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Abstract

Identifying Speaker State from Multimodal Cues

Zixiaofan Yang

Automatic identification of speaker state is essential for spoken language understanding, with

broad potential in various real-world applications. However, most existing work has focused on

recognizing a limited set of emotional states using cues from a single modality. This thesis de-

scribes my research that addresses these limitations and challenges associated with speaker state

identification by studying a wide range of speaker states, including emotion and sentiment, humor,

and charisma, using features from speech, text, and visual modalities.

The first part of this thesis focuses on emotion and sentiment recognition in speech. Emotion

and sentiment recognition is one of the most studied topics in speaker state identification and has

gained increasing attention in speech research recently, with extensive emotional speech models

and datasets published every year. However, most work focuses only on recognizing a set of

discrete emotions in high-resource languages such as English, while in real-life conversations,

emotion is changing continuously and exists in all spoken languages. To address the mismatch,

we propose a deep neural network model to recognize continuous emotion by combining inputs

from raw waveform signals and spectrograms. Experimental results on two datasets show that the

proposed model achieves state-of-the-art results by exploiting both waveforms and spectrograms

as input. Due to the higher number of existing textual sentiment models than speech models in low-

resource languages, we also propose a method to bootstrap sentiment labels from text transcripts



and use these labels to train a sentiment classifier in speech. Utilizing the speaker state information

shared across modalities, we extend speech sentiment recognition from high-resource languages

to low-resource languages. Moreover, using the natural verse-level alignment in the audio Bibles

across different languages, we also explore cross-lingual and cross-modality sentiment transfer.

In the second part of the thesis, we focus on recognizing humor, whose expression is related

to emotion and sentiment but has very different characteristics. Unlike emotion and sentiment that

can be identified by crowdsourced annotators, humorous expressions are highly individualistic

and cultural-specific, making it hard to obtain reliable labels. This results in the lack of data

annotated for humor, and thus we propose two different methods to automatically and reliably

label humor. First, we develop a framework for generating humor labels on videos, by learning

from extensive user-generated comments. We collect and analyze 100 videos, building multimodal

humor detection models using speech, text, and visual features, which achieves an F1-score of 0.76.

In addition to humorous videos, we also develop another framework for generating humor labels

on social media posts, by learning from user reactions to Facebook posts. We collect 785K posts

with humor and non-humor scores and build models to detect humor with performance comparable

to human labelers.

The third part of the thesis focuses on charisma, a commonly found but less studied speaker

state with unique challenges – the definition of charisma varies a lot among perceivers, and the per-

ception of charisma also varies with speakers’ and perceivers’ different demographic backgrounds.

To better understand charisma, we conduct the first gender-balanced study of charismatic speech,

including speakers and raters from diverse backgrounds. We collect personality and demographic

information from the rater as well as their own speech, and examine individual differences in the

perception and production of charismatic speech. We also extend the work to politicians’ speech

by collecting speaker trait ratings on representative speech segments of politicians and study how

the genre, gender, and the rater’s political stance influence the charisma ratings of the segments.
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Chapter 1: Overview

Automatic identification of speaker state is essential for spoken language understanding, with

broad applications such as customizing virtual assistants, finding hot spots in video conferences,

detecting customer reactions in call centers, and analyzing public figures or user-generated content.

It has been an emerging research area in recent years. However, most work has focused on only

a limited set of emotional states using cues from a single modality. Moreover, the conventional

approach heavily relies on large-scale data manually annotated with speaker state labels, while in

realistic settings, those labels are hard to obtain.

This thesis research addresses these limitations and challenges associated with the automatic

identification of speaker state. We study a broad spectrum of speaker states, including emotion

and sentiment, as well as other less-studied components of spoken language such as humor and

charisma. We examine cues from speech, text, and visual modalities, and how these modalities

complement each other. We also explore various methods to utilize unlabeled data, including

bootstrapping labels from user comments and reactions, from other modalities, and from other lan-

guages. The research contributes to our understanding of speaker state, by expanding the states and

modalities being studied, developing new computational models for automatic state identification,

and discovering new methods for automatically generating labels without the need for annotators.

The following sections are organized by the speaker states being studied.

1.1 Emotion and Sentiment Recognition in Speech

Emotion is one of the most studied topics in speaker state identification. However, most work

focuses on recognizing a set of discrete emotions, while in real-life conversations, emotion is

changing continuously. To address this mismatch, in Chapter 2, we propose a deep neural network

1



model to recognize continuous emotion in the arousal-valence two-dimensional space by combin-

ing inputs from raw waveform signals and spectrograms, both of which have been shown to be

useful in the emotion recognition task. The neural network architecture contains a set of convo-

lutional neural network (CNN) layers and bidirectional long short-term memory (BLSTM) layers

to account for both temporal and spectral variation and model contextual content. Experimental

results for predicting valence and arousal on the SEMAINE database and the RECOLA database

show that the proposed model significantly outperforms models using hand-engineered features,

by exploiting waveforms and spectrograms as input. We also compare the effects of waveforms

vs. spectrograms and find that waveforms are better at capturing arousal, while spectrograms are

better at capturing valence. Moreover, combining information from both inputs provides further

improvement to performance.

The task of sentiment classification is primarily studied in the text modality and much less

explored in speech. To better utilize speaker information shared across modalities, in Chapter 3,

we propose a method to bootstrap sentiment labels from text transcripts and use these labels to train

a sentiment classifier in speech. We explore the cross-modality and cross-lingual sentiment transfer

on audio Bibles, which contain both text and speech modalities and are naturally aligned on verse

level across hundreds of languages. We generate the automatic sentiment labels from English text

verses and build neural network models on speech and other languages. The experimental results

on eight languages with human-annotated test sets verify the effectiveness of this approach.

1.2 Multimodal Humor Detection

Humor detection has gained attention in recent years due to the desire to understand user-

generated content with figurative language. However, substantial individual and cultural differ-

ences in humor perception make it very difficult to collect a large-scale humor dataset with reliable

humor labels.

Chapter 4 proposes a novel approach for generating unsupervised humor labels in videos using

time-aligned user comments. We collected 100 videos and found a high agreement between our

2



unsupervised labels and human annotations. We analyzed a set of speech, text, and visual features,

identifying differences between humorous and non-humorous video segments. We also conducted

machine learning classification experiments to predict humor and achieved an F1-score of 0.76.

In Chapter 5, we propose CHoRaL, a framework to generate perceived humor labels on Face-

book posts, using publicly available user reactions to these posts with no manual annotation

needed. CHoRaL provides both binary labels and continuous scores of humor and non-humor

using these labels. We present the largest dataset to date with labeled humor on 785K posts re-

lated to COVID-19. Additionally, we analyze the expression of COVID-related humor in social

media by extracting lexico-semantic and affective features from the posts, and build humor detec-

tion models with performance similar to humans. CHoRaL enables the development of large-scale

humor detection models on any topic and opens a new path to the study of humor on social media.

1.3 Charismatic Speech

Charisma is also an important factor for understanding spoken language and social events, as

charismatic speech has often been used to attract supporters, particularly in business and politics

domains. Speaking style has shown to be an essential differentiator of whether a speaker is viewed

by others as charismatic.

In Chapter 6, we conducted the first gender-balanced study of charismatic speech, including

speakers and raters from diverse backgrounds. We describe how raters define charisma by analyz-

ing its positive or negative relationship with other speaker traits, such as enthusiasm, persuasive-

ness, boringness, and uncertainty. Using the features extracted from the voice clips, we analyze

the acoustic and textual correlates of charisma. We also extend prior work to examine individual

differences in the perception and production of charisma in speech. We discuss how a speaker’s

gender and how a rater’s gender, level of education, personality, and own speaking style influence

the rater’s perception of charismatic speech.

In Chapter 7, we present a comprehensive study of the speaker traits and speaking styles of

25 politicians in 4 genres: Campaign Ads, Debates, Interviews, and Stump Speeches. In order

3



to understand the subtleties of charismatic political speech, we analyze the acoustic-prosodic and

lexical correlates of charisma in different speaker and rater groupings, including demographics and

speech genres information. We also study how the demographic backgrounds of the speakers and

raters, including political stance, gender, age, and education, influence their speaker trait ratings.

Our results demonstrate the complexity of charismatic politicians’ speech and the importance of

understanding rater and speaker variation when studying charisma.
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Chapter 2: Predicting Continuous Emotion from Speech

2.1 Introduction

In recent years, increasing attention has been given to the study of the emotional content

in speech signals, and many systems have been proposed for automatic emotion recognition in

speech. For most systems, the goal is to produce a categorical label among a set of ‘basic emo-

tions’ such as disgust, sadness, happiness, fear, anger and surprise [1]. This view of emotion

originates in expressions in human language describing emotional experiences in terms of words

[2]. However, speech signals contain more subtle changes in emotion, especially for conversational

speech and spontaneous emotion in which both speakers’ affective states change continuously over

time. In this case, a categorical approach may fail to capture changes. Also, some emotions are

easier to distinguish, while others share similar characteristics [3]. The similarity/disparity issue

among emotion categories also represents a potential problem in automatic emotion classification.

However, another fundamental approach to emotion detection is to map emotion into a contin-

uous multi-dimensional space. The underlying assumption in this approach is that a common

physiological system is responsible for all emotional states. When measuring emotion using this

dimensional approach, the emotion recognition task can be treated as a regression problem. In

each of the dimensions, we can use a series of float numbers to represent the target’s emotion.

One of the most prominent models taking this viewpoint is Russell’s circumplex model of emo-

tion [4]. In the circumplex model, a person’s emotion is described as a point in the arousal-valence

two-dimensional space. Predicting continuously changing arousal and valence is inherently a more

difficult task than classifying discrete emotions for each utterance, due to its high granularity in

both the emotion domain and the time domain. However, this approach to emotion detection can

better represent natural speech in real situations. Our work follows the circumplex model and our
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goal is to produce numerical predictions for both arousal and valence from speech.

In traditional methods of emotional speech recognition, features are hand-engineered, selected

using prior knowledge of the auditory signal processing area, such as pitch, intensity, speaking

rate and mel-frequency cepstral coefficients (MFCC) [5]. However, recent advances in computing

resources and neural network architectures have enabled end-to-end speech processing, in which

inputs are drawn directly from minimally processed speech data such as waveforms and spectro-

grams [6, 7, 8]. In recognizing emotional speech, mel-scale filter-bank spectrograms are widely

used as input features to neural network models because of their close relationship with human

perception of speech signals [9]. Also, recent research has shown that neural networks can auto-

matically learn some emotion-related feature representations such as energy and fundamental fre-

quency from raw waveform signals [10]. However, there is currently no work exploring whether

waveforms and spectrograms also contain complementary information on emotional speech. In

this work, we combine inputs from raw waveform signals and mel-scale log filter-bank features to

examine their joint effects. The neural network architecture that we use contains a set of convolu-

tional neural network (CNN) layers and bidirectional long short-term memory (BLSTM) layers to

account for both temporal and spectral variation and model contextual content.

2.2 Related Work

With the advance of neural network and the emergence of large-scaled emotional speech dataset,

there has been considerable research on improving neural network structures for emotion recogni-

tion in speech. For most such research, the goal is to predict a label among a fixed set of discrete

emotions. Han et al. [11] proposed a deep neural network and extreme learning machine (DNN-

ELM) model to recognize excitement, frustration, happiness, neutral and surprise. Mao et al. [12]

used a CNN to learn affect-salient features from spectrograms. In the experiments, they used 4

corpora with four different sets of emotions, including: (1) anger, disgust, fear, happiness, sadness,

surprise, and neutral; (2) anger, disgust, fear, joy, sadness, boredom and neutral; (3) anger, joy,

surprise, sadness and neutral; (4) anger, joy, surprise, sadness and disgust. Lee et al. [13] used
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RNN on frame-level hand-engineered features to recognize happiness, sadness, anger and neutral.

Recently, Mirsamadi et al. [14] used RNNs with an attention mechanism to focus on emotion-

ally salient regions for happiness, sadness, anger and neutral. Huang and Narayanan [15] used

CNN-LSTM-DNNs with an attention mechanism to classify anger, disgust, fear, joy, sadness, and

surprise. Kim et al. explored the effect of 3D CNNs [16] and skip-connections [17] on happiness,

sadness, anger and neutral. Cummins et al. [18] used pre-trained image classification CNN to pro-

cess spectrograms and recognize angry, emphatic, neutral, postive and rest. Finally, Bertero and

Fung [19] found that their CNN filters concentrated on the average pitch range related to emotions

such as as angry, happy and sad on the frequency domain and activated during the speech sections

while ignoring the silent parts on the time domain. In the work discussed above, a total of 8 differ-

ent sets of discrete emotions are used, which makes it difficult to compare models optimized for

different emotions.

There is also research on predicting continuous emotion in the arousal-valence two-dimensional

space. Giannakopoulos et al. [20] conducted emotion recognition in arousal-valence space and

found that this approach offers a good affective representation for speech. Towards better fea-

ture representations, Schmitt et al. [21] explored bag-of-audio-words representation of MFCCs as

input to the regression model, and Zhang et al. [22] performed feature enhancement using an au-

toencoder with LSTM. Towards better neural network structures, Trigeorgis et al. [10] proposed

an CNN-LSTM-DNN on waveform signals, and Han et al. [23] concatenated different regres-

sion models to exploit their individual advantages. However, little existing work has explored the

difference in predicting valence and arousal in this way [24].

2.3 Corpora

To evaluate the performance of our model, we need speech corpora with continuous annotations

of arousal and valence on a high granularity. For this purpose, we chose two corpora of natural

conversational speech: the SEMAINE database [25] and the RECOLA database[26].

The SEMAINE database was collected to study emotionally colored conversations in English
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and has the highest annotation granularity of all publicly-available corpora. In SEMAINE record-

ings, two speakers in each conversation are a user and an ‘operator’ who simulates a Sensitive

Artificial Listener (SAL) agent. The goal of the operator is to engage the user in emotional con-

versations by asking questions and expressing attitudes, such as ‘Anything else nice happened this

week?’ or ‘It is all rubbish.’ To ensure that we are looking at truly spontaneous emotions in speech,

we use only the Solid-SAL sessions with the most natural operator interactions, and look only at

the user’s turns from each conversation. The user’s emotion is annotated by 6-8 annotators for

arousal and valence at 20ms intervals; annotation scores range from -1 to 1 with 4 decimal places.

We segment the 83 conversations with 24 users into turns according to the transcripts, aligning the

user turns with the averaged manual annotations. We randomly employ 70% of the conversations

with 934 segments as the training set, and the remaining 30% with 396 segments as the test set.

The RECOLA database is a multi-modal corpus of spontaneous collaborative and affective

interactions in French. After completing a self-report questionnaire, 46 subjects watched video

clips for positive/negative mood manipulation and then participated in a task in which they were

asked to reach consensus on how to survive in a disaster scenario. This task was intended to trigger

emotional communication between participants. Conversations were annotated for arousal and

valence at 40ms intervals by 6 annotators; scores range from -1 to 1 with 2 decimal places. The

version we employ contains 23 conversations, each lasting 5 minutes. Since both speakers show

spontaneous emotions and turn-taking information is not provided, we use entire conversations

without segmenting speaker turns. As with the SEMAINE database, we randomly use 70% with

800 6s segments for training and 30% with 350 6s segments for testing.

2.4 Models

We use an end-to-end deep convolutional recurrent neural network to perform emotion recog-

nition; the architecture of this network is shown in Figure 2.1. The main difference between this

architecture and a standard CNN-LSTM-DNN architecture is that two sets of 1-D CNN layers

are used separately to process two types of raw features which we believe contain complementary
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Figure 2.1: The architecture of the proposed model.

information about arousal and valence. The output of these CNN layers are then concatenated

together and fed into the BLSTM layers to generate the prediction of both arousal and valence.

The CNN layers can reduce temporal and spectral variation and exploit the information contained

in the two inputs, while the BLSTM layers can take contextual content into account and generate

predictions with high temporal granularity.

Input: raw waveform signals

With the use of deep neural network structures, raw waveform signals have been shown to

be useful in numerous speech recognition tasks, providing information such as loudness, energy

and pitch. For pre-processing, we normalize waveform signals on the conversation level with zero

mean and unit variance to reduce inter-speaker differences. Then we re-sample the speech to a
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16kHz sampling rate, and segment the conversation into 6s segments with 96,000 samples as the

waveform input. An example of the raw waveform signals is shown at the upper left corner of

Figure 2.1.

Input: spectrogram features

Previous studies have found that the waveforms and the spectrograms provide complementary

information in learning acoustic models [8]. These findings have inspired us to include spectro-

grams as another input to our neural network. We use the output of a 40-dimensional mel-scale

log filter bank as the spectrogram features. Similar with our pre-processing of waveforms, we

first perform normalization and segmentation. The spectrogram features and the first and second

temporal derivatives are then computed over windows of 25ms length and 10ms stride, resulting in

three 40*600 matrices for each 6s segment. An example of these spectrogram features is shown at

the upper right corner of Figure 2.1. The horizontal axis represents time in frames, and the verti-

cal axis represents filter banks with different frequency ranges. For display purpose, the temporal

derivatives are not shown in this figure.

Neural Network Architecture

For the waveform input, the CNN layers are used to extract information in different temporal

scales. The first layer has 40 channels with a kernel size of 80, followed by a max pooling layer

with a size of 2. The second layer has a kernel size of 800, followed by a cross-channel max

pooling layer with a size of 20. The convolution filter in the first layer has a receptive field of 5ms,

while the filter in the second layer has a receptive field of 100ms. In this way, the two CNN layers

can jointly learn frame-level features as well as long-term patterns.

For the spectrogram input, the CNN layers are used to reduce temporal and spectral variation

while preserving locality. The first layer is a spectral convolution layer. It has 80 channels with a

kernel size of 10, followed by a spectral max pooling layer with a size of 2. The second layer is

a temporal convolution layer. It has a kernel size of 10, followed by a cross-channel max pooling

10



layer with a size of 10. The temporal convolution filter for the spectrogram input has a receptive

field of 115ms which is roughly the same as the waveform input in order to extract long-term

patterns on a similar scale.

Both of the CNN layers produce 96000-dimensional output vectors from the 6s inputs of wave-

forms and spectrograms. The CNN output vectors are segmented into millisecond-level pieces de-

pending on the granularity of the annotations and concatenated together (e.g. two 320-dimensional

pieces for 20ms annotations) to feed into the BLSTM layers. We use two BLSTM layers with 256

cells each to further reduce temporal variation and model contextual information. Finally, a fully

connected layer follows each output of BLSTM to generate the numerical predictions of arousal

and valence.

2.5 Experimental Results and Analysis

For our experiments on the two datasets, we first implement a baseline model with hand-

engineered features and BLSTM layers. We use the openSMILE toolkit [27] to extract the Com-

ParE feature set [28] with 6373 features, which is the official baseline set for the INTERSPEECH

ComParE challenges from 2013 to 2017. The hand-engineered features are extracted on a 1s win-

dow with the same temporal stride as the annotations. Then, to compare the difference between

waveform and spectrogram inputs, we create three end-to-end models, one using only waveform

input (‘W Only’), one using only spectrogram input (‘S Only’), and a third combining both inputs

(‘W+S’). To make the comparison fair, the BLSTM layers of the ‘W Only’ and ‘S Only’ models

have half the number of cells as the ‘W+S’ model.

For all these experiments, we use the concordance correlation coefficient (CCC) [29] as the

objective function to train the models. CCC measures the similarity between two sequences of

numbers, a metric which is commonly used in continuous emotion recognition task. All the neural

network models are trained with a RMSProp optimizer with a learning rate of 5 ∗ 10−4 and a batch

size of 50. All CNN layers use ReLU activation. Dropout layers with 0.5 dropout rate are added

after the max-pooling layers.
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Corpus Model
Results (CCC)

Arousal Valence

SEMAINE

Baseline 0.376 0.177

W Only 0.675 0.435

S Only 0.656 0.494

W + S 0.680 0.506

RECOLA

Baseline 0.317 0.162

W Only 0.674 0.361

S Only 0.651 0.408

W + S 0.692 0.423

Table 2.1: The concordance correlation coefficient (CCC) of the baseline model and three proposed
models on the SEMAINE database and the RECOLA database.

The experimental results on the SEMAINE database and the RECOLA database are shown in

Table 2.1. Firstly, our results are comparable to state-of-the-art results on RECOLA with a CCC of

0.744 for arousal and 0.393 for valence [23], although this study used the full dataset of 46 conver-

sations while we could only obtain 23 of them — and our models improve over theirs on valence.

The best results on the SEMAINE database reported Mean Correlation Coefficient scores (MCC)

for arousal 0.521 and valence 0.211 [30], while our ‘W + S’ model obtains MCC for arousal 0.682

and valence 0.511 on the test set. Comparing different models, all our neural network models per-

form significantly better than the baseline model, which indicates that the models can learn salient

features for arousal and valence from either of the inputs. Moreover, in both of the corpora, the

‘W Only’ model outperforms the ‘S Only’ model in predicting arousal, while the ‘S Only’ model

outperforms the ‘W Only’ model in predicting valence (shown as italicized in Table 2.1). This

might be explained by: (1) The fact that the arousal dimension is related to the ‘loudness’ of the

speech, and the root-mean-square amplitude for acoustic intensity can be directly extracted from

the waveform. (2) The valence dimension is more complex and cannot be easily related to any

particular speech characteristics. However, the spectrograms offer more interpretability with re-
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spect to articulation and pitch, and thus allow the model to learn patterns from a spectral aspect.

Finally, combining both the waveform and the spectrogram inputs, the ‘W + S’ model provides

further improvement in predicting both arousal and valence (shown as bolded in Table 2.1), which

demonstrates that waveforms and spectrograms do contain complementary information of emotion.

Comparing results for the two corpora, the CCC for predicting valence on SEMAINE is systemat-

ically higher than that on RECOLA. This may be because of the different strategies for inducing

emotional conversations. The operator in SEMAINE tends to induce extreme values on valence,

which makes the variance of valence 1.55 times larger than the variance of arousal. In RECOLA,

the two speakers are communicating after the positive/negative mood induction procedure, and the

variances of arousal and valence are roughly the same.

Analysis

Figure 2.2 and Figure 2.3 show the ground truth and the predictions of our three models on a

segment of the SEMAINE database. The solid blue line represents ground truth, the dashed yellow

line is the output of the ‘W Only’ model, the dotted red line is the output of the ‘S Only’ model and

the green line with both dash and dot is the output of the combined ‘W + S’ model. The transcript

of the speech segment is ‘Ehh.... of all the characters, Prudence is the one who gets under my skin,

cos she’s so frigging superior.’ From Figure 2.2, we observe that the ‘W Only’ model performs the

best with correct polarity and trend, and the ‘S Only’ model predicts the wrong arousal polarity.

From Figure 2.3, we observe that the ‘S Only’ model captures the descending trend while the ‘W

Only’ model does not capture it. We also find that the sudden drop in ‘S Only’ output at around

4.7s matches the timing of the word ‘frigging’, which is used here to emphasize negative valence.

To examine the effect of spectrogram input toward the output crest at 4.7s, we employ a novel

method called the Local Interpretable Modelagnostic Explanations (LIME) [31], which has not yet

been applied to any speech recognition model. Since spectrograms share dimensional and locality

similarity with images, we use the image explanation module of LIME; the explanation of the

output crest is shown in the lower part of 2.3. The most important part of the spectrogram input
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Figure 2.2: Predictions of arousal on an instance.

“...cos she's so frigging...”

Figure 2.3: The upper part is the prediction of va-
lence on an instance. The lower part is the LIME
explanation of the crest in ‘S Only’ output.
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for the crest is highlighted with bright colors, while the other parts remain dark blue. The LIME

explanation shows that the high energy of the higher frequency components from around 4.9s to

5.3s leads to the drop in valence prediction at around 4.7s. Using the LIME method, we can also

generate explanations for other instances to better understand the performance of the models.

2.6 Conclusions

We propose a deep convolutional recurrent network model to predict arousal and valence by

combining inputs from raw waveform signals and spectrogram features. We conducted exper-

iments on the SEMAINE and the RECOLA corpora, and our models significantly outperform

hand-engineered features. By comparing the models with waveforms only and spectrograms only,

we found that waveforms are better at capturing arousal, spectrograms are better at valence, and

combining both provides further improvement. We also analyzed an instance using LIME to better

understand the model. Future directions of this work include performing a deeper analysis of the

inputs to further exploit their strength and building models that can assign different weights to the

inputs according to the characteristics of the instance.
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Chapter 3: Recognizing Sentiment in Speech by Bootstrapping Labels from

Text

3.1 Sentiment in Conversations

In this section, the question we want to answer is: can we do cross-modality sentiment transfer

by inferring sentiment labels from a text-based sentiment detection system and then train a speech

sentiment detection model on them? We experiment on both English as a high-resource language

and Turkish as a low-resource language.

3.1.1 Approach

For English, we use the SEMAINE database described above and use the annotation of va-

lence as an approximation to sentiment. We translate the manually annotated valence scores into

binary sentiment labels and treat these as the gold standard label for sentiment. We also run a text

sentiment analyzer [32] on the transcript sentences to generate text-based automatic labels. The

text-based sentiment detection system uses both lexical and syntactic features and output sentiment

labels: positive, negative, or neutral. We train speech sentiment detection models using the Com-

ParE feature set and random forest model under 4 experimental conditions: (1) train and test on

automatic labels; (2) train on automatic labels and test on human labels; (3) train on human labels

and test on automatic labels; (4) train and test on human labels. We use the second condition to

test how successful a speech model can be without any human annotation, and the fourth condition

to find the upper ceiling for a speech model trained on gold human annotation.

For Turkish, we use the IARPA BABEL Turkish corpus [33] collected by Appen for ASR and

keyword search in low-resource languages. It contains more than 200 hours of natural conversa-

tions in the form of telephone calls; all conversations are fully transcribed with time-alignment at
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Train on Automatic Labels Human Labels

Test on Automatic Labels Human Labels Automatic Labels Human Labels

Baseline 0.414 0.553 0.414 0.553

Random Forest 0.543 0.611 0.498 0.690

Table 3.1: F1 scores on the SEMAINE database. The automatic labels are bootstrapped automati-
cally from text and the human labels are from the manual annotation.

the turn level. Since there is no publicly available text-based sentiment analyzer in Turkish, we

experiment with three different Turkish sentiment lexicons: (1) a lexicon created automatically

by merging English SentiWordNet with a bilingual English/Turkish dictionary; (2) SentiTurkNet,

built using extensive human annotations on 15000 synsets in Turkish; (3) EmoLex in Turkish, ob-

tained by translating the English NRC EmoLex emotion lexicon using Google Translate. Since the

IARPA BABEL dataset does not contain any human sentiment labels, we train and test our model

on the automatic labels obtained from each text-based sentiment system.

3.1.2 Results and Discussions

For the SEMAINE database in English, Table 3.1 shows the weighted F1 scores of our exper-

iments under the four conditions described in the previous section: the condition in the second

column (train on automatic labels and test on human labels) is used to test how well a bootstrapped

speech model could do without any human annotations, and the fourth column (train and test on

human labels) shows the upper ceiling for a speech model trained on gold human annotations. As

shown in Table 3.1, a speech sentiment detection model trained on automatic labels can achieve

similar scores to a model trained on gold human labels, indicating that we can automatically gen-

erate fairly reliable speech sentiment labels from the text transcripts using a text-based sentiment

system.

Since the Turkish BABEL corpus does not have manual sentiment annotations, the only avail-

able experimental condition is to train and test both on automatic sentiment labels generated from

the three Turkish sentiment lexicons. The speech sentiment detection models using automatic la-
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bels generated from all three sentiment lexicons achieve a similar accuracy of 0.57, slightly higher

than the baseline of 0.50.

3.2 Sentiment in Audio Bibles

As described in the previous section, bootstrapping speech sentiment labels by cross-modality

knowledge transfer performs well on the English SEMAINE database. However, for low-resource

languages where human annotation is limited and the bootstrapping approach is most needed,

it is hard to evaluate the approach due to the lack of data and native speakers to provide gold

standard sentiment labels. To address this problem, we extend the work to audio Bibles, where

hundreds of languages are available. The main reason to use audio Bibles is that they have a natural

cross-lingual and cross-modality alignment at the verse level, so that it is possible to propagate

sentiment labels from the text to the speech modality as well as from high-resource to low-resource

languages.

Text Bibles have been shown helpful in machine translation and sentiment recognition in low-

resource languages, thanks to the extensive language coverage of the Bible and the natural cross-

lingual alignment in Bible verses [34, 35]. There are also studies collecting and utilizing audio

Bibles for text-to-speech synthesis and speech retrieval in low-resource languages [36, 37]. How-

ever, there is no attempt to extend sentiment recognition from text Bibles to audio Bibles in low-

resource languages. This work bridges this gap by exploring sentiment transfer in audio Bibles.

3.2.1 Data Collection

Scraping Audio Bibles

We collected audio Bibles from bible.is 1, a website built for archiving and sharing audio Bibles

in more than 700 languages. When listening to the audio of a certain Bible chapter on bible.is, the

corresponding text of the chapter is also shown on the screen, with each verse marked by its verse

index. This format thus enabled us to directly scrape both the audio and the text on the chapter

1https://www.faithcomesbyhearing.com/audio-bible-resources/bible-is

18



level. To further segment the audio into the verse level according to the text verses, we used

Aeneas 2, a tool for force alignment of audio and text fragments. There are also corpora containing

audio Bibles from bible.is and verse-level alignments: the CMU Wilderness Multilingual Speech

Dataset [36] and the MaSS (Multilingual corpus of Sentence-aligned Spoken utterances) dataset

[37]. However, due to the change of the website format and update of the audio files in some

Bibles, some links and alignments no longer work on the current Bibles from bible.is. Thus, we

decided to collect our own dataset and alignment from scratch.

Out of all the audio Bibles provided on bible.is, we use the following criteria to select the

languages and versions to scrape: (1) The Bible should be complete, with audios of both old

testaments and new testaments available in the same version. (2) The audio should not contain

background music, which might influence our speech feature extraction process. (3) The lan-

guage should be supported by Aeneas, which is a crucial step in our data segmentation process.

Using these criteria, we scraped audio Bibles in 13 languages: Cantonese, Dutch, English, Ger-

man, Hungarian, Korean, Mandarin Chinese, Romanian, Russian, Swedish, Telugu, Vietnamese.

Grouping by language family: Dutch, English, German, Romanian, Russian, and Swedish are in

Indo-European; Cantonese and Mandarin Chinese are in Sino-Tibetan; Hungarian is in Uralic;

Korean is in Koreanic; Telugu is in Dravidian; Vietnamese is in Austroasiatic.

For these 13 languages, we scraped the full audio Bibles with 1,189 chapters each. After

aligning the text verses with the audio, each Bible was segmented into approximately 32K verses.

(Due to the manual effort of translating the Bible into different languages, the number of verses in

each chapter sometimes slightly differs.) To align the verses across languages, we used the verse

index provided in the Bible text and follow the assumption that verses with the same index contain

the same information.
2https://www.readbeyond.it/aeneas/
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Collecting Human Annotations

Our approach assumes that the same verse in different languages shares the same sentiment,

and the same verse in speech and text modality also shares the same sentiment. To verify this

assumption and obtain the ground truth of sentiment for further experiments, we selected 5 chapters

in the book of Romans, a book with high sentiment intensity and thus a suitable test set for our

work. There are a total of 200 verses in these 5 chapters.

Due to the difficulty of finding speakers in some of the languages, we were able to annotate only

a subset of our 13 languages. We recruited three annotators for English and Mandarin Chinese, and

one each for Cantonese, Dutch, German, Korean, Romanian, and Vietnamese. We asked the anno-

tators to label the sentiment in the text and speech modalities separately to identify any sentiment

mismatch across modalities. Since some verses might have multiple phrases with different senti-

ments, annotators were allowed to choose multiple sentiments for a single verse. However, most

verses have only one sentiment label, and we could easily convert the label to numerical scores

between -1 and 1: 1 for positive, 0 for neutral, and -1 for negative. For the verses where multiple

sentiments were labeled, one of the sentiments was usually neutral, and another was either positive

or negative. In this case, when we converted the sentiment labels to numerical scores, the value

was halved to either 0.5 or -0.5 due to the inclusion of neutral phrases. We excluded the verses

with both positive and negative sentiment for ease of interpreting sentiment scores. From the anno-

tations, we observed that the 200 verses were roughly balanced in sentiment with a similar number

of negative, neutral, or positive segments in most languages. The detailed annotation statistics for

each annotator are listed in Appendix A.

To understand the cross-lingual and cross-modality agreement of the sentiment annotations,

we used Pearson’s correlation. As discussed previously, the sentiment scores for each verse range

from -1 to 1 with an interval of 0.5; thus, we chose correlation for continuous data instead of kappa

for nominal data. We followed the interpretation proposed by Landis and Koch [38]: “Almost

perfect” agreement corresponds to correlation or kappa between 0.8 to 1.0, “substantial” between

0.6 to 0.8, “moderate” between 0.4 to 0.6, and “fair” between 0.2 to 0.4.
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Language Cross-modality Pearson’s Correlation

English 0.938

Mandarin Chinese 0.902

Cantonese 0.836

Dutch 0.972

German 0.930

Korean 0.746

Romanian 0.985

Vietnamese 0.894

Table 3.2: Pearson’s correlation coefficient between text and speech for each language.

Table 3.2 shows the cross-modality sentiment agreement between text and speech for each

language, measured by the Pearson’s correlation coefficient. The results on English and Chinese

are averaged among three annotators, and the results on other languages are each contributed by

one annotator. All languages have almost perfect cross-modality sentiment agreement, with the

only exception being Korean which has a substantial disagreement. This agreement indicates that

text and speech of most of our audio Bibles share a very similar sentiment, so for most of our

labeled Bibles the sentiment labels on text can be reliably transferred to speech.

Table 3.3 shows the cross-lingual agreement in text modality in annotation across our different

languages and Table 3.4 shows the cross-lingual agreement in the speech modality. Since there are

three annotators for English and Mandarin Chinese each, we also computed the average inter-rater

agreement of the annotators within the same language, indicated by the star in the cell.

These results show that, first, most inter-rater agreements within Chinese and English are al-

most perfect, indicating the reliabilty of annotating sentiment in Bibles. For the agreements be-

tween two different languages, the correlations are primarily in the range of 0.6 to 0.8, indicating

substantial sentiment agreement. The only exception is Romanian, having an only fair or moderate

agreement with other languages in both text and speech modality. With further inspection into the
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English Mandarin
Chinese

Cantonese Dutch German Korean Romanian Vietna-
mese

English 0.822* 0.787 0.673 0.643 0.732 0.747 0.467 0.660

Mandarin
Chinese

0.787 0.820* 0.678 0.672 0.714 0.741 0.470 0.691

Cantonese 0.673 0.678 - 0.647 0.658 0.723 0.425 0.657

Dutch 0.643 0.672 0.647 - 0.682 0.629 0.345 0.980

German 0.732 0.714 0.658 0.682 - 0.658 0.420 0.702

Korean 0.747 0.741 0.723 0.629 0.658 - 0.426 0.651

Romanian 0.467 0.470 0.425 0.345 0.420 0.426 - 0.361

Vietnamese 0.660 0.691 0.657 0.980 0.702 0.651 0.361 -

Table 3.3: Pearson’s correlation coefficient between the text annotations of different languages. *
indicates the inter-rater agreement of three annotators in the same language.

English Mandarin
Chinese

Cantonese Dutch German Korean Romanian Vietna-
mese

English 0.811* 0.715 0.648 0.646 0.737 0.602 0.473 0.724

Mandarin
Chinese

0.715 0.728* 0.610 0.617 0.658 0.608 0.420 0.658

Cantonese 0.648 0.610 - 0.656 0.703 0.636 0.393 0.652

Dutch 0.646 0.617 0.656 - 0.703 0.501 0.332 0.853

German 0.737 0.658 0.703 0.703 - 0.608 0.440 0.778

Korean 0.602 0.608 0.636 0.501 0.608 - 0.402 0.533

Romanian 0.473 0.420 0.393 0.332 0.440 0.402 - 0.365

Vietnamese 0.724 0.658 0.652 0.853 0.778 0.533 0.365 -

Table 3.4: Pearson’s correlation coefficient between the speech annotations of different languages.
* indicates the inter-rater agreement of the three annotators in the same language.
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sentiment distribution, we found that the percentage of positive, neutral, and negative segments in

Romanian are similar to other languages, indicating that the low agreement is not caused by a gen-

eral sentiment shift of the Romanian Bible or the annotator. Instead, this might be caused by the

differences in the Romanian Bible translation or the unique sentiment perception of the Romanian

annotator for some specific segments. Despite this exception, we conclude that sentiment labels

can be transferred between most languages with substantial accuracy.

Moreover, we observe that the overall cross-lingual agreement on the speech modality is slightly

lower than agreement on text. A possible reason for this difference is that the text verses are direct

translations of the same content, but how the text is read is primarily determined by the narrator of

each audio Bible, making the speech sentiment somewhat more diverse than the sentiment of the

text. However, over all, the agreement both between languages and between modalities do validate

our proposed approach for propagating sentiment labels.

3.2.2 Experiments

To propagate sentiment labels across modality and language, we first need to build a sentiment

analysis model to generate the labels on one language and one modality. We chose English text

modality for this, and the model we used follows Heitmann et al. [39] – a RoBERTa-large [40]

model pre-trained on 160GB of text and fine-tuned on a mixture of 15 different English sentiment

datasets collected from various sources such as reviews and tweets. Although there is still a domain

gap between the training data and our Bible verses, this model is so far the best-performing one

among the various lexicon-based and neural-network-based sentiment models that we have discov-

ered. Using the RoBERTa model described above, we automatically assigned sentiment labels to

all Bible verses according to their text content in the English version. The average assigned sen-

timent score on the 32K verses is 0.251, with 19K positive, 11K negative, and 2K neutral verses.

We will refer to these labels inferred from English text as our “automatic sentiment labels”.

Before conducting sentiment transfer, we first tested the accuracy of the automatic sentiment

labels on the English test set with human annotations on the text modality. The result is shown in
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English Mandarin
Chinese

Cantonese Dutch German Korean Romanian Vietna-
mese

Text 0.735 0.536 0.457 0.556 0.604 0.643 0.419 0.551

Speech 0.580 0.389 0.374 0.475 0.519 0.484 0.351 0.468

Table 3.5: Cross-lingual and cross-modality sentiment transfer results, measured by accuracy. The
automatic sentiment labels are inferred from English text and transferred to other languages and
modalities.

the first row and first column of Table 3.5. Note that, due to a large number of neutral verses in the

Bible, the sentiment prediction task is a three-way classification problem, and the random baseline

is 0.333. We observe that the automatic sentiment labels are not perfect but reliable enough with an

accuracy of 0.735, more than twice higher than the random baseline. Since these automatic labels

will be used as ground truth for training in the later experiments, 0.735 will be our performance

ceiling for these subsequent models.

Using these automatic sentiment labels, we experimented with cross-modality sentiment trans-

fer to build models on English speech. With recent advances in unsupervised speech representation

learning, powerful pre-trained speech models [41, 42, 43] have been developed, which are shown

to be useful when fine-tuned on the speech emotion recognition problem [44]. The speech model

that we use is XLSR [43], a multilingual speech representation learning model based on wav2vec

2.0 [42] and pre-trained on 53 languages. We fine-tuned the XLSR model using the automatic sen-

timent labels on the full audio Bible (excluding the test set), and tested this model using the human

sentiment annotations on the test set. The resulting accuracy is 0.580, as shown in the second row

and first column of Table 3.5. The performance drop between 0.735 and 0.580 is caused by several

factors: (1) There is greater difficulty in recognizing sentiment in speech than in text. The audio

verses contain more noise and irregularities, and are largely influenced by the speaker’s speaking

style. (2) There is a slight sentiment mismatch between text and speech, as discussed above. Al-

though not as high as in text, the performance after transferring to English speech is significantly

higher than the random baseline, indicating the feasibility of cross-modality sentiment transfer.
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We then experimented on cross-lingual sentiment transfer to build models on the text of other

languages. Here we also utilized pre-trained language models that contain prior information for

multiple languages: XLM-RoBERTa [45], a cross-lingual sentence encoder pre-trained on 2.5T

text data across 100 languages and achieves state-of-the-art results on multiple cross-lingual bench-

marks. We fine-tuned the XLM-RoBERTa model using the automatic sentiment labels inferred

from English text, and tested it against the human sentiment annotations for each language in the

test set. As shown in the rest of the first row in Table 3.5, the results vary considerably by language:

performance is highest for Korean and German, probably due either to high language similarity or

high annotation correlation with English; Mandarin Chinese, Dutch, and Vietnamese are among

the second-highest group; Cantonese and Romanian have lower transfer accuracies. From these

groupings, we can infer that the cross-lingual text sentiment transfer is influenced both by the tar-

get Bible’s sentiment annotation agreement with English and by the target language’s similarity to

English.

Finally, we explored further to see whether we could transfer the automatic sentiment labels

from English text to the speech of other languages. Similar to the experiment on English speech,

we fine-tuned the XLSR model using the automatic sentiment labels on the full audio Bible in

each language, and tested the model using the human sentiment annotations for that language in

the test set. As shown in the rest of the second row in Table 3.5, when transferring sentiment

across modality and across language at the same time, the performance suffers a large drop, due to

the combinations of factors discussed above. However, the accuracy is higher than random for all

languages, indicating that the automatic sentiment labels do contain information useful for building

a sentiment model.

3.2.3 Conclusions

In this section, we explored bootstrapping sentiment labels from text to build sentiment models

on speech, and bootstrapping sentiment labels from high-resource languages to build sentiment

models on low-resource languages. We scraped audio Bibles in 13 languages, annotated a test
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set in 8 languages, and conducted cross-modality and cross-lingual sentiment correlation analysis

on the annotations. We then used a state-of-the-art model to generate automatic sentiment labels

on English text, and built neural network models by transferring the automatic labels both across

modality and across language. The results verify the feasibility of the bootstrapping approach,

while there is still room for further improvement, especially for the speech modality where the

audio verses may still have signal noises and irregularities as well as speaker differences.

Paths for further improving the cross-lingual and cross-modality transfer include: (1) generat-

ing better automatic sentiment labels using a sentiment analysis model pre-trained on in-domain

religious text. (2) detecting and excluding outliers in audio segments, such as segments with echo,

noise, manipulated voice, or sound effect. (3) normalizing speaker differences across different

Bibles.
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Chapter 4: Learning Humor from Time-aligned Comments

4.1 Introduction

Humor is a highly valued human skill which has been seen as a sign of creativity and intel-

ligence. It is an important aspect of many forms of human-human communication: entertain-

ment, advertising, social bonding, education, and even journalism, such as ‘The Colbert Report’

and ‘Last Week with John Oliver.’ How to define humor has been studied for centuries by great

thinkers such as Plato, Kant and Freud as well as by linguists and psychologists. From a psy-

chological perspective, humor has been defined in terms of the social context in which it occurs,

a cognitive-perceptual process, an emotional response, and a vocal-behavioral expression such as

laughter [46]. So, according to this framework, in order to study human production and perception

of humor, we need a context in which both the humor producer and the humor perceiver are in-

volved [47]. Computational linguists have previously attempted to study humorous expressions by

identifying distinct patterns in these expressions and developing models to recognize them. Nev-

ertheless, most previous research on humor and its prediction has been conducted on text datasets,

with very little focus on multimodal information. The goal of our research is, first, to learn the

acoustic-prosodic, lexical, and visual indicators of humor. Second, we want to build classifiers that

can detect humor from these indicators. Ultimately we hope not only to be able to detect humor

but also to be able to generate humor in dialogue systems and avatars using similar multimodal

features. However, to accomplish this goal we first must understand how humans convey humor.

One of the major difficulties in studying humorous expressions in multimodal contexts is

the lack of well-annotated high quality data. Therefore, the first challenge is to collect a large

humor/non-humor corpus and annotate it for humor; however, this data collection requires much

time and effort. One unique aspect of it is that its perception is quite individualistic [48]; so it is
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important to identify humor labels from actual perceivers directly. To achieve this goal, we have

identified a novel approach to humor labeling using time-aligned comments from actual Chinese

Bilibili audiences watching Bilibili videos. When Bilibili audiences perceive humorous contents,

they typically respond to them by posting comments with laughing indicators. So, when we ob-

serve a large number of laughing comments from multiple individuals at a particular point in a

video, we hypothesize that this is a useful indicator that that segment of the video is being per-

ceived by the viewers as humorous. Using this approach, we have generated humor labels on a

large corpus of Bilibili videos. From these videos we have extracted a large number of multimodal

features in order to study the differences between humorous and non-humorous video segments

and to build humor classifiers using these features.

4.2 Related Work

Most previous work on humor recognition and prediction has been done on text-based data,

perhaps due to the greater ease of collecting and annotating this modality. In 2000, Mihalcea and

Strapparava created a humor recognition model by distinguishing between humorous one-liners

from non-humorous short sentences such as news titles [49]. This work was subsequently ex-

panded to include longer humorous and non-humorous segments, comparing news to blogs [50].

More recently, Yang et al. have done research on the semantic structures underlying expressions

of humor in one-liners and have proposed a method to extract anchor words that enable humor

[51]. For other forms of text like tweets, Raz attempted to classify funny tweets into eleven humor

categories [52], while Zhang and Liu scraped tweets with hashtag ‘humor’ and performed humor

recognition to distinguish humorous tweets from non-humorous tweets [53]. Radev et al. per-

formed unsupervised learning methods to predict humor rankings in The New Yorker Cartoon

Caption Contest [54], finding that semantic classes relevant to human-centeredness and negative

polarity were significantly associated with humor in these captions.[54]. Using transcript informa-

tion from TED talks, Chen and Lee treated the audience laughter marker includes in the transcripts

as the indicator for humor and generated unsupervised humor labels for the transcript using these
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laughter markers [55]. However, although the TED talk is a multimodal resource, it is difficult to

use the additional audio and visual modalities to recognize humor since the audiences’ laughter

and facial expressions are also captured in the videos. Separating audience visual and audio infor-

mation from the speaker’s automatically would be challenging. So, models trained on the speech

and visual modalities of TED talks would probably learn to recognize audience reaction to humor

instead of the humor expression itself. Chilton et al. analyzed microtasks for humor creation, and

built tools to help users write better jokes by invoking these microtasks [56].

To detect humorous content in multimodal resources such as videos, most prior studies have

targeted datasets made from TV sitcoms, where canned laughter was considered to be an indicator

of humorous scenes. Using this method, Purandare and Litman analyzed acoustic-prosodic features

of the TV sitcom ‘FRIENDS’ [57] and Bertero and Fung built deep learning models using text and

speech features to predict humor in ‘The Big Bang Theory’ and ‘Seinfeld’[58, 59, 60]. However,

there has been no evidence to support the hypothesis that canned laughter truly represents the

audience’s perception of humor. In fact, it is more likely to indicate the producers’ decisions

about what they want the audience to view as funny. Even for TV sitcoms with live audiences

and real laughter, the audiences are often simply following signals from the staff about when they

should laugh; moreover, the producers have full control over eliminating or adding laughter during

post-production, so even such laughter is not in fact a reliable indicator of humorous content.

So, models trained on humorous scenes labeled by artificial or edited laughter can only learn to

predict the producer’s point of view rather than the audience’s. Additionally, it is often difficult

to automatically separate the sound of canned laughter from the actor’s speech, since there is no

guarantee that the time stamps in the transcripts do precisely mark the start and end of laughter.

Another drawback to this approach is the limitation of genre. Models trained on the scenarios and

characters of a particular TV sitcom may not generalize to other situations or even other sitcoms.
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Figure 4.1: A screenshot of a humorous ‘papi酱’ scene with laughing user comments of ‘233’ and
‘哈哈’. These time-aligned comments are displayed on the video, synchronized with the scenes.

4.3 Bilibili Corpus

To create a corpus for our humor experiments, we collected a number of videos and their cor-

responding time-aligned user comments from bilibili.com, which is one of the most popular video-

sharing websites in China. One unique feature of bilibili.com is that it allows users to compose and

post instant comments on a scene while watching the video, whereas the traditional video sharing

websites only allow user to post their commments in a specified comment area, which is usually

below the videos. However, in Bilibili, when new viewers watch a video, other viewers’ previous

time-aligned comments are displayed synchronously on the video itself as commentary subtitles,

forming what is termed a bullet screen. Figure 4.1 shows a screenshot of a Bilibili video. Each

video comment on this website contains not only information such as text content and sender ID,

but also has a special field with the corresponding time of the post in the video with milliseconds’

precision. Using this special field, we can automatically align all user comments with the video

time, creating the time-aligned humor comments we will use in our experiments.

According to previous research, laughter is the single most notable expression of perceived
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humor [48] [61]. Thus, we use keywords representing laughter for Chinese viewers as laughter

indicators, to identify humorous content in our videos. Multiple studies support the view that the

sequence ‘233’ is an Internet meme 1 which is widely used by Chinese Internet users to represent

laughter [63]. In addition, ‘哈哈’ (pronounced ‘haha’) and ‘hh’ are onomatopoeic indicators of

laughter and therefore also strongly related to the perception of humor. So, by summing the total

number of comments with ‘233’, ‘哈哈’ or ‘hh’, we are able to identify which of the contents of

our videos are perceived as humorous.

We initially attempted to scrape comedy movies and gameplay videos from bilibili.com, which

are known to contain a high frequency of humor expressions. However, we did not observe many

consistent humor cues from the 8 comedy movies and 233 gameplay videos that we collected. For

the text modality, the comedy movies are on different topics and the gameplay videos also have

unique humorous expressions with respect to the specific gaming rules. For the speech modality,

the different speaking styles of various actors and gamers, and the presence of background mu-

sic, sound effects, and non-speech scenes made it hard to extract and clean the acoustic-prosodic

features. Moreover, the highly diverse video scenes with constantly changing camera position and

visual components also made it nearly impossible to automatically find useful trends from the vi-

sual modality. Therefore, we later decided to collect monologue talk show videos from one same

speaker, with more explicit and consistent clues for humor in speech and visual modalities.

From bilibili.com, we downloaded all of the videos uploaded by ‘papi酱’, one of the most

famous Chinese online comedians. ‘Papi酱’ has millions of followers across multiple online plat-

forms and her Bilibili videos have attracted 296 million cumulative views. ‘Papi酱’ is most famous

for discussing trending topics in a humorous and sarcastic way. In most of her videos, she speaks

Mandarin Chinese without a regional accent and is usually filmed facing the camera, making it

simple to extract both transcript-based and visual-based features. Moreover, there is no live au-

dience in her videos, so that we avoid the pitfall of analyzing the audiences’ laughing reactions

instead of the speaker’s humorous expression. After we filtered out videos containing too many

1An Internet meme is an activity, concept, catchphrase, or piece of media that spreads, often as mimicry or for
humorous purposes, from person to person via the Internet.[62]
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advertisements, we were left with a total of 100 videos with 93593 comments, including 5064

comments with ‘233’, 7255 comments with ‘哈哈’ and 730 with ‘hh’. As reported in Wu and Ito

[63], an average humorous video on bilibili.com has 10.44 comments with the laughing indica-

tor ‘233’. However, each video in our dataset has on average 50.64 comments with ‘233’, which

is significantly higher than the other videos on the same website. This indicates that our corpus

contains a large number of humorous comments and so should be a suitable resource for humor

detection. For our test set, we randomly chose 30% of the videos, using the remaining 70% as the

training set.

4.4 Humor Labels and Annotations

We generated our unsupervised humor labels by estimating user response time to a humorous

scene, counting the number of laughing comments posted at each second, and performing con-

textual smoothing on this number. We used two segmentation methods and produce unsupervised

binary humor labels for both of them: (1) one-second unit level segmentation; (2) Inter-pausal

unit (IPU) level segmentation. We then obtained human annotations on the test set to evaluate the

unsupervised labels.

4.4.1 Calculating Response Time

After careful research on user behavior when posting time-aligned comments to videos, we

built our label generation framework. We have observed that, while watching videos, most users

decide not to pause a video when they post their time-aligned comments, leading to significant

time delays in most of the comments. Therefore, estimating the typical time lag between the video

segment and user comments is an important issue we need to take into consideration. To address

this issue, we developed an approach to estimating response time for each comment. Note that

response time consists of two parts: the length of reaction time in which users perceive humor in a

video, and the length of typing time it takes to compose and post a laughing comment. According to

Schröger and Widmann [64], human reaction time to audiovisual stimuli is 0.316s, a reliable result
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Figure 4.2: Histogram of estimated response time distribution.

we used as our estimate of reaction time. To estimate typing time, we studied the time required

to type Chinese characters. It takes 0.2s on average for a skilled keyboard typist to type one

keystroke, or one character, number, or punctuation mark. Moreover, using pinyin, the most widely

used Chinese typing system [65], each Chinese character is composed of 4.2 Roman characters on

average. Of the 13k laughing comments we collected for our corpus, 68% of the Chinese characters

are ‘哈’, which consists of only 2 Roman characters. Thus, estimation of typing time for ‘哈’ is

0.4s, and 0.2*4.2 = 0.84s for all other Chinese characters. In addition, pressing the ‘enter’ key to

post the comment also takes 0.2s.

Using these estimates, We calculated response time for the our laughing comments; the distri-

bution histogram is plotted in Figure 4.2. In this figure the horizontal axis represents the estimated

response time in seconds, and the vertical height of each bar represents the number of laughing

comments in each second. We see that 90% of laughing comments have a response time of 10s

or less, represented by the darker blue bars. Considering that users are more likely to pause the

video when typing longer comments, simply because these take more time, we estimate that nearly

all the short laughing comments we are using as unsupervised humor labels are posted within 10s
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after the occurrence of the humorous incident. Thus, we decided to limit the laughing comments

we use as humor labels to those with response time under 10s. So we normalized the height of the

first 10 bars (darker blue) in Figure 4.2 and treated them as the probability distribution of the time

delay between the humorous scene and the laughing post. By including the laughing comments

in each second in the previous 10 seconds as well, we not only took the user response time into

account, but also achieved the effect of smoothing the humor annotations so that sudden peaks can

be smoothed out to a flatter distribution.

4.4.2 Constructing Unsupervised Labels

Using the response time distribution described above, we can infer the humor probability of

any scene according to the number of laughing comments following the scene. In this research,

we are interested in studying humorous vs. non-humorous perceptions, so we need to segment the

videos into smaller units and construct binary humor labels on those units. We experimented with

two segmentations: A one-second unit level segmentation and a longer Inter-pausal unit (IPU)

level segmentation.

One-second Unit Level

For the smaller segmentation, we first created unsupervised humor labels on each one-second

unit in the videos. The 100 videos in our corpus represent a total of 6.8 hours of video, which

can be segmented into 24,355 one-second units. We calculated the number of laughing comments

posted at each second and smoothed this number out to the previous 10 seconds according to

the probability distribution of the response time as noted above. After adding all the distributed

probabilities, we obtained the final humor score for each one-second unit. By observing the videos

on the website, we found that 3 laughing comments posted at the same time in the video was

usually a good indicator of humor. The one-second bin with the most laughing comments in the

probability distribution (Figure 4.2) has a 2-second delay and includes about 20% of all laughing

comments in the dataset, so we set the threshold for our humor score as 3*20% = 0.6. Using this
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threshold, 6,508 one-second units with humor scores higher than 0.6 are labeled as humorous, and

17,847 one-second units with lower humor scores are labeled as non-humorous.

Inter-pausal Unit (IPU) Level

Besides segmenting our videos into one-second units, we also explored segmenting them into

larger Inter-pausal Units (IPUs) according to the speakers’ pauses in the videos. We define an

Inter-Pausal Unit as a unit of speech from a single speaker separated from other speech by 50

milliseconds or more. IPU level segmentation avoids the drawback of sometimes cutting a single

humorous punchline in half, and is often used as a more natural way of segmenting speech. Also,

the duration of an IPU in natural speech is usually longer than a one second unit and these longer

segments may give us better data for humor detection. We used Praat software [66] to detect IPUs,

assigning boundaries before and after pauses longer than 50 milliseconds.

We initially set the silence threshold – the maximum silence intensity value with respect to the

maximum intensity – to be -30dB. However, when detecting IPU segments using this threshold,

we found that there were some segments shorter than one second. These extremely short segments

were very likely caused by false decisions in the IPU detection algorithm and would be too short to

provide useful information, so we eliminated these short segments by appending them to previous

segments. This process ensures that all segments are longer than one second. After the initial

segmentation process with -30dB silence threshold and the elimination of short segments, 95%

of the segments were within 8 seconds in length. Since we also wanted to eliminate segments

that were overly long, we considered segments longer than 8 seconds as outliers. To deal with

these, we raised the silence threshold by 1dB, cut the outliers into smaller segments, and filtered

out new outliers (segments still longer than 8 seconds). We recursively repeated this process on

the new outliers, until almost all fine-grained segments were under 8 seconds in length. After

raising the silence threshold to -20dB, 160 segments were still longer than 8 seconds and were

too difficult to be cut further because of loud ambient noise. The mean length for all qualified

segments (segments shorter than 8 seconds) was 3 seconds, so we manually cut the 160 outliers
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Figure 4.3: The effect of smoothing and labeling on a sample video in our corpus. The left side
of the figure shows one-second unit level segmentation, and the right side shows the IPU level
segmentation. On each side, the top graph indicates the number of laughing comments per second
for each segment before smoothing, the middle graph shows the humor score of each segment after
smoothing by response time, and the bottom graph shows the overall unsupervised labeling results.
In the bottom graphs, the red bars indicates segments labeled as humorous and black bars indicate
non-humorous segments.

into 3-seconds segments. Through the segmentation process, we ensured that all IPU segments

were in the range of 1 to 8 seconds so that the features extracted on these segments would be at a

similar level of granularity.

After obtaining the IPU segmentations, we constructed unsupervised humor labels on them

by propagating the labels from our one-second units onto the corresponding IPU. For each IPU

segment, we examined all one-second units within the IPU; if any of the one-second units had a

positive humor label, we labeled the entire IPU as humorous. Eventually, we obtained 7,925 IPU

segments in the 100 videos, with 2,531 IPUs labeled as humorous and 5,394 as non-humorous.
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4.4.3 The Effect of Smoothing and Labeling

To better illustrate the effect of the proposed labeling methods, we randomly selected one

video from the dataset and plotted the smoothing and labeling results in Figure 4.3. The graphs

on the left side of Figure 4.3 show results of smoothing and labeling using one-second-unit level

segmentation with each bar representing a one-second unit, and graphs on the right side are using

IPU level segmentation with each bar representing an IPU. The horizontal axis for all the graphs

is the timeline of the video, and all bars in each graph are ordered horizontally by their occurrence

time in the video. The width of each bar stands for the duration of the segment. Since all bars

on the left have a one-second duration their widths are the same. However, the bars on the right

have different widths according to the different durations of the IPUs. As for the height of the

bars, the upper graphs show the number of laughing comments per second for each segment before

smoothing, the middle graphs show the humor score of each segment after smoothing by response

time, and the lower graphs show the unsupervised labeling results for each segment with red bars

as humorous and black bars as non-humorous.

When comparing the upper and the middle graphs, we can see that the sparse comment spikes

around 200s are smoothed to a lower humor score, while the dense peak around 250s still has a high

score. In this way we can retain the high volume of laughing comments in certain portions of the

videos, while ignoring portions with low agreement on humor among users. Also by comparing the

upper and the middle graphs, all the peaks move forward after smoothing. The trend is especially

clear around 350s, where the peak in laughing comments occurs after 350s while the peak in the

humor score occurs before 350s. This indicates that humorous scenes typically occur before the

laughing reactions, as we would expect. Finally, in the lower graphs with the final labeling results,

we can see that all peaks in laughing comments are captured and labeled as humorous. All these

observations are valid for both segmentation methods in both sides of the figure.
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4.4.4 Human Annotation

Since our labels are generated directly from user comments, we can infer that they represent

users’ perception of the video well. However, due to the uncertainty of user response times, it is

difficult to determine exactly which time stamp second of a video a comment is responding to. In

order to validate our unsupervised labels, we randomly selected 30 videos as the test set, and asked

human annotators to annotate them. Three native Chinese speakers were recruited. These were

asked to watch the original videos with no time-aligned comments displayed, and to label each

second as humorous or non-humorous as they watched. The average Cohen’s kappa score and the

Fleiss’ Kappa score among these annotators’ annotations was 0.65, indicating a substantial degree

of inter-annotator agreement. We then calculated gold labels for each second on the test set using

the majority humor vote over all three annotators. For the one-second unit segmentation method,

we directly compared the unsupervised labels of each one-second unit to the gold labels, and

achieved a 0.78 accuracy. For the IPU level segmentation method, we calculated the IPU level for

the human annotations by examining all seconds within an IPU segment. If any of the seconds were

annotated as humorous in the gold label, we annotated the whole IPU segment as humorous. The

accuracy between the unsupervised labels and the human annotations on the IPU level segments

was 0.76. Both accuracies are high enough to conclude that our unsupervised labeling method can

generate humor labels with an accuracy comparable to human annotation.

4.5 Multimodal Feature Analysis for Humor

We describe the acoustic-prosodic, transcript-based, and visual features that we extracted from

the Bilibili corpus and present our analysis of how these multimodal features contribute to humor

perception. We performed a series of two-sided t-tests between features of segments with hu-

mor and those with non-humor unsupervised labels on both the one-second segments and the IPU

segments.
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4.5.1 Acoustic-Prosodic Features

We first extracted the speech from all of the videos in the corpus. Acoustic-prosodic features

such as pitch and intensity have already proven to be relevant to the expression of humor in TV sit-

coms [57]. So, we extracted pitch and intensity contours for each segment using Praat software[66]

and computed the minimum, maximum, arithmetic mean, range and standard deviation value of

these from the contours. We initially computed statistical features from the pitch and intensity

contours of each segment on both one-second unit and IPU segments. After feature extraction, we

observed that 1,376 out of 24,355 one-second units and 174 out of 7,925 IPU segments had no

pitch value at all, indicating that there was no clear speech in the segment. To examine the effect of

speech modality in multimodal humor, we added a new binary feature, ‘pitch existence,’ to identify

whether there were in fact any extractable pitch values in the segment. We then excluded those

segments which had no pitch values from the t-tests of all other acoustic-prosodic features, in order

to focus on cases where pitch was extractable.

The significance test results are shown in Table 4.1. Note that the duration of our one-second

segments is generally shorter than the duration of IPUs, which range from 1 to 8 seconds with a

mean duration of 3 seconds. This means that the features computed on one-second units may be

more locally specific to humorous punchlines, while features computed on the IPUs have a larger

window and thus include more contextual information. However, despite the difference in window

size, the relationship between most of our acoustic-prosodic features and humor are similar for

both segmentation methods.

As shown in Table 4.1, we found, not surprisingly, that the inclusion of pitch in our videos

was positively correlated with humor in the smaller segments, meaning that pitch plays an impor-

tant part in the delivery of multimodal humor. The non-significant p-value for the pitch existence

feature at the IPU level is probably due to the very small number of IPUs with no pitch (174 of

7925). Mean and maximum pitch are significantly correlated with humor segments for both one-

second and IPU segmentations, while minimum pitch does not correlate with humor in the smaller

segmentation and is negatively correlated in the IPU segmentation. Pitch range is also positively
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One-second Unit Inter-pausal Unit (IPU)

t p t p

Pitch existence 8.71 p<0.001 1.57 p=0.116

Pitch min 3.68 p=0.403 -2.20 p=0.028

Pitch max 4.62 p<0.001 5.52 p<0.001

Pitch mean 6.21 p<0.001 4.37 p<0.001

Pitch range 2.40 p=0.016 6.55 p<0.001

Pitch stddev 0.93 p=0.352 3.64 p<0.001

Intensity min 6.91 p<0.001 4.22 p<0.001

Intensity max 16.88 p<0.001 11.76 p<0.001

Intensity mean 7.02 p<0.001 3.82 p<0.001

Intensity range -5.02 p<0.001 -3.30 p<0.001

Intensity stddev -3.57 p<0.001 -2.68 p<0.001

Speaking rate -10.12 p<0.001 -10.16 p<0.001

Table 4.1: T-statistics and two-tailed p-values of acoustic-prosodic features on the unsupervised
humor/non-humor labels.

40



correlated with humor in both segmentations, although more strongly in the IPU segmentation.

While standard deviation of pitch is not correlated in the smaller units, it is correlated with humor

in the IPU units, indicating that there is a larger change in pitch in humorous speech observed in

a larger context. For the intensity features in Table 4.1, the minimum, maximum and mean pitch

values are higher in humorous segments, but both the range and standard deviation of intensity

are lower in humorous segments in both segmentations. Therefore, we infer that humorous ex-

pressions can be characterized by a continuously changing pitch contour with generally high pitch

values, and a more constant high intensity contour. This corresponds to the humor techniques of

exaggeration and bombast [67] [68] [69], where the humor producer reacts in an exaggerated way

or talks in a high-flown, grandiloquent, or rhetorical manner.

4.5.2 Transcript-based Features

We used the automatic speech recognition (ASR) system for Mandarin Chinese provided by

Google Speech API to obtain speech transcripts from the videos’ audio files. The transcripts are at

the character-level. However, the speed of most videos was increased by the video creator ‘Papi酱’

as a mark of her personal style; so to improve the ASR performance, we decreased speed of the

audios to 0.75 times the original speed before passing them to the Google Speech API. We also

normalized the energy and pitch of the audios to reduce the effect of exaggerated expressions on

the ASR.

Speaking Rate

Using these automatic transcripts, we first computed speaking rate, another acoustic feature,

from the original recording by calculating the number of Chinese characters per second. For char-

acters that spanned two or more segments, we included them in all segments that had time overlap

with the character. For the one-second unit segmentation method, we simply calculated the number

of characters in each second without any extra context window. For the IPU segments, we calcu-

lated the number of characters in each segment divided by the duration of the segment. As shown in
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the last block of Table 4.1, the t-value between the speaking rate of humor and non-humor is -10.12

on the one-second units and -10.16 on the IPUs (both p<0.001), indicating an increase in speaking

rate in non-humorous segments. This suggests that the speaker tends to speak more slowly when

expressing humor, which corresponds to humor techniques of exaggeration [67] [68] and changing

speed [69]. The videos are sped up from normal speech in the video creator’s post-processing, also

indicating the humor technique of changing speed [69].

Lexical Features

We also extracted textual features from the automatic transcripts using Linguistic Inquiry and

Word Count (LIWC) software [70]. We used the simplified Chinese dictionary for LIWC (CLIWC)

developed by Huang et al. [71], which contains 91 word categories such as affect words, social

words, time orientation words, and words for cognitive, perceptual, and biological process. Given

the input sentence, LIWC software generates a number for each word category depending on how

many times the words in that category appears in a segment. We used the same segmentations for

LIWC analysis that we describe above: one-second segments and IPUs.

LIWC requires input text to be segmented into words separated by spaces and only generates

output at the word level. However, Chinese sentences naturally have no space between characters

and the Google ASR output is on the character level. Therefore, we performed word segmentation

on the character-level transcripts using the ‘Jieba’ Chinese text segmentation package [72] and

generated the timestamps for each word according to the transcript. To avoid cutting words that

span two or more segments in half, we included these words in all segments that have time overlap

with any of the characters in the word. When calculating the CLIWC scores for content word cate-

gories, we identified function words from words with a top 100 frequency in the data and removed

them as stopwords. The same process was used on both one-second units and IPUs to generate

the text transcript for each segment. After running CLIWC on the word-segmented transcripts,

we obtained 91 scores for each segment, with each score corresponding to the frequency of one

word LIWC category in the segment. We also added two customized categories into our lexical
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features, human-centeredness and negative polarity, which have been shown in previous work to be

correlated with humor in one-liners and cartoon captions [49] [50] [54]. The category of human-

centeredness includes all personal pronouns in CLIWC (‘i’, ‘we’, ‘you’, ‘youpl’, ‘shehe’, ‘they’),

and the category of negative polarity includes words related to negative emotion and negation in

CLIWC. All lexical features were normalized by the number of words in each segment before

stopword removal.

Table 4.2 shows the comparison of lexical features of segments with humor and those with

non-humor unsupervised labels. Table 4.2(a) contains results on one-second units and Table 4.2(b)

contains results at the IPU segmentation level. We only report the words categories with two-tailed

p-value 0.05 or lower, which means the category differs significantly between humor and non-

humor segments at that level. In each table, we manually grouped the significant lexical features

into two columns. The word categories related with humor strategies in general are listed on the

left, and the word categories related with specific discussion topics of the speaker are listed on the

right. In each column, the lexical features are ordered by their p-values from the most significant

to the least significant. Out of the 93 lexical categories, 13 are significant the on one-second unit

level and 10 are significant on IPU level. The higher number of significant features on one-second

units is probably because smaller segmentation means more data points and thus will lead to more

significant p-values.

From the left columns of Table 4.2(a) and Table 4.2(b), we can observe that the word categories

of ‘cognitive process’, ‘insight’, ‘cause’, ‘auxiliary verb’ and ‘interrogatives’ are all negatively

correlated with humor, indicating that when comparing to normal speech, the speaker uses less

reasoning and a more straightforward speaking style in humor punchlines. This corresponds to

the findings in prior research that increased joke complexity may in fact reduce humor [73]. The

speaker also uses more ‘netspeak’ words in humorous segments to appeal to the audience as an

online celebrity. On the one-second unit level, the speaker also uses words related with ‘anxiety’

and ‘risk’ to build contrast and create incongruity, and this incongruity is one of the necessary

ingredients of humor according to prior research [74]. In contrast with previous findings [49]
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(a) One-second Unit

Strategy-related Topic-related

t p t p

Anxiety 2.74 p=0.006 Religion 3.86 p<0.001

Cognitive Process -2.69 p=0.007 Biological Process -3.56 p<0.001

Insight -2.50 p=0.012 Sexual -2.84 p=0.004

You(plural) -2.25 p=0.024 Power 2.27 p=0.023

I 2.19 p=0.029 Drives 2.10 p=0.035

Netspeak 2.11 p=0.035 Female -2.06 p=0.040

Risk 2.06 p=0.040

(b) Inter-pausal Unit (IPU)

Strategy-related Topic-related

t p t p

Cause -3.12 p=0.002 Religion 2.74 p=0.006

Auxiliary Verb -2.84 p=0.004 Biological Process -2.30 p=0.021

Interrogatives -2.68 p=0.007 Female -2.10 p=0.035

They -2.24 p=0.025 Body -2.01 p=0.044

I 2.05 p=0.039

Cognitive Process -2.05 p=0.040

Table 4.2: T-statistics and two-tailed p-values for lexical features on the unsupervised humor/non-
humor labels. (a) shows results on one-second unit segments; (b) shows results on the IPU seg-
ments.
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[50] [54], however, neither of the two customized categories, human-centeredness and negative

polarity, are significant when we only use one single feature to represent each category. However,

the first person pronoun ‘I’ is positively correlated with humor on both one-second unit and IPU

level, indicating that human-centeredness is the indicator of humor not only in one-liners but also

in longer videos.

4.5.3 Visual Features

To analyze humor in the videos, we also explored three sets of features in the visual modality.

First we calculated frame similarity to measure visual changes in general. We also extracted fea-

tures specifically related to body poses and facial landmarks using AlphaPose [75] and dlib library

[76] to better understand the expression of humor in gesture as well.

Frame Similarity

We first extracted frame similarity between our video segments since this may capture visual

patterns such as change of scenes and large body movements of the speaker in the videos. How-

ever, camera positions and scenes do not change frequently in our corpus, so the frame-by-frame

difference appears to be too small to be significant in most cases. Therefore, we extracted one

frame in each 10ms and calculated the similarity of this compared to the neighboring extracted

frames. The measurement we used was the structural similarity (SSIM) index, which estimates the

perceptual similarity between images. The higher the SSIM scores are, the more similar the frames

are. Extremely low SSIM in our videos usually indicates large changes in scenes and extremely

high SSIM indicates that the speaker is relatively still. We used both one-second units and IPU

segmentations and calculated the SSIM scores for each neighboring frame pair within the segment;

we then computed the minimum, maximum, mean, range and standard deviation of these SSIM

scores for each segment. As shown in Table 4.3, the minimum SSIM is not significantly correlated

with humor in one-second units but is positively correlated with humor in IPUs. This is consistent

with our observation that there is less complete scene switching in humorous segments in our cor-
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One-second Unit Inter-pausal Unit (IPU)

t p t p

SSIM min 0.75 p=0.452 3.05 p=0.002

SSIM max -23.05 p<0.001 -11.34 p<0.001

SSIM mean -19.83 p<0.001 -12.63 p<0.001

SSIM range -6.57 p<0.001 -4.81 p<0.001

SSIM stddev -6.51 p<0.001 -5.77 p<0.001

Table 4.3: T-statistics and two-tailed p-values of frame similarity features on the unsupervised
humor/non-humor labels. The higher the SSIM scores are, the more similar the frames are.

pus. All other SSIM features are negatively correlated with humor (p<0.001) in both segmentation

methods. The negative correlation for maximum and mean SSIM suggests more visual movements

in general in humorous segments. The lower SSIM range and standard deviation in humorous seg-

ments shows that these visual movements are somewhat more stable and consistent. In brief, we

can infer that the speaker constantly shows movement in humor segments while the background

scene is kept constant. This finding correlates with previous findings about humor techniques of

clownish behavior (making vigorous arm and leg movements or demonstrating exaggerated irreg-

ular physical behavior) and peculiar facial expressions (making a funny face or grimace) [69]. To

further investigate these speaker movements, we extracted body poses and facial landmarks that

are described below.

Body Pose

On the same frames and segments that we computed the similarity scores, we extracted body

pose features to learn how body poses and motions affect the delivery of humor. We used Alpha-

Pose [75] which outputs 17 keypoints of body junctions, with two coordinates and a confidence

score for location of coordinates in the range [0, 1] for each keypoint. The keypoints include nose,

eyes, ears, shoulders, elbows, wrists, hips, knees, and ankles. Figure 4.4-left shows an example

46



Figure 4.4: Visualization of the body pose keypoints (left) and the facial landmarks (right).

of the body pose output, where nose, eyes, ears, shoulders and elbows are detected and marked as

the end points of the colorful lines. In most of our videos, the speaker maintains a sitting pose and

only the upper part of her body is visible, so the confidence scores for keypoints such as hip, knees,

and ankles are usually close to zero. Thus, we used two binary features to indicate whether the

hips and the legs (knees and ankles) are in the image, instead of using the full coordinates. Since

the number of frames that each keypoint appears in varies across segments, we computed the mean

coordinates of each keypoint in the segment to capture the average location of that keypoint in the

segment, and the standard deviation of the coordinates for each keypoint in the segment to capture

the motion within the segment. We also computed the difference between the neighboring frame-

level coordinates as a representation of the direction of movement between frames, and calculated

the mean and standard deviation of these differences to estimate the average movement direction

and changes in direction.

A series of t-tests were performed to test the significance of the body pose features. For the

appearance frequency features, we can see that the appearance of upper body keypoints are most

closely associated with the delivery of humor in our corpus, with p<0.001. For the 22 coordinates

of the upper body keypoints, we found that the means of coordinates within a segment are quite

significant with a p<0.001 in both segmentations, which means that the location of the upper body

keypoints is associated with humor. Moreover, the standard deviations and the standard deviations

of differences are all significantly and positively correlated with humor, suggesting that there are
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more movements and more changes in movement directions in humorous segments. However, the

mean of the differences of coordinates is only significant for the nose keypoint in both segmen-

tations. This indicates, curiously, that only the direction of movement of the speaker’s nose is

associated with humor; this may occur because the speaker in our videos sometimes wears glasses,

so the eye keypoints are not detected in the frames. Thus it is possible that the nose movement

direction is identifying the direction of head movement.

Facial Landmark

Besides frame similarity and body pose features, we also extracted facial landmarks on the

video frames using the dlib library [76]. The output on each frame is 68 coordinates indicating

facial landmarks that represent salient regions of the face, including eyes, eyebrows, nose, mouth,

jawline. Dlib detects more keypoints on the face region than Alphapose, and thus can better rep-

resent the facial expressions on the speaker. Figure 4.4-right shows an example of the dlib facial

landmarks output, in which the green box represents the face region and the red points mark the

keypoints on the face. If there is no face found in the image, dlib will generate an empty output.

After extracting the facial keypoints on the video frames that the face appears, we subtracted the

central position of all coordinates from the original value, which gave us the relative position of

each coordinate to the center of the face. The goal of this process is to capture only the expres-

sions on the face, and to eliminate the possible influence of the absolute position of face in the

video. Since the relative position of the jawline did not appear to be very useful for analyzing our

speaker’s facial expressions, we excluded the keypoints for jawline and only used the rest 51 facial

keypoints with 2 coordinates for each keypoint.

Similar to the process we used for body pose features, we calculated the mean, the standard

deviation, the mean of frame-level differences, and standard deviation of differences for the 102

coordinates of the facial keypoints. T-tests were performed to test the significance of the four

groups of features on both segmentation methods. The results were also similar to the body pose

features, with the mean of most coordinates significantly correlated with humor (99/102 for one-
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second units; 95/102 for IPUs). The standard deviations (99/102 for one-second units; 53/102

for IPUs) and the standard deviations of frame-level differences (88/102 for one-second units;

39/102 for IPUs) are somewhat associate with humor. This suggests that the relative location

of the facial keypoints and their movements contribute to a humorous expression. However, the

means of frame-level differences (28/102 for one-second units; 1/102 for IPUs) are correlated with

humor only for a few keypoints: all significant features are coordinates for the brows and nose.

We thus can infer that the movement direction of brows is associated with humor expressions, and

the ‘movement’ of nose is probably due to moving head angles changing the visual center of face

which we use to calculate the relative nose position.

4.6 Humor Prediction Results

Our multimodal feature analysis shows a significant differences between humorous and non-

humorous segment in speech, text, and visual modalities. To determine whether these features will

also be useful for humor prediction, we trained machine learning classifiers using them to predict

humor on our dataset. As described in Section 4.4, the test set includes 30% of the videos and is

manually annotated for humor using both segmentation methods. So, we trained the classification

models on the unsupervised labels of the training set that we had automatically created from the

laughing comments and we tested them on the human annotations of the test set. At the one-

second unit level, there are 16,957 segments in the training set and 7,398 segments in the test set;

on the IPU level, there are 5,465 segments for training and 2460 for testing.

For the speech modality, we used both the acoustic-prosodic features that we found to be useful

for distinguishing humorous from non-humorous segments as shown in Table 4.1 as well as the 384

baseline set of features used in the INTERSPEECH 2009 Emotion Challenge [77]. For the text

modality, we used the lexical features extracted using CLIWC. For the visual modality, we merged

the frame similarity features, the body pose features, and the facial landmark features that we

described in Section 4.5. In summary, we included a total of 396 speech features (12 from Section

4.5, 384 from openSMILE), 91 text features obtained from CLIWC, and 522 visual features (5
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One-second Unit Inter-pausal Unit (IPU)

Speech 0.71 0.76

Text 0.70 0.70

Visual 0.72 0.72

Speech + Text 0.72 0.76

Speech + Visual 0.73 0.75

Text + Visual 0.72 0.72

All Features 0.73 0.75

Table 4.4: Humor prediction results measured by micro-average F1.

from frame similarity, 109 from body pose,and 408 from facial landmark) for our humor prediction

experiments. We employed a Random Forest (RF) classifier with 1000 estimators as the machine

learning model and used micro-average F1 score for the evaluation metric. The results are shown

in Table 4.4.

First, we experimented with using each of the modalities alone for classification. On the one-

second unit level, the visual features performed best, while the speech features obtained an F1

slightly lower than the visual features, and the text features achieved the lowest F1. However, on

the IPU level, the speech features significantly outperformed both the text and the visual features.

This may be because there were not enough speech clues in a single second, but visual movements

can be better observed in small segments, while on the larger IPU segments, more information can

be found in the speech contours. The text features always had the lowest F1, probably because the

lexical patterns for humor are too sparse in our videos and the patterns learned on the training set

might not be useful on the test set.

We next used two modalities to predict humor and then combined all three modalities using all

the features for classification. The results on one-second units showed that combining speech and

visual features performs best with an F1 of 0.73, higher than using speech or visual features alone.

However, adding text to the speech and visual features does not improve performance, perhaps
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because the text features were, overall, not very useful for humor classification on our corpus. On

the IPU level, combining speech and text features performed the same as using speech features

alone, and adding visual features to speech features actually lowered the F1 score. A possible

explanation for this is that while there are only 91 text features there are 522 visual features.

So the larger number of less useful visual features lowers the score since they dilute the speech

performance more than adding the fewer number of less useful text features. Similarly, using

all three features on the IPU segmentations does not outperform using speech features alone and

again lowers performance somewhat. This indicates that speech features are already very powerful

in predicting humor using the larger context in IPU segments, so that adding other features may not

improve performance. When comparing the one-second segment performance with performance

on the IPU segmentation, we found that performance on the IPU segmentation was always the

same or better than performance on the one-second segmentation, suggesting, not surprisingly,

that using a larger context generally improves humor prediction.

4.7 Conclusions

We have described a framework for generating unsupervised humor labels using the time-

aligned laughing comments collected from a Chinese video sharing website Bilibili. We experi-

mented with two different segmentation methods which we labeled for humor automatically, com-

paring our unsupervised labels with human humor annotation on the test set and finding high

correlation between them. On the automatically labeled video segments, we extracted features

from speech, from automatically obtained text transcripts, and from visual features and analyzed

the characteristics of humor expression in each of these modalities. On these multimodal features,

we trained machine learning classifiers to predict humor and achieved a best F1 score of 0.76.

The results of our feature analysis support some previous proposals, such as the importance of the

humor technique of indicating surprise with exaggeration and bombast. Change in speaking rate,

which has also been associated with humor expressions we also found to be true in our corpus.

We also found some support for the notion of the human-centeredness of humor. From our visual
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features we also found support for the notion that clownish behavior was associated with humor

production.

Our current videos primarily use the humor techniques of surprise and clownish behaviours,

which do not represent the full spectrum of humorous expression. Thus, future directions include

collecting more videos from different types of humorous video creators, so that we can explore a

larger variety of characteristics in humor and train classifiers that generalize better to other genres

of humor expression. Our humor labels generated according to audiences’ comments can also

be used as feedback to the video creator to assess the punchlines’ quality and help the creator

improve video production. Another potential would be to use this method for automatic labeling of

video segments from other sources, such as live chats in YouTube videos and other live streaming

websites by using keywords in comments that are related to different types of user reaction such

as emotions (e.g. sad or angry), perceived charisma, and reactions in other languages.
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Chapter 5: Learning Humor from Facebook User Reactions

5.1 Introduction

As we know from our previous work on Chinese social media and that of others, humor is

ubiquitous –– it forms a crucial part of people’s lives both online and off. Besides humorous

talk-show videos like Bilibili which capture the humorous expression of comedians in deliberately

made videos, another data source of humor that is worth studying is social media platforms such

as Twitter and Facebook, which contain humorous expression from internet users who are less

professional in their humor techniques. Automatically detecting humor in social media, then, has

become an important task, with applications from misinformation to advertising to philosophy. As

we described in Chapter 4, from a psychological perspective, humor represents anything people

say or do that others perceive as funny and tends to make them laugh [46]. Humor perception,

though, is highly individualistic [48], making it hard to reliably annotate humor.

Researchers have proposed various methods to collect humorous and non-humorous data with

minimal annotation needed. Most attempts have focused on distinguishing between jokes and

news, which both have natural labels on humor and can be scraped automatically. This major

stylistic difference makes detecting humor easier –– but it is far from most real-world scenarios

where humorous and non-humorous texts come from the same domain. Another technique collects

social media posts by humor- and non-humor-related hashtags, but this method suffers from large

data noise and low labeling accuracy [53]. Finally, there have been studies using the number

of Reddit upvotes as humor labels [78, 79]. Though this technique sources data from the same

domain, that domain is too limited in scope: all the data comes from a single subreddit r/Jokes.

This specificity means that the data represents only the humor perception of a particular group of

Reddit users, dedicated to producing witty jokes.
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Figure 5.1: User reactions to a humorous Facebook post (top) and a non-humorous post (bottom).

To address these problems of specificity and domain discrepancy in humorous data collection,

we propose CHoRaL, a framework for Collecting Humor Reaction Labels. CHoRaL generates

perceived humor scores using the naturally available reactions on Facebook posts. Our method has

several advantages: (1) labeling humor on any Facebook post, without the need for extra human

annotations; (2) providing both binary labels and continuous scores for humor and non-humor; (3)

enabling the fast collection of large-scale social media datasets on humor.

Our CHoRaL corpus represents the largest dataset to date on humor, containing 785K Facebook

COVID-19 related posts, each assigned a humor score. We chose to focus on COVID-19 because

of its universality as a phenomenon that affects all Facebook users. CHoRaL, however, can be

easily adapted to other topics, making it the most extendable humor data collection framework yet.

5.2 Related Work

Most corpora for textual humor detection use online joke compilations as humor data and more

serious sources, like news or proverbs, as non-humor data. Mihalcea and Strapparava [80] built a

model to distinguish one-liners from short sentences such as news titles, and Mihalcea and Pulman

[50] extended the work to longer humorous articles and news articles. Yang, Lavie, Dyer, and

Hovy [81] identified the semantic structures of humor by studying the differences between puns

and news. Chen and Soo [82] built deep learning humor detection models on four datasets with

jokes as humor data and news as non-humor data. Blinov, Bolotova-Baranova, and Braslavski [83]

collected jokes in Russian, combining with forum posts that have low similarity to the jokes as
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non-humorous samples. More recently, Annamoradnejad and Zoghi [84] combined Reddit jokes

with news headlines and used a BERT-based model to classify these two sets of data.

For other forms of naturally labeled humorous texts, Reyes, Rosso, and Buscaldi [85] obtained

humorous tweets with the hashtag “humor” and non-humorous tweets from other hashtags. Radev,

Stent, Tetreault, Pappu, Iliakopoulou, Chanfreau, Juan, Vallmitjana, Jaimes, Jha, and Mankoff

[86] obtained humor scores from a cartoon caption contest, and, similarly, Potash, Romanov, and

Rumshisky [87] obtained humorous tweets from the official website of the Comedy Central show

@midnight. Chen and Lee [55] and Hasan, Rahman, Bagher Zadeh, Zhong, Tanveer, Morency,

and Hoque [88] generated humor labels using the audience laughter marker in the transcripts of

TED talks. Hossain, Krumm, and Gamon [89] and Hossain, Krumm, Gamon, and Kautz [90]

asked annotators to edit news headlines to make them funny. There are also some hand-annotated

humor datasets [91, 53]. However, these methods either need extensive human annotation or suffer

from low label accuracy.

For multimodal humor detection, in addition to our work on Bilibili, researchers have used

canned laughter in TV sitcoms [92, 93, 94, 60], and time-aligned comments in online videos [95,

96]. Multimodal humor has also been examined in internet memes [97, 98].

The dataset closest and most relevant to our work on Facebook is the rJokes dataset [78, 79],

where humor scores were obtained from the number of upvotes toward each post in the r/Jokes

subreddit. However, all the posts in this subreddit are intended to be jokes, so that the dataset

includes only successful jokes and failed jokes, which is far from the natural distribution of posts

in social media.

5.3 CHoRaL Framework and Dataset

In this section, we introduce our Facebook post collection process, as well as our algorithm

to assign humor and non-humor scores to the posts. Although CHoRaL can be applied to any

topic, we chose COVID-19 as the topic for our dataset. There has been extensive discussion on

this pandemic with a wide range of audiences, so this topic prevents us from biasing our posts and
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labels toward a specific demographic group.

5.3.1 Data Collection and Cleaning

We collected our Facebook posts from CrowdTangle by searching COVID-related keywords

(“covid-19, coronavirus, corona, covid 19, sars-cov-2, covid, sars cov 2”), and downloading posts

from January 20th, 2020 until March 18th, 2021. We set the language as English and post type

as Status on CrowdTangle, in order to ensure that we retrieve text-only posts without images or

videos attached. This initial retrieval surfaced 2 million posts.

We further cleaned these 2 million downloaded posts locally. We removed posts with duplicate

text fields and some remaining non-English posts. We also removed posts with rendered links to

minimize the influence of non-text elements on the viewers’ perception of humor. For posts with

non-rendered links, we replaced the links with a special token. This replacement allowed more

posts to pass our final filter, which was to cap post length at 500 characters to suit the max token

length of BERT-based models. About 785K posts remained in our corpus after this local filtering

round.

5.3.2 Defining the Humor Score (HS)

We used Facebook’s built-in reactions feature to determine how funny a post is in the perception

of users. Our assumption is that the higher the Haha percentage among all reactions, the more

humorous the post. An example of a post with a high percentage of Haha reactions (laughing face)

is shown at the top of Figure 5.1.

Of course, the fewer the total reactions in a post, the less confidence we had in conclusions

drawn from its reaction distribution. So, we also discounted unpopular posts with a tanh multiplier

proportional to the total number of reactions. The multiplier is stretched by 50, so that posts with

about 100 total reactions or more are similarly weighted, while there is a steep decline in weighting

as total reactions approach zero. The following formula summarizes our Humor Score:
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HS =
ℎ

C
∗ tanh( C

50
) (5.1)

where h = number of haha reactions, t = total number of reactions, and 50 is used as our

popularity stretcher.

5.3.3 Defining Non-Humor Score (NS)

Besides finding humorous posts using HS, we also want to retrieve non-humorous negative

samples for building a binary humor detection model.

Intuitively, it makes sense to use those posts with the lowest HS as non-humorous data. But

these posts that have an extremely low Haha percentage also represent too extreme of an opposite to

humor –– for COVID-related posts, this opposite turns out to be almost exclusively sad posts about

people’s deaths and illness. Though sad posts are certainly non-humorous, they don’t represent the

full scope of non-humorous expression. Thus, we need a new technique to retrieve a broader range

of non-humorous posts, which should include neutral posts, sad posts, as well as other emotional

posts that do not evoke a humorous reaction.

We instead define our Non-Humor Score (NS) as posts whose reaction distributions have the

lowest divergence from the standard Facebook post distribution. Given the fact that the vast ma-

jority of posts have a very low HS, we assume that standard Facebook posts are non-humorous, as

the example shown at the bottom of Figure 5.1. To use our Non-Humor Score, we first average

the distribution of reactions over our 785K cleaned posts. Then, for a new post, its NS is defined

as the negative log of the mean-squared error between its reaction distribution and the averaged

distribution. Thus, a higher NS indicates a lower divergence. We also include a tanh popularity

multiplier for the same reasons as above. The following formula summarizes our NS:

NS = – log(tanh( C
50
) ∗

∑
A∈'

(((A) −$ (A))2
|' | ) (5.2)

where t = total number of reacts, R = the set of Facebook reactions, S maps a reaction to its
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# of Posts 784,965

# of Poster Accounts 264,685

# of User Reactions 126,839,984

# of Haha Reactions 6,525,247

Table 5.1: Statistics of the dataset.

percentage in the standard distribution, and O does the same with respect to the observed post.

5.4 Humor Analysis

Table 5.1 provides a summary of our dataset with 785K posts posted by 265K accounts. There

are a total of 149M user reactions and 6M of them are Haha reactions, which we use as indicators of

humor. To better understand the expression of humor, we performed lexico-semantic and affective

analysis by extracting lexicon-based features from the posts, aiming for explainable results. We

used Linguistic Inquiry and Word Count (LIWC) [70] and the Grievance Dictionary [99] for lexico-

semantic analysis; for affective content, we used the Revised Dictionary of Affect in Language

(DAL) [100] and the Vader sentiment tool [101]; we also analyzed the complexity of posts, and

the use of emojis as a social media specific feature. All word-level features were normalized by

the total number of words after using the Twitter-aware tokenizer of the NLTK Toolkit [102].

We calculated Pearson’s correlation between the features and the Humor Score (HS) of posts; all

reported results are significant with a p < 0.05.

LIWC

The top categories that positively correlate with HS include singular first-person pronouns,

total pronouns, anger words, negative emotional words, and negations. This agrees with previous

findings that humorous texts have more negative polarity and human-centeredness [80, 86]. Also

among the top 10 categories are informal words, swear words, and sexual words, which correspond

to the characteristics of humorous posts on social media. On the other hand, there are fewer
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word categories that negatively correlate with HS, indicating that serious posts share less lexical

similarity. Some negatively correlated categories are relativity words related to space and time,

possibly suggesting that humorous posts have a less detailed writing style.

Grievance dictionary

Besides general patterns in humor expression, we are also interested in the humor profile on

COVID-19 related posts specifically. We used the Grievance Dictionary for understanding posts in

the context of grievance-fueled language threat. The top positively correlated word categories are

fixation, hate, and loneliness, including words such as kill, want, mad, nobody, and alcohol.

Affect and sentiment

To further investigate the affective component found to be related to humor in previous work

[103, 104], we computed average activation, imagery, and pleasantness scores for each post using

the DAL lexicon and sentiment scores using the Vader tool. Both imagery and pleasantness scores

in DAL, as well as the sentiment score in Vader, are negatively correlated with humor, indicating a

more abstract and negative style in humorous posts, which agree with the LIWC findings.

Complexity

We computed the percentage of longer words (more than 6 characters), percentage of complex

words defined by the Dale–Chall readability formula [105], and the Flesch reading ease test [106]

for a readability measurement. All features show that humorous posts have lower complexity.

Emoji

We found the number of emojis in a post to be a humor indicator. Specifically, 363 of the 1,621

unique emojis in our dataset are significantly correlated with HS (320 positive, 43 negative), with

the “Face with Tears of Joy” emoji having the highest humor correlation. Interestingly, humorous

59



posts have generally fewer heart emojis, but more broken heart emoji, echoing our results above

that negative sentiment is related to humor.

5.5 Humor Detection Experiments

Due to the naturally imbalanced distribution of humorous posts in social media, our full dataset

skews towards posts with low HS and high NS. To address this imbalance and build humor detec-

tion models, we used the 20K posts with the highest HS as positive samples and the 20K posts with

the highest NS as the negative samples on humor. We randomly split the 40K posts into training

and test sets, respectively consisting of 80% and 20% of the data, and balanced by binary humor

labels.

Pretrained language models such as BERT have shown great success when fine-tuned for text

classification tasks [107, 108], including the task of humor detection [109, 84]. In our experi-

ments, we fine-tuned 3 pre-trained language models on our CHoRaL dataset: RoBERTa-base [40],

a BERT-style model pre-trained on 160GB of text data including Wikipedia, news, and other web

texts; BERTweet [110], a model with BERT-base architecture, pre-trained using the RoBERTa pro-

cedure but on 845M English Tweets; BERTweet-covid, based on BERTweet but further pre-trained

on 23M COVID-related Tweets. We trained the models in two settings: continuous regression,

where continuous HS is used as ground truth of humor; and binary classification, where high HS

posts have a positive label, and the high NS posts have a negative label. All models were fine-tuned

for 3 epochs on the training set with a learning rate of 2e-5.

To compare the model performance with human assessment of hum, we asked 3 native English

speakers to label 100 random and balanced posts from the test set. The inter-annotator agreement

in Fleiss’ kappa is 0.782. Note that due to the potential differences of humor perception between

our annotators and general Facebook users, the labels provided by annotators were used not as gold

labels, but as a baseline for our models. To compare the continuous models with humans directly,

we used an empirical threshold of 0.18 HS to convert the predictions into binary labels.

Table 5.2 shows the humor detection results on the test set, measured by binary F1-score and
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Continuous Binary

F1 AUC F1 AUC

Human - - 0.867 -

RoBERTa 0.869 0.939 0.868 0.937

BERTweet 0.879 0.947 0.881 0.950

BERTweet-covid 0.880 0.948 0.883 0.951

Table 5.2: Humor detection results.

Area Under Curve (AUC). First, all models have comparable F1 with human annotators, validating

our approach of automatically learning crowd-sourced humor from reactions of millions of users.

Comparing the different models, we found that both models which were pre-trained on Tweets

outperform RoBERTa, and that BERTweet-covid, with further adaption to the COVID-19 topic,

was slightly better than the original BERTweet. This finding suggests that the pre-training domain

is quite important in detecting figurative language. Moreover, training on binary labels given by

both HS and NS is generally better than training on HS exclusively, indicating the effectiveness of

NS to provide additional information on non-humor.

Comparing the humor detection results on the Facebook posts with the results on the Bilibili

videos in the previous chapter, we observed that the text modality was more helpful in detecting

humor in our social media posts than in video transcripts. The main reason might be that the

Facebook posts that we collected are controlled to be on the same topic, while the videos are on

different topics with various topic-related humorous expressions. Also, the video transcripts were

automatically recognized, and might suffer from word errors, especially in the punchline where

the speaker might use an exaggerated tone. Moreover, humor in the videos was delivered with the

joint effort from text, speech, and visual modalities; in contrast, the text content serves as the only

source of humor in posts due to our exclusion of media attachments. All these factors lead to the

better quality of the textual humor models built on Facebook posts, suggesting that those models

complement our understanding of humor in the text modality.
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5.6 Conclusions

In this section we present the CHoRaL framework for automatically collecting humor reaction

labels, and the dataset including 785K posts with humor and non-humor scores. We also perform

analysis on humor expressions in our dataset and build models to detect humor with performance

comparable to human labelers. Future directions to improve the model’s performance include

adding common sense reasoning and utilizing world knowledge as well as contextual information

to detect incongruity, which is a crucial component of humor.

CHoRaL enables the development of humor detection models on any topic and can also be

used to label other human reactions such as anger and sadness. Furthermore, our dataset has the

potential to be used in broader applications – identifying whether a piece of text is humorous is

useful not only for understanding the strategy of humor in social media, but also for distinguishing

the authors’ intent behind the text. For example, for tweets talking about a COVID-19 rumor, a

poster could either be spreading malicious misinformation or simply making fun of the rumor. In

this scenario, distinguishing between humorous and non-humorous text may well help us better

understand the author’s stance and purpose.

For ethical considerations, since our data were collected from Facebook with a popularity

stretcher, our humor analysis results and humor detection models may be biased towards English-

speaking populations that are more active on social media. However, we did do our best to retrieve

posts with as broad population coverage as possible, while maintaining the effectiveness of our

humor and non-humor scores.
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Chapter 6: Gender-balanced Charismatic Speech

6.1 Introduction

Charisma was defined by Max Weber as “a certain quality of an individual personality, by

virtue of which he is set apart from ordinary men and treated as endowed with supernatural, su-

perhuman, or at least specifically exceptional powers or qualities not accessible to the ordinary

person” on which basis “the individual concerned is treated as a leader” [111]. While this defini-

tion does not specify the particular qualities that make an individual appear charismatic, previous

research has shown some agreement on the personal traits that people associate with charisma

[112, 113, 114, 115, 116]. Audiovisual analysis of charisma using video recordings [117, 118] has

also found that speech is an essential modality of perceived charisma. Moreover, researchers found

that using characteristics of charismatic speech in text-to-speech synthesis can make a computer-

generated voice more trustworthy [119] and practicing with acoustic feedback can make humans

speak more charismatically [120]; this demonstrates the importance of understanding charismatic

speech. However, most previous studies on charismatic speech have examined politicians or indus-

try leaders, focusing on male speakers alone, with relatively few raters rating charisma and little

knowledge of these raters’ demographic or other information which might influence their ratings.

In this work, we examine ratings of equal numbers of male and female speakers, also identify-

ing the demographic and personality information of crowd-sourced raters. We want to determine

whether raters scores male and female speakers differently when the corpus is balanced for gender,

and whether male or female raters are biased in their ratings of speakers of different genders. We

also want to obtain a more detailed study of the lexical and acoustic-prosodic factors significantly

correlated with charisma ratings for each gender and also to compare how raters rated both on a

large number of speaker traits which have been positively or negatively correlated with charisma
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in previous studies.

6.2 Related Work

One of the early studies of charismatic speech, Rosenberg and Hirschberg [112] [113] collected

American political speech segments and asked raters to rate the segments on charisma and 26 addi-

tional speaker traits. They found that charismatic speakers used longer sentences, more first-person

plural and third-person singular pronouns, more repetitions and complex words; acoustic-prosodic

correlates of charismatic speech were higher in pitch, faster, and louder, with more variation in

intensity. In a later extension, Biadsy et al. [114] studied the cross-cultural perception of charis-

matic speech and identified many features common across cultures, even when raters were rating

voices in languages they did not speak. Also examining political speech, Signorello et al. [115]

[116] asked raters to rate an Italian politician’s speech for charisma and other 67 traits; D’Errico

et al. [121] manipulated the pitch and pause length of Italian and French political speech and col-

lected charisma ratings cross-culturally; Cullen et al. [122] crowd-sourced charisma ratings on an

Irish politician’s speech and built automatic systems to detect charisma. For charisma in business,

Weninger et al. [123] rated charismatic speech from 143 male business executives. Several studies

[124] [125] compared the speech of Steve Jobs and Mark Zuckerberg, and found that the more

charismatic speaker can be characterized as having a higher F0 level, a larger F0 range, a higher

level of variability in speech and a clearer pronunciation. However, when the speech is from male

lecturers, people rate low F0 range and low speaking rate as more charismatic [126].

Most research on charismatic speech has focused on the speech of politicians and business

leaders, and most speakers rated have been male. To investigate possible gender bias in charismatic

speech, Novak et al. [127] compared 1 male and 2 female business executives and found that

females produced stronger acoustic charisma cues but were still judged to be as charismatic as the

single male speaker. Niebuhr et al. [128] found that female speakers start with significantly lower

prosodic-charisma scores than male speakers, judged by an automatic scoring system. However,

the charisma cues and scoring metrics in both works were taken from previous literature, which
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might be already biased towards male speech, without fully understanding the characteristics of

female charismatic speech.

6.3 Data Collection

To build a gender-balanced charismatic speech corpus, we selected 30 male and 30 female

speech clips from Youtube and pilot tested these to balance charismatic, boring, and neutral groups

for each gender using multiple lab ratings. We avoided voice clips from celebrities to prevent rating

bias resulting from speaker recognition. The clips were chosen from prepared talks, educational

course lectures, and interviews, and were each approximately 20 seconds long. Since previous

research [122] has found that charisma labels provided by crowd-sourced workers are as reliable

as onsite annotators, we used Amazon Mechanical Turk (MTurk) to collect ratings for the 60 voice

clips from 15-20 raters each.

Our Human Intelligence Tasks (HITs) were designed as follows: First, workers answered de-

mographic questions, including their birth gender, gender preference, and level of education, and

completed the Ten Item Personality Inventory (TIPI) [129] to measure their Big-Five personality

dimensions [130]. Then, each worker was instructed to rate 10 clips on charisma and 17 other traits:

boringness, coldness, confidence, eloquence, enthusiasm, extroversion, fluency, intelligence, intro-

version, liveliness, ordinariness, persuasiveness, reasonableness, sincerity, trustworthiness, uncer-

tainty and weakness. The clips consisted of 5 voices each from male and female speakers, and the

18 total speaker traits were shuffled multiple times to display different random orders. In addition,

a textual attention check instructing workers to select a specific rating and an extra clip served

as an audio attention check were mixed in with the other questions and clips, to filter out work-

ers attempting to randomly assign ratings without listening to the voices and ensure the quality

of the crowd-sourced data. After completing ratings of the clips, workers were asked to record

themselves reading the following passage in their natural voice: “My name is Robin, and after

years of working for other startups, I’m taking the plunge and developing my own app. The app

allows anyone to rent a car by the hour, without having to go through a rental company. They can
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pick the car up, unlock it and drop it back off all with the app.” Once they had finished rating all

the clips, they were asked to record themselves repeating the same passage but this time in their

“charismatic” voice. They were also asked to rate their own charismatic speech.

A total of 97 MTurk workers participated in our crowd-sourcing tasks. 60 raters’ birth gender

was female, 36 raters male, and 1 preferred not to say. 68 of the raters were heterosexual, 11

were bisexual, and 16 were homosexual. 42 raters were attracted to females and 65 were attracted

to males. The breakdown of the highest education level received by all raters was as follows:

some school (1), high school (21), associates (19), BA (45), MA (10), PhD (1). The scores on

the TIPI Big-Five personality dimensions range from 1 to 7 with a median of 4, while our raters’

average score was 5.12 for openness, 5.54 for conscientiousness, 3.70 for extroversion, 5.39 for

agreeableness, and 4.91 for emotional stability. The raters’ personality distribution was skewed

towards a higher score for the four personality dimensions except for extroversion.

6.4 Analysis and Results

Using the voice clips, the ratings, and the raters’ information that we collected, we asked the

following questions of our data: How do raters define charisma in terms of the association of

their charisma ratings with their ratings of other speaker traits? Does the genre of the recording

(prepared talks, course lectures, interviews) influence charisma ratings? Does speaker gender in-

fluence raters’ charisma ratings or ratings on other speaker traits? What are the acoustic-prosodic

and lexical properties of speech rated as charismatic? Does raters’ demographic information and

personality characteristics influence their ratings? Does raters’ own charismatic speech correlate

with their charisma ratings or their demographics/personality?

We used Pearson’s correlation, Krippendorff’s alpha, and paired t-tests to analyze the ratings of

speaker traits, to identify the acoustic-prosodic and lexical characteristics of the rated voice clips,

and to examine raters’ demographic and personality biases and assessment of their own speech

data. We report significant results with a p < 0.05, unless otherwise stated.
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Correlation Speaker Traits

0.6 to 0.8 Liveliness, Enthusiasm, Persuasiveness

Confidence

0.4 to 0.6 Extroversion, Eloquence, Trustworthiness

Intelligence, Reasonableness

0.2 to 0.4 Sincerity, Fluency

-0.2 to -0.4 Coldness

-0.4 to -0.6 Boringness, Introversion, Weakness,

Uncertainty, Ordinariness

Table 6.1: Pearson’s correlation for charisma and speaker traits.

6.4.1 Ratings of Charisma and Other Speaker Traits

Raters’ Definition of Charisma

Our 60 voice clips achieved an average charisma rating of 3.20 in range 1 to 5, indicating a

fairly balanced dataset for charismatic and non-charismatic speech. The least charismatic voice

clip had an average rating of 1.53, and the most charismatic voice clip was rated at an average of

4.50. To better understand raters’ definition of charisma using other potentially related speaker

traits, we calculated Pearson’s correlations between ratings of charisma and ratings of the other

speaker traits. The results are shown in Table 6.1, binned by 0.2 as suggested in Landis and Koch

[38].

We also calculated the correlation for these traits separately for male and female speakers as

well as ratings from male and female raters to see if there were differences in how charisma was

defined gender-specifically but did not find a statistically significant difference. Therefore, the

definition of charisma in relation to the speaker’s other traits is consistent across both speaker

genders and both rater genders.
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Speaker Trait U

Liveliness 0.389

Enthusiasm 0.374

Confidence 0.347

Extroversion 0.297

Introversion 0.297

Speaker Trait U

Coldness 0.066

Reasonableness 0.132

Ordinariness 0.133

Trustworthiness 0.153

Fluency 0.157

Table 6.2: Inter-rater agreement of speaker traits.

Inter-rater Agreement

For the inter-rater agreement, we calculated Krippendorff’s alpha over all speaker traits and

obtained an alpha of 0.438, indicating reasonably good agreement among raters. Charisma was

the sixth most agreed upon trait by our raters, with an alpha of 0.296. Our raters’ agreement on

charisma ratings is comparable with previous work [122, 113, 123], which report alphas ranging

from 0.22 to 0.31, depending on the quality of voice clips and the diversity of raters. The five most

and the five least agreed-upon traits are shown in Table 6.2. It seems that higher activation traits

are more agreed upon, and lower activation traits are more open to interpretation, which agrees

with previous work [113].

Genre and Charisma Ratings

Among the 60 clips we collected, 14 are interviews, 19 are educational lectures, and the other

27 are talks to more general audiences. We calculated the Pearson’s correlation for the charisma

ratings for each pair of genres and found that interviews are rated as less charismatic than both

educational lectures (p = 0.009) and talks (p < 0.001). However, talks and educational lectures are

not rated significantly different on charisma. In these genres, when the speaker may be trying to

make a point, they may seem more charismatic. For interviews, the goal of the genre may be more

for factual transfer, so the speaker may appear less charismatic. This is consistent with findings

from previous work [113, 131, 124], in which speech genre and audience type were found to be
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significantly correlated with charisma ratings.

Speaker Gender and Speaker Trait Ratings

We also examined whether speakers of different genders were rated as significantly different

in charisma. While female speakers achieved a higher average charisma score than male speakers,

the difference is not significant (p = 0.153). Male speakers were rated as less sincere (p = 0.014),

less fluent (p = 0.022), and less extroverted (p = 0.038) than females, but more boring (p = 0.001)

and more introverted (p = 0.014) using Pearson’s correlation. A possible explanation is that 18

out of 27 general talks were from females and such talks were generally rated as more charismatic

than other genres. The lower charisma score of males may be due to genre and not gender.

6.4.2 Acoustic-Prosodic Correlates of Charisma

To study the acoustic properties of charismatic speech, we extracted 12 acoustic-prosodic fea-

tures from each speaker clip, including the maximum, minimum, mean, and standard deviation

of pitch and intensity, harmonics-to-noise ratio (HNR), jitter, shimmer, and speaking rate mea-

sured by the number of syllables per second. Although these features were extracted, we do not

report maximum and minimum pitch and intensity because they provide similar interpretation as

the standard deviation, in addition to being more susceptible to noise.

We examined the correlation over the acoustic-prosodic features and charisma scores to identify

features that significantly indicate charisma to our raters. To account for the inherent difference in

pitch between males and females, we normalized the mean pitch of males by 119 Hz with standard

deviation 19 Hz and females by 210 Hz with standard deviation 27 Hz using mean values for

American English speakers reported in Pépiot [132]. We found that mean intensity (p = 0.013),

mean pitch (p = 0.002), speaking rate (p = 0.001), and variance in pitch (p < 0.001) were all

positively correlated with charisma, meaning that voices that are louder, higher, faster, and with

greater fluctuation in pitch were rated as more charismatic.
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Gender-specific Acoustic-Prosodic Correlates

We then considered whether there were any acoustic characteristics of charisma that were spe-

cific to speakers’ gender. Once again, we calculated correlations of acoustic-prosodic features with

charisma for each gender, without normalization. We observed a positive correlation with mean

intensity (p = 0.041) and standard deviation in pitch (p = 0.028) for female speakers, and positive

correlations with mean pitch (p = 0.005), speaking rate (p = 0.011) and standard deviation in pitch

(p = 0.001) for male speakers. So, not all acoustic-prosodic features of charisma that were found

to be correlated for all speakers were present within different genders. The mean intensity was

only correlated with females’ charismatic speech, while mean pitch and speaking rate were only

correlated with males’ charismatic speech. This indicates that our female speakers tend to enhance

charisma by demonstrating strength and increasing loudness, while our male speakers mainly rely

on the change of pitch and speaking rate to deliver charismatic speech.

The correlation values of the acoustic-prosodic features of charisma ranged from 0.32 to 0.57,

with mean intensity for all speakers having the lowest correlation value (0.32), and standard devi-

ation in pitch for male speakers having the highest correlation value (0.57). The moderately high

correlation values demonstrate that acoustic-prosodic features are in general strong indicators of

charisma.

6.4.3 Lexical Correlates of Charisma

We extracted lexical features from the transcripts using Linguistic Inquiry and Word Count

(LIWC) [70], for 73 categories such as affect words, social words, time orientation words, and

words for cognitive, perceptual, and biological process. We calculated the correlation of charisma

scores with these to see whether the perception of charisma is affected by the speech content.

The LIWC category of interrogative words (p = 0.037) was positively correlated with charisma,

while first-person pronouns (p = 0.017), negative emotion words (p = 0.014), sadness words (p =

0.002), discrepancies (p = 0.013), and words of feeling (p = 0.024) were negatively correlated.

This shows that speakers asking questions had high charisma ratings, while speakers who often
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referred to themselves and talked about their feelings, especially with negative emotion, received

low ratings.

Gender-specific Lexical Correlates

We also examined gender-specific lexical correlates of charisma. For male speakers, religion

words such as “faith” (p = 0.041) was positively correlated with charisma, while affect words (p =

0.007), positive emotion words (p = 0.039), negative emotion words (p = 0.038), sadness words (p =

0.025), and prepositions (p = 0.028) were negatively correlated. For female speakers, interrogative

words (p = 0.045), numbers (p = 0.048), and words of seeing (p = 0.026) were positively correlated

with charisma, while first-person pronouns (p = 0.030), words of feeling (p = 0.018), negative

emotion words (p = 0.036), sadness words (p = 0.006), words describing cognitive processes (p

= 0.047), and discrepancies (p = 0.022) were negatively correlated. By comparing the lexical

correlates of male and female charisma, we see that there are some differences but also some

shared characteristics: speakers that use negative emotional words were rated as less charismatic

regardless of gender.

The absolute correlation values of lexical features ranged from 0.27 to 0.40 when considering

all speakers; for gender-specific groups the absolute values were generally higher, ranging from

0.36 to 0.49. This indicates that we may better understand the lexical features of charismatic speech

when we take gender into account.

6.4.4 Raters’ Characteristics and Their Speaker Ratings

Focusing next on the rater’s side, we examined their demographics and personalities to see

whether a rater’s birth gender, gender attraction, education level, and personality scores influence

how they rate speaker traits, particularly from people who share the same gender or a different one

from the speaker they are rating or when rating the same gender of a speaker whose gender they

are attracted to.
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Raters’ Gender and Speaker Ratings

To determine whether a rater’s birth gender influenced their ratings of speaker traits, we cal-

culated Pearson’s correlation of raters’ gender and trait ratings. We found that male raters rated

speakers in general as weaker (p = 0.015) and colder (p = 0.001) than female raters did. We also

examined whether the birth gender influenced how they rated speakers of different genders by cal-

culating the correlation of rater’s gender and ratings on males and on females separately. When

judging male speakers, male raters rated them as weaker (p = 0.019) and less fluent (p = 0.040)

than female raters did. For female speakers, male raters rated them as colder (p = 0.003), more

introverted (p = 0.022) and less extroverted (p = 0.015) than female raters did.

In addition to birth gender, we were also interested in seeing whether raters rated speakers

whose gender they are attracted to differently. We found that raters judged the attracted gender as

more introverted (p < 0.001) and boring (p = 0.032), and less confident (p = 0.042), extroverted (p

= 0.006), trustworthy (p = 0.046), reasonable (p = 0.037), and charismatic (p = 0.020). This might

be because a majority of our raters happened to be heterosexual female and the voice clips with

male speakers were generally rated as less charismatic, as noted above.

Raters’ Education Level and Speaker Ratings

We next studied the correlation between raters’ education level and speaker trait ratings. We

found that the higher their education level, the less ordinary (p < 0.001), boring (p = 0.017),

intelligent (p = 0.039), and fluent (p = 0.015), and the more eloquent (p = 0.007) and lively (p

= 0.044) they rated speakers. This suggests that raters may use themselves as a reference when

judging the intelligence of the speakers.

Raters’ Personality and Speaker Ratings

To compare raters’ personalities to their ratings of speaker traits, we calculated Pearson’s corre-

lation between the raters’ TIPI personality scores and their trait ratings. Raters with higher scores

in openness, conscientiousness, agreeableness, and emotional stability, tended to rate speakers
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higher in charisma and in traits that positively correlated with charisma, but lower in traits that

negatively correlated with charisma. This suggests that raters may project some of their own per-

sonalities in rating others. However, raters with higher personality scores in extroversion tended

to rate speakers lower in charisma and in traits positively correlated with charisma, while higher

in traits negatively correlated with charisma. This could be explained by the correlations between

personality and self charisma rating, described below in 6.4.5, in which extroversion was positively

correlated with self charisma scores. The more extroverted the raters are, the higher they assessed

themselves in charisma, and thus perhaps the lower they evaluated other speakers for charisma.

The absolute correlation values of the raters’ characteristics and their ratings were fairly weak,

ranging from 0.06 to 0.20. Although the rater’s own characteristics had some influence on their

ratings, the effect was weaker than the characteristics of the speaker’s speech.

6.4.5 Analysis of Rater’s Own Speech

We also examined how raters adjusted their speech when asked to speak charismatically and

how raters’ own version of charismatic speech may have influenced how they rated other speakers.

We analyzed differences in speaking style when raters were asked to speak normally or when asked

to speak the same text charismatically and compared these to their demographics and personality.

Raters’ Speech Adjustment

We calculated raters’ speaking differences or adjustment as the change in acoustic features

from each rater’s natural speech to their charismatic speech, measured by paired t-tests. Compared

with their natural speech, raters increased their mean intensity (p < 0.001), mean pitch (p < 0.001)

and standard deviation of pitch (p < 0.001), and decreased their HNR (p = 0.028) when asked

to be charismatic. This suggests that the raters’ own adjustments were similar to how they rated

the speakers’ voice clips, except that they lowered their own HNR in charismatic speech but did

not apparently judge the speakers’ charisma by HNR. For gender-specific rater groups, we found

that female raters increased their mean intensity (p < 0.001), similar to the acoustic correlates
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of charisma for the female voice clips. Male raters increased their mean pitch (p < 0.001) and

speaking rate (p = 0.025) as we found in the male voice clips, but they also increased mean intensity

(p < 0.001), jitter (p = 0.025) and decreased their HNR (p = 0.015). The overall trend shows that

raters do change their voices based on what they believe sounds more charismatic, but they also

increase other acoustic features they may be less aware of when rating others.

Raters’ Characteristics and Their Speech Adjustment

When we compared the charisma adjustment between male and female raters by calculating

the Pearson’s correlation between the raters’ adjustment and the raters’ birth gender, we found that

males had a higher positive difference in mean pitch (p < 0.001), speaking rate (p = 0.012), and

variance of their pitch (p < 0.001) than females. The gender difference in the adjustment of pitch

is also shown in the correlation values, with both mean pitch and the variation of pitch having

correlation values higher than 0.40.

Furthermore, if we look at rater adjustment compared with how raters judged their own charis-

matic voices, we find no significant results for females or for a combination of both genders;

however, males increase their variation in pitch (p = 0.049) the more charismatic they think they

are. This suggests that males exaggerate the features we found to be associated with charisma more

than females do when producing charismatic speech, and that male raters who see themselves as

more charismatic tend to exaggerate their charismatic speech even more.

The education level of a rater had no effect on their charisma adjustment, while personality had

a slight impact. The higher a rater’s extroversion score was, the more they increased the variance

in their pitch (p = 0.037). Moreover, raters with higher agreeableness had a lower increase in their

mean pitch (p = 0.001), and raters with higher emotional stability had a slightly higher positive

difference in their speaking rate (p = 0.012). This suggests that raters with higher agreeableness

may be less charismatic since they decrease the acoustic features associated with charisma, while

those with higher extroversion and higher stability may be more charismatic.

We also examined whether rater’s personality impacted how they rated their own voice. We
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found that raters scored themselves higher on charisma if they had a higher openness (p = 0.008),

conscientiousness (p < 0.001), extroversion (p < 0.001), or agreeableness (p = 0.037) scores. This

trend is also true for both conscientiousness and extroversion scores for females (p = 0.001, 0.011)

and males (p = 0.033, 0.003) when we separate by gender. It is interesting to note that, although

both openness and conscientiousness had no impact on raters’ adjustment to producing charismatic

speech acoustically, they did have an impact on their charisma self-ratings.

6.5 Conclusions

In this research on the role of gender, demographics, and personality in the production and per-

ception of charisma, we identified how people define charisma by identifying other speaker traits

that correlate positively or negative with charisma. We also found that, while female speakers

achieve high charisma ratings than male speakers, the difference was not significant. We analyzed

acoustic-prosodic correlates of charisma and found that charismatic voices were louder, higher,

faster, with greater variation in pitch, although there was some difference between male and fe-

male charismatic voices. Text-based correlates of charisma showed that speakers who used more

questions were rated as more charismatic, while speakers who talked about themselves and their

feelings, especially conveying negative emotions were rated as less charismatic regardless of their

gender. We also found differences in the way raters with different demographics and personalities

rated speakers for charisma and other speaker traits. These findings reveal significant individual

differences that should be identified and taken into account in future research.
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Chapter 7: Charismatic Politicians’ Speech

7.1 Introduction

Speaking style is an important contributor to the public image of politicians [133, 134], which

can substantially influence audience perception. Political speech that appears charismatic has been

used for centuries to engage audiences and attract followers. Identifying charisma in a speaker’s

speaking style, generally seen as essential for political speech, is based less on logic and content

and more on emotional stimuli and the rhythm and tone of verbal communication [135].

Most prior studies of politicians’ speaking styles, however, have analyzed a limited set of politi-

cians, focusing mainly on male speakers. In this work, we have included a larger group of politi-

cians which includes more female speakers to collect the first genre-balanced politicians’ speech

corpus in order to present a more comprehensive study. For data collection, we selected speech

segments from the large set of politicians running for the Democratic nomination in the U.S. 2020

presidential election. We obtained ratings for charisma and other speaker traits on these segments

from crowd-sourced raters. Using these ratings, we examined the acoustic-prosodic and lexical

correlates of charismatic politician speech, and the role of speech genre, speaker demographics,

and rater demographics in the ratings much as we did for our earlier gender-balanced non-politian

study.

7.2 Related Work

Politicians’ speech has often been studied from a variety of disciplines, including political

science, social psychology, gender study, linguistics, and spoken language processing. Topics have

included prosodic aspects of political rhetoric [136], emotion and gender identities in politicians’

speech [137, 138], identifying influential politicians [139], predicting the winner of presidential
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debates [140, 141], and audio-visual perception of politicians’ speech [117]. Charisma plays an

important role in the success of political leaders [135], and thus is generally seen as an essential

component of their speech.

Speech characteristics of charisma have been studied in a number of works: Rosenberg and

Hirschberg [112, 113] studied charisma ratings on American political speech. Biadsy et al. [114]

examined cross-cultural differences between the charisma perception of American and Palestinian

Arabic political speech. Signorello et al. [115, 116] analyzed an Italian politician’s speech before

and after a stroke. D’Errico et al. [121] collected cross-cultural charisma ratings on Italian and

French political speech. Cullen et al. [122] built automatic systems to detect charisma on an

Irish politician’s speech. Niebuhr et al [131, 125], Novak et al. [127], Mixdorff et al. [124], and

Weninger et al. [123] examined charismatic speech in industry leaders as well. Recently, Jensen et

al. [142] found that charismatic politician speech promotes social distancing and helps mitigate the

spread of COVID-19. However, less research has been done to identify differences in politicians’

speech, how it is perceived as charismatic, and how the perception of political charisma differs by

different speaker and rater demographic group, using a much larger group of speakers.

7.3 Data Collection

7.3.1 Collecting Political Speech Segments

To build a political speech corpus from which raters could rate voice traits, we collected speech

data from 24 of 25 Democratic Party candidates running for the 2020 U.S. presidential election:

Michael Bennet, Joe Biden, Bill de Blasio, Michael Bloomberg, Cory Booker, Steve Bullock,

Pete Buttigieg, Julian Castro, John Delaney, Tulsi Gabbard, Kirsten Gillibrand, Kamala Harris,

John Hickenlooper, Jay Inslee, Amy Klobuchar, Seth Moulton, Beto O’Rourke, Tim Ryan, Bernie

Sanders, Tom Steyer, Eric Swalwell, Elizabeth Warren, Marianne Williamson, and Andrew Yang.

(Deval Patrick ran too briefly to provide sufficient data for this work.)

Compiling basic statistics about these candidates, we found they skewed older: 30-39 (2), 40-

49 (6), 50-59 (7), 60+ (9); towards higher education: high school (1), BA (4), MA (5), JD (law
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degree) (14); and more towards males by gender: female (6), male (18). For Biden (U.S. Vice

President 2008-16), we also added speeches from his 2008 campaign to identify changes in his

public speaking, giving us a total of 25 speakers.

To examine different political speech formats, we collected samples in 4 genres: Campaign

Ads, Debates, Interviews, and Stump Speeches, from which we built a genre-balanced political

corpus. We downloaded videos from YouTube and chose 3 speech segments for each speaker from

each genre, obtaining ˜10sec segments for Campaign Ads (which included less candidate speech)

and ˜20sec segments for the other genres.

With 25 speakers, 4 genres per speaker, and 3 segments per genre, we obtained 294 speech

segments (speakers Seth Moulton and Steve Bullock never participated in Debates), giving us

a total corpus duration of -6,130 seconds. The segments were selected to be 10 to 20 seconds

long, containing complete sentences with as little noise, echo, and interruption as possible. To

further address differences in recording conditions, we normalized all segments to -12 DBFS,

used Spleeter [143] to remove music in Campaign Ads, and Audacity to remove white noise and

constant background noise.

7.3.2 Collecting Ratings using Amazon Mechanical Turk

To obtain speaker trait ratings on our political speech segments, we collected annotations from a

total of 56 English-speaking workers, with an average of ˜5 ratings per segment; our speakers were

rated by Turkers since previous research has shown charisma labels provided by native listeners

and crowd-sourced workers are equally reliable [122]. In our survey, we released speech segments

by genre, with each genre including 3 different sets of 25 different speech segments, in order to get

as comprehensive a set of ratings as possible given the collected speech segments.

Our survey first asked for basic rater demographics (gender, age range, ethnicity, Hispanic or

Latino identification, education, and political stance). Workers then rated themselves on the Ten

Item Personality Inventory (TIPI), from which we could derive their Big-Five personality type

[129]. The main portion of the ratings, using a 5-point Likert scale, asked them to rate each of
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the 25 politicians’ speech segments for 15 different speaker traits: boringness, charisma, charm-

ingness, confidence, eloquence, enthusiasm, extroversion, fluency, intelligence, ordinariness, per-

suasiveness, reasonableness, sincerity, toughness, and trustworthiness. The speaker traits here are

slightly different from the traits used in the previous gender-balanced study. We added toughness

and charmingness, which are the speaker traits that politicians often possess. We also removed

some traits overlapping with others, such as liveliness and introversion, which had an overly high

correlation with other traits.

To obtain high-quality annotations, we shuffled the 15 traits to be rated in random order and

mixed in two types of attention-check questions: workers had to read instructions to select a spe-

cific rating, and workers had to listen to an extra clip to select a specific rating. After rating each

segment, we also asked whether the raters relate to what the speaker said and recognize the speaker.

The demographic questions are shown in Appendix B.1, and Appendix B.2 presents the shuffled

list of the speaker traits being rated when listening to a speech clip. We pre-screened the workers

to make sure they were native speakers of English. We also did not accept workers with very low

variation, in order to filter out raters who did not listen closely to each speech segment.

From the survey information, we then compiled the basic rater demographic distributions.

Grouping by political stance, we had conservatives (13), liberals (28), and moderates or other

(15); by gender: female (25), male (31); by education levels: high school (8), associates (2), BA

(40), MA (5), PhD (1); by age group: 18-29 (10), 30-39 (25), 40-49 (12), 50-59 (6), 60+ (3); and by

ethnicity: White (35), Asian (12), Black or African American (4), or Other (5). Only one rater was

Latino or Hispanic. We also compiled the Big-Five personality averages of all our raters on the 1-7

point TIPI scale: extroversion (3.71), agreeableness (4.92), conscientiousness (5.34), emotional

stability (5.13), and openness to experiences (4.91), which are comparable to rater personality

scores in previous work [144].
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Correlation Speaker Traits

0.4 to 0.6 Charmingness, Enthusiasm, Persuasiveness, Confidence

Sincerity, Trustworthiness, Intelligence

0.2 to 0.4 Extroversion, Eloquence, Reasonableness, Fluency, Toughness

-0.2 to -0.4 Ordinariness, Boringness

Table 7.1: Pearson’s correlation for politicians’ charisma and speaker traits.

7.4 Analysis of Speaker Trait Ratings

In order to analyze the ratings, we looked at the traits with the highest and lowest correlations

with charisma as a starting point. We then also considered how much the rater empathized with the

speaker and how that influenced their ratings, as well as how recognition of the speaker influenced

their ratings. We used Pearson’s correlation and paired t-tests and report significant results with a

p < 0.05, unless otherwise noted.

Raters’ Definition of Charisma

To better understand raters’ definition of charisma, we started by calculating Pearson’s corre-

lations between ratings of charisma and other traits, as shown in Table 7.1. Ordering these from

highest to lowest, we found that charmingness, enthusiasm, persuasiveness, confidence, sincerity,

trustworthiness, and intelligence had moderate positive correlations with charisma (0.4 to 0.6);

extroversion, eloquence, reasonableness, fluency, and toughness had weak positive correlations

(0.2 to 0.4); and ordinariness and boringness had weak negative correlations with charisma (-0.2

to -0.4). While these correlations between charisma and other speaker traits align well with ex-

pectations and prior research [144], the strength of these correlations are generally weaker for

politicians’ speech than that of non-politicians’ speech, which indicates a higher complexity of

charisma recognition and rating in political speech.
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Raters’ Relatedness and Speaker Trait Ratings

For further study, we examined how much the rater related to what to speaker said and the in-

fluence of that on their ratings. Almost all traits that were positively correlated with charisma were

influenced significantly by how much the rater agreed with with the content (all p < 0.001), where

charmingness, persuasiveness, and trustworthiness were most strongly influenced by this agree-

ment; the only exception to this was fluency, which was positively correlated with charisma but

not influenced by raters’ agreement. The rater’s relatability with political speech also influenced

the traits which were negatively correlated with charisma, but in the opposite direction: higher

agreement with the speech content meant that the politician was less boring (p < 0.001) and less

ordinary (p = 0.007) to the rater, revealing the subjectivity of ratings towards politicians’ speech.

Rater Recognition and Speaker Trait Ratings

In terms of the influence of rater recognition, recognized speakers were rated as more confident

(p < 0.001), charismatic (p < 0.001), extroverted (p = 0.006), fluent (p = 0.010), charming (p =

0.035), and sincere (p = 0.037). This agrees with previous work [113] and supports the belief that

the rater’s subjective opinion and familiarity about the speaker plays an important role in rating

speech from public figures like politicians. The most recognized speaker was Joe Biden (10 out of

36), while 5 of our speakers were never recognized by the raters. Additionally, speakers were more

frequently recognized in Debates (p < 0.001) and less frequently recognized in Stump Speeches (p

< 0.001) and Interviews (p = 0.022).

7.5 Acoustic-Prosodic Analysis

Using our speech segments and speaker trait ratings, we then examined the speaking style of

politicians’ speech and analyzed the characteristics of their charismatic speech: Does speech genre

or speaker gender influence the speakers’ acoustic-prosodic features of the speech segments? Are

there any significant acoustic-prosodic lexical characteristics of charismatic politicians’ speech?
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Feature Extraction

We extracted 14 acoustic-prosodic features for each segment: maximum, minimum, mean, and

standard deviation of pitch; minimum, mean, and standard deviation of intensity; harmonics-to-

noise ratio (HNR), jitter, shimmer, speaking rate, average pause duration, frequency of pause, and

articulation rate. Since all segments were normalized to the same maximum intensity, we omitted

this feature in our analysis.

We used Parselmouth [145] to extract features related with pitch, intensity, and voice qual-

ity. We also removed potential outliers in pitch and intensity by finding the natural range of each

speaker from a histogram distribution and checking for other irregularities according to the smooth-

ness of the contour. To address inherent gender differences in pitch, we normalized mean pitch of

males by 119 Hz with standard deviation 19 Hz and females by 210 Hz with standard deviation

27 Hz using mean values for American English speakers [132]. For features related to pause in

speech, we used silence detection scripts in Praat [146] and computed the average duration of

pause and frequency of pause in each segment. Moreover, using text transcripts obtained from

Google Speech-to-Text API, we calculated speaking rate as the number of syllables per second,

and articulation rate as the number of syllables per second after silence was excluded from the

segment.

7.5.1 Acoustic-Prosodic Characteristics of Politicians’ Speech

Acoustic-Prosodic Features by Genre

To examine how Campaign Ads, Debates, Interviews, and Stump Speeches differed in acoustic-

prosodic properties, we computed the acoustic-prosodic feature values for each genre separately.

For pitch maximum, mean, and standard deviation, the genres formed 2 distinct groups: both

Stump Speeches and Debates had significantly higher feature values than Campaign Ads and Inter-

views. Additionally, Stump Speeches had higher mean pitch than Debates (p = 0.025) and higher

minimum pitch than Interviews (p = 0.010). We also found that pitch mean and standard deviation
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by genre showed a positive (r = 0.975, p = 0.025) correlation. These findings indicate that Stump

Speeches required the most exaggerated production as speakers are facing a large audiences. De-

bates had high fluctuation in pitch and also the second-highest mean pitch, while Interviews and

Campaign Ads were closest to natural speech.

Although we normalized signal intensity to mitigate variance in recording conditions, phonat-

ing loudness can still be partially inferred from jitter and shimmer, since both have been found to

decrease significantly when phonating becomes louder [147]. In this case, we found that the jitter

and shimmer of Stump Speeches were significantly lower than other genres (p < 0.001), indicating

louder speech.

In terms of speaking rate, we found that Debates and Interviews had higher speaking rates

than Campaign Ads and Stump Speeches (p < 0.001). This is consistent with our findings for

pause features, where Debates and Interviews had lower average pause duration (p < 0.001) and

frequency of pause (p < 0.001). Furthermore, Campaign Ads had lower average pause duration

than Stump Speeches (p = 0.001). This can be explained by the speakers’ inclination in Debates

and Interviews to rush and speak faster than they usually did so as to ensure their messages were

delivered in these genres vs. Ads and Stump Speeches, since they did not have complete control of

their speaking window. For Campaign Ads and Stump Speeches, on the other hand, speakers had

much more control of their speech times, so they could afford to speak slower, pause more often,

and pause for longer periods of time. For Stump Speeches, even longer pauses were likely used to

enhance message delivery.

Acoustic-Prosodic Features by Speaker Gender and Age

When comparing the acoustic-prosodic features of different genders, not surprisingly, the fe-

males in our corpus exhibited higher mean pitch (p < 0.001) and a greater standard deviation of

pitch (p < 0.001) than males. However, after normalization with mean values of each gender

for American English speakers, male speakers actually produced higher mean pitch than female

speakers (p < 0.001). Male speakers also showed a higher standard deviation of intensity than

83



females (p = 0.037), indicating a more exaggerated speaking style. For voice quality features, fe-

males had lower jitter (p < 0.001) and shimmer (p < 0.001) and higher HNR (p < 0.001). Our

female speakers may exhibit less voice perturbation since jitter and shimmer are positively corre-

lated with age [148, 149, 150], and our females were younger on average than our males (although

not significantly).

Comparing speaker age with acoustic-prosodic features, we only report gender-specific results

since we found very different trends in different genders. For our female speakers, maximum

pitch (p < 0.001), mean pitch (p = 0.018), standard deviation of pitch (p < 0.001), frequency of

pause (p = 0.005), and jitter (p = 0.001) were all positively correlated with age. These results

differ from previous work on female speakers’ aging [150], in which negative correlations were

found between age and both mean and standard deviation of pitch. This might be because our

politicians went through specific voice and public speech training to reduce aging effects. For our

male speakers, we found that HNR was positively correlated with age (p = 0.016), while speaking

rate (p < 0.01) and articulation rate (p < 0.01) were negatively correlated with age. Although we

saw no aging effect in pitch and voice quality in males, they did tend to reduce speech tempo as

age increased, consistent with previous findings [151]. However, when we looked at change over

time for a single speaker, we found that Biden’s current segments showed a higher pitch mean (p

= 0.044) and an almost significant increase in standard deviation of pitch (p = 0.080), compared to

his earlier campaign, suggesting that Biden had indeed increased his average pitch and pitch range

in the past years.

When we computed correlations of age and acoustic-prosodic features on different genres sep-

arately, we found similar trends to the genre-agnostic tests in Debates, Campaign Ads, and Stump

Speeches. However, in Interviews, males showed an increasing mean pitch (p = 0.024), standard

deviation of pitch (p = 0.044), and jitter (p = 0.046) as age increased, while females showed de-

creasing speaking rate (p = 0.032) with increased age. These acoustic-prosodic trends on aging are

consistent with previous studies [151, 148, 150], suggesting that Interviews probably had the most

natural speaking style.
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7.5.2 Acoustic-Prosodic Correlates of Charisma and Other Speaker Traits

Using the ratings and acoustic-prosodic features, we found that speech rated as charismatic had

higher max pitch (p = 0.015), higher standard deviation of pitch (p = 0.005), and higher articulation

rate (p = 0.015), indicating that a more dramatic and faster speaking style does indeed appear more

charismatic. The results agree well with our results on non-celebrities and with other studies on

politicians [114, 113]. The only difference is that intensity-related features, found to be significant

indicators of charisma in previous research, were not present in our correlates. This difference was

probably caused by our max intensity normalization process. The speech intensity of segments was

similar after normalization, and thus it did not significantly influence the perception of charisma

toward our politicians.

For other traits, we found that pitch-related features were correlated with ratings of enthusi-

asm, extroversion, fluency, intelligence, persuasiveness, reasonableness, toughness, and boring-

ness; speech intensity influenced ratings of eloquence, enthusiasm, intelligence, ordinariness, rea-

sonableness, and boringness; and speech tempo influenced ratings of charisma, charmingness,

extroversion, intelligence, boringness, and ordinariness. Sincerity, trustworthiness, and confidence

had no significant acoustic-prosodic correlates, indicating that these traits were determined more

by speaker and speech content than by speaking style.

Speaker Demographics and Acoustic-Prosodic Correlates

Besides overall acoustic-prosodic correlates of charisma, we also studied their correlates for

speaker groups. For male speakers, pitch maximum (p = 0.023), mean (p = 0.032), and stan-

dard deviation (p = 0.004), as well as articulation rate (p = 0.040) were positively correlated with

charisma. However, there was no significant acoustic-prosodic correlate of charisma for female

politicians, indicating that their perceived charisma is less influenced by speech features, agreeing

with Novak et al. [127].

Despite these differences, one trait that depended primarily on the acoustic-prosodic aspect of

speech regardless of gender was enthusiasm, which was significantly positively correlated with
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the pitch maximum, minimum, mean, and standard deviation for both female and male speakers.

We also found that raters’ relatability to the speech segment is higher when female speakers had

higher shimmer (p = 0.021) and lower pause length (p = 0.013), which indicates a softer and more

coherent speech. However, we did not find an acoustic indicator of higher relatability for male

speakers.

Genre and Acoustic-Prosodic Correlates

Examining acoustic correlates of charisma in different genres, we only observed differences

in voice quality and speech tempo: the charisma of Interviews was negatively correlated with

jitter (p = 0.037) but positively with articulation rate (p = 0.007), indicating that louder and faster

speech was more charismatic, ensuring the messages to be delivered in limited speaking windows;

charismatic Campaign Ads had lower HNR (p = 0.041), indicating a coarser speaking style; and

the charisma of Stump Speeches was positively correlated with a higher frequency of pauses (p =

0.045), indicating that more pausing enhanced message delivery for Stump Speeches.

Rater Demographics and Acoustic-Prosodic Correlates

We also examined acoustic-prosodic characteristics of charismatic speech with respect to dif-

ferent raters’ perception. For male raters, charismatic speech had a higher pitch maximum (p =

0.048), mean (p = 0.031), and standard deviation (p = 0.044), higher intensity standard deviation (p

= 0.016), and lower jitter (p = 0.004) and shimmer (p = 0.047), suggesting an exaggerated speech

style in both pitch and intensity. However, for female raters, pitch was not a significant indicator

of charisma; speech with a higher intensity mean (p = 0.018) and minimum (p = 0.003), but lower

standard deviation (p < 0.001) was more charismatic, suggesting a strong, less fluctuating speak-

ing style. For raters with different political stance, both conservatives and moderates exhibited

very similar trends: speech with higher minimum but lower standard deviation of intensity, higher

maximum, and standard deviation of pitch was more charismatic. Conservatives also valued faster

articulation rate and with more pauses between phrases. Surprisingly, articulation rate was the
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only acoustic correlate of charismatic speech for liberal raters, indicating that, while they rated

politicians highly in charisma, their ratings were less influenced by particular speaking style.

7.6 Lexical Analysis

From the transcripts we obtained via the Google Speech-to-Text API, we also extracted text-

based features related to word usage, affective content, and complexity. For word usage, we used

Linguistic Inquiry and Word Count (LIWC) [70] categories found to be related to politicians’

speech and charisma in prior work [135, 140]. For affective content, we used the Revised Dictio-

nary of Affect in Language [100] to compute average activation, imagery, and pleasantness scores

for each segment. For complexity, we computed the average number of syllables and characters

per word, the percentage of longer words (with more than 6 characters), percentage of complex

words defined by the Dale–Chall readability formula [105], and the Flesch reading ease test [106]

for a readability measurement. All word-level features were normalized by the total number of

words in the speech segment.

7.6.1 Lexical Characteristics of Politicians’ Speech

Lexical Features by Genre

First, we found that the genre of the speech clips plays an important role in these lexical features

of politician speech.

First-person plural pronouns were used more frequently in Debates (p = 0.011) and Campaign

Ads (p = 0.027) than in Interviews, consistent with previous studies [140] where Democrats were

found to use more first-person plural pronouns than Republicans in presidential debates. When pro-

noun usage tests were conducted for male versus female speakers separately, only female speakers

used significantly more first-person plural pronouns in Debates than in Interviews (p = 0.042),

but males used more second-person pronouns in Stump Speeches than in Debates (p = 0.043),

indicating higher lexical inclusiveness for females and higher individualism for males.

For speaking style, Interviews (p = 0.025) and Stump Speeches (p = 0.044) included more
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netspeak words than Campaign Ads, suggesting that Interviews were more casual, while Campaign

Ads were the most formal of the genres. Interviews had lower imagery scores than Campaign Ads

(p = 0.001), Stump Speeches (p = 0.007), and Debates (p = 0.031), indicating a more abstract

speaking style.

For sentence-level complexity, the Flesch reading ease scores for Debates were lower (more

complex) than Stump Speeches (p = 0.037). In addition, both Campaign Ads (p = 0.031) and

Debates (p = 0.046) had a higher percentage of complex words than Stump Speeches. Apparently

speakers used more complex sentences in Debates, and more sophisticated words in Campaign

Ads and Debates, while keeping both words and sentences simple in Stump Speeches.

Lexical Features by Speaker Gender

For the lexical features of politician speech, speaker gender plays an important role: only

females used more positive emotion words in Debates (p = 0.006) and had higher pleasantness

in Stump Speeches (p = 0.039) than Interviews; however, only male speakers used more sadness

terms in Stump Speeches than Interviews (p = 0.021) and Debates (p = 0.017), more anger words in

Interviews than Stump Speeches (p = 0.002), Campaign Ads (p = 0.003) and Debates (p = 0.004),

and more death-related words in Interviews than Debates (p = 0.010) and Campaign Ads (p =

0.026).

These results support previous studies on how politicians’ use of emotion is gender-related

[138, 137]: strength and toughness are seen as desirable attributes enhancing masculine traits, but

can bring a woman’s femininity into question. Showing toughness by using words such as “fail”,

“war” and “weapon” allow our male speakers to enhance their masculinity and build power into

their speech; the same strategy, however, was not as useful for our female speakers.

7.6.2 Lexical Correlates of Charisma and Other Speaker Traits

Due to the complexity of politicians’ perceived charismatic speech in different genres and

for different speakers, there were few textual correlates of charisma: only adjective usage was
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positively correlated (p = 0.017). This agrees with our previous findings that charismatic speech

is enthusiastic and dramatic – the use of adjectives might enhance this specific speaking style.

It can also be partly explained by Hamilton and Stewart’s information-centric view of charisma

[152] – the use of content words increases the language intensity, thus enhances the strength of the

message.

For other traits, eloquent speech had more first-person singular pronouns and lower imagery

scores; enthusiastic speech had more first-person plural pronouns, a higher pleasantness score, and

a higher reading ease score; ordinary speech had more first-person singular pronouns, fewer plural

pronouns and also fewer negative emotions; and intelligent was correlated with percentage of long

words.

Speaker Gender and Lexical Correlates

Grouping speakers by gender, we found that charismatic male speakers used more words re-

lated to achievement (p = 0.026), while charismatic female speakers used fewer numbers (p =

0.006) and fewer money-related words (p = 0.007), corresponding to the findings that female

politicians were negatively influenced by power-seeking intentions [153]. Text correlates of other

speaker traits also differed by speaker gender. For example, using negations made female speakers

less sincere, less reasonable, and more ordinary, but it made male speakers less boring. The use

of sad words also made only female speakers less charming and less enthusiastic. Moreover, male

speakers were rated as tougher when having a lower pleasantness score, more negative emotion,

fewer words related to cognitive process, more words related to power, fewer disfluencies, and

more numbers. In contrast, female speakers were rated as tougher only when they used fewer

numbers. Our results support previous work on how politicians’ use of emotion is gender-related

[137, 138]: strength and toughness are seen as desirable attributes enhancing masculine traits but

can bring women’s femininity into question. Showing toughness by using words such as “fail”,

“war” and “weapon” allowed our male speakers to enhance their masculinity and build power into

their speech but was not useful for females.
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Genre and Lexical Correlates

For charismatic speech in different genres, there were not only different acoustic characteristics

but also different lexical correlates. First, charismatic Interviews showed most correlations with

textual features: higher reading ease score (p = 0.020), more words related to health (p = 0.033),

more past tense verbs (p = 0.013), fewer causation words (p = 0.004), and fewer plural first-person

pronouns (p = 0.038) led to concrete and comprehensible interviews and thus were more charis-

matic. For Debates, the number of adjectives was positively correlated with perceived charisma (p

= 0.025) and the imagery score is negatively correlated (p = 0.049), indicating more polished and

abstract speech. Words related to drive, including affiliation, achievement, power, reward, and risk

(p = 0.047), played a positive role in charismatic Stump Speeches. Finally, Campaign Ads had no

lexical charisma correlates, suggesting that ratings were not based on ad content.

Rater Demographics and Lexical Correlates

For raters, charismatic speech perceived by female raters had a lower imagery score (p = 0.010)

and longer words (p = 0.012), leading to abstract and complex speech; and for male raters, there

were no lexical correlates of charisma. Charismatic speech for liberal raters had more adjectives

(p = 0.009), comparison (p = 0.003), and negative emotion (p = 0.021), but fewer complex words

(p = 0.041); moderate and conservative raters, on the other hand, valued the use of complex and

long words: their lexical correlates of charismatic speech were mostly topic-related words such as

achievements, rewards, and drives.

7.7 Analysis by Speaker Demographic Group and Genre

Focusing on the speakers’ demographics, we first looked for differences in speaker trait ratings

by the speakers’ demographic groups. We next analyzed whether speech segments from different

genres had different ratings. We found that no speaker grouping or genre differed significantly in

terms of the raters’ empathy scores; thus, we only discuss the ratings on the 15 speaker traits in
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this section.

Speaker Demographic Group and Ratings

The only significant influence of speaker demographics on ratings of charisma was speaker age,

where older speakers were rated as less charismatic (p = 0.043), eloquent (p = 0.038), fluent (p =

0.003), and intelligent (p = 0.038) than younger speakers. When we grouped speakers by gender,

we found that female speakers had a slightly higher charisma score, but the differences between

female and male speakers’ charisma ratings were not significant for any traits. For ethnicity and

education level, there was little significant difference in charisma ratings, the only exception being

that non-JD (law degree) speakers were rated as more extroverted than JD speakers (p = 0.0501).

The total time a speaker had spent on the campaign was also not significantly correlated with any

trait ratings.

The lack of significant in ratings between speakers in different demographic groups, however,

does not indicate that the speakers in fact had similar ratings; on the contrary, 14 out of 24 speakers

had at least one trait rated significantly higher or lower than all other speakers, which seems to

indicate the considerable diversity of the 2020 Democratic Party candidates and of the groups

within the party who supported very different candidates’ views.

To study the raters’ definition of charisma by speaker, we analyzed traits with the strongest

correlation of charisma for each speaker group and each speaker. We found that, for male speak-

ers, charismatic speech was charming and enthusiastic, and for female speakers, charming and

persuasive. We also found that, for JD speakers, intelligence was ranked 6th highest in charis-

matic speech, and for non-JD speakers, ranked 11th. While the most important trait associate

with charismatic speech for most speakers was charming, there were also speakers with enthu-

siasm, confidence, persuasiveness, sincerity, or intelligence as the trait with highest correlations,

suggesting a large number of individual differences in speakers’ charismatic style.
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Genre Speaker Traits

Campaign extroverted↑, intelligent↑, boring↓↓

Ads charismatic↓

Debates enthusiastic↑, extroverted↑, charismatic↑

eloquent↓, boring↑↑

Interviews eloquent↑, fluent↑, boring↓↓, ordinary↓↓

extroverted↓↓, enthusiastic↓↓

Stump enthusiastic↑

Speeches ordinary↑↑, boring↑, intelligent↓, extroverted↓

Table 7.2: Politician speech genre and speaker traits. (Up or down arrows indicate significant
positive or negative differences with p < 0.05, and double-arrows indicate p < 0.001)

Genre and Ratings

When we group the speech segments not by the demographics of the speakers, but by the genre

of speech, we find a number of significant differences as shown in Table 7.2. Campaign Ads were

rated as more extroverted (p = 0.035), more intelligent (p = 0.008), and less boring (p < 0.001), but,

curiously enough, as less charismatic (p = 0.009) than other genres; Stump Speeches were rated

as more enthusiastic (p = 0.005), but more ordinary (p < 0.001), more boring (p = 0.011), less

intelligent (p < 0.001), and less extroverted (p = 0.021); Debates were rated as more enthusiastic

(p = 0.011), extroverted (p <0.001), and charismatic (p = 0.040), but less eloquent (p = 0.023) and

more boring (p < 0.001); Interviews were rated as more eloquent (p = 0.005), more fluent (p =

0.035), less boring (p < 0.001), and less ordinary (p < 0.001), but also less extroverted (p < 0.001)

and enthusiastic (p < 0.001).

For ratings of charisma alone, Debates had the highest average charisma score, followed by

Stump Speeches and Interviews, respectively; Campaign Ads, however, had a negative average

charisma score, likely indicating a different set of speech strategies for the more-targeted genre.

The results were slightly different with previous work [113], where Stump Speeches were found

to be the most charismatic genre. This might be caused by the differences in politicians’ public
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speaking strategies.

Across all four of our genres, the 5 traits with the highest ratings are the same: fluency, con-

fidence, intelligence, reasonableness, sincerity (the exact orders differ slightly). Politicians seem

to exhibit the same set of positive speaker traits regardless of speech genre; however, there are

still noticeable differences between genres. These findings differ from earlier charisma research

on politicians and genre, which found that stump speeches were rated most highly for speaker

charisma, followed by debates and then by interviews [113]. Each genre’s sixth-highest trait di-

verges from the rest: for Campaign Ads, the sixth trait is trustworthiness; for Stump Speeches, it

is enthusiasm; for Debates, extroversion; and for Interviews, eloquence. This indicates that politi-

cians do end up emphasizing different speaker characteristics in different speech genres. The top

10 speaker traits with highest ratings in each speech genre are listed in Appendix C.

To explore this further, we studied traits with strongest correlations with charisma by genre:

across all 4, the trait with the strongest correlation with charisma was charming. In terms of the

2nd and 3rd highest correlated traits: charismatic Campaign Ads were eloquent and enthusias-

tic; charismatic Stump Speeches, persuasive and trustworthy; charismatic Debates, confident and

persuasive; and charismatic Interviews, enthusiastic and sincere. These differences also seem to

indicate that a politician’s charisma is perceived differently depending on the exact scenario of

their speech. For instance, while showing credibility is essential for the delivery of charisma in

Stump Speeches, Debates, and Interviews, appealing to emotions is essential for Campaign Ads

and Interviews.

7.8 Analysis by Rater Demographic Group

We then examined raters’ responses to see if there were any rater demographic groups that

showed high intra-group agreement. We also looked at whether different rater groups had different

definitions of charisma, and the major demographic attributes that influenced a rater’s rating.
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Rater Demographic Group and Intra-group Agreement

The overall agreement of all ratings was 0.089, a slight agreement that is lower than most

previous work [113, 144]. Moreover, the speaker-level agreement of ratings differed greatly, from

0.185 for Cory Booker to -0.001 for Joe Biden, indicating the complexity of perceived speaker

traits when the speakers are active political figures. A natural question following this would be: is

there any rater subgroup with a higher intra-group agreement?

Analyzing inter-rater agreement by rater subgroups, we found that raters in the age group of

18-29 had a relatively strong agreement of 0.302, and raters in the age group of 30-39 also had an

agreement of 0.159. When considering political stance, we found that liberal raters had a relatively

strong agreement (0.159), moderate raters had weak agreement (0.089), and conservatives had a

negative agreement. These indicate that raters with the same demographic background tended to

agree more with each other, showing that it is important to take the perceivers’ demographics into

account when studying the perception of speaker traits.

While the insufficient subgroup size limited further analysis on the interaction between political

stance and age group, we found that the political stance distribution of the 18-29 age group and the

age distribution of the liberal group were not significantly different from the overall distribution.

This suggests that age and political stance might influence the inter-rater agreement independently.

Rater Demographic Group and Speaker Trait Ratings

Table 7.3 shows the significant differences in trait ratings for raters with different demograhics,

including gender, political stance, education, and age, and suggests that ratings are strongly influ-

enced by the raters’ background – raters may use themselves as reference when rating others. It

also appears that raters’ demographic background influences their ratings more than the speaker’s

demographic background.

For speaker ratings, female raters rated speakers as significantly less ordinary (p < 0.001) and

boring (p = 0.001), and more tough (p < 0.001), extroverted (p < 0.001), persuasive (p < 0.001),

and enthusiastic (p = 0.021) than male raters did. Liberal raters rated speakers as significantly
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Rater Speaker Traits

Female (compared to male) ordinary↓↓, boring↓, tough↑↑, extroverted↑↑, persuasive↑↑,
enthusiastic↑

Liberal raters traits positively correlated with charisma ↑↑,

traits negatively correlated with charisma ↓↓

Conservative boring↑↑, ordinary↑↑, enthusiastic↓↓,

raters eloquent↓↓, persuasive↓, sincere↓

Higher education levels enthusiastic↑↑, tougher↑↑, eloquent↑↑, persuasive↑,
ordinary↓

intelligent↓, fluent↓

Older enthusiastic↑↑, extroverted↑, tougher↑

ordinary↑, fluent↓, eloquent↓, reasonable ↓, confident↓,
intelligent↓

Table 7.3: Rater demographics and their speaker trait ratings.

higher in traits positively correlated with charisma and lower in traits negatively correlated with

charisma (all p < 0.001, except for toughness with p = 0.024) than conservative and moderate

raters did. Conservative raters rated speakers as more boring and ordinary (both p < 0.001), as

well as less enthusiastic (p < 0.001), eloquent (p < 0.001), persuasive (p = 0.014), and sincere (p

= 0.021) than liberal and moderate raters did. Raters with higher education levels rated speakers

as more enthusiastic (p < 0.001), tougher (p < 0.001), eloquent (p < 0.001), and persuasive (p =

0.018), less ordinary (p = 0.007) but less intelligent (p = 0.039) and fluent (p = 0.049), suggesting

that raters may use themselves as reference when rating others. Older raters perceived speakers

as more enthusiastic (p < 0.001), extroverted (p = 0.008), tougher (p = 0.013), but more ordinary

(p = 0.002) and less fluent (p = 0.006), eloquent (p = 0.027), reasonable (p = 0.028), confident (p

= 0.029), and intelligent (p = 0.045). From the raters’ Big-Five personality scores, it seems that

people with higher scores in extroversion, agreeableness, conscientiousness, emotional stability,

or openness to experiences tended to rate speakers higher in positive traits (except for toughness)

and lower in negative traits (boring and ordinary). The only exception here is toughness which has
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a positive correlation with charisma overall, however, raters with higher extroversion (p = 0.048)

and emotional stability (p = 0.001) rated the politicians as less tough.

We also found differences in how raters rated speakers from their own gender or another. For

example, female raters rated female speakers as significantly tougher, more extroverted, less ordi-

nary, but less confident than male raters did; and female raters rated male speakers as tougher, more

extroverted, persuasive, and enthusiastic, but less ordinary and boring than male raters did. These

indicate that female raters raters generally rated speakers of both genders more positively, with the

exception of female speaker confidence, and toughness showed the highest degree of difference be-

tween male and female raters. Outside of female raters rating the speakers more positively, these

correlations suggest that the raters refer to themselves or their expectations when rating politicians.

Examining correlations between charisma and other traits for each rater group individually,

we found that grouping by gender had different results, meaning that raters of different gender

had different definitions of charisma. For both female and male raters, charming had the highest

correlation with charisma, but for other traits, correlations varied widely: for female raters, persua-

siveness and extroversion were the 2nd and 3rd strongest traits of charismatic speech, which seem

to focus more on an ability to communicate well; for male raters, enthusiasm and confidence were

the stronger traits, which seem to focus more on self-expression.

7.9 Automatic Charisma Prediction

In addition to analyzing the characteristics of charismatic speech, we also experimented with

automatic charisma prediction. We separated the speech segments into train and test set on speaker

level, and used the acoustic-prosodic and lexical features mentioned above to build models. We ex-

perimented on both continuous prediction of charisma scores and binary prediction with a threshold

of “Neither agree nor disagree” on the five Likert scale. However, the models suffered significant

errors with the new speakers in the test set, and the performances were close to random. This was

probably due to the vastly different characteristics of speakers and the low inter-rater agreement to-

wards those active political figures. The number of speakers also limited the models’ generalizing
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ability to unseen speakers. Future directions to tackle this automatic prediction problem include

using less controversial speakers and collecting speech segments in a more controlled recording

condition.

7.10 Conclusions

This work presented a comprehensive study of charismatic politicians’ speech, including both

female and male politicians, a balanced set of speech genres, and information on speakers’ and

raters’ demographic groups. We examined acoustic-prosodic and lexical characteristics of politi-

cian speech, the acoustic-prosodic and lexical correlates of charismatic politician speech, and the

role of genre, speaker demographics, and rater demographics in the ratings. Our results demon-

strate the complexity of political charisma and highlight the importance of taking raters’ demo-

graphic factors into account when analyzing charismatic politicians’ speech.

While we found that the recognition of the speaker significantly influenced the ratings, we did

not survey whether the raters liked the person they recognized. Moreover, as we found that the

speaker ratings were very subjective, another piece of information that might be worth collecting

is the raters’ own current mood. These might be factors to include in future research.

For our speakers and raters, charisma is most related to enthusiasm, persuasiveness, and con-

fidence; however, there might be other ways to deliver charisma that emphasize different sets of

speaker traits. Future research might include more speech genres, such as news broadcasts, talk

shows, or religious speech, to further explore these different forms of charisma.

97



Chapter 8: Conclusions

In the first chapter of this thesis, we identified three main limitations of existing research to-

wards the automatic identification of speaker states: (1) Certain speaker states such as categorical

emotions are being extensively studied, while other equally important states are rarely explored.

(2) Most research focuses on studying speaker states using a single modality, while in reality,

speaker states are expressed in multiple modalities simultaneously. (3) Standard data collection

relies heavily on manual annotation of speaker states, which requires extensive effort but some-

times suffers low accuracy. This thesis addresses several aspects of these limitations by studying

three different sets of speaker states: emotion and sentiment, humor, and charisma. We hope this

thesis deepens the scientific understanding of these speaker states, and advances the research in

automatically identifying them.

These are the main contributions presented in this thesis:

• We expanded the scope of speaker state identification by studying a broad spectrum of

speaker states: (1) Continuous emotion in valence and arousal dimensions, which is an es-

sential emotion theory in psychology, but less explored in computer science research. (2)

Humor, a speaker state with specific expressions to amuse the audience, having increas-

ing importance in user-generated content on the web. (3) Charisma, a speaker state with

constantly-changing definitions depending on culture and the perceiver’s characteristics.

• We proposed various methods to utilize unlabeled data and generate automatic labels of

speaker states without the need for annotators, including bootstrapping labels from time-

aligned comments of videos, from reactions of Facebook posts, from other modalities, and

from other languages. Experimental results demonstrated the effectiveness of these methods.

• Depending on the characteristics of different datasets, we used cues from different modalities
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to identify speaker states and studied how these modalities complement each other.

• We collected multiple large-scale corpora with speaker state labels: (1) Audio Bible dataset,

which contains audio Bibles on 13 different languages, segmented and aligned on verse level

in both text and speech modalities. Automatic sentiment labels are provided on all verses,

and human sentiment annotations are also provided on 5 chapters in 8 languages. (2) Bilibili

corpus, containing 100 humorous talk show videos with 94K time-aligned comments. The

videos are segmented on one-second unit level and IPU level, with humor labels provided

for both segmentation levels. (3) CHoRaL dataset, containing 785K posts related to COVID-

19, each labeled with a humor score and a non-humor score. (4) Politicians’ speech corpus,

including 294 speech segments from 25 female and male politicians. Ratings are provided

for each segment on charisma and other related speaker traits.

8.1 Future Work

There are several future directions that arise from this thesis, as briefly mentioned in the previ-

ous chapters:

• Weighted inputs for speaker state prediction. In Chapter 2, we combined inputs from

waveform and spectrogram for predicting arousal and valence in speech; in Chapter 4, we

combined features from the text, speech, and visual modalities to predict humor in videos.

Throughout the analysis in the thesis, we noticed that different segments might have clues

of speaker state expressed in different modalities. Thus, a future direction is to build models

that can assign different weights to different forms of inputs, according to the characteristics

of the segment. The recent advance of attention-based fusion models might help combine

these inputs dynamically.

• Improving bootstrapping models for better automatic sentiment labels on audio Bibles.

Chapter 3 explores bootstrapping speech sentiment labels from English text Bible and trans-

ferring the labels to audio Bibles in other languages. Although our results verified the ef-
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fectiveness of the approach, the performance is limited by the model used for bootstrapping

labels. Further improvements include building in-domain English sentiment models that

specialize in religious text, and integrating multiple sentiment analyzers according to their

model confidence. Another path is to bootstrap automatic sentiment labels from multiple

high-resource languages and both modalities to mitigate the influence of individual transla-

tors and narrators of a particular Bible version.

• Collecting more diverse humorous videos. In Chapter 4, we collected 100 humorous talk

show videos from one online celebrity, and found that she uses surprise and clownish be-

haviors as her main techniques to express humor. Nevertheless, there are other “colder”

styles of humor that exhibit less exaggeration and more wordplay. In addition to collecting

more videos from Bilibili website, our labeling framework can also be extended to other

video platforms with time-aligned comments, such as live chats in YouTube videos and live

streaming websites. Therefore, the future direction is to collect more diverse humorous

videos from different video creators on various platforms, covering more humor techniques

and styles.

• Exploring other emotional reactions to Facebook posts. In Chapter 5, we studied the haha

reaction towards Facebook posts and used this reaction as an indicator of humor in the posts.

However, other emotional reactions to Facebook posts are yet to be explored, including

sadness, angry, wow, and care. A future direction is to examine the relationship between the

emotional reactions to the post and the emotion in the post. Then we can build models for

predicting the emotion in the posts using the reactions, or predicting the emotional reactions

to the posts using the posts’ content. This framework might also enable multimodal emotion

detection when using posts not only with texts but also with images and videos attached.

• Collecting larger charismatic speech dataset with a higher inter-rater agreement. We

collected 60 non-celebrity gender-balanced speech segments and 294 politician speech seg-

ments, and crowd-sourced charisma ratings for them in Chapter 6 and Chapter 7. However,
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due to the inadequate data size of non-celebrity speech and the low inter-rater agreement

of politician speech, we could not build models that predict charisma reliably across both

datasets. Future attempts to tackle this problem might consider using less controversial

speakers and less noisy speech segments in a more controlled recording condition.
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Appendix A: Audio Bible Annotation Stats

Annotator Modality Average Sentiment Score
Score Distribution

1 0.5 0 -0.5 -1

English 1
Text 0.162 102 0 18 0 71

Speech 0.196 103 1 21 0 66

English 2
Text 0.151 69 15 34 10 45

Speech 0.172 74 5 43 6 44

English 3
Text 0.235 89 5 40 6 45

Speech 0.230 90 5 40 0 50

Chinese 1
Text 0.099 75 2 50 3 56

Speech 0.124 75 2 56 0 53

Chinese 2
Text -0.079 45 2 79 6 58

Speech -0.121 39 10 74 0 67

Chinese 3
Text 0.109 73 9 39 9 53

Speech 0.049 50 4 86 0 43

Cantonese
Text 0.093 68 7 55 8 46

Speech 0.168 76 11 50 2 49

Dutch
Text -0.051 58 0 72 0 68

Speech -0.045 58 0 73 0 67

German
Text 0.54 55 2 82 0 46

Speech 0.076 64 0 71 0 50

Korean
Text -0.018 51 12 34 22 49

Speech -0.051 33 9 80 0 46

Romanian
Text 0.076 75 0 63 0 60

Speech 0.086 76 0 63 0 59

Vietnamese
Text -0.045 58 0 73 0 67

Speech 0.040 62 0 82 0 54
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Appendix B: Charismatic Speech Survey Questions

B.1 Demographic Information
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B.2 Speaker Trait Ratings
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Appendix C: Speech Genre and Highest Speaker Traits

Rank \ Genre Campaign Ads Stump Speeches Debates Interviews

1 Fluent Fluent Confident Fluent

2 Intelligent Confident Fluent Confident

3 Confident Reasonable Intelligent Intelligent

4 Sincere Sincere Reasonable Reasonable

5 Reasonable Intelligent Sincere Sincere

6 Trustworthy Enthusiastic Extroverted Eloquent

7 Extroverted Trustworthy Trustworthy Trustworthy

8 Eloquent Persuasive Enthusiastic Persuasive

9 Persuasive Eloquent Persuasive Extroverted

10 Enthusiastic Tough Charismatic Charismatic
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