2,589 research outputs found

    Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time

    Get PDF
    Traditionally, inertia in power systems has been determined by considering all the rotating masses directly connected to the grid. During the last decade, the integration of renewable energy sources, mainly photovoltaic installations and wind power plants, has led to a significant dynamic characteristic change in power systems. This change is mainly due to the fact that most renewables have power electronics at the grid interface. The overall impact on stability and reliability analysis of power systems is very significant. The power systems become more dynamic and require a new set of strategies modifying traditional generation control algorithms. Indeed, renewable generation units are decoupled from the grid by electronic converters, decreasing the overall inertia of the grid. ‘Hidden inertia’, ‘synthetic inertia’ or ‘virtual inertia’ are terms currently used to represent artificial inertia created by converter control of the renewable sources. Alternative spinning reserves are then needed in the new power system with high penetration renewables, where the lack of rotating masses directly connected to the grid must be emulated to maintain an acceptable power system reliability. This paper reviews the inertia concept in terms of values and their evolution in the last decades, as well as the damping factor values. A comparison of the rotational grid inertia for traditional and current averaged generation mix scenarios is also carried out. In addition, an extensive discussion on wind and photovoltaic power plants and their contributions to inertia in terms of frequency control strategies is included in the paper.This work was supported by the Spanish Education, Culture and Sports Ministry [FPU16/04282]

    Advanced Solutions for Renewable Energy Integration into the Grid Addressing Intermittencies, Harmonics and Inertial Response

    Get PDF
    Numerous countries are trying to reach almost 100\% renewable penetration. Variable renewable energy (VRE), for instance wind and PV, will be the main provider of the future grid. The efforts to decrease the greenhouse gasses are promising on the current remarkable growth of grid connected photovoltaic (PV) capacity. This thesis provides an overview of the presented techniques, standards and grid interface of the PV systems in distribution and transmission level. This thesis reviews the most-adopted grid codes which required by system operators on large-scale grid connected Photovoltaic systems. The adopted topologies of the converters, the control methodologies for active - reactive power, maximum power point tracking (MPPT), as well as their arrangement in solar farms are studied. The unique L(LCL)2 filter is designed, developed and introduced in this thesis. This study will help researchers and industry users to establish their research based on connection requirements and compare between different existing technologies. Another, major aspect of the work is the development of Virtual Inertia Emulator (VIE) in the combination of hybrid energy storage system addressing major challenges with VRE implementations. Operation of a photovoltaic (PV) generating system under intermittent solar radiation is a challenging task. Furthermore, with high-penetration levels of photovoltaic energy sources being integrated into the current electric power grid, the performance of the conventional synchronous generators is being changed and grid inertial response is deteriorating. From an engineering standpoint, additional technical measures by the grid operators will be done to confirm the increasingly strict supply criteria in the new inverter dominated grid conditions. This dissertation proposes a combined virtual inertia emulator (VIE) and a hybrid battery-supercapacitor-based energy storage system . VIE provides a method which is based on power devices (like inverters), which makes a compatible weak grid for integration of renewable generators of electricity. This method makes the power inverters behave more similar to synchronous machines. Consequently, the synchronous machine properties, which have described the attributes of the grid up to now, will remain active, although after integration of renewable energies. Examples of some of these properties are grid and generator interactions in the function of a remote power dispatch, transients reactions, and the electrical outcomes of a rotating bulk mass. The hybrid energy storage system (HESS) is implemented to smooth the short-term power fluctuations and main reserve that allows renewable electricity generators such as PV to be considered very closely like regular rotating power generators. The objective of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth out the high frequency fluctuations of the PV power, which may occur due to shadows of passing cloud on the PV panels. A control system designed and challenged by providing a solution to reduce short-term PV output variability, stabilizing the DC link voltage and avoiding short term shocks to the battery in terms of capacity and ramp rate capability. Not only could the suggested system overcome the slow response of battery system (including dynamics of battery, controller, and converter operation) by redirecting the power surges to the supercapacitor system, but also enhance the inertial response by emulating the kinetic inertia of synchronous generator

    Virtually synchronous power plant control

    Get PDF
    During the last century, the electrical energy infrastructures have been governed by synchronous generators, producing electrical energy to the vast majority of the population worldwide. However, power systems are no longer what they used to be. During the last two decades of this new millennium the classical, centralized and hierarchical networks have experienced an intense integration of renewable energy sources, mainly wind and solar, thanks also to the evolution and development of power conversion and power electronics industry. Although the current electrical system was designed to have a core of generation power plants, responsible of producing the necessary energy to supply end users and a clear power flow, divided mainly into transmission and distribution networks, as well as scalable consumers connected at different levels, this scenario has dramatically changed with the addition of renewable generation units. The massive installation of wind and solar farms, connected at medium voltage networks, as well as the proliferation of small distributed generators interfaced by power converters in low voltage systems is changing the paradigm of energy generation, distribution and consumption. Despite the feasibility of this integration in the existing electrical network, the addition of these distributed generators made grid operators face new challenges, especially considering the stochastic profile of such energy producers. Furthermore, the replacement of traditional generation units for renewable energy sources has harmed the stability and the reliable response during grid contingencies. In order to cope with the difficult task of operating the electrical network, transmission system operators have increased the requirements and modified the grid codes for the newly integrated devices. In an effort to enable a more natural behavior of the renewable systems into the electrical grid, advanced control strategies were presented in the literature to emulate the behavior of traditional synchronous generators. These approaches focused mainly on the power converter relying on their local measurement points to resemble the operation of a traditional generating unit. However, the integration of those units into bigger systems, such as power plants, is still not clear as the effect of accumulating hundreds or thousands of units has not been properly addressed. In this regard, the work of this thesis deals with the study of the so-called virtual synchronous machine (VSM) in three control layers. Furthermore, an in-depth analysis of the general structure used for the different virtual synchronous machine approaches is presented, which constitutes the base implementation tree for all existent strategies of virtual synchronous generation. In a first stage, the most inner control loop is studied and analyzed regarding the current control on the power converter. This internal regulator is in charge of the current injection and the tracking of all external power reference. Afterward, the synchronous control is oriented to the device, where the generating unit relies on its local measurements to emulate a synchronous machine in the power converter. In this regard, a sensorless approach to the virtual synchronous machine is introduced, increasing the stability of the power converter and reducing the voltage measurements used. Finally, the model of the synchronous control is extrapolated into a power plant control layer to be able to regulate multiple units in a coordinated manner, thus emulating the behavior of a unique synchronous machine. In this regard, the local measurements are not used for the emulation of the virtual machine, but they are switched to PCC measurements, allowing to set the desired dynamic response at the power plant level.Postprint (published version

    Virtual Synchronous Generator Operation of Full Converter Wind Turbine ‒ Control and Testing in a Hardware Based Emulation Platform

    Get PDF
    Wind is one of the most promising renewable energy forms that can be harvested to into the electrical power system. The installation has been rising worldwide in the past and will continue to steadily increase. The high penetration of wind energy has bought about a number of difficulties to the power system operation due to its stochastic nature, lack of exhibited inertia, and differing responses to the traditional energy sources in grid disturbances. Various grid support functions are then proposed to resolve the issues. One solution is to allow the renewable energy sources to behave like a traditional synchronous generator in the system, as a virtual synchronous generator (VSG). On the other hand, testing the control of the future power grid with high penetration renewable often relies on digital simulation or hardware-based experiments. But they either suffer from fidelity and numerical stability issues, or are bulky and inflexible. A power electronics based power system emulation platform is built in the University of Tennessee. This Hardware Testbed (HTB) allows testing of both system level and component level controls, with a good balance between the fidelity of the hardware-based testing platform, and the coverage of the digital simulation.This dissertation proposal investigates the VSG operation of the full converter wind turbine (FCWT), focusing on its control and testing in the HTB. Specifically, a FCWT emulator was developed using a single converter to include its physical model and control strategies. The existing grid support functions are also included to demonstrate their feasibility.The comprehensive VSG controls are then proposed for a FCWT with short term energy storage. The dynamic response of the FCWT can be comparable to the traditional generation during grid disturbance. The control can also allow the FCWT to be dispatched by the system operator, and even operate stand-alone without other grid sources.To study the system response under faults, a short circuit fault emulator was developed in the HTB platform. Four basic types of the short circuit faults with various fault impedance can be emulated using the emulator. The power system transient stability in terms of critical clearing time can be measured using the developed fault emulator

    Control and Stability of Residential Microgrid with Grid-Forming Prosumers

    Get PDF
    The rise of the prosumers (producers-consumers), residential customers equipped with behind-the-meter distributed energy resources (DER), such as battery storage and rooftop solar PV, offers an opportunity to use prosumer-owned DER innovatively. The thesis rests on the premise that prosumers equipped with grid-forming inverters can not only provide inertia to improve the frequency performance of the bulk grid but also support islanded operation of residential microgrids (low-voltage distribution feeder operated in an islanded mode), which can improve distribution grids’ resilience and reliability without purposely designing low-voltage (LV) distribution feeders as microgrids. Today, grid-following control is predominantly used to control prosumer DER, by which the prosumers behave as controlled current sources. These grid-following prosumers deliver active and reactive power by staying synchronized with the existing grid. However, they cannot operate if disconnected from the main grid due to the lack of voltage reference. This gives rise to the increasing interest in the use of grid-forming power converters, by which the prosumers behave as voltage sources. Grid-forming converters regulate their output voltage according to the reference of their own and exhibit load sharing with other prosumers even in islanded operation. Making use of grid-forming prosumers opens up opportunities to improve distribution grids’ resilience and enhance the genuine inertia of highly renewable-penetrated power systems. Firstly, electricity networks in many regional communities are prone to frequent power outages. Instead of purposely designing the community as a microgrid with dedicated grid-forming equipment, the LV feeder can be turned into a residential microgrid with multiple paralleled grid-forming prosumers. In this case, the LV feeder can operate in both grid-connected and islanded modes. Secondly, gridforming prosumers in the residential microgrid behave as voltage sources that respond naturally to the varying loads in the system. This is much like synchronous machines extracting kinetic energy from rotating masses. “Genuine” system inertia is thus enhanced, which is fundamentally different from the “emulated” inertia by fast frequency response (FFR) from grid-following converters. Against this backdrop, this thesis mainly focuses on two aspects. The first is the small-signal stability of such residential microgrids. In particular, the impact of the increasing number of grid-forming prosumers is studied based on the linearised model. The impact of the various dynamic response of primary sources is also investigated. The second is the control of the grid-forming prosumers aiming to provide sufficient inertia for the system. The control is focused on both the inverters and the DC-stage converters. Specifically, the thesis proposes an advanced controller for the DC-stage converters based on active disturbance rejection control (ADRC), which observes and rejects the “total disturbance” of the system, thereby enhancing the inertial response provided by prosumer DER. In addition, to make better use of the energy from prosumer-owned DER, an adaptive droop controller based on a piecewise power function is proposed, which ensures that residential ESS provide little power in the steady state while supplying sufficient power to cater for the demand variation during the transient state. Proposed strategies are verified by time-domain simulations

    Control of Voltage-Source Converters Considering Virtual Inertia Dynamics

    Get PDF
    Controlling power-electronic converters in power systems has significantly gained more attention due to the rapid penetration of alternative energy sources. This growth in the depth of penetration also poses a threat to the frequency stability of modern power systems. Photovoltaic and wind power systems utilizing power-electronic converters without physical rotating masses, unlike traditional power generations, provide low inertia, resulting in frequency instability. Different research has developed the control aspects of power-electronic converters, offering many control strategies for different operation modes and enhancing the inertia of converter-based systems. The precise control algorithm that can improve the inertial response of converter-based systems in the power grid is called virtual inertia. This thesis employs a control methodology that mimics synchronous generators characteristics based on the swing equation of rotor dynamics to create virtual inertia. The models are also built under different cases, including grid-connected and islanded situations, using the swing equation with inner current and voltage outer loops. Analysis of the simulation results in MATLAB/Simulink demonstrates that active and reactive power are independently controlled under the grid-imposed mode, voltage and frequency are controlled under the islanded mode, and frequency stability of the system is enhanced by the virtual inertia emulation using swing equation. On this basis, it is recommended that the swing equation-based approach is incorporated with the current and voltage control loops to achieve better protection under over-current conditions. Further works are required to discover other factors that could improve the effectiveness of the models

    Frequency regulation in wind integrated power system

    Full text link
    This Thesis has broader implications in terms of improvement in wind generation modeling which is a current requirement for prospective operational planning tools for future grid. This thesis mainly deals with various modelling issues encountered in wind integrated power system for frequency regulation. Thesis provides development of grid code compatible, frequency responsive type 4 wind turbine generator system and analysis of the wind energy systems frequency regulation capability and their integration impact on interconnected power system.<br /

    Power system stability of a small sized isolated network supplied by a combined wind-pumped storage generation system: a case study in the Canary Islands

    Full text link
    Massive integration of renewable energy sources in electrical power systems of remote islands is a subject of current interest. The increasing cost of fossil fuels, transport costs to isolated sites and environmental concerns constitute a serious drawback to the use of conventional fossil fuel plants. In a weak electrical grid, as it is typical on an island, if a large amount of conventional generation is substituted by renewable energy sources, power system safety and stability can be compromised, in the case of large grid disturbances. In this work, a model for transient stability analysis of an isolated electrical grid exclusively fed from a combination of renewable energy sources has been studied. This new generation model will be installed in El Hierro Island, in Spain. Additionally, an operation strategy to coordinate the generation units (wind, hydro) is also established. Attention is given to the assessment of inertial energy and reactive current to guarantee power system stability against large disturbances. The effectiveness of the proposed strategy is shown by means of simulation results
    corecore