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Kin . . . amount of input connections per neuron

Krec . . . amount of recurrent connections per neuron

ρ . . . . . spectral radius

λ . . . . . leak rate

αU . . . . input scale factor

αR . . . . recurrent scale factor

Va . . . . variance of observation inputs distribution

Vb . . . . variance of recurrent inputs distribution

Vopt . . . optimal variance of the reservoir neuron activation

τ . . . . . time constant of the reservoir implied by (ρ,λ)

τρ . . . . time constant implied by ρ

τfr . . . . time shift between frames

τλ . . . . time constant implied by λ

E[|R|] . . mean reservoir states

Tstate . . average duration of a model state

Po . . . . insertion penalty

ε . . . . . regularization term

Fin . . . . bandwidth of input dynamics

F ∗in . . . . bandwidth of dynamics (in kHz)

Fout . . . bandwidth of output dynamics
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|B(f)| . . mean power spectrum of inputs

fres(·) . . activation function of a reservoir neuron

fout(·) . . activation function of a readout neuron

fmap(·) . output mapping function

q, q . . . word state sequence & single word state

q̂, q̂ . . . optimal word state sequence & single word state

w, w . . . word sequence & single word identity

ŵ, ŵ . . . optimal word sequence & single word identity

L . . . . . number of ANN layers

wik . . . . ANN connection between neuron i and k

I . . . . . identity matrix

∂z . . . . partial derivative of z

∆z, ∆2z . first and second order differentials of z

A−1 . . . pseudo inverse of a matrix A

AT . . . . transpose of a matrix A

[A,B] . . concatenation of vectors A and B

{A,B,C} sequence of vectors A, B and C





Samenvatting

In de natuur lijkt een flexibel en doordringend communicatiesysteem tussen
individuen een voorwaarde te zijn voor complex sociaal gedrag en intelli-
gentie. Spraak –de gevocaliseerde vorm van intermenselijke communicatie–
speelt als dusdanig een centrale rol in de unieke mogelijkheden van de men-
selijke soort. Het toestaan van de mens om via spraak te communiceren
met machines zorgt dus niet alleen voor een meer natuurlijke interactie tus-
sen mens en machine, het kan ook helpen bij het begrijpen van een aantal
belangrijke aspecten van intelligentie in het algemeen. Een van de eerste
stappen die spraakgestuurde man-machine communicatie mogelijk maakt
is de omzetting van het spraaksignaal in een reeks woorden, een proces dat
gewoonlijk wordt aangeduid als spraakherkenning.

Een systeem dat ontworpen is voor het herkennen van menselijke spraak
heet een “automatisch spraakherkenningssysteem”, of afgekort, een ASR-
systeem [Automatic Speech Recognition]. ASR-systemen worden al op
grote schaal gebruikt in smartphones, GPS-navigatiesystemen, ondertite-
lingssystemen, enz. Het wordt ook gebruikt om mensen met een handi-
cap te helpen beter te communiceren met hun omgeving. Maar misschien
hebben velen onder ons al problemen ondervonden bij het gebruik van de
ASR-technologie. Bijvoorbeeld, het bellen van de juiste persoon via “voice
dialing” kan problematisch zijn in een omgeving met achtergrondgeluid
(bijvoorbeeld in een auto of op een feestje). De gevoeligheden aan spreker,
accent en emotie zijn gekende problemen. Verder verhoogt de onnauwkeu-
righeid dramatisch wanneer spontane spraak moet herkend worden in plaats
van formele spraak.

Al decennia lang zijn Gaussian mengselmodellen (GMM) [Gaussian
Mixture Models] erg populair, vooral in commerciële producten. GMMs
gebruiken kansdichtheidsfuncties om te bepalen hoe groot de kans is dat
een waargenomen spraakfragment overeenkomt met een specifieke linguı̈s-
tische eenheid (bv, foneem of een woord). De parameters van de kansdicht-
heidsfuncties worden bepaald door middel van een trainingsprocedure die
een grote hoeveelheid spraak nodig heeft waarvan de transcriptie in termen
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van die eenheden gekend is. GMMs zijn populair omdat ze op een efficiënte
wijze te ontwerpen zijn (er bestaat veel software voor) en omdat ze tijdens
het gebruik niet te veel berekeningen vereisen. Ondanks de enorme vooruit-
gang van de afgelopen jaren, zijn GMM-gebaseerde herkenners echter nog
geen concurrent voor de menselijke luisteraar. Vooral de grote degradatie
die optreedt wanneer men spraak dient te herkennen in omstandigheden die
niet aanwezig waren in de trainingsvoorbeelden blijft een groot probleem,
en dus, het verminderen van die gevoeligheid is nog steeds een uitdaging.

Veel van de reeds voorgestelde methodes focussen op het verwijderen
of compenseren van de effecten van ruis op de akoestische elementen. An-
deren streven ernaar om de akoestische modellen aan te passen aan de ruis
of om ze in te zetten op een meer lawaai-robuuste manier. GMMs vervan-
gen door alternatieve modellen, zoals neurale netwerken (ANNs) [Artificial
Neural Networks] die geacht worden gelijkaardig te werken als een mense-
lijk brein, wordt eveneens als een veelbelovende aanpak beschouwd.

ANNs bestaan uit artificiële neuronen die aan elkaar gekoppeld zijn
door middel van gewogen verbindingen. De gewichten van deze verbin-
dingen zijn zodanig getraind dat de outputs van het ANN de a posteriori
kansen van de spraakeenheden benadert na waarneming van het akoestisch
signaal.

Hoewel de toepassing van ANNs voor het bepalen van de kans van een
spraakeenheid dateert uit de late jaren tachtig, was de techniek de laatste
jaren een beetje uit het beeld verdwenen. Krachtiger hardware en software
maken het nu echter mogelijk om ANNs bouwen met vele lagen en vele
neuronen per laag, en daarvoor veel meer geavanceerde en complexe trai-
ningsalgoritmes dan deze uit de jaren tachtig aan te wenden.

Deze nieuwe ANNs noemt men Deep Neural Networks (DNN). Deze
DNNs hebben recent reeds geleid tot een betere LVCSR en ze zullen ver-
moedelijk op termijn ook tot meer lawaai robuuste LVCSR leiden. Een
ander interessant ANN-type is de Recurrent Neuraal Netwerk (RNN) dat
vertraagde feedback introduceert door het opnemen van extra recurrente
verbindingen.

Deze vertraagde feedback stelt het RNN in staat om met lange termijn
afhankelijkheden tussen akoestische waarnemingen op een efficiënte ma-
nier om te gaan (zoals Infinite Impulse Response filters doen in lineaire
systeemtheorie). Ondanks de veelbelovende resultaten verkregen met re-
cente ANN-gebaseerde spraakherkenners, is er nog aarzeling om ze op
grote schaal te gebruiken, vooral omdat de trainingsprocedures meestal kri-
tisch en zeer tijdrovend zijn.
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In dit opzicht kunnen Reservoir Computing Networks (RCNs) een in-
teressant alternatief bieden. Dergelijke netwerken zijn immers zeer een-
voudig te trainen. De belangrijkste doelstelling van mijn onderzoek was
om de levensvatbaarheid van dit alternatief te bewijzen in de context van
ruisrobuustheid.

In het kort gezegd is een RCN een speciaal type RNN, namelijk een
waarin (1) de ingangsverbindingen en de recurrente verbindingen voor de
niet-lineaire neuronen willekeurig bepaald zijn, (2) het uitgangssignaal wordt
gegenereerd door een laag van lineaire neuronen en (3) alleen de gewichten
van deze neuronen worden getraind. Het ongetrainde niet-lineaire gedeelte
en de lineaire uitgangslaag worden respectievelijk het reservoir en de rea-
dout van het RCN genoemd. De gewichten van het reservoir worden eerst
genomen uit een normale verdeling met een gemiddelde nul en een varian-
tie één en ze waren daarna correct geschaald zodat een stabiel dynamisch
systeem verkregen wordt dat een goed evenwicht nastreeft tussen de effec-
ten die nieuwe en van vroegere inputs opleveren in de output van het RCN.

Het trainen van de uitvoerlaag van een RCN komt neer op het minima-
liseren van de gemiddelde kwadratische fout (MSE) [Mean Squared Error]
tussen de werkelijke en de gewenste output. Deze laatste wordt afgeleid
uit de sequentie van spraakeenheden die op haar beurt wordt afgeleid uit
de orthografische transcriptie van de spraak. De beoogde uitvoergewich-
ten zijn de oplossing van een stelsel lineaire vergelijkingen. Aangezien het
trainen van een conventioneel ANN gebaseerd is op een iteratieve gradiënt-
afdalingsaanpak en aangezien een dergelijke aanpak niet gegarandeerd een
globale optimum bereikt, is het trainen van een RCN opvallend voordelig.

Dankzij de gemakkelijke en eenvoudige trainingsprocedure is het mo-
gelijk om de grootte van het reservoir te vergroten (dwz. het aantal knoop-
punten te vergroten) tot op een niveau dat ver buiten het bereik van een con-
ventioneel RNN ligt (reservoirs met 32K knooppunten zijn nog eenvoudig
te trainen). Hierdoor kan het reservoir een rijke, hoog-dimensionale toe-
standsruimte creëren die geschikt is voor het onderscheiden van de spraak-
eenheden met behulp van een eenvoudig lineair regressiemodel.

Doordat de signaaldynamiek ook in die ruimte gecodeerd wordt, en
doordat de spraak- en ruisdynamiek verschillend zijn, verwacht men dat
het RCN tot op zekere hoogte in staat is de effecten van de spraak en deze
van de ruis van elkaar te scheiden.

In dit werk worden RCNs voor de eerste keer (voor zover ik weet) toe-
gepast voor het akoestisch modelleren van spraakeenheden met het oog op
ruisrobuuste, continue spraakherkenning. Alhoewel het uiteindelijke doel
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is om ruisrobuuste LVCSR te realiseren, koos ik er voor om te beginnen
met het bestuderen van de lawaairobuustheid van RCN-gebaseerde syste-
men in de context van continue spraakherkenning met een kleine woor-
denschat (SVCSR) [Small Vocabulary Continuous Speech Recognition]. Ik
heb meer bepaald gefocust op continue cijferherkenning (CDR [Continious
Digit Recognition]). CDR is immers een relevante taak op zich, en er be-
staat een gekende dataset (Aurora-2) die speciaal ontworpen werd voor het
bestuderen van ruisrobuuste cijferherkenning. Deze dataset bevat zowel
ruisloze continue cijferreeksen als vele ruizige versies daarvan (inclusief
verschillende soorten ruis met verschillende signaal-tot-ruisverhoudingen
(SNR) [Signal-to-Noise Ratio]).

Aangezien de toepassing van RCN voor spraak(-herkenning) vrij nieuw
was toen dit werk begon, dienden alle mogelijke aspecten van RCNs bestu-
deerd te worden. In het bijzonder, diende ik mezelf vertrouwd te maken
met het opzetten van goede reservoirs. Aangezien alle reservoirgewichten
willekeurig worden ingesteld bij de start van het trainingsproces en vanaf
dat ogenblik ook vast blijven, is het initialiseren van het reservoir een cru-
ciale stap. De initialisatie van de gewichten bepaalt het vermogen van het
reservoir om de oorspronkelijke invoer te projecteren naar een interessante
hoog-dimensionale ruimte waarin zowel de tijdelijke verbanden op korte en
lange termijn gecodeerd worden.

Om een cijferherkenningssysteem te ontwikkelen, heb ik eerst veel ex-
perimenten naar de herkenning van geı̈soleerde gesproken cijfers uitge-
voerd en vervolgens experimenten naar de herkenning van continu gespro-
ken cijfers. Op een gegeven ogenblik had ik systemen die getraind waren op
ruisloze spraak en die state-of-the-art prestaties leverden op ruizige spraak.
Ze leverden echter nog geen competitieve prestaties in ruisloze omstandig-
heden.

Daarom onderzocht ik meer complexe RCN-architecturen met meer-
dere lagen. Elke laag bestaat uit een basis RCN, bestaande uit een reservoir
en een lineaire uitvoerlaag. Het eerste RCN wordt gestimuleerd door de
akoestische ingang, het tweede door de uitgangen van de eerste laag, en-
zovoort. De netwerken worden een-voor-een getraind, wat inhoudt dat er
geen gezamenlijke optimalisatie van het aaneengeschakelde netwerk wordt
uitgevoerd. Het aaneenschakelen van RCNs leidde tot verbeterde spraak-
herkenning in zowel ruisloze als ruizige omstandigheden. Ik meen dat de
belangrijkste redenen hiervoor de volgende zijn: (1) elk RCN induceert een
nieuwe willekeurige projectie en reduceert bijgevolg de kans op het missen
van interessante niet-lineaire projecties, (2) elk RCN kan fouten, waarge-
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nomen in de resultaten van de vorige laag, corrigeren, en (3) elk RCN voegt
dynamisch modelleringscapaciteit toe.

Om de systemen verder te kunnen verbeteren, introduceerde ik ook bi-
directionele reservoirs die het vermogen bezitten omzowel de linkse als de
rechtse context van een akoestische waarneming in rekening te brengen.
Hierdoor kunnen ze beter de co-articulaties modelleren die een gevolg zijn
van de eerstvolgende klanken die de spreker nog zal uitspreken.

Een vaak gebruikte oplossing om de invloed van ruis op de prestaties
te verminderen bestaat erin het spraakherkenningssysteem te trainen met
voorbeelden die reeds verschillende types toegevoegde ruis op verschil-
lende niveaus bevatten. Maar zelfs in dit scenario bestaat nog altijd de
kans dat men tijdens de werking geconfronteerd wordt met een nieuwe
toestand die tijdens het trainen niet voorkwam. Een praktische oplossing
hiervoor bestaat erin het spraakherkenningssysteem met een beperkte in-
spanning aan te passen aan een nieuwe toestand. In dit verband, heb ik aan-
getoond dat het mogelijk is zonder manuele interventie een kleine module
te trainen die in de gegeven omstandigheden de oorspronkelijke uitvoer van
het RCN kan verbeteren.

Een algemene conclusie van alle bovengenoemde stappen was dat zo-
wel de grootte en de architectuur van het reservoir op een belangrijke ma-
nier bijdragen tot het verkrijgen van nauwkeurige en ruisrobuuste systemen.
Echter, hoe complexer de architectuur is, hoe langer het duurt om een re-
servoir met geschikte reservoirparameters te kunnen identificeren. Daarom
was ik er van overtuigd dat er nood was aan een meer begrijpelijke, au-
tomatische procedure voor het bepalen van quasi-optimale waarden voor
de reservoirparameters. Mijn onderzoek leidde tot een nieuwe analyse van
RCN als een niet-lineair dynamisch systeem. Ik heb een aantal empirische
verbanden tussen de de reservoirparameters en de dynamica van de ingang
en de uitgang van het RCN kunnen afleiden, en deze verbanden hebben uit-
eindelijk geresulteerd in een recept voor het ontwerpen van reservoirs dat
tegelijk zeer efficiënt, eenvoudige en begrijpelijk is.

Daar waar GMMs zeer goed presteren als ze in vergelijkbare omstan-
digheden getraind en gebruikt worden, leiden RCNs vooral tot superieure
prestaties in niet-vergelijkbare omstandigheden. Daarom was het volgende
doel van mijn onderzoek een manier vinden om de voordelen van beide
benaderingen te combineren.

Ik onderzocht twee verschillende strategieën: een fusie van waarschijn-
lijkheden en een tandemaanpak. In de waarschijnlijkheidsfusie wordt de
gewogen som van de waarschijnlijkheden die uit de GMM-gebaseerde en
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de RCN-gebaseerde akoestische modellen voortvloeien, aan de decoder
aangeboden. In de tandemaanpak wordt een conventioneel GMM-systeem
aangestuurd door de uitgangen van het RCN, of vice versa, krijgt een RCN-
systeem de uitgangen van de GMMs als input. Mijn werk toonde aan dat
de combinatie van deze twee systemen nuttig is, zolang de training- en de
testcondities vergelijkbaar zijn, maar een lichte prestatieverlies induceert in
situaties die sterk afwijken van de situaties die tijdens de training gezien
werden.

In plaats van een conventionele ruisrobuuste front-end te gebruiken,
zoals de ETSI geavanceerde front-end (AFE) [Advanced Front-End], heb
ik een eenvoudige front-end (pure MFCC [Mel-frequency cepstral coeffi-
cients]) getest en heb ik de features die door die front-end berekend wer-
den via een RCN omgevormd naar features die veel beter op de ’ruisvrije’
features lijken. Een systeem dat een dergelijk featuretransformatie beoogt
wordt algemeen een Denoising Auto-encoder (DAE) genoemd.

Uit mijn werk blijkt dat de introductie van een DAE na de MFCC front-
end wel de prestatie doe toenemen in het geval het akoestische model op
ruisvrije spraak werd aangeleerd, maar dat ze in het geval van een multi-
style training van het akoestisch model een degradatie van de prestatie ver-
oorzaakt. Dit kan alleen maar betekenen dat de DAE informatie verwijdert
die anders door de RCN-herkenner had kunnen gebruikt worden.

De laatste ASR die ik onderzocht heb is een RCN-gebaseerd akoes-
tisch model dat bestaat uit 3-lage bi-directionele reservoirs met 8K neuro-
nen per laag, en wordt aangestuurd door de zogenaamde AFEs. Wanneer
deze systemen worden getraind op schone spraak, leiden ze tot een gemid-
deld foutenpercentage (WER) [word error rate] over verschillende soorten
ruis en geluidsniveaus van 9.0% op Aurora-2, in vergelijking met de 13.2%
bereikt door een GMM-systeem. Wanneer ons systeem getraind wordt op
zowel schone als ruisbevattende spraak, dan daalt zijn gemiddelde WER
tot 5.8% in vergelijking met de 8.2% die met een GMM-gebaseerde ASR
bereikbaar is.

De belangrijkste conclusies van mijn werk op spraakherkenning wa-
ren dat (1) RCN-gebaseerde systemen kunnen worden ontworpen volgens
een eenvoudig recept, (2) vakkundig ontworpen RCN-gebaseerde systemen
kunnen concurreren met conventionele systemen in gelijke omstandigheden
en (3) RCN- gebaseerde systemen meer robuustheid bieden tegen verschil-
len tussen de leer- en de testomstandigheden.

De vraag bleef echter of deze conclusies ook standhouden in andere toe-
passingen, zoals b.v. beeldherkenning. Om dit te controleren heb ik beslist
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om een RCN-systeem voor de herkenning van geı̈soleerde handgeschre-
ven cijfers te ontwikkelen. Ik heb dit systeem getest op de internationaal
bekende MNIST dataset. Elk sample van deze dataset is gecodeerd in 28
× 28 grijswaarde pixels. Daarnaast, heb ik ook gebruik gemaakt van een
ruisbevattende versie van deze dataset, waarop andere auteurs reeds experi-
menten met Deep Belief Networks (DBNs) hebben uitgevoerd. Net als bij
mijn onderzoek naar ruisrobuuste spraakherkenning, gebruikte ik een RCN
op twee verschillende manieren, als classificator (herkenner) en als DAE
(ruisfilter).

De belangrijkste conclusie van mijn onderzoek was dat de voorgestelde
strategie voor het optimaliseren van de reservoirparameters, hoewel oor-
spronkelijk bedacht voor spraakherkenningstaken, ook toepasbaar is op hand-
schriftherkenning. Aangezien het een DER [Digit Error Rate] van 0.8%
bereikt, kan het concurreren met de state-of-the-art. Bij het testen op ruis-
beelden (met vijf types ruis), levert het RCN-gebaseerd systeem een ge-
middeld foutenpercentage van 37% op. Hetzelfde systeem, maar ditmaal
getraind op zowel schone als ruizige beelden levert een DER van 1.5% op
voor de schone en een van 3.5% voor de ruizige beelden op.

Door toevoeging van een RCN-gebaseerde DAE, getraind om vijf ver-
schillende types ruis te kunnen verwijderen uit de beelden, werd een drama-
tische daling van de DER verkregen na training van het systeem op schone
samples: de DER daalde van 37% tot minder dan 2.1%. De gerapporteerde
DER voor DBN-systeem op dezelfde gegevensreeks was 2.3%.

Tot slot wens ik te benadrukken dat mijn werk laat zien dat RCN-
gebaseerde akoestische modellering kan worden opgenomen in het statis-
tisch raamwerk van een ruisrobuuste spraakherkenner voor doorlopende
cijfers. De gepresenteerde modellen bereiken state-of-the-art prestaties in
schone omstandigheden en verbeteren de state-of-the-art in ruizige omstan-
digheden. Mijn werk toont ook aan dat er een eenvoudige maar effectieve
strategie bestaat voor het optimaliseren van de reservoirparameters op basis
van eenvoudig te verzamelen kennis omtrent de ingang en de gewenste uit-
gang van het systeem. Deze strategie lijkt zowel te werken voor de herken-
ning van gesproken als van handgeschreven cijfers. Blijkbaar is het idee
van het willekeurig vastleggen en het herhaaldelijk na elkaar aanwenden
van pools van niet-lineaire neuronen een goede basis voor het modelleren
van complexe temporele patronen (in spraakherkenning) of van complexe
lokale verbanden tussen aangrenzende pixels (in beeldherkenning). Gezien
het feit dat nog maar weinig onderzoek naar reservoirgebaseerde systemen
voor complexe taken gebeurd is, kan men het gebied nog als jong en in ont-
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wikkeling zijnde beschouwen. Bijgevolg is er nog voldoende ruimte voor
het verkennen van nieuwe ideeën en voor het maken van verdere vooruit-
gang in dit domein.



Abstract

In nature, a flexible and pervasive communication system among individu-
als seems to be a prerequisite for complex social behavior and intelligence.
As such, Speech –the vocalized form of inter-human communication– plays
a central role in the unique capabilities of the human species. Allowing hu-
mans to communicate with machines via speech thus not only provides for
a more natural man-machine interaction, it may also help in understand-
ing some key aspects concerning intelligence in general. One of the first
steps needed to allow speech-based man-machine communication is the
conversion of the speech signal into a sequence of words, a process which
is usually referred to as speech recognition.

A system that is designed to perform human speech recognition is called
an “Automatic Speech Recognition System”, or briefly, an ASR system.
ASR systems are already widely used in many devices such as smartphones,
GPS navigation systems, subtitling systems, etc. It is also utilized to help
people with disabilities to better communicate with their environment. Wide-
spread application of ASR-technology is however hampered by the fact that
ASR is far less robust than human speech recognition. The current genera-
tion ASR systems cannot cope very well with noisy speech, with the large
variability in human voices, nor with the variability in the speech due to ac-
cent or emotion. For instance, calling the correct person via ‘voice dialer’
can be problematic in an environment with background noise (e.g., inside a
car or in a party).

Traditionally, Gaussian Mixture Models (GMMs) were used to relate
the observed speech signal (represented by some features derived from
the speech signal) with the underlying linguistic units such as phoneme
or word. This procedure is called Acoustic Modeling.

The noise robustness of such systems could be improved by compen-
sating the effect of noise on the acoustic features or by adjusting the GMMs
so that they describe noisy instead of clean speech features. Adapting the
acoustic models is also proved to be useful when coping with other sources
of variability such as speaker variations or regional accents.
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The more recent approaches, and the one also adopted in this work,
consist of replacing the GMMs with alternative modeling techniques that
mimic the operation of the human brain more closely, such as Artificial
Neural Networks (ANNs).

ANNs are composed of artificial neurons that are linked to each other
by means of weighted connections. The connection weights are trained
such that the output neurons approximate the posterior probabilities of the
linguistic units given the acoustic observations. Although the application
of ANNs for speech unit probability estimation dates back to the late eight-
ies, the technique was over-shadowed by GMMs until very recently. More
powerful hardware and software make it possible now to construct ANNs
with many layers and many neurons per layer, and to employ more sophis-
ticated and complex training algorithms for the training of such networks.
These so-called Deep Neural Networks (DNN) have led to better LVCSR
and are believed to improve noise-robustness, as well. Another interest-
ing ANN type is the Recurrent Neural Networks (RNNs) that add recurrent
connections to the network. These recurrent connections introduce a de-
layed feedback which permits the RNN to handle long-term dependencies
between acoustic observations in an efficient way (like Infinite Impulse Re-
sponse filters do in linear system theory). Despite the promising results
obtained with recent ANN-based speech recognition systems, there is still
hesitation in using them on a large scale, mainly because the training pro-
cedures are usually difficult and very time consuming.

In this respect, Reservoir Computing Networks (RCNs) may offer an
interesting alternative as the training of such systems is easy and robust.
The main objective of my research was to prove the viability of this alter-
native in the context of noise robustness mainly in speech recognition and
briefly in image recognition.

An RCN is a special type of RNN, namely, one in which (1) the input
connections and the recurrent connections entering the non-linear neurons
are set once to some random values, and (2) the outputs are generated by a
layer of linear neurons and (3) only the weights of these neurons are trained.
The untrained non-linear part and the linear output layer are called reservoir
and readout, respectively. The weights of the reservoir are first drawn from
a normalized Gaussian distribution and are then properly re-scaled to obtain
a stable dynamical system that offers a good balance between the impact of
new inputs and that of past inputs as attributed by the recurrent connections.

Training of the output layer of an RCN boils down to minimizing the
Mean Squared Error (MSE) between the actual network output and the de-
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sired output that follows from the presumed correct speech unit sequence,
retrievable from the orthographic transcription of the speech. The envi-
sioned output weights emerge as the solution of a set of linear equations.
Compared to the iterative gradient-descent based training of conventional
ANNs and considering that such training is not guaranteed to reach the
global optimum, training of RCNs is remarkably advantageous.

Thanks to the easy and straightforward training procedure, it is possible
to enlarge the size of the reservoir (i.e., number of nodes) to a level that is
far beyond the scope of a conventional RNN (e.g., reservoirs with 32K
nodes are easy to deal with). Hence, the reservoir creates a rich and high-
dimensional state space that is suitable for distinguishing the speech units
by means of a simple linear regression model. As the signal dynamics are
represented in that space as well, and as the speech and the noise dynamics
are bound to be different, the RCN may also be a very tractable approach
for modeling noisy speech.

In this work, RCNs were (to my best knowledge) applied for the first
time to acoustic modeling for noise robust continuous speech recognition.
The aim of the work was to investigate continuous speech recognition with
RCNs, especially, their behavior in the presence of background noise in the
environment. Since the focus was on noise robustness, I opted for a small
vocabulary continuous speech recognition (SVCSR) task, more particularly
continuous digit recognition (CDR) on the well-known Aurora-2 dataset.
Aurora-2 contains clean samples of continuous digits as well as many noisy
versions thereof (different noise types and signal to noise ratios (SNRs)).

Since speech is a complex signal which shows a lot of variability related
to external factors such as noise, speaker, accent or emotion, the dimen-
sionality of the intermediate reservoir space had to be order of magnitude
higher than what was employed before for other tasks. Hence, some work
was needed to design a good strategy on how to develop and train such
large RCNs, efficiently. In a later stage, the empirical rules to optimize the
design parameters were converted to a more comprehensible procedure that
fixes the reservoir parameters to quasi-optimal values in an automatic way.
This research led to a novel analysis of an RCN as a non-linear dynamical
system. This, in combination with some sensible heuristics allowed me to
distill a number of empirical relations between the reservoir parameters and
the RCN input and output dynamics. The resulting recipe is very efficient
and at the same time very simple and highly comprehensible.

Instead of handling the full complexity of the speech signal in a single
layer (with a very high dimensional reservoir state), one could also dis-
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tribute this complexity to multiple layers leading to multi-layer RCN archi-
tectures. Each layer consisted of a basic RCN, including a reservoir and
a linear output layer. The first RCN was stimulated by the acoustic input,
the second one by the output of the first one, and so on. The networks
were trained one at the time and no joint optimization of the cascaded net-
work was performed. Cascading RCNs led to recognition improvements
both in clean and in noisy conditions. I argued that the main reasons for
this success are the following: (1) each RCN induces a new random projec-
tion and consequently reduces the chance of missing interesting non-linear
projections (2) each RCN can correct errors observed in the outputs of the
previous RCN, and (3) each RCN adds dynamical modeling capacity to
the overall dynamical model. To further improve the systems I also intro-
duced bi-directional reservoirs that have the capacity to consider both the
left and the right context of an acoustic observation. Due to this, they can
better handle co-articulation effects that are induced by the anticipation of
upcoming speech sounds which the speakers intend to articulate.

Although RCNs are expected to introduce some level of noise robust-
ness by themselves, I also investigated several strategies either to better
cope with noise or to find a better balance between noise robustness and
clean speech accuracy.

A known remedy to reduce the effect of noise on the performance, is to
train the recognizer with various samples comprising different added noise
types at different levels. However, even in this scenario, there is always
a chance to face a new condition that has not been seen during training.
A practical solution is to adapt the recognizer to a new condition with a
limited effort. In this respect, I have shown that the unsupervised training
(requiring no human intervention) of a small module that adapts the original
readouts to noise specific readouts can improve the performance.

Where GMMs are known to perform very well if they are trained and
operated on similar conditions, my RCNs only lead to superior performance
in mismatched conditions. Finding a way of combining the advantages of
both approaches was the next purpose of my research. I investigated two
different strategies: likelihood fusion and a tandem approach. In likelihood
fusion, a weighted sum of the likelihoods emerging from the GMM-based
and the RCN-based acoustic models is fed as the likelihood to the decoder.
In a tandem approach, a conventional GMM system is fed with the outputs
of the RCN, or vice versa, an RCN-based system gets the outputs of the
GMMs. My work showed that combining these two systems is beneficial
if the training and testing conditions are similar, be it at the cost of a slight
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loss in performance in the mismatched situations.
Instead of performing a conventional noise-robust front-end such as the

ETSI advanced front-end (AFE), I have also tested a simple front-end (pure
MFCCs) followed by an RCN that aims at retrieving clean features from the
noisy features at its inputs. Such a system is generally called a Denoising
Auto-Encoder (DAE). Again, the fact that reservoir computing is able to
capture temporal information, makes it attractive for removing complex
patterns induced by the noise. My work shows that in the case of clean
speech training, inserting a DAE after the MFCC front-end does reduce the
average WER, but in the multi-style training case it causes an increase of
the average WER. This can only mean that the DAE removes information
from the feature stream that is otherwise exploitable by the RCN-based
recognizer.

The final ASR I investigated had an RCN-based acoustic model com-
posed of 3-layer bi-directional reservoirs with 8K nodes per layer, they were
supplied with AFE features and trained on clean speech. They lead to an
average WER (word error rate) over different noise types and noise levels
of 9.0% on Aurora-2, compared to the 13.2% achieved by a state-of-the-art
GMM-based system. When that system is trained on both clean and noisy
samples, its average WER goes down to 5.8% compared to the 8.2% of the
GMM-based ASR.

The previously described design recipes are fairly general and hence
should be applicable to other pattern recognition problems rather than speech.
To check this, I considered isolated handwritten digit recognition as an-
other task and I benchmarked on the well-known MNIST dataset. Each
sample of this dataset is encoded in 28 × 28 gray-scale pixels. I verified
the noise robustness of the RCN based system using a noisy version of the
MNIST dataset together with some published results obtained with Deep
Belief Networks (DBNs) on these noisy versions. Similar to my research
on noise robust speech recognition, I utilized an RCN in two ways, as a
classifier (recognizer) and as a DAE (denoiser).

By following the aforementioned instruction to design the RCN-based
recognizer and achieving the promising error rate of 0.81% on clean dataset,
the main conclusion of my research was that the proposed strategy for op-
timizing reservoir parameters remains valid for handwritten recognition as
well. When tested on noisy images (five noise types), the RCN-based sys-
tem yields an average error rate of 23.6% compared to 28.8% of the refer-
ence DBN. The RCN-based system trained on clean as well as noisy images
yields a WER of 1.5% and 3.5% on clean and noisy samples, respectively.
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Adding an RCN-based DAE which was trained to remove five different
noise types from the images caused a dramatic drop of the WER of the
clean trained classifier to only 2.1%. The reported WER for a DBN-based
system on the same dataset was 2.3%.

In conclusion, my work shows that RCN-based acoustic modeling can
be incorporated in the statistical framework of a noise robust continuous
digit speech recognizer. The presented models reach state-of-the-art per-
formance in clean conditions and advance the state-of-the-art for noisy sit-
uations. My work also shows that there exists a simple but effective strategy
for optimizing the reservoir parameters on the basis of some easy-to-gather
knowledge of the system input and output dynamics. This strategy seems
to work for both speech and handwritten digit recognition. Apparently, the
idea of randomly fixing and recurrently connecting a pool of non-linear
neurons is a good basis for modeling complex temporal patterns (in speech
recognition) or complex local relations between adjacent pixels (in image
recognition). Given that research on reservoir based systems for such com-
plex tasks is still young and underdeveloped, there is still enough room for
exploring new ideas and for making new progress.
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Part I

Introduction





Preface

Conversation is one of the most attractive ways of communicating with
other human beings. Through conversation we can express ourselves in
an intuitive and effective way, whether this involves simple instructions or
complex explanations. The history of human-machine communication via
speech dates back to more than 1000 years ago, when Pope Sylvester II was
supposed to have built a brazen head. This ‘robotic’ head would answer his
questions with “yes” or “no”. Ever since, the evolution has continued and
these days we use various speech-based communication modules in many
electronic devices such as TVs, smartphones, navigators, etc. However,
those who frequently use this voice-based human-machine communication
do not always find it sufficiently reliable, and definitely not as efficient as
human-human communication.

The human-machine interaction via speech has some components and
in this dissertation, I will focus on one of these components, namely Auto-
matic Speech Recognition (ASR), and more precisely, the acoustic model-
ing component of a speech recognizer. The aim of the acoustic model is to
handle the relation between the acoustics produced by the vocal tract and
their linguistic interpretation. While there are many approaches to handle
this relation, none of them seems to be satisfying enough. Each one has its
own pro’s and cons. For instance, some perform well in very constrained
environments and some are computationally expensive. The aim of this
research is to investigate Reservoir Computing Networks (RCN) as an al-
ternative approach. It is argued that an RCN can more efficiently exploit
the dynamic properties of speech than the conventional approaches. Fur-
thermore, the RCN is believed to be more robust against the presence of
background noise.

The first part of this thesis provides the necessary general background
about ASR and the architecture that is conceived to achieve it. The back-
ground is reviewed in two chapters. Chapter 1 provides a general overview
of ASR and addresses some of the encountered difficulties. It also provides
a concrete outline of the rest of the thesis and it tells the main story line
of my research. In Chapter 2, the actual research focus, namely acous-
tic modeling, is presented in more depth. I will review the most popular
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approaches for modeling the speech acoustics, namely Gaussian Mixture
Models and various types of Artificial Neural Networks, and I will assess
the most recent findings reported in literature. Moreover, I will introduce
Reservoir Computing Networks as a special type of Neural Network and
I will argue why they may, in time, compete or even surpass the current
acoustic modeling approaches.



1
Problem, Motivation and Formulation

1.0 Human-Machine Interaction by Speech

Human-machine interaction (HMI) is a major research area in the field of
Artificial Intelligence (AI) and robotics. Among the different ways of in-
teracting with machines, communication through speech is one of the most
appealing, but at the same time, one of the most challenging ones. In this
respect, the aim is to develop a machine that can listen and respond to users
by means of naturally sounding speech.

Despite the fact that we usually find it effortless to understand other
people when they speak, especially when the conversation is in our mother
tongue language, parsing the speech stream is an impressive perceptual
masterpiece. Our ability to instantaneously decode speech, which is a
highly complex acoustic signal, into a sequence of sounds and to group
those sounds into words, sentences and semantic concepts is remarkable.
Figure 1.1 shows the diagram of speech-based human-machine commu-
nication. The first task of the machine is to listen to the speech and to
recognize the words that were spoken. In the literature, this procedure is
called Speech-to-Text (S2T) conversion or Automatic Speech Recognition
(ASR) [11]. The next step is to understand the meaning of what has been
spoken [12]. Then the machine generates a reasonable response [13] as a
sequence of words and sentences. Finally, these words are converted into a
speech signal. The last step is usually called speech synthesis [14].
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Figure 1.1: A standard diagram of speech-based human machine commu-
nication
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Figure 1.2: High-level diagram of a speech recognizer

The concern of my work is the first step, namely speech-to-text. This
chapter offers a brief introduction to modern speech recognition systems
and their limitations. Subsequently, I review some state-of-the-art remedies
that have been devised to tackle those limitations.

1.1 Automatic Speech Recognition

From a general perspective, the human speech recognition system com-
prises two major blocks corresponding to the ear(s) and the auditory centers
in the brain. The ears are responsible for capturing the acoustic signal and
for extracting acoustic features from that signal. These acoustic features are
processed in the brain with the aim of separating speech from non-speech
parts, detecting the language and recognizing the spoken words.

Likewise, a standard ASR system, contains two major components: a
front-end and a back-end. A diagram of the ASR components is shown in
Figure 1.2.
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The front-end component, like the ears, extracts acoustic features from
the speech signal. At a given time, the features are collected in a vector
Ut. They usually represent the short-time energy and spectrum of the sig-
nal [15]. One of the most well-known acoustic features used for speech
recognition are the Mel Frequency Cepstral Coefficients [16]. Acoustic
features vary at the rate the human articulators (tongue, lips, velum, etc.)
can move, hence, they need only to be computed at a rate of one vector per
10 ms.

The back-end component (like the brain) decodes the acoustic feature
stream and returns a sequence of words ŵ that fits best with the feature
vectors. One can simply translate the task of the back-end to the following
equation:

ŵ = argmax
w

P (w|U), (1.1)

where, U = [U1, · · · , Ut, · · · , UT ].

Models of Speech

The complexity of the solution to the above equation strongly depends on
the kind of speech the recognizer is expected to recognize. In this section,
I briefly review the different types of ASR systems that have been devised
in order to deal with different types of speech.

Suppose that we want to control a robot vacuum cleaner with speech.
Such a system is supposed to respond to a small set of predefined com-
mands such as “left”, “right”, “stop”, “turn”, etc. That means that a small
vocabulary isolated word recognizer (SVIWR) can do the job. Such a rec-
ognizer encompasses a so-called acoustic model for each word. It repre-
sents the ensemble of acoustic feature streams that can be observed when
that word is spoken. The solution to the basic equation is then obtained by
examining which model best explains the acoustic feature stream.

Entering a PIN-code into an ATM machine, on the other hand, requires
entering a fixed or variable length of digits sequence. To recognize such
a sequence, one needs a small vocabulary continuous speech recognizer
(SVCSR). In order to solve the basic equation now, one can still use word
models like in the SVIWR, but one then needs to factorize the probability
of a word sequence as a product of word-level probabilities in order to find
the sequence best explaining the acoustic feature stream that needs to be
recognized.

Entering an address into a navigation system or dictating a letter are
examples in which the speech represents a continuous sequence of very
diverse words. Recognizing such a sequence takes a large vocabulary con-
tinuous speech recognizer (LVCSR). Since the vocabulary can encompass
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Figure 1.3: Diagram of an ASR. The gray components are usually used for
LVCSR, only.

a few hundred thousand words in such a case, one can no longer construct
separate acoustic models for each word.

The solution then is (1) to decompose words into smaller units that be-
long to a finite generative set of what we call basic phonetic units, such as
syllables or phonemes, and (2) to construct acoustic models for these pho-
netic units. The idea is then to factorize the probability of a word sequence
into a product of phonetic unit level probabilities and to search for the word
sequence maximizing this product. In order to achieve that, one has to cre-
ate a Pronunciation Dictionary comprising all the words of the vocabulary,
together with their pronunciations, defined as their decomposition into ba-
sic phonetic units. For instance, the word “left” could be represented by
its pronunciation “L-EH-F-T”. Given the large number of words and given
the fact that each word of a sentence is, to some extend, predictable from
the preceding words, an LVCSR also encompasses a so-called Language
Model that assigns prior probabilities to word sequences and uses these
probabilities to constrain the search space.

In what follows, the ensemble of unit acoustic models is usually de-
noted by the term Acoustic Model, abbreviated to AM. Figure 1.3 shows
the diagram of an LVCSR in more detail.

While the type of features extracted in the front-end is usually indepen-
dent of the language and the recognition mode (e.g., small or large vocabu-
lary), some of the components in the back-end, such as the acoustic model
and the language model are fine-tuned to the recognition task at hand. In
practice, the acoustic model and the language model are stochastic models
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Figure 1.4: Distortions in adverse environment.

that are learned from training material (e.g., labeled speech corpora and text
material respectively). This learning phase usually takes place long before
the system is put into operation. This is again comparable to what happens
in speech recognition by humans. The front-end (ear) extracts the same
type of acoustic features regardless of the language and the environment.
While, our brain uses task specific processes, that were learned before, to
extract the various types of information encoded in an acoustic signal (de-
tecting noise and speech, identifying the speaker and language, decoding
words, etc.).

The trained stochastic models will only work well if they are designed
according to well founded procedures, and if the training material was suf-
ficiently large and well representing the situations the system is going to
experience during operation. In this respect, my work is mainly about re-
ducing, as much as possible, the performance degradation that is due to the
mismatch between the circumstances during training and operation.

1.2 Noise Robustness in ASR

Speech signals carrying an identical linguistic message still show a large
amount of variability. This variability is governed by different factors:

• Variability due to the environment: The acoustic environment, in
which the speech is recorded, modifies the speech signals. Examples
thereof are background noise, reverberation, microphone distortion,
and transmission channel distortion. Figure 1.4 shows the typical
sources of distortion in adverse environments.

– Reverberation: In an enclosed environment such as a room, the
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acoustic speech wave is reflected by objects and surfaces. These
(delayed) reflections are added to the signal captured by the
microphone.

– Different microphones: It is often the case that a recognizer
is trained using speech that was captured with a high quality
close-talking microphone, while in the real world, the applica-
tions are sometimes forced to work with cheaper microphones
that have different frequency response characteristics.

– Transmission channels - telephone: A great deal of applications
need telephone speech recognition. However, due to the narrow
bandwidth (300 ∼ 3400 Hz) and non-linear distortion in the
transmission channels, telephone speech is much more difficult
to decode than full bandwidth speech.

• Variability due to the speakers: Since no two persons share identical
vocal cords and vocal tract, they cannot produce the same acoustic
signals. Typically, females sound different from males and children
sound different from adults. Also, there is variability due to dialect
and foreign accent. A word may also be uttered differently by the
same speaker because of illness or emotion. It may be articulated
differently depending on whether it appears in planned read speech
or spontaneous conversational speech. Even speech produced in the
presence of noise differs from speech produced in a quiet environ-
ment because the speaker modifies its speech to sound more clearly,
a phenomenon called Lombard effect [17].

The variability caused by speakers is generally considered as genuine,
whereas, the one that is caused by changes in the channel and the environ-
ment are referred to as noise.

The noise brings two problems: (1) noise adds to the variability and
therefore, it may lead to more confusion between words, (2) there can be
differences between the noise present during operation and the noise that
was present during training of the AM. This causes a so-called mismatch
between training and testing and forces the AM to make extrapolations.

Remedies

Problems arising from noise can be addressed at various stages of the recog-
nition process. I will discuss some of the most frequently used ones in this
section:
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• Robust feature extraction: The idea here is to extract features that are
affected as less as possible by the kind of noises that can be present
during operation. For example, RASTA [18] feature extraction uses
filters to remove those components of the signal which do not follow
the dynamics of the speech. Therefore, the features are less affected
by stationary noises than standard PLP [19] or MFCC features. Sim-
ilarly, phase-autocorrelation (PAC) features [20] are able to enhance
the peaks of the spectrum and were shown to be less affected by ad-
ditive noise.

Each of these feature representations tries to preserve as much as pos-
sible the characteristics of the (clean) speech in the features. How-
ever, a single feature representation might not perform well under all
conditions.

– Problem: The signal transformation used to extract robust fea-
tures need to balance their need to reduce unwanted variability
and the need to retain as much relevant information as possible.
In practice, most robust features introduce some information
loss, and hence, they do not describe clean speech as accurately
as standard features.

• Feature enhancement: Feature enhancement [21–24] is a popular ap-
proach to reduce the effect of additive uncorrelated noise on the ex-
tracted features. In this approach, the effect of noise is removed from
the features.

– Problem: usually, feature enhancement is based on simplified
assumptions (e.g., uncorrelated features or speech and noise
uncorrelated) which may not entirely hold. Furthermore, re-
constructing a speech signal which is completely suppressed
by the noise is simply not possible.

• Feature normalization: Normalization techniques like cepstral mean
and variance normalization (MVN) [25, 26] and histogram normal-
ization [27,28] can help to reduce the mismatch between the statistics
of the features collected in different circumstances.

– Problem: These approaches normalize the marginal distribu-
tion (feature distributions irrespective of the linguistic content)
based on long-term averages only. This requires a fair amount
of speech, otherwise, the differences between the words (the
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linguistic content) can be normalized away. Furthermore, iden-
tical marginal distributions do not guarantee identical distribu-
tions.

• Multi-style training: Models can be made robust by training them
on different conditions (various noise types and levels [29] and/or
different speaking styles [30]).

– Problem: not all the noise types might be present during train-
ing and the presence of noise can broaden the distributions,
causing the recognition to be sub-optimal in good conditions.

• Missing data approach: In this approach, it is assumed that noise af-
fects only some regions in the spectro-temporal plane and it is possi-
ble to identify such regions. Some features are then treated as un-
available or unreliable and are suggested to be replaced by more
appropriate features. Two popular techniques to achieve this are
marginalization and deriving the features from the neighboring fea-
tures [31].

– Problem: The approach is hindered by the fact that it is difficult
to detect the reliable and unreliable parts with high accuracy in
the presence of noise.

• MLLR: Maximum-Likelihood Linear Regression (MLLR) [32, 33]
and its variant Constrained MLLR (CMLLR) [34] are adaptation
techniques that try to adapt the parameters of the AM by means of an
affine transform. Compared to the normalization techniques, MLLR
adjusts the complete distribution and not only the marginal distribu-
tions.

If the acoustic model is based on n Gaussian distributions (see Sec-
tion 2.2) the parameters of the AM are the mean vectors µ1···n and
the diagonal covariance matrices Σ1···n of the distributions. There-
fore, in conventional MLLR, µ and Σ are updated according to the
different transformations:

µ̂ = Aµ+ b

Σ̂ = HΣHT

where A and b are the transformation matrix and bias for the mean
vector and H is the transformation matrix for the covariance matrix.
In order to reduce the number of transformation parameters, one has
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introduced CMLLR. It assumes a shared transformation matrix C for
both means and covariances:

µ̂ = Cµ+ b

Σ̂ = CΣCT

– Problem: Collecting enough reliable adaptation data is an is-
sue [35]. Furthermore, if the acoustic conditions of the envi-
ronment are not stationary (change over time) the transforma-
tion matrices must change, as well.

• Uncertainty decoding: An appealing approach to robust recognition,
called uncertainty decoding (UD), is proposed in [36, 37]. In UD,
there is a model for estimating the amount of uncertainty about the
features. The uncertainty is calculated efficiently in the front-end,
and passed to the back-end as a single, simple variance offset to the
acoustic model components. This can provide an elegant compro-
mise of a fast feature-based compensation scheme with promising
accuracy.

– Problem: In some very low signal-to-noise ratios where noise
masks the speech, the uncertainty models are acoustically in-
distinguishable, which can cause spurious errors [36]. Further-
more, propagating the uncertainty requires several approxima-
tions in the feature extraction and acoustic modeling to make
the mathematics tractable.

1.3 The Aim of This Work

Various techniques have been utilized to model the acoustics of the speech
units. Gaussian Mixture Models (GMM) and different types of Artificial
Neural Networks (ANN) are the dominant ones in state-of-the-art ASRs.
The common property of these models is that their outputs at time t are
based on short-term acoustic representations of the speech in an interval
centered around t. However, it is argued that one needs a larger scope to
separate the speech from the noise dynamics. In this respect, the main ob-
jective of my research was to investigate a new neural network type (new
in the domain of speech), called reservoir computing networks (RCN), that
are recursive in nature and thus expose a larger context. Therefore, I be-
lieve that they are inherently more robust than their competitors against the
various sources of variability mentioned before.
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Figure 1.5: Frequency responses of G.712 and MIRS filter [29]

As I explained earlier, the recognition of speech involves a language
model and a pronunciation dictionary in addition to the AM. However,
noise sensitivity mainly originates from the acoustic features and the AM.
Therefore, in order to concentrate on that aspect and to avoid the interfer-
ence of the other components when measuring the noise sensitivity of the
AM, I chose to study noise robustness in a SVCSR task, namely continu-
ous digit recognition (CDR). Since in such a task any digit can follow any
other digit, no language model is needed and due to the restriction of the
dictionary no pronunciation dictionary is needed, either. More precisely, I
will use the Aurora-2 spoken digit benchmark that is briefly introduced in
the next section.

1.4 The Aurora-2 Framework

The Aurora-2 experimental framework [29] is designed specifically to bol-
ster research on the noise robust continuous digit recognition. The Aurora-2
corpus consists of clean and noise corrupted digit sequences counting 1 to
7 digits per utterance. The original 20 kHz data have been downsampled
to 8 kHz with an “ideal” low-pass filter extracting the spectrum between 0
and 4 kHz. These data are considered as “clean” data and distortions are
artificially added to these clean data.

An additional filtering is applied to consider the realistic frequency char-
acteristics of terminals and equipment in the telecommunication area. Two
“standard” frequency characteristics are used which have been defined by
ITU [38]. The abbreviations G.712 and MIRS have been introduced as ref-
erence to these filters. Their frequency responses are shown in Figure 1.5.
The major difference is a flat curve of the G.712 characteristic in the range
between 300 and 3400 Hz where the MIRS shows a rising characteristic



PROBLEM, MOTIVATION AND FORMULATION 15

Train & Test A Test B Test C

subway restaurant
Noise babble street subway
types car noise airport street

exhibition hall train station

Filter G712 G712 MIRS

Table 1.1: Noise types and filters used in different Aurora-2 sets

with an attenuation of lower frequencies. MIRS can be seen as a frequency
characteristic that simulates the behavior of a mobile telecommunication
terminal.

Since there are two variants of ‘0’ in American English, namely zero
and oh, the vocabulary is composed of 11 words.

The data is divided into a training part and a testing part. The frame-
work supports two types of experiments: clean training experiments in
which systems are developed on 8440 clean training utterances from 110
adults and multi-style training experiments in which systems are developed
on 8440 noise corrupted versions of the same utterances. The corruption
is randomly chosen out of four noise types and five signal-to-noise ratios
(SNRs): ∞ (clean), 20, 15, 10 and 5 dB. The evaluation utterances come
from speakers that are not present in the training data. The utterances are
divided into three tests. Tests A and B each contain 28,028 utterances cov-
ering 4004 different digit sequences, 4 noise types and 7 SNRs (∞ (clean),
20, 15, 10, 5, 0, and -5 dB). The noise types occurring in Test B do not
occur in the multi-style training data, while those of Test A do. Test C
contains 14,014 utterances covering 2002 different digit sequences, 2 noise
types (one matched and one mismatched) and 7 SNRs. The utterances of
the training set as well as Test A and B were passed through a G712 filter,
whereas those of Test C were passed through a MIRS filter (see Table 1.1).

1.5 Outline

In this thesis, the issue of robustness in the context of continuous digit
recognition (CDR) and reservoir computing networks (RCNs) is investi-
gated as an approach to improve the robustness of ASR. Many of the tech-
niques already mentioned in this thesis (such as feature normalization and
spectral subtraction) which help to make the acoustic feature representa-
tions more robust, can be used in conjunction with RCNs.
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The remainder of this document reviews, in chronological order, my
work on noise robust continuous digit recognition.

When I started my work, RCNs had already been applied for clean iso-
lated digit recognition but the published studies only reported small exper-
iments. Therefore, I decided to build an RCN-based CDR system consid-
ering the established knowledge about reservoirs and HMMs and to evalu-
ate its robustness on the Aurora-2 benchmark. After some naive attempts
which failed to achieve noise robustness with RCNs and standard acoustic
features, I started to employ robust features, like many state-of-the-art sys-
tems do. With such features, I finally succeeded to conceive an RCN-based
system that degrades more slowly with an increasing noise level than a con-
ventional GMM-based system. That work was published as an Interspeech
2011 conference paper and is handled in Chapter 3 of this thesis.

Although the created system outperforms GMMs in mismatched (noisy)
conditions, it did not perform so well on clean speech. Improving the reser-
voir performance for high SNRs was the topic of my Interspeech 2012 pa-
per, which forms the basis for Chapter 4. In that work, I proposed to employ
a multilayer RCN (where each layer is supplied with the outputs of the pre-
vious layer) and I investigated three unsupervised ways to adapt a trained
RCN to unseen conditions. The adaptations are called unsupervised, be-
cause they do not require any manual labeling of the adaptation data.

The above investigations helped me to understand how an RCN should
be optimized for speech recognition. In practice, I learned how to fix the
reservoir parameters in order to achieve high performance. This resulted
in a set of heuristics to find appropriate values for the hyper-parameters,
defined as the parameters of the random processes that fix the reservoir
parameters. However, even with these heuristics, there is still a whole
range of hyper-parameters combinations to examine. This stimulated me
to further investigate the relations between hyper-parameters and to trans-
late them into a minimum set of principles/rules that should be employed to
get good hyper-parameters. This resulted in a ‘theory’ that leads to a hyper-
parameter set that is quasi-optimal, but derivable from easy-to-gather prior
knowledge and statistical information gathered by small-scale experiments.

As this theory alleviates the time-consuming grid searches in the hyper-
parameter space we were forced to conduct otherwise, it significantly sped
up the experiments. In a short time, I could develop and evaluate several
new architectures and establish that I can achieve state-of-the-art CDR ac-
curacy in clean conditions and better robustness against noise than much
more complicated systems. The results of this work are elaborated in an
article that appears in the Computer, Speech and Language journal and con-
stitutes Chapter 5 in this thesis.
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My work shows that the performance of RCN-based systems degrades
less quickly than conventional systems when the mismatch between train-
ing and test condition increases. On the other hand, the latter systems
seem to be better equipped to learn the characteristics of a particular condi-
tion, leading to excellent performance in matched conditions. Therefore, I
searched for sensible approaches to combine the advantages of both system
types. Chapter 6 describes three techniques that attempt to accomplish this.
This work was published and presented at the ISPACS 2013 conference.

Instead of improving the acoustic model, one can also apply RCNs to
enhance the features. To that end, I trained an RCN to act like a Denois-
ing Auto-Encoder (DAE) that maps the noisy features to ‘clean’ copies.
Although one can train a DAE for each condition, it is more appealing to
build one DAE for all conditions and to use the outputs of that DAE as
the inputs to the recognizer. The results of this work was presented at the
ISSPIT 2013 conference and are described in chapter 7 of this dissertation.

The main objective of my research was clearly to show the potential of
RCN in robust speech recognition. However, I was also curious to find out
whether the proposed strategy of designing RCN is, to a large extent, trans-
ferable to a completely different task. Chapter 8 of this thesis appertains
to this curiosity. It describes how I developed an RCN-based system for
handwritten digit recognition. Here too, I focused on the robustness of the
system to the presence of noise in images. I performed experiments on the
renowned MNIST dataset and showed that RCN is indeed a serious alter-
native to the state-of-the-art noise robust image recognizers. This work has
been submitted to the Journal of Machine Learning Research (JMLR).





2
Acoustic Modeling

2.0 Introduction

As a result of extensive research, ASR has improved significantly over the
last three decades. The progress in both hardware (e.g., more powerful
computers) and software (better training algorithms) have been key reasons
to this improvement. Besides this, ASR has become an attractive reference
problem for testing novel methods developed in other research fields such
as Machine Learning and Cognitive Science [39].

However, in spite of the achieved improvements, state-of-the-art ASRs
are still far from being competitive with the incredible human speech recog-
nition system. Partly, this is also the reason why there is hesitation in de-
ploying these not so well-performing ASRs in human-machine interaction.

Considering the fact that most of the human speech processing is done
in the brain, it is not surprising to see that most ASR research is devoted to
the back-end, and particularly to the acoustic model (AM) it contains.

The aim of this chapter is to give the reader an overview of the most
popular and powerful approaches that were adopted for acoustic modeling.
Next, I introduce the Reservoir Computing Network (RCN) as an interest-
ing new type of neural network and I argue why it might resolve some of
the limitations of the current modeling approaches.

Obviously, a discussion of the AM is not complete if it is not also con-
sidering the role of the AM in the whole system and its interactions with
the other parts of ASR. Therefore, I begin with some more detail about the
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Figure 2.1: Extracting MFCC components

components of a speech recognition system.

2.1 Components of a Speech Recognition System

2.1.1 The Front-End

The aim of the front-end is to extract features that still contain all the in-
formation related to the linguistic content of the signal, while at the same
time simplify the signal and suppress unwanted variability in the signal
(e.g., background noise). A set of desirable features is supposed to offer (1)
discrimination between the basic speech units, (2) invariance to unwanted
sources of variability such as speaker identity, channel properties and the
presence of background noise.

Although it is theoretically possible to recognize speech directly from a
digitized waveform, almost all ASR systems perform some spectral trans-
formation on the speech signal. This is because numerous physiological
and psychological experiments have shown that the inner ear acts like a
spectral analyzer [40].

The acoustic features most widely used in ASR are Mel-Frequency Cep-
stral Coefficients (MFCCs) and Perceptual Linear Prediction (PLP) coeffi-
cients. There are however plenty of other options, such as Linear Predictive
Coding (LPC), Power Normalized Cepstrum Coefficients (PNCCs), etc. In
the present work, I mainly use MFCCs as acoustical features. The process
of extracting them consists of the following steps (see also Figure 2.1):

1. Framing: Speech is a time-varying signal and is (quasi) stationary for
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a short time only. This calls for a subdivision of the signal into short
blocks of samples, called frames. Typically, such a block is 20-35 ms
long. The shift between adjacent blocks is typically 10 ms, meaning
that there is overlap between consecutive frames.

2. Windowing: Framing in the time domain corresponds to multiplying
the signal with a rectangular window. Since the subsequent discrete
Fourier transformation (see Figure 2.1) also analyses the signal tran-
sition from the end of the frame back to the beginning of the frame
(periodic extension of the signal) the cutting at the edges of the win-
dow introduces unwanted discontinuities which introduce artifacts.
These artifacts can be suppressed by replacing the rectangular with
a non-rectangular framing function that tapers off at the edges. The
Hamming window [41] is a common choice for speech signal pro-
cessing.

3. Static Feature Computation: In order to extract the acoustic features,
the human ear makes a constant-Q analysis [42]. However, due to
the varying number of samples needed for calculating the outputs at
each frequency, implementation of this transform is tricky. Instead,
many ASRs employ an approximation of such an analysis.

A front-end method that produces MFCCs [43] proceeds as follows.
First, it calculates a power spectrum of each frame by means of an
FFT which can be interpreted as a filterbank with fixed bandwidth
band-pass filters. Then a set of center frequencies, equidistantly
spaced on a frequency scale that is close to a log-frequency scale, is
chosen. Based on these center frequencies, triangular filter weights
(presenting the filter gains of the constant-Q filters) are designed and
a weighted sum of power contributions emerging from the FFT is
computed for each center frequency. The outputs of this stage ap-
proximate the energies that would have emerged from a Mel filter-
bank, composed of band-pass filters with bandwidths that are pro-
portional to the center frequencies of these filters. Such a filterbank
much better explains the spectral analysis in the human ear than the
fixed-band filterbank of an FFT. In a third step, the filterbank energies
are compressed by taking their logarithm. This is also motivated by
the fact that the perceived loudness of a sound is not proportional to
its energy but to its log-energy. The final step computes the DCT of
the log filterbank energies. The motivation for this is that adjacent fil-
ters of the filterbank are overlapping in frequency, and consequently,
their output energies are quite correlated. The DCT decorrelates the
filterbank energies, resulting in a compact set of decorrelated acous-
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tic features. This decorrelation leads to a less expensive training pro-
cedure of the GMM-based acoustic models.

Notwithstanding their widespread use, MFCCs are sub-optimal. MFCCs
give equal weight to both the spectral peaks and the spectral dips. The
human perception, on the other hand, uses the fact that spectral peaks
are less affected by noise, and hence focus more on spectral peaks.

4. Dynamic Features: Most of the acoustic models compute probabil-
ities for a signal (converted to a sequence of frames by the feature
extraction) as a product of frame-wise probabilities meaning that
they assume independency between frames. Obviously, subsequent
frames are correlated. In order to take this correlation into account as
well, one can supplement the static features with dynamic features.

Dynamic features are retrieved from the static features by taking first
and second order time derivatives of each static feature [44, 45]. The
delta (∆xt,l) and double delta (∆2xt,l) cepstral coefficients are the
first and second order time derivatives of the cepstral coefficients
(xt,l) respectively, and are obtained by,

∆xt,l =

∑k=i
k=−i k · xt+k,l∑k=i

k=−i |k|
, ∆2xt,l =

∑k=i
k=−i k ·∆xt+k,l∑k=i

k=−i |k|
.

where t is the frame index, l is the feature component index and i
determines the context length. The latter is generally kept between 2
and 4 to have a context of 5 to 9 frames [45].

Altogether, the output of the front-end component at time t is an MFCC
acoustic feature vector Ut containing the log-energy and 12 cepstral coeffi-
cients along with their first and second derivatives:

Ut = (logEt, Xt,∆ logEt,∆Xt,∆
2 logEt,∆

2Xt).

2.1.2 The Back-End

As explained in Chapter 1, the back-end of a continuous digit recognizer
contains two main components, an acoustic model (AM) and a decoder.

2.1.2.1 Acoustic Models

Just as written words consist of a sequence of letters, spoken words consist
of a sequence of basic sounds. In order to model this, a finite state linear
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automaton is created for each word, expressing the fact that the word can be
split into a sequence of subsequent units, called states (e.g., three states for
the beginning, the middle, and the end part of the word). Figure 2.2 shows
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Figure 2.2: HMM automaton with five states for a word.

an example of an automaton for a word with five acoustic states. The ac-
tive state of the automaton progresses through time. At each time step, a
transition between states occurs and the visited state ‘emits’ an acoustic
vector. The transitions between states are governed by so-called transition
probabilities. The emission of an acoustic vector in a state is governed by
a so-called emission distribution. The latter models how the feature vec-
tors, observed in a particular state, are distributed. During recognition, this
distribution is used to compute how likely an observed feature vector is for
a given state. The emission distributions can be modeled in various ways,
but the most prominent ones are: (1) a Gaussian Mixture Model (GMM) per
state that computes the likelihoods of that state directly, and (2) an Artifi-
cial Neural Network (ANN) that computes the posterior probabilities of all
the states followed by Bayes’ law that converts these state posteriors to state
likelihoods. In any case, the models will only enable good recognition if the
transition probabilities and the parameters of the emission model have been
given appropriate values. These values emerge from an automatic training
procedure that just needs orthographically transcribed speech utterances.

Due to the probabilistic nature of the transitions and the emissions, the
automaton becomes a Hidden Markov Model (HMM). This automaton can
so-to-speak generate acoustic vector sequences U of an arbitrary length
not smaller than the number of states it contains. For a simple task such as
SVIWR, the task of a word recognizer then boils down to identifying the
model that is most likely to have generated the observed acoustic sequence
U. Since words can be surrounded by silences, the recognizer must also
encompass a silence model, which can be a single state HMM. In practice,
the recognizer searches for the most likely state sequence in a large HMM
that looks like the one depicted on Figure 2.3 for the case of an isolated
digit recognizer (digits 0 to 9).

In continuous digit recognition (CDR), the automaton has to be ex-
tended to accommodate multiple words in an utterance. This is accom-
plished by introducing an opportunity to transit from the last state of each
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Figure 2.3: HMM automaton for isolated digit recognition with an initial
state I and a final state F . qds denotes the state s of digit d and # is the
state assigned to silence.

digit to the first state of each digit (including the current digit). There-
fore, the HMM corresponding to such a task becomes like the one depicted
in Figure 2.4. The recognizer has to find the best path (state sequence)
through the automaton, and from that sequence it can retrieve the corre-
sponding word sequence. The penalty factor, Po, controls the balance of
insertion and deletion errors.

2.1.2.2 Viterbi Decoder

Finding the best path through an HMM is achieved by means of a Viterbi
decoder [46]. This decoder finds the most-likely sequence of acoustic states
for an utterance of length T . If K is the total number of HMM states
(i.e., sum of the number of states over all the words in the vocabulary),
the decoder applies dynamic programming [47, 48] to find the most likely
path though a trellis MI×T where mi,t represents the probability that the
acoustic vectors U1...Ut are generated along a state sequence that ends in
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Figure 2.4: HMM automaton for CDR with two initial states I1 and I2 and
a final state F .

qt = i.

2.2 Main Approaches for Acoustic Modeling

The common denominator of most AM approaches is that they model the
variability of the speech in state q by means of stochastic models which
either estimate P (U |q) or P (q|U) where U represents one acoustic feature
vector.

Before going into more detail, it is worth to mention that within the past
thirty years, the dominant approach was to compute P (U |q) by means of
a Gaussian mixture model (GMM). In what follows, I briefly describe first
how a GMM is used to estimate P (U |q) and then I review the most relevant
alternative approaches that were proposed in the hope to improve the AM.
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2.2.1 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) [48–50] models the probability density
function P (U |q) as

P (U |q) =

K∑
k=1

wqkNqk(U, µqk,Σqk). (2.1)

This is a weighted sum of K multi-variant Gaussian densities Nqk. A
GMM has the following trainable parameters: the mixture weights wqk,
the mixture means µqk and the mixture variances Σqk. One can either in-
dependently model each state by a mixture of state-specific Gaussians, or
model all data by a pool of Gaussians and then select the mixture compo-
nents from that pool. Figure 2.5 shows a mixture of three Gaussians for a
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Figure 2.5: Example of a GMM density function for a simplified one-
dimensional case.

one-dimensional density function.
The likelihood of the acoustic vector sequence U along a state sequence

q is computed as

P (U|q) =

T∏
t=1

P (Ut|qt) (2.2)

Training of the models is achieved by means of a procedure such as
Maximum Likelihood Estimation (MLE) [48, 51, 52] that maximizes the
log likelihood sum of the training data using the iterative Expectation Max-
imization (EM) algorithm [53]. Instead of using such a generative method,
one can also opt for a discriminative training [54–56] that maximizes the
probability of the correct state sequence given the acoustic feature stream.
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A possible technique for discriminative training of GMMs is Maximum
Mutual Information (MMI) training [57].

GMMs are still popular, particularly in commercial products. There
are also many toolkits implemented for training and evaluating them (e.g.,
HTK [58] and SPRAAK [59]) in a very efficient way. Furthermore, in
practice, GMMs are shown to be much faster in both training and evaluation
than competitors based on e.g., ANNs or support vector machines (SVMs)
.

2.2.2 Artificial Neural Networks

At the end of the 1980s, artificial neural networks were introduced for
ASR [60–64]. An ANN is a network of interconnected neurons that are
simple simulations of cells in the human brain. Each neuron is stimulated
by the acoustic inputs and/or by other neurons and its output on its turn also
stimulates a large number of other neurons

If Xt is the input to neuron i at time t and Wi the weights of the input
connections, the neuron activation is computed as at,i = W T

i Xt + wi0
and the neuron output is obtained by applying a compressing non-linear
function f(·) on this activation (see Figure 2.6 (a)). An example of such a
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Figure 2.6: Schematic view of (a) a perceptron and (b) an MLP with two
hidden layers, input Xt, hidden layer activations Ht and output Yt at time
t.

function is the sigmoid function:

f(at,i) =
1

1 + e−at,i
(2.3)
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Figure 2.7: The basic architecture of a hybrid ANN-HMM system where
the ANN is used to estimate the state posterior probabilities.

The aim of f(at,i) is to project the entire real axis on a bounded interval
([0, 1] in the sigmoid case).

The neurons are usually organized in layers and the outputs of one layer
stimulate the neurons of the next layer (see Figure 2.6(b)). The last layer
is called the output layer because it produces the outputs of the ANN. The
other layers are called hidden layers. The number of layers is often called
the depth of the network.

In acoustic modeling, the output layer is designed to provide outputs
that resemble the posterior probabilities P (qt|Ut) of the HMM states [65].
The objective is to attain that

yt,i = P (qt = i|Ut)

The resulting posterior probabilities can then be converted to scaled like-
lihoods using Bayes’ law (see Figure 2.7) and P (U|q) can be computed
as

P (U|q) =
T∏
t=1

P (Ut|qt) =
T∏
t=1

P (qt|Ut)P (Ut)

P (qt)
. (2.4)

Since P (Ut) is independent of the state hypothesis, it can be discarded in
the search for the best state sequence [66].

Training an ANN-based acoustic model boils down to optimizing all the
weights of the interconnections between neurons. The approaches used to
train the network weights strongly depend on the network architecture. But
as the ANN outputs are expected to represent posterior probabilities, the
ANN must always be trained by means of a discriminative procedure.
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2.2.2.1 Multi-Layer Perceptrons

If only forward connections are used, the ANN is called a feed-forward
network (FFNN), and each speech frame Ut is processed independently of
the previously processed frames. An FFNN with multiple hidden layers
is referred to as a Multi Layer Perception (MLP) [67–69]. The weights
of a simple Perceptron can be found with a supervised logistic regression
training [70, 71] that minimizes a cost function (also called error function)
such as the Mean Squared Error (MSE) or the Cross-Entropy (CE) [65]
between the actual output y and the desired output d. The MSE and CE are
computed as follows:

MSE =
1

2

Nfrm∑
t=0

Nout∑
j=0

(ytj − dtj)
2 , (2.5)

CE = −
Nfrm∑
t=0

Nout∑
j=0

[dtj ln (ytj) + (1− dtj) ln (1− ytj)] , (2.6)

where t indexes the Nfrm training examples and j indexes the Nout net-
work outputs (i.e., total number of states). Logistic regression works with
a gradient descent procedure that changes a weight by an amount that is
proportional to the derivative of the error function to that weight. In the
case of an MLP, a similar training concept, called Error Back-Propagation
(EBP) [69] is adopted to optimize the weights of the hidden layers. A clas-
sical MLP is fully connected but sparse networks (SMLPs) [72] are possible
as well. The term hierarchical MLP [73–75] is used to describe a cascade
of two or more MLPs that are trained one after the other without a joint
optimization. Each MLP of such a hierarchy may contain multiple hidden
layers and the output of a preceding MLP is directly fed to the next one
using a feature stacking approach in order to increase the context gradually
from one MLP to the other.

2.2.2.2 Time-Delay Neural Networks

A direct way to take temporal dependencies into account is to stack a win-
dow of frames in the network input (instead of only one frame). As the
major ANN-based alternative approaches, one can name time-delay neural
networks (TDNN) and recurrent neural networks (RNN). Time-delay neu-
ral networks [76,77] represent an effective attempt to train an MLP [78] for
time-sequence processing, by converting the temporal sequence into a spa-
tial sequence over corresponding units. An example of a TDNN is shown
in Figure 2.8 (a).
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At each time step t, the input to the hidden layer is a window of the
current feature vector along with the past n − 1 preceding vectors, U t−nt ,
and the input to the output layer is a combination of current hidden layer
output along with those of the pastm−1 preceding ones, Ht−m

t . The same
extension can also be applied to subsequent layers, introducing a tapped-
delay mechanism between hidden units (e.g., only the first block of units
in the tapped line actually receives input from the previous layer), giving
the ability to deal with more complicated time dependencies. The EBP
algorithm can be used to train such a network as well.

510 510 

32 32 

32 340 
386 693 

… 

… 

… 

Ht-1 Ht Ht-m 

Inputs 

Hidden 

layer 

Output 

layer 

… 

… 

… 

Ht-1 Ht 
Ht-n 

Inputs 

Hidden 

layer 

Output 

layer 

(a) TDNN (b) RNN 

Ut-n Ut-1 Ut 

Yt-n Yt-1 Yt 

Ut-n Ut-1 Ut 

Yt-n Yt-1 Yt 

…
 

x1 

x2 

x3 

xn 

wn 

w3 

w2 

w1 

1 

f(.) a 

Xt Ht
1
 Yt Ht

2
 

(a) Perceptron (b) MLP 

Ut Yt 

B
ay

es 

i 

k 

P(qt=i|Ut) 

 …
 

P(qt=k|Ut) 

P(qt=j|Ut) 

j 

P(Ut|qt=i) 

P(Ut|qt=k) 

P(Ut|qt=j) 

Neural network Posteriors Likelihoods HMM 

P
(U

t|
q

) 

Ut 

0 

1 

w0 

D
eco

d
er 

Ut Y1
t 

Layer 1 

Y2
t 

Layer 2 

YL
t 

Layer L 

R1
t R2

t RL
t 

D
eco

d
er 

Ut 
RCN-based recognizer 

trained with clean set 

Adaptation 

RCN 

Figure 2.8: (a) Time-delay neural network. Input is fed into the rightmost
set of input units (Ut ) at time t and previous inputs are shifted to the left.
A similar mechanism holds for the hidden layer. The output layer of the
net integrates the activations of the hidden units over time. (b) Recurrent
Neural Network. The neurons can model the dynamics over time by using
the internal neuron activations from time step t − 1 while processing an
observation of time step t. The gray colors and the dashed arrows resemble,
respectively, the situation of the system and the stream of data through time.
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2.2.2.3 Recurrent Neural Networks

In Recurrent Neural Networks (RNNs) [79], the neurons are supplied with
the input observations along with the past outputs of the neurons in the
hidden and output layer (see Figure 2.8 (b)). Hence, RNNs provide dy-
namic modeling by using the neuron activations at time step t − 1 while
processing an observation of time step t. The network actually computes
Yt = P (qt|Ut, Ht−1, Yt−1) and provides a fading memory of the entire
past. Due to this connectivity, the networks can model sequential behavior
and take dependencies between frames into account.

RNNs cannot be trained with simple EBP training and call for a more
complex training procedure [80] such as Back-Propagation Trough Time
(BPTT) [81] or Real-Time Recurrent Learning (RTRL) [82]. In the case of
BPTT training the network is unfolded in time (given a certain depth) and
EBP is performed through the resulting unfolded feed-forward network.
RNNs are causal models that only encode the recent past in their internal
memory. They do not access the right (future) context of an observation.
This capability can be added by feeding the RNN with features that pro-
vide information about the future (stacked future frames and/or dynamic
features computed for the present frame). Another approach is to perform
bi-directional processing [83]. In such a case, two networks are used, one
that processes the sequence from left-to-right and a second one that works
from right-to-left. Joining the two networks provides a model that takes the
past and future context of an observation into account.

2.2.2.4 Deep Neural Networks

A DNN is a feed-forward NN with more than one hidden layer. Each hidden
neuron typically uses the logistic function to map its activation emerging
from its inputs to a bounded output that stimulates the next layer.

The networks are trained so that each layer of neurons represents a dif-
ferent level of abstraction, obtained with a layer-wise training procedure.
In the Deep Belief Network approach [84], a two-stage training procedure
is used for fitting the DNNs. In the first stage, layers of feature detectors
are initialized, one layer at a time, by fitting a stack of generative models,
each of which has one layer of latent variables. These generative models
are trained to be good at modeling the structure in the input data, which
means, without using any information about the speech units (i.e., HMM
states) that the acoustic model will need to discriminate. After this gen-
erative ‘pre-training’, the multiple layers of feature detectors can be used
as a much better starting point for a discriminative ‘fine-tuning’ phase dur-
ing which back-propagation through the DNN slightly adjusts the weights
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found in the pre-training to predict the target HMM states [64, 85].
Such a pre-training creates many hyper features (transformations of the

input features). In practice, not all hyper features are useful for the dis-
crimination, but a fair fraction of them will be far more useful than the raw
inputs. The generative pre-training finds a region of the weight space that
allows the discriminative fine-tuning to make rapid progress, and it also
significantly reduces over-fitting [64, 86].

Optimizing the hidden layers in DNNs using gradient descent algo-
rithms is not that straightforward. If the initial weight scales are not set
cleverly, the back-propagated gradients will have very different magnitudes
in different layers [87]. Furthermore, the strength of DNNs relies on the
fact that they have many hidden layers and neurons. Consequently, there
are many trainable parameters which make the DNNs capable of modeling
very complex nonlinear relations between the inputs and outputs. Although
this strength is crucial for acoustic modeling, one has to provide the train-
ing samples very carefully. Otherwise, the neural network may also learn
some spurious patterns that are an accidental property of the particular ex-
amples in the training set, leading to over-fitting to the training data. A
remedy can be early stopping the training procedure which also reduces the
modeling power of the system. One can also collect a huge amount of train-
ing data [88] to suppress these accidental relationships without loosing the
modeling power, but of course with the cost of increasing computational
complexity.

2.2.2.5 Long Short-Term Memory Networks

A recent variant of the RNN approach is the Long Short-Term Memory
(LSTM) network [89, 90]. It is a special RNN that is enriched with com-
plex memory cells that can store certain activations for an arbitrary length
of time. Hence, an LSTM can model sequences that are governed by long
time dependencies over time lags of unknown size. The memory cells are
controlled by gates that determine if an activation should be stored, accu-
mulated or forgotten. The training of both the neurons weights and the
memory cell gate weights is accomplished with BPTT or RTRL. Although
it is not so clear whether long-time dependencies need to be modeled in
the AM, some recent research by Google demonstrated good potential for
LSTMs in LVCSR [91].

2.2.3 Combining Methods

Next to employing ANNs for class posterior probability estimation, ANNs
can also be combined with GMMs in a single system. Examples of such
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approaches are the Tandem approach [92–94], and the model combination
approach [95–97].

• Tandem: Normally, GMMs and ANNs are trained separately. In
a Tandem approach [92–94], the ANN is used as a feature extrac-
tor whose outputs are supplied to a GMM-based speech recognizer.
In principle, one could supply the phoneme state likelihoods of an
ANN-based system to a GMM-based recognizer. Considering the
typical 3-state model per phoneme, the feature vector to GMM has
around 120 components, whereas in practice, GMMs favor feature
vectors with around 40 to 80 components and with uncorrelated com-
ponents. This can be obtained by training an ANN with a final hidden
layer of 40 to 80 neurons, which then feeds into the output layer mod-
eling the HMM state posteriors. A Tandem system then discards the
ANN output layer and feeds the activation of the final hidden layer
to the GMM instead.

• Model combination: Instead of putting ANN- and GMM-based sys-
tems in a sequential order, one can train the ANN and GMM to pro-
duce the state likelihoods, and then linearly combine these likelihood
scores using the following equation:

log(P (q)) = αlog(P (q)GMM ) + (1− α)log(P (q)ANN ) (2.7)

where log(P (q)) is the combined log-likelihood for state q, P (q)GMM

is the likelihood given by the GMM, P (q)ANN is the average pos-
terior given by the ANN, and α is the weight of combination. In
section 6, this approach will be further examined in the context of
noise robust ASR.

2.3 Reservoir Computing Networks

2.3.1 Motivation

Both GMM- and ANN-based speech recognizers have advantages and dis-
advantages. On the one hand, GMM-based systems can rely on a strong
research and development background, and they are much faster in both
training and evaluation. On the other hand, they have shown to be very
sensitive to the mismatch between training and test conditions. Table 2.1
lists the performance of different GMM-based systems trained on clean and
tested on clean as well as noisy data from the Aurora-2 benchmark. While
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Method Clean 0-20 -5dB

GMM-HMM (ETSI) 0.97 38.9 91.5
GMM-HMM (MVN) 0.84 19.7 82.2
GMM-HMM (AFE) 0.77 13.0 69.7
GMM-HMM (VTS) 0.40 (7.3) -
GMM-HMM (MDT) - 11.4 -
GMM-HMM (EB) 0.40 (5.6) (45.8)
GMM-HMM (D-HMM) 0.51 36.0 90.0
GMM-HMM (UD) - 10.3 -
DBN-GMM-HMM (Tandem) 1.26 21.0 74.6

Table 2.1: WERs (in %) obtained in clean speech training experiments on
Tests A - C of Aurora-2. Results between brackets are obtained by em-
ploying a noise dictionary and are, therefore, biased towards the case of
multi-style training.

human performance remains stable below 1% WER up to SNRs 5-10 dB,
none of the listed GMM-based systems comes even close to that. The fact
that artificial neural networks are supposed to imitate the behavior of hu-
man brain cells raises the hope that an ANN-based speech recognizer might
be more robust against the presence of noise. However, at the time I started
my research, there was no evidence for this. On the contrary, the discrim-
inatively trained ANNs seemed to reduce the noise robustness. In spite of
that, I did have reasons to believe that neural networks based on Reser-
voir Computing Networks (RCN) [98] have much more potential because
an RCN can focus on the speech dynamics and thereby ignore the noise
effects.

2.3.2 Theory

The basic principle of Reservoir Computing (RC) is that information can be
retrieved from sequential inputs by means of a two-layer Recurrent Neural
Network (RNN) with the following characteristics (see Figure 2.9). The
first layer is a hidden layer composed of non-linear neurons which, at time
t are driven by actual inputs Ut and delayed hidden layer outputs Rt−1.
A key point is that the hidden neurons have randomly fixed input weights
and recurrent weights and thus, that they do not follow from any training
procedure. The second layer consists of linear neurons which are driven by
the actual hidden layer outputs Rt and which have trainable coefficients.
The recurrently connected hidden neurons can be imagined as a pool of
interconnected computational neurons, excited by inputs. Such a pool of
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Figure 2.9: A basic RCN system consists of a reservoir and a read-out
layer. The reservoir is composed of interconnected non-linear neurons with
randomly set weights. The readout layer consists of linear neurons with
trained weights.

neurons is called a reservoir. Together with the linear output neurons, it
forms a reservoir network. The network outputs Yt are usually called read-
outs [99] to differentiate them unambiguously from the reservoir outputs
Rt and to indicate that they ‘read out’ the reservoir states.

The reservoir can perform a temporal analysis of the input stream. In
order to be effective, it should have the so-called echo state property [99].
The latter states that, with time, the reservoir should forget the initial state it
was in. This corresponds to the requirement that a linear filter should have
an impulse response that fades out to be suitable for performing a meaning-
ful short-term analysis of a non-stationary signal such as speech. As each
reservoir output is the output of a non-linear filter with multiple inputs and
as the filter coefficients are chosen randomly, a big enough reservoir will
give rise to a large variety of filters. By training the readouts on speech, they
will focus on the outputs of those filters that resonate to frequencies which
are typical for the dynamics of the speech signal. This leads to the hy-
pothesis that an RCN can filter-out noise-inflicted dynamics (modulations)
whose frequencies are a-typical for speech.

Reservoir Network Equations

If there are N in input features and Nout readouts and if the reservoir con-
sists of N res neurons, the reservoir network is governed by the following
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Figure 2.10: The eigenvalues of the recurrent weights matrix corresponding
to a 1000-node reservoir and the spectral radius of 1. The latter is revealed
by the fact that the matrix is divided by its largest absolute eigenvalue.

equations:

Rt = fres(W
inUt + WrecRt−1), (2.8)

Yt = WoutRt. (2.9)

The N res ×N in matrix Win and the N res ×N res matrix Wrec comprise
the weights of the input connections and the recurrent connections, respec-
tively. fres(·) is an activation function performing component-wise non-
linear transformations of the neuron activations (e.g., fres(·) = tanh(·)).
In order to compute Yt, we actually extend Rt with a bias of 1. It can
be shown [99] that the echo state property holds if the spectral radius ρ,
defined as the maximal absolute eigenvalue of Wrec, is smaller than 1.

Constructing a Wrec with a spectral radius ρ takes three steps: (1) draw
the weights from a normal distribution with a variance of 1, (2) divide them
by the spectral radius of the matrix, and (3) multiply the weights by a factor
ρ. Figure 2.10 shows that the eigenvalues of the matrix following from the
second step are uniformly distributed inside the unit circle.

In order to deal better with the random inter-frame changes observed
in the inputs (e.g., due to the spectral analysis), one can introduce leaky
integration by replacing Equation (2.8) with

Rt = (1− λ)Rt−1 + λ fres(W
inUt + WrecRt−1), (2.10)
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with 0 < λ ≤ 1. In this case, the reservoir neurons are called Leaky
Integrator Neurons [100] with a leak rate λ. All reservoirs in this thesis
employ neurons of this type. The dynamical behavior of the reservoir can
be expressed in terms of two time constants:

τρ
.
= −τfr/ ln(ρ) and τλ

.
= −τfr/ ln(1− λ), (2.11)

with τfr being the time-shift (e.g., in ms) between frames. It will become
clear that τρ determines the memory capacity of the reservoir, whereas τλ
determines how smooth the readout patterns (i.e., temporal evolution) are
going to be.

2.3.3 Application of RCN in Robust ASR

The discussion about the robustness of RCNs can be followed easier if
at first, we consider a simpler type of such a network without any recur-
rent connections. Such a system is called an Extreme Learning Machine
(ELM) [101–103]. The ELM is defined as a feed-forward neural network
(a Multi-Layer Perceptron or MLP) with a randomly fixed hidden layer and
a linear output layer whose weights are fixed to minimize the mean squared
difference between the computed and the desired outputs. In [101], it is
mathematically proven that the ELM is as powerful as a fully trained MLP:
a system with N hidden neurons can learn exactly N distinct observations.
Moreover, it has been shown in [104] that among the solutions yielding
the same training error, the one resulting from the Moore-Penrose pseudo
inverse leads to the lowest norm of the output weight matrix. This latter
property is, according to [101], the key to a better generalization of the
ELM to unseen test data. The various experiments presented in [101] lead
to the following conclusions: (1) in terms of generalization, an ELM be-
haves as well as a Support Vector Machine (SVM) employing a linear ker-
nel [105], and much better than a fully trained MLP, (2) an ELM is much
more compact than an SVM (it needs less hidden neurons than an SVM
needs support vectors) and (3) the generalization performance of an ELM
remains stable over a wide range of hidden units. We argue that good gen-
eralization to test data should transfer to good noise robustness. Moreover,
we expect that introducing recurrent connections which are also randomly
fixed, is bound to maintain the noise robustness while improving the model
accuracy. Adding these arguments to the formerly mentioned noise filtering
capacity of an RCN, gives us enough reasons to believe in the high potential
of RCNs for noise robust CDR.

Obviously, an RCN also resembles an SVM, but one with a hidden space
whose size and identity do not follow from a long and delicate supervised
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training process. Likewise, it resembles a radial basis function (RBF) net-
work which also embeds a fixed hidden layer. However, the RBFs often
follow from a clustering procedure and they typically represent local func-
tions in the input feature space, meaning that they only react to inputs that
fall in a restricted area of the input space. A reservoir neuron, on the other
hand, typically has a non-local activation function. Finally, an RCN resem-
bles the recurrent neural network (RNN) applied in [106] for continuous
speech recognition. However, the memory of that network originated from
feeding the outputs back to the hidden layer and, importantly, all the net-
work weights were trained by means of back-propagation through time, a
method that is found to be very time consuming and likely to yield a sub-
optimal solution when the size of the network is large. In an RCN, the
optimal weights are found in a straightforward manner, even for a reservoir
with several thousands of neurons.



Part II

Acoustic Modeling





3
First Attempts to RCN-Based Noise

Robust CDR

This chapter is an edited version of the following original publication:

[1] A. Jalalvand, F. Triefenbach, D. Verstraeten, and J.-P. Martens,
“Connected digit recognition by means of reservoir computing,” Proceed-
ings of the Annual Conference of the International Speech Communication
Association (INTERSPEECH), pp. 1725–1728, 2011.

3.0 Preface

This chapter comprises our first attempts to develop an RCN-based spoken
digit recognizer. The research has been conducted in three phases: (1) ex-
ploration of the scene by conducting some preliminary experiments to get
insight in the potential of reservoirs and the sensitivity of their performance
as a function of the reservoir size and the reservoir dynamics, (2) develop-
ment of an RCN-based continuous digit recognizer for clean speech, and
(3) development of a noise robust RCN-based continuous digit recognizer
(CDR). All the experiments presented in this chapter are conducted on the
Aurora-2 dataset which is composed of clean and noisy speech. A chal-
lenge in this stage of the research was that the Aurora-2 utterances only
come with a digit or a digit sequence transcription. They are not hand-
segmented into silences and digits, meaning that there is no frame-wise
labeling of the speech, as normally needed for the training of an RCN.
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3.1 Introduction

Although Hidden Markov Models (HMM) have a proven track record when
it comes to model the speech acoustics for automatic speech recognition
(ASR), they have regularly been challenged by alternative methods. Many
of them try to alleviate the state-independency hypothesis underlying the
HMM paradigm. One such a suggestion is to model the dynamics and
contextual dependencies in speech by means of a Recurrent Neural Net-
work (RNN) [106]. It has been shown that RNN-based systems can indeed
attain a good performance, but error back-propagation through time is a
rather complex, critical and time consuming training method. The recently
proposed Reservoir Computing Network (RCN) [80, 98] may provide an
elegant solution to the training problem.

The basic idea of reservoir computing is that complex classifications
can be performed by means of a pool of fixed (untrained) nonlinear inter-
acting neurons, called the reservoir, and a set of trained linear classifiers
that operate in the reservoir state space. The reservoir state is defined as the
collection of the reservoir neuron outputs. The reservoir is nothing but an
RNN which offers the capacity to model the dynamics of speech. The lin-
ear classifiers can be compared to the hyperplanes in the high-dimensional
hidden feature space of an SVM [107], but with this difference that the
latter space is obtained after training whereas the reservoir state space is
constructed by a random process. The RCN concept has already success-
fully been applied to different types of problems, including robot control,
sequence generation and analysis, and even isolated spoken digit recogni-
tion [108, 109]. Recently, we have been able to demonstrate good English
phoneme recognition capabilities as well [8].

In the present paper, we propose the first RCN-based connected digit
recognizer, and we demonstrate good performance on the Aurora-2 dataset,
a dataset composed of clean and noisy speech. In Section 3.2, we review
the basics of RCN and in Section 3.3, we provide some information con-
cerning our first steps into the world of reservoir-based digit recognition. In
Section 3.4, we describe the development of our RCN-based recognizer of
connected digits and in Section 3.5 we make an experimental assessment
of the created system. The paper ends with some conclusions and ideas for
future work.

3.2 Reservoir Computing Network

A simple RCN system (see Figure 3.1) consists of a reservoir and a set of
readout units. The reservoir is a pool of non-linear neurons which are con-
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Figure 3.1: A basic RCN system consists of a reservoir and a readout layer.
The reservoir consists of nonlinear neurons with randomly fixed weights on
the input and recurrent connections. Only the weights to the output nodes
are being trained.

nected to the inputs via input connections and to each other via recurrent
connections. The weights on these connections are randomly generated
and kept fixed throughout the system development. The so-called spectral
radius, ρ, defined as the largest eigenvalue (in absolute terms) of the recur-
rent weight matrix, controls the dynamics of the system. Each output node
computes a linear function of the reservoir state, and the parameters of that
function form the weights of the output connections. They are trained to
achieve that a particular output node is high for observations of a particular
class (e.g., phoneme or digit) and low for observations of any other class.
Since the output node is linear, the output connection weights are obtained
by linear regression. Since the output nodes ‘read’ the reservoir state, they
are usually called the readouts.

If N in is the number of inputs, N res the number of reservoir neurons
(the reservoir size) and Nout the number of output neurons, the connection
weights are collected in the matrices Win, Wrec and Wout, that have the
dimensions of N in×N res, N res×N res and N res×Nout, respectively. If
Ut, Rt and Yt represent the vector of inputs, reservoir outputs and readout
nodes at time t respectively, the RCN equations can be written as

Rt = fres(W
inUt + WrecRt−1), (3.1)

Yt = WoutRt. (3.2)

The function fres is the so-called activation function of the reservoir
nodes. In this work, fres(a) = tanh(a).
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The output weights Wout are determined by means of Ridge regression
with the mean squared error as the objective criterion. If the reservoir state
and the desired output vector at different times constitute the columns of
the matrices R and D respectively, and if Nfrm represents the number of
columns (training frames), the output weights are obtained from

Ŵout = arg min
Wout

(
1

Nfrm

∣∣∣∣WoutR−D
∣∣∣∣2 + ε

∣∣∣∣Wout
∣∣∣∣2) , (3.3)

In this equation, ε is the regularization parameter. It is intended to pre-
vent over-fitting to the training data. The solution is obtained in a closed-
form [110] as

Ŵout = (RRT + ε I)−1(D RT ), (3.4)

To extend the integration of information over time, one can substitute
the memoryless reservoir neurons by Leaky Integrator Neurons (LIN) [98].
Equation (3.1) then changes to

Rt = (1− λ)Rt−1 + λ fres(W
inUt + WrecRt−1), (3.5)

with 0 < λ ≤ 1. The parameter λ (leak rate1) encodes an integration time
constant τ (in frames) via λ = 1− e−1/τ .

3.3 First Steps into Reservoir-Based Digit Recogni-
tion

[This section was not in the original paper, but was added here because
it recalls my first steps into the world of reservoir computing, and the first
insights I gained at the beginning of my research.]

In a very first attempt to devise an RCN-based isolated digit recognizer,
I constructed a system with a reservoir of 500 nodes and an architecture as
depicted in Figure 3.2.

The acoustic features extracted from the input signal were raw MFCCs
(plus log-energy) and their first and second derivatives. The output classes
were the eleven digits (including the variants zero and oh for digit 0) and si-
lence. During training, each frame was associated with one of these classes.
The silence frames at the beginning and the end of the utterance were de-
limited using a simple energy-based silence detector. This detector used a
decision threshold that was given by

Ethr = (1 + α) min(Ê) + βmax(Ê), (3.6)
1Note that in system theory, the leak rate is defined as 1 - λ. However, here we stick to

the tradition of the reservoir computing literature.
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Figure 3.2: A simple RCN-based digit recognizer along with an example
of the inputs and outputs of its different components.

with α and β being two control parameters and with Ê being the frame en-
ergy that was obtained after smoothing of the frame-wise energies. During
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operation, the decoder considered the digit class with the highest accumu-
lated output as the recognized digit.

To get a quick idea of the importance of dynamic modeling offered by
recurrent connections and LINs, I trained three systems comprising dif-
ferent types of reservoirs: one with simple neurons and without recur-
rent connections, one with simple neurons and with recurrent connections,
and one with LINs and recurrent connections. The reservoir outputs and
the readouts of these systems for a sample containing digit 1 (Aurora file
MFK 1B.08) are shown in Figure 3.3.

Although adding the recurrent connections lead to the correct classifi-
cation, there still is is a strong competition with some of the incorrect solu-
tions. Introducing more memory by means of LINs causes the readouts to
be smoother and the correct hypothesis to stand out more clearly. With the
latter system I obtained a digit error rate (DER) of about 2.3% on Aurora-
2, which was obviously still far above the state-of-the-art of 0.12% [109].
Adding an embedded training stage that makes its own silence-digit-silence
segmentation, made it possible to reduce the DER to 1.1%. With a reservoir
of 1000 nodes, the DER further dropped to 0.75%.

In summary, my preliminary experiments lead to the following insights:
(1) recurrency in the reservoir and memory in the reservoir neurons are
both effective means of capturing dynamical properties of the speech, and
(2) good recognition requires big reservoirs2. These insights were at the
basis of all my subsequent research.

3.4 Proposed Method

As mentioned in the previous section, we originally adopted the approach
of [108] in which there is a single readout for each digit and for silence.
However, like in GMM systems and like in [109], we generalized this ap-
proach to the case where each digit is modeled as a sequence of sub-word
states, and each state is characterized by a readout (see Figure 3.4). During
operation, the likelihood of being in a particular state is then determined by
the readout associated with that state.

The system proposed here can be viewed as a hybrid RCN-HMM sys-
tem. In the first stage, a dynamic system (the reservoir) converts the input
feature vector sequence into a sequence of vectors in a high-dimensional
inner space (the reservoir state space). In the second stage, emission prob-
abilities at a certain time (frame) are computed as a linear combination of

2At the time I did this research, there was no experience at all in the reservoir computing
community with reservoirs of more than a few hundred nodes.
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Figure 3.3: (left) Acoustic features, reservoir outputs and readouts of three
different RCN-based isolated digit recognizers, and (right) the score of each
digit for a sample containing digit 1. The readouts of digit 1 and silence are
highlighted.
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the inner space variables at that time. The fundamental difference between
the proposed system and a traditional hybrid system is that the mapping
of the input features onto the inner space is traditionally trained, whereas
here, it is completely random. We hope that the theoretical basis of SVMs
– namely that an arbitrary binary classification in a well chosen (trained)
high-dimensional inner space can be performed nearly optimally by means
of a hyperplane – will also apply to the randomly created inner space.

In the subsequent sections we describe (1) the input feature sets we have
used, (2) the reservoir weight generation scheme we have adopted, (3) the
stochastic framework we have conceived for decoding the speech, and (4)
the training procedure we have conceived for learning the readout weights
from non-segmented isolated and connected digit utterances.

3.4.1 Input Features

As in most state-of-the-art recognizers, we worked with the standard Mel
Frequency Cepstral Coefficient (MFCC) setup, delivering 13 static (c1,..,
c12 and logE), 13 velocity and 13 acceleration features. In theory, the
reservoir should be capable of modeling the short-term dynamics of the
speech, and therefore, would not need the non-static features. This is indeed
confirmed experimentally to a large extent. But nevertheless, we stick to
the traditional 39 inputs for two reasons: (1) since the input weights of
the reservoir are fixed, more inputs do not raise the number of trainable
parameters, and (2) adding the dynamic features does consistently offer a
small benefit.

Since we also wanted to investigate the noise-robustness of our RCN-
based recognizer, we conducted the final experiments with the noise-robust
MSVA features, proposed in [111] (MSVA stands for MFCC, Spectral Sub-
traction, Spectral Flooring and moving-average smoothing).

3.4.2 Reservoir Weights Generation

The recurrent weights of the reservoir are randomly drawn from a zero-
mean Gaussian distribution with variance V . That variance is a control
parameter that can be used to change the spectral radius (ρ) of the reser-
voir. ρ is defined as the largest absolute eigenvalue of the recurrent weight
matrix and is proportional to V . Spectral radius is known to determine the
dynamical excitability of the reservoir [80, 98].

Traditionally, the input weights are randomly drawn from a uniform
distribution between −αU and αU . The so-called input scaling factor (αU )
controls the relative importance of the inputs in the activation of the reser-
voir neurons. In [8], we refined this strategy by dividing the feature set in
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six sub-groups according to the dimensions (static, velocity, acceleration)
and (MFCC, log-energy), and by using a separate input scaling factor for
each sub-group. Here we adhere to this latter strategy. Note that traditional
Gaussian mixture modeling does not require any input scaling at all since
that scaling is encoded in the variances of the individual mixtures. How-
ever, the sensitivity of an RCN to the choice of the input scaling seems to
become marginal once the reservoir is big enough, as will be the case in our
system.

3.4.3 A Probabilistic Framework

The construction of a probabilistic framework first of all involves the cre-
ation of a finite state automaton which represents what is spoken (during
training) or what can be spoken (during recognition). It also takes into ac-
count the topologies of the acoustic models one wants to use for the digits
and the silence. Figure 3.4, for instance, shows the automaton that is used
during recognition. The aim is to find the joint probability of observing
the input sequence, U, along the state sequence, q, through the automaton.
The requested probability is computed as

P (q,U) =
T∏
t=1

P (qt|qt−1) P (Ut|qt), (3.7)

and P (Ut|qt) must be derived from the readout vector Yt.
Suppose that the regression minimizes the mean squared error between

the readout vector Yt and the desired output vectorDt, and that all elements
of Dt are -1, except the one corresponding to the desired state which is
equal to +1. In that case, one can follow the derivations in [65] to show that
under favorable conditions the rescaled readout node y′t,q = 0.5 + 0.5yt,q
will approximate the posterior probability vector P (q|Ut), with q being any
state of the automaton. In order to ensure that the probabilities are positive,
we introduce the rescaled readouts as

y′t,q = max(
yt,q + 1

2
, yo) 0 < yo � 1 (3.8)

and we compute the requested likelihood as

P (Ut|qt) =
P (qt|Ut)
P (qt)

P (Ut) =
y′t,qt
P (qt)

P (Ut) (3.9)

The prior probability P (qt) is obtained as the mean of P (qt|Ut) over all
training frames.

Obviously, the probabilities P (Ut) in Equation (3.9) can be ignored dur-
ing the probability maximization process as they are not a function of q.
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Figure 3.4: During recognition, the utterance model is a parallel loop of
11 digits and a silence, and each digit is modeled by a sequence of five
states. On the left, the readout layer is depicted and the arrows indicate the
mapping of readouts to state likelihoods.

3.4.4 Training the System

The training procedure is organized in two phases. First, we train a rela-
tively small reservoir on the basis of isolated digit utterances. Then, we
train a larger system on the basis of all utterances, connected as well as
isolated digit utterances.

In the first phase, only isolated digit utterances are used because for
these utterances, it is possible to generate target labels of sufficient quality
for determining the readout weights of a first reservoir. In order to obtain
these targets, we first perform an energy-based segmentation of each utter-
ance into silence-digit-silence and then presume a linear state progression
inside the digit. In successive Viterbi iterations, new target labels are de-
rived from the most likely state sequences that were produced using the
actual reservoir, and the readout weights are retrained on the basis of these
labels. The process is continued for a couple of times (the number of itera-
tions is not very critical since this is only the first phase of the training).

In the second phase, we also include connected digit utterances. These
utterances are modeled as sequences of digits interleaved with optional si-
lences, and surrounded by obligatory silences. Since we have much more
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utterances now, we can train a much larger reservoir. To start the train-
ing of that reservoir, we use the small reservoir emerging from phase 1 to
derive initial target labels from a Viterbi alignment of the utterances with
their models. From then on, the readout weights are refined in a number
of successive Viterbi iterations, each time using the latest reservoir as the
acoustical model. The training is continued until saturation of the word
error rate (WER) measured on a validation set is observed.

3.4.5 Recognition

During recognition, the model of Figure 3.4 is used as the utterance model.
In order to control the trade-off between digit deletion and insertion errors,
a word penalty Po is assigned to the transition from the end state (bottom)
to the start (top) state. The value of that penalty will be determined by
means of recognition experiments on a validation set.

3.5 Experimental Evaluation

All experiments are conducted on the Aurora-2 database [29]. This database
contains clean and noisy utterances, sampled at 8 kHz and filtered with a
G712/MIRS characteristic. There are 8440 clean training samples, 2412
of which contain only one digit. We have tested our systems on the clean
test data (4004 utterances, 13159 digits) as well as on the noisy test sets A-
C. The latter sets were created by artificially adding noise to the clean test
data at Signal-to-Noise Ratios (SNR) between 20 and -5dB (see [29]). The
vocabulary consists of the digits 0 to 9 and ’oh’ (a substitute for ’zero’).

During system development, only the clean data is used, and the input
features are the 39 MFCCs. The training set is divided into a learning
set (about 2/3 of the train data) and a validation set (the remaining 1/3 of
the train data). The split was made such that there is no speaker overlap
between the two sets. The topological parameters (e.g., the reservoir size)
and the control parameters (e.g., how to scale the inputs) are optimized by
performing experiments with different parameter values, and by selecting
the parameter value which minimizes the WER obtained on the validation
set.

Once all the control parameters are set, the final system is trained by re-
peating the training on the full training set. Since we have no validation set
anymore in this stage, we just apply the number of iterations that we usu-
ally needed during the development phase. That actually means 4 iterations
during phase 1 of the training and 5 more during phase 2.
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3.5.1 Setting the Control Parameters

Following our previous work on phoneme recognition [8], we worked with
only 50 recurrent connections per reservoir node. As we experienced before
that the regularization constant and the safety parameter are not that critical
if the reservoir size is large, we did not try to optimize them. They were
fixed to ε = 0.001 and yo = 0.002, respectively, values that also work well
for phoneme recognition. For the input scaling, we also applied the same
factors that we used for phoneme recognition.

The only parameters that were optimized for the digit recognition task
are the spectral radius and the leak rate of the reservoir neurons. We did this
because these parameters determine the dynamic behavior of the reservoir,
and because the time scales of the phonemes and the digits are different.
The optimization was performed with an isolated digit recognition system
with a reservoir of 1000 nodes and a digit model with 3 states. We found a
rather broad area in the (ρ,λ) plane where the results remain pretty stable,
and we finally selected (ρ, λ) = (0.8, 0.35) for all future experiments.

3.5.2 Setting the Topological Parameters

We performed three experiments to investigate two topological parameters:
the reservoir size (number of reservoir nodes) and the number of states per
digit (the same for all digits). We stick to the same number of states per digit
because the reference HMM systems we want our system to compare with,
also adopt this strategy. It would thus be unfair to optimize the number of
states for each individual digit in our system. Recall that our silence model
is always a single-state model.

Table 3.1 summarizes the most important results. In all experiments, the
inter-digit transition probability was altered until a good balance between
deletions and insertions was attained.

The first experiment shows that the WER decreases with the reservoir
size, but it starts to saturate as soon as the number of trainable parameters is
larger than 100K. The second experiment reveals that doubling the number
of states per digit from 5 to 10 is less effective than doubling the size of
the reservoir (compare the improvements in I and II). On the other hand,
the third experiment shows that a two-state system only performs slightly
worse than a five-state system with the same number of reservoir nodes (and
therefore a larger number of trainable parameters).Apparently, we need less
states than a GMM-HMM system (best results for 13-16 states), which sup-
ports the claim that the reservoir does model dynamical properties of the
speech.
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Exp. Nodes States per digit Trainable Param. WER%

I

500 5 27500 2.71
1000 5 55000 1.72
2000 5 110000 1.29
4000 5 220000 1.21

II

500 5 27500 2.71
500 10 55000 2.33

2000 5 110000 1.29
2000 10 220000 1.27

III 4000 2 92000 1.35
4000 5 220000 1.21

Table 3.1: Validation results for systems with different reservoir sizes and
number of states per digit. Also mentioned is the number of trainable pa-
rameters.

3.6 Results on the Noisy Test Sets

Once the optimal control parameters were fixed (including the inter-word
penalty), we trained a new system with 4000 reservoir nodes and 5 states
per digit, but this time we used all the available clean training data. Further-
more, as the raw MFCCs did not offer very good results on noisy speech,
we worked with the noise-robust MSVA input features instead. Obviously,
we also re-optimized the reservoir parameters for these new inputs. Fig-
ure 3.5 shows the average results (test sets A - C) of our system (RCN) as
a function of the SNR, as well as those of the reference HMM system de-
scribed in [111]. Apparently, the reservoir system competes well with the
reference system, and for low SNRs it even tends to offer a small benefit.

For test set A, more results are being published in the literature. That is
why we also compared our system on this test set with two GMM-HMM
systems recently described by Gemmeke [112]: one system in which a
Missing Data Technique (MDT), namely imputation, is employed, and an-
other in which Exemplar-based Feature Enhancement (EB-FE) is applied
on the MFCC parameters. These figures confirm that our conceptually sim-
ple system achieves the same noise-robustness as these much more complex
approaches.
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Figure 3.5: Recognition results (WER) as a function of SNR for the refer-
ence (GMM) and the reservoir system (RCN). For test A, also results ob-
tained with Missing Data Techniques (MDT) and Exemplar-Based Feature
Enhancement (EB-FE) are shown.

3.7 Conclusion and Future Work

We have shown that Reservoir Computing, a fairly recent paradigm devel-
oped in machine learning, can be applied to create a good continuous digit
recognizer. In combination with noise-robust features, the system com-
petes favorably with a traditional GMM-HMM system, even if the latter is
combined with complex noise suppression techniques such as Missing Data
Imputation and Exemplar-based Feature Enhancement.

Since we have thus far only spent limited time on the development of
our system, we may be able to further improve it soon. We could, e.g.,
investigate stacked reservoir architectures like the ones we applied in our
phoneme recognition work, or big reservoirs in combination with multi-
ple readout vectors. These readout vectors would be defined in different
sub-spaces of the reservoir state space, and readouts from different vectors
could be allowed to compete with each other.
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Multi-Layer RCN-HMM Hybrid and

Adaptation to Noise

This chapter is an edited version of the following original publication:

[2] A. Jalalvand, F. Triefenbach, and J.-P. Martens, “Continuous digit
recognition in noise: Reservoirs can do an excellent job!,” Proceedings of
the Annual Conference of the International Speech Communication Asso-
ciation (INTERSPEECH), p. ID:644, 2012.

4.0 Preface

Although the results obtained in the previous chapter suggested competitive
behavior of RCN and GMM-based systems on all noise conditions, there
was still a significant gap between the two in the clean speech condition.
In that case the GMM-HMM system attained a word error rate (WER) of
less than 1% which is relatively about 50% lower than that of RCN-HMM
hybrid. Furthermore, our original hope that the dynamical modeling capa-
bility would lead to more noise robustness was not yet substantiated.

Therefore, we conducted research that was intended to offer better clean
speech as well as noisy speech recognition accuracy than a conventional
GMM-HMM system. Furthermore, we investigated whether it would be
possible to adapt an RCN-based recognizer to a particular noise environ-
ment in an unsupervised way and to achieve a significant gain in noise
robustness in this way.
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4.1 Introduction

Standard Hidden Markov Models (HMMs) incorporate Gaussian Mixture
Models (GMMs) to compute state-level acoustic likelihoods. Such systems
have reached a high level of performance, but they remain very sensitive
to mismatches between the training and the test circumstances. Many re-
search efforts have been directed towards the development of novel front-
end and/or back-end techniques [112–114] for making the systems more
resistant to these mismatches.

In this chapter an RCN-HMM hybrid for continuous digit recognition
is investigated. The acronym RCN stands for Reservoir Computing Net-
work [99]. It indicates that the transformation of input features to state
likelihoods involves a reservoir, defined as a pool of non-linear and recur-
rently connected computational nodes (called neurons) with randomly fixed
weights.

It was already demonstrated in our previous publication [1] that an
RCN-HMM hybrid comprising one reservoir can yield good performance
for isolated and continuous digit recognition in clean and noisy circum-
stances (tested on Aurora-2 [29]). However, for large signal-to-noise ratios
(SNR) the hybrid was still outperformed by a traditional GMM-based sys-
tem with the same input features.

In this chapter we report on how we succeeded in creating a new hy-
brid that either equals or surpasses the HMM system for all tested SNRs.
Furthermore, we propose a reservoir-based method for adapting a hybrid
that was trained on clean speech to work better in a noisy condition after
it has seen some untranscribed digit string recordings representative of that
condition.

4.2 Reservoir Computing Network

Figure 4.1 shows the architecture of a basic RCN. It is composed of one
reservoir and a layer of linear nodes which ‘read out’ the reservoir nodes.
The weights of the reservoir nodes are fixed (not trained) and drawn from
a random distribution. Precautions are taken to guarantee that a stable dy-
namical system is obtained and that the new inputs and the previous out-
puts contribute in a balanced way to the new outputs of the reservoir nodes
(see [8] for details). The weights of the readout nodes are trained so as to
pursue that a particular node is high when the corresponding digit state is
visited and low otherwise.

Suppose that Ut, Rt and Yt, respectively, represent the input vector, the
reservoir state vector and the output vector at time t and that the matrices
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Figure 4.1: A basic RCN consists of a reservoir of fixed nonlinear & recur-
rently connected nodes and a set of trainable output nodes.

Win, Wrec and Wout comprise the weights of the various connections.
Then the RCN system performs the following computations:

Rt = fres(W
inUt + WrecRt−1), (4.1)

Yt = WoutRt. (4.2)

with fres being a non-linear function (in our case fres(x) = tanh(x)).
To further extend the integration of information over time, the memory-

less reservoir nodes are replaced by Leaky Integrator Neurons (LIN) [98].
Equation (4.1) then changes to

Rt = (1− λ)Rt−1 + λ fres
(
Wrec Rt−1 + Win Ut

)
with 0 < λ ≤ 1 determining the integration time.

4.2.1 An RCN-HMM Hybrid Decoder

The RCN-HMM hybrid we proposed in [1] encompasses a single-state
model to consume the inter-digit silences and a left-to-right model with
no skips and S = 5 states per digit. Since we will test our system on
Aurora-2 we discern 11 digits (two variants of ‘0’), leading to a total of
11× 5 + 1 = 56 HMM states. The joint probability of the acoustic feature
sequence U and an HMM state sequence q is computed as

P (q,U) =

T∏
t=1

P (qt|qt−1) P (Ut|qt), (4.3)
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where P (Ut|qt) is derived from the readouts Yt (see further) and P (qt|qt−1)
is a state transition probability.

The weights of the readout nodes minimize the mean squared distance
between the output vectors Yt and the corresponding desired output vectors
Dt in a training set. The desired output vectorsDt point to the state q∗t of the
state sequence q∗ that maximizes the aforementioned joint probability. One
finds the weights by solving a set of linear equations (see [1]). However,
since a retrained reservoir can lead to another q∗t , the process is repeated a
few times until convergence.

4.3 Improvements of the RCN-HMM Hybrid

Our research on RCN-based continuous phoneme recognition [8] demon-
strated that the recognition can be improved by putting two to three basic
RCNs in cascade. Apparently, the second RCN is capable of discovering
regularities in the shortcomings of the first one, and so on. Even though
the cascading approach did not lead to improved large vocabulary recogni-
tion, we wanted to test it for noise robust connected digit recognition. The
architecture of the new RCN-HMM hybrid is depicted on Figure 4.2.
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Figure 4.2: A multilayer RCN-HMM hybrid for continuous digit recogni-
tion. Each reservoir is stimulated by the readouts of the previous network.

The inputs to the first reservoir are the noise-robust MSVA features pro-
posed in [113], plus their first and second order derivatives. The feature
normalization is performed on complete utterances. The inputs to the sec-
ond reservoir are the readout nodes of the first RCN, and so on.

4.3.1 Training a Multi-Layer Reservoir System

The training of a multilayer system proceeds layer per layer. The training
of one layer is achieved by means of a Viterbi-training, as described in [1].
In a nutshell, it is an iterative process consisting of two steps per iteration:
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(1) use the current system to align the input vectors Ut to the states qt of
an utterance model derived from the known digit string and (2) solve a
set of linear equations to determine the weights of the readout nodes that
minimize the mean squared error between the computed and the desired
values. In [1] it is indicated how to bootstrap the training of the first layer.

4.3.2 Mapping Readouts to Likelihoods

In [1] we assumed that1 the reservoir outputs yt,q (q = 1 . . . 56) are good
approximations of the posterior probabilities P (q|Ut). Based on that as-
sumption, we formerly used yt,q/P (q) as a proxy of the likelihood P (Ut|q)
needed in Equation (4.3). However, when measuring the posterior proba-
bilities P (q|Yi) on a development set, it turned out that the aforementioned
assumptions are violated. Therefore, we now retrieve for each state q a
lookup-table to map yt,i to a better estimate of P (q|Ut).

The lookup table for state q is derived from a histogram of the yt,i of
the frames of a development set that were assigned to state q and from
the global histogram of all the yt,i. Starting with bins of 0.01 wide, the
bins collecting too few examples in the global histogram are joined with
their neighbors: the least populated bin is joined with the least populated
neighboring bin and the process is continued until all bins contain enough
examples (we used 100 examples for this).

Although the new mapping could have been applied to each readout
layer, it was only applied to the last one as only these readouts have to be
converted to likelihoods.

4.3.3 Experimental Validation

The proposed modifications were validated on the Aurora-2 benchmark [29].
The readout layers were always trained on clean data (8440 utterances

from 110 speakers) but tests were performed on clean and noisy data. We
report mean results over test sets A - C and use the word error rate (WER)
in percent as the performance measure. We compare the RCN-HMM to a
reference GMM-HMM embedding digit models with 16 states and GMMs
with three mixtures in each state.

Table 4.1 shows the performances as a function of the number of lay-
ers, the number of reservoir nodes per layer and the activation/inhibition
of the new output mapping. Per row, the clean speech result, the average
result over SNRs between 20 and 0 dB, and the result for SNR = -5 dB
are provided. The main findings are that doubling the size of a single layer

1making abstraction of a trivial linear mapping
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nr of nr of new Clean 0-20dB -5dBlayers nodes mapping

GMM-HMM [111] 0.98 16.86 76.66

1
4k - 2.56 17.55 66.92
4k y 2.32 15.68 64.00
8k - 2.04 16.42 65.73

2 4k - 1.37 14.68 61.17
4k y 1.29 13.73 59.34

3 3k - 1.25 14.99 60.36
4k - 1.20 14.49 60.41

4 2k - 1.46 16.49 61.79

Table 4.1: Continuous digit recognition results (average WER over Test A-
C of Aurora-2) for systems with different topologies, sizes and probability
mappings.

system is not as helpful as adding an extra layer and that non-linear readout
mapping is always beneficial.

Adding one layer to the baseline (which is 1 layer, 4k nodes, old map-
ping) leads to a large gain (46% relative) for clean speech and significant
gains for noisy speech. Adding a third layer further improves the clean
speech result, but it does not bring anything extra for the noisy conditions.
From Figure 4.3 it follows that for high SNRs the two-layer system com-
petes well with the GMM-based system now, whereas for low SNRs it is
consistently better.

4.4 Model Adaptation in RCN-HMM Hybrids

Now that we have a good system, we can try to improve it for a certain
condition by adapting it to that condition. The aim is to collect a limited
amount of untranscribed recordings made in that condition and to adapt
the clean reservoir model in such a way that it performs better on test data
recorded in that same condition.

4.4.1 Linear Transformation of the Outputs

A very simple approach is to train a linear transformation of the readouts
Yt to new outputs Y ′t = AYt+ b. The aim is to minimize the mean squared
distance between the new outputs and the desired outputs in the adaptation
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Figure 4.3: Recognition results (WER) as a function of SNR (Test A) for
the reference (GMM-HMM), the single layer reservoir system (1layer-4k)
and the two-layer system with non-linear output mapping (2layers-4k)

data. As the desired outputs are a priori unknown, they are identified from
the states on the most likely path through the digit loop utterance model.
Strategies for computing digit confidences and for retaining only the de-
sired outputs corresponding to digits which were recognized with sufficient
confidence, did not lead to a better result and are therefore not further con-
sidered here.

4.4.2 Retraining the Output Weights

Since the readout nodes are linear, the linear transformation of readouts
is equivalent to a linear transformation of the readout node parameters
(weights). In order to learn the latter transformation one can see the prob-
lem as one of training the readouts with the original training data supple-
mented with the adaptation data. If R and RA are matrices whose columns
represent the reservoir states of the Nfrm training and Nfrm

A adaptation
frames, and if D and DA represent the corresponding desired outputs (one
column per frame), then the adapted readout weights can be obtained as

Wout
A = (RTR + αRT

ARA + ε (Nfrm + αNfrm
A ) I)−1

(RTD + αRT
ADA) (4.4)

where α is a factor that controls how much the adaptation data contribute
to these weights.
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Figure 4.4: An extra layer is trained on the adaptation data. The adaptation
RCN is trained using the frame labels provided by the RCN-based recog-
nizer.

The problem with this method is that it needs access to the quite large
matrices RTR and RTD and that the inversion of a large matrix is time
consuming. So the method is merely used as a reference method against
which to compare the other methods.

4.4.3 Adding an Extra RCN

Instead of learning a linear transformation one could also add another RCN
layer (see Figure 4.4) that is solely trained on adaptation data. This reser-
voir then achieves a non-linear transformation with memory. The number
of trainable parameters is equal to the number of eligible states times the
number of nodes in the added reservoir. In a practical implementation one
could create a sufficiently large reservoir and connect more of its nodes to
the readout nodes as more adaptation data become available. This way the
number of trainable parameters can be gradually increased.

Since the construction of a good lookup-table for mapping readouts to
posterior probabilities requires a lot of data, we keep the non-parametric
readout mapping for the output of the recognizer and we exploit the adapted
readouts in the traditional way (i.e., the simple straightforward mapping).

4.4.4 Experimental Validation

We conducted experiments with 3 minutes of adaptation data taken from
the development set. This way we could continue to use the same test sets
as before. Table 4.2 shows the performances for Test A with the optimal α
(method 2) and the optimal adaptation reservoir size (method 3). The latter
was equal to 250.

The main conclusions are that method 3 works as well as method 2 and
that it offers a promising gain for SNRs of 20 and 15 dB. Obviously, there
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SNR (dB) WER% Relative improvement (%)
Baseline Transform Retrain Add Layer

Clean 1.48 –8 0 7
20 2.68 14 18 19
15 4.69 19 29 31
10 8.03 5 7 4
5 14.79 9 13 9
0 30.08 –1 3 0

–5 55.66 –8 –5 –8

Table 4.2: Performance of the baseline RCN-based recognizer on Test A
and relative improvements obtained with the three adaptation approaches.2
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Figure 4.5: Recognition results (WER) for the two-layer system with and
without an extra adaptation reservoir of 250 nodes.

is no improvement for clean speech as this condition already matches with
the training condition.

The fact that there is no improvement for SNR ≤ 10 dB anymore, is
owed to the fact that the desired outputs retrieved by the decoder become
unreliable for these low SNRs.

In Figure 4.5 the performances of a two-layer system with 4K nodes per
layer, with and without an additional adaptation reservoir with 250 nodes,
are compared to one-another. The figure shows that the adapted system
consistently outperforms the unadapted system as long as there is not too
much noise. Obviously, it cannot improve on clean speech because the
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System Baseline After Relative
WER% Adaptation Improvement

1-layer-4K 19.2 15.7 18%
2-layer-4K 15.3 13.9 10%

Table 4.3: Performance of the baseline RCN-based recognizers on a self-
developed Flemish accent digit spoken dataset along with the impact of
RCN-based adaptation.

original models were trained for that condition, but apparently, it does not
degrade when the SNR becomes low and the labels driving the training of
the extra adaptation RCN become unreliable. In summary, the data show
that the adaptation RCN can help to maintain a low WER (say lower than
2%) over a larger SNR range.

4.4.5 Evaluation on Self-Developed Flemish Accent Dataset

[This section was not in the original paper, because the experiment was
conducted after submitting the paper.]

In order to evaluate the performance of RCN-based digit recognition
system and also the impact of adaptation to an unseen condition, a new
dataset was collected by asking 80 students (male and female) to record
their voices while pronouncing the English digits in real conditions. After
pruning invalid data, we were able to provide a diverse dataset containing
800 samples with different types and levels of noise recorded at various
places (e.g., home, lab, street), with different microphones and background
noises, and obviously, with different Flemish accents. I used 600 samples
for evaluation and kept the remaining 200 samples for adaptation. The
results of evaluating both pre-trained single layer and 2-layer RC-based
recognizers with 4K nodes per layer are listed in Table 4.3. Considering
the fact that the conditions are more realistic than the Aurora-2 dataset,
e.g., even microphones are different, the performance is not far from the
published results.

Moreover, I trained the adaptation RCN using the remaining 200 sam-
ples and evaluated the adapted system. The experiments showed about 18%
and 10% relative improvement on the single layer and 2-layer systems, re-
spectively. These experiments proved that the promising performance of
the RCN-based recognition and adaptation is not only limited to the labo-
ratory provided data, but expands to real data, as well.
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4.5 Conclusion and Future Work

We proposed several improvements of a formerly presented RCN-HMM
hybrid for continuous digit recognition. The new system now surpasses a
GMM-HMM system that is supplied with the same noise robust acoustic
features. Moreover, a system trained on clean speech can be adapted by
means of a reservoir-based method to a new system that works better in
another condition (noise type and SNR). The adaptation is performed in an
unsupervised way on the basis of a limited amount (3 minutes) of adapta-
tion data. The improvement is only significant (up to 30% relative) though
as long as reliable transcription for the adaptation data can be generated by
the non-adapted decoder. Our future goal is to investigate whether the pro-
posed adaptation method also works satisfactory for, e.g., accent-specific
recognition where more adaptation data are likely to be available.





5
On Optimizing Reservoir Parameters

for Speech Recognition

This chapter is an edited version of the following original publication:

[3] A. Jalalvand, F. Triefenbach, K. Demuynck, and J.-P. Martens, “Ro-
bust continuous digit recognition using reservoir computing,” Computer
Speech and Language (CSL), vol. 30, no. 1, pp. 135 – 158, 2015.

5.0 Preface

In the two former chapters we showed that it is possible to achieve good
continuous digit recognition with big enough reservoirs and with RCN lay-
ers stacked on top of each other. However, it took a lot of experimentation
time to construct these systems. In fact, the optimal settings of the reservoir
parameters appeared to depend on the RCN architecture, the number of in-
puts, the number of states per digit, etc. Although I gradually developed a
good intuition for how to change the reservoir parameters when the prop-
erties of the RCN inputs or the targeted RCN outputs changed, I was still
a bit frustrated that I could not establish appropriate reservoir parameters
without having to perform a number of time consuming pilot experiments
first.

As the conclusion of the former papers seemed to be that bigger reser-
voirs and better system architectures might lead to more accurate and noise-
robust systems, I anticipated that it would take many more experiments to
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identify the most appropriate architecture. Therefore, I got convinced that
it would pay off to search for a comprehensible procedure to fix the reser-
voir parameters to quasi-optimal values in an automatic way. In the present
chapter, I present a novel analysis of an RCN as a non-linear dynamical
system and I postulate some sensible heuristics that finally allowed me to
distill a number of empirical relations between the reservoir parameters and
the RCN input and output dynamics. These relations have finally resulted
in a recipe that is extremely simple and highly comprehensible.

Following this recipe I then started to investigate big systems, multi-
ple system architectures and multiple training approaches (e.g., multi-style
training) and was able to devise new systems showing higher accuracy in
matched conditions and more graceful degradation in mismatched condi-
tions than most other systems, including the ones I developed thus far my-
self.

5.1 Introduction

Despite many years of research, devising an Automatic Speech Recognition
(ASR) system that correctly interprets a naturally spoken utterance cap-
tured in realistic conditions, is still a big challenge. Significant improve-
ments are still needed before solutions will be available for voice driven
applications with strict specifications such as high accuracy and robustness
against confounding factors. In this work, we are concerned with con-
tinuous digit recognition (CDR). Although somewhat less elaborate than
large vocabulary continuous speech recognition, CDR is important because
many voice driven applications require the user to provide numeric data
(telephone numbers, PIN-codes, account numbers, coordinates, etc.), and
providing such information in the form of a spoken digit sequence is quite
natural. However, since the sequences are often long, a very high accu-
racy is needed at the individual digit level to attain a high accuracy at the
sequence level. Furthermore, many applications involving CDR must ac-
commodate native as well as accented non-native speakers (e.g., tourists)
communicating through mobile devices. The latter means that the speech
exhibits a lot of channel variability and that it is often captured in a noisy
environment (e.g., on the street).

The CDR problem is commonly formulated as a statistical pattern recog-
nition problem. First, an acoustic front-end converts the raw speech signal
into a compact feature representation. Then, a back-end employs stochastic
models to retrieve the most likely digit sequence given this representation.
The feature representation consists of consecutive acoustic feature vectors
representing short fixed length speech slices, called frames. In most cases,
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the back-end contains one stochastic model per digit, usually a left-to-right
multi-state Hidden Markov Model (HMM), with each state having its own
model for estimating the likelihood of an observed feature vector being gen-
erated by that state. If standard short time spectral features are employed in
combination with acoustic models trained on low-noise training utterances,
high accuracies (less than 1% of the digits wrong) can be achieved on sim-
ilarly low-noise test utterances. However, severe degradations occur when
the test utterances are noisy: more than 30% errors at a signal-to-noise ratio
(SNR) of 10 dB [29]. Consequently, a tremendous effort went into the de-
velopment of robust speech recognition methods, in particular, techniques
for making CDR more resistant to the presence of various types of noises
at arbitrary SNRs.

The research has led to a multitude of techniques that can roughly be
categorized into four classes. First of all, there is a class of front-end
methods that aim at retrieving ‘clean’ speech feature vectors from the ob-
served noisy vectors so as to employ these cleaned vectors in an other-
wise conventional system. Examples of this approach are described in
[31, 92, 113, 115–118]. An alternative approach is to hold on to the raw
noisy features, but to take the hypothesized impact of the noise into account
during the likelihood computations in the back-end. Examples of such
model-based approaches are [36, 119–124]. These approaches are in gen-
eral more powerful than the feature-based approaches, at the expense of be-
ing far more computationally taxing. A third option is to adjust the parame-
ters of pre-trained models during actual operation on the basis of recognized
outputs and confidence measures computed for these outputs. Examples of
such model adaptation techniques can be found in [125–128]. Finally, one
can also substitute conventional GMM-HMM systems – in which state like-
lihoods emerge from state-dependent Gaussian Mixture Models (GMMs) –
by hybrid systems encompassing neural networks that are trained to com-
pute posterior state probabilities [129]. Given that no single class of meth-
ods is optimal in all respects, most of the solutions presented in the litera-
ture incorporate elements of multiple methods.

The present paper builds on our former work on acoustic modeling
for continuous speech recognition (phones as well as digits) by means of
Reservoir Computing (RC), a technique originally introduced in [80, 99].
Although RC was already applied to isolated digit recognition some time
ago [108, 109], we were the first [1, 2] to demonstrate that it offers noise
robust CDR on an internationally accepted benchmark.

Reservoir computing is performed with so-called Reservoir Computing
Networks (RCNs) which can be considered as a special kind of recurrent
neural network, namely one in which not all the parameters are trained (see
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later). Based on a novel analysis of such an RCN as a non-linear dynami-
cal system, we gained new insight in how to tune its dynamical properties
to the observable input dynamics, defined as the dynamics of the acoustic
features, and to the anticipated output dynamics, defined as the dynam-
ics of the variables that are derived from the reservoir outputs to represent
the different speech units. By conducting artificial digit state recognition
experiments, we could turn these insights into powerful heuristics which
significantly facilitate the design of an appropriate reservoir system. The
RCN-based systems created in this way compete well with conventional
systems in clean conditions and degrade more gracefully in noisy condi-
tions. Control experiments show that the noise robustness mainly follows
from the random fixation of the reservoir neurons but that properly tun-
ing the reservoir dynamics is indispensable for combining this with a high
accuracy in matched conditions.

In the reminder of this paper, we first review the Aurora-2 experimental
framework and discuss formerly proposed solutions to noise robust CDR
that were assessed using this framework (Section 5.2). Next, we intro-
duce the fundamental principles of Reservoir Computing (Section 5.3) and
explain how to apply it in a speech recognizer (Section 5.4). Then, we
elaborate and validate the novel reservoir analysis method and the reservoir
design method that is derived thereof (Sections 5.5 and 5.6). In Sections 5.7
and 5.8, we provide compelling evidence of the good CDR performance of
the designed systems. The paper ends with some conclusions.

5.2 Continuous Digit Recognition and Aurora-2

The Aurora-2 experimental framework [29] was designed to bolster re-
search on noise robust continuous digit recognition. In this section, we
briefly introduce the framework and review a number of methods that have
been evaluated using this framework.

5.2.1 The Aurora-2 Framework

The Aurora-2 corpus consists of clean and noise corrupted digit sequences
counting 1 to 7 digits per utterance. Each utterance is passed through a
G712 or a MIRS filter (see Figure 5.1), and then sampled at 8 kHz [29].
The G712 filter has a flat response in the range from 300 to 3400 Hz and is
characteristic of a fixed line telephone connection. The MIRS filter exhibits
a rising characteristic which is more characteristic of a mobile link [29,
130]. Since there are two variants of ‘0’ in American English, namely zero
and oh, the vocabulary consists of 11 digits.
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Figure 5.1: Frequency responses of G.712 and MIRS filter [29]

Train & Test A Test B Test C

subway restaurant
Noise babble street subway
types car noise airport street

exhibition hall train station

Filter G712 G712 MIRS

Table 5.1: Noise types and filters used in different Aurora-2 sets

The data is divided into a training part and an evaluation part. The
framework supports two types of experiments: clean training experiments
in which systems are developed on 8440 clean training utterances from 110
adults, and multi-style training experiments in which systems are developed
on 8440 noise corrupted versions of the same utterances. The corruptions
cover four noise types and five SNRs (∞ (clean), 20, 15, 10 and 5 dB).
The evaluation utterances come from speakers that are not present in the
training data. They are divided into three test sets; Tests A and B each
contains 28,028 utterances covering 4004 different digit sequences, 4 noise
types and 7 SNRs (∞ (clean), 20, 15, 10, 5, 0, and -5 dB). The noise types
occurring in Test B do not occur in the multi-style training data, while those
of Test A do. Test C contains 14,014 utterances covering 2002 different
digit sequences, 2 noise types (one matched and one mismatched) and 7
SNRs. Unlike all other utterances, they are passed through a MIRS instead
of a G712 filter (see Table 5.1).
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Method Clean 0-20dB -5dB

GMM-HMM (ETSI) 0.97 38.9 91.5
GMM-HMM (MVN) 0.84 19.7 82.2
GMM-HMM (AFE) 0.77 13.0 69.7
GMM-HMM (VTS) 0.40 (7.3) -
GMM-HMM (MDT) - 11.4 -
GMM-HMM (EB) 0.40 (5.6) (45.8)
GMM-HMM (D-HMM) 0.51 36.0 90.0
GMM-HMM (UD) - 10.3 -
DBN-GMM-HMM (Tandem) 1.26 21.0 74.6

Table 5.2: WERs (in %) obtained in clean speech training experiments on
Tests A - C of Aurora-2. Results between brackets are obtained by em-
ploying a noise dictionary and are biased towards the case of multi-style
training.

5.2.2 Methods That Were Tested on Aurora-2

The abundance of papers on noise robust digit recognition makes it im-
possible to present an exhaustive review. Our aim is, therefore, to review
methods that were tested on Aurora-2 and that, in our opinion, provide a
good image of what state-of-the-art CDR systems can achieve. The mostly
used error measure is the average word error rate (aWER) – defined as an
average over SNRs 0, 5, 10, 15 and 20 dB – obtained in clean training
experiments.

5.2.2.1 Baseline System (ETSI)

At the time the Aurora-2 campaign was launched, a baseline system was
made available as a reference. It consisted of the ETSI standard front-end
for generating the Mel-Frequency Cepstral Coefficients (MFCCs) proposed
in [16] and of a conventional GMM-HMM recognizer with 16-state whole
word models embedding a GMM in each state. The models were trained
using Maximum Likelihood Estimation (MLE). In a clean speech training
experiment, this baseline system yields a poor performance in the presence
of noise [29]: the aWER is nearly 39% (see Table 5.2).

5.2.2.2 Mean and Variance Normalization (MVN)

By means of utterance-based normalization of the MFCCs to zero mean
and unit variance variables, it is possible to reduce the aWER to 20% with
a negligible extra computational load [26].
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5.2.2.3 Advanced Front-End (AFE)

By putting two additional blocks in front of the MFCC front-end, namely
an adaptive Wiener filter applied to the raw speech signal and a voice activ-
ity detector (VAD) block performing some SNR dependent processing of
the filtered signal, a large gain in noise robustness with respect to the raw
MFCCs can be attained [131]. With this so-called ETSI advanced front-end
(AFE), the aWER can be reduced to 13%.

5.2.2.4 Vector Taylor Series Adaptation (VTS)

While front-end methods have shown improved performance on several
tasks, they all, by definition, make point-estimates of the clean speech
features. Errors in these estimations can cause further mismatch between
the features and the acoustic model, resulting in degraded performance.
Model adaptation techniques avoid this problem by directly compensating
the probability distributions employed by the recognizer.

One example of such an approach is vector Taylor series (VTS) adapta-
tion [122,125,132,133] which improves the recognition in clean as well as
in noisy conditions. As it is not fair to compare noise adapted models with
models that originate from clean speech training alone, the VTS result is
mentioned between brackets in Table 5.2.

5.2.2.5 Missing Data Techniques (MDT)

In [31], a so-called Missing Data Technique (MDT) was proposed. It de-
tects cells of a spectrogram-like time-frequency representation that have
become unreliable (or missing) due to noise masking. The values in these
cells are then substituted by marginal values [134]. This technique has been
continuously improved since its introduction, and an aWER of 11.4% is re-
ported in [135].

5.2.2.6 Exemplar-Based Systems (EB)

Exemplar-based systems rely on the assumption that an arbitrary fragment
of e.g., 30 frames from the test utterance of a digit can be represented as a
sparse linear combination of suitably selected speech and noise fragments
stored in a speech and noise dictionary, respectively. By retaining just the
speech components from that combination, one can create an enhanced
MFCC stream. Since its introduction in [136], the technique has contin-
uously been improved in order to make it better and faster, and a general
review is presented in [137]. From [138], we derive that in combination
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with acoustic models trained on clean speech only, the aWER for Test A +
B (no results for test C) can be reduced to about 6%. However, this result
cannot be compared to the result of a clean speech training experiment, be-
cause the feature enhancement is obtained with the help of a dictionary of
noise samples.

5.2.2.7 Discriminative HMMs (D-HMM)

Traditionally, the parameters of an HMM are trained using MLE, but dis-
criminative training schemes like Maximum Mutual Information (MMI)
as proposed in [139, 140] can significantly outperform MLE. However,
in [141] it is demonstrated that discriminative training only helps in matched
conditions. Using the standard ETSI features, the discriminatively trained
HMMs (D-HMM) do very well for clean speech, but they achieve only a
minor improvement over the baseline system for noisy speech: the aWER is
equal to 36%. We found no figures about D-HMMs in combination with the
AFE, but there is no reason to expect a major improvement in that setting
either.

5.2.2.8 Uncertainty Decoding (UD)

An appealing approach to the robust recognition, called uncertainty decod-
ing (UD), is proposed in [36, 37]. In UD, there is a model for estimating
the amount of uncertainty about the features. During decoding, this model
is used to replace the actual observation by a distribution and to compute
state likelihoods by integrating over the feature space. Using a model-based
joint uncertainty decoding technique (JUD) the aWER can be reduced to
10% [124].

5.2.2.9 Deep Neural Network-Based Approaches (DNN)

Many research groups have conceived systems embedding a discrimina-
tively trained neural network. The best results were obtained with a so-
called tandem which considers the neural network outputs as a new type
of acoustical features replacing the MFCCs in an otherwise conventional
GMM-HMM. With a tandem employing a Deep Neural Network (DNN) as
the neural component, an aWER of 21% was obtained [142, 143].

5.3 Reservoir Computing Networks (RCN)

Even though the results obtained with neural network-based and discrimi-
natively trained models discussed in the previous section were not so promis-
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Figure 5.2: A basic RCN system consists of a reservoir and a read-out
layer. The reservoir is composed of interconnected non-linear neurons with
randomly set weights. The readout layer consists of linear neurons with
trained weights.

ing, we started to investigate another neural approach which is based on
Reservoir Computing [98]. We did so mainly because this technique offers
an attractive way of taking the speech dynamics into account.

The basic principle of RC is that information can be retrieved from se-
quential inputs by means of a two-layer Recurrent Neural Network (RNN)
with the following characteristics (see Figure 5.2). The first layer is a hid-
den layer composed of non-linear neurons which, at time t are driven by ac-
tual inputs Ut and delayed hidden layer outputs Rt−1. The hidden neurons,
also, have randomly fixed coefficients. The second layer consists of lin-
ear neurons which are driven by actual hidden layer outputs Rt and which
have trainable coefficients. The recurrently connected hidden neurons can
be imagined as a pool of interconnected computational neurons, excited
by inputs. Such a pool is called a reservoir. Together with the linear out-
put neurons, it forms a Reservoir Computing Network (RCN). The network
outputs Yt are usually called readouts [99] to differentiate them unambigu-
ously from the reservoir outputs Rt.

The reservoir can perform a temporal analysis of the input stream. In
order to be effective, it should have the so-called echo state property [99].
The latter states that, with time, the reservoir should forget the initial state it
was in. This corresponds to the requirement that a linear filter should have
an out-fading impulse response to be suitable for performing a meaningful
short-term analysis of a non-stationary signal such as speech. As each reser-
voir output is the output of a non-linear filter with multiple inputs and as the



76 ON OPTIMIZING RESERVOIR PARAMETERS FOR SPEECH RECOGNITION

filter coefficients are chosen randomly, a big enough reservoir will give rise
to a large variety of filters. By training the readouts on speech, they will
focus on the outputs of those filters that resonate to frequencies which are
typical for the dynamics of the speech signal. This leads to the hypothesis
that an RCN can filter-out noise-inflicted dynamics (modulations) whose
frequencies are a-typical for speech.

5.3.1 Reservoir Network Equations

If there are N in input features and Nout readouts and if the reservoir con-
sists of N res neurons, the reservoir network is governed by the following
equations:

Rt = fres(W
inUt + WrecRt−1), (5.1)

Yt = WoutRt. (5.2)

The N res ×N in matrix Win and the N res ×N res matrix Wrec comprise
the weights of the input connections and the recurrent connections, respec-
tively. fres(·) is an activation function performing component-wise non-
linear transformations of the neuron activations (e.g., fres(·) = tanh(·)).
In order to compute Yt, we actually extend Rt with a bias of 1. It can
be shown [99] that the echo state property holds if the spectral radius ρ,
defined as the maximal absolute eigenvalue of Wrec, is smaller than 1.

In order to deal better with the random inter-frame changes observed
in the inputs (e.g., due to the spectral analysis), one can introduce leaky
integration by replacing Equation (5.1) with

Rt = (1− λ)Rt−1 + λ fres(W
inUt + WrecRt−1), (5.3)

with 0 < λ ≤ 1. In this case, the reservoir neurons are called Leaky
Integrator Neurons (LINs) [100] with a leak rate λ. All reservoirs in this
paper employ neurons of this type. The dynamical behavior of the reservoir
can be expressed in terms of two time constants:

τρ
.
= −τfr/ ln(ρ) and τλ

.
= −τfr/ ln(1− λ), (5.4)

with τfr being the time-shift (in ms) between frames. It will become clear
that τρ determines the memory capacity of the reservoir, whereas τλ deter-
mines how smooth the readout patterns (i.e., temporal evolutions) are.

5.3.2 Fixing the Reservoir Weights

Without any loss of generality, we assume that the reservoir inputs all have
zero means and identical variances. In that case, drawing all the input
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weights from the same zero-mean normal distribution is the logical thing to
do to ascertain that every input has the same chance of affecting the reser-
voir output. Therefore, we draw the input weights from a single distribution
with variance α2

U and we call αU the input scaling factor as it controls how
strongly the inputs excite the reservoir. In a similar vein, we draw all re-
current weights from a zero-mean normal distribution with variance α2

R. In
that case, the reservoir outputs are also bound to have similar distributions
and a similar chance to excite the reservoir neurons. Obviously, αU and αR
can be used to control (1) the relative importance of the recurrent and the
input connections and (2) the level of excitation of the reservoir neurons.

As we will see later, instead of working with full weight matrices, we
randomly select Kin entries per row of Win and Krec entries per row of
Wrec and we only initialize those entries, leaving the other ones zero. This
restriction reduces the amount of computations per time step. Unless Krec

is close to 1, the squared norm of every row of Wrec is approximately equal
to Krec α2

R. This means that ρ2 ≈ Krec α2
R, and thus, Krec and ρ can be

considered as the independent reservoir parameters instead ofKrec and αR.

5.3.3 Training the Output Weights

The aim of the training is to find the output weights that minimize the mean
squared difference between the readouts Yt and their desired values Dt

across Nfrm available training examples. Introducing the matrices R and
D with columns Rt and Dt respectively, the output weights are the solution
of a regularized Tikhonov regression problem [144]:

Ŵout = arg min
Wout

(
1

Nfrm

∣∣∣∣WoutR−D
∣∣∣∣2 + ε

∣∣∣∣Wout
∣∣∣∣2) , (5.5)

with ε being the regularization parameter. The latter is intended to pre-
vent over-fitting to the training data. The solution is obtained in a closed-
form [110] as

Ŵout = (RRT + ε I)−1(D RT ), (5.6)

with I representing the identity matrix and A−1 the Moore-Penrose pseudo
inverse of A [145].

In our experiments, the desired output Dt is always a unit vector refer-
ring to the desired HMM-state at time t (see Section 5.4). Furthermore, we
observed that including a regularization term did not improve our results.
We owe this to the nature of speech (a lot of intrinsic variability) and to
the fact that cutting the speech into short frames that are analyzed inde-
pendently introduces a random variation that affects the equations in very
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much the same way as the regularization term does. The bottom line is that
we did not include a regularization term, i.e., we set ε = 0.

5.3.4 Arguments in Favor of Reservoir Systems

An RCN can be considered as an extension of the Extreme Learning Ma-
chine (ELM) proposed in [101,146]. The ELM is defined as a feed-forward
neural network (a Multi-Layer Perceptron or MLP) with a randomly fixed
hidden layer and a linear output layer whose weights are fixed to minimize
the mean squared difference between the computed and the desired out-
puts. In [101], it is mathematically proven that the ELM is as powerful as
a fully trained MLP: a system with N hidden neurons can learn exactly N
distinct observations. Moreover, it is shown that the ELM generalizes best
to unseen data because it employs the least square solution of the Tikhonov
regression problem. The various experiments presented in [101] lead to the
following conclusions: (1) in terms of generalization ELM behaves as well
as a Support Vector Machine (SVM) employing a linear kernel [105], and
much better than a fully trained MLP, (2) an ELM is much more compact
than an SVM (it needs less hidden neurons than an SVM needs support
vectors) and (3) the generalization performance of an ELM remains stable
over a wide range of hidden units. We argue that good generalization to test
data should transfer to good noise robustness. Moreover, we expect that in-
troducing recurrent connections which are also randomly fixed, is bound to
maintain the noise robustness while improving the model accuracy. Adding
these arguments to the formerly mentioned noise filtering capacity of an
RCN, we have enough reasons to believe in the high potential of RCN for
noise robust CDR.

An RCN also resembles an SVM, but one with a hidden space whose
size and identity do not follow from a long and delicate supervised training
process. Likewise, it resembles a radial basis function (RBF) network using
a fixed hidden layer. However, the RBFs often follow from a clustering
procedure and they typically represent local functions in the input feature
space, meaning that they only react to inputs that fall in a restricted area of
the input space. A reservoir neuron, on the other hand, typically exhibits
a non-local activation function. Finally, an RCN resembles the recurrent
neural network (RNN) applied in [106] for continuous speech recognition.
However, the memory of that network originated from feeding the outputs
back to the hidden layer and, importantly, all the network weights were
trained by means of back-propagation through time, a method that is found
to be very time consuming and likely to yield a sub-optimal solution when
the size of the network is large. In an RCN, the optimal weights are found
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in a straightforward manner, even for a reservoir with several thousands of
neurons.

5.4 A Basic RCN-HMM Hybrid for CDR

The architecture of an RCN-HMM hybrid for CDR is depicted in Fig-
ure 5.3. The front-end generates acoustic inputs Ut and the readouts Yt
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Figure 5.3: Architecture of an RCN-HMM hybrid for CDR. The HMM has
two initial states (I1 and I2), one final state (F) and comprises 11 multi-state
digit models with a single state silence model (#).

are converted to state likelihoods (see further) before they are supplied to
a looped HMM that models the digits with multiple states and the silence
with a single state. There is only one transition probability, Po, namely on
the transition from the final state to one of the two possible initial states. It
is used to control the balance between digit deletions and insertions.

5.4.1 The Viterbi-Decoder

The joint likelihood of the HMM state sequence q = q1, ..., qT and the
input stream U = U1, ..., UT is computed as

P (q,U) = PN
q

o

T∏
t=1

P (Ut|qt), (5.7)

with Nq being the number of digits implied by q. In analogy with [65],
one can show that if the training corpus were infinitely large and the targets
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during training were either 0 or 1, readout yt,q would be equal to P (q|Ut)
and Bayes’ law could be applied to convert it to a likelihood. However, in
case of a finite training set, the readouts only approximate the posteriors
and they can be outside the interval [0,1]. To fix that problem, we introduce
a mapping function, fmap(·) and compute the likelihood as follows:

P (Ut|q) = fmap(yt,q)
P (Ut)

P (q)
. (5.8)

One way to define the mapping is to create two histograms for each state
q: one representing the global distribution of yt,q and one representing the
distribution over the times that state q is visited. From these histograms,
one can then derive a lookup table for estimating P (q|yt,q).

A solution with fewer free parameters is a sigmoid function with a steep-
ness gq and an offset bq derived from the estimated P (q|yt,q):

fmap(yt,q) =
1

1 + e−gq (yt,q−bq)
. (5.9)

Two other alternatives are a state-independent sigmoid and a simple clip-
and-scale approach. The latter is given by

fmap(yt,q) =
max(yt,q, yo)

maxj(yt,j)
, yo � 1. (5.10)

In section 5.7, we experimentally test all four approaches as they represent
different trade-offs between model detail and model generalization.

5.4.2 Iterative Training

Even though the optimal output weights of the RCN can be obtained in a
closed-form, the embedded training of an RCN-HMM hybrid is an itera-
tive process. And since the Aurora-2 corpus is delivered without timing
information we even adopt a two-stage training procedure.

In the first stage, only isolated digit utterances are considered. They are
first segmented into silence-digit-silence by means of an energy criterion
and the digit intervals are uniformly divided into digit state segments. The
matrix D derived thereof is employed to train an initial readout layer. Then,
three iterations of embedded training are conducted. Per iteration, the out-
puts of the available RCN are used in a Viterbi-alignment of the training
utterances with their silence-digit-silence models. From these alignments a
new matrix D is computed and substituted in Equation (5.6).

In the second stage, all available training utterances are considered.
They are modeled as sequences of digits interleaved with optional silences.



ON OPTIMIZING RESERVOIR PARAMETERS FOR SPEECH RECOGNITION 81

Starting with the alignments emerging from the system of the first stage, the
training is continued until the digit error rate on a validation set saturates.

In terms of training effort, one can note that the reservoir is kept fixed
throughout the training, meaning that the matrix (R RT + εI)−1 appearing
in Equation (5.6) can be computed once, during the first iteration. The
matrix D RT however changes from one iteration to the other because D
changes. Even though R does not change across iterations, it is impractical
to store it for a big reservoir and/or a large dataset. Therefore, we compute
and store (R RT + εI)−1 in the first iteration, but recompute the reservoir
outputs during each iteration.

5.5 An Efficient Reservoir Design Strategy

From Section 5.3 it follows that the reservoir can be described in terms of
six control parameters: N res, Kin, αU , Krec, ρ and λ. However, we ar-
gue that the reservoir size is mainly determined by the number of available
training examples and that the other parameters should follow from prop-
erties of the reservoir inputs and the desired readouts, irrespective of the
number of training examples.

In this section, we analyze the RCN as a dynamical system and we
postulate some fairly general and comprehensible principles which lead us
to the following conclusions: (1)Kin andKrec are non-critical and are easy
to set, and (2) it is possible to establish for any combination (ρ, λ) a closed-
form expression that provides a near-optimal value for the input scaling
factor αU . In the experimental section, we will use the insight gained in
the current section to translate empirical findings into a very simple recipe
for tuning the reservoir dynamics to the observable input dynamics and the
desired output dynamics.

5.5.1 Reservoir Neuron Equations

In order to develop our strategy, we write the input-output equations for
reservoir neuron i in the following form:

rt,i = (1− λ) rt−1,i + λ fres(at,i), (5.11)
at,i = bt,i + ct,i, (5.12)

bt,i =
∑
j∈Ji

winij ut,j , (5.13)

ct,i =
∑
k∈Ki

wrecik rt−1,k. (5.14)



82 ON OPTIMIZING RESERVOIR PARAMETERS FOR SPEECH RECOGNITION

1−tR

in
iW

∫ itr ,
itb ,

itc ,

tU

rec
iW

ita , )( ,itres af

1−
Zλ−1

λ

Figure 5.4: Visualization of Equations (5.11) to (5.14) describing Leaky
Integrator Neuron i.

The sets Ji and Ki collect the inputs and reservoir outputs effectively driv-
ing neuron i. The symbols ut,j and rt,i refer to components of Ut and Rt,
whereas at,i, bt,i and ct,i respectively refer to the total activation of the neu-
ron and to its input and recurrent components. The equations are visualized
in Figure 5.4.

5.5.2 Dynamics of the Desired Readouts

As a state is usually only visited once in a while, a particular readout is an-
ticipated to consist of short pulses interleaved with long pauses. The length
of such a pulse is anticipated to lie in some interval (Tmin, Tmax) that can
be estimated on the basis of some rough knowledge of the recognition prob-
lem and the state definitions. If the length of the pulse is T its spectrum is
concentrated in the frequency band (0, F = 1/T ). One might thus con-
clude that the bandwidth of the average readout spectrum will be equal to
F = 1/Tmin.

We could also measure the mean power spectrum of the target read-
outs and determine the bandwidth from such an experiment. However,
this requires the existence of segmented training data (which are lacking
in Aurora-2) and it is not expected to yield a result that differs much from
the one emerging from the above reasoning in combination with a rough
estimate of the minimum state duration.

5.5.3 Basic Principles Underlying the Design Strategy

Our original idea was that in order to contribute effectively to the solution
of the problem, a neuron should exhibit a sufficient amount of variation
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across time, but at the same time it should not saturate too frequently. This
led us to the principle that the variance of the neuron stimulation should
be large enough but not too large. We chose the variance as this is a ro-
bust measure of variation which can also be related to the spectrum of the
temporal evolution in an easy way by means of Parseval’s theorem.

Although we could explain a lot of results on the basis of this principle,
the experiments with a variable number of states per digit did not seem
to comply with this principle. It was only then that we realized that the
high-frequency components which also contribute to the variance do not
contribute to the solution of the problem the reservoir network is aiming to
solve. Based on this new insight we finally postulated that it is the in-band
variance of a neuron input that has to be constrained.

Based on F , we define the in-band activation pattern of a reservoir neu-
ron as the pattern originating from the activation components with frequen-
cies inside (0, F ), and we postulate that a reservoir neuron can maximally
contribute to the solution of an envisioned recognition problem, if its in-
band activation pattern has a preferred strength. In fact, if the activation
strength is too small the non-linearity of the neurons will not be exploited
and if it is too large, the neurons will saturate too frequently and become
insensitive to input changes in these cases. We actually expect that there ex-
ists a preferred in-band activation strength that works well for all reservoirs
and for an arbitrary bandwidth of the readouts. We further contemplate that
variance is a good measure of activation strength.

5.5.4 Fixing Kin and Krec

As described in Section 5.3, Win has Kin non-zero entries per row and the
values of these entries are drawn independently from a zero-mean Gaussian
distribution. Consequently, if Kin is sufficiently large, the mean of the
input activation component of a neuron will approximately be zero, even if
the inputs have non-zero means. Exactly the same holds for the recurrent
activation component. Introducing the short notation Et,i[··] for the mean
over time t and nodes i, the mean variance of the input component is given
by

Vb
.
= Et,i[b

2
t,i] =

NU∑
j,k=1

Et[ut,j ut,k] Ei[W
in
ij W

in
ik ]

=

NU∑
j=1

Et[u
2
t,j ] Ei[(W

in
ij )2]

= Kin α2
U VU
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where VU is the mean variance of the reservoir inputs. This is so because
Ei[W

in
ij W

in
ik ] = 0 for j 6= k and equal to Kin/NU for j = k (because the

chance of Wij being non-zero is Kin/NU for any value of j) and because
Et[u

2
t,j ] = VU for any value of j.

In a similar vein, one can also show that

Vc
.
= Et,i[c

2
t,i] = α2

R K
rec VR = ρ2 VR (5.15)

Furthermore, since all the rows of the matrix Wrec are random independent
vectors with approximately the same norm, namelyKrecα2

R which is going
to be close to the largest eigenvalue of Wrec. The latter was experimentally
confirmed.

Since the strength of an in-band activation component is proportional
to the strength of the the full activation, the above formulas imply that one
can freely change Kin (or Krec) provided the scale αU (or αR) is updated
accordingly to maintain Vb (or Vc).

5.5.5 Finding the Input Scale Given the Reservoir Dynamics

Measurements show that there are only very weak correlations between bt,i
and ct,i, and similarly, between their in-band components b∗t,i and c∗t,i. The
main reasons for this are that first of all, the two activation components
arise from vectors at times t and t − 1 respectively, and secondly, both
components are obtained by projecting the input and reservoir state vectors
on independently chosen random hyperplanes in the input and reservoir
state space respectively. However, this is no rigorous proof, hence, we
conducted an experiment in which we measured Va, Vb and Vc for different
values of ρ and αU respectively. The results depicted on Figure 5.5 confirm
the hypothesis that Va ≈ Vb + Vc and V ∗a ≈ V ∗b + V ∗c .

Given an optimal value Vopt for V ∗a (as postulated) and given some com-
bination (λ, ρ), we will now derive an analytical formula for finding the
corresponding optimal αU .

First of all, we relate V ∗b to Vb. To do so, we need the mean power
spectrum |B(f)|2 of the input activation. Since bt,i is obtained as a linear
sum of the inputs ut,j and since the weight coefficients are independent,
b and u have a zero mean and an equal variance, hence, it can be shown
that Ei[|Bi(f)|2] is proportional to the mean power spectrum of the inputs.
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Indeed,

Bi(f) =
∑
i

W in
ij Uj(f)

|Bi(f)|2 =

NU∑
j,k=1

W in
ij W

in
ik U

∗
j (f) Uk(f)

Ei[|B(f)|2] =

NU∑
j=1

Ei[W
in
ij W

in
ik ] U∗j (f) Uk(f)

=
Kin

NU

NU∑
j=1

|Uj(f)|2

This result means that the power spectrum estimation procedure proposed
in the original article can actually be simplified to an estimation of the mean
power spectrum of the individual inputs. It also implies that the shape
of |B(f)|2 does not depend on Kin. This was practically confirmed by
comparing the shape of |B(f)|2 for four different values of Kin (See Fig-
ure 5.6).

By applying Parseval’s theorem, we have

V ∗b = φb(F ) Vb, (5.16)

φb(F ) =

∫ F
−F |B(f)|2 df∫ 0.5
−0.5 |B(f)|2 df

. (5.17)

Now, we try to relate V ∗c to Vc. This is much more complicated due to
the non-linearities involved. Therefore, in order to derive an approximate
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Figure 5.6: The shape of |B(f)|2 for four different values of Kin

relation, we make two assumptions: (1) the activation function fres(x) is
linear and equal to x, and (2) the recurrent activation component is equal
to ρ rt−1,i. Strictly speaking, the linearity assumption is in contradiction
with the requirement that the in-band activation should be large enough to
let the non-linearity play some role. However, since we also stated that
this role has to remain modest, we expect that results emerging from the
linearity assumption will remain valid for a soft and compressing activation
function such as tanh. The assumption that ct,i = ρ rt−1,i should be seen in
the context of Equation (5.15) which says that the expected variance of ct,i
is equal to ρ2 times VR. The proposed ct,i, at least, has this variance and it
makes the analysis tractable. The effect of just feeding the neuron output
back into the neuron rather than a weighted sum of other neuron outputs
is of course difficult to assess, but the experimental validation will confirm
that our assumption leads to acceptable results.

Applying Parseval’s theorem again, we find that V ∗c is proportional to
Vc with a factor that is a function of the power spectrum |Cλ,ρ(f)|2 of ct,i:

V ∗c = φc(F, λ, ρ) Vc, (5.18)

φc(F, λ, ρ) =

∫ F
−F |Cλ,ρ(f)|2 df∫ 0.5
−0.5 |Cλ,ρ(f)|2 df

. (5.19)

Obviously, as |Cλ,ρ(f)|2 depends on λ and ρ, it cannot be measured using
an arbitrary reservoir anymore. However, it can be derived from the closed-
loop transfer function of the neuron (as a linear system). This function is a
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first-order low-pass filter

Hλ,ρ(z) =
λρ z−1

1− (1− λ+ λρ) z−1

Consequently, we obtain that

φc(F, λ, ρ) =

∫ F
−F |Hλ,ρ(f)|2 |B(f)|2 df∫ 0.5
−0.5 |Hλ,ρ(f)|2 |B(f)|2 df

(5.20)

The above results means that

Vc =

∫ +0.5

−0.5
|Hλ,ρ(f)|2 |B(f)|2 df

and consequently, that

Vc = φ(λ, ρ) Vb, φ(λ, ρ) =

∫ +0.5
−0.5 |Hλ,ρ(f)|2 |B(f)|2 df∫ +0.5

−0.5 |B(f)|2 df

and

φc(F, λ, ρ) =

∫ +F
−F |Hλ,ρ(f)|2 |B(f)|2 df∫ +0.5
−0.5 |Hλ,ρ(f)|2 |B(f)|2 df

The final equation then becomes

V ∗a = [φb(F ) + φ(λ, ρ) φc(F, λ, ρ)] Vb (5.21)

In the following section, we will discuss how to exploit this relation during
the design of a good reservoir.

5.5.6 Proposed Design Strategy

We propose to fix Kin and Krec (almost free choice, as will be demon-
strated) and to estimate the expected state duration Tstate (based on knowl-
edge about the task), first. Then, conduct two small-scale experiments to
determine |B(f)|2 and Vopt, the optimal value for V ∗a :

1. Estimate the power spectrum |B(f)|2 of the input activations by
means of a memoryless reservoir (meaning that (λ, ρ) = (1, 0)) that
is just big enough to ensure that the recurrent weight matrix is sparse
for the chosen Krec.
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2. Test networks with reservoirs with the same size and reservoir dy-
namics but with different values of αU . Establish the αU offering
the highest classification accuracy and use Equation (5.21) to derive
Vopt. The size of the reservoir is not critical (just take it large enough
to get at least a reasonable performance).

After these experiments one can start to design the envisaged (large) reser-
voirs by trying different combinations (λ, ρ) and by deriving the optimal
αU going with this combination from

α2
U K

in VU =
Vopt

φb(F ) + φ(λ, ρ) φc(F, λ, ρ)
. (5.22)

(derived from Equations (5.15) and (5.21)). Obviously, the design time
is then going to be proportional to the number of combinations (λ, ρ) to
consider. In the experimental section, it will be demonstrated that we
can unequivocally tune the reservoir dynamics to the recognition problem,
which eliminates the necessity of considering more than one combination
(λ, ρ).

5.6 Validation of the Design Strategy

The aim of this section is to seek experimental validation of the proposed
strategy and to establish the Vopt to impute in Equation (5.22).

5.6.1 Experimental Framework

In this stage, we conduct different digit state recognition experiments within
the Aurora-2 context. The aim is to define tasks implying different output
dynamics and different numbers of readouts. Therefore, we consider left-
to-right digit models of different lengths (different number of states S per
model), we label the states and perform digit state recognition by replac-
ing the digit loop in Figure 5.3 by a digit state loop that can generate an
arbitrary state sequence.

By changing S, one changes the output dynamics (F ) and the number
of readouts (11×S digit states plus one silence state). From a histogram of
the digit durations, we derive that most digits are longer than 250 ms. We,
therefore, choose F = S/250 as the readout bandwidth (in kHz). Note that
if S is low, each state may encompass acoustically diverse speech frames
which are hard to cluster in the acoustic feature space, whereas if S is high,
the states represent acoustically more similar speech frames. Due to this, a
larger S does not necessarily lead to a more difficult task.



ON OPTIMIZING RESERVOIR PARAMETERS FOR SPEECH RECOGNITION 89

In each experiment, an RCN-HMM hybrid is trained on two-thirds of
the clean training utterances and validated on the remaining third of these
utterances. The State Error Rate (SER) on the validation set is used as the
evaluation measure. It is obtained by counting the minimum number of
state deletions, insertions and substitutions that transform the recognized
state sequence into one that is compatible with the spoken digit sequence,
given the left-to-right and no-skip models of these digits. As before, a
penalty Po is employed to control the deletion/insertion balance.

In all experiments, the 39 acoustic features per frame are generated by a
standard MFCC analysis (30 ms Hamming-windowed frames, frame shift
of 10 ms) yielding 12 mel-cepstral coefficients, a log-energy and the first
and second order derivatives thereof. The feature extraction is followed by
an utterance-wise normalization that creates zero-mean and unit-variance
inputs (VU = 1). The ultimate mean and variance normalized features are
denoted by the acronym MVN.

Unless stated otherwise, we employ a lookup-table (see Section 5.4) to
map the readouts to the interval [0,1] and we choose S = 3 as a default.

5.6.2 Variance as a Measure of Activation Strength

If variance were a good measure of activation strength then the theory
would predict that the SER is independent of Kin and Krec as long as
the variances Vb and Vc are maintained.

To verify this hypothesis for Kin, we test a reservoir with Krec = 0 for
three values of Vb (0.01, 0.02 and 0.05) and another one with (ρ,Krec, Vb) =
(0.8, 1, 0.02). To verify the hypothesis for Krec, we test a reservoir with
(Kin, Vb) = (10, 0.02), and three values of ρ (0.1, 0.5 and 0.8). Note that
we verified experimentally that as long as ρ is not too close to 1, keeping
ρ constant is equivalent to keeping Vc constant. In all experiments, we set
λ = 1.

Figure 5.7 largely supports the envisioned predictions. There is only
one strong exception, namely the case that the neurons have no recurrent
connections and are driven by only 1 or 2 inputs. In that case the rows of the
input matrix can no longer be expected to have the same norm, as assumed
in the theory. From now on, we always work with Kin = Krec = 10.

5.6.3 Existence of a Universal Vopt

Let us now establish whether there exists a single value for V ∗a that is quasi-
optimal for different combinations of (λ, ρ, F ). We, first, keep F fixed and
examine different combinations (λ, ρ). For each of them, we determine
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1

Figure 5.7: (Left) State Error Rate (SER) as a function of Kin for three
values of Vb and Vc = 0. Three reservoirs have no recurrent connections
(NR), the fourth one (WR) has 1 recurrent connection per neuron. (Right)
SER as a function ofKrec for three values of ρ and for αU = 0.4, Kin = 10,
λ = 1. All reservoirs comprise 750 neurons.

λ\ρ 0.1 0.2 0.4 0.6 0.8

1.00 0.018 0.020 0.017 0.022 0.019
0.33 0.021 0.024 0.028 0.030 0.031
0.18 0.032 0.036 0.040 0.038 0.041

Table 5.3: In-band activation strength V ∗a at the optimal Vb for 15 combi-
nations of ρ and λ.

the optimal Vb and compute the corresponding optimal V ∗a from Equa-
tion (5.21). In Table 5.3, one finds these values for a reservoir with 750
neurons. The table suggests that the optimal V ∗a depends on λ and to some
extent also on ρ. However, Figure 5.8 shows that for small values of λ,
the interval of quasi-optimal Vb’s becomes wider and that V ∗a = 0.035 (the
circles in Figure 5.8) always leads to a quasi-optimal SER. This means that
Equation (5.21) is not significantly violated and that it offers an acceptable
means of expressing the relation between V ∗a and Vb at one particular F .

Let us now check if Equation (5.21) remains suitable whenF is changed.
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Figure 5.8: State Error Rate (SER) as a function of Vb for three values
of ρ at λ = 0.33 (left) and for three values of λ at ρ = 0.8 (right). The
reservoirs have 750 neurons. Also indicated are the optimal Vb’s (x) and
the Vb’s computed using Equation (5.22) for Vopt = 0.035 (o).

S\V ∗
a 0.01 0.025 0.035 0.05

1 21.9 20.4 21.3 22.1
3 12.9 12.1 12.1 12.6
5 12.6 12.1 12.0 11.7

Table 5.4: SER (in %) as a function of V ∗a for three systems with respec-
tively 1, 3, and 5 states per digit.

Therefore, we consider RCN-HMM hybrids for state recognition tasks cor-
responding to S = 1, 3 and 5. We employ reservoirs with (N res, λ, ρ) =
(750, 0.33, 0.8) and different values of Vb, namely those values for which
Equation (5.21) yields values of V ∗a that are equal to 0.01, 0.025, 0.035 and
0.05. According to the results listed in Table 5.4, the value of 0.035 for V ∗a ,
that was established for S = 3 remains a good value here too, even though
it yields a slightly suboptimal result for the not so interesting case S = 1.

The conclusion of our experiments is that Equation (5.22) leads to a
good approximation of the optimal Vb in all cases, provided Vopt = 0.035.
This value corresponds to a standard deviation of 0.19. Presuming a Gaus-



92 ON OPTIMIZING RESERVOIR PARAMETERS FOR SPEECH RECOGNITION

sian distribution for the in-band activation, this means that 5% of the in-
band activation samples are larger than 0.375, ensuring that the non-linearity
is effectively starting to play. This is a clear confirmation of the basis prin-
ciple we postulated.

5.7 A Single-Layer RCN-HMM Hybrid

In this section we develop RCN-HMM hybrids for CDR. They comprise
one basic RCN, designed with Kin = Krec = 10 and Vopt = 0.035.
The size of the reservoir, the number of states per digit and (ρ, λ) are the
dependent parameters.

5.7.1 System Development

During system development, hybrids are trained on two-thirds of the clean
training utterances of Aurora-2 and validated on the remaining clean train-
ing utterances. The evaluation measure is the WER. We perform experi-
ments to set the reservoir dynamics, to decide about the readout-to-posterior
mapping and to investigate the effect of N res and S on the WER.

5.7.1.1 Reservoir Dynamics

In order to derive practical heuristics for finding good dynamic parameters,
we first consider a reservoir of 750 nodes with S = 3 and we assess the
validation WER as a function of τλ and τρ (see Equation (5.4)).

Figure 5.9 supports the notion of τρ and τλ being two independent pa-
rameters to tune the reservoir to the task it is intended for: the optimal
value of one of them is the same in a broad range of values for the other.
Therefore, we propose to proceed as follows: (1) track the WER as a func-
tion of τλ for reservoirs with τρ = 50 ms (corresponding to ρ = 0.82) and
determine the optimal τλ, (2) track the WER as a function of τρ for reser-
voirs with τλ = 100 ms and determine the optimal τρ, (3) try to link the
optimal values to the dynamical properties of the task in the hope to find a
good and simple heuristic. Note that steps (1) and (2) can be run in parallel.

Figure 5.10 shows the two tracks for three values of S. The left track
reveals that leaky integration can significantly reduce the WER. Its positive
effect is maximal if its time constant reaches a certain point that is clearly a
function of S, and conversely, of the output dynamics. The data support the
expectation that leaky integration can suppress fluctuations in the reservoir
outputs that originate from random fluctuations in the acoustic features. In
particular, they are consistent with the heuristic to fix τλ to the average digit
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Figure 5.9: WERs (in %) on the validation set as a function of (τλ, τρ) for
a system comprising a reservoir with 750 nodes and 3 states per digit.
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Figure 5.10: WERs (in %) on the validation set as a function of τλ with
τρ = 50 ms (left) and as a function of τρ with τλ = 100 ms (right). Depicted
are results for different values of S. The reservoir size is 750.

state duration Tstate. The right track reveals that recurrence is a powerful
tool for improving the performance, as well. The optimal point seems to
be much less dependent on S. This agrees with our expectation that the
memory of the reservoir should be adapted to the dynamical properties of



94 ON OPTIMIZING RESERVOIR PARAMETERS FOR SPEECH RECOGNITION

lookup local global clip at
table sigmoid sigmoid Yo

WER 3.63 3.87 3.94 4.01

Table 5.5: WERs (in %) on the validation set obtained with four readouts-
to-posterior mapping methods. The reservoir size is 750.

the reservoir inputs, and consequently to the bandwidth FB of the power
spectrum |B(f)|2. Since that spectrum is a low-pass spectrum, FB can be
defined as the frequency where |B(f)|2 drops below its half maximal value.
The optimal τρ = 50 ms then follows from the heuristic that τρ (ms) =
0.35/FB (kHz) where FB (kHz) is obtained by converting the normalized
frequency FB (running from 0 to half the frame rate of 100 Hz) to kHz.
Note that the just formulated heuristic is exactly the relation between the
bandwidth of a first order linear system and the time constant of its impulse
response. From now on, we use this relation to fix τρ.

5.7.1.2 Readout-To-Posterior Mapping

Table 5.5 lists the WERs obtained with a reservoir of 750 nodes for four
readout-to-posterior mapping methods. The differences between methods
are modest but nevertheless, the difference between the state-specific lookup-
table method and the two global methods is almost statistically significant
(Wilcoxon test, p < 0.10 [147]). We, therefore continue to use the lookup-
table method.

5.7.1.3 Reservoir Size and Number of States per Digit

Figure 5.11 shows the WER on the validation set as a function of the num-
ber of states per digit for different sizes of the reservoir. The WER de-
creases with the reservoir size, even though a reservoir of 16K neurons
already encompasses 1.7M trainable parameters, whereas, there are only
0.8M training frames. This indicates that the risk of over-training the read-
outs is low, a conclusion that confirms our earlier findings [9]. Our data sug-
gest that even bigger reservoirs could offer further improvements. However,
we did not try that here because, as we will explain later on, the training of
systems with very big reservoirs becomes impractical on standard comput-
ers and the anticipated improvements can be achieved more effectively by
systems encompassing multiple reservoirs of manageable sizes.

The WER decreases with the number of states until it saturates at S = 7.
Consequently, there is no need to use more than 7 states per digit.
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Figure 5.11: WERs (in %) on the validation set as a function of S for six
values of the reservoir size

5.7.2 System Evaluation

During system evaluation, the output weights of the reservoir network are
trained on the full training set using the same reservoir parameters and num-
ber of iterations that were employed in the development stage. Further-
more, both clean and multi-style training are considered now. All systems
are evaluated on all the Aurora-2 test sets (A-C).

In Table 5.6, the WERs of eight RCN-HMM hybrids are listed next
to the WERs of two baseline GMM-HMM systems: one that employs the
same acoustic features (MVN) and one that works on the advanced front-
end features (AFE).

The RCN-HMM systems encompassing a reservoir of 16K or more neu-
rons clearly outperform the baseline GMM-HMM systems in mismatched
conditions, and are competitive with a GMM-HMM system working in
matched conditions on the same acoustic features. However, the GMM-
HMM working with AFE’s still stands out in the clean test condition.

The RCN-HMM data in Table 5.6 confirm that the improvements due to
more reservoir neurons and digit states are in line with those observed dur-
ing system development. Although further enlarging the reservoir is bound
to lead to further improvement, we did not pursue this path because the
required computational resources increase steeply then (see Section 5.7.4)
and also because multi-layer RCN-HMM systems will turn out more effec-
tive in this respect (see Section 5.8).
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Method Clean Multi
Clean 0-20dB -5dB Clean 0-20dB -5dB

GMM-HMM (MVN) 0.84 19.7 82.2 1.77 8.5 59.1
GMM-HMM (AFE) 0.77 13.0 69.7 0.81 8.2 58.3

RCN-HMM (2K, 7st) 2.17 13.9 62.9 3.43 10.9 57.7
RCN-HMM (4K, 7st) 1.56 12.8 62.6 2.34 9.4 55.6
RCN-HMM (8K, 7st) 1.31 12.0 61.9 1.92 8.3 53.3
RCN-HMM (16K, 7st) 1.08 11.3 61.8 1.47 7.4 50.4
RCN-HMM (24K, 7st) 0.88 10.9 62.0 1.31 6.9 50.1

RCN-HMM (8K, 3st) 1.60 15.9 73.0 2.21 11.0 67.1
RCN-HMM (8K, 5st) 1.49 12.8 64.0 2.10 8.3 52.9
RCN-HMM (8K, 7st) 1.31 12.0 61.9 1.92 8.3 53.3
RCN-HMM (8K, 10st) 1.12 12.7 63.9 1.82 8.8 56.0

Table 5.6: WERs (in %) per condition (SNR-range) for test sets A - C. Both
clean training (left) and multi-style training (right) experiments are consid-
ered. The values in bold mark the best systems for the different conditions.
The RCN-HMM systems are supplied with MVN features and are labeled
with their reservoir size and number of states per digit. The GMM-HMM
systems use 16 states per digit and 3 gaussians per state.

5.7.3 Control Experiments

So far, we have established that RCN-based systems offer more noise-
robustness than GMM-based systems, but we did not yet establish why
that is. Is it due to the ability of the reservoir to filter-out noise inflicted
modulations whose frequencies fall outside the speech band (between 0
and F ), or it is due to the random fixation of the reservoir weights? To an-
swer these questions, we have performed control experiments with systems
encompassing an 8K reservoir and 7 state digit models.

In Figure 5.12, we depicted the WER as a function of the SNR of the test
sets (A-C) for the GMM-HMM (MVN) system and for four RCN-HMM
systems which are labeled by their τλ and τρ (in ms). System RC-00-00 is
a system incorporating a reservoir without recurrent connections and with
memoryless neurons and system RC-35-50 is the one with the optimal dy-
namics. The figure clearly shows that the noise degradation curve of the
GMM-HMM system is steeper than that of the RCN-HMM hybrids and
that all RCN-HMM curves have a similar steepness. This means that the
noise robustness (slope of the curve) follows from the random fixation of
the reservoir weights. Good reservoir dynamics on the other hand signif-
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Figure 5.12: Trained on clean samples and tested on test set A-C of Aurora-
2 framework, the noise robustness of RCN-HMM hybrids and a GMM-
HMM system are compared. All systems are supplied with mean and vari-
ance normalized acoustic features (MVN). The RCN-HMM hybrids are
encoded by their time constants τλ and τρ in ms, respectively. The system
RC-00-00 denotes a system without leaky integration and without recurrent
connections.

icantly improve the accuracy. The same conclusions also hold for multi-
style experiments.

5.7.4 Computational Resources

In order to give the reader a concrete idea about the time needed to train
a reservoir with N res nodes and Nout readouts on Nfrm training frames,
we decompose the training into six actions and assess the expected number
of operations for each action (see Table 5.7). As a reference, we also give
actual times (in minutes) consumed by each action on a 3.4 GHz single core
CPU for the case of a reservoir with 16K neurons, 78 readouts (S = 7) and
training on the complete Aurora-2 training set (≈ 1.5M frames). From the
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Action Complexity Time

Compute R O(Nfrm Nres) 36
Update RRT (∗) O(Nfrm (Nres)2) 651
Invert (RRT + ε I) (∗) O((Nres)3) 6
Align to find D O(Nfrm Nout) 58
Compute DRT O(Nfrm Nres Nout) 5
Find Wout from Eq.(5.6) O((Nres)2 Nout) <1

Table 5.7: Time complexity (function of parameters) and actual times (in
minutes, measured on a 3.4 GHz core) consumed by the different steps of
the full training of a reservoir with 16K neurons and 78 readouts. Items
tagged with (∗) are only needed in the first training iteration.

figures one can derive that the computation of RRT in the first iteration is
by far the most time consuming part. Fortunately, it is also the easiest part
to run in parallel on multiple cores. Pruning in the Viterbi alignment can
reduce the time consumed in the further iterations.

5.8 A Multi-Layer RCN-HMM Hybrid

Research on deep neural networks has shown that the performance of a
neural network can be increased by stacking multiple hidden layers on top
of each other. However, since in the case of an RCN the hidden layer (the
reservoir) is not trained, it does not make much sense to stack reservoirs.
Instead, we stack complete reservoir networks (reservoir + readouts) as
shown in Figure 5.13. Each reservoir network, from now on called a layer,
is driven by the readouts of the preceding layer or by the acoustic inputs
(layer 1) and the layers are trained one by one. There is already empirical
evidence from phone recognition [9] that cascading reservoir networks can
improve the recognition.

5.8.1 System Development

Since we see no advantage in doing it otherwise, we consider the digit states
as the training targets in each layer. Consequently, each layer has the same
number of readouts. However, as will be illustrated in Section 5.8.1.3, the
readouts driving the higher layers are smoother than the acoustic features
driving the first reservoir. This means that the higher layer reservoirs ac-
tually need other control parameters than the first layer reservoir. Another
difference is that the task of the higher layers is to adjust the hypotheses of
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Figure 5.13: Architecture of a multi-layer reservoir network that can be
embedded in the RCN-HMM hybrid

the former layer, whereas the task of the first layer is to bridge the big gap
between the acoustic features and the state hypotheses.

Another point is that the readouts of the first layer no longer have zero
means and unit variances. However, this is not so problematic, because
the zero mean input weights will still cause the input activations to be zero
mean. Furthermore, since each digit state has the same prior probability,
one can assume the corresponding readouts to have an equal variance that
can be substituted as VU in Equation (5.15).

5.8.1.1 Preferred In-Band Activation Strength

Since the inputs of the higher layers are much closer to the target read-
outs than those of the first layer, we experimentally verified whether the
formerly found preferred in-band activation strength of 0.035 still is an ac-
ceptable value. If so, this can be considered as an indication that the pre-
ferred activation strength may be problem independent, as hypothesized.

5.8.1.2 Reservoir Dynamics

To verify whether our heuristics for finding the reservoir dynamics also
hold for the higher layers, we repeated the experiment that gave rise to
Figure 5.10, but now we just did it for 7 states per digit. The results in
Figure 5.14 support our claim about the purpose of leaky integration. As
the readouts exhibit less random fluctuations than the acoustic features (as
illustrated in Section 5.8.1.3), the choice of τλ is not that critical anymore.
Any value not exceeding the average digit state duration is acceptable now.
The heuristic for τρ now yields a value of 130 ms which also seems to be a
suitable value. Actually, this need for more memory agrees with the utiliza-
tion of longer windows in the higher layers of other hierarchical systems,
such as the one proposed in [74].
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1

Figure 5.14: WERs (in %) on the validation set for a single-layer and a
two-layer system as a function of the τλ (with τρ = 50 ms) (left) and τρ
(with τλ = 100 ms) (right) of the last layer. The reservoirs consist of 750
neurons.

5.8.1.3 Deep Architectures

Although this is not necessary, we stick to multi-layer systems with equally
large layers for the time being. This is partly for convenience but also
because equal layers yield the minimal training time for a given number
of trainable parameters: the number of trainable parameters is proportional
to the sum of the reservoir sizes whereas the training time is proportional
to the sum of squares of the reservoir sizes. Note that in the recognition
phase, the computational complexity is determined by the total number of
trainable parameters, irrespective of the number of layers involved.

To create our deep architectures, we use the same design choices for lay-
ers 2 and higher. This means: Vopt = 0.035, τλ = Tstate and τρ = 130 ms.
The results depicted in Figure 5.15 support the following conclusions:

1. Any single layer system can be improved by adding extra layers,
but the attainable improvement decreases when the reservoir size in-
creases. Nevertheless, even for a reservoir size of 16K, the attainable
improvement is still as large as 30% relative.

2. For a given number of trainable parameters, multi-layer systems out-
perform single-layer systems, but again, the improvement decreases
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Figure 5.15: WERs (in %) on the validation set as a function of the number
of trainable parameters (under the constraint that the reservoirs in each layer
have the same size). Each curve represents the results obtained with sys-
tems of different depths using reservoirs of one particular size. The marks
encode the reservoir size.

when the reservoir size increases. In fact, the gain of a 4×4K system
over a 1×16K system is about 20% relative, whereas the gain of a
3×8K system over a single-layer 24K system has already dropped
below 8%.

3. The larger the reservoirs become, the fewer layers are needed to reach
the asymptotic performance of multi-layer systems using that reser-
voir size.

Normally, the performance curve as a function of the number of layers is
convex, but for the case of 16K reservoirs this is no longer the case. The
latter probably indicates that some over-training has finally occurred. This
is not so surprising since there are already 1.24 million trainable parame-
ters per layer in that case. To provide a more qualitative impression of what
the different layers achieve, we considered a clean example of digit zero
and we plotted some of the normalized MFCCs as well as the readouts of
the subsequent layers that correspond to the subsequent digit states (Fig-
ure 5.16). It is clear that the readouts of all layers are smooth functions
of time and that the competition between the desired readout and the other
readouts diminishes when traversing the layers.
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Figure 5.16: The acoustic inputs of a clean sample of digit zero and the
readouts of the different layers of a 3×4K system with 7 states per digit.
The zero and silence states are shown in black and dashed, respectively.

5.8.2 System Evaluation

Following the development experiments, we tested multi-layer systems with
8K and 16K reservoirs. As before, we retrained the systems on the full
training set, but of course using the control parameters established during
the development phase.

The results for 8K (see Table 5.8) demonstrate that in matched condi-
tions adding layers leads to significantly better results at the price of a neg-
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Layer size Clean Multi
L1 L2 L3 L4 Clean 0-20dB -5dB Clean 0-20dB -5dB

GMM-HMM (MVN) 0.84 19.7 82.2 1.77 8.5 59.1
GMM-HMM (AFE) 0.77 13.0 69.7 0.81 8.2 58.3

8K - - - 1.31 12.0 61.9 1.92 8.3 53.3
8K 8K - - 1.03 11.4 62.0 1.49 7.1 51.0
8K 8K 8K - 0.77 11.5 62.8 1.25 6.9 51.3
8K 8K 8K 8K 0.75 12.0 64.2 1.12 6.9 52.4

16K - - - 1.08 11.3 61.8 1.47 7.4 50.4
16K 16K - - 1.06 11.1 62.1 1.52 7.1 52.7
16K 16K 16K - 0.90 11.3 63.3 1.30 6.4 50.6

24K - - - 0.88 10.9 62.0 1.31 6.9 50.1

2K 4K 16K - 1.10 12.7 63.1 1.83 8.5 55.3
16K 4K 2K - 0.86 11.0 62.7 1.22 6.5 50.0

Table 5.8: WERs (in %) per condition (SNR range) for test sets A - C
obtained with multi-layer RCN-HMM hybrids using MVN features. Both
clean training (left) and multi-style training (right) experiments are consid-
ered. The GMM-HMM and the single-layer results are copied from Ta-
ble 5.6 to provide a compact presentation of all results.

ligible loss in performance in mismatched conditions. In the clean training
experiment, only the clean condition can be considered matched, be it that
Test C already introduces some mismatch (MIRS instead of G712 filter) in
that condition as well. In the multi-condition training experiment, both the
clean and the 0-20 dB conditions can be considered matched as most of the
SNRs involved were also present during the training. The findings for the
matched conditions are in very good agreement with the results emerging
from the development phase.

The results for 16K (see Table 5.8) demonstrate more or less the same
tendencies, but the differences are smaller. Note that just like in the de-
velopment phase, the improvement (in matched conditions) caused by the
second layer is much smaller than that caused by the third layer.

Out of curiosity we also evaluated some additional systems composed
of layers of different sizes. Two typical examples are listed in the last two
rows of Table 5.8. They show that in case of a big first layer, the correction
work of the higher layers can be accomplished by smaller layers (16K + 4K
+ 2K works as well as 3 x 16K) which does not come as a surprise. When
the first layer is small, the corrections to make in the higher layers are ob-
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Set Clean 20 15 10 5 0 -5 0-20dB
C

le
an

A 0.78 1.30 2.36 5.0 11.5 29.2 59.4 9.9
B 0.78 1.46 2.48 4.5 11.1 28.2 58.3 9.6
C 0.91 1.54 2.91 5.7 12.5 30.0 57.6 10.5

Average 0.81 1.41 2.52 4.9 11.5 29.0 58.6 9.9

M
ul

ti

A 1.25 1.12 1.51 3.0 6.1 17.1 46.7 5.8
B 1.25 1.31 1.92 2.9 6.8 19.0 48.1 6.4
C 1.43 1.26 1.77 3.4 7.2 19.1 47.5 6.5

Average 1.29 1.22 1.73 3.0 6.6 18.3 47.4 6.2

Table 5.9: WERs (in %) for test sets A - C obtained with a 3-layer hybrid
RCN-HMM and AFE as the input features.

viously more difficult to make and the 2K + 4K + 16K system performs
significantly worse. However, we did not investigate to what extend this is
due to the fact that the outputs of the the first layer now have a larger band-
width, which calls for other reservoir parameters than the ones we derived
from the outputs dynamics of a first layer comprising a big reservoir.

5.8.3 System Evaluation Using the AFE

Recalling the significant gain obtained by replacing MVN features by ad-
vanced front-end (AFE) features in a GMM-HMM recognizer, we were cu-
rious to examine the effect of doing the same in an RCN-based recognizer.
The results for a 3 × 8K system driven by AFEs are listed in Table 5.9.

Apparently, removing some of the noise effects in the front-end also
helps an RCN-based system to some extend (in the clean training experi-
ment for instance, the aWER is reduced from 11.5% to 9.9%). However,
its effectiveness is much smaller than in GMM-HMM systems.

5.9 Conclusions

We have studied reservoir-based acoustic modeling for noise robust contin-
uous digit recognition. A reservoir based acoustic model computes the state
likelihoods in an HMM by means of a two-layer recursive neural network.
This network is peculiar in the sense that it consists of a hidden layer of
recurrently connected non-linear neurons with fixed (i.e. non-trained) co-
efficients – called a reservoir – and an output layer of linear neurons with
trained coefficients which ‘read out’ the outputs of the reservoir.
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A major contribution of the paper is the introduction of a novel analy-
sis of the reservoir as a non-linear dynamical system, an analysis that also
offers insight in the behavior of the system. Based on that insight, empiri-
cal findings are translated into a few very simple and comprehensible rules
which permit anyone to design a reservoir system that is properly tuned
to the dynamical properties of the reservoir inputs (can be measured) and
the dynamical properties of the expected outputs (can be estimated from
knowledge of the recognition problem). These simple rules made it feasi-
ble to investigate the performance of RCN-based systems as a function of
reservoir size and number of states per digit in a systematic way.

The main objective of our work was of course to demonstrate that reser-
voir computing can lead to robust acoustic models. In a first step, we devel-
oped a single layer RCN-based continuous digit recognition (CDR) system,
driven by mean and variance normalized MFCC features. From experi-
ments on Aurora-2 we established that this system is indeed significantly
more robust against the presence of noise than a traditional GMM-HMM
system working with the same acoustic parameters, whilst it is competi-
tive in the clean condition. Under noisy conditions, the RCN-HMM system
even outperforms a GMM-system working with the Advanced Front-End
features, but the latter system still stands out under clean conditions.

The experimental data presented in the paper also reveal that noise-
robustness mainly follows from the random fixation of the reservoir weights.
Properly tuning the reservoir dynamics mainly raises the accuracy in matched
conditions without compromising the noise-robustness.

Motivated by the success of single-layer systems, we also considered
multi-layer systems comprising multiple reservoirs. We demonstrated that
such systems can further improve the results for the matched test condi-
tions, again without compromising the noise robustness in the noisy con-
ditions. Our best multi-layer systems are now competitive with the AFE-
GMM system in clean conditions as well. Our present system outperforms
all other neural-based approaches we know of that were recently evaluated
for continuous digit recognition. A particular advantage of reservoir based
models seems to be their robustness against over-training.

We hope that our research will motivate others to develop new ideas that
can further improve the performance of the RCN-based speech recognition
systems and that, in time, can contribute to the design of more noise robust
systems for other tasks such as large vocabulary speech recognition.
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Acoustic Modeling

This chapter is an edited version of the following original publication:

[4] A. Jalalvand, K. Demuynck, and J.-P. Martens, “Noise robust con-
tinuous digit recognition with reservoir-based acoustic models,” Proceed-
ings of the International Symposium on Intelligent Signal Processing and
Communication Systems (ISPACS), p. ID:99, 2013.

6.0 Preface

The results of my previous work show that although RCN-HMM hybrids
offer more robustness to noise than the competitors, they are regularly out-
performed by these competitors in clean speech conditions. This observa-
tion motivated me to search for combinations of GMMs and RCNs in a
single system that hopefully inherits the strengths of both acoustic mod-
eling techniques. In this chapter, I investigate three model combination
techniques: two so-called tandem techniques and a state-level likelihood
fusion technique. The experiments show, unfortunately, that only marginal
improvements of the performance in matched conditions can be achieved,
and moreover, that these improvements come at the expense of a degraded
robustness against the presence of noise. As raising the noise robustness re-
mains the major over-all objective of my research, I also investigated more
in detail the effects of the front-end on the recognition accuracy. Further-
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more, I introduce bi-directional reservoir systems (which can take account
of the right context as well) and establish that they are effective in further
improving the noise robustness, be it at the expense of a small loss in the
clean speech performance again.

6.1 Introduction

Enhancing the noise robustness of automatic speech recognition (ASR) sys-
tems is still an active area of research. In this work, we focus on robust
continuous digit recognition (CDR). CDR is essential for the recognition
of spoken numerical data (e.g., PIN-codes) in many applications which are
often operated in a noisy environment (e.g., in the street) and utilized by
accented non-native speakers (e.g., tourists) as well as native speakers. The
absence of a language model also makes CDR an attractive setup to evalu-
ate the robustness of acoustic modeling techniques.

A modern ASR system treats CDR as a statistical pattern recognition
problem which aims at finding the most likely interpretation of a stream of
acoustic feature vectors emerging from an acoustic front-end. The recog-
nition is achieved by a back-end comprising one left-to-right multi-state
Hidden Markov Model (HMM) per digit. In most systems, the likelihood
to observe a given feature in a certain state is estimated by means of a Gaus-
sian Mixture Model (GMM). Although state-of-the-art systems can reach
high accuracy on low-noise test utterances, they are still susceptible to se-
vere degradations in noisy conditions.

In recent years, many strategies for improving the noise robustness have
been proposed [148]. Most of them deal with the speech signal pre-processing
in the acoustic front-end and aim to retrieve acoustic features that represent
the clean speech component of a noisy signal [26, 113, 131]. Other meth-
ods take the impact of the noise into account in a consistent way during
the likelihood computation in a GMM-based back-end [124]. Finally, there
have also been several attempts to improve robustness by means of alterna-
tive acoustic modeling techniques such as neural networks [142] or Support
Vector Machines (SVM) [149].

In recent work, we investigated the potential of Reservoir Computing
Network (RCN) [99] as an alternative approach. Reservoir Computing em-
ploys reservoir networks – a particular kind of Recurrent Neural Networks
(RNN) [79] – as complex dynamical systems that can analyze an incoming
input vector stream. The hypothesis is that such a dynamical system can be
designed to focus on the speech dynamics, and thus, to be less sensitive to
the dynamics of the noise. We were already able to devise an RCN-based
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CDR system that attains competitive recognition accuracies in clean condi-
tions and that outperforms most other systems in noisy conditions [1, 2].

In this paper, we extend this previous work. In particular, we investigate
whether RCN-based systems can profit from front-end techniques that were
shown to work well in combination with traditional GMM acoustic mod-
els. Furthermore, we investigate more complex hierarchical RCN-based
systems comprising multiple reservoirs which resemble to some extend the
deep neural architectures that have been proposed for continuous speech
recognition [9].

Since reservoirs only build up some memory of the recent past, we also
test bi-directional systems combining two reservoirs: one that processes
the speech frames from left to right and one that processes them from right
to left. Such bi-directional systems were already demonstrated to improve
phone recognition in continuous speech [9], but they were not yet applied
to CDR. Finally, we also study ways of combining reservoir networks and
GMMs in a single system.

The rest of the paper is organized as follows: Section 6.2 provides a
concise outline of the basic principles of RCN, Section 6.3 describes ways
of integrating reservoir networks in an RCN-HMM hybrid, Section 6.4 re-
views three approaches that were tested for combining reservoir networks
with GMMs in a single system and Sections 6.5 and 6.6 summarize the
experimental setup and the results obtained with it. The paper ends with
conclusion and future work.

6.2 Reservoir Computing Networks

The basic principle of reservoir computing is that information can be re-
trieved from sequential inputs by means of a two-layer recurrent neural net-
work with the following characteristics (see Figure 6.1). The first layer is a
sparsely connected hidden layer, composed of non-linear neurons which, at
time t, are driven by inputs Ut and by delayed hidden layer outputs Rt−1.
The output layer consists of linear neurons which are driven by the hidden
layer outputs Rt. Important is that the weights of the hidden neurons are
fixed, and only the weights of the output layer are optimized according to a
least squares linear regression.

The hidden layer can be envisioned as a reservoir of recurrently inter-
connected computational neurons, driven by inputs. Together with the out-
put layer, it forms a reservoir computing network. The network outputs Yt
are usually called readouts [99] so as to differentiate them unambiguously
from the reservoir outputs Rt. In order to become less sensitive to random
inter-frame changes in the inputs (e.g., changes due to the spectral analysis
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Figure 6.1: A basic RCN system consists of a reservoir and a readout layer.
The reservoir is composed of interconnected non-linear neurons with ran-
domly fixed weights. The readout layer consists of linear neurons with
trained weights.

or the ambient noise), one can introduce leaky integration in the reservoir
neurons (so-called Leaky Integrator Neurons [100]). The resulting reser-
voir network is governed by the following equations:

Rt = (1− λ)Rt−1 + λ fres(W
inUt + WrecRt−1), (6.1)

Yt = WoutRt, (6.2)

with a leak rate λ between 0 and 1, with Win and Wrec containing the
input and recurrent weights to the reservoir neurons, and with Wout con-
taining the weights of the output neurons.

As mentioned before, the weights of the hidden neurons are fixed by
means of a random process characterized by four control parameters (see [3]
for more details). These parameters are: (1) αU , the maximal absolute
eigenvalue of the input weight matrix Win, (2) ρ, the maximal absolute
eigenvalue of the recurrent weight matrix Wrec, (3) Kin, the number of
inputs driving each reservoir neuron and (4) Krec, the number of delayed
reservoir outputs driving each reservoir neuron. The first two parameters
control the strengths of the input and the recurrent stimulations of a reser-
voir neuron, the latter two control the sparsity of the input and recurrent
weight matrices. Together with λ they constitute the reservoir control pa-
rameters which have to be properly set in order to assure that the reservoir
is well behaved. Note that any effective reservoir should at least have the
so-called echo state property. It states that, with time, the reservoir should
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forget about the initial state it was in. That is also why a reservoir network
was originally called an Echo State Network [99]. It was shown in [99] that
the echo state property holds if ρ – called the spectral radius – is smaller
than 1.

The reservoir can be envisioned as a predefined but complex non-linear
dynamical system that performs a temporal analysis of the input stream. We
claim that such a system can extract features that are not so easily corrupted
by the presence of noise whose dynamics differ from the speech dynamics.

The output weights are determined so that they minimize the mean
squared difference between the readouts Yt and the desired readouts Dt

across the training examples [2]. As a consequence, they follow from a set
of linear equations. The desired output Dt is a unit vector with a non-zero
entry at the position corresponding to the desired HMM-state at time t.

6.3 Speech Recognition with Reservoirs

In this section, we introduce the architectures that were conceived to per-
form CDR by means of a reservoir network.

6.3.1 A Hybrid RCN-HMM

Like any other neural network based hybrid system [150], a hybrid RCN-
HMM assumes that every network output corresponds to an HMM state. It
transforms these outputs to state likelihoods and performs a standard Viterbi
search for the best path through a looped HMM. So, the readouts yt,i (with
i indexing the network outputs) are transformed to new outputs zt,i that
are appropriate estimations of the scaled likelihoods P (Ut|qt = i)/P (Ut).
Using these outputs, one can determine the best state sequence as

q̂ = arg max
q
P (q|U) = arg max

q

T∏
t=1

zt,qt P (qt|qt−1),

and derive the digit sequence thereof. The admissible state sequences can
represent an arbitrary sequence of digits (possibly interleaved with silences).
An extra transition probability P0 is introduced on the transition from the
final to the initial state that controls the balance between deletions and in-
sertions.

The reservoir network can be a simple network with one reservoir, but it
can as well be a hierarchical network, obtained by stacking multiple reser-
voir networks (called layers) on top of each other (see Figure 6.2). The
argument for cascading layers is that new layers can correct some of the
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Figure 6.2: Architecture of an RCN-HMM hybrid comprising a multi-layer
reservoir network for CDR. The HMM has two initial states (I1 and I2),
one final state (F) and it comprises 11 multi-state digit models (D1 ... D11)
and a single state silence model (#)

mistakes made by the preceding layers because they offer additional tem-
poral modeling capacity and a new inner space to model the state distribu-
tions. This argumentation is supported by experiments showing enhanced
digit and phone recognition in continuous speech [2, 9]. The layers are
trained one after the other and per layer good settings of the reservoir con-
trol parameters emerge from an efficient user-controlled search procedure
(see [3]).

The readouts of each layer are assumed to represent the same set of
HMM states, and consequently, their weights are trained so as to minimize
the mean squared difference between the computed readouts Yt and the
same desired readouts Dt. Under these circumstances, the readouts are in
each layer assumed to adhere to posterior probabilities P (qt = i|Ut) and
zt,i = yt,i/P (qt = i) is an appropriate estimation of the envisioned scaled
likelihoods. However, since yt,i is not confined to [0,1] and since likeli-
hoods have to be positive, one has to map it to a variable that is confined to
[0,1], before it can be imputed in the formula for zt,i. As explained in [2]
this mapping can be accomplished by a sigmoid function, a non-parametric
function derived from histograms or a simple clip-and-scale method. Since
we established experimentally that the three methods yield basically the
same results, we opted for the simple clip-and-scale method here:

zt,i =
max(yt,i, yo)

maxj(yt,j)

1

P (qt = i)
, yo � 1 (6.3)

6.3.2 Bi-Directional RCN-HMM

Reservoirs only provide a fading memory of the past and make no use of
the future. On the other hand, the theory of co-articulation states that a
phone is also influenced by the forthcoming phone. In order to account for
such anticipation as well, we introduce bi-directional reservoir networks.
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Such a network encompasses two identical reservoirs, a forward reservoir
that processes the data stream from left-to-right and a backward reservoir
that processes them from right-to-left (see Figure 6.3).
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Figure 6.3: Architecture of a bi-directional RCN. The forward reservoir
processes the inputs U1→T whereas the backward reservoir processes the
inputs UT→1. The outputs of the latter reservoir are then time reversed
before combining them with the outputs of the former reservoir.

The forward reservoir state at time t is the state that it has reached af-
ter having processed the input vectors U1 . . . Ut. The backward reservoir
state at time t is the state that it has reached after having processed the in-
put vectors UT . . . Ut, where T is the length of the input sequence U. The
two reservoir states at time t are supplied to a single output layer which
computes the readouts yt,i to be employed in the equations, as originally
proposed in [9].

6.4 Model Combination

It is clear that the RCN-based likelihoods are computed in a large and ran-
domly fixed high-dimensional feature space (the reservoir state space) that
is affected by long-term dynamics. On the other hand, the GMM-based
likelihoods are computed in a well conditioned low-dimensional feature
space (the acoustic feature space) that solely describes local dynamics. We
argue that this implies that they may attribute complementary information,
and consequently, that it makes sense to combine them in a single sys-
tem. In this section, we propose three approaches to do so, two tandem
approaches and one likelihood-fusion approach.

6.4.1 An RCN-GMM Tandem (T-RCN-GMM)

In a so-called RCN-GMM tandem, the readouts Yt would be supplied as
acoustic features to a traditional GMM-HMM system. However, it is not
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Figure 6.4: Histograms of three randomly selected readouts on the frames
that were assigned to the their corresponding states by the Viterbi search.

evident that the Yt qualify well as inputs to a modeling system that relies
on mixtures of Gaussian distributions with diagonal covariance matrices.
Therefore, it is common in MLP-GMM tandems [151] (MLP stands for
Multi-Layer Perceptron) to perform a non-linear transformation of the Yt
to make them more Gaussian-like and to apply a decorrelation to attain
independent features.

Typical non-linear transformations employed on MLP-outputs are a log-
arithm or an inverse sigmoid. Their main aim is to reduce the skewness of
the MLP output distributions. However, reservoir network outputs are lin-
ear combinations of zero mean reservoir state variables. Hence, they are
not hard-limited to the range of [0,1] and therefore, and consequently, they
do not exhibit skewed distributions, as is demonstrated by the histograms
depicted in Figure 6.4. Just to be sure, we did a few experiments with non-
linear transformations, and they confirmed that no transformation is needed
and that the T-RCN-GMM architecture can be reduced to the scheme de-
picted in Figure 6.5(a). The decorrelation is maintained and is achieved
by means of a Mutual Information Discriminative Analysis (MIDA) [152],
a technique that can be regarded as a special form of Linear Discriminant
Analysis (LDA).

6.4.2 A GMM-RCN Tandem (T-GMM-RCN)

Another type of tandem is a GMM-RCN tandem in which the likelihoods
computed by the GMMs are supplied to an RCN-HMM back-end. Since
RCN does not make any assumptions regarding the distributions of the in-
dividual inputs nor about the correlations between these inputs, the GMM
outputs can be supplied to the RCN-HMM component without any transfor-
mation or decorrelation, as shown in Figure 6.5(b). Note that since we keep
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(a) An RCN-GMM tandem architecture. The RCN outputs are decorrelated before they are
supplied to the GMM-HMM component.
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(b) A GMM-RCN tandem architecture. The GMM outputs can be supplied as such to the
RCN-HMM component.

Figure 6.5: An RCN-HMM tandem architecture: the front-end, the RCN
component, the intermediate-processing of the readouts and the GMM-
based decoder.

Kin fixed, increasing the number of GMMs (by raising the number of digit
state) does not raise the computational load of the RCN-HMM component.
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6.4.3 Likelihood Fusion (F-GMM-RCN)

Since reservoir-based likelihoods are computed in a high-dimensional fea-
ture space which was randomly fixed and designed to expose long-term
memory effects, they may differ considerably from GMM likelihoods that
are computed in a low-dimensional space of well established local features.
Consequently, it seems sensible to fuse those likelihoods in the Viterbi
search.

If the two likelihood sets apply to the same HMM states (digit states
+ silence state) the fusion is straightforward to achieve by considering a
weighted mean of the two log-likelihoods as the state log-likelihood that
drives the Viterbi search. Obviously, such a state-level combination scheme
assumes that the composing acoustic models are kind of time synchronous,
meaning that they support state transitions at the same time instances. This
may not be entirely true but it drastically simplifies the decoding. In our
experiments, we pursued time synchrony by imposing the state-level seg-
mentation provided by the reservoir during GMM training. Actually, it is a
reasonable assumption in our case because both types of acoustic models in
our experiments were bootstrapped from exactly that segmentation of the
training data.

There are two popular ways of computing a mean likelihood. One is
to compute a (weighted) linear combination of likelihoods, another is to
compute a (weighted) linear combination of the log-likelihoods. The for-
mer strategy is believed to be ideal for reducing the effects of noise on
the likelihoods, whereas, the latter is believed to be preferable for combin-
ing complementary information streams as it better complies with the log-
linear combination of likelihoods in the Viterbi search. As we contemplate
that the two likelihoods attribute complementary information, we opt for
the log-linear combination approach. For simplicity, we consider just one
weight, irrespective of the state. The value of this so-called stream weight
is determined from recognition experiments on the development data.

6.5 Experimental Setup

In this section we present the experimental framework that was adopted to
test the proposed approaches.

6.5.1 Speech Corpus

All experiments are conducted on the Aurora-2 database [29]. This database
contains clean and noisy utterances, sampled at 8 kHz and filtered with ei-
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ther a G712 or a MIRS filter. There are 8440 clean training samples, each
counting 1 to 7 digits. The corpus also includes various noise corrupted
copies of each clean utterance. The noisy utterances were created by arti-
ficially adding different noise types in different degrees, leading to Signal-
to-Noise Ratios (SNR) between 20 and -5dB. The vocabulary consists of
the digits 0 to 9 and the letter ’oh’ (a substitute for ’zero’). We adhere to the
training and test sets that were defined as part of the Aurora-2 benchmark.
We have trained systems on clean speech (i.e., clean speech training) and
on clean + noisy speech (i.e., multi-style training) and tested them on the
test sets A - C.

6.5.2 Front-End Setups

We investigate three acoustic feature sets: the conventional MFCCs (log
energy and c1 . . . c12), the 24 log Mel filterbank log-energies (MelFB), and
the ETSI Advanced Front-End features (AFE) (denoised c0 . . . c12 without
non-speech frame dropping) [131]. In all cases, the analysis is performed
on 30 ms Hamming-windowed frames and the hop size between frames is
τfr = 10 ms. In order to provide some context information, each feature set
is supplemented with ∆ and ∆2 features. The frame-wise feature extraction
is followed by an utterance-wise normalization that creates zero-mean and
unit-variance features.

Note that due to the zero mean input weights of the reservoir, the reser-
voir activations and the reservoir outputs will be zero mean, even in the
presence of noise. Consequently, mean normalization is not a necessity in
the case of RCN-based systems. Nevertheless, for reasons of uniformity
and because it does hardly take extra CPU-time we do apply it in all system
configurations.

6.5.3 Reservoir Component Setup

Based on previous work, the reservoir control parameters were determined
in the same way for each layer. Defining τλ

.
= −τfr/ ln(1−λ) as the leaky

integration time constant and T as the expected state duration, we select
(ρ, τλ,K

in,Krec) = (0.8, T, 10, 10). The parameter αU is chosen so that
the average variance of the reservoir outputs reaches a certain level [3].
Since layers 2 and 3 see basically the same type of inputs, αU is taken the
same for both layers.

The size of the reservoir – defined as the number of neurons it contains
(N res) – is considered to be an independent variable. Note that since Kin

and Krec are kept fixed to 10, the CPU-time needed for calculating the
readouts scales linearly with the size of the reservoir.
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The reservoir networks are trained by means of a Tikhonov regres-
sion [144]. When comparing bi-directional to uni-directional systems we
compare systems with the same number of trainable parameters. This im-
plies that a bi-directional system contains two reservoirs of half the size of
the reservoir embedded in the uni-directional system it is compared to.

Each digit is modeled by a 7-state left-to-right HMM whilst the silence
is modeled by a single state.

6.5.4 Model Combination Setup

In order to investigate the proposed model combination strategies, we needed
a GMM-based component incorporating states that directly map to the reser-
voir network outputs. It was created with the SPRAAK toolkit1, meaning
that it works with semi-continuous HMMs, that is, all GMMs select mem-
bers from the same global pool of Gaussians that emerged from an unsuper-
vised clustering procedure. Consequently, there is an extensive parameter
tying which is beneficial for small databases such as Aurora-2. The number
of Gaussians and the number of selected Gaussians per state are determined
automatically from the size and the statistics of the data, so that the risk of
over-fitting is low.

6.5.5 Evaluation Setup

In the development phase, two thirds of the training set are used for train-
ing, the held out third is used for control parameter optimization (e.g., the
transition probability Po). In the final evaluation phase the acoustic models
are trained on the complete training set but using the control parameters
that were optimal in the development phase. In this paper, we only report
the results of the final evaluation experiments.

We report average Word Error Rates (WERs) on tests A-C for all SNRs,
and we consider both clean speech training and multi-style training. In
multi-style training the training set consists of clean utterances as well as
utterances with SNRs between 20 and 5dB.

6.6 Experimental Results

In this section we review the results obtained with the proposed approaches
and we compare them to reference results published in the literature.

1SPRAAK: Speech Processing, Recognition and Automatic Annotation Kit
[http://www.spraak.org]
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6.6.1 Reference Systems

First of all, we report some state-of-the-art reference system performances
(see Table 6.1). In particular, we consider the ML-based GMM systems us-
ing AFE-features proposed in [153], the ML-based and MCE-based GMM
systems proposed in [113] and [26], two GMM systems embedding more
sophisticated back-ends based on joint uncertainty decoding (JUD) and
Vector Taylor Series (VTS) respectively [124] and the tandem system em-
bedding deep belief networks reported in [142].

The figures show that the impact of the front-end on the WER is more
important in the case of clean speech training experiments than it is in the
case of multi-style training. In the case of clean speech training, the AFEs
attribute a lot of noise robustness while maintaining the accuracy in clean
speech conditions. In the case of multi-style training, it does not offer more
noise robustness but it leads to a higher accuracy than MVN in the clean
speech condition. The figures further show that advanced back-end tech-
niques (JUD and VTS) lead to a significant gain in noise robustness, but it
is not clear how they affect the accuracy in the clean speech condition (the
papers do not mention these figures). Finally, the deep belief networks do
not seem to be effective in any of the conditions.

6.6.2 Self-Developed GMM Systems

As indicated before, we need a GMM system with the same number of
states as the RCN-system if we want to apply state-level likelihood fusion
in an elegant way. Furthermore, if we want to investigate the impact of the
front-end, we also need to work with self-developed GMM-HMM systems
for each choice of the front-end. We denoted these self-developed GMM-
HMM systems by the front-end they embedded and by the acronym SPRK
(see Table 6.1) to designate that they were developed using the SPRAAK
toolkit.

Compared to the reference GMM (AFE) system the self-developed sys-
tems offer a much superior clean speech performance, but at the expense
of lower noise robustness, as mainly manifested in the clean speech train-
ing experiments. The very bad performance of the MelFB features in the
clean speech training case may be due to the fact that the very large neg-
ative log-energies which appear in clean speech are completely absent in
noisy speech. Imposing a limit on these negative values would be a simple
technique to reduce the effect.
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System Clean Multi
Clean 0-20 -5dB Clean 0-20 -5dB

GMM (AFE) [153] 0.77 13.2 69.9 0.83 8.4 59.2
GMM (MVN) [113] 0.84 19.7 82.2 1.77 8.5 59.1
GMM (MVN-MCE) [26] 0.41 15.7 77.2 0.92 6.4 55.3
GMM (VTS) [124] - 9.4 - - - -
GMM (JUD) [124] - 10.3 - - - -
T-DBN-GMM [142] 1.26 21.0 74.6 - - -

GMM (MelFB-SPRK) 0.24 51.2 92.9 0.39 7.1 58.2
GMM (MVN-SPRK) 0.24 20.7 81.1 0.59 8.3 66.3
GMM (AFE-SPRK) 0.20 15.5 74.2 0.39 6.2 54.2

RCN (MelFB) 0.59 12.3 73.9 0.98 6.1 51.1
RCN (MVN) 0.78 11.8 63.5 1.28 7.1 52.0
RCN (AFE) 0.82 10.0 58.4 1.31 6.2 47.5

biRCN (MelFB) 0.75 10.9 64.0 1.07 5.5 45.5
biRCN (MVN) 0.96 11.1 60.5 1.47 6.3 47.1
biRCN (AFE) 0.86 9.0 54.4 1.43 5.8 43.3

T-GMM-biRCN (AFE) 0.87 16.2 73.1 1.28 7.3 54.0
T-biRCN-GMM (AFE) 0.77 10.6 58.7 1.19 5.7 43.9
F-GMM-biRCN (AFE) 0.53 10.8 63.8 0.80 5.4 46.6

Table 6.1: Comparing average WERs (in %) per condition for test sets A-C
of Aurora-2 using a 3-layer hybrid RCN-HMM for both clean and multi-
style training.

6.6.3 Impact of the Front-End on RCN-HMM Hybrids

In a first experiment, we test three acoustic feature sets in combination with
RCN-HMM hybrids incorporating a three-layer reservoir network, with
each layer embedding a reservoir of 8K neurons. The results in Table 6.1
show that for clean speech training, the AFE features lead to significant
improvements in noise robustness. The differences are significant in mod-
erate noise conditions (from 12.3% to 10.0% WER for SNRs between 0
and 20 dB) and substantial in the strong noise condition (from 73.9% to
58.4% WER for a SNR of -5 dB). In the case of multi-style training, the
impact of the front-end is much more modest, as it was for the GMM-based
systems. Like in [9], we also tested larger reservoirs (up to 32K nodes)
and more layers, but they yield only a small extra gain in performance for
a substantial increase of the computational load.

It is clear that the noise robustness of RCN-HMM hybrids is better than
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Set Clean 20 15 10 5 0 -5 0-20dB
C

le
an

A 0.82 1.64 2.26 4.8 10.6 26.1 55.5 9.1
B 0.82 1.66 2.39 4.2 9.5 24.4 53.3 8.4
C 0.93 1.75 2.73 5.1 11.0 27.0 54.2 9.5

Avg. 0.86 1.68 2.46 4.7 10.3 25.8 54.4 9.0

M
ul

ti

A 1.37 1.30 1.69 2.8 5.8 15.6 42.6 5.4
B 1.37 1.53 2.01 3.0 6.2 16.8 43.8 5.9
C 1.54 1.48 2.13 3.2 6.7 16.7 43.5 6.1

Avg. 1.43 1.44 1.94 3.0 6.2 16.3 43.3 5.8

Table 6.2: WERs (in %) for test sets A - C obtained with a 3-layer bi-
directional hybrid RCN-HMM and the AFE features.

that of GMM-based systems with a traditional back-end, but that they can-
not compete with the self-developed GMMs on clean speech utterances. An
important finding is that with clean speech training an RCN-HMM with a
simple back-end can compete with a GMM system incorporating a much
more complex VTS-based back-end.

6.6.4 Impact of Bi-Directional Processing on RCN-Based Sys-
tems

In a second experiment, we test three-layer bi-directional reservoir systems
with two 4K-node reservoirs per layer (biRCN-HMM). The results in Ta-
ble 6.1 show that bi-directional processing offers extra noise robustness at
the expense of a small loss in clean speech performance. The bi-directional
system now compares favorably to the best GMM system, the one embed-
ding a VTS back-end.

Comparing the average WERs for the 0-20dB conditions shows that a
bi-directional system yields around 10% and 6% relative improvement (on
clean and multi-style training) over a unidirectional system, without much
changing the complexity of that system. Table 6.2 provides the WER of
such a 3-layer bi-directional RCN-HMM per test set and per SNR.

6.6.5 Impact of Model Combination

In a third experiment we investigate the effect of the proposed model com-
bination techniques on the system performance and the noise robustness.
We employed our best system that utilizes the AFE as the front-end and a
bi-directional reservoir as the RCN-component (biRCN-AFE).
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In the case of tandem systems, feeding the GMM likelihoods into a
reservoir system is apparently not a good idea. Supplying the reservoir net-
work outputs to a GMM system does not hurt, but it does not help either.
Likelihood fusion on the other hand can help to improve the clean speech
recognition performance while maintaining most of the noise robustness.
However, the bottom line is that model combination does not lead to im-
proved noise robustness.

6.7 Conclusion and Future Work

In this paper we studied reservoir based acoustic modeling for noise ro-
bust continuous digit recognition. A reservoir based acoustic model com-
putes the state likelihoods in an HMM by means of a two-layer recursive
neural network. This network is peculiar in the sense that it consists of a
hidden layer of recurrently connected non-linear neurons with fixed (i.e.,
non-trained) coefficients – called a reservoir – and an output layer of linear
neurons with coefficients that can be trained using a simple Tichonov re-
gression method. A particular advantage of reservoir networks is that they
are not easily over-trained.

The main objective of our work was to demonstrate that an RCN-based
system comprising a cascade of reservoir networks can outperform GMM-
HMM systems in noisy conditions with different front-ends. The introduc-
tion of noise robust features (AFE) and bi-directional reservoir networks
clearly lead to lower WERs, both in matched and mismatched conditions.
Our present systems now outperform all other neural-based approaches we
know of that were recently evaluated for continuous digit recognition.

We also investigated different combinations of RCN-based and GMM-
based systems to find a way of improving the reservoir performance in
clean conditions. Particularly, we introduced RCN-GMM and GMM-RCN
tandems as well as a simple fusion approach to combine the reservoir and
GMM likelihoods. Our experiments showed that although adding the infor-
mation from a GMM marginally improves the performance in the matched
condition, it degrades the performance in the mismatched environments.

Given the above observations, our future research will investigate more
front-end and back-end approaches that can further improve a hybrid RCN-
HMM system. One direction is to train a reservoir network to denoise the
acoustic features, another is to combine an RCN-HMM with uncertainty
decoding. Another plan is to evaluate the potential of reservoir systems in
the context of noise robust large vocabulary recognition (e.g., Aurora-4).



Part III

Feature Denoising and Image
processing





7
Denoising the Acoustic Features Using

RCNs

This chapter is an edited version of the following original publication:

[5] A. Jalalvand, K. Demuynck, and J.-P. Martens, “Feature enhance-
ment with a reservoir-based denoising auto-encoder,” Proceedings of the
International Symposium on Signal Processing and Information Technol-
ogy (ISSPIT), p. 6, 2013.

7.0 Preface

In spite of many techniques that can be employed in the back-end of an
ASR, front-end approaches which aim to enhance the acoustic features are
more appealing because they can be almost equally effective at a much
lower computational cost. One interesting front-end technique to deal with
additive noise is feature denoising. A system that converts noisy features
to clean features is called a denoising auto-encoder (DAE). The motivation
of using a reservoir computing network (RCN) as a DAE is that thanks to
its long-term memory, RCN may better distinguish between the speech and
noise dynamics than e.g., multi-layer perceptrons, the most popular neural
network type that has been used for DAE. The experiments described in
the current chapter show that the RCN-based DAE does a good job, but
that it is not more powerful than the more conventional signal processing
approaches such as Wiener-filtering and Voice-activity detection that are
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applied in the ETSI advanced front-end (AFE).

7.1 Introduction

If one wants to apply automatic speech recognition (ASR) on mobile de-
vices, one needs an ASR that is both very accurate and robust against the
presence of noise and channel distortions. Despite many years of work,
achieving robust recognition remains a big challenge.

Since an ASR is composed of a front-end (for extracting the acoustic
feature vectors) and a back-end (for decoding these feature vectors), two
types of techniques can be envisioned to tackle the problem. One is to
enhance (denoise) the feature vectors in the front-end [113, 131], and the
other is to take account of the noise during feature decoding in the back-
end [124, 134].

Typical feature enhancement is achieved by signal processing techniques
such as Wiener filtering (single-channel) and beam-forming (multi-channel).
They form the basis of robust feature extractors such as the Advanced
Front-end (AFE) [131] and SPLICE [154]. A bit less popular technique
is to train a neural network to convert noisy feature vectors to clean vec-
tors [117]. Such a network is called a Denoising Auto-Encoder (DAE).

In previous work, we showed that a non-linear dynamical system with
memory, such as a reservoir computing network (RCN) [98, 99] can offer
good noise robust recognition starting from non-denoised features [1, 2].
Nevertheless, more recently we discovered that their noise robustness can
be further increased by supplying them with denoised features such as the
AFE features [4]. The question we want to tackle here is whether a sys-
tem working with standard features and incorporating an RCN-based DAE
would be able to outperform a standard system working with AFE features.

The rest of the paper is organized as follows: Section 7.2 describes how
to construct an RCN-HMM hybrid for continuous digit recognition (CDR),
Section 7.3 reviews the way we have developed several RCN-based DAEs
and Sections 7.4 and 7.5 summarize the experimental framework (Aurora-
2) and the results obtained within this framework. The paper ends with
conclusions and future work.

7.2 A Hybrid RCN-HMM for Speech Recognition

An RCN-HMM hybrid works with an HMM that represents the task and
a neural network that is supposed to convert the inputs Ut at time t into
HMM state likelihoods. The search for the best path through the HMM
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Figure 7.1: Architecture of an RCN-HMM hybrid comprising a multi-stage
bi-directional reservoir networks for CDR. The HMM has two initial states
(I1 and I2), one final state (F) and it comprises 11 multi-state digit models
and a single state silence model (#)

is found using a Viterbi search. In the case of an RCN-HMM hybrid, the
readouts yt,i (with i indexing the readouts) are assumed to resemble the
posterior probabilities P (qt = i|Ut). This means that zt,i = yt,i/P (qt = i)
is a scaled likelihood and consequently, that the best state sequence follows
from

q̂ = arg max
q
P (q,U) ≈ arg max

q

T∏
t=1

zt,qt P (qt|qt−1),

Figure 7.1 shows the architecture for the case of continuous digit recogni-
tion (CDR) and a multi-stage RCN in which each network output is sup-
plied to the next stage [4]. The transition probability P0 which is added to
the digit loop controls the balance between deletions and insertions.

Since yt,i is not confined to [0,1] it is first mapped to that interval be-
fore computing zt,i. The mapping is achieved by a simple clip-and-scale
approach, as described in [2,4]. The different stages of the RCN are trained
independently, one after the other.

As in [4,9], we use bi-directional RCNs in the different layers. Such an
RCN encompasses two (identical) reservoirs: one reservoir processes the
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frames from left-to-right while the other processes them from right-to-left
(see Figure 7.1). The readouts at time t are then computed as concatenation
of the two reservoir states reached after having processed input vector Ut.

7.3 An RCN-Based Denoising Auto-Encoder

By artificially adding realistic noise to a clean speech file and by filtering
the clean speech before or after adding the noise, one can create ‘noisy’
samples and measure the impact of the distortions on the feature vectors by
comparing the noisy with the clean speech feature vectors. It is also possi-
ble then to teach a neural network-based denoising auto-encoder (DAE) [155]
to reconstruct the clean feature vectors from the noisy feature vectors. We
argue that a complex non-linear dynamical system with memory such as
an RCN should be able to do a good job in feature denoising. To limit the
complexity of the overall system, the developed RCN-DAEs incorporate
just one unidirectional reservoir.

Since we use MFCCs (Mel-scale Frequency Cepstral Coefficients) as
the feature vectors, and since these MFCCs emerge from a multi-stage pro-
cess (See Figure 7.2), the first question is at which position in this process-
ing scheme, the insertion of a DAE would be the most effective. Tradition-
ally, speech enhancement is often acting upon the Discrete-time Fourier
Transform (DFT) [156, 157] (at position P1 in Figure 7.2). On the other
hand, denoising in the log Mel-frequency domain [158] (at position P2) or
the MFCC domain [159, 160] (at position P3) are more appealing due to
the much lower dimensionality. A high dimensionality normally results in
a higher computational cost [161]. In the case of an RCN-DAE however,
this is not true since each reservoir neuron is only simulated by a few inputs.
Therefore, we can easily consider an RCN-DAE at all positions.

A second question that needs to be answered is whether it is beneficial
to denoise the static as well as the dynamic input features, or it suffices to
denoise the static features alone and to derive the denoised dynamic features
thereof.

7.4 Experimental Setup

In this section, we present the experimental framework that was adopted to
investigate the potential of the different system configurations presented in
the previous sections.
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Figure 7.2: Possible points to apply the denoising system (top) and their
structure in more details (down)

7.4.1 Speech Corpus: Aurora-2

The Aurora-2 corpus consists of clean and noise corrupted digit sequences
counting 1 to 7 digits per utterance. Each utterance is passed through a
G712 or a MIRS filter, and then sampled at 8 kHz [29]. Since there are two
variants of ‘0’ in American English, namely zero and oh, the vocabulary is
composed of 11 digits.

The data is divided into a training part and an evaluation part. The
framework supports two types of experiments: clean training experiments
in which systems are developed on 8440 clean training utterances from 110
adults and multi-style training experiments in which systems are developed
on 8440 noise corrupted versions of the same utterances. The corruption
is randomly chosen out of four noise types and five SNRs (∞ (clean), 20,
15, 10 and 5 dB). The evaluation utterances come from speakers that are
not present in the training data and they are divided into three tests. Tests
A and B each contain 28,028 utterances covering 4004 different digit se-
quences, 4 noise types and 7 SNRs (∞ (clean), 20, 15, 10, 5, 0, and -5 dB).
The noise types occurring in Test B do not occur in the multi-style training
data, while those of Test A do. Test C contains 14,014 utterances covering
2002 different digit sequences, 2 noise types (one matched and one mis-
matched) and 7 SNRs. Unlike all other utterances they passed through a
MIRS instead of a G712 filter (see Table 7.1).
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Train & Test A Test B Test C

N1: subway N1: restaurant N1: subway
Noise N2: babble N2: street N2: street
types N3: car noise N3: airport

N4: exhibition hall N4: train station

Filter G712 G712 MIRS

Table 7.1: Noise types and filters used in Aurora-2 dataset

7.4.2 Evaluation Results

We report Word Error Rates (WERs) on tests A-C and we consider both
clean speech training (only clean speech used during training) and multi-
style training (both clean and noisy speech used during training).

In the final evaluation phase, both the acoustic models and the DAE are
trained on the complete training set, using the control parameters that were
found optimal in a development phase during which two thirds of the train-
ing set are used for training and the remaining third for control parameter
optimization (e.g., the Viterbi decoder penalty, P0 of the recognizer). In
this paper, we only report the results of the final evaluation phase for each
experiment.

7.4.3 Reference Systems

In order to set a reference, we first report some state-of-the-art system
performances (see Table 7.2). In particular, we consider the ML-based
GMM systems using AFE-features proposed in [153], the ML-based and
MCE-based GMM systems proposed in [113] and [26], two GMM sys-
tems embedding more sophisticated back-ends based on joint uncertainty
decoding (JUD) and Vector Tylor Series (VTS) respectively [124], a GMM
system that utilizes SPLICE to enhance the features [28], and the tandem
system embedding deep belief networks and GMM (T-DBN-GMM), re-
ported in [142]. The figures show that advanced back-end techniques (JUD
and VTS) lead to a larger gain in noise robustness than advanced front-end
techniques, but it is not clear from the papers how much degradation they
induce for clean speech recognition.

7.4.4 Front-End Setups

We will investigate three different acoustic feature sets: MFCCs (log en-
ergy and c1 . . . c12), Mel filterbank features (MelFB) (24 log energies),
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System Clean Multi
Clean 0-20 -5dB Clean 0-20 -5dB

GMM (AFE) [153] 0.77 13.2 69.9 0.83 8.4 59.2
GMM (MFCC) [113] 0.84 19.7 82.2 1.77 8.5 59.1
GMM (SPLICE) [28] 0.55 17.6 83.7 - 12.7 -
GMM (MFCC-MCE) [26] 0.41 15.7 77.2 0.92 6.4 55.3
GMM (VTS) [124] - 9.4 - - - -
GMM (JUD) [124] - 10.3 - - - -
T-DBN-GMM [142] 1.26 21.0 74.6 - - -

RCN (MelFB) 0.74 11.0 63.8 1.06 5.4 45.0
RCN (MFCC) 0.93 10.7 59.7 1.46 6.2 46.5
RCN (AFE) 0.84 8.9 54.4 1.40 5.7 43.2

Table 7.2: Comparing average WERs (in %) per condition for test sets A-C
of Aurora-2 using a 3-layer hybrid RCN-HMM for both clean and multi-
style training.

and the AFE features (denoised c0 . . . c12 without dropping non-speech
frames) [131]. In all cases, the analysis is performed on 30 ms Hamming-
windowed frames and the hop size between frames is τfr = 10 ms. Each
feature set is supplemented with ∆ and ∆2 features.

Before supplying the feature vectors to the ASR, an utterance-wise nor-
malization that creates zero-mean and unit-variance inputs per feature is
performed.

7.4.5 RCN-HMM Hybrid Setup

Following our previous work, the reservoir control parameters of each reser-
voir are determined in the same way. Defining τλ

.
= −τfr/ ln(1−λ) as the

leaky integration time constant and T as the expected state duration, we se-
lect (ρ, τλ,K

in,Krec) = (0.8, T, 10, 10) and chose αU so that the average
variance of the reservoir outputs reaches a certain level [3]. In this work
we utilize a 3-layer RCN-HMM system with 8K nodes per layer, and since
layers 2 and 3 see basically the same inputs, αU is taken the same for both
layers.

Note that the size of the reservoir – defined as the number of neurons
it contains (N res) – is considered to be an independent variable. More-
over, since Kin and Krec are kept fixed to 10, the CPU-time needed for
calculating the readouts scales linearly with the size of the reservoir.

The reservoir networks are trained by means of a Tikhonov regres-
sion [144] and each digit is modeled by a 7-state left-to-right HMM whilst
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the silence is modeled by a single state. The target outputs encode the vis-
ited HMM state at time t.

7.4.6 RCN-Based DAE Setup

In line with [162], we contemplate that ρ and λ are the only task-dependent
control parameters of a reservoir. Consequently, even though denoising is
a completely different task than digit state recognition, we keep Kin =
Krec = 10 and we maintain the same method as before for computing αU .
Furthermore, since leaky integration is a form of smoothing corresponding
to some low-pass filters, we argue that no leaky integration should be ap-
plied here as the spectrum of the denoised inputs is not expected to have
a smaller bandwidth than that of the noisy inputs. Consequently, there is
only one parameter left to optimize, namely ρ.

In all experiments, irrespective of the chosen feature set, we have used
a 2-layer RCN with a unidirectional reservoir of 1K neurons per layer. The
target outputs are obviously the envisioned clean feature vectors.

7.5 Experimental Results

In this section, we review the experiments we conducted to assess the ca-
pacity of an RCN to denoise the features and the capacity it has to further
raise the robustness of the CDR system.

7.5.1 Denoising Capacity of an RCN

For the assessment of the denoising capacity of the RCN, we compute the
correlation between the denoised and the clean MFCC features that will be
supplied to the ASR. I.e., we consider all 39 features here. Note that since
the RCN-based ASR always works with utterance-wise mean and variance
normalized features, the correlations are computed after this normalization
step as well.

We conducted two types of experiments: one in which the test samples
come from Test A and represent conditions that are present during train-
ing (i.e., ‘Seen’) and one in which the test samples come from Test C and
represent another channel and unseen SNRs (i.e., ‘Unseen’).

In a first phase, we denoise only the static features and investigate the
effectiveness of the DAE imputed at each of the three positions P1, P2 and
P3 (see Section 7.3). The results are depicted in Figure 7.3.“Ref” denotes
the correlation existing between the noisy and the clean features. The data
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Figure 7.3: The correlation between the output of the DAE and the clean
normalized features, by denoising the data stream in different points.

show that denoising in the DFT-domain is not working well but denois-
ing in the two other domains does. In fact, denoising the MelFB and the
MFCC features seem to be equally effective both in ‘Seen’ and ‘Unseen’
conditions. We will, therefore, evaluate them both in combination with
CDR.

In a second phase, we constructed a DAE that was trained to denoise
the dynamic as well as the static MFCCs instead of just the static features.
This approach leads to the correlations marked by P3′. There seems to be
no benefit in working this way: the computational load increases and the
accuracy is not any better.

Finally, we wanted to assess the limits of the RCN-based DAE by rais-
ing the reservoir size from 1K to 4K neurons. The results obtained with
the larger reservoirs (marked as P3′′) are only slightly better than the ones
obtained with the smaller reservoirs.

In order to illustrate the effect of the DAE, we have depicted on Fig-
ure 7.4 the MelFB spectrograms for a noisy speech sample (SNR = 5dB)
before and after denoising, together with the clean speech spectrogram. It
is especially noteworthy that the DAE does an excellent job in the silence
parts. This is partly due to the large number of non-speech (silent) frames
in the training data.

7.5.2 Need for a Denoising Front-End in an RCN-Based CDR

In a first recognition experiment we test the three acoustic feature sets
described in the previous section in combination with a three-layer bi-
directional RCN-HMM hybrid with 8K neurons per layer. The results of
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(a) Noisy MelFB features

(b) Clean copy

(c) Denoised MelFB

Figure 7.4: Denoising MelFB features of a sample with street noise of SNR
5dB from Test C.

this experiment are listed in the bottom section of Table 7.2.
Apparently, in the clean speech training experiment there is only a little

difference between the feature sets in the matched condition (clean). In the
mismatched conditions, the AFE does lead to more robustness, but the gain
is much less impressive than it is for GMM-based systems. This finding
seems to confirm the hypothesis that a reservoir can filter out a large part of
the noise without ever having been confronted with noise during training.

In the multi-style training experiment, where the mismatch between the
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Configuration Features Clean Multi
Clean 0-20 -5dB Clean 0-20 -5dB

NoDAE + MFCC 0.93 10.7 59.8 1.46 6.2 46.5
Baseline AFE 0.84 8.9 54.4 1.40 5.7 43.3

DAE + MFCC 2.08 8.9 53.4 3.35 8.0 50.0
Baseline AFE 2.56 9.4 49.7 3.57 8.1 45.9

DAE + MFCC 1.36 8.6 54.5 1.77 6.6 48.4
Retrained AFE 1.38 7.7 50.0 1.85 6.2 43.6

Table 7.3: Comparing average WERs (in %) on Test sets A-C per configu-
ration: (1) NoDAE + Baseline means no DAE and a baseline RCN-HMM
recognizer, (2) DAE + Baseline means that the features are denoised but
the denoised features are used as inputs to the baseline recognizer, and (3)
DAE + Retrained means that the features are denoised and that the recog-
nizer was retrained on denoised features.

test and the training remains much smaller, the positive effect of the AFE
is much smaller, and is only significant at the SNR of -5 dB. Nevertheless,
the data suggest that if the DAE could do a better job than the AFE, it could
lead to a more noise robust CDR, as well.

7.5.3 Can RCN-Based DAE Outperform the AFE?

In order to answer the question, we conducted experiments with a front-
end incorporating an RCN-based DAE at position P3. We considered three
configurations: (1) NoDAE + baseline: MFCC or AFE features are used in
combination with the baseline acoustic models (2) DAE + baseline: MFCC
or AFE features are denoised by a DAE and used in combination with the
baseline acoustic models (3) DAE + retrained: MFCC or AFE features are
denoised by a DAE and used in combination with acoustic models that are
retrained on the denoised features. In the case of retraining, we maintained
the distinction between clean speech training and multi-style training, but
of course, the clean speech training results have to be interpreted with care
now, because after all, the DAE has already seen the noisy training exam-
ples that are present in the multi-style training corpus.

The results listed in Table 7.3 show that the RCN-based denoiser (DAE
+ retrained + MFCC) does not outperform the AFE as a denoiser (NoDAE
+ baseline + AFE). The DAE seems to cause a drop in the clean speech
results compared to the AFE, but for the rest it leads to basically the same
noise robustness as the AFE.
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The last line of the table shows however that a combination of the two
denoising approaches (AFE and DAE) does yield an extra gain in strongly
mismatched conditions (in particular the combination of clean speech train-
ing and noisy test samples), but this gain comes at the expense of a signif-
icant loss in the performance for matched conditions (clean test samples).
In the multi-style training experiment, the mismatch between training and
test conditions is never more than moderate, and consequently, the AFE
features do not benefit from an extra denoising by a DAE.

As could be expected, the DAE + Baseline configuration is character-
ized by a strong detrimental effect in matched conditions because the fea-
tures used during training and test have become different even in these con-
ditions.

In a control experiment, we also trained and tested the RCN-based DAE
by inserting it at position 2 in the MFCC computation chain. In line with the
correlations measured before, the emerging systems achieve very similar
results showing no preference for positions P2 and P3.

7.6 Conclusion and Future Work

Recently, we were able to show that reservoir computing is a viable acoustic
modeling technique for trying to attain more robust automatic speech recog-
nition. Experiments on the Aurora-2 benchmark demonstrated that our
RCN-based systems already outperform the most complex GMM-HMM
based systems on the task of continuous digit recognition.

The main objectives of the present paper were: (1) to establish whether
reservoir networks can be trained to denoise the feature vectors, (2) to in-
vestigate how much benefit can be attained by applying denoising in the
front-end of the RCN-recognizer, (3) to establish whether RCN-based de-
noising can outperform traditional signal processing based techniques (e.g.,
like in the ETSI advanced front-end (AFE)), and (4) to find out whether the
two denoising techniques are maybe complementary.

First of all, we could show that an RCN-based Denoising Auto-Encoder
(DAE) imputed at a suitable position in the MFCC front-end can lead to in-
creasing correlations between the features of the noisy and the clean speech
utterances.

Next, we could demonstrate that feature denoising in the front-end of
an RCN-based ASR is beneficial, although not to the same extent as with
traditional GMM-based ASR systems. A somewhat disappointing result is
that the improvements generated by an RCN-based DAE are smaller than
those generated by the AFE which is based on well established signal pro-
cessing algorithms for removing noise. However, by combining the two
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techniques, a small gain is demonstrated in severely mismatched condi-
tions, but this extra gain comes at the expense of a significant degradation
in the matched condition.

In the near future, we will compare the RCN-based DAE with the AFE
in situations where the noise is more non-stationary. Furthermore, we want
to investigate whether the principles forming the basis of the uncertainty
decoding in GMM-HMM systems can be transferred to an RCN-HMM
system and whether this could lead to further improvements of the noise
robustness. Finally, we would also like to extend our research to noise ro-
bust large vocabulary speech recognition (e.g., Aurora-4).
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Handwritten Digit Recognition Using

RCNs

This chapter is an edited version of the following original publication:

[6] A. Jalalvand,W. De Neve, R. Van de Walle, and J.-P. Martens,
“Noise robust handwritten digit recognition with reservoir computing net-
works,” Journal of Machine Learning Research, submitted, 2014

8.0 Preface

Reservoir Computing Networks (RCNs) have already been used in different
areas of artificial intelligence such as robotics and brain machine interfac-
ing. In this chapter, I demonstrate that (1) the tuning strategy that was
conceived for speech processing is also applicable to image processing, (2)
RCN-based systems can offer state-of-the-art handwritten digit recognition,
both in the absence and in the presence of noise and (3) RCN-based systems
can denoise images and achieve good noise robust recognition by supplying
these images to a recognizer that was solely trained on clean images. My
comparative experiments demonstrate that the proposed RCN-based hand-
written digit recognizer achieves an error rate of 0.81% on the clean test
data of the well-known MNIST benchmark and that the proposed RCN-
based denoiser can reduce the error rate on the noisy test data from 37% to
2%.
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8.1 Introduction

Nowadays, touchscreen devices such as smart-phones and tablets have be-
come more popular than ever. Therefore, many companies plan to replace
traditional input modes like keyboard and mouse with more elegant modes
such as speech and handwriting. Due to the different handwriting styles,
there is a lot of variability in the images of the same character, making
automatic handwriting recognition (HWR) a challenging task.

The presence of background noise is another source of variability the
HWR system may have to deal with. In fact, in applications such as ad-
dress recognition on parcels or full text recognition from digital scans of
old manuscripts or typed documents, noise corrupted images such as the
one depicted in Figure 8.1 are the norm. None of the available optical

Figure 8.1: Part of the military newspaper “The Stars and Stripes” pub-
lished in 1944.

character recognition (OCR) systems seems capable of producing a reli-
able transcription of the text from such an image.

The aim of the present paper is to show that reservoir computing net-
works (RCNs) have great potential for achieving good performance in HWR
from noise corrupted images. We demonstrate this on the MNIST [163]
dataset, a handwritten digit recognition task (HDR) used by many research
groups to benchmark their technologies. HDR benchmarks such as the
well-established MNIST task not only facilitate the comparison of new
technologies to the state-of-the-art, HDR on itself is also highly relevant as
it is an indispensable component of any application involving the process-
ing of handwritten numerical data such as telephone numbers, PIN-codes,
account numbers and coordinates.

More than two decades ago, Multilayer Perceptrons, MLPs [164] were
among the first classifiers that were tested on MNIST. In [163], an MLP
with two computational layers of neurons was reported to reach a digit er-
ror rate (DER) of 2.95%, and a later study [165] reported a DER of 1.60%.
Employing MLPs with more layers was long time believed to yield no sig-
nificant improvement. However, new training methods, permitting a better
exploitation of multiple hidden layers, were recently discovered and gave
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System DER% DER%
(Original training set) (Enriched training set)

2-layer MLP 2.95 [163] 2.45 [163]
2-layer MLP 1.60 [165] 0.70 [165]
DBN 1.03 [166] -
DBM 0.95 [167] -
CNN 0.95 [163] 0.80 [163]
DCN 0.83 [168] 0.35 [169]
Large CNN 0.60 [170] 0.39 [170]
Multi-CNN - 0.23 [171]

Table 8.1: Reference results on MNIST using the original training set and
using an expanded version of the training set (for example, by applying
deformation). The presented DERs are accompanied by a reference to the
paper introducing the technique that was used.

rise to the emergence of Deep Neural Networks (DNNs). Differences in the
details lead to DNNs of various types. Two of them, Deep Belief Networks
(DBNs) and Deep Boltzmann Machines (DBMs) have also been tested on
MNIST (see Table 8.1). Roughly speaking, they achieve a DER of about
1%.

Note, however, that long before deep neural networks became success-
ful, significant improvement over a standard 2-layer MLP was achieved by
means of a Convolutional Neural Network (CNN) [163] that acts like a fea-
ture extractor. In fact, one of the main points of criticism raised against
an MLP was that its hidden neurons see the whole image and are therefore
bound to overlook the undoubtedly present local topological relations be-
tween adjacent pixels in sub-regions of the image [163]. Therefore, the idea
was to scan the image, to filter the pixels appearing in the emerging sub-
regions by means of trainable filters and to down-sample the filtered outputs
so as to create a rich and compact feature representation that constitutes a
more suitable input to the MLP-based classifier. The first results obtained
with the CNN approach were already mentioned in [163]. With a DER of
0.95%, CNN-based systems can still be considered as the state-of-the-art
for HDR.

Obviously, there is no reason why the concepts of a CNN and a DNN
could not be combined. Deep Convolutional Neural Networks are the ex-
ponent of that idea, leading to a DER of 0.83%.

Another idea that induced a significant boost in HDR, was the idea of
enriching the original training dataset with new images, obtained by de-
forming the raw training images. In [165], for instance, elastic deforma-
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tions were applied to the raw images achieving a convincing drop in DER
from 1.6% to 0.7%. Since then, basically all novel methods have shown
to benefit from such an enrichment of the training set (see right column of
Table 8.1). By also introducing separate DNNs for different digit widths (6
classes), it was even possible to achieve human-competitive performance
(0.23%) [171].

In spite of the spectacular performances achieved in clean conditions, all
aforementioned approaches fail dramatically when recognizing digits from
noisy samples. In [166], for instance, it was shown that a DBN trained on
clean samples, fails completely when recognizing noisy samples. The DER
raises to 33.8% when the digits are partially masked by square blocks and
to 66.1% when the digits are surrounded by a black border (see Figure 8.2).
Consequently, new research has been directed towards improving the ro-
bustness of HDR against the presence of noise. In general, one can roughly

Figure 8.2: From left, a clean MNIST sample and its corresponding noisy
versions which are salt & pepper, border, Gaussian, block, and speckle,
respectively.

distinguish three approaches: (1) add noise to the training examples and
perform a so-called multi-style training of the neural network, (2) make the
classifier intrinsically more robust against the effects induced by noise, for
example, by using a sparsely connected DBN rather than a conventional
densely connected one [166] and (3) remove a large part of the noise from
the input image before presenting it to the classifier. In [166], it was ar-
gued that due to the noise, a lot of neurons are driven into saturation and
are therefore not contributing to the recognition anymore. By training it on
noisy images, the standard DBN could be made much more effective. The
DER could be reduced from 33.8% to 8.7% for the case of block noise and
from 66.1% to 1.9% for the case of border noise.

In another study [172, 173], a stacked sparse DBN-based denoising
auto-encoder (SSDA) is trained to denoise the images. In such a system,
one SSDA per noise type was trained and the denoised image is obtained
as a linear combination of the individual SSDA outputs. Feeding these im-
ages to a DBN trained on clean samples induced a dramatic improvement.
The average error rate was reduced from 34.3% (an average over five noise
types) to 2.4%. Examples of the noise types are depicted in Figure 8.2 and
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Table 8.4 (Section 8.5.3) lists the improvements per noise type. As the com-
bination weights are determined by a weight prediction module, the latter
system was called an adaptive multi-column SSDA (AMC-SSDA) system.

It is now generally acknowledged that conventional DNNs perform well,
but they are still hard to train (it takes a lot of time and the hyperparameters
of the training process must be set properly). We, therefore, investigated
whether reservoir computing networks (RCNs) [80, 98, 174] can offer an
elegant alternative.

In [3], we conceived a method for making the design of an RCN as
straight forward as possible: one only needs to specify what the bandwidths
of the RCN inputs and outputs are and the method automatically produces
good values for all the hyperparameters of the RCN. Obviously, the size
of the reservoir remains a free parameter whose optimal value depends on
the number of available training examples and the envisioned compromise
between accuracy and computational cost. The conceived method sped up
the design tremendously. The same procedure is used in this paper, proving
experimentally that it can also be applied with success to other tasks such
as handwriting recognition.

The rest of this paper is organized as follows. First, it briefly recalls the
general principles underlying RCNs (Section 8.2) and it proposes RCN ar-
chitectures for performing HDR (Section 8.3). Then, it describes an experi-
mental study of these architectures for the recognition of clean handwritten
digits (Sections 8.4 and 8.5). In the second part of the paper, the focus is
on the noise-robustness of the RCN architectures (Section 8.6). The paper
ends with some conclusions and some ideas for future work.

8.2 Reservoir Computing Network (RCN)

In its simplest form, an RCN is a neural network with two particular compu-
tational layers: (1) a hidden layer of recurrently interconnected non-linear
neurons, driven by inputs and by delayed feed-backs of its outputs and (2)
an output layer of linear neurons, driven by the hidden neuron outputs (Fig-
ure 8.3). A fundamental point is that the input weights and the recurrent
connection weights are fixed after being initialized randomly, and that only
the output weights are optimized (trained) for solving the targeted problem.

The recurrently interconnected hidden neurons constitute a reservoir (a
pool) of computational neurons. The reservoir can be viewed as a non-
linear dynamical system that analyzes a stream of inputs, obtained, for in-
stance, by scanning an image from left to right. The outputs are called
readouts [99] so as to differentiate them unambiguously from the reservoir
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Figure 8.3: A basic RCN consists of a reservoir and a readout layer. The
reservoir is composed of interconnected non-linear neurons with random
weights. The readout layer consists of linear neurons with trained weights.

outputs. IfUt,Rt and Yt represent the reservoir inputs, the reservoir outputs
and the readouts at time t, respectively, the RCN equations can be written
as follows [99]:

Rt = (1− λ)Rt−1 + λ fres(W
inUt + WrecRt−1) (8.1)

Yt = WoutRt

with λ being a constant between 0 and 1, with fres being the non-linear
activation function of the reservoir neurons (we used hyperbolic tangent in
this work) and with Win, Wrec and Wout being the input, recurrent and
output weight matrices, respectively. The constant λ is called the leak rate
because (if one makes abstraction of fres) Equation (8.1) represents a leaky
integration of the neuron activation.

Each individual input is normalized so that it has a zero mean and unit
variance over the training examples. The weights of the hidden neurons are
fixed by means of a random process that is characterized by four parame-
ters [3, 162]: (1) αU , the maximal absolute eigenvalue of the input weight
matrix Win, (2) ρ, the maximal absolute eigenvalue of the recurrent weight
matrix Wrec, (3) Kin, the number of inputs driving each reservoir neuron
and (4) Krec, the number of delayed reservoir outputs driving each reser-
voir neuron. The first two parameters control the absolute and the relative
importance of the inputs and the delayed reservoir outputs in the reservoir
neuron activation. The latter two control the sparsity of the input and the
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recurrent weight matrices. Any effective reservoir should at least have the
so-called echo state property, stating that with time, the reservoir should
forget the initial state it was in. That is also why a reservoir network was
originally called an Echo State Network [99]. It was shown in [99] that the
echo state property holds if ρ, also called the spectral radius of the recurrent
weight matrix, is smaller than 1.

The output weights are determined so that they minimize the mean
squared error between the computed readouts Yt and the desired readouts
Dt over the training examples [2]. If an RCN is trained for recognition,
the desired output Dt is a unit vector with one non-zero entry encoding the
desired class at time t. If it is trained for feature denoising,Dt is the desired
clean feature vector at time t. In both cases, the output weights emerge as
the solution of an over-determined set of linear equations.

An RCN can be considered as an extension of the Extreme Learning
Machine (ELM) proposed in [101]. An ELM is a two-layer MLP with a
randomly fixed hidden layer of non-linear neurons followed by an output
layer of linear neurons whose weights are determined so as to minimize the
mean squared difference between the computed and the desired outputs.
According to [101, 104], a key property of the ELM is its ability to gen-
eralize to unseen data. We argue that the recurrent connections inside the
RCN can further increase the accuracy and the generalization ability of the
ELM, an argument that was already experimentally confirmed by speech
recognition experiments [3].

8.3 RCN-Based Architectures for Image Processing

In many neural network-based HDR systems, the input is a pixel array rep-
resenting the whole digit image [173,175]. However, in order to exploit the
dynamic properties of an RCN, we need to create a sequential input stream.
This can be achieved by scanning the image in a similar way as in a CNN.

8.3.1 Readouts

The outputs of each RCN that will be encompassed in the recognizer corre-
spond to the 10 digits and to the white space which is present in each digit
image. By introducing this white space and by envisioning an image as a
digit surrounded by white space, we can achieve that the digit readouts will
mainly react to features that are typical for the digit they represent.
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8.3.2 Basic Architecture

A trivial procedure leading to the desired input stream is horizontal scan-
ning: the image is scanned column-wise from left to right and the sub-
sequent columns (called frames) form the input vector sequence (see Fig-
ure 8.4). The score of a certain digit can then be obtained by accumulating
the corresponding RCN outputs (readouts) over time.

During our speech recognition research [3,9], we learned that bi-directional
processing and deep RCNs improve the accuracy of the system. Bi-directional
processing means that each RCN contains two reservoirs: one that pro-
cesses the data in the normal order and an identical one that processes them
in the reversed order (see Figure 8.4). Although these two reservoirs are
identical, they yield different outputs at a particular time t as they rely on a
totally different history to create the outputs.

A deep RCN is obtained by stacking multiple RCNs, as depicted in
Figure 8.4. Each layer of the deep RCN is a basic bi-directional RCN.
The layers are trained one after the other using the same desired outputs
in every layer. The argument for cascading layers is that a new layer can
correct some of the mistakes made by the preceding layers because it offers
additional temporal modeling capacity and a new inner space in which to
perform the classification.

8.3.3 More Complex Architectures

Horizontal image scanning seems to be the obvious choice since it is also
suitable for continuous HWR. However, for isolated digit recognition one
can consider vertical scanning as well. Moreover, one can imagine various
ways of combining the two scanning directions in a single system. The
ones we propose here are depicted in Figure 8.5:

Combination of input features

A simple combination strategy is to supply the RCN with the concatenation
of one row and one column at each time step (see Figure 8.5(a)). Obviously,
this approach presumes a square image leading to an identical number of
frames per scanning direction.

Weighted sum of scores

Another strategy is to make two independent systems working in parallel:
one (H-RCN) using horizontal and one (V-RCN) using vertical scanning.
The digit scores can then be obtained as a linear combination of the scores
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Figure 8.4: Architecture of a deep RCN comprising bi-directional process-
ing in each layer. The forward reservoir processes the inputsU1→T whereas
the backward reservoir processes the inputs UT→1. The outputs of the latter
reservoir are then time reversed before combining them with the outputs of
the direct reservoir. The digit scores are obtained by accumulating (the Σ
component) the RCN outputs across time.

emerging from the two sub-systems (see Figure 8.5(b)). The advantage of
this approach is that it can also be applied to rectangular images.

Combination of readouts

The third option is to supply the combined readouts of the V-RCN and the
H-RCN to the final digit recognition RCN (see Figure 8.5(c)). Obviously,
this approach again presumes a square image.

8.4 Experimental Setup

In this section, we present the experimental framework that was set-up in
order to assess the potential of the proposed system configurations.
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Figure 8.5: Different ways of combining horizontal (H) and vertical scan-
ning (V ) in a single system: (a) supply the RCN with one row and one
column of the image, (b) compute a weighted sum of the digit scores (ac-
cumulations over time) emerging from an H-RCN and a V-RCN and (c)
supply the H-RCN and V-RCN outputs to another RCN and accumulate the
scores of the readouts of this RCN.

8.4.1 MNIST Corpus

The MNIST corpus [163] consists of clean handwritten isolated digit sam-
ples (0 to 9), grouped into two datasets: one that can be used for system
development (60,000 images) and one that can be used for system evalu-
ation (10,000 images). Each digit is represented by a 28×28 gray-scale
encoded pixel array. The original pixel codes (between 0 and 255) are in-
terpreted as real numbers between 0 and 1. Many studies sub-divide the
development set into a training set of 50,000 images and a validation set of
10,000 images.

Some studies extend the training dataset by deforming the original train-
ing images and by considering the deformed images as extra training ex-
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amples, but here we refrain from doing so because our main objective is to
show that an RCN-based system has potential to become an alternative to
other state-of-the-art systems and it is difficult to make a fair comparison
of results obtained with an extended training set without knowing exactly
which deformations were applied in the systems one wants to compare with.

In order to conduct experiments on noise robustness, we construct a
multi-style dataset by dividing the dataset into six equally large parts. One
part is left unaltered and serves as a clean dataset. The images of the other
five parts are corrupted with noise, one noise type per part. The considered
noise types are Gaussian noise, Salt & Pepper noise, Speckle noise, Block
noise and Border noise, as in [166, 173]. A clean sample and five noisy
versions created thereof are depicted in Figure 8.2. The division in five
noise types and clean runs orthogonal to the division in train, development
and test set, which means that the multi-style sets contain the same images,
only now with noise added.

8.4.2 System Development and Evaluation

During system development, 5/6 of the development data is used for system
training and 1/6 for system validation. The aim of the validation is to find
good values for the hyperparameters such as the size of a reservoir and the
number of layers. Once the hyperparameters are fixed, a final training is
conducted to create the final system.

We distinguish between clean training, which is training on the clean
training set, and multi-style training, which is training on the multi-style
training set. We employ the DER (digit error rate) on the test set as the
recognition performance measure.

8.4.3 Front-End

The front-end scans the image either horizontally (H) or vertically (V) and
per scanning step t, the column vector (if H) or the row vector (if V) is a 28-
dimensional vectorXt. However, it is common in neural networks to obtain
Ut by extending Xt with its first and second derivatives in the scanning
direction, or by stacking the vectors Xt−k, .., Xt+k. Both approaches have
the advantage of providing the system with a glimpse of the future. In our
experiments, we use frame stacking with k = 2.

8.4.4 RCN Hyperparameters

The creation of a suitable RCN was studied in detail in [3]. In summary,
the theory presented there leads to the following conclusions:
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1. The input and recurrent weight matrices (Win and Wrec) can be
very sparse. In particular, 5 to 10 connections (non-zero weights) per
node are enough, regardless of the reservoir size and the input feature
vector size.

2. The spectral radius, ρ, must be tuned to the bandwidth F (normalized
frequency) of the input activations of the reservoir (interpreted as
time series):

τρ =
−1

ln(ρ)
=

0.35

F
(8.2)

3. The leak rate λ must be tuned to Tmin, the minimum time (in scan
steps) the reservoir output is expected to remain constant:

τλ =
−1

ln(1− λ)
= Tmin (8.3)

4. The square of αU follows from a function of the other parameters, a
function that is proportional to an auxiliary parameter Vopt, defined
as the optimal reservoir output variance.

In [3], we argue that Vopt may be independent of the task, but since the
objective of that work was only speech recognition, we did not present
any experimental evidence for this argument yet. Here, we will show that
Vopt = 0.035 which was found optimal for spoken digit recognition, is
valid for handwritten digit recognition, as well.

Design of reservoir in first layer

The first step consists of determining the bandwidth of the input activations.
In order to do so, it suffices to consider an arbitrary small reservoir (500
nodes) with memory-less neurons (no leaky integration) and no recurrent
connection, to record a few hundred input activation patterns of 28 samples
long (which is the number of scan steps), to determine the periodogram (the
square of the magnitude of the DFT) of each recorded pattern and to calcu-
late the envisioned power spectrum as the mean of these periodograms. To
facilitate our experiment, we fed the reservoir with normalized pixels with
a unit variance.

Figure 8.6(a) shows the estimated power spectrum, |B(f)|2, and its
bandwidth, F = 0.15. For this value it follows from Equation 8.2 that
ρ = exp(−0.15/0.35) = 0.65. Note that there is little difference in band-
width between horizontal and vertical scanning.
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Figure 8.6: Power spectrum of the input activation (left) and DER as a
function of the input scaling factor αU for a system encompassing a single
layer RCN with 500 nodes.

The next step consists of identifying the minimum number of scan steps
a readout is supposed to remain constant. Given that white spaces are often
not more than 4 pixels wide and that the core of a digit like ’1’ may be as
narrow as that as well, we select Tmin = 4 as a realistic value. For this
value, Equation 8.3 leads to a leak rate λ = 0.22.

The third step consists of finding the proper input scale factor αU . The
equation for solving αU as a function of the other reservoir parameters can
be found in [3].

Here we verify whether this function leads to a good result in the simple
case of a recognizer built with the reservoir we used for measuring the
power spectrum of the input activation. For this reservoir, the function
reduces to

α2
U K

in VU φb(F ) = Vopt = 0.035 (8.4)

with Kin = 5, VU = 1 and

φb(F ) =

∫ F
−F |B(f)|2 df∫ 0.5
−0.5 |B(f)|2 df

= 0.85 (8.5)

The result is αU = 0.28. In order to verify whether this is a suitable value,
we reused the same reservoir in combination with a large number of input
scaling factors. Figure 8.6(b) shows the DER of the digit recognizer on
a validation set as a function of this factor. It appears that 0.28 is in the
middle of the optimal range from 0.2 to 0.5.



152 HANDWRITTEN DIGIT RECOGNITION USING RCNS

We also verified whether ρ = 0.65 and λ = 0.22 were appropriate
values. Again, we considered a reservoir with 500 nodes. Since it was
already shown in [3] that λ and ρ can be optimized independently of each
other, we made two sweeps: one along the ρ and one along the λ axis.
The results of these experiments are depicted in Figure 8.7. Apparently, the
values originating from the theory are close to the actual optimum points.
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Figure 8.7: Control experiments to optimize reservoir dynamic parameters,
ρ (left) and λ (right) when the normalized pixels are used as the inputs to a
single layer memory-less RCN with 500 nodes.

Design of reservoirs in the higher layers

For the reservoirs in the higher layers, the inputs are always supposed to be
close to the desired outputs already. Following the same recipe as before,
we obtain ρ = 0.4. Since the target outputs are the same in all layers, the
value of λ = 0.22 is the same as well. The input scaling factor is then
computed according to Equation 5.22.

Summary

In this section, we have first of all gathered evidence that the formerly pro-
posed parameter fixing strategy is trustworthy and that the value of Vopt that
worked well for spoken digit recognition works well here. This saves a lot
of time as the need for time consuming parameter sweeping experiments is
eliminated completely.

By applying the strategy, we obtained the following reservoir settings:
in the first layer, the reservoir parameters are fixed to (Kin,Krec, ρ, αU , λ)
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= (5, 5, 0.65, 0.28, 0.22); in all other layers, they are fixed to (5, 5, 0.4, 0.6,
0.22).

8.5 Experimental Results

In this section, we assess the performance of our systems as a function
of the reservoir size (the number of neurons in the reservoir), the depth
of the RCN (the number of layers) and the direction of scanning in the
front-end. Unless stated otherwise, the RCNs are bi-directional and a bi-
directional RCN with a reservoir of size N is actually encompassing two
independent reservoirs of size N/2 working in parallel. The number of
trainable parameters of such an RCN is 11×(N+1) (the extra 1 represents
a bias for each readout node).

8.5.1 Deep versus Wide

First, we compare single-layer and multi-layer RCNs in combination with
horizontal scanning. In the case of a multi-layer RCN, the reservoir size is
kept the same in each layer. The results depicted in Figure 8.8 support the
following conclusions:

• Any single-layer system can be improved by adding extra layers and
the relative reduction of the DER due to adding a second layer is
about 25%, irrespective of the reservoir size.

• The effectiveness of adding a layer decreases very quickly with the
depth of the RCN. In general, there is no point in creating systems
with more than three layers.

• Even though a multi-layer system does not improve DER signifi-
cantly upon a single-layer system encompassing the same number
of trainable parameters, the former is easier and faster to design. In
fact, the memory load and the training time are roughly proportional
to the square of the reservoir size, meaning that for the training of
a one-layer RCN with a 32K reservoir, one needs four times more
memory and two times more time than for the training of a two-layer
RCN with a 16K reservoir in each layer.

8.5.2 Scanning Directions

In a second experiment, we assess the impact of the image scanning direc-
tion (Figure 8.9) and the scanning combination strategy (Table 8.2) on the
system performance.
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Figure 8.8: DER (in %) on the validation set as a function of the reservoir
size and the number of layers (top) and the same results, but as a function
of the number of trainable parameters (bottom).

Figure 8.9 clearly shows that in the case of a single-layer system, hor-
izontal scanning outperforms vertical scanning; whereas for the deep sys-
tems, vertical scanning tends to produce slightly better results. The differ-
ences may be due to the fact that most digits occupy a smaller part of the
image in horizontal than in vertical direction, as illustrated in Figure 8.10.
This means on the one hand that a single column carries more informa-
tion about the digit on average than a single row, which is beneficial for
horizontal scanning. On the other hand, this means that the digit score in
vertical scanning systems is based on more frames; what should normally
favor this scanning direction. Apparently, the first phenomenon is more
dominant than the second one in a one-layer system, whereas the second
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Figure 8.9: Comparing the effect of horizontal image scanning (H) with the
vertical procedure (V) for three multi-layer RC-based systems having 1K,
4K, and 8K nodes per layer.

H V H-V-Inp H-V-wscr H-V-Res

DER% 1.52 1.39 1.48 1.30 1.18

Table 8.2: Comparing different input scanning options.

phenomenon is more dominant in the multi-layer systems.

Since both scanning directions seem to have pros and cons, it makes
sense to combine them in one system. Table 8.2 lists the results of five
systems: (1) H: one 2-layer system with 5K reservoirs and horizontal scan-
ning, (2) V: one 2-layer system with 5K reservoirs and vertical scanning,
(3) H-V-Inp: one 2-layer system with 5K reservoirs driven by the concate-
nation of the two scanning directions, (4) H-V-wscr: two 2-layer systems
with 2.5K reservoirs (one per scanning direction) whose digit scores are
linearly combined, and (5) H-V-Res: two 2-layer systems with 2K reser-
voirs (one per scanning direction) followed by a single-layer system with a
2K reservoir.

Apparently, system H-V-Res is the best and it clearly outperforms both
single scanning systems. This indicates that the H and the V readouts for a
frame together form a richer feature space for the final classification of the
frames.
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Figure 8.10: The readouts of reservoirs working with horizontal (top) and
vertical (bottom) scanning for a sample of digit 1. The strong black line is
the readout of digit 1, the dashed line is the readout of white space class.

8.5.3 Final Result

Based on the above findings, we designed a system of type H-V-Res com-
prising two 2-layer systems comprising a 16K reservoir in each layer, fol-
lowed by a single layer RCN encompassing a 16K reservoir. This sys-
tem has 880K trainable parameters and it achieves a DER of 0.81% on the
MNIST test set (see Table 8.3), showing that it is competitive with formerly
reported systems working with the same inputs (grey-scale pixels) and be-
ing trained on the same training samples.

8.6 Noise Robustness

In this section, we study the noise robustness of our RCN systems. First,
we consider systems that recognize digits from raw noisy images and later,
we consider systems that recognize digits from denoised (cleaned) images.

8.6.1 Recognizing Raw Noisy Images

In this case, we distinguish two experimental settings: one in which the
system is trained on clean images only (clean training) and one in which
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System Year DER%

DNN committee [175] 2011 1.70
SVM [176] 2002 1.40
DBN [166] 2010 1.03
DBM [167] 2009 0.95
Deep Convex Network [168] 2011 0.83
Deep RCN [This work] 0.81
Large Convex Network [170] 2006 0.60

Table 8.3: Results obtained with several state-of-the-art systems that used
the raw training samples, without applying any image deformation to ex-
tend the training material.

the system is trained on a mix of clean samples and samples corrupted by
the five noise types that are also present in the test set (multi-style training).
We present DERs for each of the six subsets of the multi-style test set. Note
that multi-style training is bound to yield an optimistic result as all noise
types encountered in the test data were also present during system training.
Nevertheless, we followed this recipe to have comparable results with other
references.

The results of our experiments are listed in Table 8.4. For comparison
with the state-of-the-art, the table also includes the results for DBN systems
we could find in the literature. In the clean training case, the presence of
noise induces a dramatic increase of the DER in all systems. None of the
systems stands out on all conditions. The DBN system wins in three of the
six conditions, the RCN in the other three, be it that on average the DBN
system yields the lowest DER. It is fair to say that RCNs degenerate at more
or less the same pace as DBNs when the mismatch between the training and
the test conditions increases. We interpret this as a positive result because
deep neural networks are acknowledged for their good noise robustness and
because the research on RCNs is still in its initial phase.

In the multi-style training case, the effect of the noise is much more
moderate. The H-V-Res system now yields an average error rate of only
3.54% and it outperforms the DBN systems in all conditions for which a
comparison is possible. Combining two scanning directions seems to help
significantly as long as there is no big mismatch between the training and
the test conditions (that means clean test for clean training and all tests for
multi-style training). More research is needed to establish why the advan-
tage of the combination disappears in mismatched conditions.

None of the tested systems stands out on all noise types, but on aver-
age, the H-V-Inp architecture is the winner because there is no noise type
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System Clean Gaussian S & P Speckle Block Border Average

C
le

an

DBN-2010 1.03 - - - 33.78 66.14 -
DBN-2013 1.09 29.17 18.63 8.11 25.72 90.05 28.80
V 1.11 57.04 56.27 72.96 24.97 85.49 49.64
H 1.28 31.43 40.91 45.91 25.41 60.99 34.32
H-V-Inp 1.18 29.46 40.94 30.70 22.12 16.97 23.56
H-V-wscr 0.89 32.12 38.47 48.50 21.79 64.94 34.45
H-V-Res 0.81 32.10 38.91 49.32 21.85 79.34 37.06

M
ul

ti

DBN-2010 1.68 - - - 8.72 1.95 -
V 1.88 4.73 6.06 7.38 9.50 2.45 5.33
H 2.28 4.12 5.17 5.65 9.10 2.42 4.79
H-V-Inp 2.28 4.20 5.22 5.23 8.96 2.63 4.75
H-V-wscr 1.65 3.12 3.90 4.47 7.20 1.93 3.71
H-V-Res 1.50 3.08 3.75 4.32 6.82 1.75 3.54

MC-RCN 2.82 4.54 6.07 6.22 9.82 3.23 5.45

Table 8.4: DER (in %) per noise type for the cases of clean and multi-style
training. The last row shows the DER of a multi-column RCN-based rec-
ognizer comprising twelve sub-systems each trained on one noise condition
and one direction. The systems DBN-2010 and DBN-2013 refer to [166]
and [173], respectively.

for which it completely breaks down. This system performs exceptionally
well for the Border noise. The DBN-based system on the other hand is the
winner for three of the five noise types.

In order to further investigate the difference between the performances
of H-V-Inp, H and V, we should take look at Figure 8.11 which shows
the readouts of the three systems for a noisy sample of digit 7 surrounded
by a border. This figure shows that in the case of H and V, the winner
is mainly determined by the digit readout that reaches the highest value
at the beginning and the end of the scan, where only the black border is
observed. In the case of horizontal scanning, this seems to be ‘1’ which
often comprise a more or less vertical line that bares a lot of resemblance
with the black border. For the H-V-Inp system, none of the digit readouts
seems to match the black border and the correct winner is more likely to
pop-up.

To confirm our hypothesis we investigated in more detail the confusions
between the recognized and the correct digit in the case border noise is
present. Table 8.5 shows the digits that were recognized in case of a wrong
decision. For instance, it is indicated that with the H-RCN system, 8501 of
the validation samples have been wrongly classified as digit 1.
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the clean dataset and fed with an image of digit 7 corrupted with border
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0 1 2 3 4 5 6 7 8 9 Sum

H 0 8501 4 0 33 0 0 0 11 1 8549
V 0 0 5180 13 69 788 0 50 0 0 6099

H-V-Inp 2 1533 2 1 98 17 0 41 2 1 1697

Table 8.5: Distribution of the wrong decisions in case of border noise.

Apparently, the H-system is strongly biased towards the digits exhibit-
ing a strong vertical line (‘1’ and ‘4’) whilst system V is biased towards
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digits with horizontal lines on top, bottom or center (‘2’, ‘4’,‘5’ and ‘7’). A
simple solution to reduce the effect of the false positive reaction to a bor-
der, without seriously degrading the performance on the other noise types,
is to bound the readouts to an acceptable interval such as (-0.05, 0.25). By
doing so, the DER for Border noise can be decreased to 64.93%, 34.79%,
and 15.42% for the V, H, and H-V-Inp systems, respectively. This, in its
turn, leads to average DERs of 44.26%, 27.61%, and 22.09%, respectively.

In Section 8.5.2 we also showed that in the case of clean test samples,
H-V-Res performs best, followed by H-V-Inp. Combining this with the
now obtained clean training results, we conjecture that H-V-Res can indeed
learn very well what it has seen during training, but that this knowledge
does not generalize so well to unseen conditions.

For multi-style training, only two results are reported for the DBN sys-
tem, but the figures in Table 8.5 do not contradict the conclusion that RCN-
based systems are even more robust to noise than DBN systems which are
generally acknowledged for their good robustness in comparison to other
techniques.

For completeness, we also trained a two-stage multi-column RCN (MC-
RCN) recognizer. The first stage encompasses twelve 2-layer RCNs with
a 3K reservoir per layer, one RCN per noise type (6 noise types) and per
scanning direction (2 directions). The outputs of these twelve RCNs drive
a 2-layer RCN with a 4K reservoir per layer. The reservoir sizes were cho-
sen such that the system has the same number of trainable parameters as
the H-V-Res system. Apparently, the MC-RCN does not even outperform
the much simpler H and V systems (see Table 8.4). Our hypothesis is that
the reservoirs in the first stage are too small to permit an accurate classi-
fication. This was confirmed by an experiment in which the reservoir size
was increased to 8K (leading to 2M trainable parameters) and in which the
error rate dropped to 3.41%. Increasing the size of the H-V-Res system
on the other hand did not cause any significant improvement (error rate of
3.49%). This latter results proves that the MC-RCN, in spite of its much
larger complexity, will in the end not significantly outperform the much
simpler H-V-Res architecture.

8.6.2 Removing the Noise in the Front-End

Multi-style training is one approach to reduce the mismatch between train-
ing and testing. Another options is to apply noise reduction in the front-end.
We propose an RCN-based denoising Auto-Encoder (DAE) to accomplish
this.

For fixing the hyper-parameters of the DAE reservoirs, we follow the
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same strategy as before, but this time under the assumption that the dy-
namics of the targeted outputs are identical to the dynamics of the inputs.
Moreover, we established that bi-directional processing is helpful for this
task but that it suffices to stack three (instead of five) successive frames in
the DAE input. Since the output of the DAE is a denoised version of the
input feature vector, the number of trainable parameters of such an RCN-
based DAE of the size N is 28 × (N + 1), with 28 being the number of
pixels per column/row.

First, we consider a single noise-independent DAE and call it a mixed
DAE (MixDAE). Then, we set-up a committee of five noise-specific DAEs
which together drive a noise-independent DAE (see Figure 8.12). We call
this system a combined DAE (ComDAE).

In order to assess the effectiveness of a DAE, we have to define a good
measure of the amount of noise that is present in a noisy image. Therefore,
we used the Noise Fraction (NF) as the ratio between the variance of the
noise values and the variance of the clean pixel values. The values of NF
are between 0 and 1, with NF = 0 meaning a clean image.
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Figure 8.12: Architecture of the combined DAE: the outputs of a committee
of noise-specific DAEs (M different noise types) drive a noise-independent
DAE.

Figure 8.13(a) shows the mean NF obtained on the validation set in
function of the reservoir size and the noise type after denoising the image
by means of a single-layer MixDAE using horizontal scanning.

• With a reservoir of size 4K, the mean NF is already smaller than
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0.2 for all noise types. The mean NF is in all cases significantly
smaller than the mean NF of the raw noisy images. This mean ranged
between 0.4 and 0.83 depending on the noise type (see header of
Figure 8.13(a)).

• The noise reduction improves very gradually as the reservoir size
increases. There is no clear bend in the curve for any of the noise
types.

• Border noise, the most problematic noise type in our previous experi-
ments, can be removed almost completely. This follows from the fact
that it is very easy to establish where it occurs and which clean pixel
value the DAE has to predict there. It is, therefore, not surprising
to find that the NF after denoising of an image corrupted by border
noise is even lower than that of a clean image that is being denoised
(there, the output of the DAE depends on the location of the digit in
the image).

• Speckle noise is the only noise type for which the NF is almost inde-
pendent of the size of the DAE.

The effect of stacking multiple RCNs with 32K reservoir nodes on the
average NF is depicted in Figure 8.13(b). Adding a second layer clearly
induces an additional gain whilst further layers are not beneficial anymore.

Without reporting the results in detail, we mention that neither chang-
ing the scanning direction nor combining two scanning directions in an
H-V-Res like system leads to any significant improvement. This is not so
surprising as the aim of denoising is to find and remove the noise patterns
and the noise types encountered in this work are direction-independent.

Based on the above findings, we also considered a 2-layer MixDAE with
32K reservoirs in each layer as the reference against which we will compare
the ComDAE. To make ComDAE equally large as the MixDAE (in terms of
trainable parameters), the former is composed of five 2-layer noise-specific
DAEs with 6K reservoirs per layer and a single-layer noise-independent
DAE with a 4K reservoir.

Finally, in a control experiment we also consider the first stage of the
ComDAE and select from that stage the output of the DAE that was de-
signed for the type of noise that is known to be in the test sample. This
so-called ideal DAE is denoted as IdlDAE.

Figure 8.14 summarizes the results obtained with the three DAEs. It
supports the following conclusions:
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(b) Optimizing the number of layers for a DAE with 32K neurons per layer.

Figure 8.13: Optimizing the reservoir size and the number of layers for an
RCN-based DAE.

• For two noise types (Gaussian and S&P), the ComDAE achieves a
noise reduction that is nearly identical to that of the IdlDAE, but on
three other types, the MixDAE is better than the ComDAE.

• On average, there is little difference between the simple MixDAE
and the much more complex ComDAE.

Figure 8.15 shows some examples of what the MixDAE can achieve.
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Figure 8.14: The noise fraction (NF) for the output of the mixed, the com-
bined and an ‘ideal’ DAE that has prior knowledge of the used noise type.
The NF of the raw noisy images are mentioned between brackets.

Figure 8.15: One clean and five noise corrupted samples of digit 9 (top) and
the corresponding outputs of the MixDAE.

8.6.3 Recognition of Denoised Images

The aim of the DAE in this work is not just to reduce the NF but to permit
good recognition on the basis of the denoised images. First, we test the
cascade of the MixDAE and the H-V-Res system we formerly developed
on clean images (that is clean training). The results obtained with this cas-
cade are listed in Table 8.6. The table also includes the performances of
the adaptive multi-column stacked sparse denoising auto-encoder (AMC-
SSDA) reported in [173] and the RBM-based denoiser reported in [166]. It
is clear that the MixDAE introduces a dramatic gain in noise robustness of
the H-V-Res system at the cost of only a minor loss of accuracy in the case
of clean images. Furthermore, the H-V-Res system with MixDAE outper-
forms the AMC-SSDA system in five of the six conditions.
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Classifier DBN-2010 DBN-2013 H-V-Res H-V-Res H-V-Res
DAE RBM-based AMC-SSDA - MixDAE MixDAE

Clean 1.24 1.5 0.81 1.03 1.22
Gaussian - 1.47 32.1 1.33 1.57
S & P - 2.22 38.91 1.86 2.17
Speckle - 2.09 49.32 2.41 2.19
Block 19.09 5.18 21.85 4.95 3.94
Border 1.29 1.15 79.34 0.89 1.25

Average - 2.27 37.06 2.08 2.06

Table 8.6: The influence of adding an RCN-based DAE in front of the
classifier on the performance of the RCN-based recognizer (as DER%) on
the noisy version of MNIST dataset. The systems DBN-2010 and DBN-
2013 refer to [166] and [173], respectively.

In theory, the just tested configuration is sub-optimal because it implies
a mismatch between training and testing. Therefore, we also trained an H-
V-Res system on denoised training images. However, to our surprise, the
results in Table 8.6 show no significant improvement over the sub-optimal
system. Apparently, there is no need to retrain the recognizer every time
the DAE is improved, for instance, by taking a new noise type into account.

The results we obtain for the H-V-Res system embedding a mixed DAE
show that image denoising in combination with clean training is more ef-
fective than multi-style training, even though the latter is over optimistic
because it is tested on noises that were present during training. This is
a remarkable result since a limited study in [166] involving border noise
and block noise came to the opposite conclusion for a system encompass-
ing sparse DBNs. In that study, a clean trained DBN, a multi-style trained
DBN, and a clean trained DBN supplied with the denoised images led to
the DERs of 22.7%, 4.6% and 6.4%, respectively.

8.7 Conclusion and Future Work

The aim of this work was to investigate the potential of reservoir computing
networks (RCNs) in the context of image processing, with a particular fo-
cus on handwritten digit recognition (HDR) and image denoising. An RCN
is peculiar in the sense that it consists of a hidden layer of recurrently con-
nected non-linear neurons with fixed (that means non-trained) coefficients
– called a reservoir – and an output layer of linear neurons with trained co-
efficients which ‘read out’ the outputs of the reservoir. The two key prop-
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erties of an RCN are that it is easy to train and that it generalizes well to
unseen conditions. We showed that a large enough RCN recognizer can sur-
pass conventional neural network-based recognizers in matched conditions.
Moreover, we established that an RCN can be very effective in denoising
an image and that the combination of the denoiser and the recognizer out-
performs a similar combination created by means of a conventional deep
neural network technology.

Now that good HDR and image denoising have been demonstrated, time
has come to think about using RCNs for large vocabulary continuous hand-
writing recognition and for other image processing applications as well.
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9
Conclusive Discussion

I conducted my research as part of the European ORGANIC1 project. The
aim of the project was to investigate whether complex systems like systems
for handwriting and speech recognition can benefit from employing neuro-
dynamical components as alternatives to the more conventional generative
statistical components.

The claims made by researchers in machine learning were that neuro-
dynamical systems are more powerful as they can analyze long-term rela-
tionships in a natural way. Therefore, they can make a distinction between
the dynamics of the signal and those of distortions that have corrupted the
signal before the signal reaches the recognition system.

In order to verify these claims for the case of speech recognition, we de-
vised two research paths. One path should demonstrate the ability of neuro-
dynamical systems to extract long-term dynamical properties of the speech
and as such raise the recognition performance. Since long-term dynamics
are expected to be most important in running speech with a rich vocabulary,
we opted for large vocabulary continuous speech recognition (LVCSR) in
this path. The second path was to demonstrate that neuro-dynamical sys-
tems better suppress the effects of ambient noise and channel distortion
than conventional generative model-based systems that only look at local
information. As noise robustness is commonly achieved in the acoustic

1ORGANIC stands for stands for Self-Organized Recurrent Neural Learning for Lan-
guage Processing (see also http://organic.elis.ugent.be)
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model, and since the performance of a small vocabulary continuous speech
recognition (SVCSR) system is almost entirely determined by the quality
of the acoustic model it encompasses, we decided to study the robustness
in the context of SVCSR. In both paths, we focused on a specific category
of neuro-dynamical systems, namely reservoir computing systems.

Although the main body of my work concerned noise robustness in
SVCSR (path 2), I did contribute to the development of reservoir-based
LVCSR (path 1) as well. This chapter starts with a brief review of my
contributions to LVCSR and the role they played in my work in path 2.

9.1 LVCSR with Reservoir Systems

As explained in Chapters 1 and 2, an LVCSR decoder relies on three ma-
jor components: a language model, an acoustic model and a pronunciation
dictionary. The language model and the pronunciation dictionary make it
possible to model each speech utterance as a sequence of basic linguistic
units, called phonemes. The acoustic models are then responsible for as-
sessing the probabilities that selected speech fragments correspond to par-
ticular phonemes.

9.1.1 Reservoir Systems

A reservoir system is a particular type of neural networks. It is composed
of one or more Reservoir Computing Networks (RCN). Each RCN con-
sists of two parts: (1) a pool of recurrently connected non-linear neurons (a
reservoir) with fixed weights that project the low-dimensional input vector
into a high-dimensional reservoir state space and (2) a set of linear read-
outs that perform a linear regression in that space. As such, the RCN acts
like a Support Vector Machine (SVM) which similarly projects the inputs
into a high-dimensional inner space and performs a linear regression in that
space.

Due to its recurrent connections, the reservoir can be interpreted as a
nonlinear dynamical system: the output of each reservoir neuron can be
envisioned as the output of a nonlinear recursive filter that is stimulated by
a multi-dimensional acoustic input pattern.

Since the weights of the reservoir are fixed, the training of an RCN re-
duces to finding the best linear regressor in the reservoir state space. By us-
ing a mean squared error (MSE) criterion, one achieves that the envisioned
regressor is the solution of an over determined set of linear equations. Im-
portant is that the training of an RCN is straightforward because it does not
require an iterative process that can get stuck in a bad local optimum.
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9.1.2 Phone Recognition

The first step in assessing the effectiveness of a new technology such as
RCN for creating acoustic models is usually to create a phoneme recognizer
encompassing these models. The phoneme recognizer converts the speech
into a sequence of phonemes. This sequence is then compared to the se-
quence written down by phoneticians after having listened to the speech.
In practice, some phonemes break down into smaller atoms and some pho-
nemes have well established variants (called allophones) depending on the
context in which they appear. All these atoms and variants together consti-
tute a set of units, called phones. The quality of the acoustic model is quan-
tified by the Phone Error Rate (PER) which measures the minimum number
of edit operations (delete/insert/substitute) one has to perform to convert the
correct phone sequence into a recognized phone sequence. Most work on
phone recognition worldwide is conducted on the internationally renowned
TIMIT benchmark [177]. That is why I also worked on that benchmark.

In the beginning of the ORGANIC project, I collaborated with my col-
league Fabian Triefenbach to design RCNs that adequately model phones
in running speech. After all, a good baseline system for a well-known con-
dition is needed before one can investigate the robustness against changes
in the condition, which was the main objective of my research.

Our first RCN-based phone recognizer that was competitive with the
state-of-the-art at the time was reported in [8]. We learned in this phase
that good recognition can only be achieved with very big reservoirs con-
taining for example 20k neurons. We also learned that cascading RCNs
significantly improves performance for a given reservoir size. The latter
result is particularly important because both the required memory and the
computational cost during system development are roughly proportional to
the square of the reservoir size.

Next to our collaboration in the initial phase of the ORGANIC project,
my work on a good reservoir design methodology helped to speed up the
research towards a fully competitive RCN-based phone recognizer [9]. Ta-
ble 9.1 lists the PER obtained with that recognizer together with some pub-
lished PERs of the best state-of-the-art systems till 2013. What I learned
from this research was that non-causal bi-directional systems outperform
the causal uni-directional systems (PER of 23.1% versus 24.2%).

Another LVCSR result that was relevant to my research towards robust
ASR is that RCN-based systems can benefit from front-end techniques such
as vocal tract length normalization (VTLN) and utterance-wise mean and
variance normalization of the acoustic features. In fact, these methods were
able to reduce the PER to 20.5% [10].



172 CONCLUSIVE DISCUSSION

System Description PER

Bayesian Tri-phone HMM [178] 25.6
Bi-directional LSTM-NN [90, 179] 24.6
Causal RCN-HMM 24.2
Bi-directional RCN-HMM 23.1
Deep Belief Networks [84] 22.4
CD-MLP-Bottleneck Hierarchy [75] 21.2

Table 9.1: Phone recognition error rates (in %) on core test set of TIMIT
obtained with state-of-the-art systems.

Acoustic Model Bi-gram Tri-gram

GMM-HMM (MMI training + VTLN) [182] - 3.0
MLP-HMM hybrid [114] 8.5 6.5
DET-WFSM bottom-up decoding [183] - 6.0
DNN-HMM hybrid (MFCCs) [184] 5.7 -
RCN-HMM hybrid 6.2 3.9

Table 9.2: WER in % on Wall-Street Journal (Nov-92 evaluation set, 5k)
using different acoustic models in combination with a bi-gram and tri-gram
language model.

9.1.3 Large Vocabulary Recognition

Although we achieved good phone recognition on TIMIT, we need to pro-
vide good LVCSR on an international benchmark that was specifically cre-
ated for testing LVCSR, to convince people that RCNs have potential for
acoustic modeling. In [180], we presented an RCN-HMM hybrid that of-
fers competitive LVCSR results on the Wall-Street Journal (WSJ0) bench-
mark [181]. Table 9.2 lists the performance of our best system along with
some recently reported performances of the competitors. Again, my fun-
damental work on the fast design of good reservoirs allowed us to achieve
such a promising result in a very limited time.

9.2 Noise Robust RCN-Based Speech Recognition

The main focus of this dissertation was of course on the noise-robustness
of Reservoir Computing. In this respect, I conducted a large number of
experiments on continuously spoken digit recognition and a small number
of experiments on isolated handwritten digit recognition. In particular, I
addressed the following two questions: (1) Is it possible to derive univer-
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sally applicable reservoir design principles that yield appropriate reservoir
parameters for any task in any domain? (2) To what extent are RCN-based
models robust to noise and what is the main reason for this robustness?

However, before formulating answers to these questions, I want to re-
capitulate the most important results and achievements of my research into
noise-robustness.

9.2.1 Whole Word Acoustic Models

In order to investigate the importance of the dynamics of the reservoir, I
started with using RCNs for the acoustic modeling of whole words (isolated
digits) rather than phones. This work showed that recurrent connections are
indispensable and that additional dynamic modeling provided by Leaky In-
tegration Neurons (LINs) improves the recognition as well. The combina-
tion of recurrent connections and LINs gives the user more control over the
short-term and long-term memory of the reservoir. Using that combination
I achieved state-of-the-art performance for clean isolated digit recognition
(WER = 0.12%) on Aurora-2 [29]. My next goal was to extend the task
to continuous digit recognition in the presence of noise. By adopting a
hybrid RCN-HMM framework and by supplying the reservoir with noise
robust acoustic features (MSVA) I created a competitive noise robust RCN-
based continuous digit recognizer. However, more research was needed to
pinpoint where exactly this noise robustness came from. Furthermore, the
RCN-based recognizer was not yet competitive with the state-of-the-art in
clean conditions.

My collaborative work with Fabian Triefenbach on LVCSR showed that
cascading reservoirs can increase the complexity of the system without rais-
ing the hardware requirements. Moreover, the higher layers of a cascade are
able to correct error patterns that were learned by the previous layers. More
precisely, more layers always lead to better performance until saturation
occurs. This behavior is far more appealing than that of DNNs which often
exhibit a very fluctuating performance and no clear saturation when more
and more layers are added.

By working with mean and variance normalized MFCCs, by layer-wise
optimizing the RCN using a combination of user-controlled reservoir pa-
rameter fixing and automatic supervised training of the readout weights,
and by introducing multi-state whole-word models, I developed a contin-
uous digit recognizer (CDR) with an average WER of 13.7% on differ-
ent noise types and signal-to-noise ratios (SNR), whereas a state-of-the-art
GMM-HMM system achieved an average WER of 16.9% (see Table 4.1).
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9.2.2 Fast and Optimal Reservoir Design

A major hindrance to the initial experiments was the fact that any change
in one parameter of the reservoir (e.g., the spectral radius, or the input fea-
tures) required redoing the time-consuming search for the optimal com-
bination of the remaining parameters. This motivated me to exploit the
relations among reservoir inputs, reservoir parameters and reservoir out-
puts in order to reduce the search for a good (near-optimal) reservoir setup.
The reservoir parameters to consider in this respect are: (1) αU , the max-
imal absolute eigenvalue of the input weight matrix Win, (2) ρ, the max-
imal absolute eigenvalue of the recurrent weight matrix Wrec, (3) Kin,
the number of inputs driving each reservoir neuron, (4) Krec, the number
of delayed reservoir outputs driving each reservoir neuron and (5) λ, the
leak rate of the leaky integrator neurons of the reservoir. The first two pa-
rameters control the strength of the input and the recurrent stimulation of
a reservoir neuron, the next two control the sparsity of the input and the
recurrent weight matrices and the last parameter controls the bandwidth of
the reservoir outputs.

I first introduced a number of simple principles which should be met for
a reservoir system to be maximally effective:

1. a reservoir should have enough memory to capture the relevant fre-
quencies in the dynamics of the input patterns;

2. the leaky integration should permit the reservoir outputs to clearly
convey the desired frequencies in the target output class patterns;

3. to obtain a robust solution, the variances of the reservoir neuron ac-
tivations should be comparable to each other, hence avoiding that a
solution is dominated by a few neurons only;

4. the variances of the reservoir neuron activations should be large enough
to let the reservoir benefit from the non-linear characteristics of its
neurons, but not too large to prevent that too many neurons are frozen
by saturation at any given time.

Based on some reasonable assumptions and approximations, these prin-
ciples could be translated into comprehensive relations between reservoir
parameters. Finally, a number of experiments were conducted to prove the
validity of these relations. The main outcomes of this research can be sum-
marized as follows:

1. The input and recurrent weight matrices (Win and Wrec) can be
very sparse (5 to 10 elements per row regardless of the reservoir size
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and the input feature vector size). This can be understood as follows:
if the reservoir is large enough, even a sparse connection scheme
guarantees that all inputs and all neuron activations computed in the
previous time step contribute to the current activation of the reser-
voir. Moreover, the sparse connection matrices improves the inde-
pendency of the neurons and speeds up the operation of the reservoir.
The latter is easily achieved since nowadays good libraries for sparse
matrices exist for most high-level programming languages.

2. The spectral radius ρ must be chosen so that the corresponding time
constant characterizing the decay of the reservoir memory emerging
from the recurrent connections is long enough to capture the dynam-
ics arising from the information bearing changes in the input, which
translated to 50 ms in the case of speech signals.

3. The constant λ must be chosen so that the corresponding integration
time is equal to the minimal duration of the time intervals during
which the output class remains constant.

4. Given an appropriate ρ and λ, there exists a formula for computing
a value for αU which leads to a proper activation level and a proper
balance between the contributions of the present inputs and the past
reservoir outputs to the present activations.

5. The same optimal reservoir parameters can be re-used with success
for different sizes of the reservoir.

9.2.3 Combining Technologies

The previous experiments showed that changing the statistical model em-
ployed to relate speech and acoustic units from a GMM to an RCN provides
some measure of noise robustness. However, the decades of research on
noise robustness preceding this work have lead to a wide array of alterna-
tive techniques. In the subsequent work, we re-investigated some of these
techniques in the framework of an RCN-based system.

Employing Noise Resistant Features

First, I investigated whether noise robustness could be further improved
by employing noise-resistant acoustic features such as the noise robust ad-
vanced front-end features (AFEs) that were especially engineered for im-
proving GMM-based systems on Aurora-2. Introducing AFEs in combi-
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nation with bi-directional RCNs further lowered the average WER from
11.3% to 9.9%.

Combining GMM with RCN

Since I noticed that the errors made by an RCN-based and a GMM-based
system were different to some extent, I also investigated whether further
improvements could be obtained by combining the two technologies. In
particular, I investigated RCN-GMM and GMM-RCN tandems as well as
a fusion approach to combine the likelihoods retrieved from the RCN and
the GMM. Whereas the system combination did improve the clean speech
results (matched condition), a substantial degradation was observed in the
more realistic mismatched condition (training on clean speech, testing on
noisy data).

Adaptation to Noise

Another technique frequently employed with GMM-based systems is fast
unsupervised adaptation of the system to new conditions. Adaptation to
a new condition with minimal effort is an appealing technique since even
systems trained on many diverse noise types may still encounter a condition
which has not been learned before. To import this functionality in an RCN-
based system, I introduced an additional RCN to adapt the scaled likeli-
hoods of the RCN-HMM to a new condition in an unsupervised way. The
latter means that no manual transcriptions are needed for the adaptation. I
showed that three minutes of adaptation data suffice to train a single layer
RCN with a reservoir of 250 neurons that can achieve an average relative
improvement of 13% (see Table 4.2).

Denoising the Inputs

Since a denoising feature extracting scheme such as the AFE features im-
proved the result, one could try to further improve this system by means of
a possibly better denoising scheme based on RCNs. A neural network that
removes the effects noise has on the acoustic features is called a Denoising
Auto-Encoder (DAE). I inserted an RCN-based DAE at different points in
the MFCC extractor, namely after applying DFT, after the Mel-filter bank,
and after the DCT. However, none of these approaches resulted in a signifi-
cant improvement of the noise-robustness with respect to the case of AFEs.
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Summary on the Speech-Related Experiments

My experiments indicate that:

• RCNs focus more on the salient relation between the input features
and the acoustic units and less on the fine details, hence they lose
some performance in perfectly matched conditions with sufficient
training data (clean speech training and clean speech testing), but
gain robustness in the other conditions.

• The big multi-layer RCNs have, at least for a small vocabulary task,
enough modeling power to do feature denoising and recognition in
one step.

• Although noise robust features help, their effect is less pronounced
than in the case of GMM-based systems. This may be a direct corre-
late of the previous observations.

• Despite the added robustness, adaptation to new (unseen) conditions
is still needed for optimal performance.

In what follows, I briefly recall the most important steps that lead to the
good results I obtained on speech recognition (see also Figure 9.1).

• Replace the simple memory-less neurons with LINs

• Introduce utterance-wise feature normalization (MVNs)

• Employ very large as well as multi-layer reservoirs

• Replace the simple MVN acoustic features by AFE features

• Exploit both past and future observations by introducing bi-directional
reservoirs

9.3 Image Classification

Although my research in speech recognition confirmed that an RCN is more
robust to the presence of noise than most other acoustic models, it did not
prove that this property also holds in general. In the same sense, there was
no proof yet that the strategy I introduced to optimize the reservoir parame-
ters works for other tasks as well. To find such proof, I considered the task
of handwritten isolated digit recognition. Although many techniques have
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Figure 9.1: The most important results towards noise robust speech recog-
nition with RCNs. The table below the plot describes the type of the acous-
tic features, type of the reservoir nodes, number of layers, size of each layer,
and uni- or bi-directional processing. WER denotes the average word error
rates on the SNR 0–20 dB conditions of Test A-C of the Aurora-2 dataset.
All systems are trained on the clean conditions.

been introduced to extract good features from the raw image (e.g., Gabor
filters), I opted for recognition on the basis of the raw pixels as inputs. This
strategy is defensible since this concerned a quick transgression to another
domain and since many published systems do start from the raw pixels.

While most systems take the complete image as their input, an RCN is
designed to process sequential (temporal) data. Therefore, the RCN-based
classifier will scan the image in a sequential way. Hence, a first question
that arose was the scanning direction: horizontal, vertical or a combination
of the two. I proposed three methods for combining horizontal and ver-
tical scanning, namely, (1) a concatenation of a column and a row in the
input vector, (2) a separate classifier per scanning direction followed by a
weighted summation of the outputs of both, and (3) a concatenation of the
two classifier outputs as the inputs to a third RCN-based classifier (see Fig-
ure 8.5). Following the reservoir setup instructions I formulated for speech
recognition, I could quickly setup an appropriate RCN-based handwritten
digit recognizer and get confirmation that it was indeed quasi-optimally de-
signed. Similar to the speech recognition task, cascading RCNs and using
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bi-directional RCNs led to better results. In a short time, I created a system
trained on clean samples that achieved a WER of 0.81% on the renowned
MNIST benchmark. This is fairly close to the 0.60% achieved by a state-
of-the-art system using the same input features and convolutional networks
(see Figure 8.3).

I also tested the recognition of noisy samples containing five different
noise types: Gaussian, Salt and Pepper, Speckle, Block and Border noise.
While a deep belief network (DBN) attains an average error rate of 28.8%
for these noisy data, the best RCN classifier achieves an error rate of 23.6%.
Adding noise to the training set (multi-style training) further reduces this
error rate to 3.5%.

Like in speech recognition, I also studied the ability of an RCN-based
DAE to denoise the images. In a first experiment I supplied the denoised
images to a classifier trained on clean images. In a second experiment I re-
trained the classifier on denoised images. The outcome of both experiments
is very similar, WERs of 2.08% and 2.06%, respectively. These WERs are
somewhat lower than the 2.27% achieved by a DBN-based competitor. The
results obtained with RCNs are appealing because first of all they show that
an RCN can advance the state-of-the-art and secondly, they show that only
the DAE needs to be retrained when a new noise type comes into play and
the classifier can be left untouched.

9.4 Answers to the Questions

In this section I contemplate on how far I have come to answering the two
research questions I formulated before.

Q1: Is it possible to derive universally applicable reservoir design prin-
ciples that yields appropriate reservoir parameters for any task in any
domain?

The reservoir design strategy I conceived in Chapter 5 which was tuned to
the task of clean spoken digit recognition led to quasi-optimal reservoirs for
noisy spoken digit recognition, phone recognition (the same input features
but another task) and handwritten digit recognition (different input features
but a related task). Moreover, the same strategy also led to very good reser-
voirs for a simple video processing task using the output of a very low
quality camera to detect when doors are opened and closed (different input
features and a totally different task). Although not discussed in this thesis,
the latter experiment is described in [7].
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Given the above results and given the fact that the principles underlying
the conceived design method are fairly generic and comprehensible, there is
sufficient evidence to argue that a universal reservoir design recipe probably
exists. However, more experiments on various benchmarks are needed to
eliminate all remaining doubts.

Q2: To what extent are RCN-based acoustic models robust to noise and
what is the main reason for this robustness?

RCNs benefit from the recurrent connections that add the ability of pro-
cessing temporal information in a non-linear way. Hence, they are better
suited for tasks such as speech recognition for which dynamics are a main
property.

Figure 9.2 shows the performances of digit recognizers based on RCNs,
ELMs, MLPs [142], RNNs [143] and GMMs [113], all trained on clean
Aurora-2 dataset. First of all, the recurrent connections of a reservoir do
cause a substantial improvement compared to an ELM, both in clean and in
noisy conditions.

Next to looking at the absolute performances of the different system for
a given SNR level, one could also try to quantify the robustness of each sys-
tem. For example, one could compare the relative increase in errors com-
pared to the noise free base-line results across the different systems. Since
Figure 9.2 uses a logarithmic error scale, this relative increase in errors cor-
responds to the slope of each curve. With this respect, the figure shows that
the two relatively ’special’ approaches (RCN and ELM) have a very com-
parable noise robustness. On the other hand, they are more noise robust
than the more conventional approaches, GMM, MLP, and RNN. Therefore,
the robustness of RCN is caused by a property shared with ELM but not
with the other systems.

The fundamental difference between the ’special’ and the conventional
approaches lies in the fact that the first layer in RCNs and ELMs consist of
non-trained random values, whereas GMMs, MLPs and RNNs train all pa-
rameters across all layers. This, in combination with the MSE optimization
criterion, prevent RCNs and ELMs from overfitting the training data and
hence let the system generalize better to unseen data than a system with a
fully trained parameters [101].

In addition, RCNs have a very simple and fast training procedure which
allows the user to enlarge the size of the network to thousands of nodes
compared to a few hundred nodes of an RNN. Projecting to such a very
high-dimensional space facilitates the discrimination between the classes,
both in clean and noisy conditions. Moreover, increasing the network size
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Figure 9.2: Comparing the robustness of state-of-the-art techniques, trained
on clean set and tested on Test A-C of Aurora-2 dataset. Both RCN and
ELM consist of a single-layer uni-directional hidden layer of 8K nodes.

allows the RCN to focus more on the less conspicuous relations between
features and classes, and hence is expected to help more for clean speech
where such fine differences are still meaningful. This effect is visible in
Figure 9.3. Note that this figure also shows that the MSE training of an
RCN is very effective in preventing over-fitting and in maintaining a part
of the gain that was achieved in matched conditions in the severely non-
matched conditions: even for the noisiest test conditions, the larger reser-
voirs continue to perform better than the smaller reservoirs.

9.5 Future Work

Although the idea behind reservoir computing is rather simple, it is not easy
to fully understand the behavior of a non-linear dynamical system. There-
fore, a lot of questions are still unanswered, even in spite of the amount of
theoretical research in reservoir computing (e.g. [185]) that has been con-
ducted over the last decade. In what follows I recall some of the questions
I consider as still being open:

• Thus far, RCN hierarchies consider the same classes at all levels, but
could the idea of deep learning perhaps better be exploited by con-
sidering different types of acoustic units, such as phonemes, syllables
and words at different levels?
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Figure 9.3: The effect of increasing the size of the reservoir on the perfor-
mance of a single-layer uni-directional RCN-based digit recognizer, trained
on clean and tested on Test A-C of Aurora-2 dataset.

• Is there a better but still comprehensible way to initialize the random
reservoir weights than the one we developed in this thesis?

• Can a clever grouping of reservoir neurons into blocks which are
supplied with different inputs provide a more powerful architecture?

• In a conventional RCN all the readout weights are trained, giving rise
to (N res + 1) × Nout trainable parameters. Due to the fact that all
the reservoir weights are set randomly, many reservoir neurons may
not turn out contribute to the solution of the targeted task. Can one
conceive a smart way to prune these dead neurons, globally or per
readout node, in order to reduce complexity without loosing accu-
racy?

• Is an RCN-based system helped by the use of more elaborate input
features or by the use of multiple input feature sets?

• Can reservoirs be successfully applied to more challenging image
processing tasks, such as medical image recognition?
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To conclude this book I would like to emphasize that, compared to other
techniques, reservoir computing is still a relatively young domain. I there-
fore argue that there is still a lot to be done in this domain. Given the
opportunity, I would myself be enthusiastic to continue the research, but
even if this turns out to be impossible, I hope that the research I presented
here will motivate others to continue the search for better neuro-inspired
recognition systems.

– The end –





A
Hybrid RCN-HMM Performance on

Aurora-2

This appendix contains WER (%) in detail for hybrid RCN-HMM with
single- and 3-layer, uni- and bi-directional reservoirs using MFCC, MelFB
and AFE features.

The reservoir of each layer contains 8K nodes (2×4K for bi-directional
reservoirs). Each reservoir node is supplied with 10 randomly selected in-
put features along with 10 randomly selected recurrent connections (i.e.,
Kin = Krec = 10). The HMM consists of 7-state models per digit and a
single state for silence.
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