HELLENIC
UNIVERSITY

%\é INTERNATIONAL

Implement a security policy and
identify Advance persistent
threats (APT) with ZEEK
anomaly detection mechanism

Panagiotis Drakos

SID: 3307160003

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Communications and Cybersecurity

December 2019
THESSALONIKI - GREECE

HELLENIC
UNIVERSITY

%\é INTERNATIONAL

Implement a security policy and
identify Advance persistent threats
(APT) with ZEEK anomaly

detection mechanism

Panagiotis Drakos

SID: 3307160003

Supervisor: Dr. Dimitrios Baltatzis
Supervising Committee Assoc. Prof. Christos Kaloniatis
Members:

Assist. Prof. Aggeliki Tsohou

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Communications and Cybersecurity

December 2019
THESSALONIKI — GREECE

Abstract

It is utmost importance the high level of security while ensuring safety and trusted
communications between organizations. Network security always was suffering from
lack of resources, while intruder’s knowledge is one step ahead. It seems that we are
developing code by testing which is neither wrong nor right rather than testing by
development. Based on this fact an IDS system would achieve better efficiency and
effectiveness if it was designed by a hacker. APT threats are not new threats, instead
are old threats that redeployed with advance knowledge on protocols. APT threats does
not pose intelligence on the code itself, rather than on the methodologies they use to
keep their appearance almost unknown through a system and their persistency to

identify a system or application vulnerability.

Present thesis acts as guidance in order to setup an IDS and evaluate its results. Part of
this guidance is to investigate existing IDS systems behavior. We analyze both the types
of intrusion detection systems HIDS — NIDS and identify main fundamental
components of APT/AVT threats. This thesis aims in transforming already documented

security policy into Zeek rules against live network traffic.

Acknowledgements

I would like to take this opportunity and express my deepest appreciativeness to Dr.
Dimitrios Baltatzis, my research supervisor for agreeing to take me on as a student, for

his patient guidance and enthusiastic encouragement throughout my research.

I would like also to thank my father Giorgos, for his patience and support during the
finalization of this thesis. Last but not least, I would like to thank my mother Anastasia
who left early — never be forgotten will always be in my heart and in which this thesis

is dedicated on.

Table of Contents

R 111 70T 11 Tox {0 o ST P U P PRSI 9
1.1 Defining an APT and itS INTENTIONS........ccceivveiverieiieie e 9
1.2 INrO 0 ZEEK ..o s 10
1.3 PUrpose Of this TRESISccuieieiieiree e 11
1.4 ReSEArCN QUESTION......cuiiieieeie et 11
1.5 ThESIS OULIING ...eeiiiice s 12

2 REIBVANTWOTK ...t 13
2.1 Anomaly-based intrusion detection Methods..........ccovvrieiiiiniiene s 13

2.1.1 Data mining/machine learning method............cccccovveiinnnnicnieneen 13
2.1.2 Advanced statistical anomaly methodcccocoviiiininninicienee 15

3 REIAtEd TREOIY ..o ettt 18

3.1 Intrusion Detection and Prevention SYStEMSccccoverieriiinnienniesiieneeniens 18
3.1.1 Types of Intrusion Detection SYStEMScccererriereeriniie e 20
3.1.2 Detection MethodoIOgIESceveiiiiiiiiiie e 24

3.2 Advance Persistent Threats vs Advance Volatile Threatsccccocevvennene 36
3.21 Fundamental components of an APT ... 36
3.2.2 Behind the scenes of an Advance Persistent Threat...........ccccceverinnens 39
3.2.3 Advance Volatile Threat (AVT) ..o 40

3.3 The ZeeKk platform........ccveiiie e 42
3.3 1 Zeek ADMINISTIAtIONovevveiviiiiiieiieiee e 45
3.3.2 LOQ FIIES e 46
3.3.3 ZeeK Scripting LanQUAGEcccvevveeieiieiieeiieseesie et e e sie e snae e 47

4 Deploying Network Security Policy into an IDScccooeviiiiiiiiiececieceens 54

5 Security policy implementation and APT identificationc..cccoevevviieinennns 55
5.1 Hierarchy of Policy scripts in Zeek platform..........cccocoevvvevviiniieviecieseens 55

5.1.1 Basic authentication and authentication through VPN connections......55
5.1.2 Detection of Exploit kit and C&C behaviorc.cccccvevviiveneiieiienns 57
5.1.3 Malware deteCtiON........ccoiiiiiiieieiie e e 59

5.1.4 Extract and Hash FIlESccooiiiiiiiice e 62
5.1.5 ICMP Tunnel attackcccooieiiiiiiiiiiice e 65
5.1.6 Detection of large file transfer through the cablec..cccocieiieins 66
5.1.7 Logging ARP requests and replies.........ccoocvverereneenicnie e 68
5.1.8 HTTP user agent deteCtion..........cooeieeiiiiieiiienesie e 69
5.1.9 DEteCt SSH SESSIONS.ceitiiiiiieeiteeie et e e ste sttt see e b 70
5.1.10 TUNNEI ALEACK.......ciiiiiiieiiesie s 73
5.1.11 UDP scans and aCtiVe reSPONSE.........ccuerurerverieerieeeeseesseeeeseesseaseessaessens 76
5.1.12 Detection of unknown services on Known ports..........ccccceeeveveeienienns 80

B CONCIUSIONS ...ttt bbbt 83
6.1 Future IMplementations..........cccoveiieieiiesi e 84

7 AppendixX A: ZeeK LOgG FIlESccuviiiiiiiiee et 85
8 Appendix B: Zeek POIICY SCHIPLSocveiieieiieieece e 87
9 Appendix C: IHU Network Security POIICYcccovviiveieiiesiece e 90
10 BibDlOGraphy ..o 91

List of Tables

Table 1 Signature-based vs Anomaly-based detection Systemscccocevveierivennnns 25
TaDIE 2 DALA LYPES .vvecvieieieie ettt ettt sttt et e e reena e e ne s 48
Table 3 PAttern OPEIAtOrScuoieeeiie ettt ettt sbe e 48
Table 4 Type CaStING OPEIALON.......ccueiieiieieiie ettt st ee s 48
Table 5 NetWOrk ProtOCOIScooiiiiiiieice e 85
TADIE B FIIES ...ttt ae s 85
TaDIE 7 DEIECTION ..ottt se bbb 85
Table 8 Network ODSEIVALIONScccoiiiiiiiiieeiee e 86
Table 9 Zeek DIagNOSHICS.ccveiieeieeieseeie e e e steeee e se e te e e e e naesnaenee s 86
Table 10 MISCEIIANEOUSccviieiiiieie e 86
Table 11 Zeek Script names along with PCAP files usedcccccevveveieervciesnenns 87

List of Figures

Figure 1 Comparison of an IDS t0 IPS [27]cooveiieie et 18
Figure 2 IDS using Al and Machine Learning Algorithm [19, 45]cccovvvevvenienee. 20
Figure 3 OSSEC host-based Agent/Server configuration [25].......c.ccccevvriviiverniinnne. 22
Figure 4 Host-based intrusion detection SYStemcccoveieiieniinin s 22
Figure 5 Network-based intrusion detection SYStEM..........ccoveeririeriienenieeseesie e 24
Figure 6 Anomaly-based detection methodologyccoceviiininiiiinie e 26
Figure 7 Application payload anomaly [43] ... 31
Figure 8 TCP packets reassembly [29]cccoeiiieiiiii i 31
Figure 9 Protocol anomaly detection [32]ccccevveieiiieii e 32
Figure 10 HTTP insertion attack [43]......cccoeieiiieiieie e 33
Figure 11 Insertion-evasion attack [29]cccceoveiiiiiiiiere e 33
Figure 12 Insertion attack on Link Layer [29].......cccociiiiiiiiienie e 34
Figure 13 Stateful protocol analysis [38].......ccccccvririiiiirineseree e 35
Figure 14 APT classification [13]......cccoiiiiiiiiiieiiee e s 37
Figure 15 APT-attaCk [4]ooveieiieiiee e 38
Figure 16 Fileless Malware [21]ccooviieieiiesic e 41
Figure 17 Zeek architeCture [7]....cccooeveiieiiee s 43
Figure 18 Zeek CIUSTEIING [7]...veioveieeieiieieeie st s 44
Figure 19 Zeek SSL Protocol analyzer [60]cccovviieieiieiieese e 45
Figure 20 ZeeKControl Shell ... 46
Figure 21 ZeekControl configuration file..........ccccoiiiiiiiiiiii e 46
Figure 22 Loaded SCIIPLS 10Q. .. .iieeiieieiiieiieie et 47
Figure 23 Type €asting eXampPlecc.ooieiiiiiiieiiie e s 49
Figure 24 Proxy GET request and replyocooeiiiiiiiiieieeeee e 49
Figure 25 http_PproxXy.ZeekK SCIIPL.......ccuviieiieeieiiese et 50
Figure 26 http ProXy OULPULceeiieie ettt e e e 50
Figure 27 File eXtraCtionc.ccviieiiec et 51
Figure 28 File INSPECLION EXECULIONc.veiieeieiiecie et 51
Figure 29 Detect FTP BrutefOrCingccooveiiiieiiiie e 52
Figure 30 FTP bruteforcing reply eVent...........coooiiiiiiiiee e 52
Figure 31 SUMSHatS FrameWOrK.........cc.oiiiiiiiiiiieieee e 53
Figure 32 Basic authentication Sample COUE..........ccoviiiireniiiiereee e 56
Figure 33 Basic authentication 10gcccccveveiieiiiie s 56
Figure 34 Log VPN authentication aCtiVityccccceviveresiesieesn e 57
Figure 35 VPN authentication activity OUIPULccccceeveiieiieie e 57
Figure 36 Sniffing files with a predefined pattern..........ccccoocvvveviveii i 58
Figure 37 Identified 2 infected XML FileS........cccooiiiiiiiiiiee e 58
Figure 38 Matched XML File........cooiiiiiieee e s 59
Figure 39 Raised Notices upon detection of malicious downloads...............cceevrvennee. 59
Figure 40 File types to be checked ... 60

Figure 41 Malware AeteCted.........ueiveieiieieeie e 60

Figure 42 File hash event handler...........cccooveiiiiiicci e 60
Figure 43 Malware extended information...........ccccvevevieeriesiesieese e 61
Figure 44 Large application/x-dosexec mime type detectedcccooeverienieennnenne. 62
Figure 45 Files types to be extracted and hashedcccooeieiiiiiinie, 63
Figure 46 Extracted and hashed files tyPes........ccooveiiieienie i 63
Figure 47 More Extracted and hashed file types ... 64
Figure 48 Extracted file fOrmat type.......ccccoveieiieiice e 64
Figure 49 ICMP Tunnel observer will raise a notice above a threshold...................... 65
Figure 50 ICMP Tunnel deteCted...........cceiveieiiieiiee e 65
Figure 51 An alarm NOtICe IS FAISEAceeivveieiierie et 66
Figure 52 Notice will be raised when a predefined will be crossedccccceevrenee. 66
Figure 53 Source address iS dropPedcceeverierieiie i 67
Figure 54 A notice is raised for Large Transfer..........coocoveiiieninii e 67
Figure 55 Large transfer of file detected..........ocovviiiiiininiee e 67
Figure 56 Originating host 192.168.1.104 is dropped for 20 seconds...........c.cccccveene.. 68
Figure 57 ARP protocol requests and replieS 10gcccevveveiieeiiieii e 68
Figure 58 Output log of the ARP requests and repliesccccevvevevveieciesieeseeiee 69
Figure 59 Connection unsuccessful attempts.........ccocvvveviiiesieni e 69
Figure 60 HTTP agent deteCtedccvvieeiieieiieeeee e 70
Figure 61 Detection 0f SSH SESSIONS.........coiiiiiieiieie s 71
Figure 62 SSH authentication PrintOULcccoiiriiiienenie e s 72
Figure 63 An extensive option added to the SCriptccooceeieiiininii e 73
Figure 64 DNS tuNNeling ODSEIVEYcceiiiiiieiieeee e s 74
Figure 65 C&C DNS Tunneling software 0bSErver...........cccccooeviveiiieeie e 75
FIgUre 66 DNS tUNNELc.oiiiieeceee et 75
Figure 67 Query includes .pirate.sea pattern detected..........ccccevvevevieveciecieese e 76
Figure 68 Identified host is dropped for a small period of timecccccoevevvevveenen. 76
Figure 69 Types of notices to be raised once a UDP scan is identified....................... 77
Figure 70 UDP port failure ODSEIVEN ..o 77
Figure 71 Block of the identified host once a UDP scan is detected.............ccecvrvennee. 78
Figure 72 Support of callback functionality based on UDP behaviorccccc....... 79
Figure 73 Port SCan deteCtedc.coveiiiieiieie e 79
Figure 74 Originating host scanned 15 UDP ports of 192.168.1.25..........cccccevvevenee. 80
Figure 75 Sets of default POItS.......cccveeiieiice e 80
Figure 76 Detection MeChANISIMccuviieieeie et 81
Figure 77 Unknown services spotted through network traffic............cccccoverieinnnnne. 81
Figure 78 Host identified to connect on a non-default SSH port............c.ccocoviiinnnns 82
Figure 79 Host captured while trying to connect on a non-default FTP port.............. 82

1 Introduction

Cyber security has been a major awareness the last few years as intrusions have been
more sophisticated by using complex methodologies. Internet technologies and
communications has grown at an explosive rate in contrast to security systems and
policies that has not progressed as rapidly. While the internet has been acting as a
mediator for spreading communications and information around the global, it has also
made easier the attacks on computer systems attached to it resulting more advanced
requirements in order to implement a network security system. There many factors
that needs to be concerned as most intrusions are a combination of connectionless
based threats (virus, works, phishing etc.) and connection-oriented intrusions DoS

attacks.

Other factors demanding further consideration include: complexity of networks,
rapidly increase of methodologies and techniques used by intruders on applications
and attacks as well as financial benefits with the inception of Phishing attacks.
Furthermore these factors highlight the increasing need for the organizations and
government to protect their networks assets by using advanced Intrusion Detection
Systems (IDS).

1.1 Defining an APT and its intentions

Traditional threats are still posing a major concern for organizations, a challenge that
can’t be ignored. Additionally, new challenges menace the organizations and
governments, dealing with the Advanced Persistent Threats (aka. APT). This
terminology was firstly generated as a code name in order to describe Chinese
intrusions aiming to exploit critical information in a stealthy way from US military
organizations. Advance persistent threats are focused, stealthy and targeted attacks,
aiming specific critical information and covering their tales very carefully which
makes them to deviate from traditional viruses or worms and also very difficult to be

detected by traditional security measures.

Main characteristics of an APT include [9]:

e APT is not focusing on special organizations but rather they focus on any
organization both government and commercial.

e Once the APT breaks into the system, it is very intelligent in what it does and
the way that does it. It can be changed, recompile its code on the fly and
remain stealth in order to avoid being detected.

e Because APT attacks are function in a stealth mode, this increases the risk of a
compromisation

e APT uses advanced tools and methods in order to increase speed of the
malicious activities. Automation is not the only fact that causes the persistency
of the threat, but also what the method that allows intruders to act fast.

e APTs are not newly developed threats, but are old well known threats
encapsulated with advanced techniques in order both to speed up their
malicious functionality and confuse detection systems.

e APT mainly focuses in providing the intruder with specific benefits such as
economic or financial gains. Anything that is important for its value to the
attacked organization is also important to the attacker too.

e Persistency of an APT is the mainly issue meaning that APTs are designed
that way to stay for long-term in an organization. Acquiring data for once may
be beneficial for the attacker, but being persistent for long-term is more
beneficial.

1.2 Intro to Zeek

Zeek is an open-source domain specific language, normally referred as a scripting
platform that is designed to work with network traffic. Zeek itself does not constitute
an IDS system, beside that it provides several useful features for protocol analysis as
well as a lot of out of the box functionalities for basic analysis tasks including
protocol decoding, logging and notifications for common security events. Even
though Zeek differs from other intrusion detection systems such as Snort or Suricata,
it also poses a complimentary method to these systems. While Snort language is well
functioning in identifying bytes in a network flow, Zeek poses the best option for
more complex tasks including those that require higher-level protocol knowledge,
cross functional network flows, or custom patterns when needed to identify specific

information in the traffic [13].

10

One of its fundamental assets is that it can identify well known and unknown
protocols even if running on non-standard ports using Dynamic Protocol Detection
(DPD) feature. Zeek protocol logging is fully customizable, and while parsing or
decoding it gives the users the ability to create custom logic for processing the
transactions in the network traffic that is under examination. The actions taken by a
protocol are treated as a series of events, for which custom handlers can be written. Its
analysis mechanism includes both signature-based detection and anomaly-based
detection for such events that pose unusual behavior. Upon detection of something of
interest Zeek can be instructed to alert the operator in real-time, generate logs that can
be used later for forensics, or even execute an operating system command with

CronTab daemon (e.g. to block a host or terminate a connection).

Zeek is an anomaly-based intrusion detection system that matches the identified
network traffic packets with the custom application profile. A notice would raise in
case multiple unsuccessful attempts are triggered by a user within a short period of
time, or above a predefined threshold against an application (e.g. FTP, SSH). Most
often signature-based systems are tricked while the attacker can sneak through by
using special characters or variety of encoding methods. This is unlikely to happen
with Zeek anomaly-detection system, because it gives the operator the authority to use

custom patterns for detecting nonnative characters [13].

1.3 Purpose of this Thesis

The aim of this thesis is to deploy a documented network security policy, into Zeek
rules against live network traffic events through anomaly-based detection techniques

in order to produce an unsupervised detection system.

1.4 Research question

Computer and network security technologies are still in the beginning as firewalls,
antivirus/antimalware and intrusion detection systems have migrated from research
labs into active defense of both organizational and commercial networks. Both
computer and network security systems are composed mostly of complex devices and
in order to succeed their functionality certain conflicting goals has to be matched (e.g.
high performance, easy administration and fault tolerance). Based on this there are
vendors implementing systems either based on cost, speed or even how satisfied are

11

the protection results find by other users so it gets even more difficult for the

customer to determine which product is best on what is says it does.

As new vulnerabilities emerge on a daily bases it gets complex and cost consuming to
patch all of them, given that there are cases that a vulnerability can be exposed after
causing considerably large amount of damage. Appropriate detection technology can
eliminate such incidents. Based on that we are implementing an anomaly-based real-
time intrusion detection system. As mentioned previously above, anomaly-based
intrusion systems differ in many ways than signature-based, but can be also used as
complimentary for additional protection. One of the main challenges while
developing such a system, is the ability to adequately distinguish abnormal behavior
from normal behavior as this could be a caveat when generating notices in network

traffic.

1.5 Thesis outline

Chapter 2 provides a technical background as a bases for the research of this thesis.
Anomaly-based detection method is detailed in extend by presenting related work that
has already been done both for data mining and machine learning techniques and

advanced statistical anomaly technique.

Chapter 3 issues the related literature that this thesis is based on. Differences of
intrusion detection systems vs intrusion prevention systems are identified. An
extensive description is presented both on HIDS and NIDS systems along with
advantages and disadvantages of detection methodologies. A detailed description is
also provided on APT and AVT threats distinguishing its fundamental components.
Furthermore an introduction to Zeek scripting platform is presented and its

accompany functionalities.

Chapter 4 provides a detailed description based on our idea to deploy a network
security policy into an IDS system. A university network security policy has been

implemented and taken as a base for the designed policies of our detection system.

Chapter 5 introduces the Zeek security policy scripts designed to cover most of the
aspects of the IHU Network security policy. Contains Zeek code snip sets along with

verification results.

12

Chapter 6 concludes this thesis by summarizing our contribution and propositions of

several ideas for future work implementation.

Appendices contain Zeek log files, the full code of the implemented policy scripts and

also IHU Network Security Policy documentation.

2 Relevant Work

2.1 Anomaly-based intrusion detection methods

Any security breach incident poses in danger both computer systems and humans,
such as an intrusion that points on services performance, system manipulation as well
as unauthorized access to susceptible information. Several techniques have been
applied over the past years in order to obstruct security breaches but due to constant
expansion of the internet and precisely to the new technologies that arise, detection
tends to be even more complicated. A fully-fledged anomaly-based intrusion
detection system is composed of many provocations since the network traffic is both
dynamic and complex making it more unrealistic to distinguish between abnormal
from normal traffic. Network-based intrusion detection systems (aka. NIDS) are
divided into traffic and application systems relying on the information is used to
detect the anomaly [5]. In literature, several approaches have been proposed for
network anomaly detection consisting of Data mining/machine learning anomaly

detection and advanced statistical anomaly detection [23].

2.1.1 Data mining/machine learning method

Data mining acquire methods are used to detect and form user’s behavior during or
after a campaign based on a set of rules and patterns, or by simply linking several
events together. Data mining is be composed of four main categories: 1) can be used
to predict the state of network traffic at a certain time yielding the security experts to
control specific areas where abnormal activity is identified, 2) extracted patterns from
captured data can be used to identify the existence of a given event, or activity, 3)
captured data can be partitioned resulting in distinguishing the classes or the
categories derive from combined sets of parameters and 4) can be used as
enhancements of resources in several concepts. As an example the evaluation of

software quality in regard to software faults can be daunting, unless data mining

13

techniques in combination with information from several software metrics are
gathered [2, 6]. This technique necessitates that the each data sets are labeled, leading

the detection process error-prone, pricey and prolonged [23].

Alternatively machine learning detection method assembles the required models
(characteristics of know attacks) automatically. This detecting process requires less
human interference and have achieved fairly positive results so far although there is
still a large number of faced crucial challenges; security of the process, failure of
learning the algorithms due to mismatch in the data and insufficient capability of
detecting previously unknown attacks due to significant big number of false alerts
[23].

Trend Micro security researchers Villeneuve, N. and Bennett, J. [58] focusing on
analysis of an APT by extracting attackers mistakes through careful monitoring and
investigation of ongoing campaigns in huge volumes of network traffic analysis. The
optimum aim is to get a brief look into spiteful operations by relying on a scheme of
both contextual and technical indicators. While APT activities will keep altering its
patterns, a significant number of ongoing campaigns can still be detected with the aid

of network indicators and network patterns modifications.

DExtor [35, 36] is a data mining based exploit code detector tool that can be deployed
inside the network between a server and a firewall to protect network servers. Its
technique consists both benign and exploit traffic resulting in extracting several
features from the training instances in order to construct feature vendors. Both the set
of instructions and their frequency contribute in identifying whether the traffic is
normal or an intrusion. However deploying the tool in large networks is irrational

since its efficiency only applies for 42Kb/sec of network traffic.

Jasek et al. [28] use honeypots as an enhanced security system solution (honeypot
agent) in order to detect APT by directing an attacker to the system without disclose
the implemented security measurements. Honeypots are designed to behave like a
complete operating system in order to distract an attacker. It is used to log access
attempts on ports and attacker’s keystrokes. It doesn’t result any value therefore
anything goes to or from a honeypot acts as a probe. Honeypots collect high value
small data sets as with their usage reduce false negatives and repels new attacks as

they work under encrypted and IPv6 environments [22, 6]. Honeypot environments by

14

their nature are passive systems holding fake contents where an attacker can access
sensitive information or use it as a pivot in order to compromise other systems
resulting, various major limitations that direct an attacker to continue its activities in
stealth mode [46, 6].

Diwan et al. [14] proposes a hybrid approach, a blend of K-Medoids clustering and
Naive-Bays classification for intrusion detection. Naive-Bays classification implicates
many features that are not divided between normal operations and anomalies. A
combination of Naive-Bays classification with modified clustering data mining
techniques are used to extract patterns that present normal behavior aiming to enhance
accuracy and efficiency of the results. Sets of naive-Bays classification rules are
classified as normal behavior and the combination with modified clustering data will

clarify the anomalous behavior.

Brogi et al. [5] developed an APT detection tool that is capable of highlighting
attacker’s trails during an intrusion campaign by using IFT services. This approach
aims to use the outcome of the steps of an APT pattern (reconnaissance, delivery,
exploitation, operation, data collection and data exfiltration) in order to link them
together and identify the leaked information between the attacked elements. One
caveat of this system is that the APT detector was not executed in real time, during an

ongoing attack instead of identifying the attacker steps after the attack was executed.

Berezinski et al. [4] approach uses an entropy-based method in identifying botnets
based on anomalous patterns. Such type of anomalies are normally hidden in the
network traffic in a form of flows, packets or bytes making the detection even harder.
This approach aims to prove that entropy-based method applicable to detect modern
botnets. The implementation of the proposed method named Anode consists of two
phases: training phase where a normal traffic profile is build and detection phase in
which current traffic is compared to the normal model. A limitation of this approach
is that parameterization of the entropy causes inefficiency to detect low-rate

anomalies.

2.1.2 Advanced statistical anomaly method
Statistical anomaly detection method utilizes statistical models in order to distinguish

‘abnormal traffic’ from ‘normal traffic’ by formulating a user’s profiling of regular

15

behavior. This way an anomaly is detected when current user's behavior deviates from
the stored profile. Limitations of using this technique are; the distribution of the data
across the network are considered conjectural and that they pose inefficiency to large
datasets or datasets with large attributes [41].

A Chi-square testing-based intrusion detection model utilizes Chi-Square statistics in
detecting Network based intrusions [1]. This system be composed of 3 levels; during
the first level TCP flags are extracted from each packet and four categories of RST,
SYN-ACK, ICMP and other TCP packets are produced and the total number of
packets per second for each category is calculated. In second level, a sample
distribution is produced and calculated by the chi-square against the captured data
producing the chi-square value that will be used to the next level. At decision phase
an intrusion/alarm is raised when the chi-square value of the sample distribution is
greater than the value of the tabulated chi-square value. Such an anomaly detection

system lacks of efficiency and performance in large scaled networks.

Koutsandria et al. [30] approach is based on detecting intrusions on networks
supporting hybrid controllers that implement power grid protection systems. The aim
is to transform the communication rules that physical devices utilize such as micro-
processor based controllers and packet-switched communications into a Hybrid
Control NIDS system (HC-NIDS). Such a system is consisted of three phases; In the
first phase overcurrent protection function is used in order to protect the physical
processes of the system such circuit breakers, sensors etc. for master and slave
controllers. The second phase consists of an S-function block that is responsible to
formulate the sensor measurements and reply to the master controller query with
Modbus packets. For the third phase a Siemens SIMATIC S7-1200 PLC acting as the
master controller for overcurrent protection function is used. A communication
between the master controller and the slave relay is established and the sensor
measurements received by the current sensors are obtainable. At this point the
protection control algorithm is executed where the master controller sends “write”
queries to the slave relay expecting which control action will be performed. The
limitations of this approach is that Power Grid systems often consists of many
components that coordination in order for the whole system to be protected tends to
be inadequate and time consuming. Furthermore IDS rules needs to be customized for

each application/component separately with different settings.

16

Luh et al. [33] proposes a system that captures anomalous behavior in a
communication session by examining irregularities in a predefined set of process
graphs. Anomalies are distributed and unscrambled by using a semantic decision tree
combined with targeted attack ontology. Obtained data comprise several monitored
devices along with transmitted and translated kernel events are stored in a database.
These events are transformed in simple graphs that illustrate the handled operation
from each process in a dedicated time period. Anomalies are detected by observing
the distance in between these graphs. However such an approach needs further
investigation to enhance the decision trees and improve the automation of the

mapping process.

Krugel et al. [31] present a system that utilizes concrete knowledge of the network
services that needs to be protected from intrusion. Simple network traffic models form
an application model that is capable of detecting malicious content in network
packets. The aim of using service specific anomaly detection is to include the
application payload within the rest of the packet header information. In order the
payload of packets to be processed the network traffic is partitioned and separately
analysis of packets sent by several applications takes place. Therefore with service
specific anomaly detection statistical data can be collected irreproachable establishing
a normal traffic for each service. This system uses a training period that is definable
by the user, to read packets from the network and captured data are split into service
specific traffic and a profile of each service is build. Detection of anomaly is achieved

by comparing the new traffic with the created profile.

SPARTA [31] is a system that detects security policy violations and intrusions in
heterogeneous network environments. SPARTA is relies in a proprietary language to
demonstrate campaigns. The aim of this detection system is to correlate events that
occur anywhere in the network and a pattern of presenting these events. Is composed
of 4 phases; a local sensor, an event storage mechanism, an independent agent
platform and a fourth optional unit of a user interface. Nevertheless such a proposed
solution has several drawbacks; multiple components are used which raises the risk of
an intrusion, events of unlike nodes that depend on an instance of a single event in a

third node are indefinable.

17

3 Related Theory

3.1 Intrusion Detection and Prevention Systems

In a nutshell, intrusion detection is the operation of monitoring events that befall in a
computer system or a network and the identification for evidence of possible incidents
being part of violations or impeding threats of computer security policies, or standard
security practices. An intrusion detection system (IDS) refers to actual software that
automates this process. The root of an incident may be a probe, a privilege escalation
attack, DDoS attack, a malware, a routing attack or even internal unauthorized access
due to misuse of users account privileges. An intrusion prevention system (IPS) is
exactly the same as an IDS that only differs in the configuration of the system. A key
point of an IPS in regard to an IDS is that, if they detect an ongoing intrusion, the
detected activity is banned as malicious. Whatever the case is, intrusions are detected
due to a predefined set of rules. IDS solutions are capable of having over time an
updated framework without the need to modify the core software package preserving

their resilience up against new security threats [49, 57].

Intrusion Detection System Intrusion Prevention System
Attacker i. Attacker el
\nternet \Internet
\ \
i/ !

F Firewall Firewall

IPS

[
DS l_
'/Is]'th 1 [Switch
Alert /// I witc ? i ‘ witc
— > g Vi -
-~ 'V/‘
{. ’/ C?‘rp LAN = Cl!:rp LAN
—— ey
Management System l'p l Management System } |
[, i A =
L_w [mosaemad {5 __1

Figure 1 Comparison of an IDS to IPS [27]

An intrusion detection system identifies intrusion attempts, whereas an intrusion

prevention system stop intruders before getting even deeper on the system, an action

18

that the firewall supposed to do at first place. The comparison of an intrusion
detection system and a firewall gets very vague regarding their functions, as their
functionality is similar up to a point that IDS uses a bit more intelligence. As an
example, it is not a regular situation for a firewall to allow traffic on port 22 (ssh) and
block traffic when detecting any malicious patterns. The difference between an
intrusion detection system and a firewall is the ability of perception of flags and
options as parts of packet headers and data, instead of checking IP addresses and ports
[29].

An intrusion detection system be composed of three logical components:

e Sensors or Agents are accountable for collecting data that contain evidence of
an intrusion. These input data may be network packets, log files and system
call traces.

e Analyzers are diagnose whether an intrusion occurred based on input from
sensors or other analyzers. In most circumstances the analyzer can provide the
actions to be taken in case an intrusion has occurred.

e User Interface enables a user or an administrator to both view and control the
system. Depending on the usage of the console, some are used only to
configure sensors or agents and apply software updates while other for

monitoring and analysis [49, 52].

Modern intrusion detection and prevention systems have the ability to handle high
load networks supporting at least two detection methods. Additionally they are
enhanced with new methods of anomalous detection based on artificial intelligent

algorithms, maintaining their efficiency on detecting unknown attacks.

19

\.‘_\-‘_)'_\'S'I'[E!

Source of :’;1—,‘;1;]]2:\ Intrusion
_ data N_SYSTEM_~ _Techuigue |

Network Based
Detection

Host based
Detection

Signature Based |
Dietection |

Anomaly Based
Detection

| Self Learning Programmed

Sumple
based

rule Expert || Stmg

system || matching

Statistical
model

State
modelling

F + % 4 & ¢+ & L+ % T T

Artificial % Support Mean and
Bayesian || Genetic
neural i standard
.. || network ||algorthm
network N wachine | Ldeviation |

| Threshold

K-nearest|| Decision Dreep Fuzzy
meighbour|| tree Networks logic

Markov
custering Multivariate | S

process
L

v«

[- Adaptive l {D.ccp Bu]‘:un:m‘” Deep auto- w

resonance theory machine

)

R o et
| |l Recurrent Convolutional
ineural nerwork|
| || neur

Y g
Multi layer
perceptron

Radial basis | | Self organisational
fumetion map

Deep belief
network

encoder al network || newral network

Figure 2 IDS using Al and Machine Learning Algorithm [19, 45]

3.1.1 Types of Intrusion Detection Systems

There are many subclasses of an intrusion detection systems, depending the needs of
each proposed architecture and the types of events are capable of recognizing as well
as the used methodologies to identify possible incidents. For the purpose of this
document only the most important once are mentioned. These are host intrusion

detection systems (HIDS) and network intrusion detection systems (NIDS).

3.1.1.1 Host-based intrusion detection systems (HIDS)
A host-based intrusion detection system is installed only on a single host deemed to

be prone to possible attacks and monitors the system from internal or external threats.
A host-based system can obtain data from several sources such as system logs, logs
generated by the O/S processes, audit and logging methods stored in a single text file.
HIDS depend mostly on audit trails (collected data about events) leading to
limitations, that were not part of the detection system itself. That way in order to
maintain effectiveness of host-based systems the developer needs to modify the
existing O/S kernel code to produce event information an approach that results

conflicts with other applications, therefore increases inefficiency of the system.

Audit trails are considered to be very handy to host-based systems despite their
limitations, both for users and system itself since the main aim of O/S is to protect the
audit layer as well as for the level of detail that audit trails provide that is remarkably

important when analyzing attack patterns. For example, the host-based sensor is

20

capable of recovering the process that initiated an event as well as the user associated
with that event. Such information are critical in determining the root of cause of a

possible attack.

The main drawback of host-based systems is the amount of data that they accumulate,
as the more data the more accurate the detection is, but this also requires additional
amounts of space due to the fact that real amounts of data on these used systems are
vast. Additionally such amounts of data and the complexity of processing these
information slow down the whole system. A burden that designers and analysts must
overcome so that host-based sensors maintain their effectiveness and avoid becoming
cumbersome [40, 28, 11].

Host-based systems are preferable for several reasons such as the ability of gathering
information in terms of “who accessed and what” leading them to trace malicious
activity from a specific user which rises also the risk of uncertainty of user awareness.
They also have the ability to function in encrypted environments and switched
network topology. Host-based systems allocate the monitoring load across available
hosts throughout a network eliminating significant costs which allows them to be

more scalable when network traffic increases dramatically.

An inherent limitation of host-based systems is that they are not being able of
monitoring network traffic but to run on single host. As mentioned previously host-
based systems are heavily rely on the O/S, thus any observed vulnerabilities of the
system will decrease the host-based sensor integrity since in a case of exploitation of

these weaknesses would lead to an intrusion hard to identify.

Another limitation of host-based systems is that they do not support cross-platform
functionality, a vital impediment for corporations that wish to use host-based
solutions and also for computer security professionals to become more educated about
the field [40, 28, and 10].

21

4 | Agent Installation

Functionality:

- (lecal) File Intagrity Checking
- (lecal) Registry Monitoring

- {lozal) Rootkit Detection

- (local) Active Response

Server Installation

- Functionality:

- {local) File Integrity Chacking
- {local) Registry Monitoring

- {local) Rootkit Detection

- {local) Active Responsa

- Centralized Logging of Alerts
- Centralized Syslog Collection

Figure 3 OSSEC host-based Agent/Server configuration [25]

Corporate
network

mf] Firewall |
. Untrusted

network

Figure 4 Host-based intrusion detection system

3.1.1.2 Network-based intrusion detection systems (NIDS)

Network-based intrusion detection systems follow a different approach in monitoring
than host-based systems, as they examine packet traffic directed to possibly
vulnerable computer systems on a network in real time, while host-based systems
examine users and software activity on a dedicated host. These systems are capable of
examining network, transport and application layer of the OSI model and mainly
included in the perimeter security infrastructure, either integrated as part of a firewall,
or work simultaneously with a firewall monitoring for external intrusion attempts by

analyzing both traffic patterns and traffic content [52].

22

Network-based detection systems are portable, as they monitor network traffic on a
specific network segment independently of the O/S they are installed on. This benefit
increases their popularity as more businesses that run tailored software applications
are able to use them. Furthermore network-based sensors can be easily integrated

within the existing system while data are being collected with minimal effort [11].

Often an IDS is located in a complete different part of the network and an entirely
different machine than the system is monitoring, causing unconformities between the
monitored machine and the IDS. For instance, consider an intrusion detection system
and an end-system located at different places in a network receiving packets in
different points of time. Assuming that something happens during the lag in time on
the end-system and makes it incapable of receiving the packet, while the IDS already
processed the packet and waits response from the end-system. The same applies with
packets received with incorrect checksum resulting in reducing the systems accuracy
[29].

Network-based systems are passive, meaning that they do not maintain the
connectivity of a network in case an IDS crashes or its resources are starved due to a
DDosS attack making it a “fail-open” system [29]. Scalability is another major
limitation in network-based systems as they lack in managing high-speed networks or
to retain their features with heavy traffic. A weakness that advances intruders to
identify them and exploit them. Additional limitations of network-based systems
concern encryption and switched networks. Encrypted packets or network protocols
are extremely difficult to be scanned, while switched topologies pose extra obstacles
since switches isolate network connections between hosts and therefore a host is able

to see only traffic addressed to it [11].

23

Network-based
IDS System

Port
Mirroring
(SPAN)

o
P

Firewall Network Router

La;Jnch

Attacker

Figure 5 Network-based intrusion detection system

Centralized network-based systems are limited by their false alerts as licit traffic can
be blocked resulting problems for normal users. A network-based system that is
deployed at the border of the network may be completely collapse from internal
intrusion or a compromised internal host. On the other hand a distributed network-
based system eliminates these problems of inline deployment however limitations still
exist, due to the fact that implementation of a distributed NIDS rely mainly on a
client-server architecture, that is to say a stable connection between the client and the
server tends to be infeasible when dealing with heavy traffic networks [23].

3.1.2 Detection Methodologies

Detection is a mechanism that parses collected data in order to generate alert data.
Detection of data ends, when these generated data are presented to an analyst, and
that’s where an analysis begins. An effective detection in order to be successful
requires the appropriate detection mechanism. Several detection methodologies are
used by intrusion detection systems, most of them are used integrated to provide more
precise and comprehensive results. Two main types of intrusion detection techniques
exist: signature-based and anomaly-based. Signature-based use patterns of known
attacks and compare them to current traffic and when a match is found they raise an
alert, while anomaly-based uses statistical models on ‘normal’ network traffic and any
traffic that differs from ‘normal’ is considered anomalous based in the predefined

model.

24

When a network infrastructure is under monitoring for potential security concerned
incidents, an intrusion detection system can implement both anomaly and signature
based intrusion detection methods in order to provide supreme defense. In a nutshell,
signature-based intrusion detection method has been ordinary used more than
anomaly-based method, when monitoring malicious activity on the network.
Signature-based method mainly relies on a database of attack signatures, which needs
to be updated all the time and when a match is found with a possible incident in a live
traffic an alarm is triggered. This is clearly a major drawback considering that hackers

spend lots of time in crafting attacks developed to mock signature-based detection

systems [28, 49, and 48].

Signature-based detection
Advantages ¢ High accuracy for known

behaviors, or patterns.
e Simple algorithms.
e Low False alarm rate.

¢ Minimal resource usage.

Disadvantages Unable to detect unknown

attacks.

¢ Regular database updates.

o Difficult to separate an
attempted attack from real
actual attack.

e Slower detection rate.

e Maintenance is time-

consuming.

Anomaly-based detection
e High accuracy rate on

unknown attacks.

e Low missing pattern rate.

e Ability to detect user-
privilege abuse.

e Ability to detect zero-day
attacks.

o Needs to be very well
trained.

¢ High false alarm rate.

Table 1 Signature-based vs Anomaly-based detection systems

For the purpose of this theses only anomaly-based detection technique will be

analyzed further.

25

3.1.2.1 Anomaly-based detection

Anomaly-based detection technique is based on predefined profiles as previously
mentioned. A baseline profile is generated representing behavior of ‘normal’ traffic.
In case “abnormal’ traffic is detected, network traffic that deviates from the ‘normal’
traffic which is saved in a profile then an alert is triggered warning the possible
intrusion identified. This baseline profile which normally includes users, applications,
hosts, and network connections is created in order for the intrusion-detection system
to be able to collect the traffic on a period of time and then statistically observe the
behavior of the traffic during peak/non-peak hours, over-night hours and as per
network behavior that each organizations has defined. Tailored profiles can also be
created for particular traffic behavioral attributes such as number of e-mails sent by a
user, the level of processor usage by a host, the number of failed logins by a host as
well as user access attempts all depending on how an organization deployed the

intrusion-detection system in their network. [44, 49, 29].

| et et il e o e e s e e e e 1
1 1
1| Feature ol i
& 1" Trainin
| ConstructlonJ d
Streaming I
B cd 4k data 1 i
..1 | *‘_ - @ I‘l_i' H i el
s i

Training phase i :
- N N EE o o BN e = = B ——--:.P——--_:_;,-.‘k'----———--l
i 4 o 1
¥ A :
Anomaly '
Detection phase Detection » E
1

Figure 6 Anomaly-based detection methodology

Examples of anomalous behavior [29]:

e HTTP traffic on a unknown port (port 53) — protocol anomaly
e Backdoor service on well-known standard port e.g. p2p file sharing with
Gnutella on port 80 — protocol anomaly and statistical anomaly

26

e A segment of binary code in a user password — application anomaly
e Increased UDP traffic compared to TCP traffic — statistical anomaly
e Increased amount of bytes receiving from an HTTP browser that is visited —

application and statistical anomaly

Effectiveness and efficiency of an intrusion detection system is achieved when it has
a vigorous baseline profile which covers the entire network components and its
segments and utilizes a custom combination of detection techniques, both anomaly
and signature-based. An advantage of utilizing anomaly-based systems is that they
can detect 0-day attacks even though they require a training phase to deploy the
normal statistics database and cautious settings of threshold level of detection which

makes them more complex.

In order to detect anomalies accurately a profile of ‘normal’ behavior in a rule-based
pattern matching system may contain the following components [29]:

e Subjects and objects: subjects are the initiators of an activity in the target
system. Normally as subject refers to a terminal user, but it might be also a
process that is acting on behalf of users or a cluster of users or the system
itself and is responsible for all activities that are given through commands.
Subjects may also sorted in several clusters in order to control access to
objects in the system. Additionally objects are the addressee of the actions and
include entities such as files, programs, records, messages, terminals and
created structures. In case subjects are the receptors of actions, then they

considered as objects in the model.

e Audit Records: are responses produced by the target system regarding the
performed actions or attempted by subjects on objects-command execution,
file access, user-login/logout, read etc. A typical form of an Audit Record
consists the following attributes: “Subject, Action, Object, Exception-
Condition, Resource-usage, and Time-stamp”. When Audit Records are
collected for more than one systems than additional fields are added in the
above form. All activities are decomposed into actions so that each audit
records points to only a single object. Decomposing actions is beneficial for

the following reasons:

27

0 Objects are the entities of a system, thus a possible detection is
applicable using this model of both attempted subversions of the access
and successful subversions by detecting an abnormality in the
accessible set of objects related to the subject.

o0 Keeping simple audit records simplifies the model and its operation

o0 Audit records generated by existing systems generally contain a single

object, so that files can be identified easily.

However a handicap of audit records is that they contain a minimal descriptive
information to identify the holding values. Each record type has a dedicated
structure, and the same format each record must be known to interpret the
values. Another disadvantage is that they are imperfect in terms of the

monitored activities and the record structures that produced.

Profiles: Structures that describe the behavior of subjects regarding to objects
in terms of statistical metrics and models of observed activity. Profiles are
generated automatically and initialized from templates. For example given a
metric for a variable “X” and its “n” observations “X1 ... Xn”, the aim of a
statistical model of “X” is decide if the new observation “Xn+1” is anomalous
in contrast with the previous collected values. Some well-known models are
[42]:

o Operation model which is based on the operational hypothesis that the
comparison of a new observation of “X” against fixed limits can result
abnormality.

o Mean and Standard Deviation Model which is based on the assumption
that all we know about “X1 ... Xn” are mean and standard deviation.

o Multivariate Model which is based on associations between two or
more metrics.

o Markov Process model applies only to event counters as a state
variable and uses a state transition matrix to present the transition
frequencies in between the states. This model also may have several
benefits when identifying transitions between specific commands
where a command sequence format is important.

o Time Series Model which uses as an input an interval timer, an event

counter, the order and interarrival of the observations “X1 ... Xn”,

28

including their values and identifies an abnormality if its probability of

occurring is too low.

Activity profiles is consist of information that identifies the statistical model
and random variable metric together with the set of audit events measured by
the variable. A profile is composed of 10 components of which the first 7 are
irrespective of the specific subjects and objects measured in the form of:
“Variable-Name, Action-Pattern, Exception-Pattern, Resource-Usage-Pattern,
Period, Variable-Type, Threshold, Subject-Pattern, Object-Pattern, Value”.
Uniquely identification of a profile is achieved by 3 objects which are
variable-name, subject-pattern and object-pattern. All components of a profile

are changeableness except for value.

Anomaly Records: are produced when abnormal behavior is detected and
consists three components:

o Event can be either “audit” clarifying abnormality in the data of an
audit record, or “period” stating that accumulated data over an interval
time was found abnormal.

o Time-stamp can be either the time-stamp in the audit record or the
interval end time.

o Profile can be an activity profile presented in a form of a key record
pointing to full profile, identifying the type of abnormality that it was
detected.

Activity Rules: are the actions taken when certain conditions such as a
produced audit record or anomaly record or a period of time ends are fulfilled.
An activity rule is composed of two parts: a condition which is specified as a
pattern-match on an event and when satisfied results the rule to be “fired” and
a main body. Four types of rules exist:

o Audit-record rule which sets off when a new audit record and an
activity profile match, the profile is updated and anomalous behavior
identifications starts.

o Periodic-activity-update rule which sets off when the end of an

interval and the period component of an activity profile match.

29

o Anomaly-record rule which sets off when an anomaly record is
generated.
o Periodic-anomaly-analysis rule which is fired by the end of an interval

and brief reports of the anomalies during a set of period are generated.

Newly produced audit records are compared with the profiles. Given information in
the matching profiles defines the rules to be followed in order to update the profiles,
examine for abnormal behavior and report the detected anomalies. The administrator
or security expert of the system assists in profile templates construction in respect to
monitor activities, but the rules and profile structures are system independent. The
aim is to monitor the standard operation on a target system identifying only
inconsistencies in usage. Rule-pattern matching system does not include any special
features for conducting complex actions that are used to exploit security flaws in the

target system as it has unawareness of the target system mechanisms or its blemishes.

3.1.2.2 Types of Anomaly
Anomaly-based intrusion detection systems protect against anomalies as a
consequence of protocol violations, application payload, buffer overflow and Denial

of service attacks.

3.1.2.2.1 Protocol Anomaly

An anomaly in protocols occurs when it poses inconsistencies both in the format and
the protocol and in its behavior in comparison to the internet standards and
specifications (RFCs). TCP/IP composes many features to be monitored such as
different flags, SYN/ACK and FIN, TCP header combinations as well as IP header
reserved flags. IP decomposition and reassembly is implemented base on the
standards. At the application layer the intrusion detection system must be capable of
inspecting the protocols up to the point that the protocol anomaly is well identified
and also deep understanding of application semantics in order to detect accurately

application payload anomalies [44].

30

4

/ Anomaly Detector
Similarity
Application-Layer Feature Measure
messages object
Packets Protocol [) Feature [] ¢ Anomaly
Network Analyzer Extraction Learner o Scoe
capture = 5 23
3 — |33
Protocol dissection Extraction of E § = é'
strings <3 Model 23
§F

leoad-based Anomaly Detection

.

Figure 7 Application payload anomaly [43]

Arrival Order

" e o \T\. q--h‘-:}‘:.—:; i TR — ~
A T ‘ T A C ‘ K
-
Intended Order

Figure 8 TCP packets reassembly [29]

All connection oriented protocols states, thus a certain event must be executed at a
certain time period, resulting protocol anomaly detectors to be implemented as state
machines where each state points to the correspondence part of the connection e.g.
client/server response. Internet standards and specifications are not always complete,
covering each aspect of a protocol, and that’s a good starting point in order to produce
a detection model as it is easier to construct an error-free manipulation of the protocol
than starting from the bottom up and build the model based on misuse. Additionally
protocol anomaly detectors are capable of detecting new growing attacks based in

RFCs protocol violations without being update in contrast to signature-based IDSs

31

which they need frequently updates in order to identify and detect such attacks [12,
32, and 61].

Ot‘ﬁcm
Protocal
Definition :

Practical
Protocol
Usage

Attacks

Attacks detected by

Protocol Anomaly Filters

Figure 9 Protocol anomaly detection [32]

The update frequency of protocol anomaly detectors is far more less than the updates
in signature-based systems since new protocols, enhancements on existing protocols
as well as protocol extensions will be added to the IDS in a form of protocol state
machine. Another benefit of protocol anomaly detectors which makes them to vary
from traditional intrusion detection systems is the way that alarms are presented to the
system operator and that is achieved by describing the particular part of the state
machine that was violated, which requires expert knowledge of protocol design. A
well planned and developed protocol detector uses fewer rules to depict normal
behavior which increases the bandwidth of operation leading to efficiency and
effectiveness [12, 32, and 61].

Some attacks can be distinguished by parsing IP packets as such an attempts of
bypassing a packet filter can be observed by examining the fragment offset fields of
each IP fragments. Other attacks infringe over multiple packets or decoded without
affecting the actual protocol, e.g. a DNS query is linked to a certain host. Additionally
in an insertion attack the attacker transmits HT TP requests puddling its contents with
extra data to the IDS resulting the request to seem harmless. In an evasion attack the

attacker transmits segments of the same request in packets that erroneously will be

32

rejected by the IDS, allowing to remove parts of the flow from the intrusion detection
system’s view, e.g. transforming the original request to “GET /gin/f” which is

something unknown to the majority of intrusion detection systems [29].

Token Attribute Token Attribute

t master+thesis+2008]
keyword
T

t “+exec+master..xp_cmdshelli*tftp -i badhost.com
keyword get backdoor.exe c:/windows/system32/calc.exe’j+——
T
LN LY e b
I
t . gzip t A
Accept—Encodin; Accept—Encoding

Figure 10 HTTP insertion attack [43]

End-Systein Network Monftor |

Sees "ATTACK" Secs "TATHATACK"

|A|T r||a||c| (x| {|a|[z]||x]|[z]|[a]||c]||K

Accepred by Mondlor

Rt (7| (x| (7| [c||a]|a][x
hyhnd;{aysmn:

Anacker's Data Stream

Figure 11 Insertion-evasion attack [29]

There are many ways that an attacker can manipulate an IP packet that IDS will accept, some
of these are:

e Manipulation of the IP datagram header field.

e Corrupt checksum

e Incorrect TTL field

e Incorrect “Don’t Fragment” flag in the IP header

e Existence of portions of shellcode in unexpected protocol fields

33

An insertion attack has similar consequences for the link-layer addressing as an
attacker that is located on the same LAN as the network monitor does, can direct link
layer frames to the IDS, hiding the host specified as the IP destination to see the
packet, unless the IDS checks the MAC address on the received packet [29].

| 10.0.0.1/ AB:AD:CA:FE00:01 100.02/ AB:AD:CAFE00:00 |
md—su\smm ATTACK : ; ATTXA.CK monftor \
' Ethernet

Sentto 10.0.0.1 at Sent o 1000.0.1 ar
Ethernet attacker | Emernet
AB:AD:CA:FE:00:01 AB:AD:CA:FE:-00:00

A / T X A C K

Figure 12 Insertion attack on Link Layer [29]

3.1.2.2.2 Stateful Protocol Analysis Detection

Stateful protocol analysis (SPA) method which is similar to anomaly-based detection
is the process of correlating predetermined profiles of benign protocol activity for
each protocol state according to the protocol standards against observed events to
identify abnormality. Stateful protocol analysis relies mainly on vendor developed
universal profiles that are defined with the rules of protocol functionality, in contrast
to anomaly-based detection that utilizes host or network specific profiles. With this
method the intrusion detection system is capable of maintaining track for both
network and application layers. The TCP protocol specification (RFC793 [55])
describes several “states” that are included in any given connection. It is critically
important to pair requests with responses in order to understand fully the operation of
the “states”. In case of an authentication, the initial connection state is in an
“unauthorized state” in which only a few commands may executed. After an exchange
of some more information between the client and the server the user gets

authenticated and any executed commands are considered legit.

34

Stateful protocol analysis method is capable of identifying sudden recurrence of
commands by performing a protocol analysis to the length of the arguments of the
given command as well as when dealing with protocols that perform authentication,
the intrusion detection system collects trails both of the authenticator used for each
session and the authenticator for malicious activity. SPA method uses protocol
profiles according to the standards and any variations implemented by the vendor’s
e.g. proprietary protocols which normally include incomplete specifications would
cause inconvenience to the IDS in detecting and analyzing the states.

syn+ack

Figure 13 Stateful protocol analysis [38]

However stateful protocols analysis are not perfect as they have several drawbacks.
Both complexity of the analysis and state tracking incorporating concurrent sessions
are causing to be resource consuming. Moreover SPA are incapable of detecting
attacks that do not violate the characteristics protocol behavior, that is to say recurrent
legit actions in a specific time period to cause denial of service and also identification
of possible conflicts between standards and the way that are implemented is
impossible [49, 44].

3.1.2.2.3 Statistical Anomaly Detection
As DoS and DDoS attacks produce a blast of abnormal traffic, normal traffic profiles

are created based on statistical methodologies (Naive Bayes) to detect anomalous

35

packets. Statistical modeling is based on estimating the probability value for each of
the data packets that is considered normal traffic by using sampled data over a time
frequency and stored in the normal profile that previously created. By the time the
IDS is monitoring, the captured data are checked against the normal profile and a
lower limit that is set for each group of protocols and users. An alert sets off when an
abnormal packet is detected and the computed probability value is above the lower
limit. Threshold can be defined for several profiles, protocols and users. Benefits of
using statistical anomaly detection include: detection of unknown attacks, prevention
of DoS attacks and buffer overflows. However the main drawback of this anomaly
detection system is defining normal traffic while creating a baseline as normal traffic
should be unaffected of any malicious activity over the network e.g. reconnaissance
attacks. Also statistical anomaly systems are prone to false positives as well as longer

time is spend in detection [44].

3.2 Advance Persistent Threats vs Advance Volatile Threats

An advanced persistent threat (APT) is developed to gain access to a network,
acquire information and stealthily monitor the targeted system for a long period of
time while an advanced volatile threat (AVT) uses a stealthier method vector when
comparing to an APT, as it is an attack that points on memory only, meaning that no
trails of the attack are available once the computer shut down. Even though advanced
volatile threat is not a new defined threat as its existence as a malware for long time
was widely known, it poses an extra caution for network systems. Mainly it is based
on a drive-by download method and points RAM memory only making it a real time
attack. AVTs are acting exactly the opposite way that an APT attack acts but there
limitation is its existence which is no more than one day. A drive-by download
technique is a loath download of malicious code unlikely without the need of the user
as most cyber-attacks, that takes advantage of the targeted system applications, O/S or

even web browser that contains security flaws.

3.2.1 Fundamental components of an APT
In order to decipher the full concept of an advanced persistent threat it is essential to
dissever the term APT into its fundamental components reinforcing a definite number

of clarifications around APTs [13].

36

Advanced: what qualifies a threat advanced is more their approach rather than the

malcode that is consumed while in an APT burst. Additional a sufficient amount of

these malwares overlap or exist as a part of a stealthy acted malware that is in full

transmission.

Some of the most multifaceted malwares are described in the Figure 14 APT

classification [13] below including malformed binary based APT’s, variants, tools,

utilities, frameworks and associated malware technologies.

NO # MALWARE FORM/TECHNOLOGICAL CLASSIFICATION

1

Stuxnet, Titan Rain, BlackShades, Operation Aurora, Red-headed Botnet, Tiger, Flame, Web-Sorrow,
Cythosia, Pony, Umbra, BadBIOS, AirHopper, Vertex Net and Andromeda

RAT (Remote Administration Tools) based Trojan Horses such as GhostNet/GhostRAT, CyberGhost,
XtremeRat, DarkComet Legacy, LokiRAT, Paradox RAT, Cybergate, Spy-iNet and Omegle Spreader etc.

Custom made Zeus Botnet (FUD iterations based Bot-Armies)

Embedded DDoS (Distributed Denial of Service) tools such as Anonymous LOIC or HOIC (Low Orbit lon
Canon/High Orbit lon Canon) with Stealth TCP Host Boosters/Booters such as Rage, Jays, JeeJee, Knoflict,
KyleFYl, Ligion, Tyler, Wormf00d, Atomic, GBooter XBL, NetWeave, Slowloris, Seizure, and TDS etc.

RDoS (Reflected Denial of Service) like Traffic Tornado/Twister or Bogus/Error RAW TCP Mass Traffic
Flooding Malware etc.

Storm enabled austerely innovative malware such as DaRKDDoSeR, AnonDDOS and Optima 10-Darkness etc.

Serious attack vectors such as The Red-Headed-League etc.

Numerous custom made Public/Private Exploit Kits/Systems are PWN Toolkits and Shellcode Kits such as
Blackhole, Bleeding Life, winAUTOPWN, Crimeware Pack, Ice Pack Platinum, Luiz Eleonore Exp, Firepack,
Infector, Mpack, Multisploit, 0x88, Phoenix, Unique Pack, QUANTUM-X Tools, Roblox, Fiesta, Angler and
APT28/Sofacy Toolset etc.

Mass Online Game Bots such as Evil Warcraft/Minecraft, Xeno, WarCrawler Premium and HearthCrawler etc.

The Speckled-Band, The Blue-Carbuncle and Bohemian-Scandal etc.

DarkHotel, DragonFly, GAV: Poweliks.CCL, Turla, Carberp, Crouching Yeti, Carbanak, and The Cozyduke etc.

Citadel, CozyBear, Energetic Bear, CozyCar, Havex Trojan, Office Monkeys, CosmicDuke, DeputyDog,
OnionDuke and CDorked.A is an AVT (Advanced Volatile Threat) etc.

MiniDuke, Project Elderwood, ClientX Backdoor, Selarbot, Sysmain Trojan, Phasebot, Karagany, Night
Dragon, Watering Hole and Trojan.Poweliks as Fileless Malware Form etc.

Well-known APT Groups are Naikon, Hellsing, PlayfullDragon (aka “GREF”), APT 18, EQUATION Group,
Mirage (aka "Vixen Panda”) Group etc.

NSA's well-known/exposed exploits and toolsets for the persistent communication such as FeedTrough,
DropOQutJeep, IronChef, DietyBounce, GodSurge, HeadWater, SchoolMontana, HowlerMonkey, JuniorMint,
Ginsu, WistfulToll, SomberKnave, Swap, IrateMonk, Maestro-II, CottonMouth-I/1I/1ll, FoxAcid, GopherSet,
GourmetTrough, HalluxWater, JetPlow, MonkeyCalendar, Picasso, SierraMontana, StuccoMontana,
SouffleTrough and ToteGhostly etc.

Figure 14 APT classification [13]

In the world of APTs, the above mentioned bursts constitute the most versatile,

outstanding and vital threats forming the term “advanced” deriving more from the

outline and execution of campaign including the ability of the intruder to access the

resources rather than the intelligence level of the code to be executed. Additional

activities such as the inheritance of the intruder’s observation to its victim, the ethical

social engineering techniques which are intended to divert and elude local defense

systems, along with the consistent and stealthy approaches they utilize contribute to

37

the term of an advanced intimidation. An APT has the ability to disable the host
machines from being tracked throughout the network with remote exploits and
moreover to acquire credentials of the infected system effortlessly as mostly it cannot
be identified with ease since it exists in stealthy mode (monitor and wait).

Persistent: Persistency of an APT is the reason for causing most damage as most
organizations will prevent and defend such attacks for a limited period of time, or
until they feel that the threat has been eliminated, but that’s the most critical time for
an intruder to act since the attacker will take advantage of the identified
vulnerabilities of the system in both protocols and applications, turning the game to be
both frustrating and exciting [9]. The destruction of solitary intruder activities is
almost impossible to terminate the campaign, as a series of concurrently malformed

activities will take place in order to accomplish their objective.

Threat: Threat can be disastrous either for short-term profitability, or aims to
destructive completely an organization or influencing its long-term success.
Traditional threats which are more foreseeable on their target are typically an essence
of gradation in contrast with APT threats that are stealthy and aiming on critical data
and information, rather than unambiguous differences. Sometimes it is complicated to
discern how advanced the adversary can be, even though they use exploits, rootkits,

bots, Trojans or complementary malware to share or disseminate their emission.

Since the term “advanced” does not rely upon intelligent technical skills, the main
characteristics of an APT hacker focuses on: appropriate preparation, persistency in
planning and exploiting, social omniscience, effectiveness, elegance, out-of-the-box
thinking, utilization of exploitless exploits, extensively gathering of information and
distractions [59].

download information i =

Command & control = Cannot be viewed
Server £

3.Send out an electronic file Excell”
Personal information file

Figure 15 APT-attack [4]

38

3.2.2 Behind the scenes of an Advance Persistent Threat

The State Sponsored APT (SSAPT): constitutes several authoritative global military
and intelligence organizations including air, space, sea, land and primarily
cyberspace. Most intelligent agencies launch an asymmetric digital warfare to test

their strength of digital defenses against advanced persistent threats [13, 9].

The term “state” has many differences in international relations theory, from the terms
country, nation and nation-state as these terms are used interchangeably. Additionally
the term “nation-state” even though it sounds elegant it is different from term
“country” in that many nation-states do not act on behalf of their people to protect
their interests. The term “country” constitutes the people of the country while nation-
state is the organization controlling that country e.g. Taiwan and Hong Kong [50, 51]

are currently their own nation-state but controlled under different country [13, 24].

Nation-state actors are tracked utilizing well known indicators (normally kept private
within relevant security firms or organizations), of compromise such as domain names
(DGA) [8] and IP addresses that normally used in spy-phishing URL’s, post
compromise for command-and-control (C2 or C&C), malware sample hashes or
actor-specific detection rules such as YARA, Snort or Netwitness. Google is involved
in many aspects of security research and threat intelligence collections in that many of
these indicators can be accessible when appropriate. The majority of these indicators
have the ability to detect both untargeted and targeted compromises that include a vast
number of targets while just a few of them are able to detect well-crafted spear

phishing by a nation-state actor [13, 9, 24].

The Criminal APT (CAPT): Contradicting to non-state actors, techno-criminals are
aiming to monetary attacks by utilizing several variants and autonomous techniques
such as unlawful hacker-net, illicit Bitcoin networks, deep Dark-Nets, and TOR
accumulating data by infecting targets. Nations may employ such agents in particular

when needed their actors to be stealthy [13, 3]:

o0 Individuals: Script Kiddies, Malware Authors , Scammers, Blackhats,
Hacktivists, Patriotic Hackers

o0 Corporations: Northrop Grumman, Lockheed Martin, TASC, Raytheon

o0 Cyber Terrorists

0 Autonomous actors: exploratory systems, attack systems, defensive systems

39

3.2.3 Advance Volatile Threat (AVT)

In contradiction to an APT, advanced volatile threats are stealthier as they are
designed that way to keep low profile, to be slow and persist in the network for very
long time despite their limitations. An AVT also known as a fileless malware is one of
the techniques that a malware uses in order to avoid analysis protecting that way the
intruder’s identity. An easy exploitation tool that is included in the Metasploit
Framework, allows developers to design their custom dll files that can be injected into
a running process. Therefore no files are injected into the hard drive, as this technique

aims only to process memory making it even more difficult to be detected [37, 13, 4].

Additionally existing detecting strategies that incorporate signature detection, pattern-
analysis, and time stamping and other techniques are incapable of identifying such
malware. However threat hunters utilize several anomaly based methods including
statistical detection, density-based anomaly detection, clustering-based anomaly
detection, machine-based anomaly and behavior anomaly detection techniques in
order to identify and eliminate this kind of malware attacks [26]. However this is not a

new malware, in fact it is an existing old malware with new term.

Advanced volatile threat bursts predicate expertise in coding or evade, and hitherto
AVT has been remarkably intermittent. As Figure 16 Fileless malware [21] below
describes once the dll file is executed, disguise themselves in the pre-allocated RAM
area, dissemble from anti-malware detection software and system administrators, and
change to an actively socket from which the additional activities can be launched.
Nowadays fileless techniques are a major component of every cybercrime and nation-
state group’s arsenal as it poses one of the most hazardous threats in every industry
[39].

40

Process

Malware

Create suspend

Process

Malware

Allocated space for code

Malware Process

Malware Process

- — _
—_—

Malware Process

Resume thread
———

Figure 16 Fileless malware [21]

3.2.3.1 Fileless Techniques
The main fileless techniques that are used by many malware variations are divided
into three categories [37]:

e Windows registry manipulation: the fileless code is written and deployed
directly from the registry by a normal Windows process, that way several
advantages are achieved.

e Memory code injection: the malware becomes an inherent part of the process
memory, while several processes are executed by the system, that way it will
transform its existence in many ways without being noticed by the system.

Payload: includes paired tools (Netsh and PsExec), memory only tools (Mirai and
DDoS) and non-PE file payloads (PowerShell scripts).

3.2.3.2 Examples of Fileless command lines
Ex.1:

Malware name: Emotet [53]
Executing process(es): “Cmd.exe”

Fully\Partially deobfuscated command-lines: “set-item ('variable:skeail") ([type](

‘environment')) ; (.('Is") (‘contextexecutionvariable')

41

).value.invokecommand.(‘invokescript').invoke((

${skeail}::(‘getenvironmentvariable").invoke('diy’,('process'))))”

Regular Expression for detection:
“N?=.\bRuntIME\.InteroPSERVICESs\.marshAl\b)(?=.*\bGeTMEmMbERS()\b)(?=.*\b
SeCureSTrINg\b)(?=.*\bTOStrIng\b)(?=.*\bjoln\b).*$>

Ex.2:

Malware name: Kovter [54]
Executing process(es): “Mshta.exe”

Malicious command-lines:
“javascript:d7hcQ4a="vn";n0a=new%20ActiveXObject("WScript.Shell");Rtf7j="HI
Pc"; X18ycl=n0a.RegRead("HKCU\\software\\tN32795\74gjfzcsfl");jM5IV6m="QJ";
eval(X18ycl);XlaLOuze="1YuLz1lvG"”

Regular Expression for detection:

“n(?=.*\bjavascript:\b) (?=.*\bWScript\.Shel I\b) (?=.*\bRegRead\b) (?=.*
\beval\b) .*$”

Malware name: Phase Bot [34]

Executing process(es): “Rundll32.exe”

Malicious command lines: “javascript:”..mshtml,RunHTMLApplication
“;eval((new%20ActiveXObject(*“WScript.Shell’”)).RegRead(“HKCUSoftwareMicroso
ftActive%20Setuplinstalled%20Components{72507C54-3577-4830-815B-
310007F6135A}JavaScript™));close();”

Regular Expression for detection:
“N(?=.*\bjavascript\b)(?=.*\bRunHTMLApplication\b)(?=.*\bWScript\.Shell\b) (?=.*\
bRegRead\b)(?=.*\bHKCUSoftwareMicrosoftActive\b).*$>

3.3 The Zeek platform

Zeek is often described as an intrusion detection system which is neither wrong nor an
accurate description. Alternatively it can be described as a development platform for
network monitoring applications. It is equipped with a substantial out-of-the-box
functionality for decoding and logging network traffic and provides an event-driven

development model that allows to identify certain types of transactions as well as a

42

highly stateful Domain Specific Language (DSL) for developing custom scripts and
deploy them when needed. Zeek’s scripting language that is also called “Zeek” offers
several features that are extraordinarily beneficial for protocol analysis. Zeek differs
from a signature-based IDS system like Snort or Suricata even though it can be used
as a complementary approach. It is often the best option regarding complex tasks, like
the ones that require high-level protocol knowledge and understanding, multiple
cross-network flows or using custom algorithm to identify a specific malicious
activity in the traffic. One of its main benefits is that it inherently is aware of all of the
common and uncommon network protocols, even if they are exposed on non-standard
ports, by utilizing one its features called Dynamic Protocol Detection (DPD). Some of
the supported application and tunneling protocols are: DHCP, DNS, FTP, SMTP,
SOCKS, SSH, SSL, GTPv1 and others [48, 20].

£z)
Packet Processing Layer

Aggregator

v

Load Balancing

2 ¥ LS

//\\

Event Engtne

v v v

Policy Script Interpreter

Figure 17 Zeek architecture [7]

Zeek has been chosen for its benefits in analyzing in depth, because it is an open-
source popular tool and it is widely used by security experts. As Figure 17 Zeek

architecture [7] above describes Zeek consists of 3 main parts [7]:

e Packet processing layer:
0 Required knowledge of higher layers
o0 Can be both hardware and software

0 Passes data to upper layers depending the configuration (policy)

43

o0 Inmost instances current layer represent an external device or software
stack
e Event engine (Zeek Core):
o Dynamic Protocol Detection (DPD)
0 Generates “Events” to be processed
e Policy script interpreter:
o0 Acts on Events
0 Zeek stateful Domain Specific Language
0 Pre-build frameworks and protocol analyzers
o]

Is included in basic policies that provide logging

Also Zeek is capable of supporting larger networks as Figure 18 Zeek Clustering [7]
below describes. Packet processing layer allocates the data in order for the load to be
distributed to worker nodes. This way smaller stream of data are consumed,
eliminating high load. The several tools and scripts that come along with Zeek
provide the framework to deal with multiple Zeek processes, including examination of

packets and correlation activities, while acting as single entity [15].

Intarnet Tap Local Network

Frontend

Wiorker

Worker | -

AN

Wiorker

— = Packets ﬁ
—» Logs
+-----+ State User

Figure 18 Zeek Clustering [7]

44

: . Client Server
li hell ; -
| clienthello ~, GiientHello._|

 server_hello

I {extenslons). | Server Hello ‘4 (extensions) -
| Certificate b-| x509_" events |

Certificate Status !—>| ss|_stapled_ocsp |

| server Key Exchange & ssl_server_curve

__Certificate Request__| | =ston serer_params |
Server Hello Done Y s nandsnaxe message
| x509_* events || Certificate |

[s nansarake messaze |- Client Key Exchange

ssl_handshake_message !'-1 Certificate Verify
[WIH Change Cipher Sé;]
| ssi_encrypted data = ini

N W, |. Tj 1 | =l ;e.ssim fickeat_
| Change Cipher Spec [+| = e coter sees
' Finished del s

T

- = = \ ssl_encrypled_data
Es_'lcrylpled ap.pli!caul on }-i. ssl_encrypted_data]

Extension events:
ssl_extension
| ssl_extension_elliptic_curves
| ssl_extension_ec_point_formats
I ssl_extension_application_layer_protocol_negotiation

ssl_extension_server_name |
|

[Legend:)) _
e ‘ All | Handshake messages | also trl_gger . Shondshoie mesnane
| Handshake messags All | Encrypted messages,| also trigger | ssi_encrypled_data |
| Other messages Alert (client or server) triggers| _ ssl_alert
| Encrypted message.| | Heartbeat (client or server) triggers | ssl_heartbeat |

Figure 19 Zeek SSL Protocol analyzer [60]

Network traffic that uses an application protocol is logged automatically by Zeek,
treating the actions taken by the protocol as a series of events, while several
mechanisms for creating custom scripts are available. Security expert also have the
ability to use multiple custom scripts for the same event while the same protocol is
inspected for various types of behavior [48].

3.3.1 Zeek Administration

ZeekControl is a handy interactive shell as it is described in Figure 20 ZeekControl shell
that is used to configure and manage the entire Zeek framework. ZeekControl helps in
achieving several tasks including: Start an instance of Zeek and check whether is
executing, activate nodes and interfaces, packet statistics, list all Zeek active
processes, identify type of current Zeek instance, stop Zeek and exit ZeekControl
[18].

45

[BroControl] > restart --clean

stopping ...

bro not running

cleaning up ...

checking configurations ...

installing ...

removing old policies in /nsm/bro/spool/installed-scripts-do-not-touch/site ...
removing old policies in /nsm/bro/spool/installed-scripts-do-not-touch/auto ...
creating policy directories ...

installing site policies ...
generating standalone-layout.bro ...
generating local-networks.bro ...
i broctl-config.bro ...
broctl-config.sh ...

starting bro ...
[BroControl] > netstats

bro: 1557079392.084012 recvd=852 dropped=0 1link=852
[BroControl] =

Figure 20 ZeekControl shell

Moreover from Zeekctl.log email option can be specified as it can be seen from Figure
21 ZeekControl configuration file.

il

File Edit View Text Document Mavigation Help

[## Global BroControl configuration file.

Mail Options

Recipient address for all emails sent out by Bro and BroControl.
MailTo = root@localhost

Mail connection summary reports each log rotation interval. A value of 1
means mail connection summaries, and a value of 0 means do not mail

connection summaries. This option has no effect if the trace-summary

script is not available.

MailConnectionSummary = 1

Lower threshold (in percentage of disk space) for space available on the
disk that holds SpoolDir. If less space is available, "broctl cron" starts
sending out warning emails. A value of 0 disables this feature.
MinDiskSpace = 5

Send mail when "broctl cron" notices the availability of a host in the

cluster to have changed. A value of 1 means send mail when a host status
changes, and a value of 0@ means do not send mail.

MailHostUpDown = 1

Logging Options
Rotation interval in seconds for log files on manager (or standalone) node.

A value of B disables log rotation.
LogRotationInterval = 3600

Expiration interval for log files in LogDir. Files older than this many days
will be deleted upon running “"broctl cron". A value of O means that logs
Filetype: None | Line: 1 Column: 0

Figure 21 ZeekControl configuration file

3.3.2 Log Files
Logs are accessible via path /nsm/Zeek/current/ in a human readable format (ASCII)
and captured data are organized in columns. Several log files are included in the

directory some of them are:

e http.log : contains results of Zeek HTTP protocol analysis

e Conn.log: contains data for every connection identified through the wire. This
log provides a complete memo of the network’s activity.

e Notice.log: contains specific activities that identified to be possible interesting.

e Loaded_scripts.log: contains all the Zeek scripts loaded during startup.

46

Other logs are also created during run time, including logs on protocol and services
specific:

e Conn-summary.log: including post processing connection summaries

e Communications.log: including data between remote and central instances

e Known_hosts.log: including hosts successful TCP handshakes.

e Reporter.log: containing warnings and errors

e Dns.log: containing DNS queries

e Software.log: containing known and identified software detected from

protocol analyzers.

e Weird.log: containing odd protocol behavior

loaded_scripts.13:49:40-13:52:33.log - Mousepad
File Edit WView Text Document MNavigation Help

#separator \x09
#set separator .
#empty field (empty)
#unset_ field =
#path loaded scripts
#open 2018-03-02-13-49-40
#fields name
#types string
Jfopt/bro/share/bro/base/sinit-bare.bro
fopt/bro/share/bro/base/bif/const.bif.bro
Jfopt/bro/sshare/bro/base/bif/types.bif.bro
fopt/bro/share/bro/base/bif/strings.bif.bro
fopt/bro/share/bro/base/bif/bro.bif.bro
fopt/bro/share/bro/base/bif/reporter._bif.bro
fopt/bro/share/bro/base/bif/plugins/Bro SNMP.types.bif.bro
fopt/bro/share/bro/base/bif/plugins/Bro KRB.types.bif.bro
fopt/bro/share/bro/base/bif/event.bif.bro
Jfopt/bro/share/bro/base/frameworks/broker/ load .bro
Jopt/bro/share/bro/base/frameworks/broker/main.bro
fopt/bro/share/bro/base/bif/comm.bif.bro
/opt/bro/share/bro/base/bif/messaging.bif.bro
fopt/bro/share/bro/base/frameworks/broker/store.bro
Jopt/bro/share/bro/base/sbif/data.bif.bro
Jfopt/bro/share/bro/base/sbif/store.bif.bro
fopt/bro/share/bro/base/frameworks/logging/ load .bro
Jopt/bro/share/bro/base/frameworks/logging/main.bro
fopt/bro/share/bro/basesbif/logging.bif.bro
/opt/bro/share/bro/base/frameworks/logging/postprocessors/__load__ .bro
Jopt/bro/share/bro/base/frameworks/logging/postprocessors/scp.bro
Jopt/bro/share/bro/base/frameworks/logging/postprocessors/sftp.bro
/fopt/bro/share/bro/base/frameworks/logging/writers/ascii.bro
/Jopt/bro/sshare/bro/base/frameworks/logging/writers/sglite.bro
Jopt/bro/share/bro/base/frameworks/logging/writers/none.bro
Filetype: None | Line: 1 Column: O

Figure 22 Loaded scripts log

A full list of Zeek logs can be found in Appendix A.

3.3.3 Zeek Scripting Language

Zeek scripting language is an asset of Zeek platform as its functionality can be
customized depending the organization needs. It is an extensive scripting language
that is both flexible and powerful while notice policies issue notifications upon an

event that need specific actions to be taken such as alerting to the SIEM framework.

Zeek scripting language supports the following data types:

Name Description
bool Boolean
count, int, double Numeric types

47

time, interval Time types

string String

pattern Regular expression

port, addr, subnet Network types

enum Enumeration (user-defined type)

table, set, vector, record Container types

function, event, hook Executable types

file File type (only for writing)

opaque Opaque type (for some built-in functions)
any Any type (for functions or containers)

Table 2 Data types

Some worth mentioning operators include the following:

Name Syntax Notes
Evaluates to a boolean,
Exact matching p==s indicating if the entire string

exactly matches the pattern.
Evaluates to a boolean,
Embedded matching pins indicating if pattern is found
somewhere in the string.
Evaluates to a pattern that
Conjunction pl & p2 represents matching pl
followed by p2.

Evaluates to a pattern that
represents matching p1 or p2.

Disjunction pl | p2

Table 3 Pattern operators

The “as’ operator performs type casting, while the “is’ operator checks whether a type
cast is supported or not. For both operators, the first operand identifies the value and

the second operand is the name of a Zeek script type.

Name Syntax Notes

“, n

Cast value “v” into type “t”.
Evaluates to the value
casted to the specified type.
If this is not a supported
cast, then a runtime error is
triggered.

Type cast vast

Evaluates to boolean. If
Check if a cast is supported | vist true, then “v as t” would
succeed.

Table 4 Type casting operator

As an example Figure 23 Type casting example below, the function tries to cast a value
to a string:

48

w

File Edit View Selection Find Packages Help

titled [+] untitled]

function example(a: any)

local s: string;

if {(a is string)
s = (a as string);

Figure 23 Type casting example

3.3.3.1 Monitoring traffic use cases

Zeek’s ability is to detect the any protocol from the network traffic either live traffic

or captured events that will be used for analysis and auditing purposes [17].

Proxy server: is configured that way to request services on behalf of third
systems, such as a Web server. Proxies were designed with the aim to manage
a network and provide better encapsulation. Proxies are declared as threats
when lack of proper configuration, as they can ease compromised by intruders

in order to conduct malicious activities.

Request: GET http://www.bro.org/ HTTR/1.1
Reply: HTTP/1.8 288 OK

Figure 24 Proxy GET request and reply

Then a Zeek in script language can be composed to handle such requests like
the example in Figure 25 http_proxy.Zeek script. The script checks for a “200
OK” and other replies as well since not only “200 OK” is a success status
code. Lines 1 and 3 are simply used to declare that proxy is part of the local
network. A common entry in Zeek scripts is the “redef” operator, which
allows to add a value on an already defined variable. Line 2 allows to generate
an alert when an open proxy has been detected while a new notification has

been defined (lines 10-12) to alert all tagged communications.

49

1 @load basefutils/site
- @load base/frameworks/notice
=
4 redef Site::local nets += { 192.168.8.8/16 };
s
5 module HTTP;
7
s export {
a
1@ redef enum Notice::Type += {
11 Open_Proxy
1z T
13
14 global success_status_codes: set[count] = {
15 288,
16 281,
17 2e2,
18 283,
19 284,
ze zes,
21 286,
22 287,
23 288,
24 226,
25 seq
26 8
27 3
28
za event http_reply(c: connection, wversion: string, code:
EL-
31 if (Site::is_local_addr(cidSresp_h) &%
32 SALRHICETICETIEPP]:/ in cS$http$uri &&
33 cEhttpSstatus_code in HTTP:
34 NOTICE([Snote-HTTP: ::0Open_Proxy,
35
36 ciid$resp_h),
37 Sconn=c,
38 Sidentifier—cat(cSidEresp_hl,
EE Ssuppress_for=1day1)};
4 T

count, reasen: string)

:success_status_codes)

Smsg=Fmt("A local server is acting as an open proxy: Xs",

Figure 25 http_proxy.Zeek script

Executing http_proxy.Zeek will produce a notice.log as it can be seen in

Figure 26 http proxy output while an e-mail can also be sent if configured.

$ bro
% cat notice.log
#separator \x89
#zet_separator
#empty_field
#unset_field

#path notice
#open 2818-12-
#fields ts
#types time
1389654456 . 44096835
#close 2818-12-

-r http/proxy.pcap http_proxy_@4.bro

]

{empty)

13-22-56-39

uid id.orig h id.orig p
string addr port addr port
CHhAWVGES1DHF jwaM9 152.168.56.1

13-22-56-48

Figure 26 http proxy output

id.resp_h id.resp_p fuid
string string string enum enum
52679 192.168.56.181 B8&

File inspection: Zeek is also able to monitor files that are transmitted through

the network, as most of these files turn to be malicious, normally image files,

but other than that has the ability to monitor also executable files, which are

really dangerous for the system.

50

1 global mime_to_ext: table[string] of string = {
2 ["application/x-dosexec”™] = "exe",

3 ["text/plain"™] = ""txt",

4 ["image/jpeg”] = "Jpg".

5 E"image/png™] = "prng”.

& [“text/html”] = “html",

7 ¥s

8

=] event file sniff(F: Fa_+ile, meta: Ffa_metadata)
10 I

11 if { FHsource 1= "HTTP" }

12 return;

i3

14 if { ! meta$mime_type)

15 return;

16

17 if (metafmime_type !in mime_to_ext)
18 return;

19

28 local fname = Ffmt("¥=s-%s.H=", FEsource, F%id, mime_to_ext[metatmime_type]l);
21 print fmt({"Extracting file %s", Ffname);
22 Files::add_analvzer{f, Files::ANALYZER_EXTRACT,
23 ¥

Figure 27 File extraction

[Fextract_+Ffilename=Ffname]);

In lines 1-7 the created table serves two purposes, firstly defines the mime

types to extract and secondly defines the file suffix of the extracted files. In

order to keep this script general and monitor files other than HTTP protocol

behavior, the first conditional (fa_file) in the event handler can be removed.

% bro -r bro.org.pcap file_extraction.bro
Extracting file HTTP-FiIpIB2hRQSDEOSIRE.html
Extracting file HTTP-FMG4bMmVVE4e0sCh.txt
Extracting file HTTP-FnaT2a3UDd®93opCBY.txt
Extracting file HTTP-FfQagqj4Fhh3pH7nVQ].txt
Extracting file HTTP-FsvATFl46kflEmc21j.txt
[+00]

Figure 28 File inspection execution

3.3.3.2 Detecting attacks and notification

Zeek can be configured to act like a normal IDS in order to detect attacks with well-

known patterns, as well as unknown patterns due to its programming capabilities.

Additionally custom scripts can me designed that meet organization needs. As it is

described in Figure 29 Detect FTP Bruteforcing below, a host bruteforcing FTP is

indicated by monitoring several rejected username of passwords. Following there is a

threshold definition for the number of unsuccessful attempts, a monitoring interval

and a new notice type.

51

module FTP;

export {
redef enum Notice::Type += {
Indicates g host bruteforcing FTP Logins by tching for too
BE 0 rejected 5
Bruteforcing
i
How many rejected usernames or passwords ore required before being

considered to be bruteforcing.

const bruteforce_threshold: double = 28 &redef;

! in which the threshold needs to be crossed before

const bruteforce_measurement_interval = 15mins &redef;
.
i

Figure 29 Detect FTP Bruteforcing

The “ftp_reply” event is then used to check the error codes from the 500 event series
from the FTP (Permanent Negative Completion reply) both for “USER” and “PASS”
that represent rejected usernames and password. In order for this to be achieved the
following function “FTP::parse_ftp_reply_code” is used, breaking down the reply
code, while checking if the first digit has the value “5”, where if it true the summary

statistics framework is used to keep the number of failed attempts.

event Ftp_reply(c: connection, code: count, msg: string, cont_resp: bool)

{
local cmd = cSFtpScmdargdcmd;
if (cmd == “USER" || cmd == "PASS™)

1
if (FTP::parse ftp reply code(code)Ix == 5)

SumStats::observe("ftp.failed_auth", [$host=c$idforig h], [$str=cat(c$idPresp h)1);
1

Figure 30 FTP bruteforcing reply event

As it can be seen in Figure 31 SumStats Framework below, the statistics framework
raises a notice of the attack when the number of unsuccessful attempts exceeds the

previously specified threshold.

52

) untitled — Atom

File

w0 @

B o®

]

Edit View Selection Find
untitied -]
event bro_init()
i

Packages Help

3 settings x

local ri1: SumStats::Reducer = [$stream="ftp.failed_auth",

$apply=set{SumStats::UNIQUE),
$unique_max=double_to_count(bruteforce_threshold+2)];
sumStats::create([$name="ftp-detect-bruteforcing”,
$epoch=bruteforce_measurement_interval,
$reducers=set(ri},
$threshold_wval(key: SumStats::Key, result: SumStats::Result) =
{

return result["ftp.failed_auth” Jfnum+@.8;
3
$threshold=bruteforce_threshold,
$threshold_crossed(key: SumStats::Key, result: SumStats::Result) =
{

local r = result["ftp.failed_auth"];
local dur = duration_to_mins_secs(rfend-rfbegin);

local plural =
local message =

]

r$unique>1 ? "s" : i

fmt{"%s had %d failed logins on %d FTP serwver¥s in %s", keyS$host, r$num, r$unique,
MNOTICE([$note=FTP: :Bruteforcing,
$src=keyfhost,
$msg=message,
$identifier=cat(key$host)]);
s

Figure 31 SumStats Framework

53

plural, dur);

4 Deploying Network Security Policy into an IDS

Nowadays networks and communications became even more complex, while many
corporations concern about their reputation against sophisticated attacks. Dissatisfied
employees, unethical corporations, terrorists or even nations utilize the internet as a
portal in order to acquire sensitive data and to compel both economic and political
upheavals. We are constantly intimidated with cyber events news: cybercrime is
grown, update your antivirus to avoid infections, new 0-day attack against
smartphones and social media compromisations. Whether the motivation of
cybercriminals are money or intellectual property, cyber threats have become more
sophisticated either by stealthily monitoring the target system or pointing to RAM
memory only. So there is a major need in making security today to be good. There are
several solution provided for this cause, one of them is an IDS, and the other one is a
combination of a network security policy with an IDS that is designed in Zeek in

order to detect threats and intrusions based on an anomaly detection mechanism.

This system will be deployed under a university network environment, monitoring

live traffic and identify any possible anomalies.

We are aiming to analyze these anomalies and develop patterns that will lead us to
design efficient and effective Zeek modules for a variety network traffic protocols and
applications. We are interesting in the following protocols and applications as part of

IHU university network security policy:

e Basic authentication and authentication through VPN connections
e Detection of Exploitkit and C&C behavior

e Malware detection

e Extract and Hash Files

e [ICMP Tunnel Attack

e Detection of Large Files transfer through the cable
e Logging of ARP Requests/Replies

e HTTP User Agent detection

e Track of SSH sessions

e Tunnel Attack

e UDP Scans and active response

e Detection of Unknown services on Known Ports

IHU university network security policy will be translates to Zeek scripting language

in order to detect anomalies through the network.

54

5 Security policy implementation and APT identification

5.1 Hierarchy of Policy scripts in Zeek platform

The hierarchy of produced scripts by default is under the following two paths
“Iusr/local/Zeek/policy” or “/usr/local/Zeek/site”. The policy scripts are implemented
using Zeek Scripting Language, a powerfull DSL.

Several Wireshark files have been produced in order to cover as much as possible the
IHU Security Policy. These captures files where created with Wireshark under certain
traffic circumstances. In order to test the policy scenarios with captured files the

following command syntax followed:
“Zeek —r tracefile scriptfile.Zeek”

In cases where these implemented scripts will be used for real situation, under live

network traffic the following syntax is used:

“Zeek —i scriptfile.Zeek”

5.1.1 Basic authentication and authentication through VPN connections

A simple approach on identifying basic Login/Logout authentication of users
connected to the network, as well as authentication of users that are connected
through VPN (Radius) connections. All authentication activities are logged into files,

and for the one we are interested a notice is raised.

55

function handle login(rec: Info)

{

}

for (authrecord in get users(recfendpoint)

{
handle logout {authrecord);
}
if (rec%success)
{
add entry{rec);
}

if { recSwvlan)

1

event Basichuth::vlan seen(rec);
}
recSaction = Login;

event BasicAuth::login seen(rec);

function handle logout(rec: Info)

{

}

recSaction = Logout;
event BasicRuth::logout seen(rec):;

Figure 32 Basic authentication sample code

)

For first time logged in users the system will save its IP address and username, but for

existing users it will check whether the host address is on the list with authenticated

IP addresses. As Figure 33 below describes, we can see the users logged in or out

defined by their names along with action (Login, Logout) and the service used.

Output Logs

basic_auth capture_loss conn known_services radius stats

ts action username endpoint.host endpoint.mac service

1240636718.341183 BasicAuth:-Login xuan - (empty) Network Access
1240636718.341183 BasicAuth:-Login xuan - (empty) Network Access
1249636718 341183 BasicAuthLogout xuan 2 (empty) Network Access
1240636701.852845 BasicAuth::Login pepe o (empty) Network Access
1240636791 852845 BasicAuthLogin pepe = (empty) Network Access

Figure 33 Basic authentication log

56

hardware_auth

F

b R 1 11 I 1

method

Radius

Radius

Radius

Radius

Radius

success mac

T

T | e

vian

- 4 4|4

event RADIUS::log radius(rec: RADIUS::Info)
{
if (rec?5username && rec?Smac)
{
local i = Info(5ts=rec$ts,
Susername=recSfusername,
$endpoint=Endpoint ($mac=recfmac),
S$service="Network Access",
Smethod="Radius") ;
if { rec$result == "failed")
iSsuccess = F;
handle login(i);

if ((! rec?Sremote_ip) || (! rec?5remote_cc))
return;
if { recSremote cc !in watched countries)
{ #return;

local username="-";
if (rec?%username)
username = recSusername;

local msg=fmt ("VPN login attempt from country %s for user '$s'", recSremote cc, username);
local identifier=cat (recSremote_ ip, username);

Call the NOTICE function
NOTICE ([$note=VPN Attempt,
Sid=recsSid,

Suid=rec$uid,
Smsg=msgq,
#Ssub=recSresult,

Figure 34 Log VPN authentication activity

= e e o e AR

Type of the notice
The connection ID
The connection UID
VPN login attempt from country %s for user '%
Additional info is the result of the attempt

Additional fields have been added to the Radius log file for identifying VLAN
activity. As it is described above in Figure 34 the script controls this activity by
identifying whether the connected user is legit or not, if its IP address and country
code are known, or whether remote country code exists in the list of watched
countries. The script also includes a functionality of identifying the country code
based of the detected IP. For simplicity reasons this is achieved through a set of
predefined strings and not through the GeolP mechanism, which demands connection
to a database but also other useful information about the host are provided (city,

latitude, longitude).

Output Logs

basic_auth capture_loss conn known_services radius stats
id.orig_h id.orig_p id.resp_h id.resp_p id.vlan id.vlan_inner username mac framed_addr remote_ip connect_info reply_msg result -
ILlarLkhd 172.30.166.3 1645 172.30.166.116 1812 - - xuan {empty) - - - - SUCCESS
:NgrepsJee 172.30.166.3 1645 172.30.166.116 1812 - - pepe (empty) - - - - failed

Figure 35 VPN authentication activity output

5.1.2 Detection of Exploit kit and C&C behavior

The following Zeek script is looking for exploit kits and C&C behavior that is hidden
in files. More precisely files like Java Applet, MS Word documents, XML and PDF
files are more vulnerable to be infected through their functionality e.g. Microsoft

Word documents that use macros in order to activate extended functionalities of the

57

document. The detection is achieved through tracking the source IP by using patterns

that indicate dynamic content.

event found data(f: fa_file, data: string)
{

if (dynamic content pattern in data)
{
if { logging)}
{

local rec: Info = [$ts=network time (),

Log: :write (LOG, rec);
¥
H
H

event file sniff(f: fa file, meta: fa metadata)
{

if (meta?$mime typs)
{
if (meta$mime type in exe file types)
{
for { cid in fSconns)

§

local s = ™"

S$fileuid=fS$id,

$matched data=datal:

if (fsconns[cid]Shttp?$current_entity && fSconns[cid]$httpScurrent_entity?$filename)

s = fmt ("Filename: %s", fSconns[cid]S$httpScurrent_entitySfilename);
if (cid$eorig h in monitored hosts)

{
local files = "";

for (fi in monitored hosts[cid$Sorig h]) { files += fmt("%s, ", fi):; }
[Sstream_eventhound_data]):
meta$mime type):

Files::add analyzer (f, Files::ANALYZER DATA EVENT,

local message = fmt ("Cs&C activity: %s%s", files,

NOTICE ([Snote=CandCkit::MaliciousDownloads,

}

Smsg=message,

$sub=s, Sconn=fSconns[cid]]}:;

if (f%conns([cid]l?$http && fSconns[cid]l$http?%user_agent && (strstr(f$conns[cid]$httpSuser_ age

{
message = fmt ("PE Download:

2s5m,
Files::add analyzer(f, Files::ANALYZER DATA EVENT,

meta$mime type);

NOTICE ([$note=CandCkit: : PEDownload, S$msg=—message,

}
}

if (cid$orig h !in monitored hosts)
monitored hosts([cidSorig hl = set();
add (monitored hosts[cidSorig h] [meta$mime typel);

Files::add analyzer (f, Files::ANALYZER EXTRACT,

}

if (meta$mime_type in exploit file types)

Figure 36 Sniffing files with a predefined pattern

[$stream_event:found_data]);

S$sub=s,

Sconn=fSconns[cid]l]) ;

[$stream event=found datal);

In this script, we are using content pattern mechanism in order to identify extended

functionality of a detected document, whether that is a pdf, a word document or an

executable as it is shown in Figure 38 below, that an xml file identified using the

highlighted pattern. Such files belong to a particular class of file types identified by

Multipurpose Internet Mail Extensions (MIME). Several scans of the identified files

take place such as: whether found file belongs to a set of predefined executable file

types or it is part of a set of exploit file types as it is described above in Figure 36.

Output Logs

m capture_loss conn dhcp dns files hitp known_certs Known_hosts Known_services notice

X509
ts fileuid
1258561592.346141 FyokTcimgF159aGA9
1258561662.003905 F151ma2Xup8zzWtlec

Figure 37 Identified 2 infected XML files

58

matched_data
<?xml version="1.0" encoding...

<?xml version="1.0" encoding...

smtp

Prev
Field Type Value
ts time
fileuid

Next Viewing record 1 of 2

1258561592 346141

string FyokTcjmgF1S9aGAQ

matched_data string <2xml version="1.0" encoding="UTF-8" standalone="yes"?>=w0dw0a=!—- XML file to be staged anywhere. and
pointed to by map.xml file —\x0dWx0a\x0dw0a<java-update='w0dx0ax0dx0a <information version="1.0"
xmilang="en"=w0d\x0a <caption=Java Update - Update Available=/caption=wx0dx0a <title>Java Update
Available=fitle>='w0dw0a <description=Java 6 Update 17 is ready to install. Click the Install button fo update Java
now. If you wish to update Java later, click the Later button. To get a FREE copy of OpenOffice.org, the global
standard in free, Microsoft compatible office productivity software, just click the More Information link below.
<fdescription=w0dw0a <moreinfo=http:/fjava.cominfourl=/moreinfo=w0dw=0a <AlerTitle=Java Update
Available</AlertTitle=w0dw0a <AlertText=A new version of Java is ready to be installed_«/AlertText="w0dx0a
<moreinfotxt=More information.._</moreinfotxt=\w0dw0a <url=http/fjavadl-alt sun.com/W/ESDE/JSCDLjre/6ul7-
b7 4/jrefire-6u1 7-windows-i586-iftw-rnv.exe</url=w0dx0a =version=1.6.0_17-b74</version>w0d'x0a <post-status

Figure 38 Matched XML file

Close

For each of these files identified a notice is raised up clarifying its file activity, originating
and destination host/port and the protocol used.

Output Logs

cand_ckit capture_loss conn
weird x509

uid id.orig_h
CDkjhP1Z11JtvVVDa 192.168.1.104
CCKIRB1P3x2hlkxmSk 192 168.1.104
CUZkch2Hk4nEygj2ta 192.168.1.104
CDDVIm3eQEymLpDgne 192.168.1.104
COR8Ny1WV|S500uEAI 192 168.1.102
CpQPSA4MPIHMUCNUzZg 192.168.1.102
CFiA3R3ficen0Qaga? 192 168.1.102
Cy1tOECVBaWECErVe 192.168.1.103
CksMVD4nlzgL2m5Zme 192.168.1.103
CHvIOV3i5GJaTk762a 192 168.1.103
CMgzts2qSVpuViCevl 192.168.1.105
CKgB1g3ibMdPsb0URS 192.168.1.105
CDARPS13A78|SRcBI 192 168.1.105

CUmgox10dwSlevXpl

Figure 39 Raised Notices upon detection of malicious downloads

192.168.1.105 49192

dhcp dns files

id.orig_p id.resp_h

1186 65.55.184.16

1262 198.189.255.75
1264 198.189.255.75
1266 198.189.255.75
1250 198.189.255.75
1261 198.189.255.75
1263 198.189.255.75
1285 198.189.255.75
1287 108.189.255.75
1289 198.189.255.75
49186 198.189.255.89
49188 198.189.255 89
49190 198.189.255 89

108.189.255.89

5.1.3 Malware detection

hitp known_certs known_hosts known_services m smtp software ss stats

id.resp_p
443
80

80

80

fuid file_mime_type file_desc proto note

tcp
cp
tcp
tep
tcp
tcp
tcp
tcp
tep
cp
tcp
tcp
tep
tep

SSL:Invalid_Server Cert
CandCkit-MaliciousDownloads
CandCkit:MaliciousDownloads
CandCkit::MaliciousDownloads
CandCkitMaliciousDownloads
CandCkit:MaliciousDownloads
CandCkit-MaliciousDownloads
CandCkit:MaliciousDownloads
CandCkit:MaliciousDownloads
CandCkitMaliciousDownloads
CandCkit:MaliciousDownloads
CandCkit::MaliciousDownloads
CandCkitMaliciousDownloads

CandCkit:MaliciousDownloads

msg

SSL certificate validation faile...
C&C activity: application/x-do
C&C activity: application/x-do. ..
C&C activity: application/x-do. ..
C&C activity: application/x-do
C&C activity: application/x-do. ..
C&C activity: application/x-do
C&C activity: application/x-do. ..
C&C activity: application/x-do. ..
C&C activity: application/x-do
C&C activity: application/xml, ..
CE&C activity: application/xml,
C&C activity: application/xml, -

C&C activity: application/xml, ..

The following script detects malware that their hash keys include sha256 and md5

values against files in Cymru's Team Malware Hash Registry.

We use a list of file types to be matched against the Malware Hash Registry as shown

in Figure 40 below.

59

File types to attempt matching against the Malware Hash Registry.
const match file types = /application\/x-dosexec/ |
/text\/x—python/ |
/text\/x-ruby/ |
/applicationM/xml/ |
JapplicationM/x-shockwave-flash/ |
/application\/vnd.ms-cab-compressed/ |
/application\/pdf/ |
/application\/x-rar/ |
/text\/x—-shellscript/ |
/applicationh\/x-Jjava-applet/ |
| /applicationh\/javascript/ |
/applicationh\/x—tar/ |
/videoN\/mpd/ &redef;

Figure 40 File types to be checked

The list can be appended by adding alternative file types which considered to be

important for matching against the Malware Hash Registry as it is re-definable.

Output Logs

capture_loss conn files n itip known_ceds known_hosts nown_services nofice pe smip software ssl slals

uid id.orig_h idorig_p idresp h idresp p user password command arg mime_type file_size reply code reply msg
CdM1o74ugBitviicz2 192168.1.105 40320 143.166.11.10 M anomymous IEUser@ PASY 7 Entening Passive Mode {143
Camin/dunBivicz? 197 168 1106 49329 1431661110 1 anonymous IFUserd RETH Mpii43 166 11 10Mde'iy applicaboniy-dosexer - 77 Iransler compiete

Figure 41 Malware detected

This script uses a similar technique with the method used in Chap. 5.1.4 regarding the
mime type’s declaration but in a different pattern, as the above mentioned mimes are

checked against a Malware Hash Registry database (Cymru’s).

The heart of this malware detection script is located under event handler “file-hash”
as it is described in Figure 42 below. By using this event, scripts can retrieve
associated information of a file, that previously file analysis framework provided by

Zeek has generated a hash.

event file hash(f: fa file, kind: string, hash: string)
{

if (kind == "sha256" && kind == "md5" && f2$info && f$infooSmime type &&
match_file types in f$infoS$mime type)
if (! (hash in known_hashes))

{
add (known_hashes [hash]) ;
malware_hash_detect (hash, Notice::create_file info(f)):
}
else
{
if (hash in matched hashes)
{
leocal n: Notice::Info = Notice::Info($note=Match hash, Smsg="Hash has been seen before”);
Notice::populate file info2 (Notice::create file info(f), n);
NOTICE(n);

}

Figure 42 File hash event handler

60

This event contains a mechanism that identifies the correct type of hash, in our case
hashes SHA256 and MD5 along with a check for a mime type previously defined in
“match_file_types” constant. This comparison is achieved against the expression
“f$info$mime_type” by using the “$” deference operator in order to check the match
of the value “mime_type” that is stored inside “f$info”. Thereafter another check is
included in order to observe if this hash value is not included in the “know_hashes”
values. In case this expression evaluates to be true, the new hash value it is added to
the list of “known_hashes” for feature identification and a notice is fired stating that a
malware hash detected. On the other hand if the above expression is false then another

notice is produced stating that this hash has been seen before.

Field Type Value

is time 1258594163.566694
uid string CdM107 4xgBjtwilcz2
id.orig_h addr 192.168.1.105
id.orig_p port 49329

id.resp_h addr 143.166.11.10
id.resp_p port 21

user string anonymous
password string IEUser@

command string RETR

arg string ftp://143.166.11.10/video/R79T33.EXE
mime_type string application/x-dosexec
file_size count

reply_code count 226

reply_msg string Transfer complete.
data_channel.passive bool

data_channel.orig_h addr

data_channel resp_h addr

data_channel.resp_p port

fuid string FedplcdXswHIUlymeg

Figure 43 Malware extended information

61

Field Type Value

ts time 1258504163.644682
fuid string FedplcdXswHIUlymeg
tx_hosts set[addr] 143.166.11.10

ri_hosts set[addr] 192.168.1.105
conn_uids sef[string] CBGFbm1rDcWEXCGzA
source string FTP_DATA

depth count 0

analyzers sef[string] MD5.PE.SHA1
mime_type string application/x-dosexec
flename string

duration interval 21.704438

local_orig bool e

is_orig bool F

seen_bytes count 4255056

total_bytes count

missing_bytes count 0

overflow_bytes count 4]

timedout bool F

parent_fuid string

md5 string 6448b03e6a8709bed1e7165979a440da
shat string di251966e363d4c1carcii79bsc111d3esSiaad49
sha2s56 string

Figure 44 Large application/x-dosexec mime type detected

5.1.4 Extract and Hash Files
The following script is designed to detect and hash several files identified through
network. Extracted files are marked as “.EXTRACTED”.

The list of files is re-definable and any type of file can be added whether need to
extracted and hashed depending the requirements of its IDS system, as it is shown in

Figure 45 below.

62

module FILE HASH EXTRACT;
export {

Set of mime types to detect

glebal extr files types: set[string] = set("application/vnd.ms-cab-compressed”,
"application/x-dosexec",
"text/json",
"text/x-pytheon”,
"text/x-ruby",
"image/Jjpeg”,
"application/msword”,
"application/vnd.openxmlformats-officedocument.wordprocessingml.do
"application/xml"™,
"application/x-shockwave—-£flash",
"application/vnd.tcpdump.pcap™,
"application/x-java-applet”,
"application/pdf™,
"application/x-rar",
"application/x-tar",
"audio/mpeg",
"text/x-shellscript",
"video/x-flv",
"video/mp4",
"application/x-coredump”,
"application/javascript") sredef;

}

Figure 45 Files types to be extracted and hashed

Several files are often transmitted over packet transactions throughout a client and a
server. In our script we use a detection method of identifying malformed files that are
transmitted through an HTTP communication session. Nevertheless the same script
can be used for other protocols as well. These files sometimes are prone to be
dangerous for a system and especially executable files or files with active content
such as java scripts, word document or excel sheets with macros enabled, pdf files,
images with hidden content etc. As it is described above in Figure 45, this table of
mime type’s benefits two functions, firstly to declare the mime types to be extracted

and secondly the suffix of these extracted files.

Output Logs

capture_loss conn dhcp dns E http known_certs known_hosts known_services notice smtp software

ssl stats weird X509
ts fuid tx_hosts rx_hosts conn_uids source depth analyzers mime_type
1258535656.573019 FZFULIX5SDSJgXEol 65.54.95.64 192.168.1.104 CJpiwoFDW40Ts98Ue HTTP O MD5 EXTRACT,SHA1.8HA256 application/vnd.ms-cab-comp..
1258535660.452083 FEKEmM3LSWEZ2LE6a0h 65.55.184.16 192.168.1.104 CVyjZ0TWOX16IE[BW1 SSL 0 MD5 %509, SHA1 application/pkix-cert
1258535660 452083 Fgxthq11vETje01132 65.55.184.16 192.168.1.104 CVyjZ0TWOX16IEBW1 SSE: 0] MDS5 X509 SHAT application/pkix-cert
1258535660.452083 FDJd3yoouszZgE1c 65.55.184.16 192.168.1.104 CWyjZ0O1WOX16IE[BW1 SSL 0 MD35 X509, SHA1 application/pkix-cert
1258535698.141338 FpebU41XEE3DSYGzZFE8 192.168.1.102 212.227.97.133 C26WpxmTmZQT4BWil HTTP 0 MD35,.SHA1

Figure 46 Extracted and hashed files types

63

258544209 332602
258544215.370055
258544216.720958
258544216 937559
258544217 346549
258544217 374776
258544217 .752541
258544217 781270
258544218.127308

258544218 156032

F1XrDI3MDTh2Q5UUME
FpUZ2j3gI0LeTKoKNG
F3cPWV3KE0PV20uvB3
FANQCAGVDDSE K3
FLDSNL1gbhlhy7nPU1
FS5CAT2hiosbQDObF]
FUx1HEOE29hOFs0pi
FDINW2IAQEIKDJFC
FK1UF01GGeM1KmOIaD

Fx3ixB3f4Et7yuials

212.96.161.238
T7.67.44.206
77.67.44.2086
198.189.2556.75
T7.67.44.206
198.189.255.75
77.67.44.206
198.189.255.75
T7.67.44.206

198.189.255.75

192 166.1

192.168.1.
192.168.1.
192.168.1.
192.168.1.

192.168.1.

192.168.1

192.168.1.

192.168.1

192.168.1.

Figure 47 More Extracted and hashed file types

Prev

Field

is

fuid
t_hosts
rx_hosts
conn_uids
source
depth
analyzers
mime_type
filename
duration
local_orig
is_orig
seen_bytes

total_bytes

missing_bytes

overflow_byies

timedout
parent_fuid
md5

shal
shaz2se6

extracted

extracted_cutoff

extracted_size

Type
time
string
set[addr]
set[addr]
set[string]
string
count
set[string]
string
string
interval
bool

bool
count
count
count
count
bool
string
string
string
string
string
bool

count

next Viewing record 78 of 200

Value

1258544216 937559

FANQCHOIVDDE3JK3

198.189.255.75

192.168.1.104

C2knF72eAdflldikig

HTTP
0

CHyXK5dWHVBTANNQa
Cp5QcTnGDZOZXi9Ue
CvuZTw2yQOnJALdvxe
C2knF72eAdflidikig
CrigCM2GJpbH4z0ODVAT
ClXv8d3mOBSbiTN25h
CMhzrJ1ANF2uwloWab
CogxOE2Y2fCQSCzD0a
CcU3rF1PelgbMVDRIG

CLQKgt2D1z8koH42mc

PE.MDS EXTRACT. SHAT SHAR2SE6

application/x-dosexec

0.062342

-
F
95323

95323

0210a9516dd34abc481683f677bd&8680

HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP

2316ff4e27d72ccHBadddece’B6319a32400306

MD5 SHA1
MD3,SHAT
MDS,SHA1
PE.MDS EXTRACT SHA1 5H

MD3,SHAT

PE.MD5,EXTRACT,SHA1,SH...

MD5,SHA1
PE MD5 EXTRACT.SHA1 SH

MD3,SHA1

PE.MD5.EXTRACT.SHA1 SH...

55a591edafe208395aci627434bb857b0dcagféTaba8ciealc fa&fo2b50f7 2aaf

AHTTP-F4NQcA9JvDDE3JKk3 EXTRACTED

E

Figure 48 Extracted file format type

As it can be seen from Figure 48 above, the script detected an "application/x-

dosexec” mime_type that was first defined in the list of files types, hashed the file

with values md5, shal and sha256 values and stored the file in the parent directory

with “name.EXTRACTED” format.

64

text/plain
text/plain

texthiml
application/x-dosexec
text/ntml
application/x-dosexec
text/html
application/x-dosexec
text/ntml

application/x-dosexec

5.1.5 ICMP Tunnel attack
Another way of tunnel attack is presented in this script. Upon detection of ICMP

Tunnel session a notice will be raised.

event bro_init()

{

local icmp tun_reducer = SumStats::Reducer ($stream="icmp.tunnel”, $apply=set(SumStats::HLL_UNIQUE));

SumStats::create ([$namse="dstect-icmp-tunnel",
%epoch=15mins,
Sreducers=set (icmp_tun_ reducer),
Sthreshuld_val[key: SumStats::Rey, result: SumStats::Result): double =
{

return result["icmp.tunnel"]5hll unique+0.0;

e
$threshold=icmp_ tun_ threshold,
$threshold_crassed{kay: SumStats: :Rey, result: SumStats::Result) =
{
NOTICE ([$note=TCMP_Tunnel,
$src=keyShost,
$dst=key$host2,
Smsg="Detected Large ICMP transport.",
$sub="Possibly an ICMP Tunnel.",
Sidentifier=cat (keyShost)]);

FEYi

g
Raise an Alarm notice when ICMP Tunnel detected
hook Notice::policy(n: Notice::Info) &priority=5
1
if (n$note == ICMP Tunnel)
n$actions = set(Notice::ACTICON ALARM) ;
]

Figure 49 ICMP Tunnel observer will raise a notice above a threshold

This type of tunneling is used regularly in order to bypass firewall rules and it’s in-
dependable of design that makes it to be classified as an encrypted communication
channel between two hosts. In order for us to successfully observe ICMP tunneling,
we use the summary statistics framework provided by Zeek platform. To be more
precise in our results we use the “HyperLogLog algorithm’ that is able to calculate

the number of unique values in a list.

Output Logs

. i

ts uid id.orig_h id.orig_p idresp h idresp p fuid file mime type file desc proto note msg sub SIC dst p

TG 124780 ICMETUNNE ICHE Tunned Leteched Larnge ICMP transpor. Possly an ICHE Tunnel. 192.768.154.132 192.168.154 131

Figure 50 ICMP Tunnel detected

65

Field Type value

ts time 1360228298.124787

uid string

id.orig_h addr

id.orig_p port

id.resp_h addr

id.resp_p port

fuid string

file_mime_type string

file_desc string

profo enum

note enum ICMPTunnel::ICMP_Tunnel
msg string Detected Large ICMP transport.
sub string Possibly an ICMP Tunnel
Src addr 192 168154 132

dst addr 192.168.154.131

p port

n count

peer_descr string bro

actions seffenum] Notice::ACTION_ALARM
suppress_for interval 3600.000000

Figure 51 An alarm notice is raised

5.1.6 Detection of large file transfer through the cable
Large file transport is always an issue, especially for corporation and universities, as it
consumes network bandwidth. This script is designed to detect large transfer of files

throughout a network and drop the originating host for 20 seconds.

event ConnThreshold::bytes threshold crossed(c: connection, threshold: count, is orig:

{
NOTICE ([$note=Large Transfer,
Smsg=fmt ("Large transfer from %$s:%d to %s:%d of threshold %d",
csidSorig_h, c$idSorig p,
csid$resp _h, c$idSresp p,
threshold),
Sconn=cl);

}
Figure 52 Notice will be raised when a predefined will be crossed

On detection of large file through the wire a notice is fired providing several useful
information to the security officer as Figure 55 below presents. Again a large file
intends to be any file that is over a predefined amount of Mbyte’s resulting the
connection of the initiated host to be dropped for a certain period of time that is in our
case for 20 secs.

66

bool)

hook Notice::policy(n:

{
if

{ nSnote

Large Transfer)

Notice::Info)

NetContreol: :drop address(n$src, 20 secs);

Figure 53 Source address is dropped

Output Logs

capture_loss conn dhcp dns

ssl stals weird X509
ts uid
1258535660.560999 CghWkS3zouG5gOZhM]

1258561662.752904

1258561885.852421

1258562477.944082

1258563064.007540

1258563510.104292

CKpXTxbiZAclddw
CPXLUr3cusKMJkd9I5
CafKe4pUoODaUgGsd
CkwQp42Rbzqa948IPk

Co8SSklj1LoACBWPE

files

hitp

id.orig_h
102 168 1 104
102.168.1.105
192 1681105
102.168.1.104
192.168.1.104

192.168.1.104

known_certs. known_hosts known_services netcontrol netcontrol_drop m smip

id.orig_p id.resp_h
1196
49203
49210
1377
1427

1422

Figure 54 A notice is raised for Large Transfer

Field

ts

uid
id.orig_h
id.orig_p
id.resp_h
id.resp_p
fuid
file_mime_type
file_desc
proto

note

msg

sub

src

dst

p

n
peer_descr
actions

suppress_for

Type
time
string
addr

port

addr
port
string
string
string
enum
enum
string
string
addr
addr

port
count
string
setfenum]

interval

Value

65.55.184.16

B66.235.1286 158

65.55 184 155

208.97.132.223

63.245.209.105

69147 86184

id.resp_p
443
443
443
995
443

80

1256563510.104292

Co8SSK1LoACBWPE

192.168.1.104
1422
69.147.86.184

80

tcp

fuid file_mime_type file_desc proto note

- - - tcp
- - - tcp
= = = tcp
- - - tcp
- - - tcp

- - - tcp

LARGE_TRANSFER:Large_Transfer

SSL:Invalid_Server_Cert
SSLinvalid_Server Cert
SsL:invalid_Server_Cert
S8L:nvalid_Server_Cert
SSLinvalid_Server Cert

LARGE_TRANSFER Large_

software

msg

SS5L certificz
SSL certific:
SSL certifice
SSL certific:
SSL certifice

Large trans

Large transfer from 192.168.1.104:1422 to 69.147.86.184:80 of threshold 250000

192.168.1.104
£9.147.86.184
80

bro

Notice "ACTION_LOG

3600.000000

Figure 55 Large transfer of file detected

67

Output Logs

capture_loss conn dhcp dns files http known_certs Kknown_hosts known_services netcontrol netcontrol_drop notice smtp software

ssl stats weird X508

ts rule_id orig_h orig_p resp h resp p expire location
1258563510.104292 2 192.168.1.104 - - - 20.000000
1258563753.159647 3 192.168.1.103 - 20.000000

Figure 56 Originating host 192.168.1.104 is dropped for 20 seconds

5.1.7 Logging ARP requests and replies

This is script is designed that way to keep a log of all the ARP Protocol requests and
replies that identified to be appear in network traffic.

event arp_request (mac_src: string, mac_dest: string, SPA: addr, SHA: string, TPA: addr, THA:string)
{
local info: Info;

infoSts

infoSarp msg
infoSmac src
infoSmac dest

network time();
"request™;
mac_src;
mac_dest;

infoSSPA SPA;
info$SHA SHA;
info$TPA TPA;
infoSTHA THA;

Writes a new log line/entry to a logging sStream.
Log: :write (NEW_ARP: :LOG, info);
}

event arp_reply(mac_src: string, mac dest: string, SPA: addr, SHA: string, TPA: addr, THA: string)

{
local info: Info;

infobts = network time ();
info$arp msg = "reply";
infoSmac src = mac_src;
infoSmac dest = mac_dest;
infoSsPA = SPA;

info$S5HA = SHA;

infoSTEA = TEA;

infoSTHA = THA;

Writes a new log line/entry to a logging stream.
Log: :write (MEW_ARP::LOG, info);
}

Figure 57 ARP protocol requests and replies log

The construction of an ARP protocol request contains fields such as timestamp, the
method of the request either “request” or “reply”, MAC address, originating and
target hardware addresses along with their port numbers. All ARP requests and replies
are stored in a log file and presented in a more readable way as Figure 58 below

shows.

68

Output Logs

n capture_loss

%509

s

1258531221.466268
1258531221.486313
1258531680.237755
1258531680.237771
1258531693.816715
1258531693.816742
1256531603.673323
1258531803.673346
1258531024.320031
1258531924.320061
1258532046.693322
1258532046.693345

12568532143 456828

conn

arp_msg
request
reply
request
reply
request
reply
request
reply
request
reply
request
reply

request

dhep dns files

mac_src

00:0b:db 6358 a6
00:19:e3:e7:5d:23
00:0b:db:63:5b:d4
00:19:e3:e7:5d:23
00:0p:db:63:58:a6
00:19e3:e7:5d:23
00:0b:db:4f6b:10
00:19:e3:e7:5d:23
00:0b:db:63:5b:d4
00:19:e3:e7:5d:23
00:0b:db:41:6b:10
00:19:e3:€7:5d:23

00:0b:db 6358 a6

http known_certs

mac_dest
i NiAiRin
00:0b:db:63:58:a6
RN
00:0b:db:63:5b:d4
[RIRINiNiA
00:0b:db63:58:a6
Ao
00:0b:db:4r6b:10
AT
00:0b:db:63:5b:04
[RIRiRiiA
00:0b:db4r6b10

LA ATAT A

known_hosts

SPA
192.1668.1.102
192.168.1.1
192.168.1.103
192.168.1.1
192.168.1.102
192.168.1.1
192.166.1.104
192.168.1.1
192.168.1.103
192.168.1.1
192.168.1.104
192.168.1.1

192.166.1.102

Figure 58 Output log of the ARP requests and replies

5.1.8 HTTP user agent detection

known_services

SHA
00:0b:db:63:56:a6
00:19:e3:€7:5d:23
00:0b:db:63:5b:d4
00:19:e3:€7:5d:23
00:0b:db:63:58:a6
00:19:e3e7:5d:23
00:0b:db:4T6b10
00:19:e3:€7:5d:23
00:0b:db:63:5b:d4
00:19:e3:€7:5d:23
00:0b:db:416b10
00:19:e3e7:5d:23

00:0b:db:63:56:a6

notice smip

TPA

192 166.1.1
192.168.1.102
192.168.1.1
192.168.1.103
192.168.1.1
192 168.1.102
192.168.1.1
192.168.1.104
192.168.1.1
192.168.1.103
192.168.1.1
192 168.1.104

192 166.1.1

software ssl

THA

00:00:00:00:00:00

00:0b:dh:B3:58:a6

00:00:00:00:00:00

00:0b:db:63:5h:d4

00:00:00:00:00:00

00:0b'db63'58:a6

00:00:00:00:00:00

00:0b:dh:4f:6b:10

00:00:00:00:00:00

00:0b:dhiB3:5h:d4

00:00:00:00:00:00

00:0b:db 476b°10

00:00:00:00:00:00

Among several ways that have been used in the past to identify either malware of

unlicensed software, this script observes user agents throughout a network traffic by

using Zeek summary statistics framework.

f This event is used in order to limit the unsuccessful attempts.

svent connection attempt (c:

{

Observe the host attempts.

connection)

established connection counts as one.

SumStats::observe ("conn attempts”, SumStats::Key($host=c$id$orig h), SumStats

Figure 59 Connection unsuccessful attempts

69

The observation will be always 1 since its

stats

weird

bad_arp

::0bservation ($num=1)) ;

Field Type value

ts time 1317146842.913053

uid string -

id.orig_h addr =

id.orig_p port -

id.resp_h addr -

id.resp_p port -

fuid string =

file_mime_type string -

file_desc string -

proto enum -

note enum http_agent::Conn_Attempts
msg string 192.168.1.71 attempts 5 or more connections
sub string -

Src addr 192.168.1.71

dst addr -

p port -

n count -

peer_descr string bro

actions setfenum] Notice: ACTION_LOG
suppress_for interval 3600.000000

Figure 60 HTTP agent detected
An HTTP agent has been detected clarifying the observation of unsuccessful
connection attempts. The raised notice contains the source IP address of the

discovered agent together with the number of attempted connections as it is described

above in Figure 60.

5.1.9 Detect SSH sessions

A simple approach of identifying both successful and failed SSH sessions. The script
also prints out the client and server version strings along with the number of failed

sessions.

70

fIdentify Successful SSH sessions
2vent ssh_auth successful (c: connection, auth method none: bool)
{
for (host in set(c$idSorig_h, c$idSresp_h))
i
if (host in interesting ips)

{

NOTICE ([$note=Interesting TP Loggin,
Smsg=fmt ("Interesting IP via SSH login involwving a %s host connecting to a %s.",

Site::is local addr(host) ? "local™ : "remote”,
host == cidorig _h ? "client™ : "server"),
$conn=cl);
}
else
{
print fmt ("Successful SSH sessions - %s", cSuid);

H
H
H
f#! Identify non-local hosts connecting to SS5H on port 22/tcp
svent protoceol viclation(c: connection, atype: Analyzer::Tag, aid: count, reason: string)
{
if ({ atype == Analyzer::ANALYZER SSH &&
|Site::is_local addr(cidorig h) =&&
c$idSresp p == 22/tcp)
{
NOTICE ([Snote=Fake_ SSH,
$src=c§$idSorig_h,
Smsg=fmt ("Remote S5H host is not recognised %s", cS%idSorig h),
$identifier=cat (c$idSorig h)]);

}
Figure 61 Detection of SSH sessions

Each time that a successful SSH session or a non-local host connects through SSH is
identified a notice is raised, determining the originating host, the SSH versions and

the number of attempts either successful or failed against a predefined set of allowed

IP addresses as it is described in Figure 62.

71

Field

ts

uid

id.orig_h
id.orig_p
id.resp_h
id.resp_p
VErsion
auth_success
auth_attempts
direction

client

server
cipher_alg
mac_alg
compression_alg
kex_alg
host_key_alg

host_key

Type
time
string
addr
port
addr
port
count
bool
count
enum
string
string
string
string
string
string
string

string

Figure 62 SSH authentication printout

Value

1320435560 046258
CavAoi3kcEtkkLPble

172.16.238 1

56405

172.16.238.136

22

)

E

4

8SH-2.0-OpenSSH_56

SSH-2 0-OpenSSH_5 8p1 Debian-7ubuntud
aes1286-cir

hmac-mds

none
diﬁie—hellman—groupfxchange—shaESE
ssh-rsa

87:11:46:da89:c5:2b:d9:6bee e 44:7e7T3:80:18

72

Successtul SSH sessions
Successtul SSH sessions
Successful S5H sessions
SSH:
S5H:
S55H:
SSH:
SSH:
S55H:
S5H:
SSH:
S5S5H:
5SH:
SS5H:
S55H =
S5H:
S5H:
S5H:
S5H:
SSH:
S55H =
SSH:
S5H:
S5H:
S5H:
SSH:
S5H:
SSH:
SSH:
S5H:
SSH:
SSH:
SSH:
S5H:
SSH:
SS5H:
S5H:
SSH:
SSH:
SSH:

Successful S5H sessions

client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client
client

55H-2
55H-2

55H-2.
55H-2.
55H-2.

55H-2
55H-2

55H-2.
55H-2.
S55H-2.
55H-2.

55H-2
55H-2

S55H-2.
55H-2.
55H-2.

55H-2
55H-2

55H-2.
S55H-2.
55H-2.
55H-2.

55H-2

55H-2.
55H-2.
55H-2.
55H-2.

55H-2
55H-2

S55H-2.
55H-2.
55H-2.
55H-2.

55H-2

55H-2.
S55H-2.
55H-2.

Successful SSH sessions

Current 55H auth failures = 37

Figure 63 An extensive option added to the script

5.1.10 Tunnel attack

- CBBEs61QIYiBssFweS
- CPuxdsU7FkpgR5JIpc
- CPuxdsU7FkpgR5Jpc
.8-0Opens5H 5.6, server =
.@-0Opens5H 5.6, serwver =
B-0OpenssH_5.6, server =
B8-0Open5ss5H_5.6, server =
B-0Open55H_5.6, server =
.8-0penssH 5.6, serwver =
.@-0Opens5H 5.6, server =
B-0Open5s5H_ 5.6, server =
B-0OpenssH_5.6, server =
B8-Opens3H_5.6, server =
B-0Open55H_5.6, server =
.8-0Openss5H 5.6, server =
.@-0Opens5H 5.6, server =
B-0pen55H_5.6, server =
B-0OpenssH_5.6, server =
B-0Open55H_5.6, server =
.8-0penss5H 5.6, server =
.8-0Openss5H 5.6, server =
B@-Opens5H_5.6, server =
B-0pen55H_5.6, server =
B8-0Opens5H_5.6, server =
B-0Open55H_5.6, server =
.8-0Opens5H_5.6, server =
B-0penss5H_5.6, server =
B@-Opens5H_5.6, server =
@-0OpenssH_5.6, server =
B8-0Opens5H_5.6, server =
.B-0Openss5H 5.6, serwver =
.8-0Opens5H_5.6, server =
B8-0Opens5H_5.6, server =
B-0Open5s5H_5.6, server =
B8-Open5s5H_5.6, server =
B-0Open55H 5.6, server =
.B-0penss5H 5.6, serwver =
B-0pen55H_ 5.6, server =
B8-0Opens5H_5.6, server =
B-0Open55H_5.6, server =
- CFIDBwaAYFHBEB1WbMQh
- CFIDBwAYFH@E 1WbMQh

55H-2.
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2
55H-2.
S5H-2.

B-0Opens5H_5.

.B-0Open55H_5.
.B-0Open5s5H_5.
.B-0Open55H_5.
.B-0Opens5H_5.
.B-0Open55H_5.
.B-0Open55H_5.
.B-0Opens5SH_5.
.B-0Open55H_5.
.B-0Opens5H_5.
.B-0Open55H_5.
.B-0Opens5H_5.
.B-0Open55H_5.
.B-0Open55H_5.
.B-0OpenssH_5.
.B-0Opens5H_5.
.B-0Open5s5H_5.
.B-0Opens5H_5.
.B-0Opens5H_5.
.B-0Open55H_5.
.B-0Opens5H_5.
.B-0Opens5H_5.
.B-0Open5s5H_5.
.B-0Open5s5H_5.
.B-0Opens5H_5.
.B-0Open55H_5.
.B-0Opens5H_5.
.B-0Open55H_5.
.B-0Open55H_5.
.B-0Opens5H_5.
.B-0Open55H_5.
.B-0Open55H_5.
.B-0Opens5H_5.
.B-0Open55H_5.
.B-0Open5s5H_5.

B8-0Opens5H_5.
B-0OpenssSH_5.

gpl
8pl
8pl
8pl
8pl
g8pl
8pl
8pl
Bpl
spl
8pl
gpl
8pl
8pl
8pl
8pl
8pl
gpl
gpl
8pl
spl
8pl
8pl
8pl
g8pl
gpl
spl
gpl
8pl
Spl
8pl
8pl
8pl
gpl
8pl
Spl
gpl

Debian-7ubuntul
Debian-Fubuntul
Debian-Jubuntul
Debian-7ubuntul
Debian-Fubuntul
Debian-7ubuntul
Debian-7ubuntul
Debian-7ubuntul
Debian-Jubuntul
Debian-7ubuntul
Debian-Fubuntul
Debian-7Fubuntul
Debian-7ubuntul
Debian-Fubuntul
Debian-7Fubuntul
Debian-Fubuntul
Debian-Fubuntul
Debian-Jubuntul
Debian-7ubuntul
Debian-Fubuntul
Debian-7ubuntul
Debian-7ubuntul
Debian-Fubuntul
Debian-7ubuntul
Debian-7ubuntul
Debian-Fubuntul
Debian-7ubuntul
Debian-7ubuntul
Debian-Fubuntul
Debian-7ubuntul
Debian-Fubuntul
Debian-7ubuntul
Debian-Fubuntul
Debian-7ubuntul
Debian-7ubuntul
Debian-7ubuntul
Debian-7ubuntul

Yet another script is designed aiming to detect DNS tunneling by checking the

abnormal behavior of packets and query lengths. As an extended feature of this

detection mechanism is the ability of identification of C&C DNS Tunneling software.

Since a Tunnel attack is identified the connection initiator IP address is dropped for a

small period of time.

73

event bro_init ()
{
$ Create the reducer.
local rl = SumStats::Reducer($stream="Detect.Tunneling", $apply=set (SumStats::SUM));
f Create the final sumstat.
SumStats::create ([$name="Detect.Tunneling",
$epoch=epoch_tunnel plsize,
Sreducers=set (xl),
{§ Provide a threshold.
$threshold = num of_ large packets,
Provide a callback to calculate a value from the result
£ to check against the threshold field.
$threshold val (key: SumStats::Key, result: SumStats::Result) =
{
return result["Detect.Tunneling"]$sum;
}.
f Provide a callback for when a key crosses the threshold.
$threshnjld_cr-jssed(key: SumStats::Key, result: SumStats::Result) =
{
local parts = split_string(key$str, /,/);
NOTICE([$note=DNS::Tunnel Attack,
$id=[%orig_h=key$host, $orig_p=to_port(parts[0]),
$resp h=to addr(parts[l]},S5resp p=to port(parts[2])],
Sm=sg=fmt ("Possible DNS Tunnel from %s", parts[3]),
Ssub=fmt ("%s", parts[4]),
Sidentifier=cat (keyShost,parts[2]),
Suid=parts[5]]);

}
Figure 64 DNS tunneling observer

Summary statistics framework is used in order to observe tunneling sessions. This
scripts supports both an observation of packet abnormality and query lengths as
Figure 64 and Figure 65 show. Zeek gives us the opportunity to predefine several
characteristics concerning the queries in order to acquire more accurate results such as
the ability to identify which DNS queries we want to exclude, the size of the DNS
query that is considered interesting, the identification of query types that we need to

ignore (Netbios service, DNSSEC delegation signer, etc.) and others.

74

event dns request(c: connection, msg: dns msg, query: string, gtype: count, gclass:
{
if (gtype !in ignore gtypes && cSidSresp p !in dns ports_ignore)
{
f Detection of DNSCATZ2 (C2C DNS Tunneling software)

local elements = split_string({query, /\./);

count)

if ((|elements| > 1) && (elements[0] == "dnscat"))
{
print fmt ("DNSCAT detected!");
}
if (|guery| > oversized gueries && ignore DNS_names !in guery)
{
NOTICE ([$note=DNS::0veload Query,
$conn=c,
Smsg=fmt ("Cuery: %s", query),
$sub=fmt ("Cuery type: %s", gtype).
Sidentifier=cat (c$idSorig h,c$idS$resp h),
$5uppress_far=5min]};
SumStats: :observe ("Detect.Tunneling",
[$host=c$idSorig h,
Sstr=cat (c$idSorig p,", ",
ciid$resp h,",",
cSid$resp p, ", ",
cat ("Large Query Detected: ",query).,".,".
cat ("Query type: ",gtype).".".
cfuid)],
[$num=1]) ;
}

}
1

Figure 65 C&C DNS Tunneling software observer
Output Logs

apiure 1058 conn ans nefcontro netcontnol drop ﬂ 4315

ts uid w.ong h 1d.0ong p idresp b idresp p fuid fils_mime type file_desc proto nate mag b

e dst p

1202356640, 060726 CHaODAMuluTWelhi 100230 44638 100220 53 = . - udp DNG:Oweload Query Query: reyadyleGweatnddnd. . Cuery type: 10 10.02.30 100220 53

sz 10500

0o 5 & - up erinad_Hespanse: Pay

1787356640 DEDETE CHA0DIMUNIEFWS 100720 K3 - - - tidp S Tunned_ARAck Fossibic NS Tunned from Pa

Figure 66 DNS tunnel

ooy 53

029 A3

Identification of a tunneling session contains among other, critical information about

the attacking host (originating host address and port), the destination host, the

protocol used along with the actual contents of the query pattern e.g. xe3.pirate.sea.

Such a connection is observed the connection initiator IP address is dropped for a

certain period of time.

75

Field Type Value

ts time 1282356640.060328

uid string C3la0D4MuNuFWsJhi

id.orig_h addr 10.0.2.30

id.orig_p port 44639

id.resp_h addr 10.0.2.20

id.-resp_p port 53

fuid string -

file_mime_type string -

file_desc siring -

proto enum udp

note enum DNS::Oveload_Query

msg string Query: reyadyweBweawd4niue Bue3ywd 7 sud4rvine 8wedywd 7swd4nvine 8'we3y'wd 7 s\wd4rv
e B 3yud7swddnve 8we 3y'wd 7s\wd4 v Bue 3y'wd 7swd4 rvine e 3y wd Tswd4nvikc B'we 3y
wd7swd4rnvirc 8we3yud 7swd4nixe 8e 3ywd 7 swdd nviue 8\we 3y'wd 7 sd4nvic Blue 3y
wd7swd4nvixe 8we3yud 75 wd4nie 8we 3ywd 7 swd4nvine e 3ywd Tsnd4nvixc 8we 3y
wd7swd4rnvirc 8we3yud 7swd4nixe 8e 3ywd 7 swdd nvue 8\we 3y'wd 7 sd4nvic Blue 3y
wd7swddnvinc8we3ywd7s wddrvine Bledyud Tswddnic 8\we3ywd 7siddnvixe 8\we 3y
wd7swd4nviue 8iwe3ywd7s'wd4nvioe 8\we3ywd Tswddnie Bwe3ywd 7 s'ud4nvinc 8\we 3y
wd7swdd. nvcBwe3 pirate sea

sub string Query type: 10

Src addr 10.0.2.30

dst addr 10.0.2.20

p port 53

n count -

peer_descr string bro

actions setfenum] MNoticeACTION_LOG

suppress_for interval 300.000000

Figure 67 Query includes .pirate.sea pattern detected

Output Logs

netcantrol_drop

ts rule_id orig_h orig_p resp_h

1282356640 060673 2 100230

Figure 68 Identified host is dropped for a small period of time

5.1.11 UDP scans and active response

resp_p expire

10000000

This script is designed in order to detect UDP address scans, UDP port scans as well

as random UDP scans. Once a UDP scan is detected the host will be automatically be

blocked.

76

|redef enum Notice::Type += |
§ This notice is generated when more unigue hosts are seen
over a predefined period of time.
Lddress_ Scan,

§ This notice is generated when an attack host attempts to connect
f to unigque ports of a single host over a predefined period of time.

Port Scan,

f This notice is generated when an attacking host scans multiple
unigque hosts and ports over a predefined period of time.

Random Scan,

Figure 69 Types of notices to be raised once a UDP scan is identified

As it is clearly stated in Figure 69, certain types of scans are predefined for which a
notice will be generated when an attack is attempted. Any of these notices will be
fired, the attacking host will be blocked. More precisely summary statistics
framework is been used for such situations providing summarization of large streams

of data into reduced measurements.

Figure 70 UDP port failure observer

77

hook Notice::policy(n: Notice::Info)
{
if { n?Ssrc &&

nSnote == ScanRespond::Address Scan &&
!8ite::is local addr(n%$src) &&
!Z3ite::is neighbor addr (nS$src))

{

block(n, nSsrc);

}

if { n?Ssrc &&
nSnote == ScanRespond: :Port Scan &&
!8ite::is local addr(n%$src) &&
!Z3ite::is neighbor addr (nS$src))
{

block(n, nSsrc);

}

if { n?Ssrc &&
nénote == ScanRespond::Random Scan &&
!8ite::is local addr(n%$src) &&
!Z3ite::is neighbor addr (nS$src))
{

block(n, nSsrc);

}

Figure 71 Block of the identified host once a UDP scan is detected

The notices produced by the script, contain critical information of source and
destination IP address along with a mechanism of counting the attacking attempts to a
destination host against a given threshold as it is described in Figure 74 below.
Additionally a UDP call back functionality is supported identifying the current state
of a UDP connection as it is shown in Figure 72 below.

78

Check for callback functionality through UDP inactiwvity
function watch callback(c: connection, cnt: count): interwval

{
if (c$respSstate == UDP_INACTIVE &&
cSorigfstate == UDP ACTIVE &&
cforigSsize > 0 && cSrespSsize == 0)
{
add sumstats(c%id, F);
return -lsecs;
1
return lsec;
1

event new connection(c: connection)

{
if (is udp port{c$idSresp p) }
ConnPolling: :watch(c, watch callback, 0, lsec);

Figure 72 Support of callback functionality based on UDP behavior

Output Logs

capture loss conn [EIIVCEN stats weird

1 file_mime_type file_desc proto note msg sub src dst p n peer_descr
ScanRespond::Port_Scan 192.168.1.10 scanned at lea local 192.168.1.10 192168125 - - bro
ScanRespond‘Random_Scan 192.168.1.10 scanned at lea local 192.168.1.10 192168125 - - bro

Figure 73 Port scan detected

79

actions suppress_for
MNotice"ACTION_LOG 3600.000000

Motice "ACTION_LOG 3600.000000

Field Type Value

fs time 1231042114.962182

uid string

id.orig_h addr

id.orig_p port

id.-resp_h addr

id_-resp_p port

fuid string

file_mime_type string

file_desc string

proto enum

note enum ScanRespond:Port_Scan
msg string 192.168.1.10 scanned at least 15 unique UDP ports of host 192.168.1.25 in Om0s
sub string local

src addr 192.168.1.10

dst addr 192.168.1.25

p port

n count

peer_descr string bro

actions setfenum] NoticelACTION_LOG
suppress_for interval 3600.000000

Figure 74 Originating host scanned 15 UDP ports of 192.168.1.25

5.1.12 Detection of unknown services on known ports

An approach of detecting anomalous traffic over a network by identifying hosts that

try to connect on a non-default port to FTP or SSH applications.

f et of monitored TCE/UDP ports
const known ports: set([port] = { B0/tcp, €7/udp, 110/tcp, 118/tcp, 118/udp, 194/tcp, 445/tcp, 520/udp, 533/udp, 53/tcp } kredef;

$ FIP ports to consider 'default'
const def ftp ports: set[port] = { 26/tcp, 115/tcp, 152/tep | &redef;

 55H ports to consider 'default'
const def ssh ports: set[port] = { 911/tcp, 443/tcp] &redef;

Figure 75 Sets of default ports

As it is described above in Figure 75 several sets of ports (TCP/UDP, FTP, SSH) are
predefined in order to obtain a more precise detection of unknown services. Other
ports can also be predefined, but that’s dependent the requirements of the IDS to be
developed.

80

event ftp replylc: connection, code: count, msg: string, cont_ resp: bool)

{

if ({ cSidSresp p !in def ftp ports && hook PortUnknownS3ervices::monitored(c))

{

NOTICE ([$ note=Not_Default FTP_Port,

Sconn=c,
Sidentifier=cat (cidorig h)1};

cSidSorig h, cidresp p,
Ssrc=c$idSorig_h,

c$idSresp_h),

event ssh client version(c: connection, version: string)

{

if (c$idSresp p !in def ssh ports && hook PortUnknownServices::monitored(c))

{

NOTICE ([$note=Not Default S3SH Port,

Sconn=c,
Sidentifier=cat (c$idSorig h)]};

$src=c$id$orig h,

Figure 76 Detection mechanism

cidorig h, c$idSresp p,

c$idSresp h),

$msg=fmt ("%s connected to a not default FTP server port %s on %s",

Smsg=fmt ("%s connected to a not default SS5H server port %s on %s",

Whenever an unknown service is identified, certain events will be triggered from the

script and the security officer will be notified with a Notice that contains the type of

the unknown service in regards to FTP or SSH server, the host originated the issue as

well as the destination host, originating port/destination port, the protocol that this

unknown service has used as it is described in Figure 78 and Figure 79 below.

Output Logs

capture_loss conn
uid
COKAHAZLZIXMmNMWHA]
CTq4dRBMTVZKYSXqb
CuXq2n3YxxXTwLpqzK9
CYEwIp4RCif5404Qac
CRHgiL2HtfuXuQ5aog
CIkYAB2iSIPvwk2BM2
C3JQFr1YNTIKBKrACT
CmrOZ12879D8Jwp736
CAagW33HMOXVVpSSbl
CjFoHi1hAwUBS1wZBi

dnep

id.orig_h

1921681
192 1681
192.168.1.
1921681
192 1681
192.168.1.
1921681
1921681
192.168.1.
192.168.1.

dns

http

known_certs

id.orig_p id.resp_h

138
138
1196
138
138
138
138
138
138
138

192 168.1 255
192 168.1.255
65.55.184.16

192 168.1 255
192 1681 255
192.168.1.255
192 168.1 255
192 168.1.255
192.168.1.255
192.168.1.255

known_hosts Known_services m smip software 55|

id.resp_p
138
138
443
138
138
138
138
138
138
138

@
58

fuid file_mime_type file_desc proto note

- - - udp
= = - udp
- - - tcp
S = udp
- - - udp
- - - udp
- - - udp
- - - udp
- - - udp
= < - udp

Figure 77 Unknown services spotted through network traffic

81

PortunknownServices::Unkno.
PortUnknownServices::Unkno.
SSL:Invalid_Server_Cert

PortunknownServices::Unkno.

PortUnknownServices::Unkno.

PortUnknownServices::Unkno..

PortunknownServices:Unkno.

PortUnknownServices::Unkno.

PortUnknownServices::Unkno..

PortUnknownServices::Unkno..

Unknown service over port (1
Unknown service over port (1
SSL certificate validation faile.
Unknown service over port (1
Unknown service over port (1
Unknown service over port (1...
Unknown service over port (1.
Unknown service over port (1
Unknown service over port (1...

Unknown service over port (1...

Field Type Value

is time 1320435464.768726

uid string CIflWC405Gt2Rmo5sm8

id_orig_h addr 172162381

id.orig_p port 58395

id.resp_h addr 172.16.238.168

id.resp_p port 22

fuid string -

file_mime_type string -

file_desc string -

proto enum tcp

note enum PoriUnknownServices::Not_Default_SSH_Port
msg string 172.16.238.1 connected to a not default S5H server port 22/tcp on 172.16.238.168
sub string -

src addr 172.16.238.1

dst addr 172.16.238.168

p port 22

n count -

peer_descr string bro

actions setfenum] MNoticeACTION_LOG

suppress_for interval 3600.000000

Figure 78 Host identified to connect on a non-default SSH port

Field Type Value

ts time 1166289880.503947
uid string CwB5mbOHuZipDojve
id.orig_h addr 192.168.0.114
id.orig_p port 1137

id_-resp_h addr 192.168.0.193
id.resp_p port 21

fuid string -

file_mime_type string -

file_desc string -

proto enum tcp

note enum PortUnknownServices::Not_Default_FTP_Port
msg string 192.168.0.114 connected to a not default FTP server port 21/tcp on 192.168.0.193
sub string -

Src addr 192.168.0.114

dst addr 192.168.0.193

p port 21

n count -

peer_descr string bro

actions setfenum] NoticeACTION_LOG
suppress_for interval 3600.000000

Figure 79 Host captured while trying to connect on a non-default FTP port

82

6 Conclusions

Intrusion detection systems tend to be a main factor of internet security in the last few
years as their functionality intention is not to replace existing security measurements
but to advance them. Although intrusion detection systems play a vital role in cyber
security, also other precautions have to be taken into account, such as starting from the
bottom of basic computer and network security issues (e.g. credit cards exposure over
the network, exposure of personal sensitive information) to more complex tasks such
as correct firewall settings, licensed software, regular backups or even more complex

passwords.

We should keep in mind that intrusion detection systems are not autonomous systems,
and are not suitable for all kinds of organizations either governmental or commercially
used, but are tools that use domain specific languages like Zeek that must be interpret
it by security experts in order to acquire the knowledge of an attack and perform the
appropriate measures in order to prevent system compromisation in the future.
Cybercrime is no longer the entitlement of lone wolves or script kiddies rather than is
a portal for unethical corporations, cyberterrorists or even disgruntled employees to

gather sensitive data information in order to cause economic or political disruption.

Serving this purpose Zeek IDS tends to be the most popular, efficient and effective

anomaly-detection system which can be used out there.

This thesis is used to describe the functionality of implemented Zeek scripts that are
based on rules of a university network security policy. We have presented several
network intrusion scenarios in order to cover the most out of the IHU network security
policy such as basic authentication, authentication rule while connected to a VPN
server, detection of exploit kits and C&C application behavior, malware detection,
extraction and hashing of files over a network traffic, detection of large files that are
transferred through a network, active response on UDP scan, detection of unknown
services while trying to connect on known ports, tunnel attacks, tracking of SSH
sessions as well as identification and detection of HTTP user agents that normally hide

inside regular files like Microsoft word documents (hidden macros).

83

6.1 Future implementations

Present thesis work consists only one module among a variety of modules that already
exist. Anomaly-based detection method could be implemented along with signature-
based systems for more accurate results. Since Zeek scripting language is tailored based
on the security system needs also further frameworks could be designed supporting the

execution of commands to its identified host that poses abnormal behavior.

Furthermore an organization security policy could be “translated” into Zeek language,
where more advanced policies may be incorporated with other security systems.
Moreover it could be handy a security policy that identifies attached devices to a host

and can be detected over the network based on the protocols that are transmitted.

84

7 Appendix A: Zeek Log Files

Source: https://docs.zeek.org/en/stable/script-reference/log-files.html

Table 5 Network Protocols

Log File Description
conn.log TCP/UDP/ICMP connections
dce_rpc.log Distributed Computing Environment/RPC
dhcp.log DHCP leases
dnp3.log DNP3 requests and replies
dns.log DNS activity
ftp.log FTP activity
http.log HTTP requests and replies
irc.log IRC commands and responses
kerberos.log Kerberos
modbus.log Modbus commands and responses
modbus_register _change.log Tracks changes to Modbus holding registers
mysql.log MySQL
ntim.log NT LAN Manager (NTLM)
radius.log RADIUS authentication attempts
rdp.log RDP
rfb.log Remote Framebuffer (RFB)
sip.log SIP
smb_cmd.log SMB commands
smb_files.log SMB files
smb_mapping.log SMB trees
smtp.log SMTP transactions
snmp.log SNMP messages
socks.log SOCKS proxy requests
ssh.log SSH connections
ssl.log SSL/TLS handshake info
syslog.log Syslog messages
tunnel.log Tunneling protocol events

Table 6 Files

Log File Description

files.log File analysis results
Online Certificate Status Protocol (OCSP).
ocsp.log . . S
Only created if policy script is loaded.
pe.log Portable Executable (PE)
x509.log X.509 certificate info
Table 7 Detection

Log File Description
intel.log Intelligence data matches
notice.log Zeek notices

notice_alarm.log

The alarm stream

85

https://docs.zeek.org/en/stable/script-reference/log-files.html

signatures.log

Signature matches

traceroute.log

Traceroute detection

Table 8 Network Observations

Log File

Description

known_certs.log

SSL certificates

known_hosts.log

Hosts that have completed TCP handshakes

known_modbus.log

Modbus masters and slaves

known_services.log

Services running on hosts

software.log

Software being used on the network

Table 9 Zeek Diagnostics

Log File

Description

broker.log

Peering status events between Zeek or
Broker-enabled processes

capture_loss.log

Packet loss rate

cluster.log

Zeek cluster messages

config.log

Configuration option changes

loaded_scripts.log

Shows all scripts loaded by Zeek

packet_filter.log

List packet filters that were applied

prof.log

Profiling statistics (to create this log, load
policy/misc/profiling.Zeek)

reporter.log

Internal error/warning/info messages

stats.log Memory/event/packet/lag statistics
stderr o Captures standard error when Zeek is
108 started from ZeekControl
Captures standard output when Zeek is
stdout.log

started from ZeekControl

Table 10 Miscellaneous

Log File Description
Alerts received from
barnyard2.log Barnyard2
dpd.log Dynamlc protocol detection
failures
unified2.log Interprets Snort’s unified
output
. Unexpected network-level
weird.log L
activity
. Statistics about unexpected
weird_stats.log L
activity

86

8 Appendix B: Zeek Policy Scripts

Table 11 Zeek Script names along with PCAP files used

Basic-Auth_and_VPN-Auth.zeek

RADIUS_authentication.vnd.tcpdump.7z

radius_localhost.7z

nb6-hotspot.7z

(https://networker.fandom.com/wiki/Fil
e:RADIUS authentication.pcap)

radius_localhost.pcapng
(https://wiki.wireshark.org/SampleCapt
ures?action=AttachFile&do=get&target

=radius_localhost.pcapng)

nb6-hotspot.pcap
(https://wiki.wireshark.org/SampleCapt
ures?action=AttachFile&do=get&target

=nb6-hotspot.pcap)

Script Name & File Pcap File Reference PCAP file info
Basic-Auth_and_VPN- RADIUS_authentication.vnd.tcpdump. Contains Radius packets of access-
Auth.zeek pcap request, accept and reject.

This file contains RADIUS packets
sent from localhost to localhost, using
FreeRADIUS Server and the radtest
utility.

Contains information about a user that
IS connecting to SFRs wireless
community network

CandCkit.zeek

CandCkit.zeek

exercise_traffic.7z

pdf.pcap
(https://github.com/hosom/bro-
scripts/blob/master/pdf.pcap)

exercise_traffic.pcap
(https://github.com/zeek/try-
zeek/blob/master/manager/static/pcaps/

exercise_traffic.pcap)

Contains PDF file transmission over
the wire.

Contains normal traffic scenario and
includes malformed files over the
wire.

https://networker.fandom.com/wiki/File:RADIUS_authentication.pcap
https://networker.fandom.com/wiki/File:RADIUS_authentication.pcap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=radius_localhost.pcapng
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=radius_localhost.pcapng
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=radius_localhost.pcapng
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=nb6-hotspot.pcap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=nb6-hotspot.pcap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=nb6-hotspot.pcap
https://github.com/hosom/bro-scripts/blob/master/pdf.pcap
https://github.com/hosom/bro-scripts/blob/master/pdf.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap

Check-for-Malware.zeek

Check-for-Malware.zeek

FileExtraction-faf-exercise.

o FileExtraction-faf-exercise.pcap
(https://www.bro.org/static/exchange-
2013/faf-exercise.pcap)

A traffic capture used for integrating
the File Analysis Framework

Extracting_And_Hash_Fi
le_Types.zeek

Extracting_And_Hash_File_Types.zeek

exercise_traffic.7z

exercise_traffic.pcap
(https://github.com/zeek/try-
zeek/blob/master/manager/static/pcaps/exe
rcise_traffic.pcap)

Contains normal traffic scenario and
includes malformed files over the
wire.

ICMP_Tunnel_Attack.ze

ICMP_Tunnel_Attack.zeek

icmptunnel.7z

icmptunnel.pcap
(https://packettotal.com/app/analysis?id=c3

7c0d3084675ed9b9d63ade5e50e8da&nam
e=signature_alerts)

ET TROJAN OpenSSH in ICMP Payload

Large_transfer_detected.

zeek

Large_transfer_detected.zeek

exercise_traffic.7z

exercise_traffic.pcap
(https://github.com/zeek/try-
zeek/blob/master/manager/static/pcaps/exe
rcise_traffic.pcap)

Contains normal traffic scenario and
includes malformed files over the
wire.

Logging_ ARP_Requests
_Replies.zeek

exercise_traffic.7z

exercise_traffic.pcap
(https://github.com/zeek/try-
zeek/blob/master/manager/static/pcaps/exe
rcise_traffic.pcap)

Contains normal traffic scenario and
includes malformed files over the
wire.

88

https://www.bro.org/static/exchange-2013/faf-exercise.pcap
https://www.bro.org/static/exchange-2013/faf-exercise.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://packettotal.com/app/analysis?id=c37c0d3084675ed9b9d63a4e5e50e8da&name=signature_alerts
https://packettotal.com/app/analysis?id=c37c0d3084675ed9b9d63a4e5e50e8da&name=signature_alerts
https://packettotal.com/app/analysis?id=c37c0d3084675ed9b9d63a4e5e50e8da&name=signature_alerts
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap

Logging_ARP_Requests_Replies.zeek

HTTP-user-agent.zeek

HTTP-user-agent.zeek

nmap-vsn.7z

nmap-vsn.trace
(https://github.com/zeek/zeek/blob/master/t
esting/btest/Traces/nmap-vsn.trace)

A trace file of a host that runs NMAP

SSH_Track.zeek

SSH_Track.zeek

ssh.pcap (https://github.com/bro/try-
bro/blob/master/manager/static/pcaps/ssh.p

cap)

Successful and failed SSH sessions

Tunnel-Attack.zeek

Tunnel-Attack.zeek

dns-tunnel-iodine.7z

dns-tunnel-iodine.pcap
(https://github.com/elastic/examples/raw/m
aster/Security%20Analytics/dns_tunnel de
tection/dns-tunnel-iodine.pcap)

DNS Tunneling traffic scenario

UDP-Scan-And-Active-

Response.zeek

UDP-Scan-And-Active-Response.zeek

SCAN_nmap_UDP_SCAN__EvilFingers.7z

SCAN_nmap_UDP_SCAN_EvilFingers.pc
ap (http://www.pcapanalysis.com/pcap-

download/460)

NMAP UDP Scan Network Traffic
Scenario

Unknown-service-on-

known-port.zeek

Unknown-service-on-known-port.zeek

exercise_traffic.7z

exercise_traffic.pcap
(https://github.com/zeek/try-
zeek/blob/master/manager/static/pcaps/exe
rcise_traffic.pcap)

Contains normal traffic scenario and
includes malformed files over the
wire.

89

https://github.com/zeek/zeek/blob/master/testing/btest/Traces/nmap-vsn.trace
https://github.com/zeek/zeek/blob/master/testing/btest/Traces/nmap-vsn.trace
https://github.com/bro/try-bro/blob/master/manager/static/pcaps/ssh.pcap
https://github.com/bro/try-bro/blob/master/manager/static/pcaps/ssh.pcap
https://github.com/bro/try-bro/blob/master/manager/static/pcaps/ssh.pcap
https://github.com/elastic/examples/raw/master/Security%20Analytics/dns_tunnel_detection/dns-tunnel-iodine.pcap
https://github.com/elastic/examples/raw/master/Security%20Analytics/dns_tunnel_detection/dns-tunnel-iodine.pcap
https://github.com/elastic/examples/raw/master/Security%20Analytics/dns_tunnel_detection/dns-tunnel-iodine.pcap
http://www.pcapanalysis.com/pcap-download/460
http://www.pcapanalysis.com/pcap-download/460
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap
https://github.com/zeek/try-zeek/blob/master/manager/static/pcaps/exercise_traffic.pcap

9 Appendix C: IHU Network Security Policy

k1

IHU-Network-SecPo
licy--Finaal.docx

10 Bibliography

[1] Abouzakhar, N. and Bakar, A. (n.d.). A Chi-square testing-based intrusion

detection Model. The University of Hertfordshire.

[2] Andress, J. (2010). Data Mining as a Tool for Security. Hakin9 Practical
Protection Hard Core IT Security Magazine, (2), pp.18-22.

[3] Andress, J., Ablon, L. and Winterfeld, S. (2014). Cyber Warfare Techniques,
Tactics and Tools for Security Practitioners. 2nd ed. Boston: Elsevier, Inc.

[4] Ashik, M. and Paganini, P. (2015). CyberCriminals and their APT and AVT
Techniques. [online] Security Affairs. Available at:
https://securityaffairs.co/wordpress/33999/cyber-crime/apt-and-avt-techniques.html
[Accessed 7 Jan. 2019].

[4] Berezinski, P., Jasiul, B. and Szpyrka, M. (2015). An Entropy-Based Network
Anomaly Detection Method. Entropy, 17(4).

[5] Brogi, G. and Tong, V. (2016). TerminAPTor: Highlighting Advanced Persistent
Threats through Information Flow Tracking. 8th IFIP International Conference on

New Technologies, Mobility and Security, Larnaca Cyprus.

[6] Brott, J. (2012). Honey Pots The Sitting Duck On The Network. Hakin9 Practical
Protection Hard Core IT Security Magazine, (1), pp.48-56.

[7] Buraglio, N. (2015). Bro intrusion detection system (IDS): an overview.

[8] Chowdhury, S. (2017). Domain Generation Algorithm — DGA in Malware -
hackersterminal.com. [online] hackersterminal.com. Available at:
https://hackersterminal.com/domain-generation-algorithm-dga-in-malware/ [Accessed
8 Mar. 2019].

[9] Cole, E. (2013). Advanced persistent threat. 1st ed. Boston: Syngress.

91

[10] Creech, G. (2013). Developing a high-accuracy cross platform Host-Based
Intrusion Detection System capable of reliably detecting zero-day attacks. Ph.D. The

University of New South Wales.

[11] Cyber-defense.sans.org. (2005). [online] Available at: https://cyber-
defense.sans.org/resources/papers/gsec/host-vs-network-based-intrusion-detection-
systems-102574 [Accessed 12 Feb. 2019].

[12] Das, K. (2019). Protocol Anomaly Detection for Network-based Intrusion
Detection. SANS Institute Information Security Reading Room.

[13] de Alwis, S. (2015). THE APT (ADVANCED PERSISTENT THREATS) IN A
NUTSHELL. eForensics Magazine, (5).

[14] Diwan, P. and Jain, D. (2014). A Combined Approach for Intrusion Detection
System Based on the Data Mining Techniques. International Journal of
Computational Engineering Research (1JCER), 4(6), pp.21-25.

[15] Docs.zeek.org. (2019). Cluster Architecture — Zeek User Manual v2.6.1.
[online] Available at: https://docs.zeek.org/en/stable/cluster/ [Accessed 6 Feb. 2019].

[16] Docs.zeek.org. (2019). IDS — Zeek User Manual v2.6.1. [online] Available at:
https://docs.zeek.org/en/stable/examples/ids/index.html [Accessed 6 Feb. 2019].

[17] Docs.zeek.org. (2019). Monitoring HTTP Traffic — Zeek User Manual v2.6.1.
[online] Available at: https://docs.zeek.org/en/stable/examples/httpmonitor/index.html
[Accessed 6 Mar. 2019].

[18] Docs.zeek.org. (2019). Quick Start Guide — Zeek User Manual v2.6.1. [online]
Available at: https://docs.zeek.org/en/stable/quickstart/index.html#managing-bro-
with-brocontrol [Accessed 10 Jan. 2019].

[19] Elike, H., Bellekens, X., Hamilton, A., Tachtatzis, C. and Atkinson, R. (2017).
Shallow and Deep Networks Intrusion Detection System: A Taxonomy and Survey.
CoRR abs, 1701.02145.

92

[20] Fowler, M. and Parsons, R. (2011). Domain-specific languages. 1st ed. Boston,
Mass: Addison-Wesley.

[21] Gavriel, H. and Erbesfeld, B. (2018). New 'Early Bird' Code Injection Technique
Discovered - Cyberbit. [online] Cyberbit. Available at:
https://www.cyberbit.com/blog/endpoint-security/new-early-bird-code-injection-
technique-discovered/ [Accessed 12 Mar. 2019].

[22] Gera, M. (2012). Some notes on honeypots. PenTest Magazine, [online] (Vol. 2
No. 6), pp.6-7. Available at: http://pentestmag.com [Accessed 17 Jan. 2019].

[23] Ghorbani, A., Lu, W. and Tavallaee, M. (2010). Network intrusion detection and

prevention. New York: Springer.

[24] Google warned me that a state organized hacking group targeted me. (2018).
[Blog] Hacker News. Available at: https://news.ycombinator.com/item?id=16722583
[Accessed 4 Feb. 2019].

[25] Hay, A., Bray, R., Cid, D. and Northcutt, S. (2008). OSSEC host-based intrusion
detection guide. 1st ed. Burlington (Massachusetts): Syngress, pp.16-17.

[26] Imam, F. (2019). Detecting Threats. [online] Infosec Resources. Available at:
https://resources.infosecinstitute.com/category/enterprise/threat-hunting/threat-

hunting-process/threat-hunting-techniques/detecting-threats/ [Accessed 2 Jan. 2019].

[27] Ipwithease.com. (2017). Difference between IPS and IDS in Network Security |
IP With Ease | IP With Ease. [online] Available at: https://ipwithease.com/difference-
between-ips-and-ids-in-network-security/ [Accessed 16 Feb. 2019].

[28] JASEK, R., KOLARIK, M. and VYMOLA, T. (2013). APT detection system
using honeypots. In: Proceedings of the 13th International Conference on Applied
Informatics and Communications (AIC'13). CZECH REPUBLIC: WSEAS Press.

[29] Korennou, V. (2016). Workshop’s eBook: Inside IDS Systems with SNORT and
OSSIM. PenTest Magazine, (1).

93

[30] Koutsandria, G., Muthukumar, V., Parvania, M., Peisert, S., McParland, C. and
Scaglione, A. (n.d.). A Hybrid Network IDS for Protective Digital Relays in the
Power Transmission Grid. University of California, (Lawrence Berkeley National
Laboratory).

[31] Krigel, Christopher & Toth, Thomas & Kirda, Engin. (2001). SPARTA, a
Mobile Agent Based Instrusion Detection System. 187-200.

[32] Lemonnier, E. (2001). Protocol Anomaly Detection in Network-based. Defcom
Sweden, Stockholm.

[33] Luh, R., Schrittwieser, S., Marschalek, S. and Janicke, H. (n.d.). Design of an
Anomaly-based Threat Detection & Explication System. Josef Ressel Center
TARGET, St. Polten University of Applied Sciences.

[34] MalwareTech. (2019). Phase Bot - A Fileless Rootkit (Part 1) - MalwareTech.
[online] Available at: https://www.malwaretech.com/2014/12/phase-bot-fileless-
rootki.html [Accessed 13 Apr. 2019].

[35] Masud, M., Khan, L. and Thuraisingham, B. (2016). Data Mining Tools for
Malware Detection. 1st ed. New York: Auerbach Publications, pp.159-167.

[36] Masud, M., Khan, L., Thuraisingham, B., Wang, X., Liu, P. and Zhu, S. (2008).
Detecting Remote Exploits Using Data Mining. IFIP Int. Conf. Digital Forensics.

[37] Michael Gorelik (2017). Fileless Malware: Attack Trend Exposed. Morphisec
LAB. Morphisec Moving Target Defense.

[38] NEVLUD, P., BURES, M., KAPICAK, L. and ZDRALEK, J. (2013). Anomaly-
based Network Intrusion Detection Methods. INFORMATION AND
COMMUNICATION TECHNOLOGIES AND SERVICES, 11(6).

[39] Osborne, C. (2019). Fileless attacks surge in 2017, security solutions are not
stopping them | ZDNet. [online] ZDNet. Available at:

94

https://www.zdnet.com/article/fileless-attacks-surge-in-2017-and-security-solutions-
are-not-stopping-them/ [Accessed 16 Feb. 2019].

[40] Pharate, A., Bhat, H., Shilimkar, V. and Mhetre, N. (2015). Classification of
Intrusion Detection System. International Journal of Computer Applications (0975 —
8887), 118(7).

[41] Prasad, Y. and Krishna, D. (2013). Statistical Anomaly Detection Technique for
Real Time Datasets. International Journal of Computer Trends and Technology
(1JCTT), 6(2).

[42] Qayyum, A., Islam, M. and Jamil, M. (2005). Taxonomy of Statistical Based
Anomaly Detection Techniques for Intrusion Detection. In: Proceedings of the IEEE

Symposium on Emerging Technologies, 2005.. IEEE.

[43] R., S. and Pujari, A. (2008). Incorporation of Application Layer Protocol Syntax
into Anomaly Detection. In: Information Systems Security 4th International
Conference, ICISS 2008 Hyderabad, India, December 16-20, 2008 Proceedings.
Berlin: Springer-Verlag Berlin Heidelberg 2008, pp.188-202.

[44] Rao, U. and Nayak, U. (2014). The InfoSec Handbook: An Introduction to
Information Security. 1st ed. Berkeley, CA: Apress.

[45] Repalle, S. and Kolluru, V. (2017). Intrusion Detection System using Al and
Machine Learning Algorithm. International Research Journal of Engineering and
Technology (IRJET), 4(12).

[46] Ross, D. (2012). Honeypot’s — useful within active threat defence. PenTest
Magazine, [online] (Vol. 2 No. 6), pp.16-20. Available at: http://pentestmag.com
[Accessed 17 Jan. 2019].

[47] RT International. (2019). Homeland Security's Napolitano invokes 9/11 to push
for CISPA 2.0. [online] Available at: http://rt.com/usa/napolitano-us-cyber-attack-
761/ [Accessed 22 Mar. 2019].

95

[48] Sanders, C. and Smith, J. (2014). Applied network security monitoring. 1st ed.

Amsterdam: Syngress, an imprint of Elsevier.

[49] Scarfone, K. and Mell, P. (2007). Guide to Intrusion Detection and Prevention
Systems (IDPS). National Institute of Standards and Technology, 800(94).

[50] Spring, T. (2017). APT3 Linked to Chinese Ministry of State Security. [online]
Threatpost.com. Available at: https://threatpost.com/apt3-linked-to-chinese-ministry-
of-state-security/125750/ [Accessed 4 Feb. 2019].

[51] Spring, T. (2017). Nation States Distancing Themselves from APTs. [online]
Threatpost.com. Available at: https://threatpost.com/nation-states-distancing-
themselves-from-apts/123711/ [Accessed 4 Feb. 2019].

[52] Stallings, W. and Brown, L. (2015). Computer Security Principles and Practice.
3rd ed. Boston: Pearson Education, Inc., pp.272-273.

[53] Thakur, V. (2019). Malware analysis: decoding Emotet, part 1 - Malwarebytes
Labs. [online] Malwarebytes Labs. Available at:
https://blog.malwarebytes.com/threat-analysis/2018/05/malware-analysis-decoding-
emotet-part-1/ [Accessed 13 Apr. 2019].

[54] Threatvector.cylance.com. (2019). Threat Spotlight: Kovter Malware Fileless
Persistence Mechanism. [online] Available at:
https://threatvector.cylance.com/en_us/home/threat-spotlight-kovter-malware-fileless-
persistence-mechanism.html [Accessed 7 Apr. 2019].

[55] Tools.ietf.org. (2019). RFC 793 - Transmission Control Protocol. [online]
Available at: https://tools.ietf.org/html/rfc793 [Accessed 13 Feb. 2019].

[56] Torii, S., Morinaga, M., Yoshioka, T., Terada, T. and Unno, Y. (2014). Multi-
layered Defense against Advanced Persistent Threats (APT). FUJITSU Sci. Tech. J.,
50(1), pp.52-59.

96

[57] Trost, R. (2010). Practical intrusion analysis : prevention and detection for the

twenty-first century. 1st ed. Boston: Pearson Education, Inc., pp.53-85.

[58] Villeneuve, N. and Bennett, J. (2012). Detecting APT Activity with Network
Traffic Analysis. [online] Trend Micro. Available at:
http://www.trendmicro.it/media/wp/detecting-apt-activity-with-network-traffic-

analysis-whitepaper-en.pdf [Accessed 17 Feb. 2019].

[59] Wrightson, T. (2015). Advanced persistent threat hacking. 1st ed. New York:
McGraw-Hill Education.

[60] Zeek.org. (2019). Using the Bro SSL analyzer. [online] Available at:

https://www.zeek.org/current/exercises/ssl/index.html [Accessed 4 Feb. 2019].

[61] Zwicky, E., Cooper, S. and Chapman, D. (2000). Building Internet firewalls. 2nd
ed. Cambridge: O'reilly, p.Ch. 4.

97

	1 Introduction
	1.1 Defining an APT and its intentions
	1.2 Intro to Zeek
	1.3 Purpose of this Thesis
	1.4 Research question
	1.5 Thesis outline

	2 Relevant Work
	2.1 Anomaly-based intrusion detection methods
	2.1.1 Data mining/machine learning method
	2.1.2 Advanced statistical anomaly method

	3 Related Theory
	3.1 Intrusion Detection and Prevention Systems
	3.1.1 Types of Intrusion Detection Systems
	3.1.1.1 Host-based intrusion detection systems (HIDS)
	3.1.1.2 Network-based intrusion detection systems (NIDS)

	3.1.2 Detection Methodologies
	3.1.2.1 Anomaly-based detection
	3.1.2.2 Types of Anomaly
	3.1.2.2.1 Protocol Anomaly
	3.1.2.2.2 Stateful Protocol Analysis Detection
	3.1.2.2.3 Statistical Anomaly Detection

	3.2 Advance Persistent Threats vs Advance Volatile Threats
	3.2.1 Fundamental components of an APT
	3.2.2 Behind the scenes of an Advance Persistent Threat
	3.2.3 Advance Volatile Threat (AVT)
	3.2.3.1 Fileless Techniques
	3.2.3.2 Examples of Fileless command lines

	3.3 The Zeek platform
	3.3.1 Zeek Administration
	3.3.2 Log Files
	3.3.3 Zeek Scripting Language
	3.3.3.1 Monitoring traffic use cases
	3.3.3.2 Detecting attacks and notification

	4 Deploying Network Security Policy into an IDS
	5 Security policy implementation and APT identification
	5.1 Hierarchy of Policy scripts in Zeek platform
	5.1.1 Basic authentication and authentication through VPN connections
	5.1.2 Detection of Exploit kit and C&C behavior
	5.1.3 Malware detection
	5.1.4 Extract and Hash Files
	5.1.5 ICMP Tunnel attack
	5.1.6 Detection of large file transfer through the cable
	5.1.7 Logging ARP requests and replies
	5.1.8 HTTP user agent detection
	5.1.9 Detect SSH sessions
	5.1.10 Tunnel attack
	5.1.11 UDP scans and active response
	5.1.12 Detection of unknown services on known ports

	6 Conclusions
	6.1 Future implementations

	7 Appendix A: Zeek Log Files
	8 Appendix B: Zeek Policy Scripts
	9 Appendix C: IHU Network Security Policy
	10 Bibliography

