun. 15, 2020. [Online]. Available: 
https://w3techs.com/technologies/cross/web_server/operating_system 

[25] Rekall Forensics, “Rekall Forensics.” Accessed Jun. 19, 2020. [Online]. 
Available: http://www.rekall-forensic.com/ 

[26] Xen Project, “Xen project software overview - Xen.” Accessed Jun. 23, 2020. 
[Online]. Available:  
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview#HVM_I.2FO_
Support  

[27] Intel, “Intel® CoreTM i7-6700 Processor (8M Cache, up to 4.00 GHz) product 
specifications.” Accessed May 09, 2020. [Online]. Available: 
https://ark.intel.com/content/www/us/en/ark/products/88196/intel-core-i7-6700-
processor-8m-cache-up-to-4-00-ghz.html 

[28] Intel, “6th Generation Intel® processor families for S-Platforms, datasheet, 
volume 1 of 2.” Accessed: May 09, 2020. [Online]. Available: 
https://cdrdv2.intel.com/v1/dl/getContent/332687. 

[29] GitHub, “lm-sensors/lm-sensors.” Accessed Jun. 19, 2020. [Online] Available: 
https://github.com/lm-sensors/lm-sensors 

[30] Y. Zhang, F. Xie, Y. Dong, G. Yang, and X. Zhou, “High fidelity virtualization of 
cyber-physical systems,” Int. J. Model. Simul. Sci. Comput., vol. 04, no. 02, p. 
1340005, May 2013, doi: 10.1142/S1793962313400059. 

  



48 

THIS PAGE INTENTIONALLY LEFT BLANK  

  



49 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 


	20Sep_Norine_Christopher_First8
	20Sep_Norine_Christopher
	I. Introduction
	A. Research Purpose
	B. Research Objective
	C. Research Questions
	1. Primary Question
	2. Secondary Question
	3. Tertiary Question

	D. Benefits of Study
	E. Thesis Organization

	II. BACKGROUND
	A. Introduction
	B. Hypervisor overview
	1. Terminology
	a. Hypervisor
	b. Virtualization
	c. Emulation
	d. Simulation

	2. Technology
	a. Type 1 Hypervisor
	b. Type 2 Hypervisor

	3. Methods of Virtualization
	a. Binary Translation
	b. Full Virtualization
	c. Paravirtualization


	C. Popular Hypervisors
	1. Type 1 Hypervisors
	a. Xen (The Xen Project)
	b. Microsoft Hyper-V
	c. VMware vSphere / ESXi

	2. Type 2 Hypervisors
	a. VMware Workstation
	b. Oracle VirtualBox
	c. QEMU with KVM


	D. Hypervisor Artifacts
	1. Service/Process/File System Artifacts
	2. Random Access Memory Artifacts
	a. Memory References
	b. Pointer Examination

	3. Virtualization-Specific Hardware Artifacts
	4. Virtualization-Specific Capability Artifacts

	E. Hypervisor detection
	1. Detection Techniques
	a. Count-Based Detection
	b. Register Inspection-Based Detection

	2. Detection Software
	a. Red Pill
	b. ScoopyNG
	c. VMDetect
	d. Paranoid Fish


	F. current artifact mitigation software and techniques
	1. VMmutate
	2. Hypervisor Configuration Modification

	G. other related work
	1. LibVMI
	2. DRAKVUF

	H. Summary

	III. System design and implementation
	A. Overview
	B. Host System
	C. Hypervisor
	D. DRAKVUF
	1. Rekall
	2. LibVMI
	3. Plugin System

	E. Plugin Implementation
	1. Hardware Component Emulation
	2. Software Component
	3. Means of Implementation

	F. Summary

	IV. System Testing
	A. Testing Methodology
	1. Performance Testing
	2. Accuracy Testing

	B. Performance Testing
	1. Bare Metal Machine
	2. Hypervisor without Mitigations Present
	3. Hypervisor with Mitigations Present

	C. Accuracy Testing
	D. Analysis of Results
	1. Performance Analysis
	2. Accuracy Analysis

	E. Testing Limitations
	F. Summary

	V. Conclusions and Future Work
	A. Conclusions
	1. Artifact Mitigation
	2. Performance
	3. Accuracy

	B. Lessons Learned
	C. Future Work
	1. Process Injection
	2. Mitigation of Other Types of Artifacts
	3. Additional Characteristics of High-Fidelity Hypervisors


	List of References
	initial distribution list


