646 research outputs found

    Adaptive unknonwn-input observers-based synchronization of chaotic circuits for secure telecommunication

    No full text
    International audienceWe propose a robust adaptive chaotic synchronization method based on unknown-input observers for master-slave syn- chronization of chaotic systems, with application to secured com- munication. The slave system is modelled by an unknown input observer in which, the unknown input is the transmitted informa- tion. As in the general observer-based synchronization paradigm, the information is recovered if the master and slave systems ro- bustly synchronize. In the context of unknown-input observers, this is tantamount to estimating the master's states and the unknown inputs. The set-up also considers the presence of perturbations in the chaotic transmitter dynamics and in the output equations (the transmitted signal). That is, the estimator (slave system) must syn- chronize albeit noisy measurements and reject the effect of pertur- bations on the transmitter dynamics. We provide necessary and sufficient conditions for synchronization to take place. To highlight our contribution, we also present some simulation results with the purpose of comparing the proposed method to classical adaptive observer-based synchronization (without disturbance rejection). It is shown that additive noise is perfectly canceled and the encoded message is well recovered despite the perturbations

    A Robust Control Method for Q

    Get PDF
    A robust control approach is presented to study the problem of Q-S synchronization between Integer-order and fractional-order chaotic systems with different dimensions. Based on Laplace transformation and stability theory of linear integer-order dynamical systems, a new control law is proposed to guarantee the Q-S synchronization between n-dimensional integer-order master system and m-dimensional fractional-order slave system. This paper provides further contribution to the topic of Q-S chaos synchronization between integer-order and fractional-order systems and introduces a general control scheme that can be applied to wide classes of chaotic and hyperchaotic systems. Illustrative example and numerical simulations are used to show the effectiveness of the proposed method

    A New 3-D Multistable Chaotic System with Line Equilibrium: Dynamic Analysis and Synchronization

    Get PDF
    This work introduces a new 3-D chaotic system with a line of equilibrium points. We carry out a detailed dynamic analysis of the proposed chaotic system with five nonlinear terms. We show that the chaotic system exhibits multistability with two coexisting chaotic attractors. We apply integral sliding mode control for the complete synchronization of the new chaotic system with itself as leader-follower systems

    Robust adaptive anti-synchronization control of multiple uncertain chaotic systems of different orders

    Get PDF
    The precise anti-synchronization control of uncertain chaotic systems has always remained an interesting problem. The anti-synchronization control of multiple different orders uncertain chaotic systems increases the complexity and enhances the security of the information signal in secure communications. Hence, it confines the hacking in digital communication systems. This paper proposes a novel adaptive control technique and studies the double combination anti-synchronization of multiple different orders uncertain chaotic systems. The proposed adaptive feedback control technique consists of three fundamental nonlinear components. Each component accomplishes a different objective; (i) stability of the closed-loop, (ii) smooth and fast convergence behaviour of the anti-synchronization error, and (iii) disturbance rejection. The theoretical analysis in (i) to (iii) uses the Lyapunov stability theory. This paper also provides parameters adaptation laws that stabilize the uncertain parameters to some constants. The paper discusses the simulation results of two representative examples of four different orders uncertain chaotic systems. These examples demonstrate anti-synchronization among hyperchaotic LĂĽ, uncertain chaotic Shimizu Morioka, uncertain second-order nonlinear duffing, and uncertain parametrically excited second-order nonlinear pendulum systems. The computer-based simulation results certify the efficiency and performance of the proposed anti-synchronization control approach and compare them with peer works

    Hybrid Synchronization of the Generalized Lotka-Volterra Three-Species Biological Systems via Adaptive Control

    Get PDF
    Abstract: Since the recent research has shown the importance of biological control in many biological systems appearing in nature, this research paper investigates research in the dynamic and chaotic analysis of the generalized Lotka-Volterra three-species biological system, which was studied b

    Design and Implementation of Secure Chaotic Communication Systems

    Get PDF
    Chaotic systems have properties such as ergodicity, sensitivity to initial conditions/parameter mismatches, mixing property, deterministic dynamics, structure complexity, to mention a few, that map nicely with cryptographic requirements such as confusion, diffusion, deterministic pseudorandomness, algorithm complexity. Furthermore, the possibility of chaotic synchronization, where the master system (transmitter) is driving the slave system (receiver) by its output signal, made it probable for the possible utilization of chaotic systems to implement security in the communication systems. Many methods like chaotic masking, chaotic modulation, inclusion, chaotic shift keying (CSK) had been proposed however, many attack methods later showed them to be insecure. Different modifications of these methods also exist in the literature to improve the security, but almost all suffer from the same drawback. Therefore, the implementation of chaotic systems in security still remains a challenge. In this work, different possibilities on how it might be possible to improve the security of the existing methods are explored. The main problem with the existing methods is that the message imprint could be found in the dynamics of the transmitted signal, therefore by some signal processing or pattern classification techniques, etc, allow the exposition of the hidden message. Therefore, the challenge is to remove any pattern or change in dynamics that the message might bring in the transmitted signal

    Rikitake dynamo system, its circuit simulation and chaotic synchronization via quasi-sliding mode control

    Get PDF
    Rikitake dynamo system (1958) is a famous two-disk dynamo model that is capable of executing nonlinear chaotic oscillations similar to the chaotic oscillations as revealed by palaeomagnetic study. First, we detail the Rikitake dynamo system, its signal plots and important dynamic properties. Then a circuit design using Multisim is carried out for the Rikitake dynamo system. New synchronous quasi-sliding mode control (QSMC) for Rikitake chaotic system is studied in this paper. Furthermore, the selection on switching surface and the existence of QSMC scheme is also designed in this paper. The efficiency of the QSMC scheme is illustrated with MATLAB plots

    Volterra's kernels-based finite-time parameters estimation of the Chua system

    Get PDF
    In this work, the unknown set of parameters of the Chua system is recovered under the hypothesis that the voltages of the capacitors are available. The system is shown to be algebraically observable and identifiable with respect to the chosen outputs. Focusing on the differential equations, the Volterra kernel-based approach is used to perform an estimation without the uncertainty of the unmeasurable derivatives and the unknown initial conditions
    • …
    corecore