

Implement a security policy and
identify Advance persistent

threats (APT) with ZEEK
anomaly detection mechanism

Panagiotis Drakos
SID: 3307160003

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Communications and Cybersecurity

December 2019
THESSALONIKI – GREECE

 1

Implement a security policy and
identify Advance persistent threats
(APT) with ZEEK anomaly
detection mechanism

Panagiotis Drakos
SID: 3307160003

Supervisor: Dr. Dimitrios Baltatzis

Supervising Committee
Members:

Assoc. Prof. Christos Kaloniatis

Assist. Prof. Aggeliki Tsohou

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Communications and Cybersecurity

December 2019
THESSALONIKI – GREECE

 2

Abstract

It is utmost importance the high level of security while ensuring safety and trusted

communications between organizations. Network security always was suffering from

lack of resources, while intruder’s knowledge is one step ahead. It seems that we are

developing code by testing which is neither wrong nor right rather than testing by

development. Based on this fact an IDS system would achieve better efficiency and

effectiveness if it was designed by a hacker. APT threats are not new threats, instead

are old threats that redeployed with advance knowledge on protocols. APT threats does

not pose intelligence on the code itself, rather than on the methodologies they use to

keep their appearance almost unknown through a system and their persistency to

identify a system or application vulnerability.

Present thesis acts as guidance in order to setup an IDS and evaluate its results. Part of

this guidance is to investigate existing IDS systems behavior. We analyze both the types

of intrusion detection systems HIDS – NIDS and identify main fundamental

components of APT/AVT threats. This thesis aims in transforming already documented

security policy into Zeek rules against live network traffic.

 3

Acknowledgements

I would like to take this opportunity and express my deepest appreciativeness to Dr.

Dimitrios Baltatzis, my research supervisor for agreeing to take me on as a student, for

his patient guidance and enthusiastic encouragement throughout my research.

I would like also to thank my father Giorgos, for his patience and support during the

finalization of this thesis. Last but not least, I would like to thank my mother Anastasia

who left early – never be forgotten will always be in my heart and in which this thesis

is dedicated on.

 4

Table of Contents

1 Introduction .. 9

1.1 Defining an APT and its intentions ... 9

1.2 Intro to Zeek .. 10

1.3 Purpose of this Thesis ... 11

1.4 Research question .. 11

1.5 Thesis outline .. 12

2 Relevant Work .. 13

2.1 Anomaly-based intrusion detection methods .. 13

2.1.1 Data mining/machine learning method .. 13

2.1.2 Advanced statistical anomaly method ... 15

3 Related Theory ... 18

3.1 Intrusion Detection and Prevention Systems .. 18

3.1.1 Types of Intrusion Detection Systems ... 20

3.1.2 Detection Methodologies ... 24

3.2 Advance Persistent Threats vs Advance Volatile Threats 36

3.2.1 Fundamental components of an APT ... 36

3.2.2 Behind the scenes of an Advance Persistent Threat 39

3.2.3 Advance Volatile Threat (AVT) .. 40

3.3 The Zeek platform ... 42

3.3.1 Zeek Administration .. 45

3.3.2 Log Files .. 46

3.3.3 Zeek Scripting Language ... 47

4 Deploying Network Security Policy into an IDS ... 54

5 Security policy implementation and APT identification 55

5.1 Hierarchy of Policy scripts in Zeek platform .. 55

5.1.1 Basic authentication and authentication through VPN connections 55

5.1.2 Detection of Exploit kit and C&C behavior .. 57

5.1.3 Malware detection .. 59

 5

5.1.4 Extract and Hash Files ... 62

5.1.5 ICMP Tunnel attack ... 65

5.1.6 Detection of large file transfer through the cable 66

5.1.7 Logging ARP requests and replies ... 68

5.1.8 HTTP user agent detection... 69

5.1.9 Detect SSH sessions ... 70

5.1.10 Tunnel attack .. 73

5.1.11 UDP scans and active response .. 76

5.1.12 Detection of unknown services on known ports 80

6 Conclusions .. 83

6.1 Future implementations ... 84

7 Appendix A: Zeek Log Files .. 85

8 Appendix B: Zeek Policy Scripts ... 87

9 Appendix C: IHU Network Security Policy ... 90

10 Bibliography ... 91

 6

List of Tables

Table 1 Signature-based vs Anomaly-based detection systems 25
Table 2 Data types ... 48
Table 3 Pattern operators ... 48
Table 4 Type casting operator.. 48
Table 5 Network Protocols .. 85
Table 6 Files ... 85
Table 7 Detection ... 85
Table 8 Network Observations .. 86
Table 9 Zeek Diagnostics... 86
Table 10 Miscellaneous ... 86
Table 11 Zeek Script names along with PCAP files used ... 87

 7

List of Figures

Figure 1 Comparison of an IDS to IPS [27] .. 18
Figure 2 IDS using AI and Machine Learning Algorithm [19, 45] 20
Figure 3 OSSEC host-based Agent/Server configuration [25] 22
Figure 4 Host-based intrusion detection system .. 22
Figure 5 Network-based intrusion detection system .. 24
Figure 6 Anomaly-based detection methodology .. 26
Figure 7 Application payload anomaly [43] .. 31
Figure 8 TCP packets reassembly [29] .. 31
Figure 9 Protocol anomaly detection [32] ... 32
Figure 10 HTTP insertion attack [43] .. 33
Figure 11 Insertion-evasion attack [29] ... 33
Figure 12 Insertion attack on Link Layer [29] ... 34
Figure 13 Stateful protocol analysis [38] ... 35
Figure 14 APT classification [13] .. 37
Figure 15 APT-attack [4] ... 38
Figure 16 Fileless malware [21] .. 41
Figure 17 Zeek architecture [7] .. 43
Figure 18 Zeek Clustering [7] .. 44
Figure 19 Zeek SSL Protocol analyzer [60] .. 45
Figure 20 ZeekControl shell .. 46
Figure 21 ZeekControl configuration file .. 46
Figure 22 Loaded scripts log.. 47
Figure 23 Type casting example .. 49
Figure 24 Proxy GET request and reply .. 49
Figure 25 http_proxy.Zeek script ... 50
Figure 26 http proxy output ... 50
Figure 27 File extraction .. 51
Figure 28 File inspection execution ... 51
Figure 29 Detect FTP Bruteforcing ... 52
Figure 30 FTP bruteforcing reply event... 52
Figure 31 SumStats Framework... 53
Figure 32 Basic authentication sample code .. 56
Figure 33 Basic authentication log .. 56
Figure 34 Log VPN authentication activity ... 57
Figure 35 VPN authentication activity output ... 57
Figure 36 Sniffing files with a predefined pattern ... 58
Figure 37 Identified 2 infected XML files ... 58
Figure 38 Matched XML file ... 59
Figure 39 Raised Notices upon detection of malicious downloads 59
Figure 40 File types to be checked .. 60

 8

Figure 41 Malware detected ... 60
Figure 42 File hash event handler .. 60
Figure 43 Malware extended information.. 61
Figure 44 Large application/x-dosexec mime type detected 62
Figure 45 Files types to be extracted and hashed .. 63
Figure 46 Extracted and hashed files types.. 63
Figure 47 More Extracted and hashed file types ... 64
Figure 48 Extracted file format type .. 64
Figure 49 ICMP Tunnel observer will raise a notice above a threshold 65
Figure 50 ICMP Tunnel detected ... 65
Figure 51 An alarm notice is raised ... 66
Figure 52 Notice will be raised when a predefined will be crossed 66
Figure 53 Source address is dropped ... 67
Figure 54 A notice is raised for Large Transfer ... 67
Figure 55 Large transfer of file detected.. 67
Figure 56 Originating host 192.168.1.104 is dropped for 20 seconds 68
Figure 57 ARP protocol requests and replies log .. 68
Figure 58 Output log of the ARP requests and replies .. 69
Figure 59 Connection unsuccessful attempts ... 69
Figure 60 HTTP agent detected ... 70
Figure 61 Detection of SSH sessions ... 71
Figure 62 SSH authentication printout .. 72
Figure 63 An extensive option added to the script .. 73
Figure 64 DNS tunneling observer .. 74
Figure 65 C&C DNS Tunneling software observer ... 75
Figure 66 DNS tunnel .. 75
Figure 67 Query includes .pirate.sea pattern detected ... 76
Figure 68 Identified host is dropped for a small period of time 76
Figure 69 Types of notices to be raised once a UDP scan is identified 77
Figure 70 UDP port failure observer ... 77
Figure 71 Block of the identified host once a UDP scan is detected 78
Figure 72 Support of callback functionality based on UDP behavior 79
Figure 73 Port scan detected .. 79
Figure 74 Originating host scanned 15 UDP ports of 192.168.1.25 80
Figure 75 Sets of default ports ... 80
Figure 76 Detection mechanism .. 81
Figure 77 Unknown services spotted through network traffic..................................... 81
Figure 78 Host identified to connect on a non-default SSH port 82
Figure 79 Host captured while trying to connect on a non-default FTP port 82

 9

1 Introduction
Cyber security has been a major awareness the last few years as intrusions have been

more sophisticated by using complex methodologies. Internet technologies and

communications has grown at an explosive rate in contrast to security systems and

policies that has not progressed as rapidly. While the internet has been acting as a

mediator for spreading communications and information around the global, it has also

made easier the attacks on computer systems attached to it resulting more advanced

requirements in order to implement a network security system. There many factors

that needs to be concerned as most intrusions are a combination of connectionless

based threats (virus, works, phishing etc.) and connection-oriented intrusions DoS

attacks.

Other factors demanding further consideration include: complexity of networks,

rapidly increase of methodologies and techniques used by intruders on applications

and attacks as well as financial benefits with the inception of Phishing attacks.

Furthermore these factors highlight the increasing need for the organizations and

government to protect their networks assets by using advanced Intrusion Detection

Systems (IDS).

1.1 Defining an APT and its intentions

Traditional threats are still posing a major concern for organizations, a challenge that

can’t be ignored. Additionally, new challenges menace the organizations and

governments, dealing with the Advanced Persistent Threats (aka. APT). This

terminology was firstly generated as a code name in order to describe Chinese

intrusions aiming to exploit critical information in a stealthy way from US military

organizations. Advance persistent threats are focused, stealthy and targeted attacks,

aiming specific critical information and covering their tales very carefully which

makes them to deviate from traditional viruses or worms and also very difficult to be

detected by traditional security measures.

Main characteristics of an APT include [9]:

 10

• APT is not focusing on special organizations but rather they focus on any

organization both government and commercial.

• Once the APT breaks into the system, it is very intelligent in what it does and

the way that does it. It can be changed, recompile its code on the fly and

remain stealth in order to avoid being detected.

• Because APT attacks are function in a stealth mode, this increases the risk of a

compromisation

• APT uses advanced tools and methods in order to increase speed of the

malicious activities. Automation is not the only fact that causes the persistency

of the threat, but also what the method that allows intruders to act fast.

• APTs are not newly developed threats, but are old well known threats

encapsulated with advanced techniques in order both to speed up their

malicious functionality and confuse detection systems.

• APT mainly focuses in providing the intruder with specific benefits such as

economic or financial gains. Anything that is important for its value to the

attacked organization is also important to the attacker too.

• Persistency of an APT is the mainly issue meaning that APTs are designed

that way to stay for long-term in an organization. Acquiring data for once may

be beneficial for the attacker, but being persistent for long-term is more

beneficial.

1.2 Intro to Zeek

Zeek is an open-source domain specific language, normally referred as a scripting

platform that is designed to work with network traffic. Zeek itself does not constitute

an IDS system, beside that it provides several useful features for protocol analysis as

well as a lot of out of the box functionalities for basic analysis tasks including

protocol decoding, logging and notifications for common security events. Even

though Zeek differs from other intrusion detection systems such as Snort or Suricata,

it also poses a complimentary method to these systems. While Snort language is well

functioning in identifying bytes in a network flow, Zeek poses the best option for

more complex tasks including those that require higher-level protocol knowledge,

cross functional network flows, or custom patterns when needed to identify specific

information in the traffic [13].

 11

One of its fundamental assets is that it can identify well known and unknown

protocols even if running on non-standard ports using Dynamic Protocol Detection

(DPD) feature. Zeek protocol logging is fully customizable, and while parsing or

decoding it gives the users the ability to create custom logic for processing the

transactions in the network traffic that is under examination. The actions taken by a

protocol are treated as a series of events, for which custom handlers can be written. Its

analysis mechanism includes both signature-based detection and anomaly-based

detection for such events that pose unusual behavior. Upon detection of something of

interest Zeek can be instructed to alert the operator in real-time, generate logs that can

be used later for forensics, or even execute an operating system command with

CronTab daemon (e.g. to block a host or terminate a connection).

Zeek is an anomaly-based intrusion detection system that matches the identified

network traffic packets with the custom application profile. A notice would raise in

case multiple unsuccessful attempts are triggered by a user within a short period of

time, or above a predefined threshold against an application (e.g. FTP, SSH). Most

often signature-based systems are tricked while the attacker can sneak through by

using special characters or variety of encoding methods. This is unlikely to happen

with Zeek anomaly-detection system, because it gives the operator the authority to use

custom patterns for detecting nonnative characters [13].

1.3 Purpose of this Thesis

The aim of this thesis is to deploy a documented network security policy, into Zeek

rules against live network traffic events through anomaly-based detection techniques

in order to produce an unsupervised detection system.

1.4 Research question

Computer and network security technologies are still in the beginning as firewalls,

antivirus/antimalware and intrusion detection systems have migrated from research

labs into active defense of both organizational and commercial networks. Both

computer and network security systems are composed mostly of complex devices and

in order to succeed their functionality certain conflicting goals has to be matched (e.g.

high performance, easy administration and fault tolerance). Based on this there are

vendors implementing systems either based on cost, speed or even how satisfied are

 12

the protection results find by other users so it gets even more difficult for the

customer to determine which product is best on what is says it does.

As new vulnerabilities emerge on a daily bases it gets complex and cost consuming to

patch all of them, given that there are cases that a vulnerability can be exposed after

causing considerably large amount of damage. Appropriate detection technology can

eliminate such incidents. Based on that we are implementing an anomaly-based real-

time intrusion detection system. As mentioned previously above, anomaly-based

intrusion systems differ in many ways than signature-based, but can be also used as

complimentary for additional protection. One of the main challenges while

developing such a system, is the ability to adequately distinguish abnormal behavior

from normal behavior as this could be a caveat when generating notices in network

traffic.

1.5 Thesis outline

Chapter 2 provides a technical background as a bases for the research of this thesis.

Anomaly-based detection method is detailed in extend by presenting related work that

has already been done both for data mining and machine learning techniques and

advanced statistical anomaly technique.

Chapter 3 issues the related literature that this thesis is based on. Differences of

intrusion detection systems vs intrusion prevention systems are identified. An

extensive description is presented both on HIDS and NIDS systems along with

advantages and disadvantages of detection methodologies. A detailed description is

also provided on APT and AVT threats distinguishing its fundamental components.

Furthermore an introduction to Zeek scripting platform is presented and its

accompany functionalities.

Chapter 4 provides a detailed description based on our idea to deploy a network

security policy into an IDS system. A university network security policy has been

implemented and taken as a base for the designed policies of our detection system.

Chapter 5 introduces the Zeek security policy scripts designed to cover most of the

aspects of the IHU Network security policy. Contains Zeek code snip sets along with

verification results.

 13

Chapter 6 concludes this thesis by summarizing our contribution and propositions of

several ideas for future work implementation.

Appendices contain Zeek log files, the full code of the implemented policy scripts and

also IHU Network Security Policy documentation.

2 Relevant Work

2.1 Anomaly-based intrusion detection methods

Any security breach incident poses in danger both computer systems and humans,

such as an intrusion that points on services performance, system manipulation as well

as unauthorized access to susceptible information. Several techniques have been

applied over the past years in order to obstruct security breaches but due to constant

expansion of the internet and precisely to the new technologies that arise, detection

tends to be even more complicated. A fully-fledged anomaly-based intrusion

detection system is composed of many provocations since the network traffic is both

dynamic and complex making it more unrealistic to distinguish between abnormal

from normal traffic. Network-based intrusion detection systems (aka. NIDS) are

divided into traffic and application systems relying on the information is used to

detect the anomaly [5]. In literature, several approaches have been proposed for

network anomaly detection consisting of Data mining/machine learning anomaly

detection and advanced statistical anomaly detection [23].

2.1.1 Data mining/machine learning method

Data mining acquire methods are used to detect and form user’s behavior during or

after a campaign based on a set of rules and patterns, or by simply linking several

events together. Data mining is be composed of four main categories: 1) can be used

to predict the state of network traffic at a certain time yielding the security experts to

control specific areas where abnormal activity is identified, 2) extracted patterns from

captured data can be used to identify the existence of a given event, or activity, 3)

captured data can be partitioned resulting in distinguishing the classes or the

categories derive from combined sets of parameters and 4) can be used as

enhancements of resources in several concepts. As an example the evaluation of

software quality in regard to software faults can be daunting, unless data mining

 14

techniques in combination with information from several software metrics are

gathered [2, 6]. This technique necessitates that the each data sets are labeled, leading

the detection process error-prone, pricey and prolonged [23].

Alternatively machine learning detection method assembles the required models

(characteristics of know attacks) automatically. This detecting process requires less

human interference and have achieved fairly positive results so far although there is

still a large number of faced crucial challenges; security of the process, failure of

learning the algorithms due to mismatch in the data and insufficient capability of

detecting previously unknown attacks due to significant big number of false alerts

[23].

Trend Micro security researchers Villeneuve, N. and Bennett, J. [58] focusing on

analysis of an APT by extracting attackers mistakes through careful monitoring and

investigation of ongoing campaigns in huge volumes of network traffic analysis. The

optimum aim is to get a brief look into spiteful operations by relying on a scheme of

both contextual and technical indicators. While APT activities will keep altering its

patterns, a significant number of ongoing campaigns can still be detected with the aid

of network indicators and network patterns modifications.

DExtor [35, 36] is a data mining based exploit code detector tool that can be deployed

inside the network between a server and a firewall to protect network servers. Its

technique consists both benign and exploit traffic resulting in extracting several

features from the training instances in order to construct feature vendors. Both the set

of instructions and their frequency contribute in identifying whether the traffic is

normal or an intrusion. However deploying the tool in large networks is irrational

since its efficiency only applies for 42Kb/sec of network traffic.

Jasek et al. [28] use honeypots as an enhanced security system solution (honeypot

agent) in order to detect APT by directing an attacker to the system without disclose

the implemented security measurements. Honeypots are designed to behave like a

complete operating system in order to distract an attacker. It is used to log access

attempts on ports and attacker’s keystrokes. It doesn’t result any value therefore

anything goes to or from a honeypot acts as a probe. Honeypots collect high value

small data sets as with their usage reduce false negatives and repels new attacks as

they work under encrypted and IPv6 environments [22, 6]. Honeypot environments by

 15

their nature are passive systems holding fake contents where an attacker can access

sensitive information or use it as a pivot in order to compromise other systems

resulting, various major limitations that direct an attacker to continue its activities in

stealth mode [46, 6].

Diwan et al. [14] proposes a hybrid approach, a blend of K-Medoids clustering and

Naϊve-Bays classification for intrusion detection. Naϊve-Bays classification implicates

many features that are not divided between normal operations and anomalies. A

combination of Naϊve-Bays classification with modified clustering data mining

techniques are used to extract patterns that present normal behavior aiming to enhance

accuracy and efficiency of the results. Sets of naϊve-Bays classification rules are

classified as normal behavior and the combination with modified clustering data will

clarify the anomalous behavior.

Brogi et al. [5] developed an APT detection tool that is capable of highlighting

attacker’s trails during an intrusion campaign by using IFT services. This approach

aims to use the outcome of the steps of an APT pattern (reconnaissance, delivery,

exploitation, operation, data collection and data exfiltration) in order to link them

together and identify the leaked information between the attacked elements. One

caveat of this system is that the APT detector was not executed in real time, during an

ongoing attack instead of identifying the attacker steps after the attack was executed.

Bereziński et al. [4] approach uses an entropy-based method in identifying botnets

based on anomalous patterns. Such type of anomalies are normally hidden in the

network traffic in a form of flows, packets or bytes making the detection even harder.

This approach aims to prove that entropy-based method applicable to detect modern

botnets. The implementation of the proposed method named Anode consists of two

phases: training phase where a normal traffic profile is build and detection phase in

which current traffic is compared to the normal model. A limitation of this approach

is that parameterization of the entropy causes inefficiency to detect low-rate

anomalies.

2.1.2 Advanced statistical anomaly method

Statistical anomaly detection method utilizes statistical models in order to distinguish

‘abnormal traffic’ from ‘normal traffic’ by formulating a user’s profiling of regular

 16

behavior. This way an anomaly is detected when current user's behavior deviates from

the stored profile. Limitations of using this technique are; the distribution of the data

across the network are considered conjectural and that they pose inefficiency to large

datasets or datasets with large attributes [41].

A Chi-square testing-based intrusion detection model utilizes Chi-Square statistics in

detecting Network based intrusions [1]. This system be composed of 3 levels; during

the first level TCP flags are extracted from each packet and four categories of RST,

SYN-ACK, ICMP and other TCP packets are produced and the total number of

packets per second for each category is calculated. In second level, a sample

distribution is produced and calculated by the chi-square against the captured data

producing the chi-square value that will be used to the next level. At decision phase

an intrusion/alarm is raised when the chi-square value of the sample distribution is

greater than the value of the tabulated chi-square value. Such an anomaly detection

system lacks of efficiency and performance in large scaled networks.

Koutsandria et al. [30] approach is based on detecting intrusions on networks

supporting hybrid controllers that implement power grid protection systems. The aim

is to transform the communication rules that physical devices utilize such as micro-

processor based controllers and packet-switched communications into a Hybrid

Control NIDS system (HC-NIDS). Such a system is consisted of three phases; In the

first phase overcurrent protection function is used in order to protect the physical

processes of the system such circuit breakers, sensors etc. for master and slave

controllers. The second phase consists of an S-function block that is responsible to

formulate the sensor measurements and reply to the master controller query with

Modbus packets. For the third phase a Siemens SIMATIC S7-1200 PLC acting as the

master controller for overcurrent protection function is used. A communication

between the master controller and the slave relay is established and the sensor

measurements received by the current sensors are obtainable. At this point the

protection control algorithm is executed where the master controller sends “write”

queries to the slave relay expecting which control action will be performed. The

limitations of this approach is that Power Grid systems often consists of many

components that coordination in order for the whole system to be protected tends to

be inadequate and time consuming. Furthermore IDS rules needs to be customized for

each application/component separately with different settings.

 17

Luh et al. [33] proposes a system that captures anomalous behavior in a

communication session by examining irregularities in a predefined set of process

graphs. Anomalies are distributed and unscrambled by using a semantic decision tree

combined with targeted attack ontology. Obtained data comprise several monitored

devices along with transmitted and translated kernel events are stored in a database.

These events are transformed in simple graphs that illustrate the handled operation

from each process in a dedicated time period. Anomalies are detected by observing

the distance in between these graphs. However such an approach needs further

investigation to enhance the decision trees and improve the automation of the

mapping process.

Krugel et al. [31] present a system that utilizes concrete knowledge of the network

services that needs to be protected from intrusion. Simple network traffic models form

an application model that is capable of detecting malicious content in network

packets. The aim of using service specific anomaly detection is to include the

application payload within the rest of the packet header information. In order the

payload of packets to be processed the network traffic is partitioned and separately

analysis of packets sent by several applications takes place. Therefore with service

specific anomaly detection statistical data can be collected irreproachable establishing

a normal traffic for each service. This system uses a training period that is definable

by the user, to read packets from the network and captured data are split into service

specific traffic and a profile of each service is build. Detection of anomaly is achieved

by comparing the new traffic with the created profile.

SPARTA [31] is a system that detects security policy violations and intrusions in

heterogeneous network environments. SPARTA is relies in a proprietary language to

demonstrate campaigns. The aim of this detection system is to correlate events that

occur anywhere in the network and a pattern of presenting these events. Is composed

of 4 phases; a local sensor, an event storage mechanism, an independent agent

platform and a fourth optional unit of a user interface. Nevertheless such a proposed

solution has several drawbacks; multiple components are used which raises the risk of

an intrusion, events of unlike nodes that depend on an instance of a single event in a

third node are indefinable.

 18

3 Related Theory

3.1 Intrusion Detection and Prevention Systems

In a nutshell, intrusion detection is the operation of monitoring events that befall in a

computer system or a network and the identification for evidence of possible incidents

being part of violations or impeding threats of computer security policies, or standard

security practices. An intrusion detection system (IDS) refers to actual software that

automates this process. The root of an incident may be a probe, a privilege escalation

attack, DDoS attack, a malware, a routing attack or even internal unauthorized access

due to misuse of users account privileges. An intrusion prevention system (IPS) is

exactly the same as an IDS that only differs in the configuration of the system. A key

point of an IPS in regard to an IDS is that, if they detect an ongoing intrusion, the

detected activity is banned as malicious. Whatever the case is, intrusions are detected

due to a predefined set of rules. IDS solutions are capable of having over time an

updated framework without the need to modify the core software package preserving

their resilience up against new security threats [49, 57].

Figure 1 Comparison of an IDS to IPS [27]

An intrusion detection system identifies intrusion attempts, whereas an intrusion

prevention system stop intruders before getting even deeper on the system, an action

 19

that the firewall supposed to do at first place. The comparison of an intrusion

detection system and a firewall gets very vague regarding their functions, as their

functionality is similar up to a point that IDS uses a bit more intelligence. As an

example, it is not a regular situation for a firewall to allow traffic on port 22 (ssh) and

block traffic when detecting any malicious patterns. The difference between an

intrusion detection system and a firewall is the ability of perception of flags and

options as parts of packet headers and data, instead of checking IP addresses and ports

[29].

An intrusion detection system be composed of three logical components:

• Sensors or Agents are accountable for collecting data that contain evidence of

an intrusion. These input data may be network packets, log files and system

call traces.

• Analyzers are diagnose whether an intrusion occurred based on input from

sensors or other analyzers. In most circumstances the analyzer can provide the

actions to be taken in case an intrusion has occurred.

• User Interface enables a user or an administrator to both view and control the

system. Depending on the usage of the console, some are used only to

configure sensors or agents and apply software updates while other for

monitoring and analysis [49, 52].

Modern intrusion detection and prevention systems have the ability to handle high

load networks supporting at least two detection methods. Additionally they are

enhanced with new methods of anomalous detection based on artificial intelligent

algorithms, maintaining their efficiency on detecting unknown attacks.

 20

Figure 2 IDS using AI and Machine Learning Algorithm [19, 45]

3.1.1 Types of Intrusion Detection Systems

There are many subclasses of an intrusion detection systems, depending the needs of

each proposed architecture and the types of events are capable of recognizing as well

as the used methodologies to identify possible incidents. For the purpose of this

document only the most important once are mentioned. These are host intrusion

detection systems (HIDS) and network intrusion detection systems (NIDS).

3.1.1.1 Host-based intrusion detection systems (HIDS)
A host-based intrusion detection system is installed only on a single host deemed to

be prone to possible attacks and monitors the system from internal or external threats.

A host-based system can obtain data from several sources such as system logs, logs

generated by the O/S processes, audit and logging methods stored in a single text file.

HIDS depend mostly on audit trails (collected data about events) leading to

limitations, that were not part of the detection system itself. That way in order to

maintain effectiveness of host-based systems the developer needs to modify the

existing O/S kernel code to produce event information an approach that results

conflicts with other applications, therefore increases inefficiency of the system.

Audit trails are considered to be very handy to host-based systems despite their

limitations, both for users and system itself since the main aim of O/S is to protect the

audit layer as well as for the level of detail that audit trails provide that is remarkably

important when analyzing attack patterns. For example, the host-based sensor is

 21

capable of recovering the process that initiated an event as well as the user associated

with that event. Such information are critical in determining the root of cause of a

possible attack.

The main drawback of host-based systems is the amount of data that they accumulate,

as the more data the more accurate the detection is, but this also requires additional

amounts of space due to the fact that real amounts of data on these used systems are

vast. Additionally such amounts of data and the complexity of processing these

information slow down the whole system. A burden that designers and analysts must

overcome so that host-based sensors maintain their effectiveness and avoid becoming

cumbersome [40, 28, 11].

Host-based systems are preferable for several reasons such as the ability of gathering

information in terms of “who accessed and what” leading them to trace malicious

activity from a specific user which rises also the risk of uncertainty of user awareness.

They also have the ability to function in encrypted environments and switched

network topology. Host-based systems allocate the monitoring load across available

hosts throughout a network eliminating significant costs which allows them to be

more scalable when network traffic increases dramatically.

An inherent limitation of host-based systems is that they are not being able of

monitoring network traffic but to run on single host. As mentioned previously host-

based systems are heavily rely on the O/S, thus any observed vulnerabilities of the

system will decrease the host-based sensor integrity since in a case of exploitation of

these weaknesses would lead to an intrusion hard to identify.

Another limitation of host-based systems is that they do not support cross-platform

functionality, a vital impediment for corporations that wish to use host-based

solutions and also for computer security professionals to become more educated about

the field [40, 28, and 10].

 22

Figure 3 OSSEC host-based Agent/Server configuration [25]

Figure 4 Host-based intrusion detection system

3.1.1.2 Network-based intrusion detection systems (NIDS)

Network-based intrusion detection systems follow a different approach in monitoring

than host-based systems, as they examine packet traffic directed to possibly

vulnerable computer systems on a network in real time, while host-based systems

examine users and software activity on a dedicated host. These systems are capable of

examining network, transport and application layer of the OSI model and mainly

included in the perimeter security infrastructure, either integrated as part of a firewall,

or work simultaneously with a firewall monitoring for external intrusion attempts by

analyzing both traffic patterns and traffic content [52].

 23

Network-based detection systems are portable, as they monitor network traffic on a

specific network segment independently of the O/S they are installed on. This benefit

increases their popularity as more businesses that run tailored software applications

are able to use them. Furthermore network-based sensors can be easily integrated

within the existing system while data are being collected with minimal effort [11].

Often an IDS is located in a complete different part of the network and an entirely

different machine than the system is monitoring, causing unconformities between the

monitored machine and the IDS. For instance, consider an intrusion detection system

and an end-system located at different places in a network receiving packets in

different points of time. Assuming that something happens during the lag in time on

the end-system and makes it incapable of receiving the packet, while the IDS already

processed the packet and waits response from the end-system. The same applies with

packets received with incorrect checksum resulting in reducing the systems accuracy

[29].

Network-based systems are passive, meaning that they do not maintain the

connectivity of a network in case an IDS crashes or its resources are starved due to a

DDoS attack making it a “fail-open” system [29]. Scalability is another major

limitation in network-based systems as they lack in managing high-speed networks or

to retain their features with heavy traffic. A weakness that advances intruders to

identify them and exploit them. Additional limitations of network-based systems

concern encryption and switched networks. Encrypted packets or network protocols

are extremely difficult to be scanned, while switched topologies pose extra obstacles

since switches isolate network connections between hosts and therefore a host is able

to see only traffic addressed to it [11].

 24

Figure 5 Network-based intrusion detection system

Centralized network-based systems are limited by their false alerts as licit traffic can

be blocked resulting problems for normal users. A network-based system that is

deployed at the border of the network may be completely collapse from internal

intrusion or a compromised internal host. On the other hand a distributed network-

based system eliminates these problems of inline deployment however limitations still

exist, due to the fact that implementation of a distributed NIDS rely mainly on a

client-server architecture, that is to say a stable connection between the client and the

server tends to be infeasible when dealing with heavy traffic networks [23].

3.1.2 Detection Methodologies

Detection is a mechanism that parses collected data in order to generate alert data.

Detection of data ends, when these generated data are presented to an analyst, and

that’s where an analysis begins. An effective detection in order to be successful

requires the appropriate detection mechanism. Several detection methodologies are

used by intrusion detection systems, most of them are used integrated to provide more

precise and comprehensive results. Two main types of intrusion detection techniques

exist: signature-based and anomaly-based. Signature-based use patterns of known

attacks and compare them to current traffic and when a match is found they raise an

alert, while anomaly-based uses statistical models on ‘normal’ network traffic and any

traffic that differs from ‘normal’ is considered anomalous based in the predefined

model.

 25

When a network infrastructure is under monitoring for potential security concerned

incidents, an intrusion detection system can implement both anomaly and signature

based intrusion detection methods in order to provide supreme defense. In a nutshell,

signature-based intrusion detection method has been ordinary used more than

anomaly-based method, when monitoring malicious activity on the network.

Signature-based method mainly relies on a database of attack signatures, which needs

to be updated all the time and when a match is found with a possible incident in a live

traffic an alarm is triggered. This is clearly a major drawback considering that hackers

spend lots of time in crafting attacks developed to mock signature-based detection

systems [28, 49, and 48].

 Signature-based detection Anomaly-based detection
Advantages • High accuracy for known

behaviors, or patterns.

• Simple algorithms.

• Low False alarm rate.

• Minimal resource usage.

• High accuracy rate on

unknown attacks.

• Low missing pattern rate.

• Ability to detect user-

privilege abuse.

• Ability to detect zero-day

attacks.

Disadvantages • Unable to detect unknown

attacks.

• Regular database updates.

• Difficult to separate an

attempted attack from real

actual attack.

• Slower detection rate.

• Maintenance is time-

consuming.

• Needs to be very well

trained.

• High false alarm rate.

Table 1 Signature-based vs Anomaly-based detection systems

For the purpose of this theses only anomaly-based detection technique will be

analyzed further.

 26

3.1.2.1 Anomaly-based detection

Anomaly-based detection technique is based on predefined profiles as previously

mentioned. A baseline profile is generated representing behavior of ‘normal’ traffic.

In case ‘abnormal’ traffic is detected, network traffic that deviates from the ‘normal’

traffic which is saved in a profile then an alert is triggered warning the possible

intrusion identified. This baseline profile which normally includes users, applications,

hosts, and network connections is created in order for the intrusion-detection system

to be able to collect the traffic on a period of time and then statistically observe the

behavior of the traffic during peak/non-peak hours, over-night hours and as per

network behavior that each organizations has defined. Tailored profiles can also be

created for particular traffic behavioral attributes such as number of e-mails sent by a

user, the level of processor usage by a host, the number of failed logins by a host as

well as user access attempts all depending on how an organization deployed the

intrusion-detection system in their network. [44, 49, 29].

Figure 6 Anomaly-based detection methodology

Examples of anomalous behavior [29]:

• HTTP traffic on a unknown port (port 53) – protocol anomaly

• Backdoor service on well-known standard port e.g. p2p file sharing with

Gnutella on port 80 – protocol anomaly and statistical anomaly

 27

• A segment of binary code in a user password – application anomaly

• Increased UDP traffic compared to TCP traffic – statistical anomaly

• Increased amount of bytes receiving from an HTTP browser that is visited –

application and statistical anomaly

Effectiveness and efficiency of an intrusion detection system is achieved when it has

a vigorous baseline profile which covers the entire network components and its

segments and utilizes a custom combination of detection techniques, both anomaly

and signature-based. An advantage of utilizing anomaly-based systems is that they

can detect 0-day attacks even though they require a training phase to deploy the

normal statistics database and cautious settings of threshold level of detection which

makes them more complex.

In order to detect anomalies accurately a profile of ‘normal’ behavior in a rule-based

pattern matching system may contain the following components [29]:

• Subjects and objects: subjects are the initiators of an activity in the target

system. Normally as subject refers to a terminal user, but it might be also a

process that is acting on behalf of users or a cluster of users or the system

itself and is responsible for all activities that are given through commands.

Subjects may also sorted in several clusters in order to control access to

objects in the system. Additionally objects are the addressee of the actions and

include entities such as files, programs, records, messages, terminals and

created structures. In case subjects are the receptors of actions, then they

considered as objects in the model.

• Audit Records: are responses produced by the target system regarding the

performed actions or attempted by subjects on objects-command execution,

file access, user-login/logout, read etc. A typical form of an Audit Record

consists the following attributes: “Subject, Action, Object, Exception-

Condition, Resource-usage, and Time-stamp”. When Audit Records are

collected for more than one systems than additional fields are added in the

above form. All activities are decomposed into actions so that each audit

records points to only a single object. Decomposing actions is beneficial for

the following reasons:

 28

o Objects are the entities of a system, thus a possible detection is

applicable using this model of both attempted subversions of the access

and successful subversions by detecting an abnormality in the

accessible set of objects related to the subject.

o Keeping simple audit records simplifies the model and its operation

o Audit records generated by existing systems generally contain a single

object, so that files can be identified easily.

However a handicap of audit records is that they contain a minimal descriptive

information to identify the holding values. Each record type has a dedicated

structure, and the same format each record must be known to interpret the

values. Another disadvantage is that they are imperfect in terms of the

monitored activities and the record structures that produced.

• Profiles: Structures that describe the behavior of subjects regarding to objects

in terms of statistical metrics and models of observed activity. Profiles are

generated automatically and initialized from templates. For example given a

metric for a variable “X” and its “n” observations “X1 … Xn”, the aim of a

statistical model of “X” is decide if the new observation “Xn+1” is anomalous

in contrast with the previous collected values. Some well-known models are

[42]:

o Operation model which is based on the operational hypothesis that the

comparison of a new observation of “X” against fixed limits can result

abnormality.

o Mean and Standard Deviation Model which is based on the assumption

that all we know about “X1 … Xn” are mean and standard deviation.

o Multivariate Model which is based on associations between two or

more metrics.

o Markov Process model applies only to event counters as a state

variable and uses a state transition matrix to present the transition

frequencies in between the states. This model also may have several

benefits when identifying transitions between specific commands

where a command sequence format is important.

o Time Series Model which uses as an input an interval timer, an event

counter, the order and interarrival of the observations “X1 … Xn”,

 29

including their values and identifies an abnormality if its probability of

occurring is too low.

Activity profiles is consist of information that identifies the statistical model

and random variable metric together with the set of audit events measured by

the variable. A profile is composed of 10 components of which the first 7 are

irrespective of the specific subjects and objects measured in the form of:

“Variable-Name, Action-Pattern, Exception-Pattern, Resource-Usage-Pattern,

Period, Variable-Type, Threshold, Subject-Pattern, Object-Pattern, Value”.

Uniquely identification of a profile is achieved by 3 objects which are

variable-name, subject-pattern and object-pattern. All components of a profile

are changeableness except for value.

• Anomaly Records: are produced when abnormal behavior is detected and

consists three components:

o Event can be either “audit” clarifying abnormality in the data of an

audit record, or “period” stating that accumulated data over an interval

time was found abnormal.

o Time-stamp can be either the time-stamp in the audit record or the

interval end time.

o Profile can be an activity profile presented in a form of a key record

pointing to full profile, identifying the type of abnormality that it was

detected.

• Activity Rules: are the actions taken when certain conditions such as a

produced audit record or anomaly record or a period of time ends are fulfilled.

An activity rule is composed of two parts: a condition which is specified as a

pattern-match on an event and when satisfied results the rule to be “fired” and

a main body. Four types of rules exist:

o Audit-record rule which sets off when a new audit record and an

activity profile match, the profile is updated and anomalous behavior

identifications starts.

o Periodic-activity-update rule which sets off when the end of an

interval and the period component of an activity profile match.

 30

o Anomaly-record rule which sets off when an anomaly record is

generated.

o Periodic-anomaly-analysis rule which is fired by the end of an interval

and brief reports of the anomalies during a set of period are generated.

Newly produced audit records are compared with the profiles. Given information in

the matching profiles defines the rules to be followed in order to update the profiles,

examine for abnormal behavior and report the detected anomalies. The administrator

or security expert of the system assists in profile templates construction in respect to

monitor activities, but the rules and profile structures are system independent. The

aim is to monitor the standard operation on a target system identifying only

inconsistencies in usage. Rule-pattern matching system does not include any special

features for conducting complex actions that are used to exploit security flaws in the

target system as it has unawareness of the target system mechanisms or its blemishes.

3.1.2.2 Types of Anomaly

Anomaly-based intrusion detection systems protect against anomalies as a

consequence of protocol violations, application payload, buffer overflow and Denial

of service attacks.

3.1.2.2.1 Protocol Anomaly

An anomaly in protocols occurs when it poses inconsistencies both in the format and

the protocol and in its behavior in comparison to the internet standards and

specifications (RFCs). TCP/IP composes many features to be monitored such as

different flags, SYN/ACK and FIN, TCP header combinations as well as IP header

reserved flags. IP decomposition and reassembly is implemented base on the

standards. At the application layer the intrusion detection system must be capable of

inspecting the protocols up to the point that the protocol anomaly is well identified

and also deep understanding of application semantics in order to detect accurately

application payload anomalies [44].

 31

Figure 7 Application payload anomaly [43]

Figure 8 TCP packets reassembly [29]

All connection oriented protocols states, thus a certain event must be executed at a

certain time period, resulting protocol anomaly detectors to be implemented as state

machines where each state points to the correspondence part of the connection e.g.

client/server response. Internet standards and specifications are not always complete,

covering each aspect of a protocol, and that’s a good starting point in order to produce

a detection model as it is easier to construct an error-free manipulation of the protocol

than starting from the bottom up and build the model based on misuse. Additionally

protocol anomaly detectors are capable of detecting new growing attacks based in

RFCs protocol violations without being update in contrast to signature-based IDSs

 32

which they need frequently updates in order to identify and detect such attacks [12,

32, and 61].

Figure 9 Protocol anomaly detection [32]

The update frequency of protocol anomaly detectors is far more less than the updates

in signature-based systems since new protocols, enhancements on existing protocols

as well as protocol extensions will be added to the IDS in a form of protocol state

machine. Another benefit of protocol anomaly detectors which makes them to vary

from traditional intrusion detection systems is the way that alarms are presented to the

system operator and that is achieved by describing the particular part of the state

machine that was violated, which requires expert knowledge of protocol design. A

well planned and developed protocol detector uses fewer rules to depict normal

behavior which increases the bandwidth of operation leading to efficiency and

effectiveness [12, 32, and 61].

Some attacks can be distinguished by parsing IP packets as such an attempts of

bypassing a packet filter can be observed by examining the fragment offset fields of

each IP fragments. Other attacks infringe over multiple packets or decoded without

affecting the actual protocol, e.g. a DNS query is linked to a certain host. Additionally

in an insertion attack the attacker transmits HTTP requests puddling its contents with

extra data to the IDS resulting the request to seem harmless. In an evasion attack the

attacker transmits segments of the same request in packets that erroneously will be

 33

rejected by the IDS, allowing to remove parts of the flow from the intrusion detection

system’s view, e.g. transforming the original request to “GET /gin/f” which is

something unknown to the majority of intrusion detection systems [29].

Figure 10 HTTP insertion attack [43]

Figure 11 Insertion-evasion attack [29]

There are many ways that an attacker can manipulate an IP packet that IDS will accept, some
of these are:

• Manipulation of the IP datagram header field.

• Corrupt checksum

• Incorrect TTL field

• Incorrect “Don’t Fragment” flag in the IP header

• Existence of portions of shellcode in unexpected protocol fields

 34

An insertion attack has similar consequences for the link-layer addressing as an

attacker that is located on the same LAN as the network monitor does, can direct link

layer frames to the IDS, hiding the host specified as the IP destination to see the

packet, unless the IDS checks the MAC address on the received packet [29].

Figure 12 Insertion attack on Link Layer [29]

3.1.2.2.2 Stateful Protocol Analysis Detection

Stateful protocol analysis (SPA) method which is similar to anomaly-based detection

is the process of correlating predetermined profiles of benign protocol activity for

each protocol state according to the protocol standards against observed events to

identify abnormality. Stateful protocol analysis relies mainly on vendor developed

universal profiles that are defined with the rules of protocol functionality, in contrast

to anomaly-based detection that utilizes host or network specific profiles. With this

method the intrusion detection system is capable of maintaining track for both

network and application layers. The TCP protocol specification (RFC793 [55])

describes several “states” that are included in any given connection. It is critically

important to pair requests with responses in order to understand fully the operation of

the “states”. In case of an authentication, the initial connection state is in an

“unauthorized state” in which only a few commands may executed. After an exchange

of some more information between the client and the server the user gets

authenticated and any executed commands are considered legit.

 35

Stateful protocol analysis method is capable of identifying sudden recurrence of

commands by performing a protocol analysis to the length of the arguments of the

given command as well as when dealing with protocols that perform authentication,

the intrusion detection system collects trails both of the authenticator used for each

session and the authenticator for malicious activity. SPA method uses protocol

profiles according to the standards and any variations implemented by the vendor’s

e.g. proprietary protocols which normally include incomplete specifications would

cause inconvenience to the IDS in detecting and analyzing the states.

Figure 13 Stateful protocol analysis [38]

However stateful protocols analysis are not perfect as they have several drawbacks.

Both complexity of the analysis and state tracking incorporating concurrent sessions

are causing to be resource consuming. Moreover SPA are incapable of detecting

attacks that do not violate the characteristics protocol behavior, that is to say recurrent

legit actions in a specific time period to cause denial of service and also identification

of possible conflicts between standards and the way that are implemented is

impossible [49, 44].

3.1.2.2.3 Statistical Anomaly Detection

As DoS and DDoS attacks produce a blast of abnormal traffic, normal traffic profiles

are created based on statistical methodologies (Naϊve Bayes) to detect anomalous

 36

packets. Statistical modeling is based on estimating the probability value for each of

the data packets that is considered normal traffic by using sampled data over a time

frequency and stored in the normal profile that previously created. By the time the

IDS is monitoring, the captured data are checked against the normal profile and a

lower limit that is set for each group of protocols and users. An alert sets off when an

abnormal packet is detected and the computed probability value is above the lower

limit. Threshold can be defined for several profiles, protocols and users. Benefits of

using statistical anomaly detection include: detection of unknown attacks, prevention

of DoS attacks and buffer overflows. However the main drawback of this anomaly

detection system is defining normal traffic while creating a baseline as normal traffic

should be unaffected of any malicious activity over the network e.g. reconnaissance

attacks. Also statistical anomaly systems are prone to false positives as well as longer

time is spend in detection [44].

3.2 Advance Persistent Threats vs Advance Volatile Threats

An advanced persistent threat (APT) is developed to gain access to a network,

acquire information and stealthily monitor the targeted system for a long period of

time while an advanced volatile threat (AVT) uses a stealthier method vector when

comparing to an APT, as it is an attack that points on memory only, meaning that no

trails of the attack are available once the computer shut down. Even though advanced

volatile threat is not a new defined threat as its existence as a malware for long time

was widely known, it poses an extra caution for network systems. Mainly it is based

on a drive-by download method and points RAM memory only making it a real time

attack. AVTs are acting exactly the opposite way that an APT attack acts but there

limitation is its existence which is no more than one day. A drive-by download

technique is a loath download of malicious code unlikely without the need of the user

as most cyber-attacks, that takes advantage of the targeted system applications, O/S or

even web browser that contains security flaws.

3.2.1 Fundamental components of an APT

In order to decipher the full concept of an advanced persistent threat it is essential to

dissever the term APT into its fundamental components reinforcing a definite number

of clarifications around APTs [13].

 37

Advanced: what qualifies a threat advanced is more their approach rather than the

malcode that is consumed while in an APT burst. Additional a sufficient amount of

these malwares overlap or exist as a part of a stealthy acted malware that is in full

transmission.

Some of the most multifaceted malwares are described in the Figure 14 APT

classification [13] below including malformed binary based APT’s, variants, tools,

utilities, frameworks and associated malware technologies.

Figure 14 APT classification [13]

In the world of APTs, the above mentioned bursts constitute the most versatile,

outstanding and vital threats forming the term “advanced” deriving more from the

outline and execution of campaign including the ability of the intruder to access the

resources rather than the intelligence level of the code to be executed. Additional

activities such as the inheritance of the intruder’s observation to its victim, the ethical

social engineering techniques which are intended to divert and elude local defense

systems, along with the consistent and stealthy approaches they utilize contribute to

 38

the term of an advanced intimidation. An APT has the ability to disable the host

machines from being tracked throughout the network with remote exploits and

moreover to acquire credentials of the infected system effortlessly as mostly it cannot

be identified with ease since it exists in stealthy mode (monitor and wait).

Persistent: Persistency of an APT is the reason for causing most damage as most

organizations will prevent and defend such attacks for a limited period of time, or

until they feel that the threat has been eliminated, but that’s the most critical time for

an intruder to act since the attacker will take advantage of the identified

vulnerabilities of the system in both protocols and applications, turning the game to be

both frustrating and exciting [9]. The destruction of solitary intruder activities is

almost impossible to terminate the campaign, as a series of concurrently malformed

activities will take place in order to accomplish their objective.

Threat: Threat can be disastrous either for short-term profitability, or aims to

destructive completely an organization or influencing its long-term success.

Traditional threats which are more foreseeable on their target are typically an essence

of gradation in contrast with APT threats that are stealthy and aiming on critical data

and information, rather than unambiguous differences. Sometimes it is complicated to

discern how advanced the adversary can be, even though they use exploits, rootkits,

bots, Trojans or complementary malware to share or disseminate their emission.

Since the term “advanced” does not rely upon intelligent technical skills, the main

characteristics of an APT hacker focuses on: appropriate preparation, persistency in

planning and exploiting, social omniscience, effectiveness, elegance, out-of-the-box

thinking, utilization of exploitless exploits, extensively gathering of information and

distractions [59].

Figure 15 APT-attack [4]

 39

3.2.2 Behind the scenes of an Advance Persistent Threat

The State Sponsored APT (SSAPT): constitutes several authoritative global military

and intelligence organizations including air, space, sea, land and primarily

cyberspace. Most intelligent agencies launch an asymmetric digital warfare to test

their strength of digital defenses against advanced persistent threats [13, 9].

The term “state” has many differences in international relations theory, from the terms

country, nation and nation-state as these terms are used interchangeably. Additionally

the term “nation-state” even though it sounds elegant it is different from term

“country” in that many nation-states do not act on behalf of their people to protect

their interests. The term “country” constitutes the people of the country while nation-

state is the organization controlling that country e.g. Taiwan and Hong Kong [50, 51]

are currently their own nation-state but controlled under different country [13, 24].

Nation-state actors are tracked utilizing well known indicators (normally kept private

within relevant security firms or organizations), of compromise such as domain names

(DGA) [8] and IP addresses that normally used in spy-phishing URL’s, post

compromise for command-and-control (C2 or C&C), malware sample hashes or

actor-specific detection rules such as YARA, Snort or Netwitness. Google is involved

in many aspects of security research and threat intelligence collections in that many of

these indicators can be accessible when appropriate. The majority of these indicators

have the ability to detect both untargeted and targeted compromises that include a vast

number of targets while just a few of them are able to detect well-crafted spear

phishing by a nation-state actor [13, 9, 24].

The Criminal APT (CAPT): Contradicting to non-state actors, techno-criminals are

aiming to monetary attacks by utilizing several variants and autonomous techniques

such as unlawful hacker-net, illicit Bitcoin networks, deep Dark-Nets, and TOR

accumulating data by infecting targets. Nations may employ such agents in particular

when needed their actors to be stealthy [13, 3]:

o Individuals: Script Kiddies, Malware Authors , Scammers, Blackhats,

Hacktivists, Patriotic Hackers

o Corporations: Northrop Grumman, Lockheed Martin, TASC, Raytheon

o Cyber Terrorists

o Autonomous actors: exploratory systems, attack systems, defensive systems

 40

3.2.3 Advance Volatile Threat (AVT)

In contradiction to an APT, advanced volatile threats are stealthier as they are

designed that way to keep low profile, to be slow and persist in the network for very

long time despite their limitations. An AVT also known as a fileless malware is one of

the techniques that a malware uses in order to avoid analysis protecting that way the

intruder’s identity. An easy exploitation tool that is included in the Metasploit

Framework, allows developers to design their custom dll files that can be injected into

a running process. Therefore no files are injected into the hard drive, as this technique

aims only to process memory making it even more difficult to be detected [37, 13, 4].

Additionally existing detecting strategies that incorporate signature detection, pattern-

analysis, and time stamping and other techniques are incapable of identifying such

malware. However threat hunters utilize several anomaly based methods including

statistical detection, density-based anomaly detection, clustering-based anomaly

detection, machine-based anomaly and behavior anomaly detection techniques in

order to identify and eliminate this kind of malware attacks [26]. However this is not a

new malware, in fact it is an existing old malware with new term.

Advanced volatile threat bursts predicate expertise in coding or evade, and hitherto

AVT has been remarkably intermittent. As Figure 16 Fileless malware [21] below

describes once the dll file is executed, disguise themselves in the pre-allocated RAM

area, dissemble from anti-malware detection software and system administrators, and

change to an actively socket from which the additional activities can be launched.

Nowadays fileless techniques are a major component of every cybercrime and nation-

state group’s arsenal as it poses one of the most hazardous threats in every industry

[39].

 41

Figure 16 Fileless malware [21]

3.2.3.1 Fileless Techniques

The main fileless techniques that are used by many malware variations are divided

into three categories [37]:

• Windows registry manipulation: the fileless code is written and deployed

directly from the registry by a normal Windows process, that way several

advantages are achieved.

• Memory code injection: the malware becomes an inherent part of the process

memory, while several processes are executed by the system, that way it will

transform its existence in many ways without being noticed by the system.

Payload: includes paired tools (Netsh and PsExec), memory only tools (Mirai and
DDoS) and non-PE file payloads (PowerShell scripts).

3.2.3.2 Examples of Fileless command lines
Ex.1:

Malware name: Emotet [53]

Executing process(es): “Cmd.exe”

Fully\Partially deobfuscated command-lines: “set-item ('variable:skeail') ([type](

'environment')) ; (.('ls') ('contextexecutionvariable')

 42

).value.invokecommand.('invokescript').invoke((

${skeail}::('getenvironmentvariable').invoke('diy',('process'))))”

Regular Expression for detection:
“^(?=.*\bRuntIME\.InteroPsERvICEs\.marshAl\b)(?=.*\bGeTMEmbERS()\b)(?=.*\b

SeCureSTrINg\b)(?=.*\bTOStrIng\b)(?=.*\bjoIn\b).*$”
 Ex.2:

Malware name: Kovter [54]

Executing process(es): “Mshta.exe”

Malicious command-lines:

“javascript:d7hcQ4a="vn";n0a=new%20ActiveXObject("WScript.Shell");Rtf7j="HI

Pc";X18ycI=n0a.RegRead("HKCU\\software\\tN32795\\74gjfzcsfI");jM5IV6m="QJ";

eval(X18ycI);XIaL0uze="lYuLz1vG"”

Regular Expression for detection:
“^(?=.*\bjavascript:\b)(?=.*\bWScript\.Shell\b)(?=.*\bRegRead\b)(?=.*
\beval\b).*$”
Ex.3:

Malware name: Phase Bot [34]

Executing process(es): “Rundll32.exe”
Malicious command lines: “javascript:”..mshtml,RunHTMLApplication

“;eval((new%20ActiveXObject(“WScript.Shell”)).RegRead(“HKCUSoftwareMicroso

ftActive%20SetupInstalled%20Components{72507C54-3577-4830-815B-

310007F6135A}JavaScript”));close();”

Regular Expression for detection:
“^(?=.*\bjavascript\b)(?=.*\bRunHTMLApplication\b)(?=.*\bWScript\.Shell\b)(?=.*\
bRegRead\b)(?=.*\bHKCUSoftwareMicrosoftActive\b).*$”

3.3 The Zeek platform

Zeek is often described as an intrusion detection system which is neither wrong nor an

accurate description. Alternatively it can be described as a development platform for

network monitoring applications. It is equipped with a substantial out-of-the-box

functionality for decoding and logging network traffic and provides an event-driven

development model that allows to identify certain types of transactions as well as a

 43

highly stateful Domain Specific Language (DSL) for developing custom scripts and

deploy them when needed. Zeek’s scripting language that is also called “Zeek” offers

several features that are extraordinarily beneficial for protocol analysis. Zeek differs

from a signature-based IDS system like Snort or Suricata even though it can be used

as a complementary approach. It is often the best option regarding complex tasks, like

the ones that require high-level protocol knowledge and understanding, multiple

cross-network flows or using custom algorithm to identify a specific malicious

activity in the traffic. One of its main benefits is that it inherently is aware of all of the

common and uncommon network protocols, even if they are exposed on non-standard

ports, by utilizing one its features called Dynamic Protocol Detection (DPD). Some of

the supported application and tunneling protocols are: DHCP, DNS, FTP, SMTP,

SOCKS, SSH, SSL, GTPv1 and others [48, 20].

Figure 17 Zeek architecture [7]

Zeek has been chosen for its benefits in analyzing in depth, because it is an open-

source popular tool and it is widely used by security experts. As Figure 17 Zeek

architecture [7] above describes Zeek consists of 3 main parts [7]:

• Packet processing layer:

o Required knowledge of higher layers

o Can be both hardware and software

o Passes data to upper layers depending the configuration (policy)

 44

o In most instances current layer represent an external device or software

stack

• Event engine (Zeek Core):

o Dynamic Protocol Detection (DPD)

o Generates “Events” to be processed

• Policy script interpreter:

o Acts on Events

o Zeek stateful Domain Specific Language

o Pre-build frameworks and protocol analyzers

o Is included in basic policies that provide logging

Also Zeek is capable of supporting larger networks as Figure 18 Zeek Clustering [7]

below describes. Packet processing layer allocates the data in order for the load to be

distributed to worker nodes. This way smaller stream of data are consumed,

eliminating high load. The several tools and scripts that come along with Zeek

provide the framework to deal with multiple Zeek processes, including examination of

packets and correlation activities, while acting as single entity [15].

Figure 18 Zeek Clustering [7]

 45

Figure 19 Zeek SSL Protocol analyzer [60]

Network traffic that uses an application protocol is logged automatically by Zeek,

treating the actions taken by the protocol as a series of events, while several

mechanisms for creating custom scripts are available. Security expert also have the

ability to use multiple custom scripts for the same event while the same protocol is

inspected for various types of behavior [48].

3.3.1 Zeek Administration

ZeekControl is a handy interactive shell as it is described in Figure 20 ZeekControl shell

that is used to configure and manage the entire Zeek framework. ZeekControl helps in

achieving several tasks including: Start an instance of Zeek and check whether is

executing, activate nodes and interfaces, packet statistics, list all Zeek active

processes, identify type of current Zeek instance, stop Zeek and exit ZeekControl

[18].

 46

Figure 20 ZeekControl shell

Moreover from Zeekctl.log email option can be specified as it can be seen from Figure
21 ZeekControl configuration file.

Figure 21 ZeekControl configuration file

3.3.2 Log Files

Logs are accessible via path /nsm/Zeek/current/ in a human readable format (ASCII)

and captured data are organized in columns. Several log files are included in the

directory some of them are:

• http.log : contains results of Zeek HTTP protocol analysis

• Conn.log: contains data for every connection identified through the wire. This

log provides a complete memo of the network’s activity.

• Notice.log: contains specific activities that identified to be possible interesting.

• Loaded_scripts.log: contains all the Zeek scripts loaded during startup.

 47

Other logs are also created during run time, including logs on protocol and services
specific:

• Conn-summary.log: including post processing connection summaries

• Communications.log: including data between remote and central instances

• Known_hosts.log: including hosts successful TCP handshakes.

• Reporter.log: containing warnings and errors

• Dns.log: containing DNS queries

• Software.log: containing known and identified software detected from

protocol analyzers.

• Weird.log: containing odd protocol behavior

Figure 22 Loaded scripts log

A full list of Zeek logs can be found in Appendix A.

3.3.3 Zeek Scripting Language

Zeek scripting language is an asset of Zeek platform as its functionality can be

customized depending the organization needs. It is an extensive scripting language

that is both flexible and powerful while notice policies issue notifications upon an

event that need specific actions to be taken such as alerting to the SIEM framework.

Zeek scripting language supports the following data types:

Name Description
bool Boolean
count, int, double Numeric types

 48

time, interval Time types
string String
pattern Regular expression
port, addr, subnet Network types
enum Enumeration (user-defined type)
table, set, vector, record Container types
function, event, hook Executable types
file File type (only for writing)
opaque Opaque type (for some built-in functions)
any Any type (for functions or containers)

Table 2 Data types

Some worth mentioning operators include the following:

Name Syntax Notes

Exact matching p == s
Evaluates to a boolean,
indicating if the entire string
exactly matches the pattern.

Embedded matching p in s
Evaluates to a boolean,
indicating if pattern is found
somewhere in the string.

Conjunction p1 & p2
Evaluates to a pattern that
represents matching p1
followed by p2.

Disjunction p1 | p2 Evaluates to a pattern that
represents matching p1 or p2.

Table 3 Pattern operators

The ‘as’ operator performs type casting, while the ‘is’ operator checks whether a type

cast is supported or not. For both operators, the first operand identifies the value and

the second operand is the name of a Zeek script type.

Name Syntax Notes

Type cast v as t

Cast value “v” into type “t”.
Evaluates to the value
casted to the specified type.
If this is not a supported
cast, then a runtime error is
triggered.

Check if a cast is supported v is t
Evaluates to boolean. If
true, then “v as t” would
succeed.

Table 4 Type casting operator

As an example Figure 23 Type casting example below, the function tries to cast a value
to a string:

 49

Figure 23 Type casting example

3.3.3.1 Monitoring traffic use cases

Zeek’s ability is to detect the any protocol from the network traffic either live traffic

or captured events that will be used for analysis and auditing purposes [17].

• Proxy server: is configured that way to request services on behalf of third

systems, such as a Web server. Proxies were designed with the aim to manage

a network and provide better encapsulation. Proxies are declared as threats

when lack of proper configuration, as they can ease compromised by intruders

in order to conduct malicious activities.

Figure 24 Proxy GET request and reply

Then a Zeek in script language can be composed to handle such requests like

the example in Figure 25 http_proxy.Zeek script. The script checks for a “200

OK” and other replies as well since not only “200 OK” is a success status

code. Lines 1 and 3 are simply used to declare that proxy is part of the local

network. A common entry in Zeek scripts is the “redef” operator, which

allows to add a value on an already defined variable. Line 2 allows to generate

an alert when an open proxy has been detected while a new notification has

been defined (lines 10-12) to alert all tagged communications.

 50

Figure 25 http_proxy.Zeek script

Executing http_proxy.Zeek will produce a notice.log as it can be seen in

Figure 26 http proxy output while an e-mail can also be sent if configured.

Figure 26 http proxy output

• File inspection: Zeek is also able to monitor files that are transmitted through

the network, as most of these files turn to be malicious, normally image files,

but other than that has the ability to monitor also executable files, which are

really dangerous for the system.

 51

Figure 27 File extraction

In lines 1-7 the created table serves two purposes, firstly defines the mime

types to extract and secondly defines the file suffix of the extracted files. In

order to keep this script general and monitor files other than HTTP protocol

behavior, the first conditional (fa_file) in the event handler can be removed.

Figure 28 File inspection execution

3.3.3.2 Detecting attacks and notification

Zeek can be configured to act like a normal IDS in order to detect attacks with well-

known patterns, as well as unknown patterns due to its programming capabilities.

Additionally custom scripts can me designed that meet organization needs. As it is

described in Figure 29 Detect FTP Bruteforcing below, a host bruteforcing FTP is

indicated by monitoring several rejected username of passwords. Following there is a

threshold definition for the number of unsuccessful attempts, a monitoring interval

and a new notice type.

 52

Figure 29 Detect FTP Bruteforcing

The “ftp_reply” event is then used to check the error codes from the 500 event series

from the FTP (Permanent Negative Completion reply) both for “USER” and “PASS”

that represent rejected usernames and password. In order for this to be achieved the

following function “FTP::parse_ftp_reply_code” is used, breaking down the reply

code, while checking if the first digit has the value “5”, where if it true the summary

statistics framework is used to keep the number of failed attempts.

Figure 30 FTP bruteforcing reply event

As it can be seen in Figure 31 SumStats Framework below, the statistics framework

raises a notice of the attack when the number of unsuccessful attempts exceeds the

previously specified threshold.

 53

Figure 31 SumStats Framework

 54

4 Deploying Network Security Policy into an IDS
Nowadays networks and communications became even more complex, while many

corporations concern about their reputation against sophisticated attacks. Dissatisfied

employees, unethical corporations, terrorists or even nations utilize the internet as a

portal in order to acquire sensitive data and to compel both economic and political

upheavals. We are constantly intimidated with cyber events news: cybercrime is

grown, update your antivirus to avoid infections, new 0-day attack against

smartphones and social media compromisations. Whether the motivation of

cybercriminals are money or intellectual property, cyber threats have become more

sophisticated either by stealthily monitoring the target system or pointing to RAM

memory only. So there is a major need in making security today to be good. There are

several solution provided for this cause, one of them is an IDS, and the other one is a

combination of a network security policy with an IDS that is designed in Zeek in

order to detect threats and intrusions based on an anomaly detection mechanism.

This system will be deployed under a university network environment, monitoring

live traffic and identify any possible anomalies.

We are aiming to analyze these anomalies and develop patterns that will lead us to

design efficient and effective Zeek modules for a variety network traffic protocols and

applications. We are interesting in the following protocols and applications as part of

IHU university network security policy:

• Basic authentication and authentication through VPN connections
• Detection of Exploitkit and C&C behavior
• Malware detection
• Extract and Hash Files
• ICMP Tunnel Attack
• Detection of Large Files transfer through the cable
• Logging of ARP Requests/Replies
• HTTP User Agent detection
• Track of SSH sessions
• Tunnel Attack
• UDP Scans and active response
• Detection of Unknown services on Known Ports

IHU university network security policy will be translates to Zeek scripting language

in order to detect anomalies through the network.

 55

5 Security policy implementation and APT identification

5.1 Hierarchy of Policy scripts in Zeek platform

The hierarchy of produced scripts by default is under the following two paths

“/usr/local/Zeek/policy” or “/usr/local/Zeek/site”. The policy scripts are implemented

using Zeek Scripting Language, a powerfull DSL.

Several Wireshark files have been produced in order to cover as much as possible the

IHU Security Policy. These captures files where created with Wireshark under certain

traffic circumstances. In order to test the policy scenarios with captured files the

following command syntax followed:

“Zeek –r tracefile scriptfile.Zeek”

In cases where these implemented scripts will be used for real situation, under live

network traffic the following syntax is used:

“Zeek –i scriptfile.Zeek”

5.1.1 Basic authentication and authentication through VPN connections

A simple approach on identifying basic Login/Logout authentication of users

connected to the network, as well as authentication of users that are connected

through VPN (Radius) connections. All authentication activities are logged into files,

and for the one we are interested a notice is raised.

 56

Figure 32 Basic authentication sample code

For first time logged in users the system will save its IP address and username, but for

existing users it will check whether the host address is on the list with authenticated

IP addresses. As Figure 33 below describes, we can see the users logged in or out

defined by their names along with action (Login, Logout) and the service used.

Figure 33 Basic authentication log

 57

Figure 34 Log VPN authentication activity

Additional fields have been added to the Radius log file for identifying VLAN

activity. As it is described above in Figure 34 the script controls this activity by

identifying whether the connected user is legit or not, if its IP address and country

code are known, or whether remote country code exists in the list of watched

countries. The script also includes a functionality of identifying the country code

based of the detected IP. For simplicity reasons this is achieved through a set of

predefined strings and not through the GeoIP mechanism, which demands connection

to a database but also other useful information about the host are provided (city,

latitude, longitude).

Figure 35 VPN authentication activity output

5.1.2 Detection of Exploit kit and C&C behavior

The following Zeek script is looking for exploit kits and C&C behavior that is hidden

in files. More precisely files like Java Applet, MS Word documents, XML and PDF

files are more vulnerable to be infected through their functionality e.g. Microsoft

Word documents that use macros in order to activate extended functionalities of the

 58

document. The detection is achieved through tracking the source IP by using patterns

that indicate dynamic content.

Figure 36 Sniffing files with a predefined pattern

In this script, we are using content pattern mechanism in order to identify extended

functionality of a detected document, whether that is a pdf, a word document or an

executable as it is shown in Figure 38 below, that an xml file identified using the

highlighted pattern. Such files belong to a particular class of file types identified by

Multipurpose Internet Mail Extensions (MIME). Several scans of the identified files

take place such as: whether found file belongs to a set of predefined executable file

types or it is part of a set of exploit file types as it is described above in Figure 36.

Figure 37 Identified 2 infected XML files

 59

Figure 38 Matched XML file

For each of these files identified a notice is raised up clarifying its file activity, originating
and destination host/port and the protocol used.

Figure 39 Raised Notices upon detection of malicious downloads

5.1.3 Malware detection

The following script detects malware that their hash keys include sha256 and md5

values against files in Cymru's Team Malware Hash Registry.

We use a list of file types to be matched against the Malware Hash Registry as shown

in Figure 40 below.

 60

Figure 40 File types to be checked

The list can be appended by adding alternative file types which considered to be

important for matching against the Malware Hash Registry as it is re-definable.

Figure 41 Malware detected

This script uses a similar technique with the method used in Chap. 5.1.4 regarding the

mime type’s declaration but in a different pattern, as the above mentioned mimes are

checked against a Malware Hash Registry database (Cymru’s).

The heart of this malware detection script is located under event handler “file-hash”

as it is described in Figure 42 below. By using this event, scripts can retrieve

associated information of a file, that previously file analysis framework provided by

Zeek has generated a hash.

Figure 42 File hash event handler

 61

This event contains a mechanism that identifies the correct type of hash, in our case

hashes SHA256 and MD5 along with a check for a mime type previously defined in

“match_file_types” constant. This comparison is achieved against the expression

“f$info$mime_type” by using the “$” deference operator in order to check the match

of the value “mime_type” that is stored inside “f$info”. Thereafter another check is

included in order to observe if this hash value is not included in the “know_hashes”

values. In case this expression evaluates to be true, the new hash value it is added to

the list of “known_hashes” for feature identification and a notice is fired stating that a

malware hash detected. On the other hand if the above expression is false then another

notice is produced stating that this hash has been seen before.

Figure 43 Malware extended information

 62

Figure 44 Large application/x-dosexec mime type detected

5.1.4 Extract and Hash Files

The following script is designed to detect and hash several files identified through

network. Extracted files are marked as “.EXTRACTED”.

The list of files is re-definable and any type of file can be added whether need to

extracted and hashed depending the requirements of its IDS system, as it is shown in

Figure 45 below.

 63

Figure 45 Files types to be extracted and hashed

Several files are often transmitted over packet transactions throughout a client and a

server. In our script we use a detection method of identifying malformed files that are

transmitted through an HTTP communication session. Nevertheless the same script

can be used for other protocols as well. These files sometimes are prone to be

dangerous for a system and especially executable files or files with active content

such as java scripts, word document or excel sheets with macros enabled, pdf files,

images with hidden content etc. As it is described above in Figure 45, this table of

mime type’s benefits two functions, firstly to declare the mime types to be extracted

and secondly the suffix of these extracted files.

Figure 46 Extracted and hashed files types

 64

Figure 47 More Extracted and hashed file types

Figure 48 Extracted file format type

As it can be seen from Figure 48 above, the script detected an "application/x-

dosexec" mime_type that was first defined in the list of files types, hashed the file

with values md5, sha1 and sha256 values and stored the file in the parent directory

with “name.EXTRACTED” format.

 65

5.1.5 ICMP Tunnel attack

Another way of tunnel attack is presented in this script. Upon detection of ICMP

Tunnel session a notice will be raised.

Figure 49 ICMP Tunnel observer will raise a notice above a threshold

This type of tunneling is used regularly in order to bypass firewall rules and it’s in-

dependable of design that makes it to be classified as an encrypted communication

channel between two hosts. In order for us to successfully observe ICMP tunneling,

we use the summary statistics framework provided by Zeek platform. To be more

precise in our results we use the “HyperLogLog algorithm” that is able to calculate

the number of unique values in a list.

Figure 50 ICMP Tunnel detected

 66

Figure 51 An alarm notice is raised

5.1.6 Detection of large file transfer through the cable

Large file transport is always an issue, especially for corporation and universities, as it

consumes network bandwidth. This script is designed to detect large transfer of files

throughout a network and drop the originating host for 20 seconds.

Figure 52 Notice will be raised when a predefined will be crossed

On detection of large file through the wire a notice is fired providing several useful

information to the security officer as Figure 55 below presents. Again a large file

intends to be any file that is over a predefined amount of Mbyte’s resulting the

connection of the initiated host to be dropped for a certain period of time that is in our

case for 20 secs.

 67

Figure 53 Source address is dropped

Figure 54 A notice is raised for Large Transfer

Figure 55 Large transfer of file detected

 68

Figure 56 Originating host 192.168.1.104 is dropped for 20 seconds

5.1.7 Logging ARP requests and replies

This is script is designed that way to keep a log of all the ARP Protocol requests and

replies that identified to be appear in network traffic.

Figure 57 ARP protocol requests and replies log

The construction of an ARP protocol request contains fields such as timestamp, the

method of the request either “request” or “reply”, MAC address, originating and

target hardware addresses along with their port numbers. All ARP requests and replies

are stored in a log file and presented in a more readable way as Figure 58 below

shows.

 69

Figure 58 Output log of the ARP requests and replies

5.1.8 HTTP user agent detection

Among several ways that have been used in the past to identify either malware of

unlicensed software, this script observes user agents throughout a network traffic by

using Zeek summary statistics framework.

Figure 59 Connection unsuccessful attempts

 70

Figure 60 HTTP agent detected

An HTTP agent has been detected clarifying the observation of unsuccessful

connection attempts. The raised notice contains the source IP address of the

discovered agent together with the number of attempted connections as it is described

above in Figure 60.

5.1.9 Detect SSH sessions

A simple approach of identifying both successful and failed SSH sessions. The script

also prints out the client and server version strings along with the number of failed

sessions.

 71

Figure 61 Detection of SSH sessions

Each time that a successful SSH session or a non-local host connects through SSH is

identified a notice is raised, determining the originating host, the SSH versions and

the number of attempts either successful or failed against a predefined set of allowed

IP addresses as it is described in Figure 62.

 72

Figure 62 SSH authentication printout

 73

Figure 63 An extensive option added to the script

5.1.10 Tunnel attack

Yet another script is designed aiming to detect DNS tunneling by checking the

abnormal behavior of packets and query lengths. As an extended feature of this

detection mechanism is the ability of identification of C&C DNS Tunneling software.

Since a Tunnel attack is identified the connection initiator IP address is dropped for a

small period of time.

 74

Figure 64 DNS tunneling observer

Summary statistics framework is used in order to observe tunneling sessions. This

scripts supports both an observation of packet abnormality and query lengths as

Figure 64 and Figure 65 show. Zeek gives us the opportunity to predefine several

characteristics concerning the queries in order to acquire more accurate results such as

the ability to identify which DNS queries we want to exclude, the size of the DNS

query that is considered interesting, the identification of query types that we need to

ignore (Netbios service, DNSSEC delegation signer, etc.) and others.

 75

Figure 65 C&C DNS Tunneling software observer

Figure 66 DNS tunnel

Identification of a tunneling session contains among other, critical information about

the attacking host (originating host address and port), the destination host, the

protocol used along with the actual contents of the query pattern e.g. xe3.pirate.sea.

Such a connection is observed the connection initiator IP address is dropped for a

certain period of time.

 76

Figure 67 Query includes .pirate.sea pattern detected

Figure 68 Identified host is dropped for a small period of time

5.1.11 UDP scans and active response

This script is designed in order to detect UDP address scans, UDP port scans as well

as random UDP scans. Once a UDP scan is detected the host will be automatically be

blocked.

 77

Figure 69 Types of notices to be raised once a UDP scan is identified

As it is clearly stated in Figure 69, certain types of scans are predefined for which a

notice will be generated when an attack is attempted. Any of these notices will be

fired, the attacking host will be blocked. More precisely summary statistics

framework is been used for such situations providing summarization of large streams

of data into reduced measurements.

Figure 70 UDP port failure observer

 78

Figure 71 Block of the identified host once a UDP scan is detected

The notices produced by the script, contain critical information of source and

destination IP address along with a mechanism of counting the attacking attempts to a

destination host against a given threshold as it is described in Figure 74 below.

Additionally a UDP call back functionality is supported identifying the current state

of a UDP connection as it is shown in Figure 72 below.

 79

Figure 72 Support of callback functionality based on UDP behavior

Figure 73 Port scan detected

 80

Figure 74 Originating host scanned 15 UDP ports of 192.168.1.25

5.1.12 Detection of unknown services on known ports

An approach of detecting anomalous traffic over a network by identifying hosts that

try to connect on a non-default port to FTP or SSH applications.

Figure 75 Sets of default ports

As it is described above in Figure 75 several sets of ports (TCP/UDP, FTP, SSH) are

predefined in order to obtain a more precise detection of unknown services. Other

ports can also be predefined, but that’s dependent the requirements of the IDS to be

developed.

 81

Figure 76 Detection mechanism

Whenever an unknown service is identified, certain events will be triggered from the

script and the security officer will be notified with a Notice that contains the type of

the unknown service in regards to FTP or SSH server, the host originated the issue as

well as the destination host, originating port/destination port, the protocol that this

unknown service has used as it is described in Figure 78 and Figure 79 below.

Figure 77 Unknown services spotted through network traffic

 82

Figure 78 Host identified to connect on a non-default SSH port

Figure 79 Host captured while trying to connect on a non-default FTP port

 83

6 Conclusions
Intrusion detection systems tend to be a main factor of internet security in the last few

years as their functionality intention is not to replace existing security measurements

but to advance them. Although intrusion detection systems play a vital role in cyber

security, also other precautions have to be taken into account, such as starting from the

bottom of basic computer and network security issues (e.g. credit cards exposure over

the network, exposure of personal sensitive information) to more complex tasks such

as correct firewall settings, licensed software, regular backups or even more complex

passwords.

We should keep in mind that intrusion detection systems are not autonomous systems,

and are not suitable for all kinds of organizations either governmental or commercially

used, but are tools that use domain specific languages like Zeek that must be interpret

it by security experts in order to acquire the knowledge of an attack and perform the

appropriate measures in order to prevent system compromisation in the future.

Cybercrime is no longer the entitlement of lone wolves or script kiddies rather than is

a portal for unethical corporations, cyberterrorists or even disgruntled employees to

gather sensitive data information in order to cause economic or political disruption.

Serving this purpose Zeek IDS tends to be the most popular, efficient and effective

anomaly-detection system which can be used out there.

This thesis is used to describe the functionality of implemented Zeek scripts that are

based on rules of a university network security policy. We have presented several

network intrusion scenarios in order to cover the most out of the IHU network security

policy such as basic authentication, authentication rule while connected to a VPN

server, detection of exploit kits and C&C application behavior, malware detection,

extraction and hashing of files over a network traffic, detection of large files that are

transferred through a network, active response on UDP scan, detection of unknown

services while trying to connect on known ports, tunnel attacks, tracking of SSH

sessions as well as identification and detection of HTTP user agents that normally hide

inside regular files like Microsoft word documents (hidden macros).

 84

6.1 Future implementations

Present thesis work consists only one module among a variety of modules that already

exist. Anomaly-based detection method could be implemented along with signature-

based systems for more accurate results. Since Zeek scripting language is tailored based

on the security system needs also further frameworks could be designed supporting the

execution of commands to its identified host that poses abnormal behavior.

Furthermore an organization security policy could be “translated” into Zeek language,

where more advanced policies may be incorporated with other security systems.

Moreover it could be handy a security policy that identifies attached devices to a host

and can be detected over the network based on the protocols that are transmitted.

 85

7 Appendix A: Zeek Log Files
Source: https://docs.zeek.org/en/stable/script-reference/log-files.html

Table 5 Network Protocols

Log File Description
conn.log TCP/UDP/ICMP connections
dce_rpc.log Distributed Computing Environment/RPC
dhcp.log DHCP leases
dnp3.log DNP3 requests and replies
dns.log DNS activity
ftp.log FTP activity
http.log HTTP requests and replies
irc.log IRC commands and responses
kerberos.log Kerberos
modbus.log Modbus commands and responses
modbus_register_change.log Tracks changes to Modbus holding registers
mysql.log MySQL
ntlm.log NT LAN Manager (NTLM)
radius.log RADIUS authentication attempts
rdp.log RDP
rfb.log Remote Framebuffer (RFB)
sip.log SIP
smb_cmd.log SMB commands
smb_files.log SMB files
smb_mapping.log SMB trees
smtp.log SMTP transactions
snmp.log SNMP messages
socks.log SOCKS proxy requests
ssh.log SSH connections
ssl.log SSL/TLS handshake info
syslog.log Syslog messages
tunnel.log Tunneling protocol events

Table 6 Files

Log File Description
files.log File analysis results

ocsp.log Online Certificate Status Protocol (OCSP).
Only created if policy script is loaded.

pe.log Portable Executable (PE)
x509.log X.509 certificate info

Table 7 Detection

Log File Description
intel.log Intelligence data matches
notice.log Zeek notices
notice_alarm.log The alarm stream

https://docs.zeek.org/en/stable/script-reference/log-files.html

 86

signatures.log Signature matches
traceroute.log Traceroute detection

Table 8 Network Observations

Log File Description
known_certs.log SSL certificates
known_hosts.log Hosts that have completed TCP handshakes
known_modbus.log Modbus masters and slaves
known_services.log Services running on hosts
software.log Software being used on the network

Table 9 Zeek Diagnostics

Log File Description

broker.log Peering status events between Zeek or
Broker-enabled processes

capture_loss.log Packet loss rate
cluster.log Zeek cluster messages
config.log Configuration option changes
loaded_scripts.log Shows all scripts loaded by Zeek
packet_filter.log List packet filters that were applied

prof.log Profiling statistics (to create this log, load
policy/misc/profiling.Zeek)

reporter.log Internal error/warning/info messages
stats.log Memory/event/packet/lag statistics

stderr.log Captures standard error when Zeek is
started from ZeekControl

stdout.log Captures standard output when Zeek is
started from ZeekControl

Table 10 Miscellaneous

Log File Description

barnyard2.log Alerts received from
Barnyard2

dpd.log Dynamic protocol detection
failures

unified2.log Interprets Snort’s unified
output

weird.log Unexpected network-level
activity

weird_stats.log Statistics about unexpected
activity

8 Appendix B: Zeek Policy Scripts
Table 11 Zeek Script names along with PCAP files used

Script Name & File Pcap File Reference PCAP file info

Basic-Auth_and_VPN-

Auth.zeek

Basic-Auth_and_VPN-Auth.zeek

RADIUS_authentication.vnd.tcpdump.7z

radius_localhost.7z

nb6-hotspot.7z

• RADIUS_authentication.vnd.tcpdump.
pcap
(https://networker.fandom.com/wiki/Fil
e:RADIUS_authentication.pcap)

• radius_localhost.pcapng
(https://wiki.wireshark.org/SampleCapt
ures?action=AttachFile&do=get&target
=radius_localhost.pcapng)

• nb6-hotspot.pcap
(https://wiki.wireshark.org/SampleCapt
ures?action=AttachFile&do=get&target
=nb6-hotspot.pcap)

• Contains Radius packets of access-
request, accept and reject.

• This file contains RADIUS packets
sent from localhost to localhost, using
FreeRADIUS Server and the radtest
utility.

• Contains information about a user that
is connecting to SFRs wireless
community network

CandCkit.zeek

CandCkit.zeek

pdf.7z

exercise_traffic.7z

• pdf.pcap
(https://github.com/hosom/bro-
scripts/blob/master/pdf.pcap)

• exercise_traffic.pcap
(https://github.com/zeek/try-
zeek/blob/master/manager/static/pcaps/
exercise_traffic.pcap)

• Contains PDF file transmission over
the wire.

• Contains normal traffic scenario and
includes malformed files over the
wire.

https://networker.fandom.com/wiki/File:RADIUS_authentication.pcap
https://networker.fandom.com/wiki/File:RADIUS_authentication.pcap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=radius_localhost.pcapng
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=radius_localhost.pcapng
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=radius_localhost.pcapng
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=nb6-hotspot.pcap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=nb6-hotspot.pcap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=nb6-hotspot.pcap
https://github.com/hosom/bro-scripts/blob/master/pdf.pcap
https://github.com/hosom/bro-scripts/blob/master/pdf.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap

 88

Check-for-Malware.zeek

Check-for-Malware.zeek

FileExtraction-faf-exercise.7

• FileExtraction-faf-exercise.pcap
(https://www.bro.org/static/exchange-
2013/faf-exercise.pcap)

• A traffic capture used for integrating
the File Analysis Framework

Extracting_And_Hash_Fi

le_Types.zeek

Extracting_And_Hash_File_Types.zeek

exercise_traffic.7z

exercise_traffic.pcap
(https://github.com/zeek/try-
zeek/blob/master/manager/static/pcaps/exe
rcise_traffic.pcap)

• Contains normal traffic scenario and
includes malformed files over the
wire.

ICMP_Tunnel_Attack.ze

ek

ICMP_Tunnel_Attack.zeek

icmptunnel.7z

icmptunnel.pcap
(https://packettotal.com/app/analysis?id=c3
7c0d3084675ed9b9d63a4e5e50e8da&nam
e=signature_alerts)

• ET TROJAN OpenSSH in ICMP Payload

Large_transfer_detected.

zeek

Large_transfer_detected.zeek

exercise_traffic.7z

exercise_traffic.pcap
(https://github.com/zeek/try-
zeek/blob/master/manager/static/pcaps/exe
rcise_traffic.pcap)

• Contains normal traffic scenario and
includes malformed files over the
wire.

Logging_ARP_Requests

_Replies.zeek exercise_traffic.7z

exercise_traffic.pcap
(https://github.com/zeek/try-
zeek/blob/master/manager/static/pcaps/exe
rcise_traffic.pcap)

• Contains normal traffic scenario and
includes malformed files over the
wire.

https://www.bro.org/static/exchange-2013/faf-exercise.pcap
https://www.bro.org/static/exchange-2013/faf-exercise.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://packettotal.com/app/analysis?id=c37c0d3084675ed9b9d63a4e5e50e8da&name=signature_alerts
https://packettotal.com/app/analysis?id=c37c0d3084675ed9b9d63a4e5e50e8da&name=signature_alerts
https://packettotal.com/app/analysis?id=c37c0d3084675ed9b9d63a4e5e50e8da&name=signature_alerts
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap

 89

Logging_ARP_Requests_Replies.zeek
HTTP-user-agent.zeek

HTTP-user-agent.zeek

nmap-vsn.7z

nmap-vsn.trace
(https://github.com/zeek/zeek/blob/master/t
esting/btest/Traces/nmap-vsn.trace)

• A trace file of a host that runs NMAP

SSH_Track.zeek

SSH_Track.zeek

ssh.7z

ssh.pcap (https://github.com/bro/try-
bro/blob/master/manager/static/pcaps/ssh.p
cap)

• Successful and failed SSH sessions

Tunnel-Attack.zeek

Tunnel-Attack.zeek

dns-tunnel-iodine.7z

dns-tunnel-iodine.pcap
(https://github.com/elastic/examples/raw/m
aster/Security%20Analytics/dns_tunnel_de
tection/dns-tunnel-iodine.pcap)

• DNS Tunneling traffic scenario

UDP-Scan-And-Active-

Response.zeek

UDP-Scan-And-Active-Response.zeek

SCAN_nmap_UDP_SCAN_EvilFingers.7z

SCAN_nmap_UDP_SCAN_EvilFingers.pc
ap (http://www.pcapanalysis.com/pcap-
download/460)

• NMAP UDP Scan Network Traffic
Scenario

Unknown-service-on-

known-port.zeek

Unknown-service-on-known-port.zeek

exercise_traffic.7z

exercise_traffic.pcap
(https://github.com/zeek/try-
zeek/blob/master/manager/static/pcaps/exe
rcise_traffic.pcap)

• Contains normal traffic scenario and
includes malformed files over the
wire.

https://github.com/zeek/zeek/blob/master/testing/btest/Traces/nmap-vsn.trace
https://github.com/zeek/zeek/blob/master/testing/btest/Traces/nmap-vsn.trace
https://github.com/bro/try-bro/blob/master/manager/static/pcaps/ssh.pcap
https://github.com/bro/try-bro/blob/master/manager/static/pcaps/ssh.pcap
https://github.com/bro/try-bro/blob/master/manager/static/pcaps/ssh.pcap
https://github.com/elastic/examples/raw/master/Security%20Analytics/dns_tunnel_detection/dns-tunnel-iodine.pcap
https://github.com/elastic/examples/raw/master/Security%20Analytics/dns_tunnel_detection/dns-tunnel-iodine.pcap
https://github.com/elastic/examples/raw/master/Security%20Analytics/dns_tunnel_detection/dns-tunnel-iodine.pcap
http://www.pcapanalysis.com/pcap-download/460
http://www.pcapanalysis.com/pcap-download/460
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap

9 Appendix C: IHU Network Security Policy

IHU-Network-SecPo
licy--Finaal.docx

 91

10 Bibliography

[1] Abouzakhar, N. and Bakar, A. (n.d.). A Chi-square testing-based intrusion

detection Model. The University of Hertfordshire.

[2] Andress, J. (2010). Data Mining as a Tool for Security. Hakin9 Practical

Protection Hard Core IT Security Magazine, (2), pp.18-22.

[3] Andress, J., Ablon, L. and Winterfeld, S. (2014). Cyber Warfare Techniques,

Tactics and Tools for Security Practitioners. 2nd ed. Boston: Elsevier, Inc.

[4] Ashik, M. and Paganini, P. (2015). CyberCriminals and their APT and AVT

Techniques. [online] Security Affairs. Available at:

https://securityaffairs.co/wordpress/33999/cyber-crime/apt-and-avt-techniques.html

[Accessed 7 Jan. 2019].

[4] Bereziński, P., Jasiul, B. and Szpyrka, M. (2015). An Entropy-Based Network

Anomaly Detection Method. Entropy, 17(4).

[5] Brogi, G. and Tong, V. (2016). TerminAPTor: Highlighting Advanced Persistent

Threats through Information Flow Tracking. 8th IFIP International Conference on

New Technologies, Mobility and Security, Larnaca Cyprus.

[6] Brott, J. (2012). Honey Pots The Sitting Duck On The Network. Hakin9 Practical

Protection Hard Core IT Security Magazine, (1), pp.48-56.

[7] Buraglio, N. (2015). Bro intrusion detection system (IDS): an overview.

[8] Chowdhury, S. (2017). Domain Generation Algorithm – DGA in Malware -

hackersterminal.com. [online] hackersterminal.com. Available at:

https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ [Accessed

8 Mar. 2019].

[9] Cole, E. (2013). Advanced persistent threat. 1st ed. Boston: Syngress.

 92

[10] Creech, G. (2013). Developing a high-accuracy cross platform Host-Based

Intrusion Detection System capable of reliably detecting zero-day attacks. Ph.D. The

University of New South Wales.

[11] Cyber-defense.sans.org. (2005). [online] Available at: https://cyber-

defense.sans.org/resources/papers/gsec/host-vs-network-based-intrusion-detection-

systems-102574 [Accessed 12 Feb. 2019].

[12] Das, K. (2019). Protocol Anomaly Detection for Network-based Intrusion

Detection. SANS Institute Information Security Reading Room.

[13] de Alwis, S. (2015). THE APT (ADVANCED PERSISTENT THREATS) IN A

NUTSHELL. eForensics Magazine, (5).

[14] Diwan, P. and Jain, D. (2014). A Combined Approach for Intrusion Detection

System Based on the Data Mining Techniques. International Journal of

Computational Engineering Research (IJCER), 4(6), pp.21-25.

[15] Docs.zeek.org. (2019). Cluster Architecture — Zeek User Manual v2.6.1.

[online] Available at: https://docs.zeek.org/en/stable/cluster/ [Accessed 6 Feb. 2019].

[16] Docs.zeek.org. (2019). IDS — Zeek User Manual v2.6.1. [online] Available at:

https://docs.zeek.org/en/stable/examples/ids/index.html [Accessed 6 Feb. 2019].

[17] Docs.zeek.org. (2019). Monitoring HTTP Traffic — Zeek User Manual v2.6.1.

[online] Available at: https://docs.zeek.org/en/stable/examples/httpmonitor/index.html

[Accessed 6 Mar. 2019].

[18] Docs.zeek.org. (2019). Quick Start Guide — Zeek User Manual v2.6.1. [online]

Available at: https://docs.zeek.org/en/stable/quickstart/index.html#managing-bro-

with-brocontrol [Accessed 10 Jan. 2019].

[19] Elike, H., Bellekens, X., Hamilton, A., Tachtatzis, C. and Atkinson, R. (2017).

Shallow and Deep Networks Intrusion Detection System: A Taxonomy and Survey.

CoRR abs, 1701.02145.

 93

[20] Fowler, M. and Parsons, R. (2011). Domain-specific languages. 1st ed. Boston,

Mass: Addison-Wesley.

[21] Gavriel, H. and Erbesfeld, B. (2018). New 'Early Bird' Code Injection Technique

Discovered - Cyberbit. [online] Cyberbit. Available at:

https://www.cyberbit.com/blog/endpoint-security/new-early-bird-code-injection-

technique-discovered/ [Accessed 12 Mar. 2019].

[22] Gera, M. (2012). Some notes on honeypots. PenTest Magazine, [online] (Vol. 2

No. 6), pp.6-7. Available at: http://pentestmag.com [Accessed 17 Jan. 2019].

[23] Ghorbani, A., Lu, W. and Tavallaee, M. (2010). Network intrusion detection and

prevention. New York: Springer.

[24] Google warned me that a state organized hacking group targeted me. (2018).

[Blog] Hacker News. Available at: https://news.ycombinator.com/item?id=16722583

[Accessed 4 Feb. 2019].

[25] Hay, A., Bray, R., Cid, D. and Northcutt, S. (2008). OSSEC host-based intrusion

detection guide. 1st ed. Burlington (Massachusetts): Syngress, pp.16-17.

[26] Imam, F. (2019). Detecting Threats. [online] Infosec Resources. Available at:

https://resources.infosecinstitute.com/category/enterprise/threat-hunting/threat-

hunting-process/threat-hunting-techniques/detecting-threats/ [Accessed 2 Jan. 2019].

[27] Ipwithease.com. (2017). Difference between IPS and IDS in Network Security |

IP With Ease | IP With Ease. [online] Available at: https://ipwithease.com/difference-

between-ips-and-ids-in-network-security/ [Accessed 16 Feb. 2019].

[28] JASEK, R., KOLARIK, M. and VYMOLA, T. (2013). APT detection system

using honeypots. In: Proceedings of the 13th International Conference on Applied

Informatics and Communications (AIC'13). CZECH REPUBLIC: WSEAS Press.

[29] Korennou, V. (2016). Workshop’s eBook: Inside IDS Systems with SNORT and

OSSIM. PenTest Magazine, (1).

 94

[30] Koutsandria, G., Muthukumar, V., Parvania, M., Peisert, S., McParland, C. and

Scaglione, A. (n.d.). A Hybrid Network IDS for Protective Digital Relays in the

Power Transmission Grid. University of California, (Lawrence Berkeley National

Laboratory).

[31] Krügel, Christopher & Toth, Thomas & Kirda, Engin. (2001). SPARTA, a

Mobile Agent Based Instrusion Detection System. 187-200.

[32] Lemonnier, E. (2001). Protocol Anomaly Detection in Network-based. Defcom

Sweden, Stockholm.

[33] Luh, R., Schrittwieser, S., Marschalek, S. and Janicke, H. (n.d.). Design of an

Anomaly-based Threat Detection & Explication System. Josef Ressel Center

TARGET, St. Polten University of Applied Sciences.

[34] MalwareTech. (2019). Phase Bot - A Fileless Rootkit (Part 1) - MalwareTech.

[online] Available at: https://www.malwaretech.com/2014/12/phase-bot-fileless-

rootki.html [Accessed 13 Apr. 2019].

[35] Masud, M., Khan, L. and Thuraisingham, B. (2016). Data Mining Tools for

Malware Detection. 1st ed. New York: Auerbach Publications, pp.159-167.

[36] Masud, M., Khan, L., Thuraisingham, B., Wang, X., Liu, P. and Zhu, S. (2008).

Detecting Remote Exploits Using Data Mining. IFIP Int. Conf. Digital Forensics.

[37] Michael Gorelik (2017). Fileless Malware: Attack Trend Exposed. Morphisec

LAB. Morphisec Moving Target Defense.

[38] NEVLUD, P., BURES, M., KAPICAK, L. and ZDRALEK, J. (2013). Anomaly-

based Network Intrusion Detection Methods. INFORMATION AND

COMMUNICATION TECHNOLOGIES AND SERVICES, 11(6).

[39] Osborne, C. (2019). Fileless attacks surge in 2017, security solutions are not

stopping them | ZDNet. [online] ZDNet. Available at:

 95

https://www.zdnet.com/article/fileless-attacks-surge-in-2017-and-security-solutions-

are-not-stopping-them/ [Accessed 16 Feb. 2019].

[40] Pharate, A., Bhat, H., Shilimkar, V. and Mhetre, N. (2015). Classification of

Intrusion Detection System. International Journal of Computer Applications (0975 –

8887), 118(7).

[41] Prasad, Y. and Krishna, D. (2013). Statistical Anomaly Detection Technique for

Real Time Datasets. International Journal of Computer Trends and Technology

(IJCTT), 6(2).

[42] Qayyum, A., Islam, M. and Jamil, M. (2005). Taxonomy of Statistical Based

Anomaly Detection Techniques for Intrusion Detection. In: Proceedings of the IEEE

Symposium on Emerging Technologies, 2005.. IEEE.

[43] R., S. and Pujari, A. (2008). Incorporation of Application Layer Protocol Syntax

into Anomaly Detection. In: Information Systems Security 4th International

Conference, ICISS 2008 Hyderabad, India, December 16-20, 2008 Proceedings.

Berlin: Springer-Verlag Berlin Heidelberg 2008, pp.188-202.

[44] Rao, U. and Nayak, U. (2014). The InfoSec Handbook: An Introduction to

Information Security. 1st ed. Berkeley, CA: Apress.

[45] Repalle, S. and Kolluru, V. (2017). Intrusion Detection System using AI and

Machine Learning Algorithm. International Research Journal of Engineering and

Technology (IRJET), 4(12).

[46] Ross, D. (2012). Honeypot’s – useful within active threat defence. PenTest

Magazine, [online] (Vol. 2 No. 6), pp.16-20. Available at: http://pentestmag.com

[Accessed 17 Jan. 2019].

[47] RT International. (2019). Homeland Security's Napolitano invokes 9/11 to push

for CISPA 2.0. [online] Available at: http://rt.com/usa/napolitano-us-cyber-attack-

761/ [Accessed 22 Mar. 2019].

 96

[48] Sanders, C. and Smith, J. (2014). Applied network security monitoring. 1st ed.

Amsterdam: Syngress, an imprint of Elsevier.

[49] Scarfone, K. and Mell, P. (2007). Guide to Intrusion Detection and Prevention

Systems (IDPS). National Institute of Standards and Technology, 800(94).

[50] Spring, T. (2017). APT3 Linked to Chinese Ministry of State Security. [online]

Threatpost.com. Available at: https://threatpost.com/apt3-linked-to-chinese-ministry-

of-state-security/125750/ [Accessed 4 Feb. 2019].

[51] Spring, T. (2017). Nation States Distancing Themselves from APTs. [online]

Threatpost.com. Available at: https://threatpost.com/nation-states-distancing-

themselves-from-apts/123711/ [Accessed 4 Feb. 2019].

[52] Stallings, W. and Brown, L. (2015). Computer Security Principles and Practice.

3rd ed. Boston: Pearson Education, Inc., pp.272-273.

[53] Thakur, V. (2019). Malware analysis: decoding Emotet, part 1 - Malwarebytes

Labs. [online] Malwarebytes Labs. Available at:

https://blog.malwarebytes.com/threat-analysis/2018/05/malware-analysis-decoding-

emotet-part-1/ [Accessed 13 Apr. 2019].

[54] Threatvector.cylance.com. (2019). Threat Spotlight: Kovter Malware Fileless

Persistence Mechanism. [online] Available at:

https://threatvector.cylance.com/en_us/home/threat-spotlight-kovter-malware-fileless-

persistence-mechanism.html [Accessed 7 Apr. 2019].

[55] Tools.ietf.org. (2019). RFC 793 - Transmission Control Protocol. [online]

Available at: https://tools.ietf.org/html/rfc793 [Accessed 13 Feb. 2019].

[56] Torii, S., Morinaga, M., Yoshioka, T., Terada, T. and Unno, Y. (2014). Multi-

layered Defense against Advanced Persistent Threats (APT). FUJITSU Sci. Tech. J.,

50(1), pp.52-59.

 97

[57] Trost, R. (2010). Practical intrusion analysis : prevention and detection for the

twenty-first century. 1st ed. Boston: Pearson Education, Inc., pp.53-85.

[58] Villeneuve, N. and Bennett, J. (2012). Detecting APT Activity with Network

Traffic Analysis. [online] Trend Micro. Available at:

http://www.trendmicro.it/media/wp/detecting-apt-activity-with-network-traffic-

analysis-whitepaper-en.pdf [Accessed 17 Feb. 2019].

[59] Wrightson, T. (2015). Advanced persistent threat hacking. 1st ed. New York:

McGraw-Hill Education.

[60] Zeek.org. (2019). Using the Bro SSL analyzer. [online] Available at:

https://www.zeek.org/current/exercises/ssl/index.html [Accessed 4 Feb. 2019].

[61] Zwicky, E., Cooper, S. and Chapman, D. (2000). Building Internet firewalls. 2nd

ed. Cambridge: O'reilly, p.Ch. 4.

	1 Introduction
	1.1 Defining an APT and its intentions
	1.2 Intro to Zeek
	1.3 Purpose of this Thesis
	1.4 Research question
	1.5 Thesis outline

	2 Relevant Work
	2.1 Anomaly-based intrusion detection methods
	2.1.1 Data mining/machine learning method
	2.1.2 Advanced statistical anomaly method

	3 Related Theory
	3.1 Intrusion Detection and Prevention Systems
	3.1.1 Types of Intrusion Detection Systems
	3.1.1.1 Host-based intrusion detection systems (HIDS)
	3.1.1.2 Network-based intrusion detection systems (NIDS)

	3.1.2 Detection Methodologies
	3.1.2.1 Anomaly-based detection
	3.1.2.2 Types of Anomaly
	3.1.2.2.1 Protocol Anomaly
	3.1.2.2.2 Stateful Protocol Analysis Detection
	3.1.2.2.3 Statistical Anomaly Detection

	3.2 Advance Persistent Threats vs Advance Volatile Threats
	3.2.1 Fundamental components of an APT
	3.2.2 Behind the scenes of an Advance Persistent Threat
	3.2.3 Advance Volatile Threat (AVT)
	3.2.3.1 Fileless Techniques
	3.2.3.2 Examples of Fileless command lines

	3.3 The Zeek platform
	3.3.1 Zeek Administration
	3.3.2 Log Files
	3.3.3 Zeek Scripting Language
	3.3.3.1 Monitoring traffic use cases
	3.3.3.2 Detecting attacks and notification

	4 Deploying Network Security Policy into an IDS
	5 Security policy implementation and APT identification
	5.1 Hierarchy of Policy scripts in Zeek platform
	5.1.1 Basic authentication and authentication through VPN connections
	5.1.2 Detection of Exploit kit and C&C behavior
	5.1.3 Malware detection
	5.1.4 Extract and Hash Files
	5.1.5 ICMP Tunnel attack
	5.1.6 Detection of large file transfer through the cable
	5.1.7 Logging ARP requests and replies
	5.1.8 HTTP user agent detection
	5.1.9 Detect SSH sessions
	5.1.10 Tunnel attack
	5.1.11 UDP scans and active response
	5.1.12 Detection of unknown services on known ports

	6 Conclusions
	6.1 Future implementations

	7 Appendix A: Zeek Log Files
	8 Appendix B: Zeek Policy Scripts
	9 Appendix C: IHU Network Security Policy
	10 Bibliography

