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Computer security attacks evolve to evade deployed defenses. Recent at-

tacks have ranged from exploiting generic software vulnerabilities in memory-unsafe

languages such as buffer overflows and format string vulnerabilities to exploiting

logic errors in web applications, through means such as SQL injection and cross-

site scripting. Furthermore, recent attacks have focused on escalating privileges

and stealing sensitive information by exploiting new hardware or operating system

(OS) interfaces. Computer security attacks are also now relying on social engi-

neering techniques to run malicious programs on victims’ machines; instances of

such abuse include phishing and watering hole attacks, both of which trick people

into running malicious code or divulging confidential information. Thus, traditional

computer security methods, such as OS confinement and program analysis, will not

prevent new attacks that do not violate OS confinement or present illegal program

behaviors.
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Another challenge is that traditional security approaches have large trusted

code bases (TCBs), which include hardware, OSs, and other software components

that implement authentication and authorization logic across a distributed system.

This is a vulnerable area because these components are complex and often contain

vulnerabilities that undermine the overall system’s integrity or confidentiality.

Evasive attacks on vulnerable systems – especially in instances where trusted

components turn malicious – inspire the creation of defenses that can augment

formally specified mechanisms against known threats. Specifically, this thesis ad-

vances the state of the art in behavioral malware detection – detecting previously

unknown malware in the very early stages of infection within an enterprise network.

Here we assess three fundamental insights of modern-day attacks and then

describe a cross-layer defense against such attacks. First, we make a low-level

machine state visible to behavioral analysis, significantly minimizing the TCB and

its associated vulnerabilities. Specifically, our behavioral detector utilizes an exe-

cutable code’s dynamic properties, with architectural and micro-architectural states

as input. Second, we evaluate behavioral detectors against adaptive adversaries.

For this purpose, we introduce a new metric to determine a detector’s robustness

against malware modifications, which serves as a step toward explainability of ma-

chine learning-based malware detectors. Finally, we exploit the fact that attacks

spread through only a limited number of vectors and propose new techniques to an-

alyze the resulting dynamic correlations created among machines. These insights

show that behavioral detectors can efficiently protect both individual devices and

end hosts within enterprise networks. We present three types of such behavioral
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detectors.

Sherlock protects resource-constrained devices, such as mobile phones and

Internet-of-things (IoT) devices, without modifying the software/hardware stack.

Sherlock’s supervised and unsupervised versions outperform prior work by 24.7%

and 12.5% (area under the curve (AUC) metric), respectively, and detects stealthy

malware that often evades static analysis tools.

The second behavioral detector, Shape-GD, protects devices within an en-

terprise network. It monitors devices on the network, aggregates data from weak

local detectors, overlays that with network-level information, and then makes early,

robust predictions regarding malicious activity. Shape-GD achieves its goals by ex-

ploiting latent attack semantics. Specifically, it analyzes communication patterns

across multiple devices, partitioning them into neighborhoods. Devices within the

same neighborhood are likely to be exposed to the same attack vector. Further-

more, we hypothesize that the conditional distribution of false positives is different

from that of true positives; i.e., given a neighborhood of nodes, we can compute the

aggregate distributional shape of alert feature vectors from the neighborhood itself

and provide robust labels.

We evaluate Shape-GD by emulating a large community of Windows sys-

tems using the system call traces from a few thousand malicious and benign appli-

cations; we simulate both a phishing attack in a corporate email network as well as a

watering hole attack through a popular website. In both scenarios, Shape-GD iden-

tifies malware early on (∼100 infected nodes in a∼100K-node system for watering

hole attacks, and ∼10 of ∼1,000 for phishing attacks) and robustly (with ∼100%
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global true-positive and ∼1% global false-positive rates).

The third behavioral detector, Centurion, detects malware across machines

monitored by an anti-virus company. It is able to analyze behavior from 5 mil-

lion Symantec client machines in real time and discovers malware by correlating

file downloads across multiple machines. Compared with a recent local detector

that analyzes metadata from file downloads, Centurion reduced the number of false

positives from ∼1M to ∼110K and increased the true-positive rate by a factor of

∼2.5. In addition, on average, Centurion detects malware 345 days earlier than

commercial anti-virus products.
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Chapter 1

Introduction

Used for everything from voting machines and elections to personal health

and finances, computing is deeply and critically embedded in our society. How-

ever, due to malware’s exponential growth and ability to quickly adapt to deployed

defenses, best-known security techniques quickly become obsolete. To add a last

line of defense against unknown ‘zero-day’ malware, we study behavioral malware

detection – an attack-agnostic detection approach that either detects malware’s de-

viation from a regular system’s behavior (anomaly detection) or learns to classify

the difference between benign and malicious programs’ behaviors (malware classi-

fication).

1.1 Broader Impact

Computer systems today process billions of transactions per day in the fi-

nancial industry; they drive electronic commerce; they store and process healthcare

data; they manage key elements of the cyberphysical infrastructure (power plants,

factories, etc.); participate in decision-making processes. Privacy and integrity are

therefore paramount for much of the data with which computers work. Any soft-

ware vulnerabilities can make such systems an easy target for attackers.
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Figure 1.1: The cumulative number of malware samples registered by AV-TEST
Institute. Malware has been growing very fast over the last decade.
*contains results obtained on 07/04/2017.

Recent malicious attacks [7, 22, 41, 45, 51] demonstrate how fragile the sys-

tems are and how few resources are needed to cause significant damage. In many

cases, the damage can be beyond just financial loss. Take the example of the Demo-

cratic Party’s breach [22] in 2016 or the multiple recent medical record breaches,

such as the one at the Office of Personnel Management [21].

1.2 Cybersecurity Statistics

Despite enormous efforts by malware researchers and security practitioners,

the malware population has grown rapidly. Malware adapts to the security solutions

deployed in practice, and its developers find new ways of abusing emerging tech-

nologies, such as in mobile and IoT devices.

According to statistics released by AV-TEST [29], an independent German

organization that periodically evaluates and rates antivirus and security suite soft-
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Figure 1.2: The number of new malware samples released every year.
*contains results obtained on 07/04/2017.

ware, the total malware population has grown from 1.7 million ‘samples’ (i.e.,

unique binaries) in 2005 to 650 million samples in July 2017 (Figure 1.1). Also we

can notice that over the last four years, cybercriminals have significantly increased

the rate of malware production. Rates have reached an average of 12 million new

malware samples per month, in comparison to 52.5 thousand in 2005 (Figure 1.2).

Today, 85% of malware targets the Windows OS, as it is the most widespread

and thus the most lucrative platform for attackers. However, this number is shrink-

ing as more and more malware samples move into the mobile market. It is worth

noting that mobile malware demonstrates a higher growth rate than its desktop

counterpart. For example, the most prevalent type of mobile malware, Android mal-

ware, has grown from ∼360 thousand (January 2013) to ∼16.5 million (September

2016). This is not surprising because almost all applications that were available

mainly on desktops only a few years ago (e.g., email, online banking) now con-

veniently function on mobile devices. The lack of adequate security solutions for

mobile devices together with manufacturers’ unwillingness to patch known Android
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vulnerabilities make Android users easy prey for cybercriminals.

Attackers pursue multiple goals, from hijacking computer systems to gath-

ering users’ behavioral patterns to serve highly personalized ads. A large fraction

of desktop malware still tries to hijack computers and join them to a botnet. Some

malware hunts for online banking accounts, credit card data, and passwords. Infor-

mation stealing is especially prevalent among mobile devices because the devices

accompany the user everywhere and their applications can access a large number of

sensors.

A recent trend is the rapid growth of potentially unwanted applications that

collect information about users’ surfing habits and other personal data and send

users’ profiles to advertising companies. Another trend is the growing number of

ransomware, which is used to encrypt personal data on both desktop systems and

mobile devices and extort money for releasing a decryption key.

Such infections are in fact enabled by commercial malware detectors that

heavily rely on identifying malware signatures. Signature-based defenses are a rea-

sonable way of protecting a system against trivial malware, but they do not work

against polymorphic and metamorphic malware because they only capture the syn-

tactic view of malware, i.e., the concrete way it is implemented. They can be gener-

alized to cover similar malware variants, but self-modifying code can easily defeat

such signatures.

To increase detectors’ robustness to self-modifying malware, detectors must

employ behavioral malware detection, which captures malware semantics rather
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than syntactic properties. Later in this thesis, we describe how to design an end-host

security solution that is based on the principles of behavioral malware detection.

1.3 Evolution of Attacks

The landscape of malicious attacks does not remain constant over time;

rather, it evolves as new technologies emerge. At a high level, we can distinguish

at least three broad categories of security attacks: memory corruption attacks, web

attacks, and modern attacks – a new class of attacks that includes abuse of new

interfaces and extensive use of social engineering. Attackers first started exten-

sively exploiting memory errors in the 1990s (e.g., buffer overflows, double free,

etc.), plenty of which were present in the then-dominant memory-unsafe languages.

Attacks then moved to exploitating high-level web vulnerabilities, which opened

an unprecedented way of directly executing high-level actions (e.g., exfiltrating

sensitive information from a database, escalating user privileges in a web-based

system). As developers started using memory-safe languages and security experts

eliminated easily exploitable vulnerabilities, the attacker community added to its

arsenal a powerful new technique: social engineering. Social engineering refers

to psychologically manipulating people to perform actions or divulge confidential

information. This type of attack mostly relies on human errors, whereas the other

two solely exploit software vulnerabilities. Because they stem from human errors,

social engineering attacks are hard to detect or prevent through purely technical

means.

The most prevalent forms of malicious social engineering are phishing and
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watering hole attacks. Phishing is a common method for obtaining private infor-

mation by mimicking an email from a legitimate business such as a bank, credit

card company, e-commerce retailer, etc. A phishing email usually contains either

a link to a fraudulent web page that looks exactly like a legitimate one or a mali-

cious attachment. A victim is usually asked to update some private information by

following the malicious link, and thus attackers obtain that sensitive data. In the

case of a malicious attachment, when an unsuspecting user opens it, malicious code

is executed. It may collect private information in the background or even install a

backdoor on a device.

The other popular social engineering attack technique, the watering hole

attack, exploits users’ trust in websites that they visit on a regular basis. Usually

attackers start by gathering information about websites the user often visits from

the secure system. Next, attackers search for vulnerabilities on those websites and

inject code that can compromise the users’ machines. The injected code supplies

malware to the users upon connection and configures malware based on the users’

environment to maximize its success rate. Typically, one or more members of the

target group are compromised, and after that an attacker can easily move laterally

within the secure system and compromise other machines [11].

In addition to social engineering techniques for attack, modern attacks ex-

tensively abuse new interfaces or use side channels, which are hard to preemptively

discover and close. For example, recently released Spectre [37] and Meltdown [31]

abuse speculative execution that leaves a secret-data-related micro-architectural state

in the CPU after executing code that is not supposed to be executed. Both attacks
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use a flush-reload [159] side channel to analyze the cache state modified by a spec-

ulatively executed code. Therefore, Spectre is able to leak victims’ confidential

information, and Meltdown is capable of breaking all security assumptions given

by the address space isolation as well as paravirtualized environments and, thus,

every security mechanism built upon this foundation. Another example, RowHam-

mer [105, 135, 145, 152], exploits DRAM technology to flip bits in memory and is

able to achieve privilege escalation.

1.4 Existing Approaches

In this section, we briefly summarize common approaches to mitigating

software security issues. A detailed discussion of the related research is available

in Chapter 5.

Security solutions can be classified into two broad classes based on their

design characteristics: static and dynamic. The former analyze static properties

of an artifact (e.g., a file, a network packet) that are potentially malicious without

executing it, while the latter perform real-time analysis when a system runs with test

inputs or when it is already deployed. Static analysis describes static code analysis

that is extensively used to search for vulnerabilities in software. Such algorithms

are usually designed to achieve soundness – meaning they never miss any bugs.

However, soundness and completeness are not achievable simultaneously (because

this is an undecidable problem). Usually, an incomplete static code analysis leaves

behind many false positives that must be manually verified. Also, extensive use

of dynamic features in modern languages such as dynamic types, dynamic method
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resolution, and distributed and/or parallel algorithms significantly increase false-

positive rates, thus limiting static analysis’s real-world applicability.

Static analyzers may use machine-learning algorithms to detect malicious

artifacts. They are not limited to code analysis; they may work with other types of

artifacts such as network traces or API calls’ or system calls’ sequences. However,

machine-learning systems’ results usually suffer from poor explainability. Due to

the use of multiple non-reversible transformations that lie at the heart of machine-

learning algorithms, it is hard or sometimes even impossible to identify the root

cause of an alert. Therefore, such detectors are not widely adopted in practice.

Commercial solutions thus still heavily rely on manually hardcoded rules for bug

detection to unambiguously map alerts to root causes.

The other class of methods, dynamic methods, analyzes program execution’s

side effects. This class can also be divided into two sub-classes. The first is based on

runtime tracking of causality relations. Usually, it employs some form of dynamic

information flow tracking to analyze how data is propagated through the code dur-

ing execution. This can be relatively easy to achieve for managed languages such as

Java, JavaScript, and Python by augmenting the just-in-time translator with a logic-

performing information flow tracking simultaneously with program execution. As

for traditional compiled languages such as C/C++, the same effect can be achieved

by inlining information-flow-tracking code into the original program. However,

both methods usually introduce significant performance overhead, as they execute

an information-flow-tracking engine in parallel with the original program.

The second subtype of dynamic analysis employs statistical methods. It
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monitors how an application under test interacts with the rest of the system at one or

more interfaces – for example, at system call, API, network, or memory allocation

levels. A dynamic analyzer uses a model of a normal program behavior and com-

pares real-time observations against predictions given by the model. It considers

significant deviations from the model as a sign of malicious activity. In comparison

to causality-based dynamic analysis, such detectors typically incur little overhead.

However, they replace causality with a weaker property: correlation.

The other method for classifying existing approaches is to partition them

into the following two classes: client-based and network-based. All approaches de-

scribed above fall into the category of client-based detectors because they perform

per-host analysis. An example of a network-based detector is a system that analyzes

network communication patterns and the content of network packets. This example

is quite promising because eventually almost all malware and other attacks spread

over a network and thus are visible at the network level. However, encrypted traffic

and the requirement to maintain low latency usually pose significant challenges for

such detectors.

In practice, various combinations of such detectors can be used, and they

are usually accompanied by ad hoc rules that match simple malicious behaviors

observed in the real world.

Regardless of the method being used, it is often hard to distinguish between

benign and malicious behaviors because malware can try to mimic benignware,

which leads to high false-positive rates. In practice, to minimize false-positive

rates, malware detectors are configured to be permissive, i.e., only highly suspi-
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cious activity leads to an alert. Therefore, a significant portion of malware may

remain undetected for a long period of time.

1.5 Why Machine Learning for Computer Security

Traditional approaches to computer security such as OS confinement, for-

mal methods, and software verification often fail to protect systems against modern

attacks for several reasons. First, such attacks may not be visible at the level of

traditional malware detectors because new hardware or APIs can be exploited. Sec-

ond, rather than directly compromising a system, attacks might trick the user into

performing an action on an attacker’s behalf. Therefore attacks do not violate any

constraints that are enforced by traditional malware detectors. Third, software ver-

ification typically is not able to mitigate security issues because it is undecidable,

it poorly scales up to large code bases, and real-world systems often lack precise

specifications.

On the other hand, machine-learning-based malware detectors possess some

appealing properties. First, they do not require any formal specifications. Second,

machine-learning algorithms learn by example – they require data corresponding

to normal and abnormal system behaviors, which is much easier to collect than to

formally specify security properties and verify that a system complies with them.

Third, such detectors can easily scale up to model practical systems of an arbitrary

complexity and size.

However, they can only detect attacks or malware that exhibit statistical

behavior at the given level of abstraction. In other words, if malware causes an
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application to slightly deviate from a normal behavior, a machine-learning detector

may ignore it if such a deviation is statistically insignificant. Therefore, a behavioral

detector should operate on multiple layers of abstraction to prevent a large spectrum

of attacks.

In summary, a machine-learning-based approach to computer security is one

of the promising ways to develop low-overhead malware detectors that are capable

of protecting large systems.

1.6 Overview of Our Solution

In this work, we address the key aspects of applying machine learning to

computer security – explainability, a relatively high false-positive rate, and robust-

ness to evasive malware – and present an end-to-end security solution that operates

at multiple layers of abstraction on end-host devices and at the network level.

First, we develop a highly efficient behavioral malware detector that can be

deployed even on resource-constrained devices such as mobile phones and IoT de-

vices. The detector analyzes the executed code’s dynamic properties and compares

them with predictions made by state-of-the-art machine-learning models. If there is

a deviation from the model, a detector raises an alert.

We introduce a new methodology for evaluating malware detectors – a white-

box methodology together with an operating range concept. The white-box method-

ology allows us to understand malware internals rather than treating them as a black

box. It includes a deep malware introspection and ensures correct malware execu-
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tion in a laboratory environment. Also, it includes a method for developing evasive

malware that is used to comprehensively evaluate a detector.

An operating range of a detector characterizes its detection capabilities with

respect to a particular malware type. We can formally define it as the smallest mal-

ware payload X hidden in an application Y that a detector can detect with a false-

positive rate of Z. In other words, for a chosen application Y and a fixed threshold

Z, the operating range indicates the smallest malware payload that the detector can

reliably detect. The operating range accompanies the white-box methodology be-

cause it is required to perform malware dissection in order to identify malware

types. Also, it serves as a step toward explainability of machine-learning-based

malware detectors.

Second, we develop a generic framework for aggregating predictions made

by individual weak detectors (detectors having low precision) running on end-host

devices and correlating them with network-level activity to drive the false-positive

rate toward zero. Specifically, end-host detectors report data samples that lead to

raising local alerts to a global detector. It reanalyzes multiple data samples simul-

taneously, allowing for recovery of precision at a global level. The main advantage

of such an approach is its ability to reanalyze multiple local data samples overlayed

with the network-level communication patterns. The network-level information is

used to formulate a hypothesis about potential attacks, and the local data samples

are used for hypothesis testing.

The global detector that we introduce in Chapters 3,4 relies on the differ-

ence of statistical shape of local detectors’ false and true positives. Though a local

12



detector is not able to distinguish between individual false and true positives, the

global detector can differentiate between them by aggregating multiple false and

true positives and approximating the distributions that they come from. We empir-

ically verified this assumption across multiple systems, both mobile and desktop,

and across multiple OSs. Moreover, the assumption held for a large variety of local

detector types.

In a practical setting, local detectors generate both false and true positives

because some nodes on a network are compromised and others are not. The high

number of false positives hides true positives and makes it hard for the global detec-

tor to distinguish between them using their statistical shape. To make malware more

noticeable and thus facilitate early and robust malware detection, we introduce dy-

namic neighborhoods that aggregate nodes exposed to similar attack vectors. These

can be used in conjunction with statistical shape. We use the neighborhood concept

to increase malware concentration.

Malware spreading along one of the attack vectors compromises one or

more neighborhoods. Thus, malware concentration (and the concentration of true

positives) within such neighborhoods in a network is much higher than average.

Consequently, the statistical shape of compromised neighborhoods is significantly

different from the statistical shape of uncompromised neighborhoods.

We discuss both concepts – statistical shape and dynamic neighborhoods –

in detail in Chapters 3,4, where we describe different types of global detectors.
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1.7 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 outlines the de-

sign of end-host detectors, establishes general guidelines for the development and

evaluation of such detectors, and shows how the principles work in practice. Chap-

ter 3 focuses on the problem of aggregating multiple weak behavioral detectors to

achieve a desirable false-positive level and presents detection results for watering

hole and phishing attacks. Chapter 4 presents an end-to-end malware detector that

performs efficient real-time malware detection among 5 million Symantec clients’

systems and significantly outperforms a prior work in terms of malware-detection

capabilities. Chapter 5 describes related work. Finally, Chapter 6 summarizes the

contributions of this thesis and outlines future research directions.
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Chapter 2

Quantifying and Improving the Efficiency of
Hardware-based Mobile Malware Detectors1

2.1 Introduction

Mobile devices store personal, financial, and medical data and enable ma-

licious programs to spread quickly through app-stores. Unsurprisingly, 2015 saw

900K new mobile ‘malware’ compared to 300K in 2014. Mobile malware infects

applications through errors by users, developers, or platforms like Android [30,

47, 77]. Once infected, malware can run ‘payloads’ such as stealing private data

from the victim device or making HTTP requests to attack a remote server while

masquerading as the infected application. Hence, machine learning classifiers that

differentiate operating system and network behaviors of benign programs from mal-

ware are an attractive line of defense against mobile malware [126].

Hardware-based malware detectors (HMDs) are a recent category of be-

havioral malware detectors [72, 103, 122, 142]. An HMD observes programs’ in-

struction and micro-architectural traces and raises an alert when the current trace’s

1Based on the research paper ”Quantifying and improving the efficiency of hardware-based mo-
bile malware detectors” [102] by M. Kazdagli, V. Reddi, and M. Tiwari published at 49th Annual
IEEE/ACM International Symposium on Microarchitecture. M. Kazdagli was the lead researcher
for the project.
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Figure 2.1: Overview of Sherlock.

statistics look either anomalous compared to benign traces (unsupervised HMDs)

or similar to known malicious traces (supervised HMDs). HMDs are small, secure

even from a compromised OS, and can observe instruction-level attacks (such as

row hammer [105, 135, 145] and side-channel data leaks [121]) that leave no system

call trace [125]. HMDs are thus a trustworthy first-level detector in a network-wide

malware detection system [146, 165] and are being deployed in commercial mobile

devices2 as of early 2016.

2https://www.qualcomm.com/products/snapdragon/security/smart-protect
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Architects designing HMD accelerators face two unique challenges. First,

unlike benign programs like SPEC, malware adapts to proposed modeling algo-

rithms and will evade detectors that only learn behaviors of existing malware [156].

For example, we found that changing only the number of execution threads or

inter-action delays in a malware was sufficient to evade an HMD [72] trained on

single-threaded binaries of the same malware. Second, to compare malware against

benignware executions, HMDs have to run both programs with real user inputs.

For example, a human user playing Angry Birds produces very different instruction

traces compared to quiescent traces when no user is driving the app. Hence, the tra-

ditional ‘black-box’ approach for evaluating HMDs – without looking deeply into

malware computation and without real user interaction – yields results that will not

hold in practice.

In this paper, we present Sherlock—a ‘white-box’ methodology to evaluate

HMDs for mobile malware. Sherlock is built on two principles: (1) malware will

adapt to evade detection, and (2) malware hides behind benign programs, and only

by running both malware and benignware with real user-inputs can we determine

whether an HMD can tell them apart. These principles lead to a significant system-

building effort and to new insights about HMDs for mobile malware.

The Sherlock platform in Figure 2.1 embodies both principles: (1) Sherlock

synthesizes malware specifically to find the breaking point of an HMD under test.

To do so, we introduce a taxonomy of mobile malware and present a synthesis tool

that generates obfuscated malware with a configurable payload (i.e., tasks to run)

that is a superset of the 229 malware we studied. (2) Sherlock tests HMDs when

17



benign and malware programs use the same, long-running user inputs. To do so,

Sherlock correctly records and replays thousands of 5–10 minute long user sessions

(such as playing Angry Birds or running medical diagnostics) on real hardware.

An HMD analyst can then use Sherlock’s third component – HMD algorithms – to

design and evaluate new ways of extracting features from program traces in order

to train machine learning algorithms.

Sherlock’s design principles yield a new metric for quantifying HMDs’ per-

formance. An operating range of an HMD algorithm is a metric that tells an analyst

the root cause behind a malware alert as well as when the HMD fails. An operating

range is expressed as the smallest malware payload X hidden in application Y that

an HMD algorithm A can detect with a false positive rate of Z. For example, an

analyst can determine how efficiently a compromised browser (Y) can steal SMSs

or photos (X) when a random-forest HMD (A) is deployed at a pre-set false positive

rate of 5% (Z).

The operating range of an HMD is independent of the training and testing set

of malware – instead, it is defined in terms of atomic actions in malware payloads

(X) such as stealing one photo or an SMS, sending an HTTP request, etc. An

analyst can thus use the operating range to quantify HMD performance based only

on (relatively invariant) high-level malware behaviors. Further, operating range

describes false positive rate Z by comparing malware to the exact benign app Y that

malware hides in—comparing a malware run to an arbitrary benign app or system

utility yields an unrealistically good false positive rate.

Case Studies using Sherlock. We demonstrate Sherlock’s utility by designing bet-
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ter HMDs than prior work, and by showing (for the first time) that evading static

program analysis makes malware more visible to HMDs.

Our first case study shows that taking concrete mobile malware actions into

account yields a better unsupervised HMD than directly applying desktop HMDs

designed to detect short-lived exploits. Specifically, atomic software-level actions

on mobile devices such as stealing a 4MB photo or one SMS takes a long time at the

hardware level (2.86s and 0.12s respectively on a Samsung Exynos 5250 device).

We design a new HMD that uses longer-duration (100ms) feature vectors, extracts

low-frequency signals, and is 24.7% more effective using the area under the ROC

curve (AUC) metric than prior work [142].

Our second case study uses Sherlock’s malware synthesizer to design super-

vised HMDs with 97.5% AUC – 12.5% better than prior work. Specifically, we

train on a malware set that covers diverse, orthogonal behaviors compared to prior

work that trains HMDs on an ad-hoc subset of behaviors. Further, the supervised

HMD’s operating range covers even small data (1 photo, 25 contacts, 200 SMSs,

etc) being stolen with close to 100% accuracy at a 5% false positive rate. However,

malware payloads that clog remote servers by sending them HTTP requests are vir-

tually undetectable at the hardware level—Sherlock provides such semantic insights

into why HMDs succeed and fail.

Our final case study in using Sherlock’s malware synthesizer yields a sur-

prising result—obfuscation techniques that evade detection by static analysis tools

make HMDs more effective. Specifically, malware developers use string encryption

and Java reflection to create high-fanout nodes in data- and control-flow graphs and
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thus foil static analysis tools. However, these obfuscation techniques in turn create

instruction sequences and indirect jumps that make malware stand out from benign-

ware. Hence, light-weight HMDs can complement static analysis tools [42] used by

Google and other app stores to drive malware down into more inefficient settings.

In summary, we make the following contributions:

1. Malware Synthesis. We deconstruct 229 malware binaries from 2013–2015 to

create a malware synthesis tool. An analyst can use the synthesis tool to determine

an HMD’s operating range.

2. Record-and-replay Platform. Sherlock records and replays 1–2 hours each of

real human input for 9 benign applications and over 69 hours across 594 malware

binaries. Without correct replay at these time-scales, malware payloads will not

execute to completion.

4. Three case studies with new insights. We improve HMDs’ performance by

24.7% and 12.5% respectively for unsupervised and supervised HMDs and show

that HMDs detect stealthy malware that evades static analysis tools.

Sherlock Detailed information on how to reproduce the experiments can be

found at https://github.com/Sherlock-2016.

2.2 Motivation

Before we dive into the details of Sherlock in Sections 2.3 and 2.4, we begin

with the unique advantages of HMDs over OS-level detectors and challenges in

evaluating HMDs.
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2.2.1 HMDs in a Network of Weak Detectors

HMDs (as well as OS-level detectors) are deployed in a collaborative in-

trusion detection system (CIDS) that has two components. On the server side, a

platform provider (e.g., Google) executes benign and/or malware applications using

test and real user inputs, measures instruction statistics (using performance counters

for example), and creates a database of computational models. On client devices, a

light-weight local detector samples performance counters to create run-time traces

from applications, compares each run-time trace to database entries on the device,

and forwards suspicious traces to a global detector on the server.

Importantly, HMDs do not need to have 0% false positives and 100% true

positives—they only need to serve as an effective filter for a global detector that can

then use program analysis [56, 75] or network-based algorithms [71, 153] to build a

robust global detector. We refer readers to Vasilomanolakis et al. [146] for a survey

on collaborative malware detectors.

2.2.2 Hardware vs OS-level detectors

HMDs are more trustworthy, light-weight, and hard to hide from compared

to detectors that use system call [62, 126], middleware [52], or network based be-

havioral analysis [98],

HMDs’ are trustworthy since they can be isolated from most of the OS (and

Android middleware) and run inside a hardware-based enclave [53, 94] or directly

in hardware [122] – secure against even user errors and kernel rootkits [30]. HMDs

can be battery efficient with feature extraction and detection logic implemented
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Figure 2.2: Executing malware payloads. The off-the-shelf Geinimi.a malware
crashes immediately. Once fixed, Geinimi.a executes malicious payloads such as
stealing SMSs or contacts or downloading files.

using accelerators [122]. Finally, HMDs can detect malware that leaves no system

call trace – such as rowhammer [105, 135], A2 [158], and side-channel attacks [125]

on desktops and, as we show in this paper, evasive mobile malware that hides behind

benign applications and requests no additional sensitive permissions.

Interestingly, on mobile platforms, HMDs have comparable detection rates

to OS-level detectors (although we leave details of this comparative experiment out

of this paper). We find that OS-level detectors that model system calls also reach

detection rates of almost 90% at false positive rates close to 10%. This is close to

our HMDs’ performance (in Section 5)—as a result, HMDs can not just be more

trustworthy than OS-level detectors but be competitive in detection performance as

well.
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Figure 2.3: Differential analysis of malware v. benignware. The plot shows prin-
cipal components of benign Firefox, Firefox with malware, and arbitrary Android
apps. Malicious Firefox’s traces are closer to Firefox than to random apps.

HMDs for desktops do not directly port over to mobile platforms. Ozsoy

et. al’s [122] hardware-accelerated classifiers detect ∼90% of off-the-shelf desktop

malware with 6% false positive rate. Tang et. al’s [142] anomaly detector achieves

99% detection accuracy for less than 1% false positives on a set of PDF and Java

malware. Such desktop HMDs, however, do not work well for mobile platforms –

we quantify Tang et. al’s HMD against mobile malware in our first case study in

Section 5 and build a 24.7% better HMD using Sherlock.
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2.2.3 Challenges in Evaluating HMDs

The closest related work to ours – on HMDs for mobile malware – is by

Demme et al. [72], where the authors present a supervised learning HMD that com-

pares off-the-shelf Android malware to arbitrary benign apps, yielding a 90:10 true

positive to false positive ratio. However, this methodology of using off-the-shelf

malware and comparing it to arbitrary benign apps is fallacious, as we discuss next.

Adaptive malware. One challenge in evaluating detectors is that malware devel-

opers can adapt their apps in response to proposed defenses. For example, we find

that simply splitting a payload into multiple software threads dramatically changes

the malware’s performance-counter signature and training a supervised HMD on

the single-threaded execution yields a very low probability of labeling the multi-

threaded version as malware. Adding delays, changing payload intensity, or choos-

ing an alternative victim application also throws off a supervised HMD trained only

on traces from existing malware.

Prior work analyzes malware samples categorized by family names like

CruseWin and AngryBirds-LeNa.C—this does not tell an analyst why a malware

binary was (not) detected. Instead, we propose to determine why a particular mal-

ware sample was (un)detectable, to anticipate how it can adapt, and then to create a

malware benchmark suite to identify the operating range of the detector.

Correct execution. The second challenge is that mobile malware samples available

online [33, 166], and used in prior work, seldom execute ‘correctly’. Malware often

require older, vulnerable versions of the mobile platform, they may target specific
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Figure 2.4: Real user inputs create hardware level activity, while providing no input
or using Android’s input-generation tool (Monkey) creates a very small signal.

geographical areas, include code to detect being executed inside an emulator, wait

for a (by now, dead) command-and-control server to issue commands over the inter-

net or through SMSs, or in many cases, trigger malicious actions only in response

to specific user actions [3, 15].

Figure 2.2 shows that an off-the-shelf malware (Geinimi.a) simply crashes

on our Android board and thus looks distinct from a benign MonkeyJump game’s

trace. Prior work will mis-classify this as a true positive. 20% of malware execu-

tions in Demme et al’s [72] experiments lasted less than one second and 56% less

than 10 seconds – in comparison, stealing a single photo takes almost 3 seconds.

Instead, we ensure that malware executes ‘correctly’ – steals SMSs and contacts,

and downloads an app – and aim to identify these payloads.

Appropriate Benignware and Real User Inputs. The third challenge is to ensure

25



appropriate differential analysis between benign and malware executions. Prior

work [72] trains detectors on malware executions but tests against arbitrary benign

applications. However, a benign app infected with malware looks more similar to

the underlying benign app than an arbitrary benign app. Figure 2.3 plots the exe-

cution traces of Firefox, Firefox with malware, and randomly chosen Android pro-

cesses along the first two principal components that retain ∼ 99% of the signal. We

see that the infected Firefox traces are much closer to those of benign Firefox than

to any other Android process like netd. Hence, false positive rate of an HMD for

Firefox should be tested using a benign Firefox – testing the HMD against arbitrary

processes [72] will yield wrong results that favor the HMD.

Further, Figure 2.4 shows that driving Android applications using real user-

input (red curve) has a major impact on the execution signals compared to giving

no input (blue curve) or using the Android ‘Monkey’ app (light brown curve) to

generate random inputs. Behaviors with ‘no inputs’ or ‘Android Monkey’ (blue and

brown curves) can be easily captured by a behavioral detector, and, as in the pre-

vious case, this leads to overestimation of its actual detection performance. Hence,

we propose to test HMDs using malicious binaries against appropriate benign apps

while both apps are being driven using real user-inputs.

Quantitative Comparison to Prior Evaluation Methods. We have shown in this

section that prior ‘black-box’ methods yield traces that do not represent either mal-

ware or benignware executions. The prior method has logical flaws – as a result,

20% of malware traces in [72] are shorter than 1 second, and 56% are <10s – and

we deliberately eschew further quantitative comparisons with Sherlock. Instead, our
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evaluation focuses on case studies using Sherlock to yield new insights into building

effective HMDs.

2.3 Synthesizing Mobile Malware

The first major component of Sherlock generates a diverse population of

malicious apps. To do so, we first introduce a taxonomy of high-level malware

behaviors, and then use it to create a set of representative malware whose hardware

signals have been explicitly diversified.

Figures 2.5 and 2.6 show our manual classification of malware into high

level behaviors. We studied 53 malware families from 2012, 19 from 2013, 31

from 2014 and 23 from 2015 – a total of 229 malware samples in 126 families –
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Figure 2.6: Examples of malware behaviors and their contribution to the malware
dataset.

downloaded from public malware repositories [27, 28, 33]. Our classification’s goal

is to identify orthogonal atomic actions and to determine concrete values for these

actions (e.g., amount and rate of data stolen).

To classify malware, we disassembled the binaries (APKs on Android) and

executed them on both an Android development board and the Android emulator to

monitor: permissions requested by the application, middleware-level events (such

as the launch of Intents and Services), system calls, network traffic, and descriptions

of malware samples from the malware repositories. We describe our findings below.

2.3.1 Unique Aspects of Mobile Malware

Our key insight is that instead of trying to detect conventional root ex-

ploits [13, 16, 44], we propose to detect malicious payloads. Here, payloads refer to

code that achieves the malware developers’ goals, such as sending premium SMSs,
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stealing device IDs or SMSs, etc. We observed root exploits in only 10 of 143 sam-

ples in 2012 and 3 of 32 samples in 2013 – we now take a closer look at the attack

vectors mobile malware rely on.

Mobile malware can successfully execute payloads due to vulnerable third-

party libraries. In one instance that affected hundreds of millions of users, a “vuln-

aggressive” ad-library had a deliberate flaw that led to downloaded files being

executed as code [47]. Webviews, that enable Android apps to include HTML/-

javascript components, are another major source of vulnerabilities [66] that allows

payloads to be dropped to a device. Apps with this vuln-aggressive library or We-

bviews are otherwise benign and can be downloaded from app stores as developer

signed binaries, only to be compromised when in use.

In other cases, errors by an app’s benign developers themselves can lead to

malicious payloads being executed. Misconfigured databases even in popular apps

like Evernote [12] and AppLocker [5] (a secure data storage app) were vulnerable

to malicious apps on the device simply reading out data from sensitive databases.

In such cases, the malicious app could be an otherwise harmless wallpaper app

that constructs an ‘Intent’ (a message) to AppLocker’s database at run-time and

exfiltrates data if successful.

User errors are another cause for malware payloads executing successfully

at run-time. Malicious apps read data from an online server, use it to construct a

user prompt at run-time, and thus request sensitive permissions such as access to

SMSs or microphone. Users often accept such requests [76] and once authorized,

apps can siphon off all SMSs or conduct persistent surveillance attacks [4].
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Worst of all, even the platform (Android) code can have severe vulnera-

bilities that doesn’t require a conventional exploit. For example, the Master Key

vulnerability [30] simply involved an error in how Android resolves a hash colli-

sion due to resource-names in a binary at install time v. execution time. By packing

the binary with a malicious payload such that the install time check passes but the

execution time loader picks the other malicious payload, attackers could distribute

their payloads through signed apps in official app-stores.

Finding: analyze payloads instead of exploits. We conclude that while

there are many routes to getting a payload to execute as part of a benign app, exe-

cuting the payload is mandatory for malware to win. Hence mobile HMDs shoud

aim to distinguish malicious payloads from benign app executions. The challenge

of detecting payloads is that payloads can look very similar to benign app’s func-

tionality. For example, if a previously harmless AngryBirds game starts to comb

through a database, can we distinguish whether it is reading a user’s gaming history

(harmless) or a user’s SMS database (attack) using only hardware signals.

2.3.2 Behavioral Taxonomy of Mobile Malware

At a high level we assigned every malicious payload to one or more of three

behaviors: information stealers, networked nodes, and compute nodes (Figure 2.6).

Information stealers look for sensitive data and upload it to the server. User-

specific sensitive data includes contacts, SMSs, emails, photos, videos, and appli-

cation specific data such as browser history and usernames, among others. Device-

specific sensitive data includes identifiers – IMEI, IMSI, ISDN – and hardware and
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network information. The volume of data ranges from photos and videos at the high

end (stolen either from the SD card or recorded via a surveillance app) to SMSs and

device IDs on the low end.

The second category of malicious apps requires compromised devices to act

as nodes in a network (e.g., a botnet). Networked nodes can send SMSs to premium

numbers and block the owner of the phone from receiving a payment confirmation.

Malware can also download files such as other applications in order to raise the

ranking of a particular malicious app. Click fraud apps click on a specific web links

to optimize search engine results for a target.

Given the advances in mobile processors, we anticipated a new category

of malware that would use mobile devices as compute nodes; for instance, mo-

bile counterparts of desktop malware that runs password crackers or bitcoin min-

ers on compromised machines. This was confirmed by recent malware that mines

cryptocurrencies [32]. We use a password cracker as a compute-oriented malware

payload. The cracker’s task is to recover sensitive passwords by making a guess,

compute the guess’ cryptographic hash, and compare each hash against a secret

database of hashed passwords.

Finding: Software-level actions are surprisingly long in hardware. Fig-

ure 2.7 shows the specifics of each malware behavior we currently include in Sherlock.

Interestingly, atomic malware payload actions take significant amount of time at

the hardware level for several payloads – e.g., stealing even one SMS or a Contact

requires 0.12s to 0.36s on average. These constants inform the design of our perfor-

mance counter sampling durations and machine learning models in Section 2.4. The
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Synthetic 
Malware  

Parameters 
(number of items) 

Malware-
Specific 

Delay (ms) 

# of RPKG 
Mal. Apks 

Length 

per Action 

(sec) 

Inst. 

Count 

(Million) 

Steal files (4.2MB 
each) 

1, 15, 35, 50 0, 1K, 5K 12 2.86 50.97 

Steal contacts 25, 70, 150, 250 0, 10, 25 12 0.36 67.80 

Steal SMSs 200, 400, 700, 1.7K 0, 15, 40 12 0.12 25.90 

Steal IDs, GPS data size fixed 0, 200 2 4* 39.65 

Click fraud (pages) 20, 80, 150, 300 0, 1K, 3K 12 0.40 44.40 

DDos (slow loris) 500 connections 1, 40, 80, 200 4 425 49.70 

SHA1 pass. cracker 10K, 0.5M, 1.5M, 2.5M 0, 20, 40 12 2.8E-5 1.9E-2 

Figure 2.7: Malware payloads: 4 info stealers, 2 networked nodes, and 1 com-
pute node. These settings represent a small but computationally diverse subset of
malware behaviors. Interestingly, small software actions have large hardware foot-
prints.

last two columns in Figure 2.7 show the average length of an atomic action in the

malware payload (not counting delays such as being scheduled out by the operating

system), and the instruction count per action (e.g. stealing 1 photo/contact/SMS,

clicking on 1 webpage in click fraud, opening 500 connections and keeping them

alive in a DDoS attack, generating 1 string and computing its hash using SHA1).

2.3.3 Constructing Malware Binaries

We now describe the steps required to create a realistic malware binary.

Malware activation can be chosen from being triggered at boot-time, when the

repackaged app starts, as a response to user activity, or based on commands sent

over TCP by a remote command and control (C&C) server. In all cases, malware

communicates back to the C&C server to transfer stolen data or compute results.

Sherlock’s configuration parameters also specify network-level intensity of malware
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App name Description # of 

Installs 

User Actions User Time 

(min) 

CPU Time 

(min) 

Inst. Count 

(Billion) 

Amazon internet 

store 

10M – 

50M 

searched for sporting goods; 
looked through 25 pages; 
clicked on 50 items  

81.15 32.40 1,914.97 

Angry 

Birds 

game 1M – 

5M 

played 9 rounds and 

completed 7 levels  

76.97 63.76 1,047.73 

CNN news app 5M –

10M 

browsed several categories 

of news and a few articles of 

each type 

58.04 11.60 254.85 

Firefox browser 50M – 

100M 

browsed 20 webpages 
starting from google.finance 

93.96 45.51 1,464.52 

Google 

Maps 

map 

service 

500M – 

1B 

browsed maps of a few cities 
and opened street views 

56.09 35.38 768.31 

Google 

Translate 

translator 500M – 

1B 

translated 30 words, 
searched history, tried 
handwriting recognition 

59.72 12.12 203.61 

Sana MIT 

Medical 

medical 

app 

U/A completed 5-6 
questionnaires 

111.41 11.37 145.94 

TuneIn 

Radio 

internet 

radio 

50M – 

100M 

switched amongst 6 channels 
and listened to radio 

78.10 26.17 407.99 

Zombie 

WorldWar 

game 1M – 

5M 

played 5 rounds and 
completed 4 levels 

91.62 88.40 2,261.99 

Figure 2.8: Real user inputs on benign apps, with per app traces up to∼2 hours and
∼2 trillion instructions. We choose complex apps and include a mix of compute
(games), user-driven (browsers, medical app), and network-centric (radio) apps.

payload in terms of data packet sizes and interpacket delays, and device-level in-

tensity in terms of execution progress (in terms of malware-specific atomic func-

tions completed). We chose concrete parameters for malicious payload based on

an empirical study of mobile malware as well as information about benign mobile

devices [101].

The generated malware has a top-level dispatcher service that serves as

an entry point to the malicious program; it parses the supplied configuration file,

launches the remaining services at random times, and configures them. Malicious

services can run simultaneously or sequentially depending on the configuration pa-
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rameter. In some cases, the service that executes a particular malicious activity can

serve as an additional dispatcher. For example, the service executing click fraud

spawns a few Java threads to avoid blocking on network accesses. Every spawned

thread is provided with a list of URLs that it must access. Besides Android services,

we register a listener to intercept sensitive incoming SMS messages, forward them

to C&C server, and remove them from the phone if needed. This listener simulates

bank Trojans that remove confirmation or two-factor authentication messages sent

by a bank to a customer.

Most professional apps are obfuscated using Proguard [17] to deter plagia-

rism. Proguard shrinks and optimizes binaries, and additionally obfuscates them by

renaming classes, fields, and methods with obscure names. We applied Proguard

to the malware payloads (even when we did not use reflection and encryption) to

make the payloads look like real applications.

After a malware payload is created, it must be repackaged into a baseline

app. Repackaging malware into a baseline app involves disassembling the app (us-

ing apktool), and adding information about new components and their interfaces in

the application’s Manifest file. We then insert code into the Main activity to start the

top-level malware dispatcher service (whose activation trigger is configurable), and

add malicious code and data files into the apk. We then reassemble the decompiled

app using apktool. If code insertion has been done correctly, apktool produces a

new Android app, which must be signed by jarsigner before deployment on a

real device.
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Figure 2.9: HMD results for Angry Birds with click fraud operating at three (in-
creasing) intensities. Since HMD is trained on benign AngryBirds, a low dark-line
shows that the HMD detects malware as a low probability state.

2.4 Real User-driven Execution

Armed with a computationally diverse malware suite, we now select a simi-

larly diverse suite of benign apps, drive them with long, real, user inputs, and extract

hardware signals from them. Figure 2.8 shows the apps that we run along with their

inputs – using these, we find that since the apps’ traces are so diverse, we need to

build HMDs customized for each app.

2.4.1 Benign Apps

Our main goal is to choose applications that represent popular usage, and

that require permissions to access resources like SD card and internet connectivity.

This ensures that the applications are interesting targets for malware. Further, we

ensure that the apps cover a mix of compute (games), user driven (medical app,

news), and network (radio) behaviors, diversifying the high-level use cases for apps

in the benignware suite. Our chosen app set includes native (C/C++/assembly),

Android (Dalvik instructions), and web-based functionality, varying the execution

environment of our benign app pool. We confirm that this high-level diversity does

indeed translate into diverse hardware-level signals.
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2.4.2 User Inputs

For each benign application, we created a workload that represents common

users’ behavior according to statistics available online. For example, when exercis-

ing Firefox, we visited popular websites listed on alexa.com. Automating this is

simple. For Angry Birds, we recorded a user playing the game for multiple rounds

and successfully completing several levels. For the medical diagnostics app (Sana),

we record users completing several questionnaires, where each questionnaire re-

quires stateful interactions spread over several screens. Such deep exploration of

real apps is far beyond the capability of not only the default UI testing tool in An-

droid (Monkey [43]), but also state of the art in input generation research [114].

Without such deep exploration of benign apps, the apps’ hardware traces will re-

flect only a dormant app and cause the malware signals to stand out at test time but

not in a deployed system.

For each benign app, we collect 6 user-level sessions (each 5–11 min long)

and use a heavily modified Android Reran [85] to record and replay 4 of these ses-

sions with random delays added between recorded actions (while ensuring correct

execution of the app). These 10 user-level traces per app generate 56–111 minutes

of performance counter traces across all apps.

Each benign app is then repackaged with 66 different payloads to create 9

× 66 malware samples. To collect performance counter traces, we replay one of the

app’s user-level traces and extract 5–11 minutes long performance counter traces

for each malware sample.
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Figure 2.8 shows some interesting trends in benign traces. While Sana com-

mits 145 Billion instructions in 111 minutes, Zombie WorldWar commits 2,261

Billion instructions in 91 minutes – clearly, Sana is much more user-bound while

Zombie WorldWar is compute-heavy. CNN and Angry Birds are similar to Zom-

bie WorldWar, where TuneIn Radio lies between Sana and Zombie WorldWar in

instructions committed.

Finding: HMDs have to be application-specific. Interestingly, as we show

in our evaluation (Section 2.5), the compute intensity of CNN and Zombie World-

War results in them having the worst detection rates among all the apps in our suite.

On the other hand, even though TuneIn Radio is more intense than Sana, TuneIn

Radio exposes malware better. We find that this is because the Radio has more reg-

ular behavior while Sana executes in short, sharp bursts. Sherlock’s realistic replay

infrastructure and user-input traces are key to producing these insights into HMDs’

performance.

2.4.3 Extracting Hardware Signals

We now describe our measurement setup for precise reproducibility. The

measurement setup requires careful setup and correctness checks since it is difficult

to replay real user inputs to the end once delays and malware payloads are added.

Devices. Our experimental setup consists of an Android development board con-

nected to a desktop machine via USB, which in turn stores data on a server for data

processing and construction of ML models. The desktop machine uses a wireless

router to capture internet traffic generated by the development board. The traffic
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collected from the router is analyzed to ensure that benignware and malware exe-

cute correctly.

We use a Samsung Exynos 5250 equipped with a touch screen, and a TI

OMAP 5430 development board, and we reboot the boards between each exper-

iment. We ran all experiments on the Exynos 5250 because some common apps

like NYTimes and CNN crashed on OMAP 5430 for lack of a WiFi module, but

repeated Angry Birds experiments on the OMAP 5430 to ensure that our results are

not an artifact of a specific device.

Performance counter tracing. We used the ARM DS-5 v5.15 framework and the

Streamline profiler as a non-intrusive method for observing performance counters.

DS-5 Streamline reads data every millisecond and on every context switch, so it

can ascribe performance events to individual threads. However, in DS-5 Streamline

extracting per process data can only be done using its GUI – we automate this

process using the JitBit [23] UI automation tool.

Choice of performance counters. We used hardware performance counters to

record five architectural signals: memory loads\stores, immediate and indirect con-

trol flow instruction counts, integer computations, and the total number of executed

instructions; and one micro-architectural signal: the total number of mispredicted

branches. We collected counter information on a per process basis as matching

programmer-visible threads to Linux-level threads requires instrumenting the An-

droid middleware (i.e., is non-trivial), and because per-process counters yielded rea-

sonable detection rates. We leave exploring the optimal set of performance counters

for future work.
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Overhead of counter sampling. We found that sampling counters with 1 ms time

resolution incurs less than 0.3% slowdown on the CF-Bench mobile benchmark

suite. Prior work also reports low overheads: Demme et al report 5% overhead

at 25k cycles per sample, while Tang et al report 1.5% at 512k retired instructions

per sample. Beyond sampling, the detection logic itself is fairly simple – while

we describe our HMDs in the next section, Ozsoy et. al have shown that a neural

net HMD costs less than 5% in area and delay to an AO486 CPU (with overheads

expected to be smaller for larger CPUs).

Ensuring correct execution. We ensured that the malicious payload was executed

correctly on the board for each trace. Specifically, synthetic malware communicated

with a Hercules 3-2-6 TCP server running on the desktop computer, which recorded

a log of all communication. The synthetic malware itself printed to a console on

the desktop computer (via adb) as well as to DS-5 Streamline when running each

malicious payload.

For experiments with off-the-shelf malware, we developed an HTTP server

to support custom (reverse-engineered) duplex protocols for C&C communication.

If we allowed malware to communicate to its original server, which was not under

our control, we captured network traffic going through the router. We checked

the validity of performance counters readings obtained via DS-5 Streamline with

specially crafted C programs, which we compiled and ran natively on the boards.
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2.4.4 Constructing and Evaluating HMDs

Using benign and malware traces collected as described above, an HMD

analyst can then train and test a range of HMD algorithms. For example, Figure 2.9

shows one of the HMD algorithms we present in a case study in Section 2.5.1. The

HMD is an anomaly detector and the figure plots the likelihood that the current

trace is going through a known phase—a low probability thus indicates potential

malware (the dark line) while higher probabilities indicate benignware (light gray

lines). Increasing the payload’s intensity lowers the probability even further. By

tuning the probability at which a time interval is flagged as malicious (or by training

a classifier to learn this), an analyst can trade-off false positives and true positives.

Importantly, we evaluate true positives and the detection threshold using

only the time windows that contain malware payload execution. We do not use

time windows where our repackaging code and dispatcher service executes, since

we would like the HMD to be evaluated solely using payloads and not exploits.

We do not use time windows before or after the payload is complete, because if an

HMD raises an alert when the payload is not executing, the alert may in reality be a

false positive that will get recorded as a true positive. Prior evaluation methods do

not separate out malware payload intervals and may have this error. On the other

hand, to measure false positives, we use benign traces only and hence use the entire

trace durations for each experiment. Finally, we use 10-fold cross validation on an

appropriate subset of our data to evaluate HMDs.
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2.5 Case Studies using Sherlock

We show how malware analysts can use Sherlock through three case stud-

ies. (1) We use malware payload sizes in Section 2.3 to tune the machine learning

features (100ms v. sub-ms in prior work) for an unsupervised HMD. Our HMD out-

performs prior work designed to detect short-lived exploits by 24.7% on the area

under curve (AUC) metric (Section 2.5.1). (2) Sherlock’s taxonomy of malware

in Section 2.3 can be used to train a supervised learning based HMD eficiently.

This ‘balanced’ HMD outperforms alternative HMDs – that are trained on subsets

of malware behaviors – by 12.5% AUC when tested on new variants of the behav-

iors. (3) Surprisingly, we show that our unsupervised HMD can detect malware that

uses obfuscation to evade the best known static analyses. Hence, HMDs and static

analyses are complementary and can drive malware payloads towards inefficient

implementations.

2.5.1 Improving Unsupervised HMDs

We begin by quantifying why prior work designed to detect exploits may

not yield the best HMDs to detect long-lived payloads.

Exploit-based ML features do not expose payloads (Figure 2.10). Tang et al. [142]

present an HMD specifically designed to detect the multi-stage exploits that char-

acterize Windows malware. The HMD samples performance counters every 512k

cycles, and uses a power transform on performance counter data to separate be-

nign and malicious time intervals. Then, a one-class SVM (ocSVM) is trained on

short-lived features – i.e., on each sample as a non-temporal model and using 4
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Before After

Figure 2.10: Distribution of load/store events in Angry Birds before and after power
transform. Power transform does not make malware payloads on Android more
discernible from benign behavior, whereas Tang et al. [142] show that it separates
exploits from benign apps in Windows.

consecutive samples to train a temporal model – to label anomalous time intervals

as malicious.

We find that power transform does not have the same effect on mobile mal-

ware payloads—payloads look very similar to benignware traces even after a power

transform. For example, Figure 2.10 shows the distribution of load-store instruc-

tion count per time interval for benign Angry Birds (labeled ‘Clean’), compared to

time intervals in Angry Birds infected with different malware payloads (e.g., file

stealer, click fraud, DDoS, etc)—before and after a power transform. The distribu-

tions are shown as a box-and-whiskers plot, where the box edges are 25th and 75th

percentiles, the central mark is the median, the whiskers extend to the most extreme

data points not considered outliers, while the outliers are plotted individually in
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Figure 2.11: Comparison of power transform + ocSVM (prior work) and Discrete
Wavelet Transform + ocSVM (this work). Our detector has 24.7% better area under
curve metric (AUC) than prior work.

red. Data in both plots have been normalized to the range of benign Angry Birds’

values. We use the standard Box-Cox power transformation to turn performance

counter traces into an approximately normal distribution. Since the distributions of

malware and benignware in Figure 2.10 overlap significantly, training an ocSVM

on this dataset will yield a poor HMD as we show next.

Payload-centric ML features. We designed a new HMD whose features reflect

our findings about mobile malware payload sizes in Figure 2.7. Specifically, we

attempt to capture program effects at the scale of 100ms intervals, i.e., closer to the

time required for atomic actions like stealing information or networking activity.

We then extract features from each 100ms long time interval using Discrete
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Wavelet Transform (DWT) and use the wavelet coefficients as a feature vector for

the time interval. The wavelet transform can provide both accurate frequency in-

formation at low frequencies and time information at high frequencies, which are

important for modeling the execution behavior of the applications. We use a three-

level DWT with an order 3 Daubechies wavelet function (db3) to decompose a time

interval. We also used the Haar wavelet function with similar detection results.

Finally, we use multiple feature vectors to construct two models: (a) a bag-

of-words algorithm followed by a ocSVM, and (b) a probabilistic Markov model.

Both these models are simple to train and compute at run-time, and hence serve as

good local detectors (and a good baseline for more complex models such as neural

nets that are harder to train).

2.5.1.1 Bag-of-words Anomaly Detector

The bag-of-words model treats 100ms time intervals as words and a Time-

to-Detection (TTD) window as a document. We experimented with a range of words

and TTDs, finding a codebook of 1000 words and TTD = 1.5 seconds to yield good

results. The bag of words algorithm maps each TTD window into a 1000-entry

histogram, and trains a one-class SVM on benign histograms. We parameterize the

one-class SVM so that it has ∼20% percent false positives.

Comparison with power transform — ocSVM HMD. Figure 2.11 compares our

bag-of-words based ocSVM with one that uses a power transform using the area un-

der ROC curve (AUC) metric. Note that AUC is a relative metric to compare classi-

fiers, whereas the operating range measures an HMDs’ robustness to atomic-action-
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Figure 2.12: The operating range of Bag-of-words HMD. In each rectangle, the
size of malicious payload grows from the top to the bottom, and the amount of
delay decreases from left to right (H=High, M=Medium, Z=Zero delay). If color
goes from light to dark within a rectangle, then the detection threshold (i.e., the
lower end of the operating range) lies inside the rectangle.

sized mutations in malware. The bag-of-words model outperforms prior work for

each category of malware behavior and by an average of 24.7% higher AUC across

all malware.

Operating range of DWT — bag-of-words — ocSVM. Figure 2.12 shows the

operating range for the bag-of-words model. Each cell in the matrix corresponds to

a malware payload action (y-axis) and benign app (x-axis) pair. The malware pay-

45



loads are grouped by category and within each category, increase in size from top

to bottom and in delay from right to left. These experiments use parameters from

Figure 2.8. The intensity of the color – from light green to dark red – corresponds

to the detection rate, which is computed as the number of raised alarms versus the

total number of alarms that could be raised.

Figure 2.12 shows that the bag-of-words model achieves, at ∼20% false

positive rate: 1) surprisingly high true positive rate for dynamic, compute intensive

apps such as Angry Birds (99.9%), CNN (84%), Zombie WorldWar (93%), and

Google Translate (92.4%); and 2) ∼80% true positive rate for both Amazon and

Sana.

Bag-of-Words model HMD space overheads. Bag-of-Words models require 639KB

– 1,229KB space with an average of 840KB and less than 2% of the average size of

Android apps.3

2.5.1.2 Markov-model based Anomaly Detector

We present an alternative HMD to show that HMD models should be chosen

specific to each application, and that there is an opportunity to apply ensemble

methods to boost detection rates.

Our first-order Markov model based HMD assumes that the normal execu-

tion of an application (approximately) goes through a (limited) number of states

(program phases), and the current state depends only on the previous state. The

3https://crowdsourcedtesting.com/resources/mobile-app-averages
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Figure 2.13: The operating range of Markov model HMD. Interestingly, the Markov
model performs worse than the simpler bag-of-words model for compute intensive
and dynamic apps (e.g., Angry Birds, CNN, and Zombie WorldWar).

goal is to detect malware if its performance counter trace creates a sequence of rare

state transitions (as shown in Figure 2.9).

The HMD uses DWT to extract features as in the bag-of-words model, but

maps them to a smaller number of words (i.e., states in the Markov model) using

k-means clustering. We use the Bayesian Information Criterion (BIC) score [127]

to find that 10 to 20 states is a good number across all benign apps. Using observed

state transitions derived from training data, we empirically estimate the transition

matrix and initial probability distribution (through Maximum Likelihood Estima-
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tion). For detection, the Markov model HMD tracks the joint probability of a se-

quence of states over time and if malware computations create anomalous hardware

signals (i.e. this probability is below a threshold for 5 states in our model), the HMD

raises an alert.

Operating range of DWT — Markov model HMD. Figure 2.13 shows the results-

matrix for the Markov model based detector. All the results are shown for a false

positive rate of 20-25%.

Increasing the size of each payload action makes malware more detectable

– this can be seen as the colors being more intense towards the bottom part of most

rectangles. Increasing the delay between two malicious actions does not have a

similarly predictable effect – SMS stealers in Angry Birds is a rare pair where de-

tection rate increases with delay. This is interesting since intuitively, adding delays

between payload actions should decrease the chances of being detected. However,

these experiments indicate that for most malware-benign pairs, detection depends

on how each payload action interferes with benign computation rather than delays

between the payload actions.

The most important take-away from Figure 2.13 is that for most malware-

benignware pairs, the detectability changes from light green to dark red as we go

from top to bottom in the rectangle – this shows that our malware parameters in

Figure 2.13 are close to the detection threshold, i.e. the lower end of the HMD’s

operating range for the current false positive rate. There are a few exceptions as

well, such as click fraud, DDoS, and password crackers hiding in CNN; and DDoS

in Angry Birds, Maps, Translate, and Zombie World Wards. For these cases, the
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payload intensity has to be increased further to find their detection threshold.

Markov model HMD space and time overheads. Markov models representing

the behavior of the benign apps vary from 1.2KB to 6.7 KB, with an average size

of 3.2KB – they are thus cheap to store on devices and transfer over cellular net-

works. Its time to detection ranges between 1.2 seconds to 4.4 seconds and about

2.5 seconds on average. This means that the system can detect suspicious activities

at the very beginning, considering that exfiltrating even one photo takes 2.86 sec on

average.

2.5.1.3 HMDs Should Be App-specific

Interestingly, the Markov model works significantly better than bag-of-words

for TuneIn Radio – with a 10% FP: 90% TP rate compared to 38%FP: 90% TP rate

respectively – but performs significantly worse on apps like Angry Birds. In sum-

mary, a deployed HMD will benefit from choosing the models that work best for

each application, but due to their different TP:FP operating points, will also benefit

from using boosting algorithms in machine learning [134].

2.5.2 Improving Supervised HMDs

Sherlock can significantly improve performance of supervised learning based

HMDs; specifically, by training the HMDs on a ‘balanced’ training data set that

contains malware with each high-level behavior identified in the Section 2.3.2. Note

that supervised learning techniques can be trained to recognize specific malware

families [72] (i.e. a multi-class model) or to coalesce all malicious feature vectors
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Figure 2.14: Training supervised learning HMD on a balanced set of malware be-
haviors yields best results.

(FVs) into a single label (i.e., a 2-class model)—we evaluate both categories in

Figure 2.14.

To quantify Sherlock’s ‘balancing’ effect on the resulting performance of a

classifier, we conduct the following experiment. We partition the entire malicious

set of FVs into a training set and two testing sets such that a training set contains

malicious FVs of a particular type (e.g. SMS stealer, file stealer, DDoS attack and

etc). The remaining FVs are placed in two non-overlapping testing sets. The first

testing set includes the same type of FVs as the training set, while the second one

comprises of FVs not in the training set. Finally, we add to each training/testing set

benign FVs whose number is equal to the number of malicious FVs in the corre-

sponding set.

Thus, for every partition we conduct two experiments: train a classifier on

a training set and test it on the two testing sets. We present the results for Random

Forest classifier using ROC curves (left) and AUC metric (right) in Figure 2.14 to

compare relative performance of a classifier under different training and testing data

sets. Each ROC curve is labeled as ‘training malware type’ – ‘testing malware type’
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Figure 2.15: Operating range of 2-class Random Forest HMD: more effective than
anomaly detectors when trained on a balanced dataset of all malware behaviors.

(‘others’ means all malware types that are not included in the training set). And the

red ROC curve shows the result of training and testing on a ‘balanced’ malware set.

We show relevant ROC curves in Figure 2.14 along with the AUC metric

for all ROC curves on the right. The light brown bars correspond to AUC of the

experiments where we train and test a classifier on the same malware type, i.e.

we test it on the first testing set. The blue bars demonstrate classifier’s ‘cross’

performance, i.e. we test it on the rest malware types (on the second testing set).

All results are computed using 10-fold cross validation.
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We experimented with several supervised learning algorithms – e.g., deci-

sion tree, 2-class SVM, k-Nearest Neighbor, Boosted decision trees, and Random

Forest (RF)– and present the results for RF classifier because it demonstrated the

best performance on our data set.

The common trend that we observed across all nine apps and all malware

types is that the RF classifier has significantly better performance when testing on

the same malware types (solid lines are higher than the dashed ones). The only ex-

ception is when the RF HMD is trained on DDoS malware, it surprisingly achieves

better performance on other malware behaviors than on the in-class malware be-

haviors.

This can be explained by high stealthiness of our implementation of a DDoS

attack [36] – each mobile device only opens HTTP connections to a target server

and keeps them alive with minimal further requests. Thus, in real apps that also

make network connections, DDoS should be virtually undetectable using HMDs.

From machine learning perspective, DDoS and benign apps are likely closer to

each other, while other malware like info-stealers and compute nodes are farther

away in feature space, therefore we observe an opposite trend in the case of DDoS

experiment in Figure 2.14.

Further, we trained a classifier on a balanced set of malicious data that in-

cluded all malware behaviors in Sherlock. The solid line with dots (in the ROC plot)

and the column on the far right (in the AUC bar graph) in Figure 2.14 show that

showing some variants of each behavior enables the RF to achieve a higher detec-

tion rate (on even new variants) than both prior work as well as one-class SVMs.
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The RF HMD can, for example, detect close to 85% of the malware with only 5%

false positives compared to our anomaly detectors’ similar true positives for ∼20%

false positive rates. Finally, the RF HMD trained on a balanced data set yields

97.5% AUC whereas RF HMDs trained on per-behavior inputs yield AUCs of 91%

and 85% when tested against the same or new malware behaviors respectively (av-

eraged across all behaviors).

Operating range of Random Forest HMD. Figure 2.15 shows the detection results

matrix for the RF HMD across the entire malware payload (Y-axis) and benignware

(X-axis) categories for a fixed false positive rate of 5%. The key results are that RF

detects most payloads except for detecting click fraud and DDoS attacks in CNN,

Firefox, and Google Translate. It is likely that DDoS attacks – which involve a

sequence of infrequent HTTP requests – look very similar to benign apps and are

not well suited to be detected using HMDs. Indeed, all three HMDs – bag-of-words,

Markov model, and RF – do a poor job of detecting DDoS attacks in most apps. On

the other hand, RF consistently detects information stealers and compute malware

(password cracker) across most apps. For apps with regular behavior (Radio) or

sparse user-driven behavior (Sana), RF can detect all but the smallest of malware

payloads.

In summary, Sherlock helps an analyst develop a robust HMD—first by dis-

secting existing malware to identify orthogonal behaviors, and then by training the

HMD on a representative set of malicious behaviors. In the end, using the operating

range, Sherlock informs the analyst of the type of behaviors the HMD is well/poorly

suited at detecting.
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1 Code snippet extracted from Obad.apk

2 Method: com.android.system.admin.

3 loOcccoC.loOcccoC(final boolean b)

4

5 dynamically construct class name

6 String class_name = oCIlCll(594, 24, -27);

7 return a class object

8 Class<?> c = Class.forName(class_name);

9 dynamically construct the name of a method

10 String method_name = oCIlCll(250, 33, -51);

11 return an object associated with the method

12 Method m = c.getMethod(method_name,

13 new Class<T>[] { Long.TYPE });

14 m.invoke(value, array);

Figure 2.16: Code shows Java reflection and string encryption in Obad malware that
foils static analysis tools.

2.5.3 Composition with Static Analyses

Reflection is a powerful method for writing malware that evades static pro-

gram analysis tools used in App Stores today [9]. Interestingly, we show that mal-

ware that uses reflection to obfuscate its static program paths in turn worsens its

dynamic hardware signals, and improves HMDs’ detection rates.

Java methods invoked via reflection are resolved at runtime, making it hard

for static code analysis to understand the program’s semantics. At the same time,

reflection alone is not sufficient – all strings in the code must also be encrypted,

otherwise the invoked method or a set of possible methods might be resolved stati-

cally.
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To illustrate an actual malicious use of Java reflection and encryption, we

show a code snippet (Figure 2.17) from Obad malware [3]. The code decrypts

class and method names (lines 6 and 10) by calling the method oCIlCll(). As

a result, static analyses [56, 113] either do not model reflection or conservatively

over-approximate the set of instantiated classes for method name (line 10) and tar-

get methods for the invoke function (line 14). Due to control-flow edges that may

never be traversed, static data-flow analysis becomes overly conservative, and static

analyses end up with high false positive rates (or more commonly, with malware

that goes undetected).

We augmented our synthetic malware with reflection and encryption similar

to Obad’s implementation. Static analysis of our malware does not reveal any API

methods that might raise alarms—we tested this using the Virustotal online service

which ran 38 antiviruses on our binary without raising any warnings.

Figure 2.17 shows results of using the Markov model HMD on the 66 syn-

thetic malware samples from Figure 2.7 augmented with reflection and encryption,

and embedded into each of AngryBirds, Sana, and TuneInRadio. We see that in An-

gry Birds and Sana the detection rate of the malware that uses both reflection and

encryption is significantly higher because reflection and encryption are computa-

tionally intensive and disturb the trace of the benign parent app (i.e., more than the

same malware without reflection and encryption). We do not see the same trend for

TuneInRadio because its detection rate was already quite high, so the additional im-

pact of reflection on TuneIn Radio stays within the noise margin. We conclude that

HMDs complement current static analyses and can potentially reduce the pressure
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Figure 2.17: (Markov model) Effect of obfuscation and encryption on detection
rate: interestingly, malware becomes more distinct compared to baseline benign
app.

on computationally intensive dynamic analyses with a larger trusted code base [75].

2.6 Conclusions

HMDs are being studied by processor manufacturers like Qualcomm and

Intel. As computer architects explore new hardware signals and accelerators to

improve security in general and malware detectors in particular—our work lays a

solid methodological foundation for future research into HMDs for mobile plat-

forms. In particular, our approach of identifying why a detector succeeds and fails,

instead of black-box experiments with malware binaries, is crucial. Indeed, prior
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work has pointed out the pitfalls of using machine learning in a black-box manner

for network-based intrusion detection systems [140]. Our future work will include

applying Sherlock’s white-box methodology to software detectors and efficiently

composing them with HMDs.
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Chapter 3

Early and Robust Malware Detection in Enterprise
Networks

3.1 Introduction

Behavioral detectors are a crucial line of defense against malware. By ex-

tracting features out of network packets [89, 124, 140, 163], system calls [62, 83,

116], instruction set [68, 91], and hardware [72, 104, 143] level actions, behavioral

detectors train machine learning algorithms to classify program binaries and execu-

tions as either malicious or benign. In practice, behavioral detectors are deployed

extensively as per-machine local detectors whose alerts are analyzed by global de-

tectors [1, 2, 19, 20, 34, 79].

However, behavioral detectors are weak – i.e., have high false positives and

negatives. This is because a large class of malware includes benign-looking behav-

iors, such as encrypting users’ data, use of obfuscated code, or making web/HTTP

requests. Further, machine learning-based detectors have been shown to be suscep-

tible to evasion attacks [123, 141, 156] that either increase false negatives or force

detectors to output more false positives. As a result, global detectors in enterprises

with ∼100K local detectors have to process millions of alerts per day [6] which

stresses heavy-weight program analyses and human analysts who investigate the
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Benign, no alert         Benign, alert

Figure 3.1: (L to R) Each circle is a node that runs a local malware detector (LD).
Our goal is to create a robust global detector (GD) from weak LDs. We observe that
nodes naturally form neighborhoods based on attributes relevant to attack vectors –
e.g., all client devices that visit a website W within the last hour belong to neighbor-
hood NBw, or all users who received an email from a mailing list M in the last hour
belong to neighborhood NBm. We propose a new GD that groups together suspi-
cious local feature vectors based on neighborhoods – traditional GDs only analyze
local alerts while we re-analyze feature vectors that led to the alerts. Our GD then
exploits a new insight – the conditional distribution of true positive feature vectors
differs from false positive feature vectors – to robustly classify neighborhoods as
malicious.

final alerts [18] – our goal is to build a robust global detector that amplifies weak

local detectors.

Challenges for prior work. Boosting weak detectors using purely machine learn-

ing techniques is challenging. The dominant approaches are (a) clustering: combine

feature vectors using some distance metric to identify suspicious clusters of feature

vectors [118, 154, 160, 164], and (b) counting: train local detectors (LDs) such as

Random Forests to generate local alerts, and generate a global alert if there is a sig-

nificant fraction of local alerts in the enterprise [71, 88, 89, 137]. Both approaches
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have limitations that force enterprises to deploy brittle rule-sets that explicitly cor-

relate local detector alerts.

Clustering algorithms are well-known to be highly sensitive to noise, espe-

cially in the high-dimensional regime [73, 96, 155]. Indeed, classical approaches

that attempt to detect or to score ”outlyingness” of points (e.g. Stahel-Donoho out-

lyingness, Mahalanobis distance, minimum volume ellipsoid, minimum covariance

determinant, etc) are fundamentally flawed in the high-dimensional regime (i.e.,

theoretically cannot guarantee correct detection with high probability). In practice,

we see this in prior work [160] where clustering is used primarily as a first-level

analysis to discover malicious incidents for a human analyst (i.e. requires lower

accuracy than a global detector). In Section 3.6 we find that a clustering global

detector is ineffective in early stages of infection where our detector succeeds –

i.e., clustering yields an Area Under Curve (AUC) metric of only ∼ 48% against

waterhole attack and phishing attacks.

Count-based global detectors (Count-GD), on the other hand, suffer because

they need to know the size of local detector communities extremely accurately to

determine whether a significant fraction is raising alerts. In practice though, these

communities of local detectors are extremely ‘noisy’. For example, consider a com-

munity of machines in an enterprise who are potentially exposed to a so-called

waterhole attack [49] (where a compromised webpage spreads malicious code to

machines in the enterprise). Here, a malicious javascript-advertisement might be

targeted by an ad-broker to only a fraction of visitors to a set of webpages. Fur-

ther, the specific exploit might only succeed on a small fraction of machines that
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did receive the exploit because of browser versions or patching status. Surprisingly,

our experiments show that if Count-GD underestimates the number of nodes where

the exploit ran successfully (i.e., the community size) by just 2%, its alerts are al-

most 100% false positives (similarly, overestimating the community by 14% leads

to almost 0% true positives). Even small errors in estimating the number of feature

vectors in the community linearly affects the global detector’s decision thresholds.

Proposed Ideas – Neighborhood filtering and Shape. Our intuition is that a weak

signal indicative of malicious behavior still separates true- and false-positive fea-

ture vectors, even though local detectors classify both as malicious. Our proposed

system, Shape-GD, relies on two key insights to correctly identify malicious feature

vectors.

First, attack vectors into a firewalled enterprise create short-lived and dy-

namic correlations across nodes – e.g., machines that visit a specific server (in

watering hole attacks) or receive email from an address (in phishing attacks) are

more likely to be compromised than a random machine in the community. Since an

attacker cannot target a machine inside an enterprise directly, machines that have

been exposed to a common attack vector have correlated alerts. We call such a set

of machines a neighborhood. Neighborhoods thus concentrate the signal of mal-

ware activity that is otherwise not visible at the overall community level and can

thus enable early detection of malware attacks. Neighborhoods are, however, ex-

tremely unpredictable and render cluster and count-based GDs ineffective – hence

we propose Shape-GD to aggregate local detectors’ outputs.

The second insight behind Shape-GD is that the distributional shape of a
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set of suspicious feature vectors can robustly separate true positive neighborhoods

from false positive neighborhoods. Shape-GD analyzes only those feature vectors

that cause alerts by the local detectors (alert-FVs) instead of analyzing all feature

vectors. Alert-FVs thus represent draws from one of two conditional distributions –

i.e., distribution of malicious or benign feature vectors conditioned on being labeled

as suspicious – which are similar but not the same. Next, while a single suspicious

feature vector is uninformative, a set of such feature vectors can indeed be tested to

come from one of two similar-but-distinct distributions. To conduct this hypothesis

test, Shape-GD introduces a quantitative scoring function that maps a set of feature

vectors (the alert-FVs per neighborhood) into one scalar value – the ShapeScore of

the neighborhood.

Shape-GD composes the two insights – i.e., filters alert-FVs along neigh-

borhood lines followed by computing the neighborhood’s shape – and achieves two

key properties: (i) the distribution of the alert-FVs strongly separates malicious and

benign neighborhoods (essentially, it separates the true positive alert-FVs from false

positive alert-FVs), and (ii) is robust to noise in neighborhood size estimates (i.e.,

we do not need accurate neighborhood sizes and only need a sufficient number of

alert-FVs to make a robust hypothesis test). Specifically, Shape-GD detects mali-

cious neighborhoods with less than 1.1% and 2% compromised nodes per neighbor-

hood (in two case studies involving waterhole and phishing attacks respectively), at

a false positive and true positive rate of 1% and 100% respectively. Neighborhood

filtering and ShapeScore complement each other – neighborhoods concentrate the

weak signal into a small but unpredictable set of feature vectors while ShapeScore

62



extracts this signal without knowing the precise number of feature vectors.

Contributions. Neighborhood filtering and shape enable structural information

about attack vectors to be captured algorithmically. Our specific contributions are

as follows.

• Neighborhood filtering to ‘reanalyze’ alert feature vectors instead of only

alert time-series, and Shape-GD algorithms that exploit a new property – the

statistical ‘shape’ of a neighborhood separates the ones with true positives

from those with false positives – to classify neighborhoods as malicious or

benign without knowing their size.

• An efficient detector that can identify malicious neighborhoods using only

15,000 feature vectors (roughly 15 seconds of data from a 1000-node neigh-

borhood). The detector comprises of random forest LDs and a Shape-GD that

computes ShapeScore as the Wasserstein distance between a set of alert-FVs’

histograms and a reference histogram built using false positive feature vectors

(created by running LDs on benign programs in uninfected machines that are

used to train the GD).

• Phishing case study. Shape-GD detects a phishing attack with 1% false pos-

itive rate in a medium size enterprise network with a neighborhood of 1086

nodes when only 17.08 nodes (using temporal neighborhoods) and 4.48 nodes

(with additional mailing-list based structural filtering) are infected.

• Waterhole attack case study. Shape-GD detects a waterhole attack with 1%

false positive rate when only 107.5 nodes (using temporal neighborhoods)
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and 139.9 (with additional server specific structural filtering) out of∼ 550,000

nodes are infected.

We emphasize that the LD and GD false positives (FPs) have very different

interpretations. In a phishing attack, an LD FP of 1% in a neighborhood of 1000

nodes means that we will get about 10 FP alerts per second. The Shape-GD, on the

other-hand, uses these LD FP alerts for decision making. Thus a GD false positive

occurs when it misclassifies a neighborhood of LD alerts – a much rarer scenario.

Specifically, a GD FP rate of 1% means that in our phishing attack scenario,

we will receive a global false alert about once every 100 - 300 hours. Similarly, in

the waterhole scenario a global false positive occurs every 100 sec. Comparing the

number of LDs’ FPs that are reported to a GD in a Count GD v. Shape-GD, tempo-

ral neighborhood filtering reduces total FPs by∼100× (phishing) and∼200× (wa-

terhole), while adding structural filtering reduces total FPs by∼1000× and∼830×

respectively (Section 3.9 for details).

Finally, as an auxiliary contribution, we present a methodology to evaluate

detectors where the LD and GD algorithms are tightly integrated. Existing enter-

prise networks provide black-box LDs (such as Blue Coat, Symantec etc) that push

alert logs into ‘SIEM’ tools (like Splunk) where GD algorithms and visualization

tools are deployed. Section 3.4 describes the limitations of three real settings we

have worked on – a real enterprise dataset, a university network test-bed, and the

Symantec WINE dataset. None of these allow a GD to acquire alert feature vectors

from LDs. Instead, we incorporate a host-level malware analysis setup [106] into
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real enterprise data center [14] and email [10] traces, vary the rates of infection

systematically, and thus determine the operating range of Shape-GD agnostic of

one specific sequence of events. This methodology offers a more robust measure

of Shape-GD’s detection rate under adaptive malware that can alter its infection

behavior in response to Shape-GD’s analysis.

3.2 Overview of Shape-GD

Threat model and Deployment. We assume a standard threat model where trusted

local detectors (LDs) at each machine communicate with a trusted global detector

(GD) that receives alerts and other metadata from the local detectors. The LDs are

isolated from untrusted applications on local machines using OS- (e.g., SELinux)

and hardware mechanisms (e.g., ARM TrustZone), and communicate with the en-

terprise’s GD through an authenticated channel. The GD is trained as a standard

anomaly detector – using benign data generated from uninfected (e.g. test/quality-

assurance) machines that run LDs on benign software, or assuming the current state

of the system as benign in order to detect future malware as anomalies.

Shape-GD fits deployment models that are common today. Currently, en-

terprises use SIEM tools (like HP Arcsight and Splunk) to monitor network traffic

and system/application logs, malware analysis sandboxes that scan emails for ma-

licious links and attachments, in addition to host-based malware detectors (LDs)

from Symantec, McAfee, Lookout, etc. We use exactly these side-information –

from network logs (client-IP, server IP, timestamp) and email monitoring tools – to

instantiate neighborhoods and filter LDs’ alert-FVs based on neighborhoods (Algo-
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rithm 2). Upon receiving alert-FVs, Shape-GD runs its malware detection algorithm

(Algorithm 5) for all neighborhoods the alert-FVs belong to. If a particular neigh-

borhood is suspicious, then Shape-GD will notify a downstream analysis (deeper

static/dynamic analyses or human analysts) and forward relevant information in the

incident report.

The key difference is that Shape-GD needs to know the alert feature vec-

tors from the LDs – black-box LDs do not currently provide these. Hence (e.g.,

osquery-based) co-designed LD-GD detectors [19, 34] are the most appropriate

deployment counterpart for Shape-GD– this also motivates our experimental setup

combining host-level malware analysis and web-service/email datasets.

Operationally, the LD at each machine transforms its input signal into an

alert time series. This transformation consists of two steps: (a) Generate Feature

Vectors: convert the raw OS system calls trace into a feature vector (FV) time

series, and (b) Generate Alerts: Determine if each FV is malicious or not using a

local detector (typically through random forests, SVM, etc.).

Inferring neighborhoods from common attack vectors. Shape-GD operates over

dynamic neighborhoods, which are updated once per neighborhood time window

(NTW). Neighborhoods within large communities are a set of nodes that share a

statically defined action attribute within the current time window – this allows an

analyst to create neighborhoods of nodes based on common attack vectors. Below

are some illustrative examples of communities and neighborhoods – we focus our

experiments on the first two examples that are responsible for a large fraction of

malware in enterprises.
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1. Waterhole attack. The community here consists of the employees of an enterprise

such as Anthem Health [38, 40]. In a waterhole attack, adversaries compromise a

website commonly visited by such employees as a way to infiltrate the enterprise

network and then spread within the network to a privileged machine or user. Within

this community, a neighborhood can be the set of nodes that visited the same type

of websites within the current neighborhood time window (for example, some per-

centile of suspicious links rated by VirusTotal [46] or SecureRank [35]). Since these

rankings themselves are fuzzy, and the websites and their contents are dynamic,

neighborhoods only indicate a probability that the node was actually exposed to an

exploit.

2. Phishing attack over enterprise email networks. The community here consists of

all employees within an enterprise. A phishing attack here would typically spread

over email and use a malicious URL to lure nodes (users) to drive-by-download

attacks [26, 39] or spread through malicious attachments. Here, a specific user’s

neighbors are that subset of users with whom she/he exchanged emails with during

the current neighborhood time window.

Similar correlations occur in physical hardware attacks – community here

consists of all machines in a workplace that are physically proximal (e.g. machines

in a specific hospital or bank determined using the configuration of LAN/WiFi in-

frastructure, GPS information etc). The potential attack mode here is through phys-

ical hardware such as badUSB. The neighborhood of a node is simply all other nodes

in the neighborhood that were connected to similar external hardware (e.g. a USB

drive) over the current neighborhood time window.

67



-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

-4 -2 0 2 4
0

0.5

1

1.5

-4 -2 0 2 4
0

0.5

1

1.5

Figure 3.2: (Shape of conditional distributions) The top left figure is the probability
density function (pdf) of benign feature vectors, here a Gaussian with mean ‘-1’;
and the top right figure is the pdf for malicious feature vectors, here a Gaussian with
mean‘+1’. The optimal local detector at any machine would declare ’malware’ if
a sample’s value is positive, and declare ’benign’ if a sample’s value is negative.
The bottom plots shows the pdfs of the same Gaussians but now conditioned on the
event that the sample is positive – the pdfs corresponding to false positive and true
positive feature vectors respectively have different shapes.

Attacks that target specific app-stores (e.g., the Key-Raider attack in the Cy-

dia app-store or the malicious Xcode attacks due to compromised mirror sites) also

propagated across users with specific attributes (membership in a store or down-

loaded Xcode from specific sites) more likely than a random user in the network.
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3.2.1 Intuition behind Shape-GD

The statistical shape of local detectors’ false positives (FP conditional dis-

tribution) differs from the corresponding shape for true positives (TP conditional

distribution) – we use this property to aggregate LDs’ alert-FVs to find the shape of

each neighborhood and then classify neighborhoods based on their shapes.

The central question then is – why do true- and false-positive FVs’ shapes

differ? To explain this and set the stage for Shape-GD, we consider a stylized sta-

tistical inference example. Suppose that we have an unknown number of nodes

within a neighborhood. We want to distinguish between two extremes – all nodes

only run benign applications (benign hypothesis), or all nodes are running malware

(malware hypothesis). We look at a single snapshot of time where each node gen-

erates exactly one feature vector. Under the benign hypothesis, assume that the

feature vector from each node is a (scalar valued) sample from a standard Gaussian

with mean of ‘-1’; alternatively it is standard Gaussian with mean of ‘+1’ under the

malware hypothesis.

(a) Noisy local detectors: Given one sample (i.e., FV from one node), the

best local detector is a threshold test: is the sample’s value above zero or below?

For this example, the probability of a false positive is (about) 15%.

(b) Aggregating local detectors over neighborhoods: Suppose there are 100

nodes and all of them report their value, and we are told that 90 of them are greater

than 0 (i.e., 90 of the local detectors generate alerts). In this case, the expected

number of alerts under the benign hypothesis is 15; and 85 under the malware
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hypothesis. Thus, we can conclude with overwhelming certainty (10−75 chance

of error) that 90 alerts indicate an infected neighborhood. This corresponds to a

conventional threshold algorithm that count the number of alarms in a neighborhood

and compares with a global threshold (here this threshold is 50).

(c) Count without knowing neighborhood size: Suppose, now, that we do

not know the number of nodes (i.e., neighborhood size is unknown), and only know

that there are a total of 90 alerts. In other words, out of the neighborhood of nodes,

some 90 of them whose samples were positive reported so. What can we say?

Unfortunately we cannot say much – if there were 100 nodes in neighborhood, then

malware is extremely likely; however, if there were 1000 total nodes, then with 90

alerts, it is by far (exponentially) more likely that we have no infection. Because

we do not know the neighborhood size, the global threshold cannot be computed.

(d) Robustness of Shape: While the number of alerts alone is uninformative,

we can resolve whether the neighborhood is a ‘false positive’ or ‘true positive’ by

considering the actual values of the 90 random variables corresponding to these

alerts. These values represent independent draws from a conditional distribution

– either the distribution of a normal random variable of mean ’−1’ conditioned on

taking a nonnegative value, or the distribution of a normal random variable of mean

’+1’ conditioned on taking a nonnegative value (see Figure 3.2). This conditioning

occurs because of the local detector – recall it tags a sample as an alert if and only if

the sample drawn was nonnegative (optimal LD in this example). Thus, irrespective

of the size of the neighborhood, the global detector would “look at the shape” of the

empirical distribution (i.e. the distribution constructed from the received samples)
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of the received samples (FVs). If this were “closer” to the left rather than the right

plot in Figure 3.2, it would declare “uninfected”; otherwise declare “infected”.

3.2.2 From Intuition to Algorithm Design

Interestingly, we show that the intuition behind this simple example scales

to real malware detectors that use high-dimensional feature vectors. However, to

use this insight in practice, we need to address two issues: (i) while the two fig-

ures in Figure 3.2 are visually distinct, an algorithmic approach requires a quantita-

tive score function to separate between the (vector-valued) conditional distributions

generated from feature vector samples; and (ii) the global detector receives only

finitely many samples; thus, we can construct (at best) only a noisy estimate of the

conditional distribution. We describe Shape-GD’s details in Section 3.3 but present

the key intuition here.

We introduce ShapeScore – a score function based on the Wasserstein dis-

tance [48] to resolve between conditional distributions. We choose Wasserstein

distance because it has well-known robustness properties to finite-sample binning

[59, 144], was more discriminative than L1/L2 distances in our experiments, and

yet is efficient to compute for vectors.

Specifically, given a collection of feature vector samples, we construct an

empirical (vector) histogram of the FV samples, and determine the Wasserstein

distance of this histogram with respect to a reference histogram. This reference his-

togram is constructed from the feature vectors corresponding to the false positives

of the local detectors. In other words, this reference histogram captures the statis-
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tical shape of the “failures” of the LDs – i.e., those FVs that the LD classifies as

malicious even though they arise from benign applications. Computing the refer-

ence histogram does not require analysts to manually label alert-FVs as false posi-

tives – these can be generated by running the LDs on benign software in uninfected

machines (e.g., test or quality-assurance machines, by recording and replaying real

user traces on benign applications on training servers, etc). Alternatively, analysts

can use applications deployed currently and recompute the reference histogram pe-

riodically – this is similar to anomaly detectors where the goal is to label anomalous

behaviors as (potentially) malicious.

If we had the idealized scenario of infinite number of feature vector samples,

the ShapeScore would be uniquely and deterministically known. In practice how-

ever, we have only a limited number of feature vector samples; thus ShapeScore

is noisy. Our experiments (Figure 3.4) test its robustness with Windows benign

and malicious applications (Section 3.5), where the ShapeScore is computed from

neighborhood sizes of 15,000 FVs (about 15 seconds of data from 1000 nodes).

The key result is the strong statistical separation between the ShapeScores for the

TP and FP feature vectors respectively, thus lending credence to our approach. Im-

portantly, both these ideas do not depend on knowing the neighborhood size; thus

they provide a new lens to study malware at a global level.

3.3 Shape GD Algorithm

Our algorithm consists of feature extraction, local detector (LD), and the

global detector (GD). Our key innovations are in the GD, however, we also discuss
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Algorithm 1: Local Detector
Input : Sequence of executed system calls
Output: Alert-FVs

1 Let id be LD’s identifier

2 while True do
3 syscall-hist ← r-sec histogram of system calls
4 syscall-histPCA ← project syscall-hist on L-dim PCA basis
5 label ← BinaryClassifier(syscall-histPCA);

6 if label = malicious then
7 alert-FV ← syscall-histPCA

8 send < alert-FV , id > to Shape-GD

feature extraction and LD design for completeness.

Local Detector (LD) Algorithm. Our first step is to establish a good local detector

(LD) for desktop systems running Windows OS. In particular, we choose system

call based LDs since the system call interface has visibility into an app’s intercation

with core OS components – file system, Windows registry, network – and can thus

capture signals relevant to malware executions.

We experiment with an extensive set of system-call LDs – our takeaway is

that even the best LD we could construct operates at a true- and false-positive ratio

of 92.4%:6% and is not deployable by itself (i.e., will create ∼30 false positives

every 10 minutes without a GD).

Each LD comprises of a feature extraction (FE) algorithm and a machine

learning (ML) classifier. Our FE algorithm partitions the time-series of system

calls into 1-sec chunks and represents each chunk as a histogram (where each bin

contains frequency of a particular system call). Then it projects all feature vectors

onto 10-dimensional subspace spanned by top 10 principal components generated
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by PCA algorithm. We choose ML classifiers (used throughout prior work because

these are computationally efficient to train) such as SVMs, random forest, k-Nearest

Neighbors, etc, and do not include complex alternatives such as artificial neural

networks or deep learning algorithms. We also deliberately avoid handcrafted ML

algorithms and hardcoded detection rules.

Figure 3.3 plots the true positive v. false positive rates (i.e. the ROC curves)

of the seven ML algorithms we evaluate. The area under the ROC curve (AUC) is a

quantitative measure of LD’s performance: the larger the AUC, the more accurate

the detector. We specifically experiment with seven state-of-the-art ML algorithms:

random forest, 2-class SVM, kNN, decision trees, naive Bayes, and their ensemble

versions – boosted decision trees with AdaBoost algorithm and Random SubSpace

ensemble of kNN classifiers (Figure 3.3). We also evaluated 1-class SVM as an

anomaly detector – however, it yielded an extremely high FP rate and we exclude

it from further discussion. Overall, the random forest classifier worked best – it has

the highest AUC and we pick an operating point of 92.4% true positives at a false

positive rate of 6%.

Neighborhood Instances from Attack-Templates. Each neighborhood time win-

dow (NTW), Shape GD generates neighborhood instances (Algorithm 2) based on

statically defined attack vectors – each attack vector is a “Template” to generate

neighborhoods with. Algorithm 2 shows how the concept of neighborhood unifies

operationally distinct attacks like waterhole and phishing.

The template for detecting a waterhole attack forms a neighborhood out

of client nodes that access a server or a group of servers within a neighborhood
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Figure 3.3: (ROC curves) True positive v. False positive curves shows detection
accuracy of seven local detectors. Random Forest outperforms all others; but has
unacceptably high false positive rate (above 10%) if one wants to achieve at least
95% true positive rate.

time window. The other template, which is used for detection of a phishing attack,

includes in a neighborhood email recipient machines belonging to a set of mailing

lists. The two templates are shown in lines 3–10.

For simplicity we present a batch version of the neighborhood instantiation

algorithm (Algorithm 2) which advances time by NTW and creates new neighbor-

hoods for each NTW. In contrast, the online Shape GD version updates already

existing neighborhoods while monitoring client–server interactions in real-time –

we demonstrate the online Shape GD algorithm to detect waterhole attacks and the

batch version against phishing attacks in our evaluation.

The neighborhood instantiation algorithm accepts a template type as input,

i.e. either a template for detecting a waterhole attack or a phishing attack, and
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Algorithm 2: Neighborhoods from Attack-Vectors
Input : Template-type, NTW
Output: Set of active neighborhoods NBDs

[time, time+NTW] defines the current time window
1 time← current time

2 while True do
3 if Template-type = waterhole attack then
4 V := client machines*
5 S := accessed servers*
6 predicate(A:Client, B:Servers) := A accesses B

7 else if Template-type = phishing attack then
8 V := email recipient machines*
9 S := mailing lists*

10 predicate(A:Recipient, B:Mailing list) := A ⊆ B

partitioning a set into non-disjoint sets to incorporate
structural filtering

11 P1,P2, ...,PN ← partition-set(S), where S =
N⋃

i=1
Pi

form neighborhoods NBi using partitions Pi

12 NBi← {V | predicate(V , Pi)}
set expiration time for a neighborhood NBi

13 NBi.expiration-time← t+NTW
add all neighborhoods to the set NBDs

14 NBDs← {NBi | ∀i in [1,N]}
advance time by NTW sec

15 time← time+NTW

*active within the time window [time, time+NTW]
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duration of an NTW. The algorithm runs once per NTW – starting by defining the

sets V and S that will be used to form neighborhoods. For a waterhole attack, the

set V includes all client machines accessing a set of servers and S is a set of the

accessed servers. To instantiate neighborhoods for a phishing attack, V is a set

of all email recipient machines and S is a set of mailing lists. In both cases the

algorithm considers only the entities that are active within a current NTW window.

Each attack requires a predicate that determines relation between the ele-

ments of the sets V and S. For a waterhole attack such a predicate is true if a client

accesses one of the servers (line 6). In the case of a phishing template, the predicate

is evaluated to true if a recipient belongs to a particular mailing list (line 10).

The neighborhood instantiation algorithm proceeds with partitioning the set

S into one or more disjoint subsets Pi (line 11). This is to incorporate ‘structural

filtering’ into the algorithm, allowing an analyst to create neighborhoods based on

subsets of servers (instead of all servers in case of waterhole) or divide all mail-

ing lists into subsets of mailing lists (in the phishing). Structural filtering boosts

detection under certain conditions (see Section 3.5.3).

The neighborhood instantiation algorithm builds a neighborhood for each

partition Pi using a corresponding predicate (line 12). After forming a neighbor-

hood, the algorithm sets its expiration time (line 13), which is the end of the current

NTW window. All the neighborhoods in the set NBDs are discarded at the end of

the current NTW window. Finally, the algorithm adds the just formed neighbor-

hoods to NBDs (line 14) and advances time by one NTW (line 15).
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The template-based neighborhood instantiation algorithm (Algorithms 2)

shares the NBDs data structure with the Algorithm 5 that uses neighborhoods’

shapes to detect malware.

Malware Detection in a Neighborhood. Algorithm 5 detects malware per neigh-

borhood instead of individual nodes. The input to the algorithm is a set of alert-FVs

from each neighborhood and its output is a global alert for the neighborhood. We

now describe how the algorithm distinguishes between the conditional distributions

of alert-FVs from true-positive and false positive neighborhoods.

The key algorithmic idea is to first extract neighborhood-level features – i.e.,

to map all alert-FVs within a neighborhood to a single vector-histogram which ro-

bustly captures the neighborhood’s statistical properties. Then, Shape GD compares

this vector-histogram to a reference vector-histogram (built offline during train-

ing) to yield the neighborhood’s ShapeScore. The reference vector-histogram is

constructed from a set of false positive alert-FVs – thus, it captures the statistical

shape of misclassifications (FPs) by the LDs but at a neighborhood scale. Finally,

Shape-GD trains a classifier to detect anomalous ShapeScores as malware. This is

a key step in Shape-GD – i.e., mapping alert-FVs from a neighborhood into a single

vector-histogram and then into a discriminative yet robust ShapeScore lets us ana-

lyze the joint properties of all alert-FVs generated within a neighborhood without

requiring the FVs to be clustered or alerts to be counted. We describe these steps in

further detail.

Generating histograms from alert-FVs. The algorithm aggregates L-dimensional

projections of alert-FVs on per neighborhood basis into a set B (Algorithm 5, line
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Algorithm 3: Malware Detection in a Neighborhood
Input : L-dim projections of alert-FVs
Output: Malicious neighborhoods

1 Let NBDs be a set of neighborhoods

2 for each NB in NBDs do
aggregate L-dim projections of alert-FVs on per neighborhood basis

3 B← {alert−FV s | node id ⊆ NB}
build an (L,b)-dim. vector-histogram

4 HB← bin & normalize B along each dimension
compute a neighborhood score – ShapeScore

5 ShapeScore←Wasserstein Dist.(HB, Href)
perform hypothesis testing

6 if ShapeScore > γ then
7 label NB as malicious

3). After that, Shape GD converts low dimensional representation of alert-FVs,

the set B, into a single (L,b)-dimensional vector-histogram denoted by HB (line

4). The conversion is performed by binning L-dimensional vectors within the B

set along each dimension. In each of the L-dimensions, the scalar-histogram of the

corresponding component of the vectors is binned and normalized. Effectively, a

vector-histogram is a matrix Lxb, where L is the dimensionality of alert-FVs and b

is the number of bins per dimension.

We use standard methods to determine the size and number of bins and note

that the choice of Wasserstein distance in the next step makes Shape GD robust

against variations due to binning. In particular, we tried square-root choice, Rice

rule, and Doane’s formula [8] to estimate the number of bins, and we found that 20–

100 bins yielded separable histograms (as in Figure 3.4) for the Windows dataset

and fixed it at 50 for our experiments.
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ShapeScore. We get the ShapeScore by comparing this histogram, HB, to a refer-

ence histogram, Href, which is generated during the training phase using only the

false positive FVs of the LDs. We run LDs on the system-call traces generated by

benign apps – the FVs corresponding to the alerts from the LD (i.e., the false pos-

itives) are then used to construct the reference histogram Href. ShapeScore is thus

the distance of a neighborhood from a benign reference histogram – a high score

indicates potential malware.

To collect known benign traces, a straightforward approach is to use test

inputs on benign apps or use record-and-replay tools to re-run real user inputs in a

malware-free system. Or, like any anomaly detector, an enterprise can train Shape-

GD using applications deployed currently and recompute Hre f periodically.

The ShapeScore of the accumulated set of FVs, B, is given by the sum of

the coordinate-wise Wasserstein distances [144] (Algorithm 5, line 5) between

HB = (HB(1) HB(2) . . . HB(L))

and

Href = (Href(1) Href(2) . . . Href(L)).

In other words,

ShapeScore =
L

∑
l=1

dW (HB(l),Href(l)),

where for two scalar distributions p,q, the Wasserstein distance [48, 144] is given

by

dW (p,q) =
b

∑
i=1

∣∣∣∣∣ i

∑
j=1

(p( j)−q( j))

∣∣∣∣∣ .
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This Wasserstein distance serves as an efficiently computable one dimen-

sional projection, that gives us a discriminatively powerful metric of distance [59,

144]. Because the Wasserstein distance computes a metric between distributions –

for us, histograms normalized to have total area equal to 1 – it is invariant to the

number of samples that make up each histogram. Thus, unlike count-based algo-

rithms, it is robust to estimation errors in community size. Figure 3.4 verifies this

intuition, and shows that true positives and false positive feature vectors separate

well when viewed through the ShapeScore.

Finally, to determine whether a neighborhood has malware present we per-

form hypothesis testing. If ShapeScore is greater than a threshold γ , we declare a

global alert, i.e., the algorithm predicts that there is malware in the neighborhood

(lines 6–7). The robustness threshold γ is computed via standard confidence inter-

val or cross-validation methods with multiple sets of false-positive FVs (see Section

3.5.1).

Computing Shape GD’s parameters. Here we elaborate on the steps that should

be taken in a real world environment to choose parameters. The steps discussed

here are generic and are applicable to other attacks beyond waterhole and phishing

– the following results section quantifies each of these steps.

First, an analyst should start with designing an appropriate algorithm to run

on local detectors (LDs). To achieve this, an analyst needs to compare the perfor-

mance of multiple feature extraction (FE) algorithms combined with a diverse set

of machine learning classifiers. One way to choose the best pair of a FE algorithm

and a classifier is to build ROC curves for each pair, and select the pair that meets
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the desired detection rate to computation/training effort for the LD.

Second, the analyst needs to determine whether even a purely malicious

neighborhood can be separated from benign ones, and the minimum number of FVs

per neighborhood to do so (Sections 3.5.1 and Section 3.7). This number depends

on the false positive rate of LDs ( e.g., in our experiments, we determined that a

neighborhood should generate at least 15K FVs, see Figure 3.14).

Third, we need to choose an NTW based on the false positive rate (FP) and

the desired time-to-detection (Section 3.5.2. A small NTW means more frequent

transfers of FVs from LD to GD, whereas a long NTW means that more nodes

can get compromised before the GD makes a decision and/or FPs can drown out

TPs. Similarly, structural filtering can improve detection rate if the true positive

alert-FVs are not deluged by the rate of false-positive alert-FVs – Section 3.5.3

quantifies how this trade-off differs for waterhole and phishing.

3.4 Experimental Setup
3.4.1 Case for a New Methodology

Shape-GD experiments require datasets where the global detector can ac-

quire alert-FVs from local detectors, similar to osquery-based systems where the

LD and GD are co-designed. We describe our experience with three existing method-

ologies and datasets – none of them allow alert-FVs to be acquired, provide com-

plete ground truth infection information, or allow the infection rate to be varied.

This motivates the methodology we use to systematically evaluate Shape-GD.
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Analysis of existing datasets. Prior work has used enterprise logs [120] that are

unavailable publicly. We have acquired similar security logs from a Fortune 500

company with a 200K machine network – the logs average 250M entries per day

over a 2 year period, arise from 20 closed-source endpoint local detectors such as

Symantec, McAfee, Blue Coat, etc, have almost 500 sparsely populated dimensions

per log entry, and about 75% of the log entries lack important identity and event-

timestamp information and are delayed by up to 60 days. Commercial (black-box)

LDs do not expose feature vectors for external analysis.

We have also acquired network pcap traces from our university network,

emulating prior work [90] in network-only global detectors. University security

groups (like ours) are only allowed to collect network-layer pcap information for

a rolling 2-week period and cannot instrument host machines (that are owned by

students and visitors) – i.e., our 4TB/day dataset from 150K machines is unsuitable

to evaluate Shape-GD because it doesn’t have LDs. Extending this dataset with a

weak LD – the ability to inspect executables in a sandbox downloaded by hosts

(e.g., as pursued by Lastline [25]) – would be an appropriate experimental setup but

sensitive data issues make such datasets hard to get. Hence, we model this extended

setup in our methodology.

We have analyzed Symantec’s WINE dataset [110] and found it inadequate

to evaluate Shape-GD even after layering VirusTotal information on it. Specifically,

the WINE dataset includes downloader graphs [110] – the nodes are executables and

the edges represent whether the source downloaded the destination executable – and

represent downloader trojans (‘droppers’) in malware distribution networks [130]
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that download payloads to steal information, encrypt the disk, etc on to the host.

This dataset covers 5 years of data with 25M files (specifically, hashes that represent

files) on over 1M machines – however, only 1.5M of the 25M hashes have reports

on VirusTotal. Hence, one cannot reconstruct (alert) feature vectors for the hashes

stored in the downloader graph.

Shape-GD re-analyzes (local) alert feature vectors in the global detector

– filtering alert-FVs into neighborhoods and then computing the neighborhoods’

shapes. Hence we model osquery-like deployments as used in enterprises like

Facebook and Google where the LDs and GDs are co-designed and GDs can acquire

alert-FVs.

Simulating malware propagation in a network. Methodologies that use existing

datasets with malware propagation (like the ones above) have an inherent weakness.

Such datasets have one sequence of malware propagation events “hardwired” into

the dataset and do not allow us to analyze how a detection mechanism reacts to

variations of malware propagation dynamics, especially when malware can adapt

these dynamics. Instead, we propose to vary the rate of infection (which changes the

neighborhood formation) and determine Shape-GD’s detection performance across

different infection rates.

Further, none of the above datasets provide ground truth information about

the true extent of infections, incentivizing a design that minimizes false positives

at the expense of false negatives. In a controlled setting where host-level malware

and benignware traces are overlaid onto a trace of web-service/email communica-

tion, we can maintain ground truth information and determine false positives and
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negatives precisely.

To this end, we use a malware and benignware dataset from a recent re-

lated work [106], train an LD with histogram-based feature vectors and a Random

Forest detector based on a recent survey on host-level malware detection [62], and

overlay these host-level results on web-service (network) and email traces using

two standard (and publicly available) datasets from Yahoo data centers and Enron

respectively. We describe this methodology in detail next.

3.4.2 Benign and Malware Applications

We collect data from thousands of benign applications and malware sam-

ples. To avoid tracing program executions where malware may not have executed

any stage of its exploit or payload correctly, we set a threshold of 100 system calls

per execution to be considered a success. Our experiments successfully run 1,311

malware samples from 193 malware families collected in July 2013 [106], and

2,364 more recent samples from 13 popular malware families collected in 2015

[24], to compare against traces from 1,889 benign applications.

We record time stamped sequences of executed system calls using Intel’s

Pin dynamic binary instrumentation tool. Each Amazon AWS virtual machine in-

stance runs Windows Server 2008 R2 Base on the default T2 micro instances with

1GB RAM, 1 vCPU, and 50GB local storage. The VMs are populated with user

data commonly found on a real host including PDFs, Word documents, photos,

Firefox browser history, Thunderbird calendar entries and contacts, and social net-

work credentials. To avoid interference between malware samples, we execute each
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sample in a fresh install of the reference VM. As malware may try to propagate over

the local network, we set up a sub-net of VMs accessible from the VM that runs

the malware sample. In this sub-net, we left open common ports (HTTP, HTTPS,

SMTP, DNS, Telnet, and IRC) used by malware to execute its payload. We run each

benign and malware program 10 times for 5 minutes per run for a total of almost

53,000 hours total compute time on Amazon AWS.

Overall, benignware and malware were active for 141,670 sec and 283,270

seconds respectively, executing an average of 11,900 and 13,500 system calls per

second respectively. Using 1 second time window (Section 3.3) and sliding the

time windows by 1ms, we extract histograms of system calls within each time win-

dow as the ML feature, and finally pick 1.5M benign and 1M malicious FVs from

this dataset for the experiments that follow. Importantly, we do not constrain the

samples on neighboring machines to belong to the same families – as described

above, malware today predominantly spreads through malware distribution net-

works where a downloader trojan (‘dropper’) can distribute arbitrary and unrelated

payloads on hosts. We want to test Shape-GD in the extreme case where malicious

FVs can be assigned from any malware execution to any machine.

3.4.3 Modeling Waterhole and Phishing Attacks

Waterhole attack. To model a waterhole attack, we use Yahoo’s “G4: Network

Flows Data” [14] dataset, which contains communication data between end-users

and Yahoo servers. The 41.4 GB (in compressed form) of data were collected on

April 29-30, 2008. Each netflow record includes a timestamp, source/destination
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IP address, source/destination port, protocol, number of packets and the number of

bytes transferred from the source to the destination. We model the setting where

heuristics such as SecureRank [35] are applied to identify suspicious servers and

we assume that Shape-GD monitors the top (here, 50) suspicious servers based on

SecureRank’s scores. Specifically, we use 5 hours of network traffic (208 million

records) captured on April 29, 2008 between 8 am and 1 pm at the border routers

connecting Dallas Yahoo data center (DAX) to the Internet. The selected 50 DAX

servers communicate with 3,181,127 client machines over 14,249,931 requests.

We assume that an attacker compromises one of the most frequently ac-

cessed DAX server – 118.242.107.76, which processes ∼ 752,000 requests within

5-hour time window (∼ 43.7 requests per second). In our simulation it gets compro-

mised at random instant between 8am and 10.30am. Hence, Shape GD can use the

remaining 2.5 hours to detect the attack (our results show that less than a hundred

seconds suffice). Following infection, we simulate this ‘waterhole’ server com-

promising client machines over time with an infection probability parameter – this

helps us determine the time to detection at different rates of infection. The benign

and compromised machines then select corresponding type of execution trace (i.e.,

a sequence of FVs generated in Section 3.4.2) and input these to their LDs.

Phishing attack. We simulate a phishing attack in a medium size corporate net-

work of 1086 nodes that exchange emails with others in the network. To model

email communication, we pick 50 email threads with 100 recipients each from the

publicly available Enron email dataset [10] (the union of all email threads’ recipi-

ents is 1086).
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We start the simulation with these 50 emails being sent into the 1086-node

neighborhood, and seed only one email out of 50 as malicious. We then model the

infection speading at different rates as this malicious email is opened by its (up to

100) recipients at some time into the simulation and is compromised with some

likelihood when the user ‘clicks’ on the URL in the email. Our goal is to measure

the number of compromised nodes before Shape GD declares an infection in this

neighborhood. All nodes that open and ‘click’ the link in the malicious email will

select malware FVs from Section 3.4.2 as input to their corresponding LDs, while

the remaining nodes select benign FVs.

To simulate the infection spreading over the email network, we need to (a)

model when a recipient ‘opens’ the email: we do so using a long tail distribution of

reply times where the median open time is 47 minutes, 90-percentile is one day, and

the most likely open time is 2 minutes [108]; and (b) model the ‘click’ rate (proba-

bility that a recipient clicks on a URL): we vary it from 0% up to 100% to control

the rate of infection. For example, within 1-, 2-, 3-hour long time interval only

55%, 65%, and 70% of recipients of a malicious email open it, which corresponds

to 55, 65, and 75 infected machines respectively at 100% click rate.

Overall, these two scenarios differ in their time-scales (seconds v. hours)

and in the relative rate at which benign and malicious neighborhoods grow. As we

will see, these parameters have a significant impact on the composition of neigh-

borhoods and the Shape GD’s detection rate.

Methodology. We report averaged results from repeating each experiment mul-

tiple times with random initialization parameters. In particular, we use 10-fold
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cross validation for machine learning experiments (Figure 3.3), 500 randomly sam-

pled benign/malicious neighborhoods with 10 repetitions to compute average (Fig-

ures 3.4, 3.14), 100 repetitions of each malware infection experiment (Figures

3.5,3.6,3.12,3.11), and 100 repetitions of infection with 10 repetitions per data-

point (Figures 3.7,3.8,3.9,3.10). To train the reference histogram, Href, we select

15K FVs and 100K FVs from the training data set in the phishing and waterhole

experiments respectively. All Shape GD’s parameters are chosen based on a train-

ing data set (used for Figures 3.4 and 3.14) – we then evaluate Shape GD (in the

remaining figures) using a completely separate testing data set.

3.5 Results

We show that Shape-GD can identify malicious neighborhoods with less

than 1% false positive and 100% true positive rate when the neighborhoods pro-

duce more than 15,000 FVs within a neighborhood time window (i.e., |B|> 15,000

in Algorithm 5). Recall that at 60 FVs/node/minute, it takes 1000 nodes only 15

seconds to create 15,000 FVs. For LDs like ours with ∼6% false positive rate, this

corresponds to 900 alert-FVs. We then simulate realistic attack scenarios and find

that Shape-GD can detect malware when only 5 of 1086 nodes are infected through

phishing in an enterprise email network, and when only 108 of 550K possible nodes

are infected through a waterhole attack using a popular web-service. Finally, Shape-

GD is computationally efficient – we relegate this discussion to Section 3.8.
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Figure 3.4: Histogram of the ShapeScore: The ShapeScore is computed for neigh-
borhoods with 15,000 FVs each (experiment repeated 500 times to generate the
histograms). Shape-based GD can reliably separate FPs and TPs through extracting
information from the data that has been unutilized by an LD.

3.5.1 Can Shape of Alert-FVs Identify Malicious Neighborhoods?

We first show that the shape of a neighborhood can easily distinguish be-

tween neighborhoods that are either 100% benign or 100% malicious. We quantify

Shape-GD’s time to detection under real settings with a mix of both in subsequent

sections.

Figure 3.4 shows that Shape-GD can indeed separate purely benign neigh-

borhoods from purely malicious ones. To conduct this experiment, we construct

purely benign and malicious neighborhoods with∼15,000 benign or malicious FVs

respectively (i.e., |B| is 15,000). In Section 3.7, we experimentally quantify the

sensitivity of Shape-GD to the number of FVs in a neighborhood (|B|) and find that

neighborhoods with more than 15,000 FVs lead to robust global classification.
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For each neighborhood, we use the Random Forest LD to generate alert-FVs

and use Shape-GD to compute the neighborhood’s ShapeScore using the alert-FVs

from the neighborhood. In Figure 3.4, we plot histogram of ShapeScores for 500

benign and malicious FVs each – each point in the blue (or red) histogram repre-

sents the ShapeScore of a completely benign (or malicious) neighborhood. Recall

that a small ShapeScore indicates the neighborhood’s statistical shape is similar to

that of a benign one. The non-overlapping distributions separated by a large gap

indicate that the shape of purely benign neighborhoods is very different from the

shape of purely malicious neighborhoods.

Shape-GD detects anomalous neighborhoods by setting a threshold score

based on the distribution of benign neighborhoods’ scores (Figure 3.4) – if an in-

coming neighborhood has a score above the threshold, Shape GD labels it as ‘ma-

licious’, otherwise ‘benign’. We set the threshold score at 99-percentile (i.e. our

expected global false positive rate is 1%) and the true positive rate is effectively

100% for this experiment. This shows that for homogeneous neighborhoods pro-

ducing over 15K FVs within a neighborhood time window, Shape-GD can make

robust predictions. The next question then is how well Shape-GD can do so when

neighborhoods are partially infected – we evaluate this in the next section.

3.5.2 Time to Detection Using Temporal Neighborhoods

Temporal filtering creates a neighborhood using only the nodes that are ac-

tive within a neighborhood time window (NTW). For example, a temporal neigh-

borhood for the phishing scenario would include every email address that received
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Figure 3.5: (Phishing attack: Time-based NF) Dynamics of an attack: While the
portion of infected nodes in a neighborhood increases over time reaching 55 nodes
out of 1086 on average, ShapeScore goes up showing that Shape GD becomes more
confident in labeling neighborhoods as ‘malicious’. It starts detecting malware with
at most 1% false positive rate when it compromises roughly 22 nodes. The neigh-
borhood includes all 1086 nodes in a network and spans over 1 hour time interval.

an email within the last hour (1086 nodes in our experiments). Similarly, a water-

hole attack scenario would include all client devices that accessed any server within

the last NTW into one neighborhood (∼ 17,000 nodes on average in 30 seconds).

This neighborhood filtering models a CIDS designed to detect malware whose in-

fection exhibits temporal locality (and obviously does not detect attacks that target

a few high-value nodes through temporally uncorrelated vectors).

Phishing and waterhole attacks operate at different time scales (and hence

NTWs). Due to the long tail distribution of email ‘open’ times, the phishing NTW
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varies from 1–3 hours in our experiments. On the other hand, a popular waterhole

server quickly infects a large number of clients within a short period of time – thus,

we vary the waterhole NTW from 4 seconds up to 100 seconds.

Shape GD’s time to detection for one NTW. We fix NTWs (1 hour for phishing

and 30 seconds for waterhole) and vary a parameter that represents a node’s likeli-

hood of infection from 0% up to 100% – modeling whether a phished user clicks the

malicious URL (phishing) or a drive-by exploit succeeeds in a waterhole attacks.

Figures 3.5 and 3.6 plot the neighborhood score v. the average number of

infected nodes within benign (blue curve) and malicious (red curve) neighborhoods

– the two extreme points on the X-axis corresponds to either none of the machines

being infected (the left side of a figure) or the maximum possible number of ma-

chines being infected (the right side of the figure). In this experiment, phishing

can infect up to 55 machines in the 1 hour NTW, while the waterhole server can

infect almost 1250 nodes in the 30 seconds NTW. Every point on a line is the me-

dian neighborhood score from 10 experiments with whiskers set at 1%- and 99%-

percentile scores.

When increasing the number of infected nodes in a neighborhood, as ex-

pected, the red curve larger deviates from the blue one. Therefore, Shape GD be-

comes more confident with labeling incoming partially infected neighborhoods as

malicious. Shape GD starts reliably detecting malware very quickly – when only

22 nodes (phishing) and 200 nodes (waterhole) have been infected. We also exper-

imented with other sizes of neighborhood window – the plots we obtained showed

similar trends.
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Figure 3.6: (Waterhole attack: Time-based NF) Dynamics of an attack: While
the portion of infected nodes in a neighborhood increases over time reaching 1248
nodes on average, ShapeScore goes up showing that Shape GD becomes more con-
fident in labeling neighborhoods as ‘malicious’. It starts detecting malware with at
most 1% false positive rate when roughly 200 nodes get compromised. The neigh-
borhood includes 17,178 nodes on average and spans over 30 sec time interval.

Shape GD’s sensitivity to NTW. We show that the size of a neighborhood is im-

portant for early detection – the minimum number of nodes that are infected before

Shape GD raises an alert – in Figures 3.7 and 3.8. Varying the NTW essentially

competes the rates at which both malicious and benign FVs accumulate – inter-

estingly, we find that these relative rates are different for phishing and waterhole

attacks and lead to different trends for detection performance v. NTW.

We vary the NTW from 1 hour to 3 hours for phishing and from 4 sec to

100 sec for waterhole and record the number of infected nodes when Shape GD can

make robust predictions (i.e. less than 1% FP for almost 100% TP).
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Increasing the NTW in the phishing experiment from 1 to 3 hours improves

the Shape GD’s detection performance – at 17.08 infected nodes for a 3 hour NTW

compared to 20.24 nodes for a 1 hour NTW. Detection improves slowly because

while the infection rate slows down over time as fewer emails remain to be opened,

the long tail distribution of email ‘open’ times causes most of the 17 victims to

fall early in the NTW and accumulate sufficient malicious FVs to tip the overall

neighborhood’s shape into malicious category.

In a waterhole scenario, the number of client devices active within a time

window (and hence the false positive alert-FVs from the neighborhood) grows much

faster than the malware can spread (even if we assume that every client that visits the

waterhole server gets infected. Here, a large NTW aggregates many more benign

(false positive) FVs from clients accessing non-compromised servers. Hence, in

contrast to the phishing attack, increasing the NTW degrades time to detection.

Shape GD works best with an NTW of 6 seconds – only 107.5 nodes on average

become infected out of a possible ∼550,000 nodes. Note that a very small NTW

(below 6 seconds) either does not accumulate enough FVs for analysis – if so,

Shape GD outputs no results – or creates large variance in the shape of benign

neighborhoods and abruptly degrades detection performance.

Note that a Shape GD requires a minimum number of FVs per neighborhood

to make robust predictions – at least 15,000 FVs based on Section 3.7 – hence, the

Shape GD has to set NTWs based on the rate of incoming requests and access

frequency of a particular server. For example, if a server is not very popular and

is likely to be compromised, the Shape GD could increase this server’s NTW to
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Figure 3.7: (Phishing attack: Time-based NF algorithm) Shape GD’s performance
improves by 18.5% (20.24 and 17.08 infected nodes) when increasing the size of a
neighborhood window from 1 hour to 3 hours.

collect more FVs for its neighborhood.

3.5.3 Time to Detection Using Structural Information

Both phishing and waterhole attacks impose a logical structure on nodes

(beyond their time of infection): phishing spreads malware through malicious email

attachments or links while waterhole attacks infect only the clients that access a

compromised server. This structure suggests that temporal neighborhoods can be

further refined based on the sender/recipient-list of an email (e.g., grouping mem-

bers of a mailing list into a neighborhood in the phishing scenario) or based on the

specific server accessed by a client (i.e., grouping clients that visit a server into one

neighborhood).

To analyze the effect of such structural filtering on GD’s performance, we
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Figure 3.8: (Waterhole attack: Time-based NF) Shape GD’s performance deterio-
rates linearly when increasing the size of a neighborhood window from 6 sec to 100
sec.

vary filtering from coarse- (no structural filtering, only time-based filtering) to fine-

grained (aggregating alerts across each recipients’ list separately or across clients

accessing each server separately) (Figures 3.9, 3.10). Specifically, the aggregation

parameter changes from 50 recipients’ lists or servers down to 1. As before, we

measure detection in terms of the minimum number of infected nodes that lead to

raising a global alert. Also we consider three NTW values – 1-, 2-, and 3- hours

long for phishing and 25-, 50-, and 100-sec long for waterhole.

Figure 3.9 shows that structural filtering improves detection of a phishing

attack by ∼ 4x (difference between left and right end points of each curve) over

temporal filtering – by filtering out alert-FVs from unrelated benign nodes that were

active during the same NTW as infected nodes. Interestingly, the size of a neigh-

borhood window does not considerably affect the detection when used along with
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Figure 3.9: (Phishing attack) Comparing to pure time-based NF, structural filtering
algorithm improves Shape GD’s performance by∼ 4× by taking into consideration
logical structure of electronic communication (sender – receiver relation).

the most fine-grained structural filtering (treating each recipients’ list individually)

– 3-hour long NTWs results in only a ∼ 12% decrease in the number of compro-

mised nodes (i.e. time to detection). This shows that there is substantial signal

that structural filtering can help extract from alert-FVs in smaller NTWs (and thus

improve Shape GD’s time to detection).

Structural filtering improves time to detect waterhole attacks as well – by

5.82x, 4.07x, and 3.75x for 25-, 50-, 100-sec long windows respectively. Inter-

estingly, structural filtering requires Shape GD to use longer NTWs than before –

small NTWs (such as 6 seconds from the last sub-section) no longer supply a suffi-

cient number of alert-FVs for Shape GD to operate robustly. Even though structural

filtering with a 25 second NTW improves detection by 5.82x over temporal filtering
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Figure 3.10: (Waterhole attack) Comparing to pure time-based NF, structural filter-
ing algorithm improves Shape GD’s performance by 3.75× – 5.8× by aggregating
alerts on a server basis.

with 25 second NTWs, the number of infected nodes at detection time is 139.9 –

higher than the 107 infected nodes for temporal filtering with a 6 second NTW (Fig-

ure 3.8). Temporal and structural filtering thus present different trade-offs between

detection time and work performed by GD – their relative performance is affected

by the rate at which true and false positive FVs are generated.

3.5.4 Fragility of Count-GD

A Count GD algorithm counts the number of alerts over a neighborhood

and compares to a threshold to detect malware. This threshold scales linearly in

the size of the neighborhood – we now experimentally quantify the error Count GD

can tolerate in phishing (Figure 3.12) and waterhole (Figure 3.11) settings. Note

that the error in estimating neighborhood size can be double sided – underestimates

(negative error) can make neighborhoods look like alert hotspots and lead to false
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Figure 3.11: (Waterhole attack) An error in estimating neighborhood size dramati-
cally affects Count GD’s performance. It can tolerate at most 0.1% underestimation
errors and 13.8% overestimation errors to achieve comparable with Shape GD per-
formance.

positives, while overestimates (positive error) can lead to missed detections (i.e.,

lower true positives).

We run Count GD in the same setting as Shape GD when evaluating time-

based NF (Section 3.5.2) – 30-sec long neighborhood including 17,178 nodes (Fig-

ure 3.11) to model a waterhole attack and 1-hour long neighborhood time window

(NTW) with 1086 nodes (Figure 3.12 in Section F) to model phishing. We vary

infection probability (waterhole) and click rate in emails (phishing) such that the

number of infected nodes in a neighborhood changes from 0 to 55 (phishing) and

from 0 to 500 (waterhole) in four increments – note that in both scenarios, only a

small fraction (5.5% and 2.9%) of nodes per neighborhood get infected in the worst
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Figure 3.12: (Phishing attack) An error in estimating neighborhood size dramati-
cally affects Count GD’s performance. It can tolerate at most 2% underestimation
errors and 6.3% overestimation errors to achieve comparable with Shape GD per-
formance.

case.

In this setting, recall that the Shape GD has a maximum global false positive

rate of 1% and a true positive rate of 100% – and detects malware when only 22

(phishing) and 200 (waterhole) nodes are infected – for the same NTWs. When the

same number of nodes are infected, and for a similar detection performance, our

experiments show that the Count GD can only tolerate neighborhood size estimation

errors within a very narrow range – [-2%, 6.3%] (phishing) and [-0.1%, 13.8%]

(waterhole). A key takeaway here is that underestimating a neighborhood’s size

makes Count GD extremely fragile (-2% in phishing and -0.1% for waterhole). On

the other hand, overestimating neighborhood sizes decreases true positives, and this

effect is catastrophic by the time the size estimates err by 17% (phishing) and 17.5%
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(waterhole).

We comment that this effect can be important in practice. Given the prac-

tical deployments where nodes get infected out of band (e.g., outside the corporate

network), go out of range (with mobile devices), or with dynamically defined neigh-

borhoods based on actions that can be missed (e.g. neighborhood defined by nodes

that ‘open’ an email instead of only downloading it from a mail server), the tight

margins on errors can render Count GD extremely unreliable. Even with sophisti-

cated size estimation algorithms, recall that the underlying distributions that create

these neighborhoods (email open times, number of clients per server, etc) have sub-

exponential heavy tails [108] – such distributions typically result in poor parameter

estimates due to lack of higher moments, and thus, poorer statistical concentrations

of estimates about the true value [81]. Circling back, we see that by eliminating this

size dependence compared to Count GD, our Shape GD provides a robust inference

algorithm.

3.6 How Accurate is Clustering for Global Malware Detection?

While Count GD is fragile, clustering GDs are inaccurate in the early stages

of infection. This is why prior work [160] uses clustering to (offline) identify high-

priority incidents from security logs for human analysis (instead of as an always-on

GD) – this use case is complementary to an always-on global detector. We quantify

a recent clustering GD’s [160] detection rate on our data set.

First, we reduce dimensionality of 390-dimensional FVs by projecting them

on the top 10 PCA components, which retain 95.72% of the data variance. Second,
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we use an adaptation of the K-means clustering algorithm that does not require

specifying the number of clusters in advance [100, 154, 160]. Specifically, the algo-

rithm consists of the following three steps: (1) select a vector at random as the first

centroid and assign all vectors to this cluster; (2) find a vector furthest away from

its centroid (following Beehive [160], we use L1 distance) and make it a center of

a new cluster, and reassign every vector to the cluster with the closest centroid; and

(3) repeat step 2 until no vector is further away from its centroid than half of the

average inter-cluster distance.

The evaluation settings of the clustering algorithm match exactly the settings

where Shape GD detects infected neighborhoods with 99% confidence. Specifi-

cally, the algorithm clusters the data that we collected in a 17,178-node neighbor-

hood under a waterhole attack within 30 seconds and the data that we collected over

an hour-long session across 1086 nodes in a medium size corporate network under

a phishing attack (Section 3.4.3). As we have already demonstrated (Section 3.5.2),

Shape GD starts detecting malware when 107 (waterhole attack) and 22 (phishing

attack) nodes get compromised (as in experiments for Figures 3.5 and 3.6).

Clustering does not fare well, and results look very similar for both water-

hole and phishing experiments. The clustering algorithm partitions waterhole data

set into 30 clusters. We observe three large clusters that aggregate most of the be-

nign FVs. However, the algorithm fails to find small ’outlying’ clusters consisting

of predominantly malicious data. As for the phishing experiment, we observe a

similar picture: the algorithm forms slightly higher number of clusters – 33 rather

than 30 – and it identifies 4 densely populated clusters. In both cases each clus-
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Figure 3.13: (ROC curve)bp True positive v. False positive curve shows detection
accuracy of the clustering-based malware detector [160]. Its Area Under the Curve
(AUC) parameter averaged for 10 runs reaches only 48.3% and 47.4% in the case of
waterhole and phishing attacks respectively; such low AUC value makes it unusable
as a global detector.

ter heavily mixes benign and malicious data, hence the clustering approach suffers

from poor discriminative ability, i.e. it is unable to separate malicious and benign

samples.

Note the clustering algorithm enforces explicit ordering across the clusters.

That is, the algorithm forms a new cluster around an FV that is furthest away from

its cluster centroid. Thus, earlier a cluster is created, the more suspicious it is. By

design of the clustering algorithm, the clusters are subject to a deeper analysis in

order of their suspiciousness. Such an inherent ordering allows us to build a receiver

operating curve (Figure 3.13) and compute a typical metric for a binary classifier –

Area Under the Curve (AUC) by averaging across 10 runs. The AUC reaches only

48.3% and 47.4% for waterhole and phishing experiments respectively.
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This experiment illustrates the failure of the traditional recipe of dimen-

sionality reduction plus clustering. There is a fundamental reason for this – the

neighborhoods we seek to detect are small compared to the total number of nodes

in the system. Optimization-based algorithms that exploit density, including K-

Means and related algorithms, fail to detect small clusters in high dimensions, even

under dimensionality reduction. The reason is that the dimensionality reduction is

either explicitly random (e.g., as in Johnson-Lindenstrauss type approaches), or, if

data-dependent (like PCA), it is effectively independent of small clusters, as these

represent very little of the energy (the variance) of the overall data. Spectral cluster-

ing style algorithms [65, 119, 148] are also notoriously unable to deal with highly

unbalanced sized clusters, and in particular, are unable to find small clusters.

Shape GD also reduces dimensionality but does so after neighborhood fil-

tering. This amplifies the impact of small neighborhoods. The combination of

dimensionality reduction, small-neighborhood-amplification, and then aggregation

represents a novel approach to this detection problem, and our experiments validate

this intuition.

3.7 How Many FVs does Shape-GD Need to Make Robust Pre-
dictions?

The number of FVs per neighborhood required by Shape-GD to make a

robust prediction is a crucial parameter. With too few FVs produced by a neigh-

borhood, benign neighborhoods’ ShapeScore will have high variance (i.e. benign

distribution in Figure 3.4 becomes wide and the gap between two distributions
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shrinks), leading to global false positives and negatives. On the other hand, if

neighborhoods are large, their ShapeScores will be dominated by the large num-

ber of benign FVs and thus lead to missed alerts (false negatives) especially in the

early stages of infection. Further, the number of alert-FVs generated by a neighbor-

hood in a deployed Shape-GD need to be comparable to or larger than those used

in training – hence, we want to determine the smallest number of FVs Shape-GD

needs to make a robust prediction.

Figure 3.14 shows the sensitivity of Shape-GD to neighborhood size (i.e.,

the number of FVs generated by nodes in a neighborhood during training stage).

We vary the number of FVs that a neighborhood generates from 3,000 up to 30,000

FVs and average the results of 10 experiments. We present two metrics in Fig-

ure 3.14 – the red curve plots the inter-class distance (between histograms of benign

and malicious neighborhoods from Figure 3.4), and the blue curve plots intra-class

distance (i.e. the width of the benign histogram). Figure 3.14 shows that the red

inter-class distance increases (and blue intra-class variance decreases) quickly as

neighborhood size increases, and both curves flatten out once the neighborhoods

start generating more than 15,000 FVs.

This shows that (for our Windows programs dataset) neighborhoods gen-

erating 15,000 FVs or more are a good choice to train Shape GD because purely

malicious or benign distributions stabilize at this size. In real scenarios with mix-

tures of mostly benign and a few malicious neighborhoods, the number of FVs will

have to be scaled up depending upon the timescale of attacks (hours for phishing

v. seconds for waterhole) and the number of nodes affected by an attack (tens of
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Figure 3.14: Analysis of ShapeScore histogram parameters when changing neigh-
borhood size. The curves flatten out on the right side from the operating point.

nodes in enterprise email networks v. thousands in a broader waterhole attack on

the enterprise). In the phishing and waterhole attack case studies in the paper, we

use neighborhoods of 1,086 and ∼17,000 nodes that produce 15k FVs and 100k

FVs respectively.

3.8 Computation and Communication Costs of Shape-GD

Local detectors. Generating a single FV, which is a 1-sec histogram of sys-

tem calls, on a local host is equivalent to performing 2,500 (system call frequency)

direct table lookups on average and incrementing corresponding counters. Projec-

tion on a PCA basis requires computing 10 dot products. Finally, running an LD,

which is Random Forest in our case, results in performing 330 scalar comparisons

on average. At 1 second per FV, the overheads of such an LD are negligible.
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Data transfer. Each FV is composed of 10 floating point numbers (40

bytes total if assuming single precision format). In the phishing experiment 1086

hosts transfer (in aggregate) ∼ 40KB/sec; data transfer rate in waterhole setting

is a little bit higher: ∼ 4,450 hosts transfer (in aggregate) ∼ 174KB/sec. In both

cases we assume Shape GD using pure time-based filtering with 1 hour and 6 sec

neighborhood time windows respectively.

If Shape GD employs structural filtering on top of the time-based one, then

data transfer depends on the number of emails floating in a network or on the num-

ber of servers. In both cases, data transfer scales linearly with the number of emails

and servers. When applying the most fine-grained structural filtering in our experi-

ments, the nodes susceptible to phishing attacks transfer ∼ 4KB/sec per email and

the nodes susceptible to waterhole attacks send ∼ 40KB/sec per server when using

1 hour and 25 sec neighborhood windows respectively.

Server computations. After receiving a batch of alert-FVs, Shape GD per-

forms lightweight computations. Overhead of binning scales linearly with the num-

ber of alert-FVs in a batch; each binning operation is a direct table lookup together

with counter increment. Calculating ShapeScore, which is Wasserstein distance,

results in a sequence of addition operations, whose total number is equal to the di-

mensionality of FVs, which is 10, multiplied by the number of bins, which is 50.

To summarize, Shape GD’s computational requirements are fairly light-weight.
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Figure 3.15: (Overview) Shape-GD machine learning pipeline.

3.9 Discussion

Global FPs vs LD FPs. As remarked in the Introduction, an FP of 1% at the

global level means that we will see one alert every 100 - 300 hours (for the phishing

scenario) and 100 seconds (for waterhole scenario the neighborhood time window

slides by 1 second). This reduces work to be performed by the deeper, second-level

analysis considerably.

Specifically, LDs operating at 6% false positive rate generate 23.5M – 70M

FPs within 100–300 hours time interval in a network of 1086 nodes (phishing)

and 300K alerts within every 100 sec interval where neighborhoods include ∼50K

nodes on average (waterhole). Shape GD filters these alerts. When using 1–3 hours

(phishing) and 6 sec (waterhole) time-based neighborhood filtering, Shape GD will

report to a system running a deeper analysis approximately 234.5K – 703.7K FPs

raised by LDs (phishing) and approximately 1.4K FPs (waterhole). Adding struc-

tural filtering brings these numbers down to 21.6K – 64.8K FPs (phishing) and 360

FPs (waterhole).
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Compared to a neighborhood of LDs, Shape GD thus reduces the num-

ber of FPs reported to deeper analyses by ∼100× and ∼200× when employing

time-based filtering only (for phishing and waterhole scenarios respectively), while

structural filtering reduces alert-FVs for deeper analysis to ∼1000× and ∼830×.

In both scenarios, analysts can choose to reduce number of alert-FVs to be analyzed

by sliding neighborhood windows by a larger interval; however, this will increase

the time to detect malware infection.

Shape property across LDs and platforms. Shape-GD relies on conditional sep-

arability of FPs and TPs, and we use only one LD type for evaluation – a system

call histogram-based LD. However, we have experimentally determined that FPs

and TPs are separable for other LD types as well – an n-gram-based LD [95] and an

LD that uses VirusTotal [46] reports for malware detection [117]. Further, we can

classify malicious neighborhoods on the Android platform – using malware bina-

ries obtained from the NCSU dataset and contagio dump website, and using benign

applications that we drive using real human user input – in addition to the Windows

setup that we describe here. We have left out the details due to lack of space but

can produce an anonymous report if requested.

Though the local detectors we built have a 6% FP rate, Shape-GD can work

well work with better LDs. Shape-GD only requires LD’s FPs and TPs to be sepa-

rable and to be able to aggregate enough alert-FVs across the nodes within a neigh-

borhood. We deliberately do not consider rule-based LDs that are commonly used

within enterprise networks because, even though their FP rate is very low, they

suffer from a high false negative rate, and they can be easily evaded with simple
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malware transformations.

Performance Overheads. Recall that Shape GD requires only alert FVs – this

leads to a two-fold dimensionality reduction when sending data from individual

LDs to the GD. First, the FVs are low-dimensional (here, 10-dimensional vec-

tors). Second, only alert FVs are needed – this leads to a 16-fold reduction in

data (roughly only 6% of the FVs lead to alerts). Further, the Shape GD is a batch

processing algorithm, thus, the individual nodes can batch their data at coarse time-

scales (e.g. once every NTW) and send the data to the Shape GD. Finally, it does

not matter even if some batches are lost/missed; recall that the Shape GD is robust

to precisely this type of noise. Appendix A discusses overheads in more depth but

the key takeaway is that Shape GD has low overheads – each LD can use simple dot

products and scalar comparisons to implement PCA and Random Forests, the total

incoming bandwidth to the Shape GD server ranges from 40KBps to 174KBps for

phishing and waterhole respectively, and the server only needs to bin data (into 50

bins) and compute Wasserstein distance (add 10 counters in each bin).

Detailed Shape-GD Pipeline. As an extension to the description in Section 4,

Figure 3.15 shows the detailed machine learning pipeline for extracting one neigh-

borhood’s shape into a ShapeScore.

3.10 Conclusions

Building robust behavioral detectors is a long-standing problem. We ob-

serve that attacks on enterprise networks induce a low-dimensional structure on
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otherwise high-dimensional feature vectors, but this structure is hard to exploit be-

cause the correlations are hard to predict. By analyzing alert feature vectors instead

of alerts and filtering the alert-FVs along neighborhood lines, we amplify the signal

buried in correlated feature vectors, and then use the notion of statistical shape to

classify neighborhoods without having to estimate the expected number of benign

and false positive FVs per neighborhood. We note that both neighborhood-filtering

and shape are complementary techniques that apply across a range of LDs or plat-

forms – e.g., we have determined that Shape-GD also works well with n-grams

based LDs (instead of histograms) and on the Android platform (in addition to

Windows).

Our methodology composes the traditional host-level malware analysis method-

ology with trace-based simulations from real web services (to overcome the lack of

joint LD-GD datasets), and allow us to run sensitivity analyses that will be pre-

cluded by using an actual enterprise trace. We find that Shape-GD reduces the

number of FPs reported to deeper analyses by ∼100× and ∼200× when employ-

ing time-based filtering only (for phishing and waterhole scenarios respectively),

while structural filtering reduces alert-FVs to∼1000× and∼830× (Appendix 3.9).

Neighborhoods and their shape thus serve as a new and effective lens for dimen-

sionality reduction and significantly improve false positive rates of state-of-the-art

behavioral analyses. For example, LDs can operate at a higher false positive rate in

order to reduce false negatives and improve computation efficiency.
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Chapter 4

The Shape of Alerts: Detecting Malware Using
Distributed Detectors by Robustly Amplifying

Transient Correlations in the Symantec Wine Dataset

4.1 Introduction

This chapter describes a malware-detection framework, Centurion, that takes

ideas outlined in the Shape-GD project (Chapter 3) to the next level and performs

real-time malware detection in the Symantec Wine dataset. Thus, Centurion oper-

ates in noisy communities of weak behavioral detectors with long-term log entries

from the Symantec antivirus detector. For completeness, here we only summarize

Shape-GD’s concepts – neighborhood filtering and shape properties. A detailed

discussion is in Chapter 3.

Shape-GD’s ideas: Neighborhood filtering and shape. We hypothesize that weak

local detectors can be aggregated robustly by using information about how malware

spreads. Our proposed system, Centurion, relies on two key insights to correctly

identify malicious feature vectors.

First, although attacks can take many forms, attack vectors are easier to

identify. For example, many attacks on Symantec’s client machines rely on ‘down-

loader trojans’ to bring successive stages of payloads – hence, downloader graphs [110]
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on a machine are correlated with malware propagation. Similarly, in a firewalled

enterprise, machines that visit a specific server (in watering hole attacks) are more

likely to be compromised than a random machine in the enterprise.

Our key assumption is that machines that have been exposed to a common

attack vector have correlated alerts. We call such a set of machines a neighbor-

hood. Grouping local detectors into neighborhoods (as they form dynamically)

concentrates a signal of malware activity that is otherwise not visible at the over-

all community level. However, neighborhoods are extremely noisy due to exploit

types, machine status, and human usage and render cluster- and count-based GDs

ineffective; hence we propose Centurion to aggregate local detectors’ (LDs’) out-

put.

The second insight behind Centurion is that the distributional shape of a

set of suspicious feature vectors can robustly separate true-positive neighborhoods

from false-positive neighborhoods. Centurion analyzes only those feature vectors

that cause alerts from LDs (alert FVs) rather than analyzing all feature vectors.

Alert FVs thus represent draws from one of two conditional distributions – i.e.,

distributions of malicious or benign feature vectors that are conditioned on being

labeled as malicious – that are similar but are not the same. Next, while a single

suspicious feature vector is uninformative, a set of such feature vectors (i.e., alert

FVs from a neighborhood) can indeed be tested to come from one of two similar-

but-distinct distributions.

Overview: Malware detection in the Symantec Wine dataset. We evaluate Cen-

turion on 5 million client machines monitored by malware detectors (in this case,
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Figure 4.1: Application of Centurion to malware detection in the Symantec Wine
dataset.

Symantec [50]). An LD algorithm [117] applied to the Symantec Wine dataset [50]

analyzes file attributes using VirusTotal and achieves a false-positive rate of 5%.

With 5 million local detectors in place, this requires a deeper human or program

analysis – of up to∼1.1M files to detect close to 137K malware files. A recent local

detector reduces false-positive rates to 1% by training on metadata, such as features

extracted from downloader graphs [110, 111]. However, this increases false nega-

tives because it only detects malicious downloaders (those that install malware on

devices), which comprise only ∼32.7% of the overall malware in the community.

4.2 Centurion: Algorithm

Though Centurion shares a similar design with Shape-GD, its internal im-

plementation is significantly different. The algorithm consists of feature extraction,

LDs, and a global detector (GD). Figure 4.1 visualizes Centurion’s implementation.

Our key innovations are in the GD. The LD design is inspired by prior work [117];

we briefly summarize LD detection performance in Section 4.4.
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4.2.1 Centurion: Classifiers

Centurion employs a local detector that analyzes executable files and a do-

main name classifier that analyzes domain metadata to establish domain reputation.

File-level local detectors. LDs primarily rely on a lightweight static analysis,

which scales well for processing millions of downloads per day. They are designed

to run existing commercial tools such as TRID, ClamAV, and Symantec on a binary

file; analyze statically imported libraries and functions; detect common packers;

check whether a file is digitally signed or not; and collect the file’ binary metadata.

However, the Symantec Wine dataset lacks executable files (it includes only their

hashes). VirusTotal, on the other hand, provides outputs of these tools as a single

file-level report, which we directly use as LD input.

The core LD component is a feature-extraction algorithm, i.e., an algorithm

that converts textual VirusTotal reports into fixed-length feature vectors, which are

used as input by a classifier. Our LDs combine feature extraction described in a

prior work [117] and a standard machine-learning classifier, XGBoost [64]. Even

though the original algorithm [117] allows the classifier to achieve high accuracy, it

is inappropriate in our case because it produces very high-dimensional feature vec-

tors that have limited usability due to the ‘curse of dimensionality’ and high mem-

ory consumption. Instead, we use a common method for dimensionality reduction

– feature hashing [151]. Empirically we found that the output dimensionality of

1024 allows us to achieve the best trade-off between LDs’ accuracy and resource

consumption.
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Domain name classifier. To start using Centurion, a human analyst needs to supply

a description of neighborhood attributes. This can be as simple as a list of high-

valued servers (watering hole attacks), or it can be derived using a machine-learning

algorithm. We use a domain name classifier, which uses VirusTotal domain reports

as input to detect suspicious domains that are used to form neighborhoods.

The domain name classifier analyzes VirusTotal domain reports and iden-

tifies domains that are likely to distribute malicious files. It also aggregates do-

main classification produced by other commercial tools such as Dr. Web, Websense

ThreatSeeker, and VirusTotal (Table 4.2). Each of these tools categorizes a domain

based on its content. The number of categories ranges from 55 (Dr. Web) to 451

(VirusTotal), and they include classes such as social networks, banking, ads, gov-

ernment, etc.

The domain-name classifier applies one-hot encoding schema to represent

categorical data as fixed-length feature vectors. Specifically, it creates a ‘zero’ fea-

ture vector with the number of elements equal to the total number of categories

(767-dimensional feature vectors, in our case) and sets ‘one’ in the positions corre-

sponding to the assigned categories – which are not necessarily mutually exclusive.

The classifier (XGBoost [64]) uses numeric fields as they are (without additional

encoding). The classifier also considers VirusTotal domain-related statistics such

as the number of malware samples distributed by a particular domain, the number

of samples that refer to a domain, and the number of malicious URLs belonging

to a domain. These numeric values lie in the range from 0 to 100. (They seem to

be capped at the 100 level.) The statistic is aggregated across the entire observa-
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Categorical Domain Attributes

Tool name # of categories Examples

Dr. Web 55 Social networks; weapons; violence; e-
mail; chats

Websense ThreatSeeker 253 Dynamic dns; government; military; 
advocacy groups

VT categories 451 Ads; bank; outsourcing; webmail; web 
analytics

Numeric Domain Attributes

Category name Range

Detected samples [0,100]

Referrer samples [0,100]

Detected URLs [0,100]

Figure 4.2: Domain name classifier’s features.

tion period, i.e. since the first time a domain name was submitted to the VirusTotal

service.

4.2.2 Neighborhood Instances from Attack-Templates

Within each neighborhood time window (NTW), Centurion generates neigh-

borhood instances based on statically defined attack vectors; each attack vector is

a template for generating neighborhoods. The goal of partitioning data into neigh-

borhoods is to create predominantly benign or malicious neighborhoods. The algo-

rithm runs once per NTW.

Algorithm 4 partitions downloaded files into multiple neighborhoods. It

uses the following logic: if a domain is malicious, then the files transitively down-

loaded from such a domain are also likely to be malicious.

For ease of explanation, we treat the previously introduced domain name

classifier as a predicate (line 1). At each iteration, the algorithm starts by identifying
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a set of suspicious domains within the current NTW (lines 4–5), which is done using

the domain name classifier. Then the algorithm uses each suspicious domain as a

seed to initiate the neighborhood-formation process (lines 6–12). Next, for each

suspicious domain, the algorithm searches for files within the current NTW that

access that particular domain (files that are either downloaded from it or are being

downloaded from it), resulting in set F (line 7). By following downloader graph

edges, the algorithm selects files transitively downloaded by the files in set F (line

10) and filters out those that do not access any of the suspicious domains (line 11).

The files that have not been excluded are added to the current neighborhood (line

12).

Note that the algorithm’s formation process may generate many small neigh-

borhoods. An estimate of the conditional distribution using such feature vectors

(Section 4.2.3) is usually susceptible to high variance; thus, neighborhoods contain-

ing an insufficient number of files may have a negative impact on the accuracy of

the neighborhood classifier (Section 4.2.3). To reduce variance and achieve robust

classification of neighborhoods, the algorithm merges them such that final neigh-

borhoods are greater than a predefined minimum size. Empirical analysis of the

neighborhood classifier’s accuracy shows that it achieves robust classification of

neighborhoods containing more than 1000 files.

In order to maintain the neighborhood effect after merging – i.e., to have

mostly homogeneous neighborhoods, either benign or malicious – the merging al-

gorithm ranks neighborhoods in terms of maliciousness, where the malicious score

is defined as the relative number of LD alerts within a neighborhood. After that, the
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Algorithm 4: Symantec Wine: Neighborhoods from Attack-Vectors
Input : Downloader graphs
Output: Neighborhoods

Domain name classifier
1 Let DNC (domain): domain is malicious

execute once per NTW
2 while True do

create an empty list of neighborhoods
3 nbds← /0

identify active domains within the current NTW
4 D← domains accessed within the current NTW

identify suspicious domains
5 D′← {d ∈ D | DNC(d)}
6 foreach suspicious domain di ∈ D′ do

identify files accessing the domain di

7 F ← files accessing the domain di

initialize an empty neighborhood
8 nbd ← /0

9 foreach file fi ∈ F do
search for transitively downloaded files

10 Fi← files transitively downloaded by fi

retain suspicious files
11 F ′i ← { f ile ∈ Fi | ∃d ∈ f ile.domains DNC(d)}
12 nbd← N

⋃
F ′i

13 nbds← nbds
⋃

nbd

algorithm sorts neighborhoods based on their malicious scores and merges them in

decreasing order of their malicious scores. Note that the malicious score estima-

tion may be incorrect if we incorrectly estimate the neighborhood size. However,

Centurion tolerates such errors.

120



4.2.3 Shape Property for Malware Detection

After the neighborhoods are indentified, the next step is to detect neighbor-

hoods with a high malware concentration. In order to accomplish this, we introduce

a novel approach to extracting neighborhood features that formalizes the shape

property.

The key algorithmic idea is to map all alert FVs within a neighborhood to a

single vector histogram that robustly captures the neighborhood’s statistical prop-

erties. Such transformation allows us to analyze the joint properties of all alert FVs

generated within a neighborhood without requiring FVs to be clustered or alerts

to be counted. After that, Centurion feeds neighborhood-level feature vectors into

a binary classifier to identify malicious neighborhoods. We use a boosted decision

tree classifier (XGBoost [64]) in our experiments.

Generating a vector-histogram from alert-FVs. The algorithm aggregates L-

dimensional projections of alert FVs on a per-neighborhood basis into a set B (Al-

gorithm 5, line 3). After that, Centurion converts a low-dimensional representa-

tion of alert FVs, the set B, into a single (L,b)-dimensional vector histogram, de-

noted by HB (line 4). The conversion is performed by binning and normalizing

L-dimensional vectors within the set B along each dimension. Effectively, a vector

histogram is a matrix L× b, where L is the dimensionality of alert FVs and b is

the number of bins per dimension. Further implementation details can be found in

Section 4.3.2.

We use standard methods to determine the size and number of bins. In
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particular, we tried square-root choice, the Rice rule, and Doane’s formula [8] to

estimate the number of bins. We found that 20–100 bins yield the best results.

Neighborhood classifier. Centurion may use any binary classifier (Algorithm 5,

line 4) as a neighborhood classifier. For our purposes, we use boosted decision

trees – specifically, the XGBoost algorithm [64]. The main advantage of using

XGBoost over Shape-GD’s ShapeScore function is its ability to learn complex de-

cision boundaries. It can also be trained in a non-parametric mode. (We com-

pletely automated parameter search process.) However, in comparison to Shape-

GD’s ShapeScore, the XGBoost algorithm requires both benign and malicious data

for training purposes. In our experiments, we found that XGBoost outperforms the

ShapeScore function in the Symantec Wine experiment, whereas the ShapeScore

yields good detection accuracy in watering hole and phishing experiments (Chap-

ter 3).

Note that like any other machine-learning classifier, the binary classifier

employed by Centurion needs to be retrained periodically to account for evolving

statistical software properties.

4.3 Experimental Setup

We evaluate Centurion using a proprietary Wine dataset [50], released by

Symantec for research purposes. Centurion uses malware reports from Symantec

client devices and reduces LD false positives from∼1M to∼110K, while retaining

107K out of 137K malware files. Centurion successfully amplifies the weak signal

inherent to malware propagation.
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Algorithm 5: Neighborhood Classification
Input : Suspicious neighborhoods nbds
Output: Malicious neighborhoods

1 for each nbd in nbds do
aggregate L-dim projections of alert-FVs on per neighborhood basis

2 B← {alert−FV s | alert−FV ⊂ nbd}
build an (L,b)-dim. vector-histogram

3 HB← bin & normalize B along each dimension
classify the neighborhood

4 if Neighborhood Classifier(nbd) then
5 label nbd as malicious

4.3.1 Wine Dataset

The Wine dataset [74, 110, 111] contains telemetry information collected

by Symantec’s intrusion prevention system and antivirus products over a five-year

period (from 2008 until 2013). The dataset summarizes file downloader a ctivities

across 5M Windows hosts around the world. File downloads are represented in the

form of downloader graphs (the abstraction introduced by Kwon et al. [110]) – one

per end host. A graph node represents a downloaded file (SHA256 file hash), and

a directed edge between two nodes na and nb indicates that file na has downloaded

file nb from a domain D on the corresponding host machine, where D is the edge’s

label.

Figure 4.3 depicts an example of a downloader graph. Each node is labeled

with a corresponding file name, and each edge bears a domain name from where

the file has been downloaded. We also overlay ground truth on the nodes and edges:

red indicates that a file or domain is malicious, while blue indicates that a file or

domain is benign.
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Figure 4.3: Example of a downloader graph.
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We used the VirusTotal service to obtain ground-truth information about the

20.3M file hashes downloaded 67M times, as well as all 353K domain names in

Wine (Table 4.7). Though file-level VirusTotal reports contain results of signature-

based malware detection, we do not use them within Centurion (except for in com-

puting ground truth). Hence, information within VirusTotal domain reports might

be affected by post-analysis performed by commercial antivirus vendors. However,

there exist alternative approaches to establishing domain reputation [92] that out-

perform our domain name classifier by using a different set of domain features that

are unavailable in the Symantec Wine dataset.

For files (corresponding to a file hash) or domain names that VirusTotal has

information for, it used 62 different antiviruses and other heuristics to generate a

report. This report is used to train the file-behavior and domain-name classifiers.

We consider a file to be malicious if more than 30% of antivirus products label it

as malware [110]. This yields 2.6M reports for file hashes, with 137K confirmed

to be malicious, and 301K reports for domain names. We label all remaining files

and domain names (i.e., those that are not confirmed to be either malware or be-

nignware by VirusTotal) as benign. This is a conservative step that weakens the

malware propagation signal in the dataset and is also representative of real deploy-

ments where information about suspicious file or domain names is often delayed or

unavailable.

Neighborhood example. After introducing a visual downloader graph abstrac-

tion (Figure 4.3), we describe an example showing how Algorithm 4, which builds

neighborhoods, actually works.
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For each domain name, the domain classifier outputs the probability of a

domain being malicious. If a domain is considered malicious (e.g. globaldl.net),

the algorithm starts forming a neighborhood by identifying all files that access that

domain within an NTW (files A and E in our example), and for each of them the

algorithm performs a breadth-first search (BFS) on the downloader graph. While

traversing a downloader graph in a BFS manner, the algorithm uses domain name

predictions produced by the domain name classifier to discard files downloaded

from likely benign domains (e.g. gravic.com). Had the domain name classifier

correctly identified all suspicious domains, then the neighborhood would include

malicious files E, F , G, and I. (A is excluded because all browsers with reputable

digital signatures are whitelisted.) However, due to the high false-positive rate of

the domain name classifier, only 30% of the files in the neighborhood are malicious;

the rest of the files are benign. According to Algorithm 4, a file is excluded from a

neighborhood only if all its edges (incoming and outgoing) in the downloader graph

are predicted to be benign. In the example in Figure 4.3, the neihgborhood formed

by Algorithm 4 includes files E, F , G, H, and I. Note that file H is a false positive,

but it is included because it accesses a suspicious domain, dtsusuk.org.

4.3.2 Vector-histogram Implementation

We separate implementation details of the algorithm that generates a vector

histogram (Algorithm 4.2.3) from its design. Centurion deals with two types of

alert FVs: file and domain. Therefore, it builds two separate vector histograms per

neighborhood and then concatenates them into a single vector histogram. The file-
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level vector histogram has a dimensionality of 10× 50; i.e., each file alert FV is

projected on a 10-dimensional basis and binned into 50 bins along each dimension.

Similarly, a domain vector histogram has a dimensionality of 100× 5; i.e., each

domain alert FV is projected on a 100-dimensional basis and binned into 5 bins

along each dimension. In each case, the basis consists of 10 and 100 principal

components, respectively, computed using principal component analysis. We select

the number of basis vectors such that they retain more than 95% of variance.

After building two separate vector histograms, the algorithm concatenates

them into a single vector histogram. For this purpose, it represents them as two

500-dimensional vectors by using a row-major order and appends the second one

to the first one. Thus, the resulting vector has 1,000 dimensions, which are used as

input for the neighborhood classifier.

4.4 Results

We now quantify how Centurion concentrates malware in the Symantec

Wine dataset into neighborhoods. By using downloader graphs as a weakly cor-

related attribute, Centurion identifies malicious files and infected machines with

significantly lower false positives than LDs [117] alone and far higher true posi-

tives than a downloader-graph based-detector [110, 111] alone.

In addition, neighborhoods and shape together are good predictors of mal-

ware behavior – hence, Centurion does not have to wait until the entire sequence

of malware payloads have been downloaded to declare a downloader or machine as

malicious. We find that, on average, Centurion can identify a file as malicious only
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Figure 4.4: (Left) Receiver operating curve (ROC) of the local detector and the
domain name classifier. (Right) ROC of the neighborhood classifier.

∼20 days after it enters the Wine dataset and∼345 days before VirusTotal confirms

it as malware. Table 4.7 summarizes these results.

4.4.1 Centurion: Classifiers

Local detectors. We start with the evaluation of local detectors (Section 4.2.1).

Each LD algorithm comprises two parts: feature extraction and a binary classifier

(XGBoost in our prototype). We train an LD on a set of 2.6 million VirusTotal

reports using 10-fold cross-validation. The detector achieves a 97.61% AUC metric

(Figure 4.4), and we chose the operating points of a 5.0% false-positive rate and

a 90.47% true-positive rate. Note that due to the high number of benign files in

the dataset, a 5.0% false positive rate corresponds to more than 1M misclassified

files, which is likely to prevent practical deployment of such a local detector. In

subsequent experiments, we use out-of-fold predictions made by the detector.

Domain name classifier. We train and evaluate the classifier (Section 4.2.1) on

251K VirusTotal domain reports using 10-fold cross-validation to achieve a 91.58%

AUC (Figure 4.4). We specifically choose an operating point of 19.03% false posi-

tives and 95.41% true positives.
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The domain name classifier is weak because it is conservative in labeling

domains – an entire domain is considered malicious if it serves at least one malware

sample. However, even malicious domains serve several benign files, and the local

detector (above) that analyzes file-level features using VirusTotal contradicts the

domain name classifier. Adding more information about the URL can improve

the classifier. However, even the weak signal in domain names is sufficient for

Centurion to significantly improve the local detectors. Interestingly, because the

domain name classifier is only used to create neighborhoods (and not alerts), it can

operate at a conservative setting and rely on the shape-based neighborhood classifier

to weed out false positives.

The domain name classifier lets Centurion efficiently filter out domains that

are unlikely to distribute malicious files. Specifically, it removes from further con-

sideration 68.62% (214,884 out of 313,133) completely benign domains that are

responsible for delivering 80.70% (16,222,941 out of 20,103,211) benign files. At

the same time, the classifier retains 75.86% (30,448 out of 40,134) malicious do-

mains responsible for delivering 88.31% (94,457 out of 106,959) malicious files.

Neighborhood classifier. The neighborhood classifier (Algorithm 5) performs

neighborhood-level feature extraction and feeds resulting feature vectors into an

XGBoost classifier. We estimate its detection capabilities using 10-fold cross-

validation. The ROC plot (Figure 4.4) shows that the classifier achieves a 96.13%

AUC score, and we choose the following operating points: 5% false positives and

91.83% true positives.

A neighborhood-level alert is different from the above file- and domain-
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Figure 4.5: Neighborhood classifier acts as a malware concentrator. (Upper) Distri-
bution of infection rates of randomly grouped files. (Middle) Distribution of neigh-
borhoods’ infection rates. (Lower) Distribution of neighborhoods’ infection rates
after filtering out low-infected neighborhoods. The neighborhood classifier retains
only highly infected neighborhoods. (Distributions are capped at 1,000 level.)

name-based LD alerts. It signifies that a set of files that have suspicious behavior

have been downloaded from suspicious links, and hence identifies the large majority

of files that were false positives at the local level. First, we measure the degree

to which our neighborhood classifier removes benign files, and then show that by

re-examining files in suspicious neighborhoods (using the file-based LD), we can

capture 78.03% of true positives.

4.4.2 Neighborhoods Concentrate Malware

First, we measure the effect of using domain names from downloader graphs

as an attribute to create neighborhoods.

The original malware concentration in the Wine dataset is only 0.663%, as

shown in the top-most plot of Figure 4.5. If a random subset of files are grouped
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into a neighborhood, each neighborhood will have considerably less malware than

the false-positive rate of the malware detectors (5%) – i.e., creating neighborhoods

randomly does not concentrate malicious activity. This is the baseline against

which downloader-graph-based neighborhood creation and shape-based neighbor-

hood classifiers must be compared; the neighborhoods labeled as malicious must

contain more than 5% malicious files while achieving high malware coverage over-

all.

Centurion first uses the domain name classifier to prune out files down-

loaded from benign domains; this increases the 0.663% infection rate to 9.49%

(middle plot, Figure 4.5).

Centurion then uses the shape-based neighborhood classifier to identify in-

fected neighborhoods. This dramatically changes the distribution of neighborhood

infection rates; i.e., the peak shifts to the right, from 1% to 5% (lower plot in Fig-

ure 4.5). The neighborhood classifier brings the average malware concentration in a

neighborhood from 9.49% to 24.6% – an increase of 37.1× compared to randomly

grouping files into neighborhoods.

Specifically, the number of neighborhoods with an infection rate of less than

1% drops by 437.6× (from 8752 on the upper plot to 20 on the lower plot). Over-

all, the neighborhood classifier together with the domain-name classifier reduce the

number of low infected neighborhoods (neighborhoods with less than 5% of mali-

cious files) by 36.4 times (from 21,792 to 599).

131



Figure 4.6: Distribution of the lifespan of malicious domains. After removing do-
mains serving only a single malicious file, the average lifespan goes up to 157 days.
And we set NTW to 150 days.

4.4.3 Lifespan of Malicious Domains.

Before discussing detection results, we analyze the lifespan of compromised

domains to justify our choice of the NTW (150 days). We define the lifespan of a

malicious domain as a time interval between the first malware sample and the last

malware sample distributed by the domain. In practice, a domain may be compro-

mised multiple times within its lifespan. Unfortunately, the Wine dataset lacks in-

formation necessary to distinguish between separate compromises. However, such

a coarse-grained definition of the lifespan parameter allows us to conservatively es-

timate how long a domain remains compromised or how long a malicious domain

remains active if its sole purpose is to distribute malware.

Figure 4.6 shows the distribution of domain lifespan on a log scale. We split

the range of the lifespan parameter (from 0 days up to 1822 days) into 100 bins

(horizontal axis). For each bin we compute the probability that a lifespan value
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will fall into it (vertical axis). We use the log scale to better visualize the long-tale

distribution of lifespan values.

A large portion of malicious domains, specifically, 62.4%, in the Symantec

Wine dataset serves only a single malicious file. We are likely to observe such an ef-

fect due to the dataset being incomplete, i.e., it does not capture all malicious down-

loads, and hackers are also actively employing domain-generation algorithms [129]

that register domains serving few malicious files. Across the dataset, the average

lifespan of malicious domains is 59 days and the median is 0 days. If we remove

domains serving only a single malicious file, the average lifespan goes up to 157

days and the median is 44 days.

Therefore, we consider file downloads within a 150-day time window to be

correlated and set the NTW in our experiments to 150 days. However, if we had

more detailed information on individual domain compromises in the dataset, we

would be able more accurately estimate the average lifespan and, thus, the average

size of an NTW within which malicious downloads are actually correlated. More

accurate estimations of the NTW length would improve overall malware detection.

4.4.4 Aggregate Detection Results

We now quantify the detection performance of the complete pipeline by ap-

plying the malware classifier to files inside infected neighborhoods. By identifying

malicious neighborhoods, Centurion effectively weeds out many files that trigger

false alerts; hence, the alerts within infected neighborhoods are ∼37 times more

likely to be malware (true postive).
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To perform real-time analysis, we replay the five-year history of download

events in the Wine dataset (each event has a time stamp associated with it) and

execute Centurion every 30 days. We set the NTW parameter to 150 days be-

cause we found that the average lifespan of malicious domains is 157 days. In our

experiments, we observed that a shorter time period between consecutive runs of

Centurion does not significantly affect results, it only improves time to detection

and early detection parameters (Table 4.7). We intentionally stick to a 30-day pe-

riod between consecutive runs of Centurion to keep execution time (∼12 hours) and

resource consumption manageable.

We compare Centurion, which comprises the neighborhood classifier and

LDs, with prior work – LDs [117] and the state-of-the-art malware detector in the

Wine dataset [110] – as well as with a neighborhood detector. For comparison, we

use standard machine-learning metrics: precision = T P
T P+FP , recall = T P

T P+FN , and

F−1 = 2 · precision·recall
precision+recall .

All four detectors explore different operating points in the true-positive/false-

positive (FP/TP) design space. To compare them, we use a standard machine-

learning metric: the F-1 score, which is a harmonic mean of precision and recall.

The F-1 score is bounded by 100%, which is achieved only if a detector has a 100%

TP rate and 0% FP rate.

4.4.5 File-level Aggregate Results

Though Centurion is designed to act as a real-time malware detector, i.e.,

output detection results every time it is executed, in this section we only focus on
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Parameter
Prior Work 
[CCS’15]

Local Detectors 
[DIMVA’16]

Neighborhood
Detector

Centurion

# of benign files 20,407,667

# of malicious files 137,279

Possible early detection, files 68,398

False positives
4,390 1,022,439 1,184,234 109,951

0.021% 5.01% 5.80% 0.54%

True positives (Recall)
43,091 124,190 115,357 107,124

31.39% 90.47% 84.03% 78.03%

Precision 73.5% 10.83% 8.88% 49.35%

F-1 score 46.64% 19.35% 16.06% 60.46%

Early detection, days 9.24 214.08 340.42 345.33

Time to detection, days N/A 0 20.46 20.33

Early detection, files
3,002 62,815 31,266 29,356

4.4% 92% 46% 43%

Figure 4.7: File-level aggregate results.

the file-level aggregate results (Table 4.7) in order to compare them with a prior

work. The aggregate results are computed by merging malware-detection results

across independent executions of a malware detector. Note that we count each file

exactly once; for example, if a malware detector detects the same malicious file

over multiple NTWs, we count it only once.

False positive rate. The downloader detector [110] achieves the lowest FP rate. It

raises 1.0% false positives on the set of downloaders; however, downloaders consti-

tute only a small portion of the entire dataset (439K out of 20.55M files). Thus, its

effective FP rate comes down to 0.021%, which is reached at the cost of excluding

more than 20 million files (more than 97.3%) from the analysis. The other prior

work – an LD [117] – has a fixed false-positive rate of 5%, which we set up in our

experiments to achieve at least a 90% TP rate.

Surprisingly, the neighborhood detector’s FP rate is only marginally worse

135



than the local detector’s FP rate – 5.8% in comparison to 5%. However, it filters

out significant portion of benign files, which helps Centurion to reduce the FP rate

by 10.7× (5.8% vs. 0.54%) by using the neighborhood detector as a file filter.

In comparison to the local detector, Centurion has a 9.3× lower FP rate (5% vs.

0.54%); thus it brings the absolute number of false positives from ∼1.2M down

to ∼109.9K. Therefore, deeper (even human-level) analysis becomes feasible, i.e.,

∼109.9K false alerts over a five-year period correspond to 60 false alerts per day

on average.

True positive rate. The downloader detector [110] has the lowest TP rate due to

its inherent inability to analyze non-downloaders. Therefore, it discovers 96% of

malicious downloaders, but only 31.39% of all malware samples; it misses 94K

out of 137K malware samples. Note that the Wine dataset may be skewed in favor

of malicious downloaders; i.e., approximately one third of malware samples in the

dataset are malicious downloaders. Thus, the downloader detector may have an

even lower TP rate in a real deployment setting.

The neighborhood detector achieves a slightly lower TP rate (∼84%) be-

cause it erroneously filters out some malicious files, whereas LDs analyze all of

them. Specifically, if the neighborhood detector fails to correlate malicious down-

loads appropriately, it may distribute malware samples across multiple predomi-

nantly benign neighborhoods. Due to low malware concentration, they may be

excluded from the further analysis by the neighborhood classifier. The other rea-

son why the neighborhood classifier misses some malware may be due to some

labels incorrectly marking malicious domains as benign. Thus, malware samples
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downloaded from such domains are excluded from further analysis.

In terms of true positives, Centurion inherits limitations of the neighborhood

detector. It loses a few more percentage points due to running imperfect LDs within

the neighborhoods that capture only 84% of malware, which results in a 78% TP

rate. On the other hand, LDs demonstrate the highest TP rate (90.5%) because they

are tuned to achieve a TP rate above 90%.

F-1 score. Centurion achieves the highest F-1 score (60.46%) because it detects

a large portion of malware samples in the dataset (∼78%) and maintains the low

FP rate (0.54%). The next closest competitor – the downloader detector [110] –

achieves only a 46.64% F-1 score due to its low TP rate. Interestingly, the LD [117]

demonstrates ∼2.3 × worse results than the downloader detector because of the

much higher FP rate.

4.4.6 Machine-level Aggregate Results

For completeness, we also describe machine-level detection results. How-

ever, we mainly focus on the new trends unobserved at the file level. We consider

a machine to be compromised (or infected) if it has downloaded at least one ma-

licious file. Though Centurion is meant to be a file-level detector rather than a

machine-level detector, it achieves promising machine-level detection results.

False positive rate. In terms of false positives, we notice two opposing trends.

First, the machine-level false-positive rate is higher than the file-level false-positive

rate for all detectors, because a detector mislabeling a single benign file may dra-

matically affect the false-positive rate if the file has been downloaded on multiple
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Parameter
Prior Work 
[CCS’15]

Local Detectors 
[DIMVA’16]

Neighborhood
Detector

Centurion

Clean machines 3,753,931

Compromised machines 768,525

False Positives, machines
282,203 862,434 2,991,981 433,015

7.51% 22.97% 79.70% 11.53%

True Positives (Recall)
98,112 670,164 739,558 651,025

12.76% 87.20% 96.23% 84.71%

Precision 25.80% 43.73% 19.82% 60.06%

F-1 score 17.08% 58.25% 32.87% 70.28%

Time to Detection, days 84.26 0 20.63 28.67

Figure 4.8: Machine-level aggregate analysis.

clean machines – i.e., those machines become false positives.

Second, relative FP rates of all detectors significantly differ across file- and

machine-level detection experiments. For example, the downloader detector’s FP

rate is only 1.53 times lower than Centurion’s at the machine level, in comparison to

a 7.1× difference at the file level. The downloader detector’s results worsen mainly

because the detector often mislabels benign files that are frequently downloaded

on multiple clean machines, so those machines are considered false positives. Sur-

prisingly, the neighborhood detector’s FP rate reaches almost 80%, making it com-

pletely unusable. For this reason, we exclude it from further discussion.

True positive rate. In comparison to the FP rate, the TP rate does not exhibit a

single trend; the direction in which it moves depends on a particular detector. The

downloader detector’s TP rate drops down by almost 3× because the majority of

machines in the Wine dataset are infected by non-downloaders (malware that does
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not download other files). As a result, the downloader detector misses almost 87%

of infected machines.

Centurion’s TP rate demonstrates the opposite trend. It increases file-level

detection by 6.7% because it searches for correlated malicious downloads and thus

is likely to detect similar malware that infects multiple machines. As a result, spatial

correlations between malware downloads boost detection results – they raise from

78.03% up to 84.71%.

F-1 score. Overall, Centurion achieves the best FP/TP trade-off, having the highest

F-1 score (60.06%). The downloader detector demonstrates the poorest detection

results, having the lowest F-1 score (17.08%), mainly due to the low TP rate.

Time to detection. We observe that average time to detection slightly increases for

Centurion (from 20.33 days to 28.67 days), but it is almost three times lower than

the same parameter of the downloader detector because Centurion makes a decision

regarding a file without waiting until it downloads other files.

4.5 Real-Time Detection
4.5.1 File-level real-time detection

We start with the analysis of the temporal distribution of the download

events (Figure 4.9) to visualize file downloads over time. Every time Centurion

runs, it analyzes download events within an NTW, which is set to 150 days in our

experiments. Therefore, we represent the intensity of downloads over time as the

number of downloads within each NTW. Specifically, for each time stamp, we com-
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Figure 4.9: (File-level real-time detection) File download statistics.

pute the total number of file downloads and the number of malicious file downloads

within the previous NTW (upper plot of Figure 4.9). For example, the value labeled

as 01/2011 includes file downloads from 06/2010 until 01/2011. We also visual-

ize the total number of distinct downloads and the number of distinct malicious

downloads (lower plot of Figure 4.9).

Every point on these curves characterizes the number of files Centurion has

to deal with when operating in a real-time detection mode. The large gap between

the black and the red curves shows that only a small percentage of files in the

Symantec Wine dataset is malicious. Centurion manages to filter out most benign

files from further analysis and thus reduces the overall false-positive rate.

When taking a deeper look at the plots, we notice that file downloads in the

Symantec Wine dataset exhibit a non-uniform pattern over time. The total number

of downloads increased from January 2008 and reached its peak (51 million down-
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Figure 4.10: (File-level real-time detection) Local detector’s detection results.

loads per NTW) within the NTW ending in October 2010. After that, it decreased

over time. The temporal pattern of distinct downloads slightly differs: intensity

of distinct downloads reached a flat plateau (4.74M per NTW) in September 2010

and remained on approximately the same level until April 2011. However, mali-

cious files are responsible for only the small percentage of all downloads – at most

1.43M total malicious downloads and 27K unique malicious downloads.

Note that the distribution’s low intensive ends impose an obstacle for Centu-

rion because of the insufficient number of correlated file downloads. For this reason,

we discard file downloads from before June 2008. Therefore, we run Centurion the

first time on the neighborhood window spanning the interval from 06/2008 until

01/2009 and label results with the 01/2009 time stamp.

Local detectors. When we analyze the temporal behavior of local detectors (Fig-

ure 4.10), we notice an anti-correlation between the total number of unique down-
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Figure 4.11: (File-level real-time detection) Neighborhood detector’s detection re-
sults.

loads and LD precision. The peak of unique downloads corresponds to the large

number of benign downloads. Therefore, when an LD processes them, it outputs a

large number of false-positive alerts, which results in a precision drop (it drops to a

level of less than 5%). However, the recall stays in the range of 84%–95% because

it depends only on LDs’ ability to detect malicious files. The F-1 scores lean more

toward precision than recall; that is why the LD has mostly low F-1 scores over a

large period of time (between 9% and 66%).

Neighborhood detector. Before analyzing Centurion’s real-time detection, we

briefly discuss the neighborhood detector’s performance. We assume that the neigh-

borhood detector (Figure 4.11) labels all the files within malicious neighborhoods

as malicious. Both the LD and the neighborhood detector suffer from low precision.

However, the underlying cause is different. The neighborhood classifier is supposed

to label neighborhoods malicious if they comprise more than 5% malicious files.

142



01/2009 01/2010 01/2011 01/2012 01/2013 12/2013
Time

0

20

40

60

80

100

120

P
re

ci
si

on
/R

ec
al

l, 
%

Precision
Recall
F-1 score

Figure 4.12: (File-level real-time detection) Centurion’s detection results.

Usually, most files in a neighborhood are benign. Thus, when the neighborhood

detector conservatively labels all the files malicious, it suffers from a high false-

positive rate and, consequently, low precision. Hence, the neighborhood detector

is designed to be conservative. Also the neighborhood detector inadvertently filters

out some malicious files, which leads to results that are lower than LDs’ recall.

Centurion. In comparison to the LDs, Centurion boosts precision and inherits a

slightly lower recall from the neighborhood classifier because it only aggregates

LD predictions collected across suspicious neighborhoods (Figure 4.12). Due to a

low false-positive rate, Centurion achieves high precision – i.e., many benign files

are filtered out by the neighborhood detector before the rest of them are reanalyzed

by Centurion. Thus, LDs running within suspicious neighborhoods analyze fewer

benign files than LDs in the traditional deployment scenario. At the same time,

Centurion has a slightly lower recall than both LDs and the neighborhood detector

because Centurion labels a file as malicious only if it is contained within a suspi-
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Figure 4.13: (Machine-level real-time detection) Machine-level local statistics.

cious neighborhood and an LD raises a file-level alert. However, neighborhood and

domain name classifiers are imperfect – they may fail to correctly label malicious

neighborhoods and domains, respectively. Therefore, Centurion does not aggregate

LD output across all malicious files, which results in a slightly lower recall. Cen-

turion’s F-1 score is bounded by close values of precision and recall and is much

higher than the same LD and neighborhood detector parameters. To quantitatively

compare Centurion with local detectors we, compute the area under the F-1 curve.

At the file level, Centurion achieves a 96.6% higher area under the F-1 curve than

the LD.

4.5.2 Machine-level real-time detection

Machine-level statistics (Figure 4.13) are similar to file-level statistics: only

a small percentage of machines is compromised within each NTW window. The

number of machines and compromised machines reached their peak values of 1.43M
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Figure 4.14: (Machine-level real-time detection) Machine-level local detector’s de-
tection results.

and 126.9K, respectively, in October 2010; i.e., at the peak, less than 8.9% of ma-

chines were compromised.

Overall, we observe higher values of precision and recall for all detectors

(Figures 4.14, 4.15, 4.16) because, when interpreting detection results at the ma-

chine level, the detectors do not have to be very precise. They simply must detect

at least one malicious file on an infected machine; file-level false positives on a

particular machine do not count if that machine is infected.

Similar to file-level detection results, local detectors suffer from low preci-

sion because of the high number of false positives. However, precision is signifi-

cantly higher – its mean value reaches 41%, as opposed to the mean value of 19%

for file-level detection. Such a dramatic difference results from the file-level false

positives on compromised machines that do not affect detectors’ precision at the

machine level. In both cases, the recall curve exhibits similar behaviors.
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Figure 4.15: (Machine-level real-time detection) Machine-level neighborhood de-
tector’s detection results.

We observe a similar trend for the neighborhood detector – the mean preci-

sion value is 48%, as opposed to 12.5% at the file level. The recall values remain in

the range of 36%–92%. Finally, Centurion brings the precision curve up at the cost

of slightly lower recall. This is exactly the same effect that we observe at the file

level.

Overall, Centurion achieves better results at the machine level than at the file

level, which means that it can identify infected machines earlier and more robustly

than individual malware samples. In the case of real-time detection, Centurion’s

main competitor is the LD. However, Centurion’s area under F-1 curve is 28.6%

higher than the similar parameter for the local detector.

146



01/2009 01/2010 01/2011 01/2012 01/2013 12/2013
Time

0

20

40

60

80

100

P
re

ci
si

on
/R

ec
al

l, 
%

Precision
Recall
F-1 score

Figure 4.16: (Machine-level real-time detection) Machine-level Centurion’s detec-
tion results.

4.5.3 Fragility of Count-GD

The traditional counterpart of Centurion is the Count-GD algorithm: to de-

tect malware it counts the number of alerts over a neighborhood and compares it to

a threshold. This threshold scales linearly with the size of the neighborhood. Next,

we experimentally quantify the total error Count-GD can tolerate in the Symantec

Wine setting (Figure 4.17). Note that the error in estimating neighborhood size can

be double-sided: underestimates (negative errors) can make neighborhoods look

like alert hotspots and lead to false positives, while overestimates (positive errors)

can lead to missed detections (i.e., lower true positives).

We run Count-GD in the same setting as Centurion; i.e., we adjust Count-

GD’s threshold to match the performance of Centurion’s neighborhood classifier

(true-positive rate of 95.41%, Section 4.4.1) with zero neighborhood estimation

errors (Figure 4.17).
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Figure 4.17: (Symantec Wine dataset) An error in estimating neighborhood size
dramatically affects Count-GD’s performance. Count-GD can tolerate at most 30%
underestimation errors and 1% overestimation errors to achieve comparable with
Shape GD performance.

Recall that in this setting the neighborhood classifier has a maximum global

false-positive rate of 19.03% and a true-positive rate of 95.41%. For maintaining a

similar performance for detection, our experiments show that Count-GD can only

tolerate neighborhood size estimation errors within a very narrow range: [−30%,

1%]. A key takeaway here is that underestimating a neighborhood’s size makes

Count-GD extremely fragile (−30%). On the other hand, overestimating neighbor-

hood sizes decreases true positives, and this effect is catastrophic.

Note the importance of this effect in practice. In the example of a Fortune

500 company, we observed that commercial Security Information and Event Man-

agement (SIEM) tools often do not report alerts in a timely manner and may delay

delivering alerts by up to two months due to unpredictable infrastructure failures

and a local IT service intervening in alert analysis. Also, given the practical de-
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ployments where nodes become infected out of band (e.g., outside the corporate

network) or go out of range (e.g., with mobile devices), the tight margins on errors

can render Count-GD extremely unreliable. Even with sophisticated size-estimation

algorithms, because the underlying distributions that create these neighborhoods

(e.g. the number of clients per server) have sub-exponential heavy tails, such distri-

butions typically result in poor parameter estimates due to lack of higher moments,

and thus, poorer statistical concentrations of estimates of true value [81]. We see

that by eliminating this size dependence of Count-GD, Centurion provides a robust

inference algorithm.

4.6 Discussion

Evasion attacks. Centurion requires a human analyst to correctly specify attack

vectors. If a new attack vector emerges (e.g., badUSB), then the corresponding

attack may go undetected. However, attack vectors such as URLs or emails or

physical devices along which malware propagates are far fewer than vulnerabilities,

exploits, or malware samples. Thus, the majority of attackers keeps exploiting well-

known attack vectors such as external URLs, email attachments, etc. Furthermore,

individual LDs may be susceptible to evasion attacks, which may negatively affect

Centurion’s detection. However, designing evasion-resistant LDs [99] is outside the

scope of this paper.

Detection results of Centurion vs. Shape-GD. In comparison to Shape-GD, which

reduces the number of local false positives by ∼830 and ∼1000 times in watering

hole and phishing experiments, respectively (Chapter 3), Centurion achieves only a
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∼9.3× reduction of false positives. There are multiple reasons why the reduction

of the number of LD-level false positives differs dramatically across Shape-GD and

Centurion frameworks though they share a similar theoretical foundation.

First, the Symantec Wine dataset contains incomplete information about

malware spread. Specifically, Symantec’s antivirus products are installed on a sub-

set of machines targeted by attack, and some of those machines may not be suscep-

tible to attack. As a result, the Symantec Wine dataset includes information about

those machines that are monitored by Symantec’s antivirus product and where the

attack succeeded. However, Centurion needs to know all the machines that were tar-

geted by a particular attack, such as with phishing and watering hole experiments.

Partial knowledge makes it difficult for Centurion to find correlations between in-

fected machines.

Second, the domain name classifier conservatively raises too many false

alerts. Therefore, neighborhoods include many benign files. This issue can be

further addressed by applying more advanced algorithms for establishing domain

name reputation. Unfortunately, the Symantec Wine dataset lacks the necessary

data (e.g., visited webpages, executed scripts on those webpages, etc.) in order to

use more accurate algorithms.

Third, malware propagation in the Symantec Wine dataset happens at a very

large scale; i.e., it takes days. However, Centurion is designed to detect ‘bursty’

fast-spreading malware campaigns (e.g., phishing and watering hole attacks). Cen-

turion may end up merging multiple unrelated downloads into the same neighbor-

hood, and many of them may be completely benign.
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Finally, in watering hole and phishing experiments, correlations are more

obvious for Shape-GD – malware spreads though URLs or email lists. Also, mal-

ware spreads much faster – within seconds in watering hole attacks and within few

hours in phishing attacks.

4.7 Conclusion

Building robust behavioral detectors is a long-standing problem, especially

in large distributed systems where false positives can be overwhelming. We observe

that attacks on enterprise networks induce low-dimensional neighborhoods on oth-

erwise high-dimensional feature vectors, but such neighborhoods are unpredictable

and thus difficult to exploit. Centurion amplifies the malware signal through neigh-

borhoods and exploits their shape to identify infected ones early. Automating the

search for new neighborhoods – i.e., new attack vectors – that correlate with con-

firmed infections, would be a natural next step toward deployable behavioral detec-

tors.
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Chapter 5

Related Work

This section introduces some of the most commonly used approaches to

malware detection. First, we discuss approaches to host-level malware detection

and then we talk about approaches to global malware detection (collaborative in-

trusion detection systems – CIDS) that work at the network level and monitor the

behavior of multiple devices.

In the case of host-level detectors, we follow the classification introduced in

Chapter 1 and distinguish two types of malware detectors: static and dynamic. The

former directly analyze static code properties, while the latter execute and analyze

a program’s interaction with its runtime environment.

5.1 Static Analysis

Static analysis tools comprise two complementary approaches: static code

analysis and machine-learning approaches that use statically extracted program fea-

tures.
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5.1.1 Program Analysis

The dominant approach to malware detection that falls into this category is

static information flow tracking (IFT). As we mentioned before (Chapter 1), sound

static program analysis usually suffers from high false-positive rate. Here we pri-

marily cite recent papers implementing IFT for Android applications because they

complement Sherlock and represent an alternative approach to malware detection.

FlowDroid [56] performs inter-procedural context, flow, field, and object-

sensitive IFT analysis of Android applications. It is built on top of a generic IFDS

framework [131] for inter-procedural data flow analysis.

Unlike FlowDroid, DroidSafe [86] ignores flow sensitivity to make analysis

more scalable. Compared to FlowDroid, it achieves higher precision because it

includes an Android framework in the analysis.

CHEX [113] searches for component hijacking vulnerabilities in Android

applications by modeling them from a data flow analysis perspective.

Apposcopy [78] primarily focuses on the identification of Android malware

that steals private user information. It incorporates a high-level language for speci-

fying semantic characteristics of malware families and a static analysis for deciding

whether an Android application matches a malware signature.

Amandroid [150] is a general framework that performs flow and context-

sensitive points-to analysis for all objects in an Android application, which can

then be used for other specialized types of program analysis.
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Feng et al. [136] suggest using statically identified information flows within

Android applications as a permission mechanism.

5.1.2 Machine Learning

One of the popular approaches to malware detection is to extract syntactic

features from potentially malicious files, convert them into feature vectors, and use

a machine-learning classifier to determine whether a file is malicious or not.

Drebin [55] extracts static features from Android programs, such as permis-

sions and API calls, and uses a support vector machine (SVM) to separate benign

apps from malware.

DroidAPIMiner [52] extracts API features and applies a k-nearest neighbors

(kNN) classifier to distinguish malware from benignware.

Gascon et al. [84] propose a method for malware detection based on efficient

embeddings of function call graphs with an explicit feature map inspired by a linear-

time graph kernel.

Peng et al. [128] introduce the notion of risk scoring and risk to reduce

risk communication for Android applications. They identify three desiderata for an

effective risk-scoring scheme. They propose using probabilistic generative models

for risk-scoring schemes and identify several such models, ranging from the simple

Naive Bayes to advanced hierarchical mixture models.
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5.2 Dynamic Analysis

Dynamic analysis typically employs either dynamic information flow track-

ing or machine-learning methods that analyze a program’s interaction with its run-

time environment.

5.2.1 Program Analysis

The papers in this category mostly rely on dynamic information flow track-

ing to verify security properties of a system under test.

Dynamic information flow tracking analyzes how sensitive information is

propagated through program code when the code is executed. In comparison to

static IFT, dynamic IFT is not sound; that is why it is feasible to make it complete,

i.e., it exploits a different design point in the soundness/completeness space.

Dynamic IFT systems require either virtualization or a special hardware.

TaintDroid [75] and VetDroid [162] implement dynamic IFT by instrumenting Dalvik

VM, the virtual machine used to run Android applications.

DroidScope [157] and its successor Decaf [93] bring dynamic instrumen-

tation to a new level. The former modifies Android OSs and provides an API for

implementing runtime analyses for security, while the latter makes localized mod-

ifications to the Qemu virtual machine [58] such that multiple OSs can be instru-

mented for security analyses, including information flow tracking.

Panorama [161] represents a suspicious application as a dynamic taint graph

where nodes are OS objects and edges are information flows between them. The
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system checks whether any of the provided data containment rules are violated

within the graph.

Dytan [70], in addition to explicit information flows, also tracks implicit

information flows within x86 executable files.

Saxeena et al. [133] and Chang et al. [63] rely on code rewriting to imple-

ment efficient IFT analyses. The former project works directly with binary code,

while the latter transforms source code.

TriggerScope [82] employs static analysis to analyze path constraints guard-

ing suspicious code blocks. If the valid input range for a path constraint is narrow,

then the guarded code is considered malicious.

Guozhu et al. [115] developed a representation of Android malware fami-

lies in the form of deterministic symbolic automata (DSA). They also propose an

effective method of checking whether an Android application matches one or more

previously learned DSA. If it does, then it is treated as malicious.

5.2.2 Machine Learning

System calls and middleware API calls have been studied extensively as a

signal for behavioral detectors [57, 62, 67, 80, 83, 132, 149]. More recently, behav-

ioral detectors have used signals such as power consumption[69], CPU utilization,

memory footprint, and hardware performance counters [72, 143].

Detectors then extract features from these raw signals. For example, an n-

gram is a contiguous sequence of n items that captures total order relations [62, 88],
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n-tuples are ordered events that do not require contiguity, and bags are simply his-

tograms. These can be combined to create bags of tuples, tuples of bags, and tu-

ples of n-grams [62, 80] often using principal component analysis to reduce dimen-

sions. Furthermore, system calls along with their arguments form a dependency

graph structure that can be compared to sub-graphs that represent malicious behav-

iors [57, 67, 107].

Finally, detectors train models to classify executions into malware/benign-

ware using supervised (signature-based) or unsupervised (anomaly-based) learning.

These models range from distance metrics, histogram comparison, hidden Markov

models (HMMs), and neural networks (artificial neural networks, fuzzy neural net-

works, etc.) to more common classifiers such as kNN, one-class SVMs, decision

trees, and ensembles thereof.

Such machine-learning models, however, result in high false positives and

negatives. Anomaly detectors can be circumvented by mimicry attacks where mal-

ware mimics system calls of benign applications [149] or hides within the diver-

sity of benign network traffic[140]. Sommer et al. [140] additionally highlight

several problems that can arise due to overfitting a model to a non-representative

training set, suggesting signature-based detectors as the primary choice for real de-

ployments. Unfortunately, signature-based detectors cannot detect new (zero-day)

attacks. For Android, both system calls [61] and hardware-counter-based detec-

tors [72] yield ∼20% false positives and ∼80% true positives.

Finally, with their ability to extract highly effective features, deep nets may

provide a new way forward for creating novel behavioral detectors. At the global
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level, however, what is needed is a data-light approach for global detection by com-

posing LDs that are agile enough to perform global detection in a fast-changing

(non-stationary) environment.

5.3 Collaborative Intrusion Detection Systems (CIDS)

Collaborative intrusion detection systems (CIDSs) provide an architecture

where local detector (LD) alerts are aggregated by a global detector (GD). GDs can

be either signature-based or anomaly-based [147, 163], or even a combination of the

two [109] to generate global alerts. Additionally, the CIDS architecture can be cen-

tralized, hierarchical, or distributed (using a peer-to-peer overlay network) [163].

In all cases, existing GDs use some variant of either clustering- or count-

based algorithms to aggregate LD alerts. Count-based GDs raise an alert once the

number of alerts exceeds a threshold within a space–time window, while clustering-

based GDs apply heuristics to control the number of alerts [71, 88, 89, 137, 154]. In

HIDE [163], the GD at each hierarchical tier is a neural network trained on network

traffic information. Worminator[112] additionally uses bloom filters to compact

LDs’ outputs and schedules LDs to form groups in order to spread alert information

quickly through a distributed system. All count- and clustering-based algorithms

are fragile when the noise is high (in the early stages of an infection) and when the

network size is uncertain. In contrast, Shape-GD and Centurion are robust against

such uncertainty.

Note that distributed CIDSs are vulnerable to probe-response attacks, where

the attacker probes the network to find the location and defensive capabilities of a
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local detector [60, 138, 139].

159



Chapter 6

Conclusions and Future Work

6.1 Thesis Contributions

This thesis presents an end-to-end behavioral malware detector, Shape-GD.

Unlike traditional approaches to computer security (e.g., OS confinement, program

analysis, etc.), which often fail to mitigate modern attacks (e.g., watering hole at-

tacks, phishing attacks, or attacks that abuse hardware properties such as Spectre,

Meltdown, and Rowhammer), Shape-GD can detect a broad class of computer se-

curity attacks early and robustly.

The Sherlock project describes a new design for a lightweight malware de-

tector that employs machine-learning techniques to analyze dynamic instruction

traces, along with architectural and micro-architectural states. It can therefore ob-

serve instruction-level behaviors that exploit the gap between the system’s software

abstractions and hardware implementations. Sherlock’s design is especially applica-

ble to resource-constrained devices, such as mobile phones and IoT devices, against

diverse malware types. Furthermore, it achieves small TCBs and low overhead

costs.

The Sherlock project introduces a new white-box methodology together with

an operating range concept to evaluate malware detectors against evasive malware.
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Its operating range concept is a step toward explainability of machine-learning-

based malware detectors. Using these principles, we were able to build a detector

that outperforms a prior work by 12.5% – 24.7% (AUC metric) and demonstrate

that malware that attempts to evade static program analysis by adding run-time

obfuscation appears more anomalous to Sherlock.

Our Shape-GD malware detector can compose Sherlock-like detectors. Shape-

GD is a global detector that relies on two fundamental observations. First, attacks

spread through a limited number of well-known attack vectors (e.g., compromised

URLs or emails with malicious attachments). Shape-GD partitions devices (e.g.,

desktops, mobile and IoT devices) within a network into neighborhoods. Devices

within a neighborhood are likely to be exposed to similar attack vectors. Second,

the distributional shape of false positives is different from that of true positives.

Although this difference is impossible for LDs to exploit, Shape-GD can aggre-

gate alert-inducing (i.e., suspicious) feature vectors from a neighborhood to classify

whether these feature vectors are drawn from a true-positive distribution. Experi-

ments demonstrate that Shape-GD identifies malware early (∼100 infected nodes

in a∼100K-node system for watering hole attacks and∼10 of 1000 for phishing at-

tacks) and robustly (with∼100% global true-positive and∼1% global false-positive

rates).

Finally, we present the Centurion malware detector, which is designed to

detect malware among Symantec’s clients. Though Centurion shares a common

theoretical foundation with the Shape-GD detector, it significantly improves upon

Shape-GD’s design to accommodate the Symantec dataset’s constraints. We evalu-
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ate Centurion with 5 years of logs of 5 million Symantec client devices and show

that Centurion is able to efficiently discover malware in real time by correlating

file downloads across multiple machines. Specifically, it reduces false positives

from ∼1M to ∼110K in comparison to a recent local detector and increases the

true-positive rate by ∼2.5 times in comparison to a recent detector that analyzes

metadata associated with file downloads. In addition, Centurion detects malware an

average of 345 days earlier than commercial antivirus products.

6.2 Future Work

Here we outline several possible extensions for the projects described in the

thesis.

Identify which attack classes Sherlock can best detect. One potential direction

to extend Sherlock is an empirical study of attacks that can be efficiently detected

by low-level detectors similar to Sherlock. We have achieved encouraging results

for the following attacks: JIT spray, RowHammer [105, 135], microarchitectural

covert channels [97], a side channel through a floating point unit [54], and an attack

bypassing kernel address space layout randomization [87].

Apply Sherlock’s methodology to other types of detectors. Shape-GD’s white-

box methodology together with its operating range can be applied to other types of

malware detectors; its applicability is not limited to low-level detectors. We are cur-

rently generalizing the white-box methodology and applying it to a detector [110]

that identifies malicious downloaders in the Symantec Wine dataset.
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Learn neighborhood templates. Both Shape-GD and Centurion rely on templates

that define common attack vectors. Those templates are currently provided by hu-

man analysts. However, both malware detectors would benefit from a data-driven

approach to establishing such templates using labeled data, which would reduce the

risk of human error.

Another research direction would be to learn a low-dimensional basis used

by Shape-GD and Centurion to build vector histograms to increase distinguishabil-

ity of false- and true-positive distributions (the shape property) at the neighborhood

level.

Extend behavioral software analysis beyond computer security. We are cur-

rently developing a machine-learning framework to detect transient performance

bugs that cause abrupt performance degradation. This framework monitors sys-

tems for anomalous behavior and identifies parts of the system that might be root

causes of the observed anomalies. Specifically, the algorithm learns a complex

system’s regular dynamic behavior, which it uses to distinguish short-lived devia-

tions (anomalies) from regular behavior, and then raises an alert when an anomaly is

found. Another class of algorithms analyzes anomalies, filters out non-performance-

related anomalies, and pinpoints quality-of-service-related metrics (such as jank)

that are hard to detect and quantify without our anomaly detector.
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