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CONTROL OF VOLTAGE-SOURCE CONVERTERS CONSIDERING

VIRTUAL INERTIA DYNAMICS

by

TRI NGUYEN

(Under the Direction of Masoud Davari)

ABSTRACT

Controlling power-electronic converters in power systems has significantly gained more at-

tention due to the rapid penetration of alternative energy sources. This growth in the depth

of penetration also poses a threat to the frequency stability of modern power systems. Pho-

tovoltaic and wind power systems utilizing power-electronic converters without physical

rotating masses, unlike traditional power generations, provide low inertia, resulting in fre-

quency instability. Different research has developed the control aspects of power-electronic

converters, offering many control strategies for different operation modes and enhancing

the inertia of converter-based systems. The precise control algorithm that can improve the

inertial response of converter-based systems in the power grid is called virtual inertia. This

thesis employs a control methodology that mimics synchronous generators characteristics

based on the swing equation of rotor dynamics to create virtual inertia. The models are

also built under different cases, including grid-connected and islanded situations, using the

swing equation with inner current and voltage outer loops. Analysis of the simulation re-

sults in MATLAB/Simulink demonstrates that active and reactive power are independently

controlled under the grid-imposed mode, voltage and frequency are controlled under the

islanded mode, and frequency stability of the system is enhanced by the virtual inertia em-



ulation using the swing equation. On this basis, it is recommended that the swing equation-

based approach is incorporated with the current and voltage control loops to achieve better

protection under over-current conditions. Further works are required to discover other fac-

tors that can improve the effectiveness of the models.

INDEX WORDS: Virtual inertia, Swing equation, Current-Controlled, Voltage controller,
Grid-Connected, Islanded.
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CHAPTER 1

INTRODUCTION

The utilization of alternative energy sources has been promoted in the modern power

system to solve the energy crisis and global warming [1,2]. The current power grid is con-

nected to not only traditional power plants, including thermal and hydropower plants, but

also numerous solar panels and wind turbine generators. As specified by the International

Energy Agency (IEA), global renewable power generation capacity is estimated to rise by

50% of 1,200 GW between 2019 and 2024, which is corresponding to the entire installed

capacity of the United States currently [3]. Solar photovoltaic (PV) was still leading the

installed renewable power capacity statistics with 100 GW added, accounting for 55% of

new renewable capacity, followed by wind power (28%) in 2018. In total, alternative en-

ergy constitutes over 33% of the world’s installed power generating capacity in 2018 [4].

Due to the substantial increasing demand in PV and wind power with DC loads, the power

system is gravitated towards an inverter-dominated network and further an AC/DC hybrid

grid with large DC-energy pools [5]. Despite fast response time, the inverters as static con-

verters lack the mechanical spinning component, thus do not possess the same moment of

inertia as synchronous generators to reinforce the grid dynamics.

Consequently, the large-scale penetration of renewable energy sources lowers the to-

tal inertia of the network and threatens the power system’s stability. Various potential

solutions have been proposed, such as running multiple synchronous generators at partial

load conditions or using grid-scale energy storage devices. Despite being useful in inertia

sustainability or fast response to frequency events, there are still many disadvantages like

higher operating costs, low round-trip efficiency, limited life-cycle, safety, and noises [6,7].

The idea of implementing virtual inertia for an inverter-based system has been pointed to-

wards by many researchers as a solution for the power system stability to cope with the

increasing penetration of alternative power generation using inverters [8, 9].
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1.1 MOTIVATION

In a power grid, according to physics, frequency is an indicator of the match between

load consumption and power generation. Any alteration in the active power generation or

the power consumption results in power imbalance and deviation in the frequency. Conven-

tionally, synchronous generators in traditional power plants play a crucial role in sustaining

dynamic frequency stability as they behave like energy storage. Kinetic energy is absorbed

or released by the rotating masses of the synchronous generators during the time of fre-

quency deviation. Such a property of rotating masses to resist the sudden deviation in

frequency is named as the moment of inertia. The higher the total inertia of the network

is, the slower the dynamics of frequency change is, which effectively avoids unpredictable

load-shedding, cascading failures, or large-scale blackouts [10]. However, there is no me-

chanical spinning component in static inverters. Hence, these grid-connected inverters do

not contribute inertia to the electrical grid, leading to inadequate inertial response of the

power system [11]. The primary governor might not adapt quickly enough to the frequency

fluctuations. This issue can be detected and measured by frequency tripping protective

relay if the deviation is ±0.5%, falling in between 59.7Hz and 60.3Hz for a 60Hz grid.

The tripping of the circuit breaker, disconnecting the generators from the network, results

in system instability. Consequently, this restricts the maximum amount of grid-connected

non-synchronous systems.

A multiple time-frame frequency response in a power system has been simulated to

show a clearer sight of how frequency recovery is, in the presence of virtual inertia and vice

versa, illustrated in Figure 1.1 [12]. As can be seen, the first 10 seconds after the frequency

event determine how well the system inertia can slow down the dynamics of frequency

change and reduce the frequency deviations. It shows that the reduction in frequency nadir

(minimum frequency point) can be compensated by additional virtual inertia, and the rate

of change of frequency (ROCOF) has improved significantly. The primary control of the
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governor is only taken into action within 10-30s after the inertial response time. This

process is not instantaneous enough to arrest the system frequency. Thus, the virtual inertia

concept has been researched and developed.

Figure 1.1: Multiple Time-Frame Frequency Response Following a Frequency Event

Numerous control algorithms for implementing virtual inertia into the inverter-based

system are presented in the literature review in the next chapter. Most of the latest ap-

proaches with various topologies are discussed to summarize and classify in the concept

of virtual synchronous machine (VSM) according to their functional characteristics and

controller designs.

1.2 CONTRIBUTION

This thesis’s main contribution is a control strategy that implements the virtual inertia

for the voltage-source converters under grid-connected and islanded mode. To this end,

we build a controller based on the power-frequency swing equation, which employs the

rotor momentum of inertia and damping coefficient as control parameters to mimic the

characteristics of the synchronous generators.
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CHAPTER 2

LITERATURE REVIEWS

A large number of approaches to emulate synchronous generator characteristics have

been proposed and developed. Despite utilizing an identical fundamental concept, they

vary with dissimilarities in terminology, targeted applications, and suggested control al-

gorithms [13]. An overall categorization of numerous topologies is illustrated in Figure

2.1. The synchronous generator model-based approach applies a full mathematical model

of the synchronous generators to model the exact behaviors of their dynamics. Another

approach attempts to propose a less bulky dynamic model to approximate the behavior of

synchronous generators by examining only the swing equation, while the frequency-power

response based topology focuses on the characteristics of frequency deviation response of

the synchronous generators [12]. Each technique, depending on the design purposes and

the degree of sophistication, has its pros and cons. Some of the existing representatives

for each approach will be reviewed and compared in more detail by evaluating their key

features and weaknesses.

Figure 2.1: Classification of Different Virtual Inertia Approaches

Regarding the synchronous generator model-based approach, VISMA can be referred

to as the first power electronics-based approach of making renewable electric generators

mimic the electromechanical synchronous machines. VISMA, initialized by Beck and

Hesse in 2007, is based on the dq-frame reference rotational frame to derive the syn-
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chronous generator’s mathematical model [14, 15]. Stator currents of the virtual machine

are calculated and injected through a hysteresis current control approach. However, insta-

bility due to the mathematical divergence of Euler’s method and the impact of digital signal

processing architecture on numerical representation are limitations of this approach [12].

To improve robustness, a simplified three-phase model, which provides the features of

virtual mass and virtual damping according to the electromechanical power balance, was

rebuilt [16]. A pole wheel induction voltage replaces the field circuit in the stator, and the

damping attribute is incorporated in the mechanical subsystem. It demonstrated that grid

frequency oscillation caused by the load activity could be attenuated. The virtual mass

counteracts grid frequency reduction, and the virtual damper suppresses grid oscillation.

This method is especially effective under unsymmetrical load conditions or rapid distur-

bances in the grid. Another method employing the VISMA model as a voltage source is

the Institute of Electrical Power Engineering (IEPE) Topology [17]. While VISMA utilizes

the voltage as the input, the output current in the IEPE strategy is the input, and from that,

reference voltages are computed and generated for the virtual model. The IEPE topology

is more appropriate for the islanded mode than for the grid-imposed mode due to the com-

plexity of transient currents during the synchronization. A concept of control based on a

virtual generator model of algebraic type was formulated [18]. The utilization of an auto-

mated voltage regulator (AVR) and an equivalent governor to produce voltages and phase

command is the main idea of this method. However, many issues need to be further inves-

tigated, including the control scheme, the settings of parameters, and the incorporation of

the dq-frame transformation.

Synchronverter [19], meanwhile, is one of the latest common terminology repre-

senting this category. This concept permits the static interfaced distributed generators to

mimic precisely the synchronous generators principles and was well developed further in

2016 [20, 21]. The electrical and mechanical components of the synchronous generators
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are both examined to derive an exact mathematical model. Specifically, stator and field

flux linkage equations are derived from self and mutual inductance between the field coil

and three stator coils to infer the back electromotive force (emf) equation. Besides, the

moment of inertia in rotating masses is based on the swing equation, which is the same

underlying concept as the swing equation-based technique. However, the difference is that,

the electromagnetic torque is found from the energy stored in the machine magnetic field

and rotor angle. Real and reactive power are adjusted by a real power-frequency droop

control loop [22]. The below equations are utilized to implement a synchronverter concept:

Te = Mf if < i, s̃inθ > (2.1)

e = θ̇Mf if s̃inθ (2.2)

Q = −θ̇Mf if < i, c̃osθ > (2.3)

where Te is the electromagnetic torque of the synchronverter, Mf is the magnitude of the

mutual inductance between the field coil and the stator coil, if is the field excitation current,

θ is the angle between the rotor axis and one of the phases of the stator winding, e is

no-load voltage generated, Q is the generated reactive power, < ., . > denotes the inner

product of two vectors in R3, i and (̃.) denote vectors comprising three 1200 out-of-phase

components [19]. The controller design based on Equations 2.1, 2.2 and 2.3 is modeled

in Figure 2.2. The non-presence of frequency derivative terms, which produce noise in the

system, is regarded as the main strength of the control design. Despite being able to build a

full model of the electrical and mechanical components of the synchronous generators, the

level of complication of the differential equations can lead to numerical instability. Another

drawback of this strategy is the lack of current-mode control, which cannot protect the

system against over-current conditions. Extra over-current protection is needed to ensure

safe operation [12]. An improved synchronverter controller diagram was proposed with

the added utilization of Park’s transformation to implement an electromagnetic transient
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module, along with a virtual governor and a rotor swing mathematical model [23].

Figure 2.2: Synchronverter Controller Diagram

The initial model of the synchronverter controller utilizes a phase-locked loop (PLL)

to synchronize with the grid frequency. It has a significant impact on the dynamical be-

haviors of the system. However, the drawbacks of a synchronization unit on the control

performance [24–26] negatively affect the stability of the system and obstruct quick and

accurate synchronization. Different research has been done to enhance the synchronization

speed and precision of the PLL [27–29]. A self-synchronized mechanism [21], which can

automatically synchronize with the grid before connection and track the grid frequency af-

ter connection without the need of a dedicated synchronization unit, was proposed. Not

only for the inverters, but this control strategy was also applied to three-phase PWM rec-

tifiers to achieve virtual inertial response from the load side [30]. Another point in the

original synchronverters model is the utilization of a filter inductor, which is much smaller

than a stator inductor in a conventional synchronous machine. This difference results in

the dissimilarity in their behaviors and performances since a small inductor is not benefi-
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cial for the system stability [31]. A method was presented to virtually enhance the filter

inductor only by modifying the algorithm [32]. Not only the filter inductor-related prob-

lems, altering the dynamic response speed of the active-power loop inevitably impacts the

steady-state frequency droop mechanism. Hence, an auxiliary loop, named as a damp-

ing correction loop, was added so that the active-power loop can be regulated without any

restrictions [33]. A lot of attempts have been made to establish the stability of the syn-

chronverters. The problem becomes more challenging due to the non-linear dynamics of

the system. Motivated by the bounded integral controller [34], a new control strategy that

guarantees given bounds for the frequency, and the voltage separately from each other was

developed [35]. From a preliminary design proposal [36], the method was further devel-

oped to sustain given bounds for both the field-excitation current and the frequency. This

method defines a particular bound for the synchronverter’s voltage and secures the closed-

loop system’s asymptotic stability and the distinctiveness of a requested equilibrium point

based on non-linear dynamic modeling. This approach improves the stability as there is no

need for additional saturation units.

In order to simplify the mathematical model of the synchronous generators, a control

strategy developed by Ise lab deals only with the swing equation and investigates the re-

sponse in the presence of a grid voltage dip [37]. The swing equation is well-known from

the publications on power system stability and dynamics [38] and is shown as:

J
dω

dt
= Tm − Te −D(ω − ωg) (2.4)

where J is the rotor momentum of inertia, D is the damping coefficient accounting for the

damping torque associated with the damper windings during transient conditions, ω is the

rotating speed of the machine, ωg is the angular frequency of the grid. It should be noted

that the coefficient D in a real synchronous machine is not a constant number. It is con-

tingent on the operating point of the machine. Hence, a reduced-order model with a fixed

value of D cannot match the inertial behavior in the entire operating range. By multiplying
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by the frequency ω, the swing equation can be expressed in terms of power. For small

oscillations around the synchronous conditions, the power balance can be represented by

the approximation given by Equation 2.5, where Pm is the prime mover input power [39],

emulating mechanical power of the synchronous generator, Pe is the active output power,

simulating electrical power of the synchronous generator, KD is the damping constant as-

sociated with D:

Jωg
dω

dt
= Pm − Pe −KD(ω − ωg) (2.5)

Typically, for a conventional synchronous generator, its moment of inertia and the

damping coefficient are almost constant values. Nevertheless, due to the control purposes

to obtain effective dynamic response, moment of inertia and damping factor in the virtual

inertia emulation can be altered in real-time. Based on Equation 2.5, a virtual inertia con-

troller diagram can be designed in the Laplace domain and is shown in Figure 2.3. By

taking the integral of the virtual angular frequency ω, the virtual phase angle θ is generated

as a phase command of the inverter output voltage and sent to the PWM generator. The

voltage reference e can be produced by the Q− V droop approach [40, 41]:

Figure 2.3: Swing Equation-Based Controller Diagram.

This strategy has the same benefit as the synchronverter’s topology of not employing

the frequency derivatives and can be used to function distributed generators as grid-forming
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units. To mimic the frequency and voltage dynamics of an actual power network as pre-

cisely as possible, a three-phase synchronous generator model, inspired by the swing equa-

tion, is employed to simplify an ideal voltage source behind an impedance [42]. The idea

of the swing equation-based controller model was applied to show an equivalent dynam-

ics of a speed-controlled permanent-magnet synchronous generator [43]. Nevertheless, the

lack of the current-mode control is still a limitation from the view of over-current protec-

tion. Another weakness of this technique is the consequences of inaccurate tuning of the

moment of inertia value J and damping factor Dp, which can result in deviatory system

reactance [39]. In order to protect the system under over-current conditions and improve

robustness for the system, a current-control scheme based on the virtual admittance con-

cept was proposed [44], named as synchronous power controller (SPC). The underlying

dynamic equation of this concept in the Laplace domain is:

i(s) =
1

Rs+ L
(e(s)− v(s)) (2.6)

where v is the voltage at the point of common coupling (PCC), e is the AC internal in-

duced electromotive force (emf), R, and L are the output impedance of the generator. The

electrical characteristics in Equation 2.6 are known for better stability and less sensitivity

to distortions, compared to the virtual impedance methodology. The SPC design purpose

is not to mimic the response of the synchronous generator but to optimize its response in

the presence of perturbations and fluctuations by offering a second-order over-damped re-

sponse to the system. The SPC can be integrated into conventional PV systems without

modifying the structure of the hardware. Some advantages of this strategy are the ability to

switch modes between islanded and grid-connected mode flexibly without triggering any

unwanted transients and secure a complete range of harmonic frequencies and the simplic-

ity in the inner loop implementation [45]. Based on the idea of the SPC, a power-loop

controller was proposed to configure damping and flexible droop characteristics separately

to support the frequency [46]. The power loop controller sets up damping and droop charac-
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teristics independently, without tuning a single parameter to find a good trade-off between

damping and droop characteristics. The power control loop is in the form of:

GPLC(s) =
KP s+KI

s+KG

(2.7)

Figure 2.4: Power Control Loop Diagram with Virtual Admittance.

The proposed model demonstrated its flexibility in comparison with the existing vir-

tual inertia methodology. The model can prevent the constraint between the damping and

droop characteristics in the power regulating loop [46]. A comparison of various power-

loop controllers was discussed [47]. Another concern in this topology is that power os-

cillation with high amplitude after a disturbance may shut down the operation due to low

transient condition tolerance of the virtual model. An alternating inertia control was pro-

posed to remove the oscillation [39], thus enhance the reliability of the system. The paper

demonstrated the effectiveness of the proposed controller, which can regulate the values of

the moment of inertia J and damping factorsD flexibly to suit each scenario of power oscil-

lation. This strategy does not only enhance the stability, but also suppresses the frequency
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and power oscillations effectively. Inspired by the same method of the virtual stator reac-

tance [32], the swing equation-based control strategy guarantees accurate reactive power

sharing even if there are line impedance mismatch and active power sharing changes [48].

To obtain a smoother transition after a significant disturbance, an algorithm, named as

particle swarm optimization (PSO) [49], was implemented into the swing equation-based

model to find the optimum values of the moment of inertia and damping factor. The re-

sults showed that it could maintain the integrity by ensuring the voltage angle deviation

of generators inside the limit in fault conditions, but under heavy load status, the transient

stability is still a challenge [50].

As one of the simplest topology, the power-frequency response-based topology uti-

lizes the derivative of frequency measurement to emulate the absorption or release of kinetic

energy during frequency deviation to improve the inertial response to rotor speed deviation

performance. A typical control strategy in this group is the virtual synchronous generator

(VSG) [51–53]. While the traditional droop loop only allows frequency alteration, the abil-

ity to control dynamic frequency is noticeable in this approach [54]. Equation 2.8 shows

the basic underlying concept of this strategy:

P = KD∆ω +KI
d∆ω

dt
(2.8)

where P is the output power, KD and KI are the damping, and inertial gains, ∆ω and d∆ω
dt

are the changes in angular frequency and ROCOF, respectively. The frequency derivative

allows a fast dynamic frequency response, which captures the ROCOF. Its output is ad-

justed depending on the frequency variations, representing the generator as a current source.

The controller includes a mathematical model of Equation 2.8, a PLL, and a current-mode

controller, which offers over-current protection for the system [55]. For current-mode con-

trol in the dq-frame, d-axis current reference can be computed as:

Id =
2

3
(
VdP − VqQ
V 2
d + V 2

q

) (2.9)
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where Vd and Vq are d- and q-axis voltage components at the PCC. The q-axis component

of the current Iq is set to 0 as it is active power control. The current-control diagram based

on Equations 2.8 and 2.9 is described in Figure 2.5 [55]:

Figure 2.5: Virtual Synchronous Generator Control Diagram.

This strategy has been proved beneficial for further research through a laboratory test-

setup in real-time simulation using power hardware-in-the-loop (PHIL) [56]. The results

showed that the VSG model could reduce the size of frequency deviations originated by

load alterations. The steady-state error of frequency experienced a decline of 35%, and

a decrease of 58% in the dynamic frequency error could be achieved before settling to

a steady state. Additional reductions of 13% and 14%, respectively, can be achieved by

changing the algorithm’s constants. VSG was also applied in the inverter-based system

of wind energy [6, 57]. Regardless of many excellent features, it must be remarked that

this methodology is only trying to model the inertia effect with respect to the response to

ROCOF, together with a steady-state power droop, and does not aim to design an internal

mathematical model of the machine inertia. Hence, the presence of an external voltage

with a physical inertia is required to implement the virtual inertia by Equation 2.8 [13].

This topology is only suited for a grid-connected system where the system does not have

to work as a grid forming unit. Furthermore, instability can be caused by various units of

operation [58].

Another limitation is the lack of implementation for the input power alteration pro-

cess [46], the challenge to deal with the instability of the PLL, and the frequency deriva-
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tive’s sensitivity [11, 59]. The use of a proportion-integral (PI) controller for the inner

current-control loop is also known for instability [60]. In order for the system to cope

with considerable power changes, an approximate dynamic programming (ADP) method-

ology was proposed for online parameter tuning of the proportional-derivative (PD) virtual

inertia control [61]. With this method, the frequency does not drop too low while still se-

curing the rotor speed in a permissible range. The algorithm can help the system adapt to

new conditions through learning to generate the most efficient parameters automatically. A

more efficient self-tuning methodology, which can regulate its inertia and damping factor

when needed, was proposed [62]. This methodology offers a better control the frequency

excursions while declining the settling times and the energy used from the energy storage

system (ESS). Its inertial response and damping powers were evaluated and compared with

the ones of constant-parameters VSM in different scenarios. It was demonstrated to per-

form similarly but to obtain a significant energy efficiency and a reduction in power flow

of 58%. Furthermore, less energy was consumed per frequency unit, which proved a more

efficient frequency attenuation. Instead of using a proportional-integrative-derivative (PID)

controller due to the inability to adapt to alteration in operating conditions, supplementary

adaptive dynamic programming controllers with online learning control were used to en-

hance the dynamics of virtual inertia [63]. This controller stabilizes the system frequency

faster, which reduces the time for supplying energy as well as energy consumption from

ESS. The method proves its efficiency of 33.78% reduction in total energy consumption

compared with the conventional VSM, thus reduces the cost of sizing ESS and the running

cost of VSM. The transient peak power generated by this enhanced controller is also lower

than the original VSM, which lowers the cost of filters and power switches. Implementing

virtual inertia to the system can extend the frequency settling time, resulting in enhanced

energy exchange from the ESS, which remarkably reduces the life of the ESS. This sup-

plementary ADP using a neural network structure efficiently reduces the settling time from
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44.75 seconds to 38.01 seconds.

Different from the above techniques, another study adopting frequency and voltage

droops indicates a considerable improvement in microgrid dynamic behavior in islanded-

mode [64]. The principles of the frequency and voltage droop were explained that, as

two operating units share both active and reactive loads, the loops help avoid circulating

currents [65]. This approach is also implemented with a frequency restoration algorithm

that moves the droop characteristics in the vertical direction at a rate proportional to the

power rating. This allows frequency restoration while sustaining the power-sharing [66].

Figure 2.6: Frequency Droop Controller Diagram.

Also, the utilization of a low pass filter for the measured active power at the grid

interface has been proved to stabilize the control loop in this strategy [67]. The inertial

responses of this more straightforward droop-based approach and the more complex VSM

topology have been demonstrated almost equivalent through numerical simulations [68].

Despite some good features, drawbacks of the droop include slow transient response, a

trade-off between power-sharing precision and voltage oscillation, unbalanced harmonic

current sharing, and a high dependency on the inverter output impedance [69]. Several
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methods tried to modify the droop model to overcome the pre-mentioned problems [70–72],

while an adjustable virtual impedance topology was proposed [73]. An essential advantage

of employing a virtual output impedance is that the magnitude and phase angle of the

output impedance can be controllable variables. However, the excessive dependency on the

voltage loop bandwidth appears to be a limitation of this implementation [74]. An inertial

droop control was proposed through the comparison of dynamic characteristics between

the VSG and the droop control [75]. By doing some experiments, the similarity between

the two methods is the active power controls of both VSG control and droop control are

stable. However, it was found that the delay in the active power droop controller of the

droop control can enhance the inertia, while the delay in the governor of the VSG model

lowers the inertia and amplifies oscillation. Thus, the governor delay is recommended to be

removed. Another point is that a well-designed first-order lead-lag unit in the active power

droop controller has a similar small-signal model to that of the VSG control, which can

be modified to obtain a novel inertial droop control. The new proposed controller design

inherits the advantages of both methodologies.

Another new technique, inspired by induction motor working principles, was proposed

in 2016 [59]. This control proposal, named as inducverters, eliminates the need for a ded-

icated synchronization process and resembles the characteristics of an induction machine.

It originates from the idea that the induction machine has self- and soft-start capability and

automatic synchronization mechanism, and can track its variations without any feedback

from the grid. In comparison with the synchronverters where any variations in the grid fre-

quency can lead to a permanent offset of output powers, real and reactive power outputs of

the inducverters are continuously fed regardless of the changes in grid parameters. On the

other hand, another approach did not focus on building the inertial model of the generators.

Instead, it tried to simulate a non-linear dead-zone oscillator’s dynamics, which was named

as a virtual oscillator control strategy [76, 77]. This approach can control the inverters
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without communication and can be applied to both linear and non-linear loads [76]. Small

errors in the virtual oscillator parameters are known for bounded voltage synchronization

errors [78]. Hence, the publication proposed a parameter selection methodology that the

inverter terminal voltages oscillate at the desired frequency, and the load voltage is kept

between the set upper and lower bounds.

Finding an effective way to integrate distributed energy resources using virtual inertia

concept into a real large-scale grid is one of the hardest challenges in the future. A method-

ology was proposed using a modified frequency regulation improved from the previous

VSM works, a dual droop control, and a power system stabilizer to increase the system

stability [79]. The results showed that the dynamics of the AC output became indepen-

dent; the system could obtain the power balancing and sharing with the grid under various

conditions and generate any output power in steady-state. Thus, it was verified to be a

smart and autonomous approach to integrate a higher penetration level of DERs into the

grid. Another concern lies in the energy consumption of data centers, composed of energy

infrastructure such as PV solar, natural gas generators, and uninterruptible power supplies

(UPS) in the form of batteries. The data centers were explained that they could operate as

virtual power plants [80]. An energy management system to operate the data centers as a

virtual power plant was proposed in order to obtain considerable energy saving for energy

infrastructure [80, 81]. Not only beneficial for data centers; in particular, the management

also provides reliability and economic efficiency. While most published research is about

virtual inertia implementation, mathematical models of system dynamics are still needed to

support parameter tuning processes and understanding of operational behavior between the

grid and the virtual inertia system. A linearized small-signal model of the VSM in islanded

mode has been developed [82]. The model has been verified to generate the same simu-

lation results as the model with nonlinearities. The linearized model has been utilized to

analyze and evaluate the system eigenvalues and their sensitivities to the parameter gains.
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On the other hand, some research tries to assess the economic benefits of inertia response

provision. A methodology was developed to incorporate both inertia of conventional gen-

erators and synthetic inertia provided by wind plants into the system scheduling [83]. Thus,

it supports the cost-benefit analysis to determine the optimal amount of wind plants to be

equipped with virtual inertia capability. The virtual inertia of wind plants are added to

the total system inertia by estimating the online capacity of wind plants as a function of

system-wise generation. The results suggested that the operation cost could be reduced by

the virtual inertia with high penetration of wind generation. Nevertheless, the benefits of

further improvement become limited as soon as the synthetic inertia constant reaches 3s.

It was shown that after some threshold, only provide virtual inertia could not reduce the

system operation cost any more.

To sum up, a comparison of different pre-mentioned virtual inertia methodologies is

summarized in Table 2.1 [12]:
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Table 2.1: Comparison of Different Virtual Inertia Methodologies

Methodology Key features Limitations

Synchronous

Generator (SG)

model-based

• Exact replication of SG dynamics

• No need of frequency derivative

• Phase locked loop (PLL) utilized

only for synchronization

• Numerical instability concerns

• Typical implementation for

voltage-source mode; lack of

over-current protection

Swing

Equation based

• Simpler mathematical model in

comparison with SG based model

• No need of frequency derivative

• PLL utilized only for synchroniza-

tion

• Frequency and power oscilla-

tions

• Typical implementation for

voltage-source mode; lack of

over-current protection

Frequency-

Power

Response

based

• Straightforward implementation

• Typical implementation for

current-source mode; inherent

over-current protection

• Instability caused by PLL, par-

ticularly in weak grids

• Susceptible to noise due to the

utilization of frequency deriva-

tive

Droop-based

approach

• Elimination of PLL

• Resemble the traditional droop

control concept in SGs

• Slow transient response

• Inaccurate transient active

power sharing

Virtual

Oscillator

Control

• Elimination of PLL

• Emulate the dynamics of a nonlin-

ear dead-zone oscillator

• Bounded voltage synchroniza-

tion errors caused by errors in

the model parameters

Inducverters

• Elimination of PLL

• Mimic induction machine charac-

teristics

The concept is still at its early stage

and needs more investigation and

evaluation.
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CHAPTER 3

THEORETICAL BACKGROUND AND CONTROL DESIGN

This chapter presents the analysis technique and control design methodology of a

voltage-source inverter with the swing equation-based virtual inertia implementation un-

der grid-connected and islanded mode. It includes fundamentals of sinusoidal pulse-width

modulation (SPWM), direct-quadrature-zero (dq0) transformation, phase-locked loop (PLL),

current-mode control and real-/reactive-power controller of grid-imposed frequency voltage-

source converter (VSC) system, voltage and frequency control of controlled-frequency

VSC system, and virtual inertia controller design based on swing equation.

3.1 VOLTAGE-SOURCE INVERTER

Inverter is a power electronic (or static) converter that converts a DC power supply

into an AC output of the desired manner, according to pre-specified performance specifica-

tions. Depending on the source at the DC side of the inverters, they are classified as either

voltage-source inverter (VSI) or current-source inverter (CSI). If the DC input is a voltage

source, then the inverter is named a VSI. A relatively large DC link capacitor feeds the

power input of a VSI in order to maintain the magnitude of the voltage constant. Based on

the number of phases, inverters are categorized into two types: single-phase inverter and

three-phase inverter.

Characteristics of a static converter are primarily contingent on the kind of its semi-

conductor switches, classified as: uncontrollable, semi-controllable, and fully controllable

switches. In this research, the fully controllable switches, whose gating command can

determine conduction and interruption instants, are utilized. Almost conventional fully

controllable switches are composed of metal-oxide-semiconductor field-effect transistor

(MOSFET), insulated-gate bipolar transistor (IGBT), gate-turn-off thyristor (GTO) and in-

tegrated gate-commutated thyristor (IGCT).
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Figure 3.1: Three-Phase Voltage-Source Inverter.

3.2 SINUSOIDAL PULSE-WIDTH-MODULATION TECHNIQUE

Pulse-width-modulation (PWM) technique is the most common and efficient control

method within the power electronic converters. PWM techniques are identified by constant

rectangular amplitude pulses with different duty cycles for each period. The pulses width

is modulated to secure the inverter average output voltage and to eliminate its harmonic

content by turning the switch between supply and load at a fast rate. This process results in

the variation of the average value of the waveform. The lengthier the on-switch duration is

compared to the off periods, the more the total power is supplied to the load.

There are various PWM techniques, classified into two categories comprising funda-

mental switching frequency and high switching frequency PWM. Sinusoidal pulse-width-

modulation (SPWM), one of the most common PWM techniques in industrial applications,

belongs to the high switching frequency category. In SPWM, the pulses width over the

output cycles is modified in a sinusoidal manner. Its basic principle is based on the com-

parison of a high-frequency triangular carrier voltage with a sinusoidal modulating signal

representing the desired fundamental component of AC output. Working principle of the

SPWM is demonstrated in Figure 3.2 [84]. A modulating signal (vm) with a desired voltage

output is compared with the carrier signal (triangular waveform vc). If vm > vc, the gating

signal is ON and vice versa. The frequency of the carrier signal determines the switching
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frequency of the inverter. The amplitude and the frequency modulation ratio of SPWM

are defined as the ratio of the modulating signal’s peak over the carrier signal’s peak, and

the ratio of the modulating signal frequency over the carrier signal frequency, respectively.

The inverter’s output voltage is altered by changing the magnitude of the modulating signal

while keeping the magnitude of the carrier signal fixed. For the three-phase PWM inverter,

to achieve symmetrical three-phase output voltages, three sinusoidal voltages with an iden-

tical magnitude but 1200 out of phase are measured with the same triangular waveform.

Figure 3.2: Sinusoidal Pulse-Width Modulation Mechanism.
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3.3 SPACE PHASOR AND DQ-FRAME REPRESENTATION

In order to simplify the analysis and control in the VSC system, Clarke’s (αβ) and

Park’s (dq) transformation are introduced to solve equations exhibiting time-varying quan-

tities, mutually coupled inductances. By referring all variables to one reference frame, the

mathematical model of the system becomes less complicated, and it is easier to design the

controller. The αβ-frame and the dq-frame are also named as the stationary and the rotating

frame.

Space phasor is firstly presented as a core concept of the two-dimensional reference

frames. Symmetrical three phases can be represented by a set of space-phasor equations:

~f(t) =
(
f̂ ejθ0

)
ejωt =

2

3

[
ej0fa(t) + ej

2π
3 fb(t) + ej

4π
3 fc(t)

]
, (3.1)

where f̂ , θ0, ω are the amplitude, the initial phase angle, and the angular frequency of the

function, respectively [84].

Real, reactive, and apparent power in space phasor theory can be expressed as:

P (t) = Re

{
3

2
~v(t)~i∗(t)

}
(3.2)

Q(t) = Im

{
3

2
~v(t)~i∗(t)

}
(3.3)

S(t) = P (t) + jQ(t) =
3

2
~v(t)~i∗(t) (3.4)

Conventionally, a complex-valued function of time can be represented in the polar

coordinate system. For control design and implementation purposes, space phasors and

space-phasor equations are represented in the Cartesian coordinate system where real-

valued functions of time are in presence. In space-phasor domain, an asymmetrical three-

phase is not able to be directly represented. Hence, the mapping of a space phasor onto the

Cartesian coordinate system is introduced in Figure 3.3 [84], which is commonly referred

to as Clarke’s transformation.
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Figure 3.3: Clarke’s Transformation.

The Clarke’s transformation converts the time-domain components of a three-phase

system in an abc reference frame into components in a time-varying orthogonal stationery

αβ frame. The space phasor vector ~f can be decomposed into its real and imaginary com-

ponents as:

~f(t) =
∣∣∣~f ∣∣∣∠θ = fα(t) + jfβ(t) (3.5)

where: ∣∣∣~f ∣∣∣ =
√
f 2
α + f 2

βθ = tan−1

(
fβ
fα

)
(3.6)

It can be deduced by equating the corresponding real and imaginary parts of both sides

of the resultant: fα(t)

fβ(t)

 =
2

3

1 −1
2
−1

2

0
√

3
2

−
√

3
2



fa(t)

fb(t)

fc(t)

 (3.7)

Power expression in the Clarke’s transformation in terms of αβ-frame variables can

be obtained by substituting ~v(t) and )~i∗(t) into Equations 3.2 and 3.3:

P (t) =
3

2
[vα(t)iα(t) + vβ(t)iβ(t)] (3.8)

Q(t) =
3

2
[−vα(t)iβ(t) + vβ(t)iα(t)] (3.9)
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In the Clarke’s transformation, the signals are in general sinusoidal functions of time,

making the controller design still not a straightforward task. Therefore, Park’s transforma-

tion, in which signals become time-invariant, is introduced to allow the utilization of com-

pensators with simpler structures, smaller dynamic orders, and zero steady-state tracking

error [84]. The Park’s transformation, shown in Figure 3.4 [84], converts the time-domain

components of a three-phase system to direct, quadrature, and zero components in a ro-

tating reference frame. For a balanced system, the zero component is equal to zero. The

Park’s transformation is an implementation of the Clarke’s transformation, in which the or-

thogonal quantities achieved from the Clarke’s transformation are combined with a rotating

component to turn it into a rotating frame. The αβ to dq-frame transformation is defined

by:

fd + jfq = (fα + jfβ)e−εt (3.10)

Figure 3.4: Park’s Transformation.

The relation between the abc and the dq-frame transformation is described as:
fd

fq

f0

 =
2

3


cos[ε(t)] cos[ε(t)− 2π

3
] cos[ε(t)− 4π

3
]

sin[ε(t)] sin[ε(t)− 2π
3

] sin[ε(t)− 4π
3

]

1
2

1
2

1
2



fa

fb

fc

 (3.11)
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The formulations of real and reactive power in terms of dq-frame variables are derived

by substituting ~v(t) and~i∗(t) into Equations 3.2 and 3.3:

P (t) =
3

2
[vd(t)id(t) + vq(t)iq(t)] (3.12)

Q(t) =
3

2
[−vd(t)id(t) + vq(t)iq(t)] (3.13)

where id and iq are d- and q-axis components of current, respectively.

If the synchronous rotating frame in Figure 3.4 is equal in phase with the space phasor

vector ~f , then the d-axis component is equal to the magnitude of the voltage, and the q-axis

component becomes 0. In case vq = 0, it can be noticed that the real and reactive power

can be proportional to id and iq, respectively, as well as independently controlled [84]. This

property is commonly utilized in the control of grid-connected three-phase VSC systems

mentioned in later sessions.

3.4 PHASE-LOCKED LOOP

A phase-locked loop (PLL) is a controller that generates an output signal whose phase

is associated with the phase of an input signal by comparing the phase of a reference sig-

nal to the phase of an adjustable feedback signal. It utilizes a negative feedback control

loop operating in the frequency domain with a voltage-controlled oscillator (VCO), whose

operating frequency is controlled by a voltage. The comparison generates pulses whose

duration is the time from the input edge to the oscillator edge and sends the pulses to a

low-pass filter. The output of the filter is the control voltage to the oscillator. When the

output frequency and phase are matched to the incoming frequency and phase of the error

detector in steady-state, the PLL is locked. The basic block diagram of the PLL is shown

in Figure 3.5 [85]:
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Figure 3.5: Phase-Locked Loop Diagram.

In a grid-connected VSC system examined in the dq-frame, the PLL approximates

and delivers the angle of the grid voltage imposed on the VSC by the grid. It acts as a

synchronization mechanism and is needed in the dq-frame control. However, the PLL is

regarded as a demerit in the dq-frame control due to the instability of its dynamics. Further

implementations have been developed to improve the dynamics of PLL [84].

3.5 CONTROL OF GRID-IMPOSED FREQUENCY VSC SYSTEM IN DQ-FRAME

Grid-Imposed (or grid-connected) VSC system is a class of VSC system, in which

the operating frequency is imposed by the grid. It is modeled as a DC source, an equivalent

DC link capacitor, a three-phase inverter. The grid is interfaced with each phase of the VSC

via a series RL branch (representing a filter) and exchanges real and reactive power with

the VSC system at the PCC [84].

3.5.1 REAL-/REACTIVE-POWER CONTROLLER

In the grid-connected VSC system, the objective is to control real and reactive power

the VSC system exchanges with the grid. There are two main methods for this control-

ling purpose; they are voltage-mode control and current-mode control. Among them, the

current-mode control is more advantageous than the voltage-mode one mainly due to the

ability to control line current with respect to the PCC voltage, from that to protect the sys-

tem against over-current conditions [84]. Principle of current-mode control is described

through a schematic diagram in Figure 3.6:
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Figure 3.6: Grid-Imposed VSC System.

As can be seen, the voltage signals at the PCC are converted into the dq-frame to

obtain Vsd and Vsq, which then are passed through a reference signal generator with real

and reactive power references to compute and produce current references idref and iqref in

the dq-frame. These current references and feedback signals at VSC output terminal in the

dq-frame, id and iq, will be processed by compensators to generate control signals md and

mq in the dq-frame. These control signals are finally transformed into the abc frame and

sent to the converter switches.

3.5.2 DYNAMIC MODEL OF REAL-/REACTIVE-POWER CONTROLLER

From Figure 3.6, dynamics of the AC side can be expressed by the following space

phasor equation:

L
d~i

dt
= −R~i+ ~Vt − ~Vs (3.14)

In the dq-frame,~i = idqe
jρ and ~Vt = Vtdqe

jρ. This inverse transformation is applied to

the dynamic Equation 3.14 of the AC side. What can be deduced by splitting the resultant

into real and imaginary parts is:

L
did
dt

= Lω(t)iq −Rid + Vtd − Vsd (3.15)

L
diq
dt

= Lω(t)id −Riq + Vtq − Vsq (3.16)
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where id and iq are the state variables, Vtd and Vtq are the control inputs, and Vsd and Vsq

are the disturbance inputs.

Based on the principle of VSC control in the dq-frame, the relation between the control

inputs Vtd, Vtq and the modulating signals in the dq-frame md, mq are:

Vtd(t) =
VDC

2
md(t) (3.17)

Vtq(t) =
VDC

2
mq(t) (3.18)

It can be demonstrated that the dynamics of id and iq are coupled due to the Lω(t)

component. To decouple the dynamics [84], two new control inputs can be assumed as ud

and uq, then two modulating signals md and mq can be set as:

md =
2

VDC
(ud − Lω(t)iq + Vsd) (3.19)

mq =
2

VDC
(uq + Lω(t)iq + Vsq) (3.20)

Substituting Vtd and Vtq into Equations 3.15 and 3.16, it can be deduced as:

L
did
dt

= −Rid + ud (3.21)

L
diq
dt

= −Riq + uq (3.22)

Equations 3.21 and 3.22 show that, with the assumption of the new control inputs, the

dynamics have been decoupled. id and iq can be controlled by ud and uq, independently

and respectively. From Equations 3.21 and 3.22, a control block diagram of the current-

controller in the dq-frame is modeled in the Laplace domain and shown in Figure 3.7 [84]:



40

Figure 3.7: Current-Controlled Block Diagram .

The d-axis modulating signal md is generated based on Equation 3.21, with the con-

tribution of ud produced by d-axis compensator by computing and processing the error

between the reference signal idref and the measured current signal id at the PCC. Anal-

ogously, the q-axis modulating signal mq is generated based on Equation 3.22, with the

contribution of uq produced by d-axis compensator by computing and processing the error

between the reference signal iqref and the measured current signal iq at the PCC.

An advantage offered by the dq-frame transformation is the simplicity of the compen-

sators to track the reference signals. As all the control, feed-forward and feedback signals

in the dq-frame are DC quantities in the steady-state, the compensator can be a straightfor-

ward proportional-integral (PI) controller to track a DC signal. The PI controller k(s) [84]

can be a simple transfer function in the Laplace domain of:

k(s) = kd(s) = kq(s) =
kps+ ki

s
(3.23)

where kp, and ki are the proportional and integral gain, respectively. Figure 3.8 shows an

equivalent current-control loop:



41

Figure 3.8: Equivalent Current-Controlled Block Diagram.

Hence, the open loop gain G(s) in the Laplace domain is:

G(s) =

(
kp
Ls

)
s+ ki/kp
s+R/L

(3.24)

This function has a pole at s = −R/L, which is relatively in proximity to the origin.

Therefore, the zero s = −ki/kp can cancel this pole, which simplifies the open-loop gain

into G(s) = kp/(Ls). Hence, the final closed-loop transfer function is:

T (s) =
Id(s)

Idref (s)
=

G(s)

1 +G(s)
=

1

τis+ 1
(3.25)

where τi is the time constant of the resultant closed-loop system and:

kp = L/τi (3.26)

ki = R/τi (3.27)

It is pointed out that, the time constant τi of the first-order closed-loop transfer func-

tion, which is a design option and determines the values of proportional (kp) and integral

(ki) gain, should be small for a fast current-control response but sufficiently considerable

such that the bandwidth of the closed-loop control system 1/τi is remarkably smaller than

the switching frequency of the VSC. The time constant τi is normally ranging from 0.5-5

ms, being contingent on specific requirements and converter switching frequency [84].
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3.5.3 CURRENT-MODE CONTROL OF REAL-/REACTIVE-POWER CONTROLLER

From Equations 3.12 and 3.13, the real and reactive power exchanged with the AC

grid at the PCC are:

Ps(t) =
3

2
[Vsd(t)id(t) + Vsq(t)iq(t)] (3.28)

Qs(t) =
3

2
[−Vsd(t)id(t) + Vsq(t)iq(t)] (3.29)

where Vsd and Vsq are imposed by the AC grid and cannot be controlled. If the PLL is in

the steady-state, vsq = 0. Real and reactive power in the dq-frame are simplified as:

Ps(t) =
3

2
Vsd(t)id(t) (3.30)

Qs(t) = −3

2
Vsd(t)id(t) (3.31)

If the compensators can provide fast reference tracking, the real and reactive power

of VSC can be controlled independently by their reference commands. As Vsd and Vsq are

constants in the dq-frame, the reference tracking signals are also constants if the reference

commands are constants. From Equations 3.30 and 3.31, the current-mode control can be

rewritten in terms of power reference signals:

idref =
2

3Vsd
Psref (3.32)

iqref = − 2

3Vsd
Qsref (3.33)

From all of the analysis, the controller design diagram for grid-imposed frequency

VSC system is proposed in Figure 3.9 [84]:
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Figure 3.9: Current-Controlled Real/Reactive Power Controller Block Diagram.

3.6 CONTROL OF CONTROLLED-FREQUENCY VSC SYSTEM IN DQ-FRAME

Unlike the grid-connected VSC system in which the grid imposes the operating

frequency, the voltage and frequency at the PCC in controlled-frequency (also called is-

landed) are controlled by the VSC system itself. The only difference in the configuration

of controlled-frequency is, the grid is replaced by a three-phase load interfacing with the

AC-side of the VSC via anRLC filter comprising a seriesRL branch and a shunt capacitor

Cf :

Figure 3.10: Controlled-Frequency VSC System.
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3.6.1 DYNAMIC MODEL OF LOAD VOLTAGE AND VOLTAGE CONTROLLER

With reference to Figure 3.10 [84], the load dynamics can be expressed by the fol-

lowing space phasor equation:

Cf
d~Vs
dt

=~i− ~iL (3.34)

Similar to the analysis of dynamics in the grid-imposed frequency case, using the dq-

transformation ~f = fdqe
jρ and splitting the resultant into real and imaginary parts, it can

be obtained:

Cf
dVsd
dt

= Cf (ωVsq) + id − iLd (3.35)

Cf
dVsq
dt

= −Cf (ωVsd) + iq − iLq (3.36)

These equations emphasize that Vsd and Vsq are coupled but can be controlled by idref

and iqref . To decouple the dynamics of the load voltage [84], idref and iqref can be assumed

as:

idref = ud − Cf (ωVsq) + iLd (3.37)

iqref = uq + Cf (ωVsd) + iLq (3.38)

In the Laplace domain, they can be expressed as:

Id(s) =
1

τis+ 1
(Ud(s)− Cf£(ωVsq) + ILd(s)) (3.39)

Iq(s) =
1

τis+ 1
(Uq(s) + Cf£(ωVsd) + ILq(s)) (3.40)

where £() symbolizes the Laplace transform operator.

It is noted that Id(s) = 1
τis+1

Idref (s) and Iq(s) = 1
τis+1

Iqref (s), τi is the time con-

stant due to the d- and q-axis compensator tracking property discussed in the grid-imposed

frequency VSC system. Thus, substitute id and iq into Equations 3.35 and 3.36, a set of
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equations in the Laplace domain of the load voltage dynamics is:

CfsVsd(s) =
1

τis+ 1
Ud(s) + [Cf£(ωVsq)− ILd(s)](1−

1

τis+ 1
) (3.41)

CfsVsq(s) =
1

τis+ 1
Uq(s)− [Cf£(ωVsd) + ILq(s)](1−

1

τis+ 1
) (3.42)

The PI transfer function has a unity DC gain. Hence, 1− 1/(τis+ 1) = τis/(τis+ 1)

has a zero DC gain. If τi is small, the subtraction 1 − 1/(τis + 1) becomes minor and can

be approximated zero [84]. This approximation simplifies the Laplace Equations 3.41 and

3.42 into:

Vsd(s)

Ud(s)
≈ (

1

τis+ 1
)

1

Cfs
(3.43)

Vsq(s)

Uq(s)
≈ (

1

τis+ 1
)

1

Cfs
(3.44)

These linear decoupled equations demonstrate the possibility of controlling Vsd and

Vsq independently by Ud and Uq, respectively. Thus, a general voltage controller model is

built and described in Figure 3.11 [84]:

Figure 3.11: Controlled-Frequency Controller Block Diagram.

Figure 3.12 shows an equivalent control loop design comprising a pole at s = 0,

s = −1/τi:
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Figure 3.12: Equivalent Controller Block Diagram of Controlled-Frequency VSC System.

The most straightforward compensator to obtain fast regulation and zero steady-state

error for this control loop is a PI compensator [84], which is under the formulation of:

k(s) = k
s+ z

s
(3.45)

The closed-loop transfer function is:

T (s) = (
k

τiCs
)(

1

s2
)
s+ z

s+ τ−1
i

(3.46)

Due to repeated poles at s = 0, in frequency response, ∠l(jω) ≈ 180o. The maximum

phase angle δm at certain frequency ωm is described as:

δm = sin−1(
1− τiz
1 + τiz

) (3.47)

ωm =
√
zτ−1
i (3.48)

If the gain crossover frequency ωc is selected as ωm, then δm is the phase margin. Thus,

the compensator proportional gain k must satisfy the condition |l(jωc)| = |l(jωm)| = 1.

The value of the proportional gain k is:

k = Cfωc (3.49)

Typically, the phase margin chosen is ranging from 30o to 75o, in which two common

options are 45o and 53o. For 45o, we have two repeated poles at s = −ωc, while for 53o,

triple repeated poles are located at s = −ωc.
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From all of the analysis, the controller design diagram for the controlled-frequency

VSC system is proposed in Figure 3.13 [84]:

Figure 3.13: Controller Block Diagram of Frequency-Controlled VSC System.

3.7 VIRTUAL INERTIA

To mimic the characteristics of a synchronous generator, a control method, inspired

by the swing equation, implements the synchronous generator’s rotor motion equation. The

mechanical component of the synchronous generator is governed by:

Jθ̈ = Tm − Te +Dpθ̇ (3.50)

where Tm is the mechanical torque, Te is the electromagnetic torque, J is the momentum

of inertia of all parts when they are rotating with the rotor, Dp is the damping coefficient, θ

is the rotor position.

It is known that the acceleration θ̈ is the derivation of the angular frequency ω, and

the instantaneous power of an angularly accelerating body is the torque times the angular

velocity, which means P = Tω. Thus, the power-frequency swing equation can be derived

as:

J
dω

dt
=
Pm − Pe
ωN

+D∆ω (3.51)

where Pm is the active input power emulating the mechanical power of a synchronous gen-

erator, Pe is active output power simulating the electrical power of a synchronous gen-
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erator; ω is the virtual angular frequency, ωN is the rated angular frequency, which is

either 60/50Hz depending on the operating frequency of each specific system, ωg is the

grid/reference angular frequency, ∆ω = ωN − ωg. Typically, for a physical synchronous

generator, its moment of inertia and the damping coefficient are almost constant values.

Nevertheless, due to the control purpose of obtaining an effective dynamic response, mo-

ment of inertia and damping factor in virtual inertia emulation can be altered in real-time.

Based on Equation 3.51, a virtual inertia controller diagram can be designed in the

Laplace domain and is shown in Figure 3.14:

Figure 3.14: Controller Block Diagram of Swing Equation-Based Method in Grid-

Connected Mode.

The electrical output active power of VSC, Pe, and the grid angular frequency signals

at the PCC are measured and sent to the controller. It takes a setting value of the mechan-

ical power Pm to deduct with the measured signal of the electrical output power Pe and

divides this subtraction by the rated angular frequency to generate the difference between

the mechanical and electromagnetic torque. The multiplication of D∆ω is added with this

torque difference. This multiplication is passed through an integration block with a fac-

tor of 1/J to find the virtual angular frequency ω. This virtual angular frequency is again

passed through an integration block to generate the final output of the controller θ, which

is the phase command for the PWM generator. The voltage reference V can be produced

by the Q− V droop approach.

In the islanded mode, a simple model of virtual inertia inspired by the momentum of
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inertia J and damping factor D in the swing equation can be implemented into the VCO:

Figure 3.15: Simplified Controller Block Diagram of Swing Equation-Based Method in

Islanded Mode.
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CHAPTER 4

PERFORMANCE EVALUATION

Chapter 4 presents the simulation results and analysis of virtual inertia implemented

in the MATLAB/Simulink environment. The simulation is carried out in the grid-connected

and islanded mode. The power and voltage control performances are presented and ana-

lyzed. Performances of the systems under fault conditions are also tested.

4.1 SIMULATION OF GRID-CONNECTED INVERTER WITH VIRTUAL INERTIA

For the control and stability analysis of the grid-connected system with virtual inertia

implementation inspired by the swing equation, a three-phase inverter system, with a DC

voltage source VDC = 30kV , a series branch RL with R = 0.1Ω, L = 5mH , a switching

frequency fsw = 1620Hz, is connected to the grid with the operating frequency f = 60Hz.

The system controller is described in Figure 3.14.

Table 4.1: Simulation Parameters in Grid-Connected Mode

Notation Parameter Value

VDC DC voltage 30kV

R Connection resistance 0.1Ω

L Filter inductance 5mH

fsw Switching frequency 1620Hz

f Operating frequency 60Hz

J Moment of inertia 0.001kgm2

D Damping factor 0.01 kgms−2

kP Proportional gain 1

kI Integral gain 10

V Phase to phase grid voltage 13.8kV

Active and reactive power references are set as 10MW and 0var, respectively. As
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shown in Figures 4.1 and 4.2, the controller has been proven to control the active and

reactive power injected to the grid successfully.

Figure 4.1: Active Power Control in Grid-Connected System.

Figure 4.2: Reactive Power Control in Grid-Connected System.

Simulation of the grid-connected system is carried out under different short-circuit

fault types for two intervals, half a cycle (1/120s) and six cycles (0.1s). According to the

graphs, the system needs approximately 0.02s to recover its performance after a fault re-

moval. Simulation results for half-a-cycle fault duration, starting at 1.2s, are shown below:
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Figure 4.3: Current Generated by Inverter under Line-To-Line-To-Line-To-Ground

(LLLG) Half-A-Cycle Fault in Grid-Connected Mode.

Figure 4.4: Current Generated by Inverter under Line-To-Ground (LG) Half-A-Cycle Fault

in Grid-Connected Mode.
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Figure 4.5: Current Generated by Inverter under Double Line-To-Ground (LLG) Half-A-

Cycle Fault in Grid-Connected Mode.

Figure 4.6: Current Generated by Inverter under Line-To-Line (LL) Half-A-Cycle Fault in

Grid-Connected Mode.

Next, simulation results for six-cycle fault duration, starting at 1.2s, are shown below:
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Figure 4.7: Current Generated by Inverter under Line-To-Line-To-Line-To-Ground

(LLLG) Six-Cycle Fault in Grid-Connected Mode.

Figure 4.8: Current Generated by Inverter under Line-To-Ground (LG) Six-Cycle Fault in

Grid-Connected Mode.
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Figure 4.9: Current Generated by Inverter under Line-To-Line-To-Ground (LLG) Six-

Cycle Fault in Grid-Connected Mode.

Figure 4.10: Current Generated by Inverter under Line-To-Line (LL) Six-Cycle Fault in

Grid-Connected Mode.

4.2 SIMULATION OF ISLANDED INVERTER WITH VIRTUAL INERTIA

For the control and stability analysis of the islanded system with a simplified virtual

inertia implementation, a three-phase inverter system, with a DC voltage source VDC =

800V , R = 0.1915Ω, L = 0.0192H , fsw = 8100Hz, is connected to the grid with the

operating frequency f = 60Hz.
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Table 4.2: Simulation Parameters in Islanded Mode

Notation Parameter Value

VDC DC voltage 800V

R Connection resistance 0.1915Ω

L Filter inductance 0.0192H

Cf Filter capacitance 9.1848µF

fsw Switching frequency 8100Hz

f Operating frequency 60Hz

J Moment of inertia 0.001kgm2

D Damping factor 1 kgms−2

kP1 Proportional gain of inner current control loop 0.9576

kI2 Integral gain of inner current control loop 9.5758

kP2 Proportional gain of voltage outer control loop 0.0308

kI2 Integral gain of voltage outer control loop 3.4587

V Phase to phase grid voltage 13.8kV

The system controller is described and simulated based on Figure 3.13. Vd and Vq

references are set as 300V and 50V , respectively. As can be seen from Figures 4.11 and

4.12, the controller has been proven to control the voltage supplied to the load successfully.

Figure 4.11: Vd Component Control in Islanded System.
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Figure 4.12: Vq Component Control in Islanded System. .

Figure 4.13 illustrates the loop-gain magnitude and phase plots of the load voltage

regulator using the compensator in Equation 3.45. Figure 4.13 shows that the phase margin

is 530 at ωc = 335.182rad/s, which is true with respect to the calculation in Equations

3.47 and 3.48.

Figure 4.13: Bode Plot of Voltage Control Open-Loop Function.

Simulation of the grid-connected system is carried out under different short-circuit

fault types for two intervals, half a cycle (1/120s) and six cycles (0.1s). According to the

graphs, the system needs approximately 0.15s to recover its performance after a fault re-
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moval. Simulation results for half-a-cycle fault duration, starting at 1.2s, are shown below:

Figure 4.14: Current Generated by Inverter under Line-To-Line-To-Line-To-Ground

(LLLG) Half-A-Cycle Fault in Islanded Mode.

Figure 4.15: Current Generated by Inverter under Line-To-Ground (LG) Half-A-Cycle

Fault in Islanded Mode.
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Figure 4.16: Current Generated by Inverter under Double Line-To-Ground (LLG) Half-A-

Cycle Fault in Islanded Mode.

Figure 4.17: Current Generated by Inverter under Line-To-Line (LL) Half-A-Cycle Fault

in Islanded Mode.

Next, the simulation results for six-cycle fault duration, starting at 1.2s, are shown

below:
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Figure 4.18: Current Generated by Inverter under Line-To-Line-To-Line-To-Ground

(LLLG) Six-Cycle Fault in Islanded Mode.

Figure 4.19: Current Generated by Inverter under Line-To-Ground (LG) Six-Cycle Fault in

Islanded Mode.
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Figure 4.20: Current Generated by Inverter under Double Line-To-Ground (LLG) Six-

Cycle Fault in Islanded Mode.

Figure 4.21: Current Generated by Inverter under Line-To-Line (LL) Six-Cycle Fault in

Islanded Mode.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

In this thesis, a method of creating virtual inertia for an inverter-based system in-

spired by the swing equation has been proposed. The proposed technique employs the

basic swing equation principle to implement the virtual inertia for the grid-connected sys-

tem. A simplified virtual inertia model for the islanded system is also proposed in addition

to the theory of the voltage outer loop and the inner current control loop. The simulation

results show that the models have successfully emulated the virtual synchronous machine,

with power-sharing capabilities in the grid-connected mode, voltage, and frequency control

in the islanded mode. The performances of the systems in two modes of operation reveal

the efficiency of the controller.

Future works should include the combination of the current, voltage control loops,

and the swing equation in the grid-connected VSC system. Robust control should be inves-

tigated as a further implementation of this virtual inertia model, for it to work well under a

different set of assumptions.
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