22 research outputs found

    Unsupervised Phoneme and Word Discovery from Multiple Speakers using Double Articulation Analyzer and Neural Network with Parametric Bias

    Full text link
    This paper describes a new unsupervised machine learning method for simultaneous phoneme and word discovery from multiple speakers. Human infants can acquire knowledge of phonemes and words from interactions with his/her mother as well as with others surrounding him/her. From a computational perspective, phoneme and word discovery from multiple speakers is a more challenging problem than that from one speaker because the speech signals from different speakers exhibit different acoustic features. This paper proposes an unsupervised phoneme and word discovery method that simultaneously uses nonparametric Bayesian double articulation analyzer (NPB-DAA) and deep sparse autoencoder with parametric bias in hidden layer (DSAE-PBHL). We assume that an infant can recognize and distinguish speakers based on certain other features, e.g., visual face recognition. DSAE-PBHL is aimed to be able to subtract speaker-dependent acoustic features and extract speaker-independent features. An experiment demonstrated that DSAE-PBHL can subtract distributed representations of acoustic signals, enabling extraction based on the types of phonemes rather than on the speakers. Another experiment demonstrated that a combination of NPB-DAA and DSAE-PB outperformed the available methods in phoneme and word discovery tasks involving speech signals with Japanese vowel sequences from multiple speakers.Comment: 21 pages. Submitte

    Double Articulation Analyzer with Prosody for Unsupervised Word and Phoneme Discovery

    Full text link
    Infants acquire words and phonemes from unsegmented speech signals using segmentation cues, such as distributional, prosodic, and co-occurrence cues. Many pre-existing computational models that represent the process tend to focus on distributional or prosodic cues. This paper proposes a nonparametric Bayesian probabilistic generative model called the prosodic hierarchical Dirichlet process-hidden language model (Prosodic HDP-HLM). Prosodic HDP-HLM, an extension of HDP-HLM, considers both prosodic and distributional cues within a single integrative generative model. We conducted three experiments on different types of datasets, and demonstrate the validity of the proposed method. The results show that the Prosodic DAA successfully uses prosodic cues and outperforms a method that solely uses distributional cues. The main contributions of this study are as follows: 1) We develop a probabilistic generative model for time series data including prosody that potentially has a double articulation structure; 2) We propose the Prosodic DAA by deriving the inference procedure for Prosodic HDP-HLM and show that Prosodic DAA can discover words directly from continuous human speech signals using statistical information and prosodic information in an unsupervised manner; 3) We show that prosodic cues contribute to word segmentation more in naturally distributed case words, i.e., they follow Zipf's law.Comment: 11 pages, Submitted to IEEE Transactions on Cognitive and Developmental System

    SERKET: An Architecture for Connecting Stochastic Models to Realize a Large-Scale Cognitive Model

    Full text link
    To realize human-like robot intelligence, a large-scale cognitive architecture is required for robots to understand the environment through a variety of sensors with which they are equipped. In this paper, we propose a novel framework named Serket that enables the construction of a large-scale generative model and its inference easily by connecting sub-modules to allow the robots to acquire various capabilities through interaction with their environments and others. We consider that large-scale cognitive models can be constructed by connecting smaller fundamental models hierarchically while maintaining their programmatic independence. Moreover, connected modules are dependent on each other, and parameters are required to be optimized as a whole. Conventionally, the equations for parameter estimation have to be derived and implemented depending on the models. However, it becomes harder to derive and implement those of a larger scale model. To solve these problems, in this paper, we propose a method for parameter estimation by communicating the minimal parameters between various modules while maintaining their programmatic independence. Therefore, Serket makes it easy to construct large-scale models and estimate their parameters via the connection of modules. Experimental results demonstrated that the model can be constructed by connecting modules, the parameters can be optimized as a whole, and they are comparable with the original models that we have proposed

    Symbol Emergence in Cognitive Developmental Systems: a Survey

    Get PDF
    OAPA Humans use signs, e.g., sentences in a spoken language, for communication and thought. Hence, symbol systems like language are crucial for our communication with other agents and adaptation to our real-world environment. The symbol systems we use in our human society adaptively and dynamically change over time. In the context of artificial intelligence (AI) and cognitive systems, the symbol grounding problem has been regarded as one of the central problems related to symbols. However, the symbol grounding problem was originally posed to connect symbolic AI and sensorimotor information and did not consider many interdisciplinary phenomena in human communication and dynamic symbol systems in our society, which semiotics considered. In this paper, we focus on the symbol emergence problem, addressing not only cognitive dynamics but also the dynamics of symbol systems in society, rather than the symbol grounding problem. We first introduce the notion of a symbol in semiotics from the humanities, to leave the very narrow idea of symbols in symbolic AI. Furthermore, over the years, it became more and more clear that symbol emergence has to be regarded as a multifaceted problem. Therefore, secondly, we review the history of the symbol emergence problem in different fields, including both biological and artificial systems, showing their mutual relations. We summarize the discussion and provide an integrative viewpoint and comprehensive overview of symbol emergence in cognitive systems. Additionally, we describe the challenges facing the creation of cognitive systems that can be part of symbol emergence systems

    Do Infants Really Learn Phonetic Categories?

    Get PDF
    Early changes in infants’ ability to perceive native and nonnative speech sound contrasts are typically attributed to their developing knowledge of phonetic categories. We critically examine this hypothesis and argue that there is little direct evidence of category knowledge in infancy. We then propose an alternative account in which infants’ perception changes because they are learning a perceptual space that is appropriate to represent speech, without yet carving up that space into phonetic categories. If correct, this new account has substantial implications for understanding early language development

    Efficient Learning Machines

    Get PDF
    Computer scienc

    Design of reservoir computing systems for the recognition of noise corrupted speech and handwriting

    Get PDF

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p
    corecore