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Abstract

In this work, the unknown set of parameters of the Chua system is recovered
under the hypothesis that the voltages of the capacitors are available. The
system is shown to be algebraically observable and identifiable with respect to
the well chosen outputs. Focusing on the differential equations, the Volterra
kernel-based approach is used to perform an estimation without the uncertainty
of the unmeasurable derivatives and the unknown initial conditions.
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1. Introduction

Chaotic systems have attracted the attention of the recent research due to
their potential applications in secure communication, laser system, electronic
chemistry, neurophysiology and ecology [1]. Estimating some variables and un-
known parameters of a chaotic system are common and interesting problems in
chaos theory and its applications. Aiming at performing a given task or achiev-
ing defined performance, all the parameters of a dynamical system have to be
known. Moreover, depending on the desired goal, system variables which can-
not be measured may be required. In this context, the reconstruction problem
consists in extracting some physical parameters simultaneously estimating some
non available states, starting from the available system outputs [2].

To solve this problem, methodologies based on control ideas, like state ob-
servers design and system identification, have been deployed as mechanisms to
obtain the non-available variables [3, 4] avoiding the use of expensive resources.
Other authors propose the use of delay embedding methods based solutions
[5, 6, 7, 8, 9]. In [10] an approach to provide an accurate estimation of the
parameters of a Lorenz system synchronized by an external driving signal is
proposed. In particular, the estimation is obtained by translating the Lorenz
equation into a linear one w.r.t. the parameters and by obtaining them as a
solution of the resulting final equations.

In [11], an approach to estimate the parameters of chaotic systems by prop-
erly modifying a noise-induced synchronization is proposed. First of all, a
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dimensionally-expanded parameter estimating system is designed; the chaotic
transmitted signal is then used to synchronize the parameter estimating system
and the original chaotic one. Parameters are finally obtained using the syn-
chronized estimating system. Following the same lines, in the last two decades
researchers have been attracted by synchronization and identification of chaotic
systems [12] especially because when the synchronization of two coupled chaotic
systems is achieved, no matter what the initial conditions are, the difference be-
tween the systems goes to zero as time goes to infinity [9, 13, 14]. The above
property has been used in engineering communications to encode and decode
messages [15, 16].

When the state of the system is not fully measurable, then the identifica-
tion problem becomes more difficult due to the necessity to estimate, besides the
parameters, also the hidden state variables from the sole input/output measure-
ments. To solve this problem, in [17] an efficient approach for the estimation of
the non-available state variables for the Duffings chaotic system is proposed by
obtaining an integral output parametrization of the hidden state variables.

Among the Chaotic systems, the Chua circuit has been studied in various
ways. The unknown set of parameters of this system has been obtained by
[18] using an adaptive control approach and assuming that the voltages of the
capacitors are available. In [6], an estimation strategy based on the embedding
approach using time delayed outputs has been proposed. In [19], the least
squares method has been used to solve the estimation problem, under the strong
assumption of all the Chua system states availability. A solution based on a
non-asymptotic linear estimator has been used in [20].

In the parameters reconstruction context, properties of Volterra integral op-
erator can be used to obtain useful estimation algorithms able to provide param-
eters value in finite-time. The kernel-based method designs a class of Bivariate
Feedthrough Non-asymptotic Kernels (BF-NK) to form the Volterra integral op-
erator, providing a finite-time parameter estimation for continuous-time linear
systems, annihilating the effects of the unknown initial conditions and avoiding
the need for output derivatives computations. The Volterra integral operators
properties have been widely used in various contexts for the finite time param-
eters estimation [21, 22, 23]. In this paper, the Chua system is proven to be
algebraically observable and identifiable, with respect to the voltages outputs,
and starting from the ideas proposed by [23], the Volterra operator with BF-
NK is used to achieve a joint parametric estimation of the system parameters
with arbitrary non-asymptotic convergence properties. It represents a revised
version of [24], aiming to provide new contributions in terms of: clarification on
the advantages of the proposed strategy, detailed description of the parameters
estimation method based on kernels functions and finally presentation of new
simulated results. Some comparisons are reported in terms of accuracy and
robustness with an existing method in literature. The paper is organized as
follows: Section 2 describes the Chua system and its main properties; Section 3
summarizes some of the properties of the Volterra integral operator; in Section
4 the proposed finite time parameters estimation is obtained; numerical simu-
lations proving the effectiveness of the Volterra based estimation are shown in
Section 5; finally, Section 6 is devoted to the conclusions.

2. The Chua system

2



Figure 1: The Chua system.

Chua’s circuit in Fig. 1 is the simplest and most widely studied real nonlinear
dynamical systems [25]. It consists of three energy-store elements (an inductor
and two capacitors), a linear resistor and a single nonlinear resistor, called
Chua’s diode. A simplified nonlinear model of this system is given by:

C1
dvC1

dt
=

1

R
(vC2 − vC1)− φ(vC1),

C2
dvC2

dt
=

1

R
(vC1 − vC2) + iL, (1)

L
diL
dt

= −vC2

where R is a linear resistance, vC1 and vC2 are the voltages across capacitors
C1 and C2, respectively, iL is the current through the inductor L and φ(vC1)
is the current through the nonlinear resistor as a function of the voltage across
capacitor C1.

This nonlinear function is described by the odd-symmetric piecewise-linear
function

φ(x) = −
[
m1vC1 +

m0 −m1

2
(|vC1 +Bp| − |vC1 −Bp|)

]
,

where m0, m1 and Bp are three fixed constants of the diode. The system (1)
can be rewritten in dimensionless form as

ẋ1 = β (−x1 + x2 − f(x1)) ,

ẋ2 = x1 − x2 + x3, (2)

ẋ3 = −γx2,

with
f(x) = ax+ b(|x+ 1| − |x− 1|)

and

β =
C2

C1
, γ =

C2R
2

L
, a = m1R, b =

m0 −m1

2
R, x1 =

vC1

Bp
, x2 =

vC2

Bp
, x3 =

RiL
Bp

.

For the fixed values of parameters in a neighborhood of γ = 27, β = 15.6, a =
−5/7, b = −3/14 and initial conditions x0 = [−0.9,−0.15, 1.47]T , the Chua
system presents the so called double scroll chaotic attractors [1].
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The importance of this circuit stems from its peculiarity of being the only
physical system where the presence of chaos has been experimentally established,
numerically confirmed and mathematically proven [26]. The circuit can be easily
constructed at low cost using standard electronic components and exhibits a rich
variety of bifurcations and chaos [27].

Definition 1. Consider a smooth nonlinear system

ẋ = f(x,p), y = h(x),

where x ∈ Rn, y ∈ Rm and p ∈ Rl with l < n is a constant parameter vector.
The state vector x is algebraically observable if it can be uniquely expressed as

x = s(y, ..., y(m),p),

for some smooth function s. Moreover, if p satisfies the following linear relation

s1(y, ..., y(m)) = s2(y, ..., y(m))p,

where s1(·) and s2(·) are respectively l×1 and l×l matrices with det(s2(y, ..., y(m))) 6=
0, then p is said to be algebraically linearly identifiable with respect to the output
y.

System (2) is algebraically observable with respect to the outputs y1 = x1
and y2 = x2, since all the system variables can be expressed in terms of y1, y2
and their derivatives as

x1 = y1, x2 = y2, x3 = ẏ2 + y2 − y1.

Moreover the system parameters are algebraically linearly identifiable since

ẏ1 = −β(1 + a)y1 + βy2 − bβz1, (3)

ÿ2 + ẏ2 − ẏ1 = −γy2 (4)

where z1 = |y1 + 1| − |y1 − 1|.

3. Volterra integral operators algebra

Let L2
loc(R≥0) be the Hilbert space of locally square-integrable functions with

domain R≥0 and range R. Given a function f ∈ L2
loc(R≥0), its image through

the Volterra (linear, integral) operator VK induced by a Hilbert-Schmidt (HS)
Kernel Function K(·, ·) : R × R → R is usually denoted by [VKf ](·), and is
defined by the inner product:

[VKf ](t) ,
∫ t

0

K(t, τ)f(τ)dτ, t ∈ R≥0. (5)

Any explicit function f(t) : t → ft ∈ R, such that f(·) ∈ L2
loc(R≥0) will be

addressed to as a signal. Then, given two scalars a, b ∈ R≥0, with a < b, let
us denote by f[a,b](·) and f(a,b](·) the restriction of a signal f(·) to the closed
interval [a, b] and to the left open interval (a, b], respectively. Moreover, let
f(t) ∈ Rn,∀t ≥ 0 be an i-times differentiable vector of signals, we denote by
f (i) the vector of the i-th order time-derivative signals. Then, we recall the
following useful definition:
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Definition 2. Weak (generalized) derivative:
Let f(·) ∈ L2

loc(R≥0). f (1)(·) is said a weak derivative of f(·) if∫ t

0

f(τ)

(
d

dτ
γ(τ)

)
dτ = −

∫ t

0

f (1)(τ)γ(τ)dτ,∀t ∈ R≥0

for all γ ∈ C∞, with γ(0) = γ(t) = 0.

We remark that f (1)(·) is unique up to a set of zero Lebesgue measure, i.e.,
it is defined almost everywhere. If f is differentiable in the conventional sense,
then its weak derivative is identical to its conventional derivative. Traditional
rules for the derivation of sum or products of functions also hold for the weak
derivative. Given a kernel function K(·, ·) in two variables, its i-th order weak
derivative with respect to the second argument will be denoted as K(i), i ∈ Z≥0.
For the sake of the implementability, a differential form to the operators is
devised by applying the Leibniz differentiation rule to the Volterra integral.
The transformed signal [VKf ](t),∀t ≥ 0, can be obtained as the output of a
system described by the scalar integro-differential equation:

ξ̇(t) = K(t, t)f(t) +

∫ t

0

(
∂

∂t
K(t, τ)

)
f(τ)dτ, t ∈ R≥0

ξ(0) = ξ0 =
∫ t
0
K(0, τ)f(τ)dτ

[VKf ] (t) = ξ(t),∀t ∈ R≥0.

(6)

In the following some useful results dealing with the application of Volterra
operators to the derivatives of a signal will be recalled.

Lemma 1. Volterra image of a signal’s derivative:
For a given i ≥ 0, consider a signal f(·) ∈ L2(R≥0) that admits a i-th

weak derivative in R≥0 and a kernel function K(·, ·) ∈ HS that admits the i-
th derivative (in the conventional sense) with respect to the second argument,
∀t ∈ R≥0. It holds that:

[VKf
(i)](t) =

i−1∑
j=0

(−1)i−j−1f (j)(t)K(i−j−1)(t)+

+

i−1∑
j=0

(−1)i−jf (j)(0)K(i−j−1)(0)+

+(−1)i[VK(i)f ](t),∀t ∈ R≥0

(7)

that is, [VKf
(i)](·) is non-anticipative with respect to f(·) and its first (i− 1)-th

derivatives f (1)(·), . . . , f (i−1)(·).

Lemma 1 allows to identify a class of kernels such that for each derivative
f (i), i ∈ {0, . . . , n− 1}, the image signal [VKf

(i)](t),∀t > 0 is independent from
the initial states f(0), f (1)(0), . . . , f (i−1)(0), according to the following defini-
tion.
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Definition 3. (i-th order non-asymptotic kernel):
Consider a function K(·, ·) satisfying the assumptions of Lemma 1; if, in

addition, for a given i ≥ 1, the kernel verifies the condition

K(j)(t, 0) = 0,∀t ∈ R≥0,∀j ∈ {0, . . . , i− 1}, (8)

then, it is called an i-th order non-asymptotic kernel.

Assuming that K(·, ·) is an n-th order non-asymptotic kernel function, then it
holds that:

[VKf
(i)](t) =

i−1∑
j=0

(−1)i−1−jf (j)(t)K(i−j−1)(t, t)+

(−1)i[VK(i)f ](t), i ∈ {1, . . . , n− 1}.
(9)

Considering the case i = 1, by some trivial manipulation of (9) it follows that

[VKf
(1)](t) = f(t)K(t, t)− [VK(1)f ](t). (10)

Rearranging (6), for any bounded signal f(t), the transformed signal [VK(i)f ](t)
in (9) can be obtained as the output of a linear time-varying dynamic system: ξ̇(t) = K(i)(t, t)f(t) +

∫ t
0
( ∂∂tK

(i)(t, τ))f(τ)dτ

ξ(t) = [VK(i)f ](t),∀t ∈ R≥0.
(11)

Let now K(t, τ) be the following Bivariate Feedthrough Non-asymptotic Ker-
nels (BF-NK)

K(t, τ) = e−ωh(t−τ)(1− e−ωτ )N ,

where ω, ωh ∈ R≥0 are arbitrarily set constant parameters.
Note for any i ∈ {0, 1, . . . , N}, the i-th order weak derivative w.r.t. the

second argument, τ , is

K(i)(t, τ) = e−ωht
di

dτ i
[eωhτ (1− e−ωτ )N ] (12)

with K(i)(t, τ) = 0,∀t ∈ R≥0, i ∈ {0, 1, . . . , N}.
For the chosen kernel function, for any i ∈ {1, . . . , N}, the partial derivative

w.r.t. the first argument t satisfies

∂

∂t
K(i)(t, τ) = −ωhK(i)(t, τ). (13)

As a consequence, the first equation in the state space (11) is:

ξ̇(t) = K(i)(t, t)f(t) +
∫ t
0
( ∂∂tK

(i)(t, τ))f(τ)dτ =
= K(i)(t, t)f(t)− ωhξ(t),∀t ∈ R≥0

ξ(0) = ξ0 = 0.

(14)

Being K(i)(t, t) bounded, it holds that the scalar dynamical system real-
ization of the Volterra operators induced by the proposed kernels is internally
stable.
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4. Kernel-based estimation

Let us consider differential Eq. (3) with the unknown parameters vector

θ1 = [−β(1 + a), β,−βb]T . Taking the Volterra linear integral operator on both
side and considering Kernel functions properties, it follows that

h1(t)T θ1 = s1(t), (15)

where
h1(t) = [[VKy1](t), [VKy2](t), [VKz1](t)]

T
(16)

and
s1(t) = K(t, t)y1(t)− [VK(1)y1](t). (17)

In order to estimate the parameter γ, Eq. (4) is considered. In this case,
to eliminate the dependence on ẏ2, two BF-NK functions, namely K1 and K2,
with the same ω̄ and different values of ωh (ω1 and ω2) are used. Letting

s2(t) = [V
K

(2)
1
y2](t) + [V

K
(1)
1

(y1 − y2)](t)−K(1)
1 (t, t)y2(t),

s3(t) = [V
K

(2)
2
y2](t) + [V

K
(1)
2

(y1 − y2)](t)−K(1)
2 (t, t)y2(t),

h2(t) = [VK2
y2](t)− [VK1

y2](t),

the algebraic equation
h2(t)γ = s2(t)− s3(t) (18)

is obtained.
In the following, for the sake of brevity, the estimation procedure will be

explained for the parameters vector θ1 case only. The same approach can be
easily adapted to estimate the parameter γ.

From Eq. (15) it follows that the parameters vector θ1 verifies the structural
constraint

H(t)θ1 − S(t) = 0, (19)

where
H(t) = h1(t)h1(t)T , S(t) = h1(t)s1(t). (20)

Let Hf (t) and Sf (t) be two filtered versions of the matrices H(t) and S(t):{
Ḣf (t) = −λHf (t) +H(t),

Ṡf (t) = −λSf (t) + S(t),
(21)

with Hf (0) = 0 ∈ R3×3 and Sf (0) = 0 ∈ R3, then the following structural
constraint is verified too

Hf (t)θ1 − Sf (t) = 0.

For an estimate θ̂1(t) (possibly θ̂1(t) 6= θ), the above constraint is not exactly
matched, and in general a non-zero residual R̃f (t) is introduced:

R̃f (t) = Hf (t)θ̂1(t)− Sf (t), ˙̃Rf (t) = Hf (t)
˙̂
θ1(t) + Ḣf (t)θ̂1(t)− Ṡf (t).

(22)
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In order to make
∥∥∥R̃f (t)

∥∥∥→ 0 in finite time the following sliding-mode type

adaptation law can be used:

˙̂
θ1(t) =


Hf (t)−1

[
−µ sign

(
R̃f (t)

)√∣∣∣R̃f (t)
∣∣∣− Ḣf (t)θ̂1(t) + Ṡf (t)

]
,

if |det(Hf (t))| ≥ δ,
0,

if |det(Hf (t))| < δ,

(23)

where δ > 0 is a user-defined threshold constant.
Note that the proposed adaptation law uses the derivatives of Hf (t) and

Sf (t) instead of Ḣ(t) and Ṡ(t) because the above signals are not available.

Remark 1. In summary the algorithm requires, ∀t ≥ 0, the implementation of
Eqs. (16)-(17) and (20)-(23). In particular, as far as the computational effort
is concerned, Eqs. (16)-(17) require the computation of the Volterra image of
signals derivatives and, according to the previous theoretical results, it translates
into the application of a first order filter; Eq. (21) implies the computation of
filtered versions of matrices H and S, i.e. the application of a first order filter
at each matrix element. Finally in Eq. (22) the inverse of Hf (t) is required.

4.1. Finite-time convergence in noise-free scenario

In this Section, the convergence properties of the proposed estimator in
absence of external perturbations is addressed.

Assumption 1. (Persistency of Excitation): The vector h1(t) is persistently
exciting (PE) in R3 in the sense that exsist constants r > 0 and T > 0 such
that ∀t ≥ 0 ∫ t

t−T
h1(τ)hT1 (τ)dτ ≥ rI > 0. (24)

Lemma 2. Given a vector x = [x1, . . . , xn] ∈ Rn and p ∈ (0, 1), it holds that

n∑
i=1

|xi|p ≥

(
n∑
i=1

|xi|

)p
. (25)

Lemma 3. Deadbeat estimation algorithm convergence time:
Let V (t) > 0∀t ≥ t0, and let

V̇ (t) ≤ −cV η(t),∀t ≥ t0,

with c > 0 and η ∈ (0, 1); then V 1−η(t) ≤ V 1−η(t0)− c(1− η)(t− t0), t ∈ [t0, t1]

V (t) = 0, ∀t ≥ t1,

with

t1 = t0 +
V 1−η(t0)

c(1− η)
.
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Proof. Given the following differential equation ẋ(t) = −cxη(t)

x(t0) = V (t0),

its solution is
x1−η(t) = −c(1− η)(t− t0) + x1−η(t0),

the derivative of which is

d

dt
x1−η(t) = −c(1− η) < 0.

Then the function x1−η(t) is monotonically decreasing; as a consequence

V 1−η(t) ≤ V 1−η(t0)− c(1− η)(t− t0),∀t0 ≤ t ≤ t1.

Moreover V 1−η(t1) = 0 where

t1 = t0 +
V 1−η(t0)

c(1− η)
.

Since V 1−η(t) is monotonically decreasing, V (t) is monotonically decreasing too,
and since V (t) ≥ 0 then

V (t) = 0,∀t ≥ t1.

Theorem 1. If Assumption 1 holds, given the noise-free signals y1(t), y2(t), z1(t),
the estimated parameters vector θ1(t) governed by the adaptation law (23) con-
verges to the true value θ1 in finite-time.

Proof. Let define the following Lyapunow function

V (t) =
1

2
R̃Tf (t)R̃f (t), (26)

the derivative of which is

V̇ (t) = R̃Tf (t) ˙̃Rf (t). (27)

Substituting (22) and (23) into (27) it follows that

V̇ (t) = −µ
3∑
i=1

|R̃f,i(t)|
3
2 (28)

where R̃f,i(t) is the i-th component of R̃f (t).

V̇ (t) can now be written in terms of V (t). Starting from (28), one obtains
that

V̇ (t) = −µ
3∑
i=1

|R̃f,i(t)|
3
2 = −µ

3∑
i=1

(|R̃f,i(t)|2)
3
4 =

= −2
3
4µ

3∑
i=1

(
1

2
|R̃f,i(t)|2

) 3
4

.

(29)
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Applying Lemma 2, the Eq. (29) becomes

V̇ (t) = −2
3
4µ

3∑
i=1

(
1

2
|R̃f,i(t)|2

) 3
4

< −2
3
4µ

(
1

2

3∑
i=1

|R̃f,i(t)|2
) 3

4

. (30)

Recalling now (26),

V̇ (t) < −2
3
4µV (t)

3
4 (31)

and thus the proof follows. The convergence time can be easily obtained as
shown in Lemma 3.

4.2. Robustness Analysis

In this Section, the stability properties of the proposed estimation technique,
in the case of noisy measurements, are studied.

Let assume that
y1(t) = y1(t) + dy,1(t)
y2(t) = y2(t) + dy,2(t)
z1(t) = z1(t) + dz,1(t)

where |dy,1(t)| ≤ dy, |dy,2(t)| ≤ dy and |dz,1(t)| ≤ dz.
Starting from Eq. (19), the perturbation on the measurements can be seen

as a noisy input to Volterra integral operator shown in (14) and due to the
internal stability of this operator, the output to this noisy bounded input will
be bounded too. As a consequence the signals S(t) and H(t) become

S(t) = S(t) + ∆S(t)

H(t) = h1(t)h
T

1 (t) = H(t) + ∆H(t)

where ∆S(t) and ∆H(t) are related to the measurements noises and are bounded
too.

Let now assume that h1(t) is persistently exciting in R3; at this point the
filtered signals {

Ḣf (t) = −λHf (t) +H(t)

Ṡf (t) = −λSf (t) + S(t)

can be used to define the following sliding-mode type adaptation law

˙̂
θ1(t) = H

−1
f (t)(−µ sign(R̃f (t))

√
|R̃f (t)|+ Ṡf (t)− Ḣf (t)θ̂1(t)). (32)

The estimation θ̂1(t) then converges in the bounded region

θ̂1(t) ∈
[

inf
0≤τ≤t

(Hf (τ))−1Sf (τ), sup
0≤τ≤t

(Hf (τ))−1Sf (τ)

]
. (33)

In conclusion, the estimation error θ̂1(t)−θ1 is bounded with respect to bounded
disturbances.
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5. A numerical example

To evaluate the performance of the proposed parameters estimation tech-
nique in both noisy and noise-free scenarios,numerical tests have been performed
starting from the initial conditions x1(0) = −0.9, x2(0) = −0.15, x3(0) = 1.47
and with the following parameters to be obtained:

γ = 27, β = 15.6, a = −5/7, b = −3/14.

The proposed Kernel based estimation technique (denoted as KBM) has
been performed using the parameters shown in Tab. 1.

Parameter Value

ωh 0.5
ω 0.1
ω1 0.5
ω2 0.8
λ 0.05
µ 0.001
δ 10−4 for parameters a, b and β

10−6 for parameter γ

Table 1: KBM parameters values

and it has been contrasted with the technique proposed in [20], hereafter
denoted as linear method (LM), where a linear system of equations is built
starting from the output y(t) = x1(t) and assuming to have knowledge about
the parameters a and b. Solving the above systems of equations, information
about the initial conditions on x2 and x3 is inferred along with an estimation
of the missing parameters.

In the noisy case, the state variables have been assumed to be corrupted
by a uniformly distributed noise in [−0.05, 0.05]. The resulting Chua system
evolution is shown in Fig. 2.

Figs. 3 and 4 show the obtained estimations in noise-free and noisy scenarios
respectively: for the parameters β and γ, the results obtained using both the
methods are shown; for the remaining coefficients, only the finite time estima-
tions are depicted.

According to these figures, KBM activated at around 2s for the parameters
a, b, β and at around 6s for γ and it converges at 6s and 12s respectively. In
the noisy case it performs a smoother estimation for the unknown parameters
and the estimation error is bounded and it shows lower fluctuations around the
steady state value w.r.t. LM.

As a main drawback, the proposed method requires information about both
voltages on the capacitors, while the method described in [20] needs only one of
them. However, the latter method assumes to have partial knowledge about the
Chua system parameters. Moreover, no assurance is given about robustness of
the linear method w.r.t. noise. In particular, to increase robustness, the linear
set of equations has to be solved in a least mean square way using a big number
of measurements and then requiring high spatial cost and computational effort.
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(a) Evolution in the x1, x2, x3 space (b) Evolution in the x1, x2 plane

(c) Evolution in the x2, x3 plane (d) Evolution in the x3, x1 plane

Figure 2: Double scroll.

6. Conclusions

In this paper a novel parameters estimation technique for the Chua system
has been proposed. First of all, the Chua system has been analyzed showing that
it is algebraically observable w.r.t. the voltages on the capacitors. Assuming
to have knowledge about the above signals, a finite time parameters estima-
tion method has been proposed using the Volterra integral operator properties.
Moreover, it has been proven that the parameters estimation error is bounded if
the system is corrupted by an additive bounded noise. The resulting technique
has been tested in numerical simulations showing its effectiveness in providing
the system parameters in finite time.
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