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Abstract 

Wind is one of the most promising renewable energy forms that can be harvested into the 

electrical power system. The high penetration of wind energy has bought about a number of 

difficulties to the power system operation due to its stochastic nature, lack of exhibited inertia, and 

differing responses to the traditional energy sources in grid disturbances. Various grid support 

functions have been proposed to resolve the issues. One solution is to allow the renewable energy 

sources to behave like a traditional synchronous generator in the system, as a virtual synchronous 

generator (VSG). On the other hand, testing the control of the future power grid with high 

penetration renewable often relies on digital simulation or hardware-based experiments. But they 

either suffer from fidelity and numerical stability issues, or are bulky and inflexible. A hardware 

testbed (HTB) is built to allow testing of both system level and component level controls, with a 

balance between fidelity and flexibility 

This dissertation proposal investigates the VSG operation of the full converter wind turbine 

(FCWT), focusing on its control and testing in the HTB. Specifically, a FCWT emulator was 

developed using a single converter to include its physical model and control strategies. The 

existing grid support functions are also included to demonstrate their feasibility. 

Comprehensive VSG controls are then proposed for a FCWT with short term energy storage. 

The dynamic response of the FCWT can be comparable to the traditional generation during grid 

disturbance. The control can also allow the FCWT to be dispatched by the system operator, and 

even operate stand-alone without other grid sources. 

To study the system response under faults, a short circuit fault emulator was developed in the 
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HTB platform. Four basic types of short circuit faults with various fault impedance can be 

emulated using the emulator. The power system transient stability in terms of critical clearing time 

can be measured using the developed fault emulator. 

Finally, operation of the VSG controlled FCWT under grid faults was studied. The impact of 

system transient stability is analyzed, and controls to improve it are proposed. 
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1 Introduction 

1.1 Background and Motivation 

Due to the continuously increasing power demand and the requirement of clean energy, 

renewable energy sources and the related topics have drawn significant attention nowadays [1]. 

With over 370 GW total capacity installed worldwide by 2014, wind power is one of the largest 

and most promising renewable energy sources [2]. The U.S. Department of Energy has envisioned 

that wind power will supply 20% of all U.S. electricity by 2030 [3].  

Wind turbines (WT) installed in the electric power system can generally be categorized into 

four types, as shown in Figure 1-1. Type-1 WT is usually called fixed-speed wind turbine, which 

is the most basic WT in operation. It employs an induction machine that directly connects to the 

grid through transformers. The rotor speed of the induction machine synchronizes with the power 

grid frequency, and keeps almost constant for all different wind speeds. The generated wind power 

is not optimal, and can only be controlled through the pitch control of the wind blades.  

To capture more power from wind, variable speed wind turbines are designed. Type-2 WT is 

the simplest one, usually called variable slip wind turbine. It employs a set of variable resistors 

connected to the rotor of the induction machine. This would help to regulate the rotor speed of the 

WT, and capture the wind power more efficiently. To improve, power electronics converters are 

used to replace the variable resistor in Type-3 WT. This type of wind turbine is called doubly fed 

induction generator (DFIG). The flexible control of the power electronics converter enables the 

induction machine to operate with a wider range of rotating speed than Type-2 WT with less losses. 

It is thus able to capture more wind power with different wind speeds. 
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Figure 1-1. Types of wind turbines. 

 

Similarly, full converter wind turbine (FCWT), also known as Type-4 WT, uses ac/dc/ac 

power electronics converter to connect the induction machine or permanent magnet synchronous 

machine (PMSM) with the grid. It can also adjust turbine rotational speed to allow for accurate 

maximum power point tracking (MPPT). Additionally, the ac/dc/ac converter allows it to operate 

decoupled with the grid conditions, and can achieve better performance during grid disturbance 

and faults. FCWT is now one of the most commonly installed types of WT. The global market 

share has been increasing and reached 40.8% in 2013 [4]. 

Nowadays most WTs are controlled to output the maximum power available and do not react 

to grid disturbances except for severe faults, and the power fluctuation is balanced by conventional 

synchronous generators (SGs). However, the case will be different when the penetration becomes 
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larger with more traditional SGs replaced by WTs. The loss of system controllability and decrease 

of the system inertia will cause fluctuations in grid voltage and frequency. In addition, the 

uncertainty and variation of the wind will also pose challenges to the system operators [5].  

Thus, grid support control functions from WTs will need to be integrated in the future grid. 

Various kinds of grid support controls have also been developed for these FCWTs. With 

appropriate control, the FCWTs will be able to change the active and reactive power injections in 

addition to the MPPT operation during grid disturbances [5-9]. However, they cannot be regulated 

and dispatched like the traditional SGs by the system operators.  

Researchers then seek to develop controls for the grid interfacing power electronics converters 

to mimic the behaviors of SGs, and to provide both short term grid support and long term power 

dispatch functions [10-14]. This Virtual Synchronous Generator (VSG) control allows the 

renewable energy source to exhibit the same characteristics of the SGs, and can potentially be a 

promising solution to integrate more WTs in the future grid with high penetration of renewables. 

But there are still challenges that need to be resolved before the practical applications: 

1) Most previous academic research rely on simulation due to the complexity of the 

interconnected electric power system. Experiments are necessary to reveal the interaction 

and inter-operability of different controls and components, and demonstrate their 

feasibilities. 

2) All currently developed VSG technology assumes unlimited energy storage to balance the 

renewable generation and grid demands, which is not always the case. It is crucial to have 

the appropriate control strategy for WTs with limited availability of energy storage. 
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3) The system stability impact of integrating VSG controlled renewable energy sources under 

large disturbances, such as short circuit faults, is not well understood. 

The objectives of the proposed research are to develop a testing platform to test and 

demonstrate wind turbine controls in experiments, to develop a VSG control strategy for FCWT 

with limited energy storage, and to investigate fault operation of the FCWT with VSG control. 

1.2 Dissertation Organization 

The organization of the chapters in this dissertation is described as follows. 

Chapter 2 provides literature review of the research activities in the proposed research area. It 

starts with different power system testing methods; and it follows to introduce the converter based 

power system testing platform in the UTK; then, the existing test emulators for the WTs and short 

circuit faults are introduced; and finally, the grid support functions and fault operations of FCWTs 

are presented. Based on the literature review, the research challenges and the detailed objectives 

of this proposal are given. 

Chapter 3 develops a power electronics converter based emulator to represent FCWT in the 

power system testing platform. It incorporates the existing grid support functions, and it is used 

for the demonstration of the FCWT operation in a grid with high renewable penetration. 

Chapter 4 proposes the VSG control algorithm for FCWT with limited energy storage, 

considering the energy balance of the FCWT generation and grid demands. It allows the FCWT to 

behave like a SG in the power system, and operate stand-alone without the main grid. 

Chapter 5 develops a power electronics converter based short-circuit fault emulator to perform 
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four basic types of short-circuit faults in the testing platform. The test results of utilizing it to 

estimate a critical clearing time is also presented. 

Chapter 6 proposed to utilize the flexibility of VSG controlled generation unit to improve the 

power system transient stability after a short circuit fault in the system, and tested the results using 

the emulator and platform developed in Chapter 3 and Chapter 5 

Chapter 7 analyzes the impact to the power system transient stability from the VSG with 

limited output current, and proposes control methods to improve the stability. 

Chapter 8 summarizes the advances made in this dissertation so far and gives 

recommendations for potential future work. 
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2 Literature Review and Challenges 

This chapter reviews the research activities in the previous proposed research area of power 

system testing methods and components, and grid support functions of the WTs. The research 

challenges are then identified based on the review, and the detailed objectives of the proposed 

dissertation are presented. 

2.1 Power System Testing Methods 

This section briefly summarizes different kinds of power system testing methods, and 

compares the advantages and disadvantages among them, in order to justify the power electronics 

converter based power system emulation testing platform introduced in the next section. 

2.1.1 Digital Simulation 

Offline digital simulation has been used widely to predict the behavior of an electrical system 

in time domain due to its low cost, easy accessibility, and flexible configuration. However, due to 

the limitations of the computational resources and run time, the simulation accuracy and fidelity 

suffer from different levels of model reductions. Often the results depend on the solver and time 

steps selected, and have numerical stability and convergence issues [15].  

In recent years, the revolution of integrated circuits such as microprocessors or FPGAs has 

enabled real-time digital simulations, such as RTDS [16] or Opal-RT [17]. With deliberately 

designed network solutions and parallel computing techniques, these tools can simulate a large 

system in real-time with fixed time-step. They can incorporate with digital and analog inputs and 

outputs to connect with the physical world to form a Hardware in the Loop (HIL) simulation. It 
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allows the real-time testing of the developed system controllers without having to develop a real 

hardware test platform [18]. Since they are still using mathematical models, the numerical stability 

of digital simulation can still sometimes be an issue. 

These non-real-time or real-time digital simulation tools offer a large diversity of pre-defined 

models, and have the capability to integrate custom built models. Nevertheless, many critical 

conditions in the simulations tend to be simplified or ignored by the users, such as measurement 

error, control and communication time delay, device physical bounds and saturation, 

electromagnetic interference, etc. Accounting for the uncertainties in the simulations is 

computationally challenging, but failing to address these issues could cause unrealistic or incorrect 

results [19]. 

2.1.2 Hardware Based Testing 

On the other hand, hardware-based system testing can reveal the impact of the neglected 

aspects of digital simulation. It is an essential step before the deployment of any proposed 

controllers or developed devices. To assist with such a testing need, a real-time digital simulator 

can be paired with a power amplifier to form a Power HIL (PHIL) test platform. The PHIL platform 

can be connected to an equipment under test (EUT), and evaluate its behavior with the remainder 

of the system represented by the simulator [20]. While it has great fidelity to test the equipment, 

the overall system simulation accuracy is not better than digital simulation. 

To study the system behavior, researchers have also built down-scaled electrical power system 

or transient network analyzer (TNA) to produce a hardware-based power testbed as early as the 

1920s [21, 22]. The capability of such a system has been enhanced to incorporate new technologies 
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in recent years. Examples include National Renewable Energy Laboratory’s (NREL) Energy 

Systems Integration Facility (ESIF) [23] and the Consortium for Electric Reliability Technology 

Solutions’ (CERTS) microgrid testing platform [24].  

While these down-scaled hardware-based testing platforms provide superior fidelity, they are 

generally bulky and costly. Their topology and configurations are difficult to change, usually 

requiring physical rewiring and component replacements for the testing in a different system 

configuration or parameters. Another challenging issue is rescaling. To precisely represent a power 

component with different power and voltage, the emulator should have the same per unit value of 

the original one. It is relatively easy for the passive components like resistor, inductors, and 

capacitors, but difficult for rotating machines with different impedances, inertia and saturation 

levels [25, 26]. Transmission lines also pose challenges since many cascaded circuits made up 

with inductors and capacitors are required to represent the distributed parameters. 

2.2 Hardware Testbed at CURENT Center in University of Tennessee, Knoxville [27] 

Taking advantage of the fast, accurate, and flexible closed-loop control of power electronics 

converters, it is feasible to program them to mimic the static and dynamic behaviors of electrical 

power components [28]. There have been industrial products developed that use power electronics 

based emulator for the testing of electrical vehicles, aircraft, motor drives, grid integration of 

energy storage, PV, etc. [29-31].  This provides a flexible and easy way to test and analyze the 

characteristics of the emulated objects.  

Based on this idea, a Hardware Testbed (HTB) has been established at CURENT at the 

University of Tennessee by connecting multiple modular converter emulators together [32]. It is 
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utilized to emulate large scale power system transmission network using interconnected 

reconfigurable modular converters. Each converter represents a single or a aggregated element of 

power sources or loads. This allows system testing and demonstration in the desired environment 

without requiring full scale transmission, generation, and load equipment. 

2.2.1 Emulation Principle and Structure  

Each individual converter in the HTB serves as an emulating unit. It has the same steady-state 

and dynamic response as the emulated object with respect to its terminal voltage and current. The 

local voltage or current information is measured as the input of the object model, and the output 

current or voltage reference is calculated for the controller to track, ensuring the converter emulator 

behaves the same as the emulated object. The block diagram is shown in Figure 2-1. 

 

 

Figure 2-1. Emulator operating principles [27]. 
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The components in an electrical system could be considered as either voltage source or current 

source. Analogously, the converter emulators have two kinds of control schemes, one type 

regulates the terminal voltage, and the other controls the output current. For example, the load 

emulating converter often employs a current type of control, i.e., measures the emulated grid 

voltage, and generates the desired emulation current; and the generator emulating converter more 

naturally uses a voltage type of control. 

Many types of emulators have been developed in the HTB. Available emulators include SG 

[33-35], static and dynamic loads [36-38], PV [39], flywheel [40] and batteries [41, 42]. In addition 

to single converter emulators, a transmission line can be emulated by a set of back-to-back 

converters [43-46]. Short circuit faults within the emulated transmission line can also be modeled 

and represented by the converter emulator sets [44]. The emulators for HVDC transmission lines 

and multi- terminal HVDC (MT-HVDC) grid emulators with corresponding faults and protection 

have also been developed [47]. 

The HTB has a paralleling converter structure as shown in Figure 2-2. Converter emulators 

share the same DC link, which is supported by an active rectifier, with its voltage regulated to a 

constant level. The AC terminals of the converters are connected together by filter inductors. Thus, 

the AC link of the converters can be considered as the emulated power system. Active power 

generated by the generator emulators is absorbed by the load emulators, reducing the total power 

consumption of the system. The undesired zero sequence and switching period circulating currents 

introduced by this paralleling topology are controlled and reduced [48], so that the emulating 

current flowing between the converters would represent the actual power flow. Between the 
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converter emulators, inductors are used to emulate local connecting lines.  

Because of the power circulating structure and large DC capacitance of the paralleled 

converters, the DC link voltage of the HTB remains relatively stable during system transients. The 

closed loop control of the individual emulators allows decoupling of the DC link voltage and 

emulated AC network behaviors. 

Currently, three different power system topologies have been designed and tested using the 

HTB platform, as shown in Figure 2-3. The first one is developed based on Kundur’s two-area 

system [49], which has 2 generators and 1 load in each area, and a long transmission line between 

the areas, as shown in Figure 2-3(a). Later, the capability of the system was enhanced by adding a 

third area representing a load center, a down-scaled MT-HVDC network, and two wind farm 

emulators. The topology of the three-area system is shown in Figure 2-3(b). The third system 

configuration was derived from a reduced model from Western Electricity Coordinating Council 

(WECC) interconnection, with the MT-HVDC network as an overlay. It is referred to as the four-

area system. Figure 2-3(c) shows an example with 80% of renewable penetration by replacing 

some traditional synchronous generators with renewable energy sources. 

 

 

Figure 2-2. Structure of the HTB [27]. 
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(a) Two-area system 

 

(b) Three-area system 

 

(c) Four-area system 

Figure 2-3. Power system emulation topology configurations in HTB [27]. 
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Figure 2-4 shows the reconfiguration scheme of the HTB to allow rapid transition between 

different system configurations. Each emulator in Type I Cabinets can be reconfigured to represent 

different components of power systems by loading the corresponding programs. The parameters 

of the components, such as generator inertia, load composition, battery capacity, can also be easily 

set. Long distance transmission line and HVDC lines are installed in Type III cabinets. The 

emulated impedance can be set through system control.  

To change the system topology in an arbitrary way, a switchable inductor cabinet (Type II 

Cabinet) that consists of contactors and inductors of different values has been developed, as shown 

in Figure 2-5. By opening or closing the contactors that are in parallel connection with the 

inductors, the impedance of the emulated line can be adjusted to the desired value. Type II Cabinet 

connects with Type I and Type III cabinets using isolation contactors. This way, the system 

topology can then be easily reconfigured by changing the wire connections on the front panel. 

Figure 2-6 shows a photograph of the HTB Type I and Type III cabinets. Each converter 

emulator is repurposed from a 600 V, 75 kW DC-fed motor drive manufactured by VACON 

(acquired by Danfoss), with DSP28335 as the controller. Each Type I cabinet has four single unit 

emulators, and each Type III cabinet has 3 back-to-back transmission line emulators. Real 

measurements are integrated into the system, including potential transformers (PT), current 

transformers (CT), phasor measurement units (PMU) and frequency disturbance recorder (FDR).  
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Figure 2-4. Reconfiguration scheme of the HTB and emulator cabinet configuration [27]. 

 

 

Figure 2-5. Photo of HTB Type II reconfiguration cabinet [27]. 
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Figure 2-6. Photo of HTB Type I and Type III reconfiguration cabinet [27]. 

 

The HTB has also been combined with RTDS to further enhance the testing platform 

capability. Connected to RTDS through a power amplifier, the HTB can emulate one part of the 

electrical system, and RTDS is used to simulate the rest of the system [50]. Actual power 

equipment with HTB ratings can also be connected to the HTB as an EUT for PHIL testing. 

2.2.2 Communication and Control Architecture 

The converter emulators can be controlled and monitored remotely through communication 

links established by National Instruments’ CompactRIOs (cRIO) using CAN bus. In addition, 

cRIOs can gather the data from PTs, CTs from analog input; and send data to computer for 

monitoring, closed-loop control, and visualization. PMUs and FDRs can directly communicate to 

the computer using OpenPDC software. The overall communication structure is shown in Figure 

2-7. 
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Figure 2-7. Communication structure of HTB [27]. 
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Figure 2-8 shows the control architecture, which can be divided into three layers. The system 

controls reside in the computer – they oversee the operations of different power system areas, 

provide functions like system level protection, data logging, visualization and human machine 

interface (HMI). Profile setpoints and start/stop commands can be determined by the operators and 

sent to the lower layers for the specific controls. 

The area control level manages the components within the area, and do not have full 

information of the other areas. The control functions include state estimation and other monitoring 

and closed-loop controls such as automatic generation control (AGC), wide area damping control, 

voltage stability assessment, and renewable energy sources operating mode selection. 

The bottom layer is the component controls, which are integrated in the DSP of the converter 

emulators in addition to the physical model. Each type of emulator has its own set of component 

controls. For example, the renewable energy source can be controlled to track the maximum power 

point, provide frequency and voltage support to the grid disturbance, ride through and protect itself 

during emulated grid faults, etc. The control functions implemented are shown in Figure 2-8. 
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Figure 2-8. Control architecture of HTB [27]. 

 

2.2.3 System Emulation Demonstration  

This reconfigurable converter-based testing platform offers a platform for development, 

testing and demonstration of various power system researches. This section presents several 

examples to illustrate the system emulation and testing capabilities of the HTB. 

Inter-area oscillation often results from a poorly damped power system with weak 

transmission lines, and limits the power transfer capabilities. In the HTB two-area system, a 

measurement based wide area oscillation damping strategy has been tested and verified. As shown 

in Figure 2-9, the frequency difference between G1 and G3 has a low damping ratio to a load step 



19 

 

 

change event at L7. A proposed adaptive WADC control strategy can successfully suppress the 

oscillation, while the conventional one that does not consider the communication delay could 

trigger another oscillation mode in the testing system [51-54]. 

Online voltage stability assessment helps the operators foresee potential voltage instability 

and takes control action promptly to mitigate the situation. Power transfer limits of the 

transmission lines are calculated in real-time using the measured voltage and frequency data.  

Figure 2-10 shows the algorithms in action in the three-area system, where the loads at bus 12 and 

bus 13 are ramping up. The transferred power on the tie-lines 7-12 and 9-13 increases and 

gradually reaches the calculated limits by the algorithm. When the margin is low enough, the 

reactive power support will be enabled from the HVDC station, and voltage collapse is avoided 

[55]. 

 

 

Figure 2-9. Test results of wide area damping control for two area system [27]. 
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Power system separation scheme divides a system into multiple islands to prevent system 

instability following a large disturbance. Remedial action scheme (RAS) is built into the HTB 

four-area system controller. When there is a three-phase short-circuit event at the transmission line 

3-4, it will be tripped due to overcurrent. RAS action saves the system by also tripping the line 2-

8, so that the system is separated into two stable islands as shown in Figure 2-11. 

The fast closed-loop controls of the inverter may interact with one another and create small-

signal stability problem, even if the inverters are all designed stable individually. This problem 

can introduce a higher order harmonic or subsynchronous resonance. Figure 2-12 shows an 

example of output currents exhibiting a 600Hz harmonic resonance when connected to the rest of 

the system. After tuning the control parameters using the impedance based stability criterion, the 

voltages and currents can return to stable operation [56-58]. 

 

 

Figure 2-10. Test results of real-time voltage stability assessment and control in three area 

system [27]. 
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Figure 2-11. Test results of remedial action scheme of controlled separation for four area system 

[27]. 

 

2.2.4 Comparison of Existing Power System Testing Methods and Identified Needs 

Compared with traditional hardware-based testing platform with actual down-scaled 

components, the HTB allows more precise and flexible scaling and modeling of many electrical 

components, such as rotating machines [35]. The emulators can be easily reprogrammed both in 

terms of model types and parameters to enable flexible reconfiguration and representation of 

different components. The power circulation scheme between sources and loads significantly 

reduces the need for laboratory power capacity and saves energy. 
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(a) Unstable case with parameters designed for ideal grid   

 

(b) Stable case with properly designed parameters 

Figure 2-12. Test results of harmonic stability problem [27]. 
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On the other hand, HTB is fundamentally different from real-time digital simulation. It is 

essentially an analog emulator with real power flows between real hardware emulating power 

system components. The HTB incorporates more realistic power hardware, especially in the case 

of power electronics based hardware such as converter interfaced renewable energy sources. It is 

also easy for the HTB to integrate real communication, measurement, control and protection 

equipment. Even though the emulators still largely rely on numerical models, similar to the case 

of real-time digital simulators, these models are truly distributed, and computation is truly 

paralleled. As a result, HTB has shown to have much less numerical convergence problems. The 

limitation on the emulated number of buses is purely due to the space and resource issues. HTB 

also handles multi-physics models better covering shorter time-scale switching events to longer- 

term power system events. 

Nevertheless, the HTB also has disadvantages compared with hardware based test platforms: 

the emulators are not perfect; the imperfections of the converter, measurements and closed loop 

control will introduce error; it is digital simulation inside of each converter emulator, and as such 

there could still be numerical issues; and emulator controls might have harmonic interactions that 

do not belong to the system behavior if not designed properly. 

The HTB testing environment allows different types of power system testing with various 

emulators to represent the actual components in the electric power system. Two essential emulators 

among them are WT emulator and short circuit fault emulator to enable even more testing 

capabilities of the HTB, especially the case to represent the future grid with high penetration of 

renewables 
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The next two sections will introduce the existing methods to emulate the FCWT and faults in 

a hardware based power system testing platform. 

2.3 Wind Turbine Emulation Methods 

For digital simulation, there have been many works discussing the model of FCWT. WECC 

generic models use the single-line model, and are focused on the disturbances and consequences 

of the power system [59]. DIgSILENT gives detailed physical and control models which satisfy 

the need of RMS and EMT (Electromagnetic Transient) simulation [60]. Reference [61] developed 

a detailed simulation model considering the flicker effect caused by wind shear and tower shadow.  

Based on the established model, physical emulators have been built in the hardware base 

testing platform for real-time HIL studies. These WT emulators can be categorized into 2 types – 

rotating machine type and real-time model type, as shown in Figure 2-13. 
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Emulated wind machine Emulated FCWT system

 

Figure 2-13. Two types of wind turbine emulator configurations. 
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Rotating machine type usually requires a torque controlled motor to represent the wind torque 

and turbine inertia, and another motor to serve as the wind turbine generator [26, 62-64]. These 

emulators are mainly used for testing the control algorithms to manage the torque and rotating 

speed of the WT, rather than its impact to the grid. 

While most of the WT emulators are rotating machine type, a few other research works used 

a different approach as real-time model type [65-67]. For these emulators, the FCWT conversion 

system is modeled in software instead of represented by physical machines. The model can 

generate output current reference according to the terminal voltage of the emulator. A power 

electronics converter can be served as an amplifier, which connected with the rest of the emulated 

grid. Currently, these works are only at proof-of-concept stage, and are only used for testing their 

own control algorithm. The developed emulators are not placed in a larger system of multiple 

components to study the system impact; and the emulators do not include other possible control 

algorithm for comparison. 

For HTB, the rotating machine type WT emulator cannot be applied, since the emulator can 

only be configured to represent the wind turbine. The flexibility of changing the emulated 

components with different controls cannot be achieved. Thus, in order to demonstrate the impact 

of a future grid with high wind penetration in the HTB system, an amplifier type WT emulator 

with different control algorithm needs to be developed. 

2.4 Fault Emulation Methods 

To study the dynamic response of a power system disturbance caused by a short circuit fault, 

computer based simulation tools can be utilized. But the results are often subjected to numerical 
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stability issues, especially with power electronics penetrated power systems [68, 69]. In contrast, 

field tests with real hardware can provide reliable testing results under short circuit fault, but it is 

often costly and non-repeatable. Thus, real-time hardware based laboratory test systems have been 

widely used to test the performance of the equipment or system under fault in a fully controlled 

environment. Testing platforms have been proposed and implemented to verify the fault ride-

through (FRT) compliance of grid-connected equipment [70-72], to test the power system 

protection controls and devices [73], and also to analyze the system performance under 

disturbances [32, 74, 75]. 

Figure 2-14 shows the schematics of the fault emulators to create voltage sags previously 

proposed in the literature. In [76], the authors control the excitation system of a synchronous 

generator to create symmetrical sags in the terminal voltage of the equipment under test (EUT), as 

shown in Figure 2-14(a). The voltage sags can also be generated by a transformer with a 

combination of switches, such as the topology given in Figure 2-14(b) [77]. Configurations like 

Figure 2-14(c) only require a controllable three phase voltage source converter (VSC) directly 

connected to the EUT to emulate the grid fault. By controlling the output voltage of the VSC, it 

can generate various types of grid faults, such as sags, swells, harmonics, unbalances, and phase 

shifts [70-72, 78]. These methods are suitable to test the fault performance of a single component 

like a wind turbine in a stand-alone environment. But since they are incapable of creating any 

actual fault current, impacts such as CCT of a short circuit fault for a system that consists of 

multiple components cannot be studied. 
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(a) Rotating generator to create voltage sags 

 

(b) Transformer to create voltage sags 

 

(c) Series connected VSC to create abnormal 

voltages 

EUT

Shunt impedance

 

(d) Shunt impedance to emulate short circuit 

faults 

Figure 2-14. Schematics of the fault emulators [79]. 

 

The shunt impedance method in Figure 2-14(d) was adopted in [80, 81]. The fault current 

flows through the shunt impedance, and creates a low voltage at the terminal. This allows the 

generation of one to three phase voltage sags with different depth values, by modifying the 

switches and grounding impedance. By providing the fault current, a system with multiple 

components can be put under investigation. But the drawback of this method is that it requires 

bulky equipment and is not flexible to create different scenarios. 

In order to fully investigate the fault impact on a power system with actual transient fault 

current, and at the same time maintain testing flexibility, a short circuit fault emulator needs to be 

developed for HTB. 

+- EUT

Generator
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2.5 Grid Support Functions from Full Converter Wind Turbines 

This section briefly summarizes basic operation of the FCWT, and its corresponding grid 

support controls. The existing works around VSG control are introduced, and the gaps of applying 

the VSG control to the FCWT are explained. In addition, the fault operation of the FCWT is also 

presented in this section. 

2.5.1 Basic Operation and Grid Support Functions of FCWT 

Similar to most of the other power electronics interfaced renewable energy sources, FCWTs 

utilize a phase locked loop (PLL) to synchronize with the main grid, and inject maximum available 

power to the grid by current closed-loop control. 

To maximize the harvested wind energy, different MPPT control algorithms are proposed [82]. 

The turbine speed is controlled to maintain the optimal tip-speed ratio (TSR), with known or 

unknown information about wind speed variations. 

As pointed out in the introduction section, it is observed that as the power electronics 

interfaced renewable penetration gets higher, dynamic frequency response of the power system 

becomes worse. During a power system disturbance, the frequency excursion could become larger, 

and eventually damages or triggers the protection of the equipment [83].  

To avoid this, active power support functions are proposed to enhance the existing MPPT 

functions. The general idea is to mimic the behavior of the traditional SGs – to inject more active 

power when frequency is lower than the nominal value, and vice versa.  

For traditional SGs, when a grid frequency drop disturbance first occurs, the rotating speed of 
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the generator would also decrease to synchronize with the rest of the grid. Thus, kinetic energy 

from the generator rotor would be released in the short period. So, the short-term frequency 

response of the WTs is usually called inertia emulation or synthetic inertia [6, 84, 85]. Extensive 

studies from academia and industry have proven the effectiveness of this control [86-88]. 

For longer-term, generators have governor controls to limit the power generated from their 

prime movers if frequency is high, and hence reduce the rotor speed and reach equilibrium with 

the rest of the system. The mechanism is called droop control, as the actual rotor speed is allowed 

to “droop” or decrease to the reference value [89]. This concept was also migrated to the inverter 

controls for parallel operations [90]. WTs also adopt such strategy for frequency regulation, where 

its pitch or rotor speed of the WT can be controlled to reduce the captured wind energy [6, 91, 92]. 

On the other hand, during a frequency drop event, WTs cannot provide additional power if already 

at the maximum power point. Thus, de-loading or curtailment control of the WTs is developed to 

allow it only to generate a percentage of the maximum available power, and have head-room to 

increase the generation for droop control [93]. 

On the other hand, reactive power output from WTs may also introduce problems. Over-

voltage or under-voltage may occur if the reactive power output from the WTs is not regulated. 

The system may even collapse due to voltage stability issues. For this reason, various reactive 

power control from WTs are proposed, including constant power factor control, terminal voltage 

control, virtual impedance control [94], etc. Analysis has also been conducted extensively for the 

effectiveness of the proposed controls [95-98]. 

Standards and grid codes are developed to require WTs to have grid support functions 
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available for the system installation and operation [99]. 

2.5.2 Virtual Synchronous Generator Control 

Despite different grid support control algorithms have been proposed, new problems still arise 

as the penetration level gets higher, especially the case when the grid is weak [100-102], i.e. the 

grid impedance is high or short-circuit ratio (SCR) of the system is small. One of the reasons is 

because the current closed-loop control and PLL synchronization of the power electronics 

converters are intrinsically different than the traditional SGs. Thus, the VSG control is proposed 

for the converters to fully emulate the SGs to avoid the problems. 

Rather than the PLL, the VSG control utilizes the swing equation to synchronize with the grid 

[103]. Thus, the built-in droop and inertia characteristics of the VSG control can provide better 

active power - frequency response for grid connected converters [104]. The inertia constant and 

the damping ratio of the emulated SG can be adjusted to accommodate system conditions [105]. 

Reactive power control and load sharing are achieved [106]. The small signal model and stability 

of the VSG control are also studied in the literature [107-109], results have shown that it has 

superior performance in weak grid conditions [110]. 

However, previous works on the virtual synchronous generator (VSG) controls are mostly 

focused on the grid interfacing controls. Energy storage is assumed to be large enough to support 

all the power balance of the renewable generation system, which is not always the case. In [111], 

the authors presented the VSG control for the FCWT. While it can represent some of the SG 

dynamics including the inertia response, it can only operate around the maximum power point. 

This means the output power of the FCWT cannot be regulated and dispatched, and it is not suitable 
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for stand-alone operation without other sources to balance the power difference between the wind 

generation and load consumption. 

On the other hand, there are studies to control the FCWT at non-optimal power point to 

provide head-room for active power support, and load tracking [112, 113]. But the coordination of 

wind turbine control and grid side VSG control is not well-established. 

Combining the WTs with short term energy storage has been studied in academic fields and 

implemented in industry products [114-116]. With minute-level energy capacity, the storage helps 

to compensate the power fluctuation of the wind generation and provide dynamic grid support. 

The balancing and coordination control of the energy storage for VSG controlled WTs is not 

reported in the literature. 

Therefore, it still remains a challenge to maintain the power balance and the control 

coordination between the renewable generation and grid integration, with limited capacity of the 

energy storage. 

2.5.3 Operation of FCWT under Large Disturbance 

Previously in the early 2000s, renewable energy sources were required to trip or disconnect 

to the main grid, if its terminal voltage deviations from the nominal value [117]. As the penetration 

gets higher, the tripped generation may lead to cascaded failure, which may cause blackout of a 

major part of the power system [118, 119]. The delayed recovery of the renewable sources may 

also exacerbate the cold load pick-up issue, when the system is back on-line [120]. 

Thus, low voltage ride through (LVRT) or fault ride through (FRT) function is demanded for 
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the distributed renewable energy sources in the new standards and grid codes [121]. It is required 

that the distributed renewable energy sources have the capability to stay connected to the main 

grid when a transient fault occurs, and it is required to continue operation after the fault clears. 

Some European countries even have grid codes to demand them to inject active or reactive current 

during the fault to support the under-voltage locally [99, 122]. 

A large disturbance may also trigger the problem of system rotor angle stability, which is also 

known as transient stability. It describes the ability of a system to remain in synchronism when 

subjected to a large disturbance [49]. The triggering event includes short circuit fault, large loads 

switching on/off, or large generator tripping. These events lead to large excursion of generator 

rotor angles. Once the angle difference between two generators in the system is large enough to 

pass the unstable equilibrium point, the system enters the unstable region, and cannot recover to 

the original operating condition.  

To improve system stability, VSG controlled FCWT provides much more flexibility to the 

output characteristics than the traditional SGs. Under a disturbance, the VSG controlled FCWT 

does not have to have the same exact response as SG. It is possible to alter the generator inertia 

under grid disturbance [123-127]. So that the frequency and voltage response after a short circuit 

fault may be completely different than the traditional generator. However, these previous studies 

mainly focus on small signal stability, or large signal stability where only unrealistic infinite bus 

system was considered. It is still a challenge to use this concept to enhance the large signal transient 

stability where multiple generations are present. 

On the other hand, power electronics devices are not designed to withstand as large fault 
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current as the traditional SGs. The output fault currents from the converter need to be bounded to 

prevent any damage to itself. This is relatively easy for current closed-loop controlled converters 

that operate to inject active and reactive power to the grid [128]. For voltage closed-loop controlled 

converters, since the output current is usually determined by the outside circuit or loads, control 

algorithms are also proposed to limit the output current during fault [129-131].  

There has been some recent research work started to analyze the VSG’s impact to power 

system transient stability [132-135], especially when the faults are not severe enough to trigger 

current limiting function  [132-134]. But there has not been a comprehensive study to demonstrate 

the impact and potential improvement to the system transient stability using VSG controlled 

energy sources. 

2.6 Research Objectives 

According to the literature review above, many issues are still unsolved to the proposed 

research area. The main challenges include: 

(1) Lack of a WT emulator in CURENT’s HTB power system emulation platform, with 

different grid support functions to study system impacts, and demonstrate system 

operation with high renewable penetration. 

(2) VSG control of a FCWT to maintain the power balance and the control coordination 

between the renewable generation and grid integration, with limited capacity of the 

energy storage. 

(3) Lack of a short circuit fault emulator in the HTB platform to study the power system 
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behavior under fault. 

(4) The operation of a VSG under and after a grid fault to provide grid support are not 

well understood, especially for power system transient stability analysis. 

Corresponding to the challenges listed above, the main tasks of this dissertation are identified 

as follows. 

(1) Develop a FCWT emulator in the HTB system with all available grid support control 

algorithms implemented to test the system performance with high renewable 

penetration. 

(2) Propose a comprehensive VSG control strategy of FCWT with the consideration of 

limited energy storage, to allow it to exhibit SG dynamic behavior to support the grid, 

and also allow it to work under both grid-connected and stand-alone condition.  

(3) Develop a short circuit fault emulator in HTB system to test the system performance 

under various types of faults for any fault duration. 

(4) Propose control strategies for VSG to enhance the transient stability of the power 

system. 
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3 Emulating Full-Converter Wind Turbine in HTB Testing 

Environment 

This chapter presents a FCWT emulator using a single converter to be implemented in the 

HTB system [136]. As explained in Section 2.3, an amplifier type of the emulator is used for this 

application. The developed FCWT emulator is used for testing the proposed and existing FCWT 

control algorithms. 

3.1 Developed Full-Converter Wind Turbine Model 

3.1.1 Overview 

As stated in Section 2.2.1, the implemented power system component model of an converter 

emulator determines its output characteristics. Figure 3-1 shows the block diagram of the model 

of the developed FCWT emulator. The model consists of both physical parts and control strategies 

of the FCWT, including the wind model, permanent magnet synchronous generator (PMSG) model, 

converter model, and their controls. Each part of it can be designed and implemented 

independently. This flexibility enables the evaluations of different converter topology, generator 

structure or control methods. The detailed models also help to set physical constraints like DC-

link voltage, converter output duty-ratios, and thus make the emulation more realistic. Detailed 

explanations of the physical models, corresponding control strategies, and calculation of the 

emulation current reference are presented in the following parts. 
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Figure 3-1. Block diagram of the model of the wind turbine emulator [136]. 

 

3.1.2 Wind Model 

The wind power input can be characterized by: 

(6-1)  𝑃𝑤 =
1

2
𝜌𝐴𝑟𝑐𝑝(𝜆, 𝛽)𝑣𝑤

3 (3-1)  

where 𝑃𝑤  is the power extracted from the wind; 𝜌  is the air density; 𝑐𝑝  is the performance 

coefficient or power coefficient; 𝜆 is the tip speed ratio – the ratio between blade tip speed 𝑣𝑡 and 

wind speed 𝑣𝑤 ; 𝛽 is the pitch angle of rotor blades; and 𝐴𝑟 is the area covered by the rotor. 

Numerical approximations have been developed to calculate the coefficient: 

(6-2)  𝑐𝑝 = 0.73 (
151

𝜆𝑖
− 0.58𝛽 − 13.2) 𝑒18.4/𝜆 (3-2)  

with 
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(6-3)  
𝜆𝑖 =

1

1
𝜆 − 0.02𝛽

+
0.003
1 − 𝛽3

 
(3-3)  

 

The parameters are extracted from [137]. 

3.1.3 PMSG Model 

For the electrical model, the variations of the rotor magnetics are neglected including the 

saturation, eddy current and field current dynamics. Single-mass model is used to demonstrate the 

shaft torque in the mechanical model of PMSG. Other detailed models could also be easily 

implemented. The overall PMSG model in dq axis is: 

(6-4)  
𝑑

𝑑𝑡
𝑖𝑑 =

1

𝐿𝑑
𝑣𝑑 −

𝑅

𝐿𝑑
𝑖𝑑 +

𝐿𝑞

𝐿𝑑
𝑝𝜔𝑟𝑖𝑞 (3-4)  

(6-5)  𝑑

𝑑𝑡
𝑖𝑞 =

1

𝐿𝑞
𝑣𝑞 −

𝑅

𝐿𝑞
𝑖𝑞 +

𝐿𝑑
𝐿𝑞
𝑝𝜔𝑟𝑖𝑑 −

𝜓𝑝𝜔𝑟
𝐿𝑞

 
(3-5)  

(6-6)  𝑇𝑒 = 1.5𝑝[𝜓𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞] (3-6)  

(6-7)  𝑑

𝑑𝑡
𝜔𝑟 =

1

𝐽
(𝑇𝑒 − 𝑇𝑚 − 𝐹𝜔𝑟) 

(3-7)  

where 𝑣𝑑 , 𝑣𝑞, 𝑖𝑑, 𝑖𝑞 are the stator voltage and current of PMSG in the d-q axis; 𝑅 is the stator 

winding resistance; 𝐿𝑑 , 𝐿𝑞  are the inductance in the d-q axis; 𝜔𝑟  is the angular velocity of the 

rotor; 𝑝 is the pole pair number of the generator; 𝜓 is the amplitude of the flux induced by the 

permanent magnet in the rotor; 𝑇𝑒 and 𝑇𝑚 are the electrical and mechanical torque; 𝐹 represents 
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the friction coefficient; and finally 𝐽 is the combined moment of inertia of the wind turbine blades 

and generator. 

3.1.4 Converter Model 

The two-level active voltage source AC-DC converter is chosen for both generator side 

converter and grid side converter. If the switching ripple is omitted, it can be modeled as: 

(6-8)  𝑣𝑑 = 𝑑𝑑 ∙ 𝑣𝐷𝐶 (3-8)  

(6-9)  𝑣𝑞 = 𝑑𝑞 ∙ 𝑣𝐷𝐶  (3-9)  

(6-10)  𝑖𝐷𝐶 = 𝑑𝑑 ∙ 𝑖𝑑 + 𝑑𝑞 ∙ 𝑖𝑞 (3-10)  

where 𝑑𝑑 and 𝑑𝑞 are the duty ratio in d-q axis; 𝑣𝑑, 𝑣𝑞 and 𝑖𝑑, 𝑖𝑞 are the voltage and current on the 

AC side; 𝑣𝐷𝐶and 𝑖𝐷𝐶 are the voltage and current on the DC side.  

In some PMSG applications, the generator side converter uses a topology of diode rectifier in 

series with DC/DC chopper, whose model is explained in [15-17], and could be implemented as 

well. 

The DC-link capacitor can be modeled as: 

(6-11)  𝑖𝐷𝐶
′ = 𝑖𝐷𝐶 − 𝐶

𝑑𝑉𝐷𝐶
𝑑𝑡

 (3-11)  

where 𝑖𝐷𝐶and 𝑖𝐷𝐶
′  are the DC-link currents of generator side and grid side converter; 𝑉𝐷𝐶is the DC-

link voltage; and  𝐶 is the DC-link capacitance. 
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 For the application of low-voltage ride through, a brake chopper which consists of a resistor 

and an active switch is installed in the DC-link. During voltage sags, the FCWT system may not 

inject the full captured wind power. The chopper would engage and dissipate excessive energy and 

prevent the over-voltage of the DC-link. The model can be expressed as: 

(6-12)  𝑖𝑏𝑐 =
𝑉𝐷𝐶
𝑅

 (3-12)  

where 𝑖𝑏𝑐 is the current flow through the brake resistor, and R is the resistance. The brake chopper 

is served as an emergency back-up plan, and is only enabled when the VDC is above the preset 

threshold. 

3.1.5 Control Functions Implemented into the FCWT Emulator 

Shown in Figure 3-1, the control functions are essential parts of the FCWT emulator. They 

define the behaviors that the FCWT exhibit as wind speed changes and during grid disturbances. 

As reviewed in Chapter 2 Section 5, the control of FCWT is usually based on the internal current 

closed-loop controller, and FCWT can inject captured wind energy to the power grid. There are 

different active and reactive power support scheme proposed in the literature, and they are included 

in the developed FCWT emulator to showcase their impact to the power system in the HTB system. 

Figure 3-2 shows the control functions that are implemented into the controller, it included 

the existing current closed-loop control, and proposed voltage closed-loop controls. In this section, 

only current closed-control loop will be presented, and the voltage closed-loop control will be 

introduced and discussed in the next chapter. 
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Figure 3-2. Implemented control functions of the FCWT emulator. 

 

The controls have a hierarchical structure shown in Figure 3-3. The current level control is 

common current feedback control, with cross-coupling terms and voltage feed-forward loop. And 

it is the same for both generator and grid side converters. For power level control, the power output 

is controlled by the generator side converter, and the DC-link voltage is controlled by the grid side. 

The output power reference is given by the sum of maximum power point tracking (MPPT) 

algorithm and frequency support control. Figure 3-4 gives the block diagram of the power 

reference. 
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Figure 3-3. Hierarchical control diagram of full-converter wind turbine [136]. 
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Figure 3-4. Power reference calculation with MPPT and frequency support function [136]. 
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The frequency support part in Figure 3-4 has two aspects. Droop control branch is realized 

through the deviation of the grid frequency and provides the primary frequency control. Inertia 

emulation branch is realized by the derivative of the grid frequency change, mimicking the 

mechanical model of the generator – if the speed of the generator reduces, the kinetic energy must 

be released. 

MPPT methodology is explained in Figure 3-5. Without frequency disturbance, the frequency 

support function will not trigger, the operating point would converge to the intersection point of 

the wind power curve and the power reference curve, which is the maximum power point. De-

loading characteristics can also be realized by this approach in the same principle.  

Reactive power control functions includes constant power factor control, constant reactive 

power control, point of interconnection (POI) voltage control, and virtual impedance. The control 

diagram is shown in Figure 3-6. 

 

 

Figure 3-5. MPPT characteristic of FCWT emulator [136]. 
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Figure 3-6. Implemented reactive power control for FCWT emulator [136]. 

 

3.1.6 Emulator Output Current Reference 

The current reference shown in Figure 3-1 is scaled from the current output of the grid side 

converter. Figure 3-7 shows the two possible ways to set the current reference. One is virtual grid 

current igrid determined by the grid voltage, the filter, and the converter output voltage, and the 

other is the current reference igrid
* directly obtained from the output of the DC-link voltage 

controller.  

These two approaches generally speaking have the same performance since the current 

controller is used to ensure that the output current equals the reference. The former one has two 

cascaded current controllers, which might introduce delay in the dynamics. And the latter one 

ignores the physical model, which makes the model less realistic.  

In practice, the latter approach is implemented. The emulator current controller is designed to 

have the same bandwidth as the current controller of the grid side converter. Constraints are set to 

represent the limitations of the converter duty ratio. 
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Figure 3-7. Approaches of current reference selection. 

 

3.2 Simulation Results 

In order to verify the models above, a detailed switching model of 2 MW PMSG wind turbine 

was simulated to compare with the emulator in the Simulink platform. The parameters of the 

PMSG and the passive components are from [12].  

Figure 3-8 shows the responses of both models under a turbulent wind speed pattern. Only per 

unit values were given since the HTB represents the emulated power system by sharing the same 
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per unit value. In Figure 3-8, high available wind power indicates high wind speed, and turbine 

speed would be controlled to accelerate to reach optimum tip ratio. Also, when the available power 

is larger than the rated, the pitch control would start to work to reduce the power input. The two 

models are well-matched with each other. Thus, the emulator model can be considered as valid.  

3.3 Experiment 

The experiment topology is developed based on the HTB based two-area system, as shown in 

Figure 2-3(a). This typical power system allows the testing of inter-area power and frequency 

oscillation [20]. The system parameters and configuration are shown in Table 3-1. The 

transmission line is represented by the inductors. The original system parameter in per unit value, 

designed impedances in the rescaled base, and actual measured impedances are given in Table 3-2 

 [46]. 

3.3.1 Case I: Short Period Variable Wind Speed Test 

In this case, G1 as infinite bus and G2 as wind turbine are feeding an actual load, other 

converter emulators are not connected in. Figure 3-9 shows the experiment waveforms when the 

wind speed changes. The pattern of the wind speed could be either stored in the controller of the 

wind turbine emulator, or could be specified by the central controller with CAN bus 

communication in real-time. The waveform indicates that the wind turbine emulator can track to 

the maximum working point, and if the wind speed is larger than the rated value, the pitch control 

can be activated to limit the output power. 
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Figure 3-8. Simulation waveforms of wind turbine output power, turbine speed and pitch angle 

by swiching model and emulator model [136]. 
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Table 3-1. Parameters of the experiment platform. 

Parameter Value Parameter Value 

Original Sys. Voltage 20 kV Energy Capacity of 

the Storage 1 min 
Original Gen. Power 900 MVA 

Original FCWT Power 630 MVA SoCsetpoint 0.75 p.u. 

Rescaled Sys. Voltage 85.7 V SoCMPPT 0.3 p.u. 

Rescaled Gen. Power 2552 VA SoCpitch 0.95 p.u. 

Rescaled Wind Power 1876 VA Inertia (H) G1 6.5 s 

Rescaled Power Base 1876 VA VSG Emulated H  6.5 s 

Rescaled Voltage Base 85.7 V FCWT Turbine H 4 s 

System Freq. Base ωs 60×2π rad/s Switching Freq. fsw 10 kHz 

 

Table 3-2. Transmission Line Impedances of the Experimental Platform 

Name  Original Rescaled Measured 

L1-6  0.0417 p.u. 2.8 mH + 0.0648 Ω 

1.1 mH + 0 Ω 

2.4 mH + 0.15 Ω 

1.3 mH + 0.06 Ω 
L2-6  0.0167 p.u. 

L6-7  0.01 p.u. 0.7 mH + 0.026 Ω 0.7 mH + 0.045 Ω 

L7-9  0.11 p.u. 7.6 mH + 0.285 Ω 8 mH + 0.39 Ω 

L3-10  0.0417 p.u. 2.8 mH + 0.0648 Ω 2.7 mH + 0.16 Ω 

L4-10  0.0167 p.u. 1.1 mH + 0 Ω 0.7 mH + 0.02 Ω 

L9-10 0.01 p.u. 0.7 mH + 0.026 Ω 0.7 mH + 0.02 Ω 
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Figure 3-9. Experimental waveforms when emulated wind speed change [136]. 

 

3.3.2 Case II: Long Period Variable Wind Speed Test 

In order to demonstrate the available control strategies for operation of the future >50% 

renewable penetration system, a simplified generator-wind-storage system has been established. 

The capacities of the wind farm and energy storage are chosen to be 58% and 32% respectively, 

based on the presumed annual profiles to provide the 50% total energy consumption [3, 4]. The 

actual wind speed time sequence is generated by NREL TurbSim [5]. The experimental result is 

shown in Figure 3-10. The load was constant with a various wind condition. The storage was 

controlled in current mode to compensate the active power variation of the wind farm, thus the 

generators have less power fluctuations due to the storages.  
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Figure 3-10. Experimental results of FCWT operation in a 50% penetration system. 

 

3.3.3 Case III: Frequency Support by Wind Turbine Test 

This case emulates the performance of the frequency support control of the wind turbine. The 

experiment setup is that G1 as thermal generator and G2 as wind turbine provide power to L7 as a 

programmable load. Figure 3-11 presents the waveform of the grid frequency, turbine speed, and 

wind turbine emulator output power when a large sudden load change occurs at 0 s. If frequency 

support control is enabled, the wind turbine would generate additional power to damp the grid 

frequency change, and this released kinetic energy from the turbine rotor would cause it to 

decelerate. This experiment case shows that the wind turbine emulator could react to grid 

disturbance as expected, and both control strategies can achieve good frequency performance in 

terms of the oscillation peak of the grid frequency and its changing rate. 
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3.3.4 Case IV: Two Area System Frequency Oscillation Test 

In order to compare the results of the two area system frequency oscillation, three scenarios 

are tested. Four-generator scenario (G1, G2, G3, G4) serves as the benchmark. And G4 is then 

substituted to FCWT model with and without frequency control. The grid disturbance is triggered 

by a 0.1 p.u. load change at L7. Figure 3-12 gives the system frequency performances.  

The waveforms show that if without frequency control, the wind penetration deteriorates the 

system frequency response in both areas. But it can achieve similar results with the four generator 

case with proper control.  

 

 

Figure 3-11. Experiment waveforms of grid frequency, turbine speed, and wind turbine output 

power during frequency drop disturbance [136]. 
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Figure 3-12. Experiment waveforms of grid frequencies of two area system with wind turbine 

penetration [136]. 

 

The two area system topology also offers the opportunities to emulate interaction of the wind 

turbines inside of a wind farm. It is achieved by switching G3, G4 and L7 to the FCWT emulator. 

Thus the whole system becomes a remote wind farm connect with the power system through a 

long transmission line. 

3.3.5 Case V: Operation with Low Terminal Voltages 

In Figure 3-13, various grid voltage levels were applied to the wind turbine emulator in the 

HTB experimental set-up, the wind turbine emulator can maintain the output active power, and 

generate different reactive power to support the PCC voltage. While the voltage is under certain 

threshold, the active current limiting and reactive current injection will be enabled to help with the 
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grid voltage recovering. The overall current is within 1 p.u. to prevent damage the converter itself. 

3.4 Discussion 

The FCWT emulator has been developed and tested in the HTB two-area-system shown in 

Figure 2-3(a), and continued to serve as critical components in the following expansion of the HTB 

emulations in the three-area-system and four-area-system shown in Figure 2-3(b) and (c). and 

participate in different level of system level controls, as shown in Figure 3-14. It has also been 

used to develop and demonstrate other advanced power system controls including inertia 

scheduling and wide area damping control [54]. 

 

 

Figure 3-13. Experimental results of FCWT fault operation. 
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Figure 3-14. System level control of the FCWT.  

 

3.5 Conclusion 

A converter based full-converter wind turbine emulator is designed and implemented using 

the multi-converter emulation experiment scenario. A well-controlled physical model of wind 

turbine is adopted as the reference for the emulator converter to follow. Thus the emulator behaves 

in the same way as the modeled wind turbine both under steady-state and transient conditions.  

Simulation and experiment results demonstrate the performance of the emulator during 

variable wind speed, and verified the feasibility of this emulation approach. A two area system of 

the converter emulators is built to test the interactions between the wind turbine and power system 

components in real-time, offering possibilities to test various grid control of the system. 
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4 Virtual Synchronous Generator Control of Full Converter Wind 

Turbine with Short Term Energy Storage 

As mentioned in section 2.5.2, there has been a lot of literature working on the VSG controlled 

voltage sources. But most of them have assumed the energy storage has infinite capacity to support 

all the control objectives.  

This chapter mainly focuses on the virtual synchronous generator control of the full converter 

wind turbine. The system structure and detailed control strategies are introduced. The testing result 

using the previous developed FCWT emulator in the HTB has presented [138, 139]. 

4.1 Structure and Basic Control Principle 

FCWT adopts an ac/dc/ac structure to transfer the captured energy from the wind generator to 

the grid, as shown in Figure 4-1. A minute-level energy storage is connected to the dc link of the 

system to help with maintaining the dispatch command.  

 

 

MSC GSC

SSC To grid
 

 

Figure 4-1. FCWT system under study [139]. 
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As the output characteristics of the WT is determined by the emulated generator, the grid side 

converter (GSC) determines the output power by the grid condition and system dispatch. The other 

converters will then maintain the power balance of the WT generation system. The storage side 

converter (SSC) controls the dc link voltage by charging or discharging the energy storage. The 

machine side converter (MSC) controls the wind generation to match the load condition of the 

GSC by adjusting the turbine rotating speed. 

The operation diagram of the VSG controlled FCWT is shown in Figure 4-2. In VSG normal 

operation, the State of Charge (SoC) of the storage will be controlled around SoCsetpoint. If it is 

higher, that means MSC generates more power than needed by the GSC, the power generation 

should be reduced, and vice versa. When SoC drops low, the control will make transition to VSG 

MPPT mode: in which MSC generates the maximum available power, and GSC will output the 

generated power while preserving the SG dynamics including inertia response, voltage-var control, 

etc. On the other hand, when SoC is too high, pitch control will be enabled to reduce the power 

intake. E1 to E4 in the figure indicates the energy capacity for each SoC section.  

Figure 4-3 gives the overall operation state machine. When a grid fault occurs, power 

electronic converters based generation cannot sustain as large fault currents as SGs do. During the 

grid fault, the control will transition to focus on protecting itself, and back to normal VSG control 

when the fault is cleared. The system will trip and shutdown itself if: 1) the fault lasts too long for 

the FCWT to ride-through; 2) an internal fault is detected in the FCWT; 3) grid voltage and 

frequency are outside of normal operation limits for an extended period of time as grid code 

requires [140]; or 4) the system operator commands it to shut down. 
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Figure 4-2. Operation diagram for VSG controlled FCWT [139]. 
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Figure 4-3. Operation state machine for VSG controlled FCWT [139]. 
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The detailed control strategies for each component and sizing discussion of the energy storage 

will be presented next in subsection 4.3. 

4.2 Detailed Control Strategy 

4.2.1 Grid Side Converter Control 

In order to mimic the behavior of a synchronous generator, the GSC measures the output 

currents idq of the WT, and feeds them into the emulated generator’s model. The voltage and 

angular frequency outputs from the model Vdq* and ωr are closed-loop controlled by the GSC, thus 

it can be considered to supply steady voltage source to the power system or directly to the loads in 

the stand-alone operation. The overall control diagram is shown in Figure 4-4(a), where 𝑑𝑑𝑞 and 

𝑑𝑎𝑏𝑐 are the PWM control duty ratios of the GSC in dq and abc axis respectively. 

The output voltage reference is calculated through the electrical model of the generator, shown 

in Figure 4-4(b), where efd is the field winding voltage, 𝑥𝑑 and 𝑥𝑞 are the synchronous reactances; 

𝑥𝑑
′  and 𝑥𝑞

′  are the transient reactances; 𝑇𝑑𝑜
′  and 𝑇𝑞𝑜

′  are the transient open-circuit time constants, 

𝐸𝑑
′  and 𝐸𝑞

′  are transient back EMFs; 𝑢𝑡  is the terminal voltage amplitude; 𝑈𝑡𝑟𝑒𝑓  is the voltage 

reference given by the operator; 𝐾𝐴 and 𝑇𝑒 are the gain and time constant of the excitation system; 

and 𝐸𝑓𝑚𝑎𝑥 and 𝐸𝑓𝑚𝑖𝑛 are the maximum allowable field voltage. 
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Figure 4-4. GSC control to mimic SG behavior in power system: (a) overall control diagram; (b) 

electrical model; (c) mechanical model [139]. 

 

The output frequency is determined by the mechanical model of the virtual generator, 

demonstrated in Figure 4-4(c). Pcmd is the power reference given by the system dispatch. M and D 

are the inertia constant and the mechanical friction caused damping factor, 𝜔𝑟 is the rotor speed, 

𝜔𝑠 is the synchronous speed and the angle θ is given to the park transformation of the converter 

control.  Different from spinning generators, the parameters of the VSG can be set arbitrarily 

according to the system needs, and be changed dynamically in real time. In this dissertation, actual 

generator’s parameters are chosen to show the feasibility of the control. The stability analysis can 

be found in [107-109] 
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The GSC synchronizes with the grid frequency by using the swing equation provided by the 

mechanical model of the virtual generator, without the help of the PLL. The inertia-frequency 

response can be intrinsically emulated through the VSG control. In addition, power system controls 

developed for SGs can also be implemented, including: automatic generation control (AGC), 

automatic voltage regulator (AVR), power system stabilizer (PSS), etc [49]. 

By implementing the electrical and mechanical model of the SG, the output power of the WT 

is determined by the grid and load condition. It is possible that the output power exceeds the 

maximum available power from the wind, and it is also possible that the GSC will absorb power 

when the grid frequency is higher than the nominal value.  

A power limiting function is then proposed and implemented in Figure 4-4(c) for these two 

possible scenarios. Pmax is the maximum power allowed in steady state, while the minimum power 

output is 0, keeping it from going negative. DΔω is the steady state error of the inertia block, and 

it is added to the limits in order to compensate the error. Thus in grid-connected condition, the 

implemented limiter will keep the GSC electric power output Pelec_GSC within the thresholds in the 

steady state. 

Pmax is set to be the smaller value between the power dispatch value Pcmd and the maximum 

available wind power PMPP, as it is preferable to output its maximum power when it cannot fulfill 

the demand during low wind period. PMPP is determined as the WT reaches maximum power point 

(MPP) through the sector identification explained in subsection 4.2.3. If the FCWT operates in the 

VSG MPPT mode shown in Figure 4-2, the MPP limiter would be in effect. In this case, the WT 

can achieve the MPPT control, while maintaining generator dynamics during the transients.  
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During stand-alone operation, the WT is operating without a voltage source provided by the 

traditional generator. Thus its output power is solely determined by the load. In this situation, if 

the output electrical power of the virtual generator becomes larger than the Pmax provide by the 

limiter, the output frequency will be greatly decreased. Under Frequency Load Shedding (UFLS) 

mechanism will then be triggered and reduce the system load until the generation-load system 

reaches equilibrium. If still not enough, the FCWT will be shut down to prevent further damage. 

The inner closed-loop output voltage control of the GSC can be implemented by single loop 

or double loop with inner current control loop. The control block diagram for d axis is shown in 

Figure 4-5 as an example, where Lf is the output inductor filter of the GSC, decoupling indicates 

the cross-coupling terms for current and voltage control in dq axis, LPF indicates the signal 

conditioning low pass filter for the measured voltage and currents, 𝜔𝑓𝑐 and 𝜔𝑓𝑣 are the cut-off 

frequency for the corresponding LPFs. The detailed controller design can refer to [34, 141, 142]. 
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Figure 4-5. GSC inner closed-loop output voltage control for d axis: (a) single loop; (b) double 

loop with inner current control loop [139]. 
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4.2.2 Storage Side Converter Control 

The control diagram is shown in Figure 4-6, where Vdc is the dc link voltage of the FCWT, 

Vdc* is the voltage reference, and Idc_stor* is the current reference of the energy storage converter. 

Thus, the dc voltage can be maintained with allowable SoC. Since the storage is being charged and 

discharged whenever there is power unbalance between the MSC generation and GSC 

consumption, a relatively fast responding storage technology is recommended for the application. 

The detailed model and corresponding current controls should be selected and designed according 

to the specific storage technology [115, 143, 144], and will not be further discussed in this 

dissertation. 

4.2.3 Machine Side Converter Control 

MSC controls the rotor speed of the turbine, and thus the power balance can be achieved by 

moving the operating point along the wind characteristic curve. As discussed in Section II, SoC of 

the storage is used as the input of the speed loop, as shown in Figure 4-7.  
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Figure 4-6. SSC control to maintain dc voltage [139]. 
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The speed reference ω* is generated by a PI controller. The PI parameters are chosen based 

on the operating condition of the wind turbine [112]. As shown in Figure 4-8, there are two possible 

operating points A and B, given a certain desired output wind power: A is to the left of the MPP, 

with positive curve slope, requires positive PI parameters; while B is to the right with negative 

curve slope, and requires negative PI parameters. Note that operating point A is in Sector 1 and B 

is in Sector 2. Whenever a sector transition is identified, the PI controller will undergo a procedure 

to keep the output ω* the same as the previous control cycle, and hence provide a smooth transition 

between the sectors. 

Typically operating in Sector 2 provides more kinetic energy for dynamic response, and it is 

easier to design the PI parameters of the turbine speed control [112]. However, due to the 

mechanical constraints, the wind turbines are not designed to operate at high rotational speed. In 

this dissertation, a maximum rotor speed 𝜔𝑚𝑎𝑥
∗  is assumed to be 1.2 p.u. Thus, the wind turbine 

has to be able to operate in both Sectors. Then the turbine speed is controlled by inner current loop 

[145, 146], which will not be discussed further. 
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Figure 4-7. MSC control to adjust turbine rotor speed [139]. 
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The identification of the operating point sector is important for the control and operation of 

the MSC, otherwise the wrong PI parameters will be applied. Intuitively, the operating sector can 

be recognized by the relationship of the changing direction of the wind power Pw and rotor speed 

ω, as shown in (4-1). However, since wind turbines usually have relatively large inertia constant, 

the actual wind power is hard to be estimated through the measurement of the electric power Pe 

and the rotor speed. Misidentification will be caused by external noise and measurement error of 

the rotor speed.    

{
∆𝑃𝑤 ∙ ∆𝜔 > 0 Sector 1
∆𝑃𝑤 ∙ ∆𝜔 < 0 Sector 2

 (4-1)  

 

 

 

Figure 4-8. Wind characteristic curve showing the sector definition and pre-determined MPP 

curve 𝑓(𝜔) [139]. 
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Therefore, identification criterion (4-2) is proposed in this chapter, by directly using 𝜔 and Pe, 

and the pre-determined MPP curve 𝑓(𝜔), which is the dashed curve shown in Figure 4-8. This 

curve is usually provided by the manufacturer and used for the traditional maximum power point 

tracking (MPPT) control, and it is usually close to the cubic function of the rotor speed (𝑓(𝜔) ≈

𝑘𝜔3). Thus, when the electric power output of the wind turbine is above the supposed MPP curve, 

it is working under Sector 1 and vice versa. 

{
𝑃𝑒 > 𝑓(𝜔) Sector 1
𝑃𝑒 < 𝑓(𝜔) Sector 2

 (4-2)  

The electric power output 𝑃𝑒  is the difference of the wind power and the kinetic energy 

absorbed by the turbine rotor.  Misidentification happens when the turbine is accelerating in Sector 

1, or decelerating in Sector 2, in other words, when the turbine is moving toward the MPP. It is 

tolerable because: (1) when it reaches closer to the MPP, the wind power input does not change 

much, and (2) it helps to slow down the speed control loop by applying the opposite direction to 

the controller. When the identification is constantly switching between the sectors, it can be 

recognized that the WT is already working under the MPP, and no additional wind power is 

available.  

4.2.4 Pitch Control 

If SoC of the energy storage rises to the SoCPitch threshold in Figure 4-2, or the electrical power 

of MSC is larger than the rated power Prated due to a wind gust, then pitch control is enabled to 

spill the excess power. The control is adopted as shown in Figure 4-9, in which β represents the 

pitch angle. 
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Figure 4-9. Pitch control to reduce excessive power [139]. 

 

4.2.5 Discussion on Sizing of the Energy Storage 

As described in previous sections, in VSG normal operation, the energy storage helps to 

maintain the dispatched power until the SoC reaches the thresholds of SoCMPPT and SoCPitch. Thus 

the energy capacities E2 and E3 in Figure 4-2 will be utilized to: (1) provide the energy to control 

the rotor speed of the WT to the desired value during the transients; and (2) carry out the power 

demanded by the load in stand-alone condition, or the commands dispatched from the system 

operator. 

Since E2 and E3 is to provide or absorb kinetic energy for the WT rotor during VSG normal 

operation, the design of them have to be large enough to accelerate or decelerate the wind turbine 

to its new operating point when wind speed or system command change. Since most modern 

FCWTs have the inertia constant around 3-5 s [147, 148], E2 and E3 should at least be designed to 

that value, with some margin to provide the GSC output power during the transient. Higher margin 
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would allow slower transient that the wind turbine move to its new steady-state operating points, 

which lead to lower strain on the mechanical and power electronics devices. In this chapter, a 

minimum 12 s rated power of energy capacity of E2 and E3 is selected to ensure the smooth 

operation of the rotor speed control loop. 

On the other hand, E2 will also be used to compensate the power difference between the GSC 

and MSC during low wind conditions. If the command power is less than the available wind power, 

the energy capacity of E2 should be able to provide the requested power until the next control cycle. 

Thus, E2 should size: 

 (4-3)  

where 𝑇𝑖𝑛𝑡𝑒𝑟𝑣 is the time interval of wind forecast and system dispatch, and 𝐸𝑟𝑟𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 is the error 

percentage of the wind forecast. Assuming 5 minutes’ interval [116], and 10% error [149], 30 s 

rated power of energy capacity should be designed for E2. As it is always easier to spill extra power 

through pitch control, E3 can be designed smaller to support the dynamics of the GSC and MSC, 

without considering the impact of forecast. 

Below the SoCMPPT threshold, the WT will transition to the VSG MPPT mode, in which power 

limiter in Figure 4-4 will take action and reduce the output power of the wind turbine to the 

maximum available. This mode allows the system operator to reset the setpoint according to the 

forecast. The storage will begin to recharge when the wind power is larger than the demanded 

power. So E1 should be designed to provide the energy for SG dynamics during contingencies. 

The required energy for the inertial response to a frequency event can be estimated as 

𝐸2𝑑𝑒𝑠𝑖𝑔𝑛 = 𝑇𝑖𝑛𝑡𝑒𝑟𝑣 × 𝑃𝑟𝑎𝑡𝑒𝑑 × 𝐸𝑟𝑟𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  
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𝐸1𝑑𝑒𝑠𝑖𝑔𝑛 = 𝐻 ×
𝜔𝑠
2−𝜔𝑛𝑎𝑑𝑖𝑟

2

𝜔𝑠
2 × 𝑃𝑟𝑎𝑡𝑒𝑑      (4-4)  

where H is the inertia constant of the emulated SG, 𝜔𝑠 is the synchronous speed, and 𝜔𝑛𝑎𝑑𝑖𝑟 is the 

lowest frequency during the event. Assume the inertia constant is 5 s, and the maximum frequency 

contingency to be 58 Hz, E1 should at least be 0.33 s rated power of energy. However, considering 

that the FCWT system can no longer be controlled if the storage runs out of energy during the 

transient. E1 can be designed with larger margin. 

Similarly, E4 is the energy buffer for the surplus power. Its design depends on the speed of the 

pitch control. Assuming the pitch rate is 8 °/s [150], 2 s will be enough for the power to reduce to 

the GSC demands, and hence the E4 energy capacity can be designed around it, with some margin 

to avoid over-charging the energy storage 

Overall, E1 to E4 together can be designed to minute-level, which is the assumption of this 

dissertation.  

4.3 Experimental Results 

4.3.1 Experiment Platform 

The experiment topology is developed based on the Kundur two-area system, where the 

generators on bus 2 and bus 3 are replaced by the FCWTs with 70% of the original power rating, 

such that the wind power takes around 40% of the total generation capacity. Figure 4-10 shows 

the topology of the hardware platform of the emulated two area system. The system parameters 

and configuration are shown in Table 3-1 and Table 3-2. 
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Figure 4-10. Emulated two-area system topology [139]. 

 

4.3.2 Control Parameters 

Thus, the controller parameters can be designed to make sure the converters can operate stably 

individually and together in the system, by repetitively applying the stability methods, and check 

whether if the system is stable under the control parameters under trial. 

The single loop voltage control with current feedforward compensation is used for the grid-

connected and stand-alone operation experiments, as shown in Figure 4-5(a), and the designed 

control parameters are given in Table 4-1. 

 

Table 4-1. Voltage Closed-Loop Controller Parameters 

Controller Parameters Values 

Voltage controller 
Kvp 0.016 

Kvi 5 

Current measurement filter ωfc 1000×2π rad/s 

Voltage measurement filter ωfv 300×2π rad/s 
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4.3.3 Grid Connected Operation of Proposed VSG Control 

The experimental results Figure 4-11 to Figure 4-13 are obtained with only area 1 enabled, 

where G1 and FCWT2 are supplying load at bus 7. Figure 4-11 shows the experimental results 

with mode transitions of the VSG operation. Before t1 the wind speed is set to be 10 m/s, and SoC 

is lower than the SoCMPPT, the FCWT is working under VSG MPPT mode. At t1, wind speed 

changes to 12 m/s, and rotor speed starts to change to capture more wind power, and charge the 

energy storage. At t2 it is able to fulfill the system dispatch, and transition to VSG normal operation. 

After t3 wind speed changes back to 10 m/s, and FCWT can continue to output the system 

command power until t4 when SoC drops to the lower threshold. It transitions back to the VSG 

MPPT mode. Wind speed changes to 15 m/s at t5; at this moment, the captured wind is larger than 

the rated value, so pitch control quickly enables to spill the excess power, and back to the normal 

operation again. 

Figure 4-12 shows the experimental results with the FCWT transition between the VSG MPPT 

mode and the traditional MPPT mode without VSG control, in which the green shaded area 

indicates the WT is working under VSG MPPT mode, and white area indicates the WT is working 

under traditional MPPT mode. Both control modes can track the wind variation and output 

maximum power. But the behavior is different when there is a large disturbance in the grid, such 

as the load step change in Figure 4-12. Traditional MPPT will not change its power injection, while 

VSG MPPT will provide the inertia response in the first few seconds, and help with the frequency 

control of the system. 

Figure 4-13 shows the performance of the system under variable wind conditions, the time 
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Figure 4-11. Experimental results of grid-connected operation with mode trasitions between 

VSG normal operation and VSG MPPT mode [139]. 

 

sequence of the wind speed is generated by NREL TurbSim [151]. A higher SOCMPPT (0.6 p.u.) is 

assumed in this result just for displaying the transition from VSG MPPT mode to VSG normal 

operation. After transition at around 150 s, SOCMPPT changed back to 0.3 p.u. to avoid frequent 

mode transition. In the beginning, the output power is limited to the maximum available power, 

and the storage charges when the wind power is higher than the system power dispatch (0.8 p.u.); 

once the SoC is high enough and reaches the predetermined threshold, the WT transitions to normal 

operation and carries out the dispatch commands. 

Dynamic performance of the VSG control is shown in Figure 4-14. The results are obtained 

with the full two-area system. It shows the power and frequency response at bus 3, when a load 
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step-change of 0.6 p.u. power happens around 1 s. Traditional MPPT has the worst result, while 

VSG normal operation and VSG MPPT modes provide active power injection during the frequency 

event, and hence less frequency nadir.  

4.3.4 Stand-alone Operation of Proposed VSG Control 

Figure 4-15 shows the experimental result with the FCWT2 supplying the load on bus 7 by its 

own, while G1 and all components in area 2 were disconnected. In VSG normal operation, the 

FCWT can adjust the rotor speed and pitch angle according to the load condition, even if the load 

is larger than the available wind power. When SoC drops to the threshold, the power limit block is 

enabled, and system frequency drops rapidly. The UFLS protection triggers to reduce the load until 

it is within the available power. The settings are presented in Table 4-2 [152].  

 

 

Figure 4-12. Grid-connected operation experimental results to compare traditional MPPT and 

VSG MPPT mode [139]. 
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Figure 4-13. Experimental results with variable wind speed showing VSG mode carry out the 

dispatch commands [139]. 

 

 

Figure 4-14. Experimental results of dynamic performance of the VSG control showing better 

frequency responses [139]. 
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Table 4-2. Under-frequency Load Shedding Settings 

Load Shedding Block 
Percentage of Load 

Dropped 
Frequency Set Point 

1 5.3 59.1 

2 5.9 58.9 

3 6.5 58.7 

4 6.7 58.5 

5 6.7 58.3 

 

 

Figure 4-15. Experimental results of FCWT in stand-alone condition, adjusting the operating 

points to accommodate the load [139]. 
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If the load does not have UFLS protection equipped, the output frequency will keep dropping 

until the event is then considered as an internal fault, and the FCWT will trip itself and go into the 

shutdown state as shown in Figure 4-3.  

4.3.5 Current Limiting Operation During Fault 

To protect the converters from the large fault current, current limiting techniques should be 

adopted to restrain the output current. For the cases with single voltage control sloop, larger virtual 

impedance can be used to reduce fault current [38]. If the voltage is closed-loop controlled through 

double loop with inner current loop, current reference limits are set to keep the output current 

within the safety limits. As shown in Figure 4-16, the control can successfully reduce the fault 

current.  

 

 

(a)                                                                        (b) 

Figure 4-16. Fault operation experimental results showing FCWT terminal voltage and output 

current. (a) without current limits, (b) with current limits [139]. 
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4.4 Conclusion 

VSG control allows the renewable energy sources to behave like the traditional SG to operate 

in the power system. However, the energy balance of the generation system is not well discussed 

in the previous literature. This chapter develops the VSG control for FCWTs, with the 

consideration of a short term minute-level energy storage integrated on the dc link: 

• GSC performs the VSG control, with power limitations for the extreme conditions. 

• SSC regulates the dc link voltage and provides a buffer for the power generation and grid 

interfacing control. 

• The power balance is maintained by turbine speed control though MSC, according to the 

SoC of the storage. 

With the proposed VSG control, FCWTs can display the same output behavior as a 

conventional SG. This allows FCWTs to: 

• Be able to operate in both grid-connected and stand-alone conditions, allowing non-

MPPT operation of the wind turbine according to load or dispatch command by the 

system operators, while providing grid support functions; 

• Be able to identify when it is already at the maximum available power, and limit the 

output power in VSG MPPT control mode to avoid deep discharging of the energy 

storage, while still exhibiting SG dynamic behavior. 

The schemes for power limiting and the identification of the operating conditions are proposed, 

and the energy capacity required for the energy storage is discussed in this chapter. 
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The experiments are conducted in a power electronics based power system emulation platform; 

results demonstrate the feasibility and effectiveness of the control.  
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5 Short Circuit Fault Emulation in HTB Testing Environment  

As a fault mode in electric power systems, short circuit faults create voltage sags and over-

currents, which cause excessive stresses on power devices and sometimes lead to cascading 

failures. As a result, the critical clearing time (CCT) of a short circuit fault can be used to assess 

the severity of a contingency, and the transient stability of a power system [153]. The fault 

responses of various devices have also become an important performance and robustness indicator. 

Grid codes from different countries require the fault ride through capabilities for grid connected 

generation units [99, 122]. 

To enhance the testing capability of the HTB, a short circuit fault emulator has been developed 

in this chapter. The operation principle and detailed control strategy are presented. Simulation and 

experimental results are also given to demonstrate the feasibility of the emulator [79]. 

5.1 Operating Principle and Hardware Requirement for the Fault Emulator Converter  

Similar to the configuration in Figure 2-14(d) which uses a shunt connected impedance, the 

proposed method uses a shunt connected VSC to generate the short circuit event. As shown in 

Figure 5-1, the fault emulator converter is directly connected to the fault location F. In the normal 

operation, all the switching devices in the VSC are blocked, so that there is no current flowing 

through the fault location. The EUT and other parts of the system work in the steady state. When 

the fault is triggered, the VSC starts to generate PWM voltage and control the voltage of the fault 

location as if the shunt impedances were connected. 
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Figure 5-1. Schematics of the shunt connected fault emulator converter [79]. 

 

Figure 5-2 shows the equivalent circuit of the fault emulation converter. The outside circuits 

including the EUT and other part of the system can be considered as a Thevenin equivalent voltage 

source, EThev, and an equivalent impedance, ZThev. The filter of the fault emulator is represented as 

impedance Zfil, and the voltage and current at the fault locations are VF and IF respectively. The 

fault emulator converter terminal voltage is its duty ratio d times half of the dc link voltage Vdc. 

Different short circuit events can be emulated by the fault emulator, including single-line-to-

ground, double-line-to-ground, line-to-line, and three-phase fault. The fault currents caused by 

short circuits may be several times larger than the normal operating currents and are determined 

by the system impedance between the generator (or other source) voltages and the fault. Since all 

fault currents flow through the VSC, components with a sufficient power rating must be chosen to 

conduct the fault current, and the dc link of the emulator converter should be able to absorb active 

power. In addition, the dc voltage of the emulator VSC should be high enough to ensure it does 

not behave as a diode rectifier during normal operation.  
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Figure 5-2. Equivalent circuit of the fault emulator converter. 

 

Since the fault emulation is achieved by controlling the voltage and current at the fault 

locations, the voltage and current sensors should be placed at the fault location F in Figure 5-1 as 

the feedback to the VSC controller. Line-to-line voltage measurement is enough for the line-to-

line and three-phase faults, but for the cases of single and double line-to-ground faults, phase-to-

ground voltages have to be measured. The detailed algorithms for the fault voltage and current 

control will be discussed in the next section. 

5.2 Control Strategies for the Fault Emulator Converter  

5.2.1 Single-line-to-ground Fault 

Since the three phases can be similarly represented, phase a to ground fault is chosen as an 

example in the following discussion. The constraint equation is:  

{

𝑉𝐹𝑎 = 𝑍𝑒𝑚𝑢𝑎 ∙ 𝐼𝐹𝑎
𝐼𝐹𝑏 = 0

𝐼𝐹𝑐 = 0
  

where Zemu_a is the emulated grounding impedance (impedance between phase a and ground). 
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Figure 5-3 shows the control block diagram of the fault emulator for single-line-to-ground 

fault. The reference voltage VF_a* is calculated by the measured current and impedance value, and 

the duty ratio of the phase a switches da can be obtained through a PI controller. If zero impedance 

short circuit is emulated, 0 is given as the voltage reference. During the fault period, the switches 

of phase b and c are blocked, so the current can only flow in phase a.   

The control block diagram with the electrical model is given in Figure 5-4. The left part is the 

controller, which includes a PI regulator, a control delay block z-1, current and voltage 

measurement low pass filters LPFV and LPFI, and the emulated grounding impedance Zemu. The 

output to the electrical model is the duty ratio d. Through VSC model, and external impedance 

model, the voltage and current at the fault location VF and IF can be obtained. In this case, VF is 

phase voltage Va, and IF is phase current Ia. 

 

-
PI

VF_a*

VF_a

ZEmu_a

IF_a da

dc

block
db

block
 

Figure 5-3. Control block diagram of single-line-to-ground fault for phase a [79]. 
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Controller
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/

LPFI
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Figure 5-4. Single phase control block diagram with electrical model in abc axis. 

 

5.2.2 Double-line-to-ground Fault 

Similar to the single-line-to-ground fault, the constraint equation is: 

{

𝑉𝐹𝑎 = 𝑍𝑒𝑚𝑢𝑎 ∙ 𝐼𝐹𝑎
𝑉𝐹𝑏 = 𝑍𝑒𝑚𝑢𝑏 ∙ 𝐼𝐹𝑏
𝐼𝑐 = 0

  

Since the equivalent circuit of the two phases are identical to each other, the controller design 

can be derived directly from the single-line-to-ground case. The control diagram of phase a and b 

to ground is shown in Figure 5-5. The VSC controls the voltage of the phase a and b in accordance 

with the grounding current, while phase c is blocked with no current. Similarly, the model for each 

phase is the same as Figure 5-4. 



82 

 

 

-
PI

VF_a*

VF_a

Zemu_a

IF_a da

dc

block

-
PI

VF_b*

VF_b

Zemu_b

IF_b db

 

Figure 5-5. Control block diagram of double-line-to-ground fault for phase a and phase b [79]. 

 

5.2.3 Line-to-line Fault 

The constraint equation of phase a to phase b short circuit is: 

{

𝐼𝐹𝑎 + 𝐼𝐹𝑏 = 0

𝑉𝐹𝑎 − 𝑉𝐹𝑏 = 𝑉𝐹𝑎𝑏 = 𝑍𝑒𝑚𝑢𝑎𝑏 ∙ 𝐼𝐹𝑎
𝐼𝐹𝑐 = 0

  

where Zemu_ab is the emulated impedance between the phases. According to the equivalent circuit 

in Figure 5-2, the relationship of the fault current can be derived as: 

𝐼𝐹_𝑎 + 𝐼𝐹_𝑏 =
(𝐸𝑡ℎ𝑒𝑣_𝑎+𝐸𝑡ℎ𝑒𝑣_𝑏)−(𝑑𝑎+𝑑𝑏)∙

𝑉𝑑𝑐
2
 

𝑍𝑡ℎ𝑒𝑣+𝑍𝑓𝑖𝑙
     

Thus, the fault current can be regulated by controlling the sum of the duty ratio from both 

phases, note as common mode duty ratio dcm. On the other hand, the fault voltage is the difference  
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Figure 5-6. Control block diagram of line-to-line fault for phase a and b [79]. 

 

of the voltage between phase a and b, and it can be regulated by the difference of the duty ratio 

from both phases, note as differential mode duty ratio ddm. Voltage and current of the fault emulator 

converter can be controlled independently, and the control diagram of the line-to-line fault is 

shown in Figure 5-6.  

The modeling and analysis of the voltage and current control loops can also be done 

independently. The current closed-loop model is shown in Figure 5-7, while the voltage closed-

loop model is the same as Figure 5-4. 

5.2.4 Three-phase Short Circuit Fault 

The three-phase short circuit fault is the most severe condition, and usually there is no 

impedance between shorted phases. Since it is a balanced condition with no zero sequence voltage, 

the boundary equation is: 
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Figure 5-7. Current control block diagram for line-to-line fault with electrical model in abc axis. 

 

𝑉𝐹_𝑎 = 𝑉𝐹_𝑏 = 𝑉𝐹_𝑐 = 0  

Due to the balanced nature of the case, the corresponding control can be conducted in dq axis, 

as shown in Figure 5-8, where VF_d, VF_q, IF_d, IF_q indicate the voltage and current measurements 

in dq axis. For more general cases, fault impedance between shorted phases can also be emulated. 

Since the control loop model has already been well established [33, 56, 57], it will not be discussed 

in this chapter. 

5.3 Hardware Based Testing Platform and Corresponding Controller Design 

The experiment topology is the HTB two-area system shown in Figure 2-3(a) [49]. The system 

parameters and base values are rescaled to allow the fault current, as shown in Table 5-1. 

 



85 

 

 

-
PI

VF_d*

VF_d

+ dd

-
PI

VF_q*

VF_q

- dq

ωLfilIF_q

ωLfilIF_q

 

Figure 5-8. Control block diagram of three-phase fault control in dq axis. [79] 

 

5.3.1 Control Parameter Design 

Based on the parameters of the testing platform, inductive impedances are dominant for the 

Thevenin equivalent circuit. Assuming fault location is at bus 9, Thevenin inductance is in the 

range of 1.5 mH to 10 mH depending on the connection of the generators.  

For single-line-to-ground, double-line-to-ground, and line-to-line faults, the voltage closed 

loop controller models are the same, hence the controller design would be the same. Figure 5-9 

shows the open loop bode plot of VF/VF*, and the designed parameters are shown in Table 5-2, the 

control loops are stable with around 100 Hz bandwidths. Figure 5-10 shows the closed loop bode 

plot of VF/EThev. The higher Thevenin impedance ZThev, the better control performances the control 

allows. At 60 Hz line frequency, the attenuation is lower than -23dB, which means the controlled 

fault voltage amplitude VF can be reduced to at most 10% of the pre-fault line voltage. 
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Table 5-1. Parameter Setting of the Experimental Platform 

Name  Value Name Value 

L1-6  2.5 mH System voltage base 68.6 V 

L2-6  0.7 mH System power base 1633 VA 

L6-7  0.7 mH System frequency base 60 Hz 

L7-9  7.6 mH Converter sw. freq. 10 kHz 

L3-10  2.5 mH G1/G3 inertia constant 6.5 s 

L4-10  0.7 mH G2/G4 inertia constant 6.175 s 

L9-10 0.7 mH   
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Figure 5-9. Bode plot of open loop transfer function of VF/VF* in abc axis for single-line-to-

ground, double-line-to-ground and line-to-line fault emulations. 

 

 

Figure 5-10. Bode plot of closed loop transfer function of VF/EThev in abc axis for single-line-to-

ground, double-line-to-ground and line-to-line fault emulations. 
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The current control loop of line-to-line fault emulation can be designed similarly for a 

bandwidth higher than 100 Hz, given Thevenin inductance between 1.5 mH to 10 mH. The open 

loop bode plot of IF/VF* is given in Figure 5-11, and the corresponding controller parameters are 

in Table 5-2. The closed loop bode plot of IF/EThev is given in Figure 5-12.   With higher than -70 

dB attenuation, the current difference between phases can be controlled to zero regardless of the 

fault voltages. 

For three-phase-faults, the terminal voltage is controlled in dq axis, thus the fundamental 

frequency component can be controlled to zero without steady-state errors. The control parameters 

are shown in Table 5-2, based on the previous control parameter design method [33, 56, 57]. 

5.3.2 Discussion 

From previous analysis, the proposed short circuit emulator and the corresponding control 

strategies perform well with higher Thevenin impedance of external circuit. For example, the 

inaccuracy of the voltage control in abc domain will rise to 50%, when the Thevenin impedance 

reduces to 0.4 mH. This is because when the filter impedance dominates the Thevenin impedance, 

the magnitude of  
𝑍𝑓𝑖𝑙

𝑍𝑇ℎ𝑒𝑣+𝑍𝑓𝑖𝑙
 will be closer to 1, and VF will be more susceptible to the disturbance 

of EThev. 
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Figure 5-11. Bode plot of open loop transfer function of IF/VF* in abc axis for line-to-line fault 

emulation. 

 

 

Figure 5-12. Bode plot of closed loop transfer function of IF/EThev in abc axis for line-to-line fault 

emulation. 
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Table 5-2. Controller Parameters for Short Circuit Fault Emulators 

Fault Type  Parameter Name Value 

General 
Voltage measurement LPF cut-off frequency 300 Hz 

Current measurement LPF cut-off frequency 1000 Hz 

Single-line-to-ground 
Proportion regulator Kp 0.023 

Integration regulator Ki 23 

Double-line-to-ground 
Proportion regulator Kp 0.023 

Integration regulator Ki 23 

Line-to-line 

Voltage loop proportion regulator Kp 0.023 

Voltage loop integration regulator Ki 23 

Current loop proportion regulator Kp 0.8 

Current loop integration regulator Ki 4 

Three-phase Proportion regulator Kp 0.016 

Integration regulator Ki 5 
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To address this issue, one way is to reduce the filter inductance, or add a capacitor to allow 

more decoupling of the Thevenin source and the short circuit fault emulator. The control 

parameters will be adjusted accordingly. The other way is to introduce a current feed-forward 

compensation to the control loops shown in Figure 5-8, as introduced in [33].  

5.4 Experimental Results 

5.4.1 Verification of Proposed Short Circuit Emulator 

In order to demonstrate the control performances of the proposed short circuit emulator, only 

two converters in the hardware testing platform are used: the converter emulator at bus 3 is 

controlled as open loop voltage source to generate the three-phase voltage, and the converter 

emulator at the location of L9 is configured as the fault emulator.  

Figure 5-13 and Figure 5-14 show the voltages and currents of single-line-to-ground fault with 

1 Ω grounding impedance with pure resistive and pure inductive respectively. The currents and 

voltages have the same amplitudes. In the resistive case, the current and voltage are in phase; while 

in the inductive case, the phase difference is 90°. 
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Figure 5-13. Experimental results of single-line-to-ground short circuit with 1 Ω grounding 

resistance [79]. 

 

 

Figure 5-14. Experimental results of single-line-to-ground short circuit with 1 Ω pure inductive 

grounding impedance [79]. 
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Figure 5-15 gives the results of the double-line-to-ground fault with no grounding impedances. 

The amplitude difference is caused by the inductance difference between the phases. Figure 5-16 

gives the results of the line-to-line short circuit scenario with no fault impedance. As discussed in 

the control design section, the control conducted in abc axis is subjected to the disturbance with 

the grid voltage disturbance Ethev. The emulated fault voltage in the experimental result is less than 

10% of the pre-fault voltage, as expected. 

Figure 5-17 and Figure 5-18 show the voltages and currents at the fault location for the three-

phase short circuit. Results show that the voltage controller of the fault emulator can control the 

voltage to zero. 

 

 

 

Figure 5-15. Experimental results of double-line-to-ground short circuit [79]. 



94 

 

 

 

Figure 5-16. Experimental results of line-to-line short circuit [79]. 

 

a 

 

Figure 5-17. Experimental measurement of voltages for three-phase short circuit [79]. 
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Figure 5-18. Experimental measurement of currents for three-phase short circuit [79]. 

 

5.4.2 Application to Determine Critical Clearing Time 

Compared with previous fault emulators mentioned in the literature, one advantage of the 

proposed method is that it can flexibly create different faults to investigate the impact of a short 

circuit fault to a system with multiple components, rather than a single equipment. 

To demonstrate this unique capability, the proposed fault emulator is then integrated with the 

load emulator at bus 7 in the two-area system shown in Figure 2-3(a). All four generator emulators 

have 0.7 p.u. active power output, and load active power consumptions are 1.8 p.u. and 1.0 p.u. at 

bus 7 and 9 respectively. A series of three phase short circuit faults are activated by the emulator 

at bus 9 with different fault clearing times. Inter-area oscillations are then triggered between Area 

1 and Area 2, causing the output power and frequency to fluctuate.  

The system variables are extracted with a step time of 0.01 s. The frequencies of the generators 

are given as an example to demonstrate the oscillation, as shown in Figure 5-19. A longer clearing 
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time causes larger oscillation transient. At around 120 s in the figure, with 0.32 s fault clearing 

time, the oscillation is significantly larger than the previous ones, and the system takes much longer 

to restore to normal operation. This is due to the power swing after the power system disturbance 

is too large, and the generators at different areas lose synchronization, identified as out-of-step. 

Thus, the CCT of the system for transient stability is 0.32 s. 

Figure 5-20 shows the oscilloscope measurements of the test sequence. When fault is applied, 

the voltage at bus 7 is controlled to be zero, and the voltage at all other locations are reduced. The 

fault current is supplied by the generators. The system oscillation can also be observed. 

 

 

Figure 5-19. Experimental results of a series three-phase short circuit fault at two-area system to 

determine the critical clearing time. 
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Figure 5-20. Oscilloscope measurements of a series three-phase short circuit fault at two-area 

system to determine the critical clearing time. 

 

The experimental configuration in the hardware test platform with the proposed fault emulator 

is then reproduced in the MATLAB/Simulink, with simulated three phase short circuit fault in the 

circuit at the same location. The simulated output powers and frequencies are shown in Figure 

5-21 and Figure 5-22, and zoomed-in waveform of the experimental results are presented side-by-

side for comparison.  

For the same fault clearing time, the simulated power and frequency have around the same 

magnitude and damping ratio as the experimental results. And they both have significantly larger 

transients for the case of 0.32 s clearing time. The out-of-step status could be further verified by 

the angle difference results shown in Figure 5-23. The 0.32 s result did not go back to the original 

value after the transient. 
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Figure 5-21. Simulated generator frequencies in cases of three-phase short circuit faults with 

different fault clearing time, in comparison with experimental results. 

 

 

Figure 5-22. Simulated generator output powers in cases of three-phase short circuit faults with 

different fault clearing time, in comparison with experimental results. 
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Figure 5-23. Simulated angle differences between G1 and G3, in cases of three-phase short 

circuit faults with different fault clearing time. 

 

5.5 Conclusion 

This chapter proposes a method to emulate four basic types of short circuit fault by using a 

shunt connected converter. The fault emulator can achieve the same voltage and current boundary 

condition as the short circuit faults, and essentially has the same impact to the system under tests. 

The hardware requirements and limitation of the converter are presented. The control strategies 

of the fault emulator converter and the design considerations are discussed. Experimental results 

have shown the feasibility of the method. An example of using it to determine the critical clearing 

time of a system is presented to demonstrate its unique capability than previous technologies. 

Compared with the solutions shown in Figure 2-14, the proposed shunt connected VSC is more 

flexible than (a) generator, (b) transformer, and (d) shunt impedance solutions, but the 



100 

 

 

disadvantage is that it still requires high rating converters to conduct the fault current. Unlike the 

(c) series connected VSC method, the proposed shunt connected VSC focuses on reproducing the 

short circuit event. It cannot reproduce the cases like harmonics or voltage swells without modeling 

of other components in the system like generators or non-linear loads, but it can help to investigate 

the system impact of various short circuit faults with ease. 
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6 Enhancing Power System Transient Stability by VSG Control 

Using Wide-area Measurements 

In Chapter 4, the basic operation of VSG controlled FCWT has been developed, and controls 

have been implemented to limit the output current during voltage sags. In Chapter 5, a short circuit 

fault emulator was developed in the HTB to create disturbance for system transient stability studies. 

This chapter continues the research work on the fault operation of VSG controlled FCWT to 

improve the system transient stability without considering current limits, and next chapter will 

focus on the impact of limited current. 

6.1 Previous VSG Control Method to Improve System Stability 

As surveyed in Chapter 2, one benefit of the VSG control is that the parameters of the VSG 

and its traditional SG counterpart do not need to be the exactly same all the time. With the 

flexibility of the power electronics control, the exhibited impedance or inertia may adaptively 

change during grid disturbances, to achieve better system stability performance. 

 Previous literature has suggested to increase the VSG inertia when the output frequency is 

moving away from the nominal value; and decrease it when the output frequency is returning to 

the nominal value [123-127]. The basic idea is shown in Figure 6-1 and Table 6-1, where 𝐽 is the 

emulated moment of inertia of the SG, 𝑓 is the output frequency of the VSG, and 𝑓𝑛 is its nominal 

value (50 or 60 Hz). This way, the system frequency is harder to deviate, but easier to recover. 

Better system damping is thus achieved. The design of the adaptively changed VSG parameters 

has also been discussed in [124, 125].  
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Figure 6-1. Adaptive frequency changing method during transient to minimize frequency 

disturbance. 

 

 

Table 6-1. Truth Table of Adaptive Inertia VSG Control 

𝑑𝑓/𝑑𝑡
> 0 

𝑓 − 𝑓𝑛  
> 0 

Operating 

Conditions 

Inertia Value 

Selection 
Anticipated Result 

T T 
Accelerating,  

Faster than 𝑓𝑛 
𝐽𝑙𝑎𝑟𝑔𝑒 

Harder to  

move away from 𝑓𝑛 

T F 
Accelerating,  

Slower than 𝑓𝑛 
𝐽𝑠𝑚𝑎𝑙𝑙  

Easier to return to 

𝑓𝑛 

F T 
Decelerating,  

Faster than 𝑓𝑛 
𝐽𝑠𝑚𝑎𝑙𝑙  

Easier to return to 

𝑓𝑛 

F F 
Decelerating,  

Slower than 𝑓𝑛 
𝐽𝑙𝑎𝑟𝑔𝑒 

Harder to  

move away from 𝑓𝑛 

 

 



103 

 

 

However, these methods do not guarantee the benefits to the system transient stability, where 

the first or first several swings of rotor angle oscillation are of the most significance. Especially 

on a more complex system when multiple generation units are present, and system faults may 

occur at any location, these methods may have detrimental effect depending on specific scenarios. 

6.2 Limitation Previous Methods and Proposed Control 

To demonstrate the limitation of previous adaptive inertia methods, a test case based on 

Kundur’s two area system is selected. The system topology is shown in Figure 2-3(a). In the test 

system, G1 and G3 are traditional SG, without the capability to change its physical moment of 

inertia, while G2 and G4 are replaced with renewable sources controlled as VSG of the identical 

capacities. In this demonstration, all four generation sources have the same output power, while 

the load L7 has larger power consumption than the load L9, and thus the active power is 

transferring from bus 9 to bus 7. Two possible short circuit fault locations are assumed at load bus 

7 or load bus 9.  

The emulated VSG inertia of G2 and G4 follows the simplest hysteresis scheme in [123], as 

described in in Table 6-1. But the concept shown in this demonstration would apply to other more 

complex methods. From the truth table, emulated moment of inertia value can be expressed as: 

𝐽 = {
𝐽𝑙𝑎𝑟𝑔𝑒       (𝑓 − 𝑓𝑛)

𝑑𝑓

𝑑𝑡
> 0

𝐽𝑠𝑚𝑎𝑙𝑙       (𝑓 − 𝑓𝑛)
𝑑𝑓

𝑑𝑡
< 0

    

For each fault location, three cases are simulated. ① Base case is when both VSG operate 

normally with constant inertia. ② Control G4 case is when the adaptive inertia control is applied 
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to G4, and G2 has constant inertia. ③ Control G2 case is when the adaptive inertia control is 

applied to G2, and G4 has constant inertia.  Figure 6-2(a) shows the results when the fault occurs 

at load bus 7, and Figure 6-2(b) shows the results when the fault occurs at load bus 9. 

 Figure 6-2(a) shows that both Control G4 and Control G2 cases have better system damping 

than the base case, in terms of the rotor angle difference between G2 and G4. This matches with 

the analysis with existing literature. The difference is the amplitude of the first swing: Control G4 

case has slightly larger peak, and Control G2 has slightly lower peak than the base case. This is 

due to the limitation of the adaptive inertia control scheme. From the zoomed-in figure of the 

frequency chart, the green shaded area indicates the period when fault occurs. Due to the low 

voltages in the system, the frequencies of all SGs and VSGs increase. But G1 and G2 accelerate 

faster than G3 and G4, because the fault is closer to them. Thus, if G4 increases its inertia during 

the transient, its frequency ramp rate becomes lower. Frequency difference between G2 and G4 is 

larger, and hence the angle difference is larger. Vice versa, with the Control G2 case, smaller 

frequency difference yields smaller angle difference.  
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(a) Fault location at load bus 7                (b) Fault location at load bus 9 

Figure 6-2. Simulation results comparison of applying adaptive inertia control of VSG with 

different fault location. 

 

The difference may have relatively minor impact when the fault is at load bus 7, but not when 

fault is at load bus 9. In Figure 6-2(b), if the angle difference is large enough to be unstable, the 

SGs and VSGs are out of step, shown as the red shaded area. This indicates that this inappropriate 

adaptive inertia control may reduce the critical clearing time (CCT) of the fault, and system out of 

step protection has less reaction time to prevent it.  
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Figure 6-3. System frequency after load bus 9 fault. 

 

Figure 6-3 shows the system frequency response after a short circuit fault at load bus 9. All 

generation units are oscillating against each other, revolving around the center of inertia (COI) 

frequency , fCOI defined as: 

𝑓𝐶𝑂𝐼 =
∑𝐽 ∙ 𝑓

∑ 𝐽
   

where J is the moment of inertia value of each generation unit, and f is their output frequency.  

 The COI frequency is calculated as the weighted average of the system frequency. It can be 

considered as an index to monitor the dynamics of an individual unit with respect to the general 

trend of the overall system. At steady-state, the settling frequency of all parts of the system will be 

the same as the COI frequency, which will not be exactly as its nominal value. 
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Thus, it is intuitive to improve the existing adaptive inertia VSG methods by using the COI 

frequency. By knowing whether other parts of the system are faster than itself or not, the individual 

VSG may decide to catch-up with the COI frequency faster using a smaller inertia value, or resist 

deviating from the COI frequency using a larger inertia value. The adaptive inertia criterion in (6-

1) is modified as: 

𝐽 = {
𝐽𝑙𝑎𝑟𝑔𝑒       (𝑓 − 𝑓𝐶𝑂𝐼)

𝑑𝑓

𝑑𝑡
> 0

𝐽𝑠𝑚𝑎𝑙𝑙       (𝑓 − 𝑓𝐶𝑂𝐼)
𝑑𝑓

𝑑𝑡
< 0

   

 Figure 6-4 shows the simulation results using the improved method with the same three cases 

as the results in Figure 6-2. For faults at both locations, the proposed control always tries to reduce 

the frequency differences between VSG and the other generation units. All controlled cases have 

better performance than the base cases, demonstrating the effectiveness of the proposed method. 

6.3 Experiment Implementation and Test Results 

6.3.1 Experimental platform 

The previous simulation results only showed that the proposed method may enhance the 

power system transient stability using an adaptive inertia scheme with the system COI frequency 

information. But there are still many other considerations in practical implementation. In this 

section, experimental implementation and test results are given to validate the proposed control. 

The experiments are conducted in the HTB with two-area system configuration developed in 

Chapter 5, and the parameters are shown in Table 5-1. In the test cases, all four generation units 
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(a) Fault location at load bus 7      (b) Fault location at load bus 9 

Figure 6-4. Simulation results of applying improved adaptive inertia control of VSG with 

different fault location. 

 

have the same 0.7 p.u. active power output, while load consumption at L7 and L9 has two 

configurations. Table 6-2 shows the CCT for four test cases, with all four generation units using 

traditional SGs as the base case. Since Case 1 and Case 4 have much longer CCT, the system will 

be much less likely to have transient stability issue.  

6.3.2 Implementation of Proposed Control 

A LabVIEW based central controller is used to monitor, record data from, and issue 

commands to the system components. In practice, the proposed control uses wide-area 

measurements to calculate the COI frequency. It is inevitable to have time delay for the real-time 

control, while Figure 6-4 showed the simulation results when there is unrealistically no delay. In 
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Table 6-2. Base case configuration and CCT 

Case 1 Value Case 2 Value 

L7  1.8 p.u. L7  1.8 p.u. 

L9  1.0 p.u. L9  1.0 p.u. 

Fault Location  L7 Fault Location  L9 

CCT  0.54 s CCT  0.30 s 

Case 3 Value Case 4 Value 

L7  1.0 p.u. L7  1.0 p.u. 

L9  1.8 p.u. L9  1.8 p.u. 

Fault Location  L7 Fault Location  L9 

CCT  0.30 s CCT  0.54 s 

 

 

Figure 6-5. Measured time-delay. 
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experiments, the frequencies of all four generators are collected by the central controller, and the 

COI frequency is calculated and sent to the VSG unit. The measured time-delay for the 

experimental platform is shown in Figure 6-5. Artificial delay can be added to the central controller 

to investigate its impact as demonstrated in the next section. 

In addition, a dead-band is added to reduce the impact of measurement errors: 

𝐽 =

{
 
 
 

 
 
 𝐽𝑙𝑎𝑟𝑔𝑒          𝑓 − 𝑓𝐶𝑂𝐼 > 𝑓𝑡ℎ,

𝑑𝑓

𝑑𝑡
> 𝑅𝑂𝐶𝑂𝐹𝑡ℎ

𝐽𝑙𝑎𝑟𝑔𝑒          𝑓 − 𝑓𝐶𝑂𝐼 < −𝑓𝑡ℎ,
𝑑𝑓

𝑑𝑡
< −𝑅𝑂𝐶𝑂𝐹𝑡ℎ

𝐽𝑠𝑚𝑎𝑙𝑙          𝑓 − 𝑓𝐶𝑂𝐼 > 𝑓𝑡ℎ,
𝑑𝑓

𝑑𝑡
< −𝑅𝑂𝐶𝑂𝐹𝑡ℎ

𝐽𝑠𝑚𝑎𝑙𝑙          𝑓 − 𝑓𝐶𝑂𝐼 < −𝑓𝑡ℎ,
𝑑𝑓

𝑑𝑡
> 𝑅𝑂𝐶𝑂𝐹𝑡ℎ

𝐽𝑛𝑜𝑟𝑚          |𝑓 − 𝑓𝐶𝑂𝐼| < 𝑓𝑡ℎ, |
𝑑𝑓

𝑑𝑡
| < 𝑅𝑂𝐶𝑂𝐹𝑡ℎ

           

where 𝑓𝑡ℎ is the threshold for frequency deviation, and 𝑅𝑂𝐶𝑂𝐹𝑡ℎ is the threshold for rate of change 

of frequency. The thresholds are positive. In the following experiments, 𝐽𝑙𝑎𝑟𝑔𝑒 is two times of its 

original value 𝐽𝑛𝑜𝑟𝑚 (6.175 s for G4), 𝐽𝑠𝑚𝑎𝑙𝑙  is half of 𝐽𝑛𝑜𝑟𝑚, 𝑓𝑡ℎ is 0.02 Hz, and 𝑅𝑂𝐶𝑂𝐹𝑡ℎ is 0.01 

Hz/s. These parameters can be better designed according to the specific system configuration and 

utility requirements 

6.3.3 Experimental Results 

In the tests, G4 is changed to a VSG unit, with different control methods applied to study their 

impact. Table 6-3 shows the measured CCT for the test cases. Previous literature method using 𝑓𝑛 

as criterion may be beneficial or detrimental to the system transient stability, depending on the 

power flow and fault location. Proposed method using 𝑓𝐶𝑂𝐼 as criterion can always improve the 

transient stability. However, if the communication is not as fast, the proposed method may also 
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get worse than the base case.  

 Figure 6-6 shows the frequency of G2 and G4 for Case 3 with 0.26 s fault clearing time using 

literature method. The exhibited inertia of the VSG as G4 is also plotted in the same figure for 

better demonstration. For comparison, the result using the proposed method with 0.36 s fault 

clearing time is shown in Figure 6-7.  

 In Figure 6-6 using literature method, G4 is controlled to have larger inertia immediately after 

the fault, since its output frequency is deviating from 60 Hz. This will create larger angle difference 

between G2 and G4, which is easier to reach the unstable equilibrium point and causes the 

 

Table 6-3. Measured CCT with different control method 

Control Methods Case 1 Case 2 Case 3 Case 4 

Base case 0.54 s 0.30 s 0.30 s 0.54 s 

Literature method using 𝑓𝑛 0.52 s 0.38 s 0.26 s 0.64 s 

Proposed method using 𝑓𝐶𝑂𝐼   0.60 a 0.42 s 0.36 s 0.98 s 

Proposed (100 ms additional delay) 0.54 s 0.42 s 0.32 s 0.96 s 

Proposed (200 ms additional delay) 0.52 s 0.42 s 0.30 s 0.96 s 

Proposed (300 ms additional delay) 0.52 s 0.42 s 0.26 s 0.96 s 
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generator sources out of step. In Figure 6-7 using the proposed method, G4 has an instance of 

larger inertia, then change to smaller inertia due to the time delay. This way, smaller angle 

difference leads to better transient stability performance. 

 The results also explain the effect of time delay in Table 6-3. If there are longer time delays, 

the instance of larger inertia may get longer, which will have the same effect as previous literature 

method during the first swing. The minimal time delay required for the proposed method will be 

studied in the future. 

 Figure 6-8 shows the result comparison for Case 2 with 0.28 s fault clearing time. With larger 

closed-loop time delay, system damping for oscillation may get worse. But for the same 

disturbance, the proposed method still has a better result than the literature method in terms of 

small-signal stability. 

 

 

Figure 6-6. Experimental result for Case 3 with 0.26 s fault clearing time using literature method. 
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Figure 6-7. Experimental result for Case 3 with 0.36 s fault clearing time using proposed method. 

 

Figure 6-8.  Experimental result comparison for Case 2 with 0.28 s fault clearing time with 

different controls.  
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6.4 Practicality Discussion 

There have been previous studies on time delay of wide-area closed-loop control in the actual 

power system. The operational delay (caused by measurement or others) is around 51 ms, and the 

communication delay is around 36 ms [154]. Thus, it is reasonable to consider that closed-loop 

delay is less than 0.1 s at present, which is around the experimental set-up. The newer technology 

Time Sensitive Network (TSN) [155] may reduce the communication delay to around 2 ms [156]. 

The closed-loop delay may still likely be reduced further in the future.  

In addition, extensive Phasor Measurement Units (PMU) deployment and its communications 

networks are required to determine the COI frequency, which is the trend of the future grid, and 

can be assumed available. A lower cost frequency measurement device Frequency Disturbance 

Recorder (FDR) may also be deployed [157]. As an alternative, the COI frequency can also be 

estimated by different system observing techniques [158]. 

In some systems where the fault locations do not make difference, the proposed method may 

not be needed. A control based on local information may be adopted to improve system transient 

stability. 

6.5 Conclusion 

This chapter proposes to use the center of inertia frequency as the reference criterion for the 

adaptive inertia scheme of virtual synchronous generator control. The proposed method provides 

enhancement to power system transient stability, whereas the existing methods may have adverse 

effect. Experimental results are presented to show the feasibility of the proposed method. 
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7 Impact of Limited Current to System Transient Stability and Its 

Mitigation 

In the previous chapter, it is assumed that the output current of the VSG converter does not 

have any limit, which may not be the case in practical implementation. This chapter will introduce 

the impact of limited current to system transient stability, and propose methods to mitigate the 

impact. 

7.1 Transient Stability Analysis in a Single Machine Infinite Bus System 

This section starts to analyze the impact of current limitation in a single machine infinite bus 

system, as shown in Figure 7-1, where a VSG controlled power electronics source is connected to 

an infinite bus through a paralleled line. The disturbance is a three-phase short circuit fault, and 

relay protection trips one line to isolate the fault.  

Figure 7-2 shows a typical locus of the VSG’s output power and rotor angle as the base case 

when there is no current limit. To simplify the analysis, the assumptions include: a very slow 

excitation system, and large X/R ratio for the line impedance, and negligible transient and sub-

transient dynamics for VSG control. The system starts from point A, with no active power output 

from the VSG. The rotor angle with respect to the infinite bus is 0°. Output power is then ramped 

to 0.7 p.u., at point B, before the short circuit fault triggers. The curve AB in Figure 7-2(d) follows 

the power angle characteristic estimated by: 

𝑃 =
𝐸𝑉

𝑋
sin 𝜃   
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Infinite Bus

VSG

X1

X2

X3S1 S2

 

Figure 7-1.  Simulation configuration for single machine infinite bus system. 

 

where 𝑃 is the output power, 𝐸 is the internal excitation voltage for the VSG, 𝑋 is the equivalent 

impedance of the system, which includes the line impedance and the emulated impedance of the 

VSG. 

The fault current is around 3 p.u., at point B’, and output electrical power reduces to around 

0.2 p.u.  Since the output electrical power is less than the emulated mechanical input of the VSG, 

the frequency increases, and rotor angle increases, until the fault is cleared at point C. The red 

shaded area in Figure 7-2(d) defined by point B, B’ and C is the acceleration area, which represents 

the emulated kinetic energy stored in the rotor during the fault [49]. 

After the fault is cleared, the output power rises to another power angle curve different than 

curve AB, since the equivalent impedance is higher due to the line trip. The output electrical power 

is more than the mechanical input, the frequency starts to decrease. The rotor angle will rise to its 

peak value at point D, and decrease as the frequency of the VSG continues to decrease. The blue 

shaded area in Figure 7-2(d) is the deceleration area, which represents the kinetic energy released. 

The acceleration area is equal to the deceleration area, because the kinetic energy stored during 

the fault is all released at point D. After some oscillations, the operating point stabilized to point 
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E.  

In this event, the potential deceleration area is larger than the acceleration area, and the system 

is stable after the fault. However, with a delayed fault clearing, the acceleration will be larger, the 

kinetic energy may not be completely expended before the electrical power output drops to be 

lower than the mechanical input. Beyond that, the frequency starts to increase again, and can lead 

to loss of synchronization. From the power angle diagram, once the acceleration area is larger than 

the deceleration area, the system is subject to transient stability issues. 

Figure 7-2(e) shows the output current of the VSG during this event. During the fault, due to 

the low external voltage, the VSG may output larger current than its rated value. The amplitude is 

determined by the excitation, fault location, and VSG’s internal impedance. After the fault, the 

output current may also be higher than rated. The amplitude is determined by the power angle 

characteristics (7-1). In the following sections, the response of a system with limited current will 

be analyzed 

7.2 Impact of Limited Current in Single Machine Infinite Bus System 

 Figure 7-3 shows the voltage closed-loop control diagram for the VSG. Reference for the 

voltage output 𝐸𝑡_𝑟𝑒𝑓 is calculated by current measurements  𝐼𝑚𝑒𝑎𝑠 and the model of the emulated 

SG. If there are no limitations on the output currents, the current reference input to the controller 

𝐼𝑡_𝑙𝑖𝑚𝑖𝑡𝑒𝑑 will be equal to the output of the voltage controller 𝐼𝑡_𝑟𝑒𝑓.  The output of the current 

controller is the duty-ratio of the power electronics converter 𝑑𝑜𝑢𝑡. 
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Figure 7-2.  System response for a short circuit fault in a single machine infinite bus system, 

without current limitation. 
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There are multiple options on how to limit the current, as shown in Figure 7-4. For a given 

output current 𝐼𝑡, the output current may be proportionally reduced to 𝐼𝑡_𝑝, or prioritize the current 

components in certain axes. In the figure, d-axis priority 𝐼𝑡_𝑑 and q-axis priority 𝐼𝑡_𝑞 are shown. 

There are also other limiting methods proposed in the literature [129, 130, 159]. 

After the output current is limited, the output voltage 𝐸𝑡 will also be changed. It will not be 

equal to 𝐸𝑞 − 𝑗𝑋𝐼𝑡 − 𝑅𝑎𝐼𝑡  anymore, and power angle relationship will not follow the equation 

described in (7-1). 

Figure 7-5 shows the system responses for a VSG in the infinite bus system with the different 

settings, subjected to a fault with the same fault clearing time. The cases are indicated in the same 

manner as the power angle characteristics in Figure 7-2(d).   

As discussed in the previous section, the impact of limited current is twofold. During the fault, 

the VSG will produce less current, which leads to less electrical power output, hence faster 

acceleration, and larger rotor angle deviation. From the power angle diagram, a larger acceleration 

area is then determined.  

 

 

 

Figure 7-3. Diagram of VSG voltage closed-loop control. 
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Figure 7-4.  Current limitation methods. 

 

After the fault is cleared, the operating point returns to follow the same power angle curve as 

the one without limit, until the current limit is triggered. No matter the limiting algorithm, the 

output power will be less than the one without a limit. From the power angle diagram, a smaller 

deceleration area is determined. This result matches with the analysis for droop controlled 

converter in [135]. 

 As a result, a VSG with limited current output capacity will impair the system transient 

stability, in a single machine infinite bus system. This result is drawn from previous assumptions 

to simplify the analysis. If considering the excitation control, and transient and sub-transient 
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Figure 7-5.  System response for a short circuit fault in a single machine infinite bus system, with 

limited current. 

 

dynamics, the VSG should output additional current during the fault or after the fault, and 

eventually be limited. Thus, these factors should amplify the difference even more. 

7.3 Proposed Control to Enhance Transient Stability When Current is Limited 

To counter the disadvantage brought by the limited current, the VSG should (1) accelerate 

slower during the fault, and (2) allow more room for deceleration when the current is limited after 

the fault, before the electrical power output is less than the mechanical input. 

Thanks to the flexibility of the power electronics control, the VSG does not have to exactly 

follow the physics of the SGs. An artificial electrical power output can be forged to be the input 

of the mechanical model of the VSG, instead of the actual electrical power output. 

During the period of fault, the artificial electrical power should be larger than the actual output, 
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but smaller than the mechanical input. Such that the VSG may still accelerate, but slower than 

without the compensation. Thus, a weighted average between the mechanical input and electrical 

power output can be chosen as the artificial electrical power output. After the fault, once the current 

limit is triggered, it is advisable to create a large artificial electrical power, and let the VSG quickly 

decelerate, and exit the current limitation zone. During other times when the current is not limited, 

the proposed control should not interfere the normal operation of the VSG.  

The proposed method can be summarized in Figure 7-6. In the actual implementation, 𝑚 and 

𝑛 are set to 1, and 𝑘 is set to 2. The value can be better designed depending on the specific cases. 

Figure 7-7 shows the simulation result for a single machine infinite bus system. With the 

proposed control, the acceleration area is reduced, and the deceleration area is enlarged. Once the 

VSG enters the current limit zone, the large artificial electrical output helps the VSG to decelerate 

faster, and return to normal operation, and finally stabilize. 

 

 

Figure 7-6.  Proposed method to set artificial electrical power output to mitigate the impact of the 

limited current. 
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Figure 7-7.  System response for a short circuit fault in a single machine infinite bus system, with 

proposed control to enhance the transient stability. 

 

7.4 Experimental Result in HTB 

Experiments are conducted in the HTB two-area system environment. The system 

configuration is shown in Table 5-1. 

Figure 7-8 shows the oscilloscope measurement when the system is operated as Case 2 in 

Table 6-2. G4 is configured to be a VSG, with 0.30 s as the fault clearing time. In this case, the 

fault is closed to the VSG unit, and current limitation is triggered during the fault. If the current is 

limited during the fault, with the proposed control the system can still be stable. But without the 

proposed control, the system is unstable. This case has demonstrated the negative impact of current 
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limitation during the fault, and the proposed control helps to compensate it. 

Similarly, Figure 7-9 shows the oscilloscope measurement when the system is operated as 

Case 3 in Table 6-2. G4 is configured to be a VSG, with 0.30 s as the fault clearing time. In this 

case, the fault is far away to the VSG unit, and current limitation did not trigger during the fault, 

but triggered after the fault. If the current is limited during the fault, with the proposed control the 

system can still be stable. But without the proposed control, the system is unstable. This case has 

demonstrated the negative impact of current limitation after the fault, and the proposed control 

also helps to compensate it. 
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Figure 7-8.  Oscilloscope measurement for a short circuit fault at bus 9 in the HTB two area 

system setup to compare the stability with no current limit, with current limit and proposed 

control, and with current limit and no control. 

 

 

Figure 7-9.  Oscilloscope measurement for a short circuit fault at bus 7 in the HTB two area 

system setup to compare the stability with no current limit, with current limit and proposed 

control, and with current limit and no control. 
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7.5 Discussion 

It has been demonstrated in the HTB two area test platform, that the proposed control will 

help to alleviate the negative impact of the current limits. But it is still not theoretically proven that 

the proposed method will work all the time. 

In some complexed system with multiple machines, it may be difficult to identify whether if 

the current limitation is caused by fault itself or the oscillation after the fault, especially the fault 

is far away from the VSG unit. If identified wrongly, the proposed control may have adverse effect 

to the system stability. 

In addition, depending on whether if the rest of the system is accelerating or not, it may be 

beneficial to accelerate faster during the fault. In this case, wide-area measurement will be helpful 

to assist the identification of operating points. 

It should be noted that since the purpose of the proposed control is not to enhance the transient 

stability, but to alleviate the adverse impact introduced by current limitation. It is not expected to 

have better CCT compared with the case with no current limitation. But the method can be 

combined with adaptive inertia method proposed in Chapter 6, to achieve better system transient 

stability. 

7.6 Conclusion 

During fault triggered large disturbance, a generator will produce large current during and 

after the fault. By limiting the output current of the VSG, the system transient stability becomes 

worse. This chapter proposed to artificially modify the electrical power input to the mechanical 
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model of the VSG, to enhance the transient stability when the output current is limited. Simulation 

in a single machine infinite bus system, and experiments in HTB two area system are conducted. 

The results have shown the effectiveness of the proposed control. 
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8 Conclusions and Future Work 

8.1 Summary 

This dissertation has explored the virtual synchronous generator (VSG) operation of full 

converter wind turbine (FCWT) under normal and fault condition, to actively provide grid support 

for renewable integrations. An FCWT emulator and a short circuit fault emulator have been 

developed in a power electronics based power system emulation platform, which is used to test the 

proposed control methods. 

8.2 Contribution 

The detailed contribution of this dissertation is as follows. 

• A FCWT generation system emulator using one single converter is developed. The 

developed emulator can represent the static and dynamic behavior of the wind turbine 

without the need of real rotating machine. It allows the testing of different grid support 

functions in an emulated power system with high renewable penetration. 

• A VSG control for FCWTs has been developed, with the consideration of a short term 

minute-level energy storage integrated on the dc link. It allows the FCWT to operate in 

both grid-connected and stand-alone conditions. Other grid supporting functions have 

been achieved by enabling non-MPPT operation of the wind turbine, and the FCWT can 

still exhibit SG dynamic behavior. 

• A method to emulate four basic types of short circuit fault by using a shunt connected 

converter has been demonstrated. The developed fault emulator can achieve the same 
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voltage and current boundary condition as the short circuit faults, and essentially has the 

same impact to the system under tests. The transient stability of a power system under 

study can be investigated using the proposed fault emulator. 

• An adaptive inertia method is proposed to improve the system transient stability for VSG 

control. By utilizing the center-of-inertia frequency obtained through wide-area 

measurements, the VSG unit may accelerate or decelerate in accordance with the rest of 

the system, which will in turn prevent the loss-of-synchronization. 

• Limited output current for VSG controlled generation unit will impair the system transient 

stability, due to its less power output capability during and after the fault. A compensation 

method is proposed can mitigate the negative effect introduced by limited current. 

8.3 Recommended Future Work 

Some recommended future work is listed as follows. 

(1) Power electronics design of VSG controlled wind turbine considering power system 

performance and requirements. 

The research work in this dissertation mainly focused on the control of the wind turbine system 

under normal and fault operations. The energy capacity design of the storage is also briefly 

discussed. However, there are still knowledge gaps for the design of power electronics interface 

converters considering the power system performance and requirements. Previous studies have 

shown that providing more power from wind turbines during transient disturbances may help with 

system frequency and rotor angle stability. The power capacity design of the power electronics 

interface converter may be better designed for VSG applications. 
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(2) Modeling of the VSG controlled wind turbine in power system simulation software 

Currently all the models used in this dissertation are user-defined models in 

MATLAB/Simulink, or C-based code for HTB emulators. A model is needed that can be used by 

power system simulation software, such as PSS/E, PSLF, etc. The model should have a unified 

approach to model the dynamic behaviors of the wind turbine incorporating both current and 

voltage control modes, as well as mode transitions. This will greatly help with power system 

researchers to identify the impact of integration of renewable energy sources with different 

potential control algorithms. 

(3) Coordinated control of multiple VSG controlled wind turbines 

In this dissertation, the wind turbine emulator could represent a single wind turbine, or the 

aggregation of a wind farm with the assumption that the wind speed is similar for all the wind 

turbines in the area. Simulation and experimental results have proven that the proposed VSG 

control may be applied to wind turbines with different wind speed in different region of the test 

system without any issues. But it is still beneficial to develop coordinated control strategies for the 

wind turbines in a wind farm or a larger area with different available wind power. By adjusting the 

power setpoint of the wind turbines within the wind farm, it is possible to minimize the line losses, 

and maximize the utilization of the headroom for system frequency support. 
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