955 research outputs found

    Parametric Estimation Techniques for Space-Time Adaptive Processing with Applications for Airborne Bistatic Radar Systems

    Get PDF
    This thesis considers parametric scenario based methods for Space-Time Adaptive Processing (STAP) in airborne bistatic radar systems. STAP is a multidimensional filtering technique used to mitigate the influence of interference and noise in a target detector. To be able to perform the mitigation, an accurate estimate is required of the associated space-time covariance matrix to the interference and noise distribution. In an airborne bistatic radar system geometry-induced effects due to the bistatic configuration introduces variations in the angle-Doppler domain over the range dimension. As a consequence of this, clutter observations of such systems may not follow the same distribution over the range dimension. This phenomena may affect the estimator of the space-time covariance matrix.\ua0In this thesis, we study a parametric scenario based approach to alleviate the geometry-induced effects. Thus, the considered framework is based on so called radar scenarios. A radar scenario is a description of the current state of the bistatic configuration, and is thus dependent on a few parameters connected to the two radar platforms which comprise the configuration. The scenario description can via a parametric model be used to represent the geometry-induced effects present in the system. In the first topic of this thesis, an investigation is conducted of the effects on scenario parameter residuals on the performance of a detector. Moreover, two methods are presented which estimate unknown scenario parameters from secondary observations. In the first estimation method, a maximum likelihood estimate is calculated for the scenario parameters using the most recent set of secondary data. In the second estimation method, a density is formed by combination of the likelihood associated with the most recent set of radar observations with a prior density obtained by propagation of previously considered scenario parameter estimates through a dynamical model of the scenario platforms motion over time. From the formed density a maximum a posteriori estimate of the scenario parameters can be derived. Thus, in the second estimation method, the radar scenario is tracked over time. Consequently, in the first topic of the thesis, the sensitivity between scenario parameters and detector performance is evaluated in various aspects, and two methods are investigated to estimate unknown scenario parameters from different radar scenarios.\ua0In the second part of the thesis, the scenario description is used to estimate a space-time covariance matrix and to derive a generalized likelihood ratio test for the airborne bistatic radar configuration. Consequently, for the covariance matrix estimate, the scenario description is used to derive a transformation matrix framework which aims to limit the non-stationary behavior of the secondary data observed by a bistatic radar system. Using the scenario based transformation framework, a set of non-stationary secondary data can be transformed to become more stationarily distributed after the transformation. A transformed set of secondary data can then be used in a conventional estimator to estimate the space-time covariance matrix. Furthermore, as the scenario description provides a representation of the geometry-induced effects in a bistatic configuration, the scenario description can be used to incorporate these effects into the design of a detector. Thus, a generalized likelihood ratio test is derived for an airborne bistatic radar configuration. Moreover, the presented detector is adaptive towards the strength of both the clutter interference and the thermal noise

    Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise

    Get PDF
    We address the problem of adaptive detection of a signal of interest embedded in colored noise modeled in terms of a compound-Gaussian process. The covariance matrices of the primary and the secondary data share a common structure while having different power levels. A Bayesian approach is proposed here, where both the power levels and the structure are assumed to be random, with some appropriate distributions. Within this framework we propose MMSE and MAP estimators of the covariance structure and their application to adaptive detection using the NMF test statistic and an optimized GLRT herein derived. Some results, also conducted in comparison with existing algorithms, are presented to illustrate the performances of the proposed algorithms. The relevant result is that the solutions presented herein allows to improve the performance over conventional ones, especially in presence of a small number of training data

    Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: A Bayesian approach

    Get PDF
    In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available.The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios

    Toward Deep Learning-Based Human Target Analysis

    Get PDF
    In this chapter, we describe methods toward deep learning-based human target analysis. Firstly, human target analysis in 2D and 3D domains of radar signal is introduced. Furthermore, range-Doppler surface for human target analysis using ultra-wideband radar is described. The construction of range-Doppler surface involves range-Doppler imaging, adaptive threshold detection, and isosurface extraction. In comparison with micro-Doppler profiles and high-resolution range profiles, range-Doppler surface contains range, Doppler, and time information simultaneously. An ellipsoid-based human motion model is designed for validation. Range-Doppler surfaces simulated for different human activities are demonstrated and discussed. With the rapid emergence of deep learning, the development of radar target recognition has been accelerated. We describe several deep learning algorithms for human target analysis. Finally, a few future research considerations are listed to spark inspiration

    A Novel Method of Near-Miss Event Detection with Software Defined RADAR in Improving Railyard Safety

    Get PDF
    Railyards are one of the most challenging and complex workplace environments in any industry. Railyard workers are constantly surrounded by dangerous moving objects, in a noisy environment where distractions can easily result in accidents or casualties. Throughout the years, yards have been contributing 20–30% of the total accidents that happen in railroads. Monitoring the railyard workspace to keep personnel safe from falls, slips, being struck by large object, etc. and preventing fatal accidents can be particularly challenging due to the sheer number of factors involved, such as the need to protect a large geographical space, the inherent dynamicity of the situation workers find themselves in, the presence of heavy rolling stock, blind spots, uneven surfaces and a plethora of trip hazards, just to name a few. Since workers spend the majority of time outdoors, weather conditions also play an important role, i.e., snow, fog, rain, etc. Conventional sensor deployments in yards thus fail to consistently monitor this workspace. In this paper, the authors have identified these challenges and addressed them with a novel detection method using a multi-sensor approach. They have also proposed novel algorithms to detect, classify and remotely monitor Employees-on-Duty (EoDs) without hindering real-time decision-making of the EoD. In the proposed solution, the authors have used a fast spherical-to-rectilinear transform algorithm on fish-eye images to monitor a wide area and to address blindspots in visual monitoring, and employed Software-Defined RADAR (SDRADAR) to address the low-visibility problem. The sensors manage to monitor the workspace for 100 m with blind detection and classification. These algorithms have successfully maintained real-time processing delay of ≤0.1 s between consecutive frames for both SDRADAR and visual processing

    On Spectral Estimation and Bistatic Clutter Suppression in Radar Systems

    Get PDF
    Target detection serve as one of the primary objectives in a radar system. From observations, contaminated by receiver thermal noise and interference, the processor needs to determine between target absence or target presence in the current measurements. To enable target detection, the observations are filtered by a series of signal processing algorithms. The algorithms aim to extract information used in subsequent calculations from the observations. In this thesis and the appended papers, we investigate two techniques used for radar signal processing; spectral estimation and space-time adaptive processing.\ua0In this thesis, spectral estimation is considered for signals that can be well represented by a parametric model. The considered problem aims to estimate frequency components and their corresponding amplitudes and damping factors from noisy measurements. In a radar system, the problem of gridless angle-Doppler-range estimation can be formulated in this way. The main contribution of our work includes an investigation of the connection between constraints on rank and matrix structure with the accuracy of the estimates.Space-time adaptive processing is a technique used to mitigate the influence of interference and receiver thermal noise in airborne radar systems. To obtain a proper mitigation, an accurate estimate of the space-time covariance matrix in the currently investigated cell under test is required. Such an estimate is based on secondary data from adjacent range bins to the cell under test. In this work, we consider airborne bistatic radar systems. Such systems obtains non-stationary secondary data due to geometry-induced range variations in the angle-Doppler domain. Thus, the secondary data will not follow the same distribution as the observed snapshot in the cell under test. In this work, we present a method which estimates the space-time covariance matrix based upon a parametric model of the current radar scenario. The parameters defining the scenario are derived as a maximum likelihood estimate using the available secondary data. If used in a detector, this approach approximately corresponds to a generalized likelihood ratio test, as unknowns are replaced with their maximum likelihood estimates based on secondary data

    Cooperative multiterminal radar and communication: a new paradigm for 6G mobile networks

    Get PDF
    The impending spectrum congestion imposed by the emergence of new bandwidth-thirsty applications may be mitigated by the integration of radar and classic communications functionalities in a common system. Furthermore, the merger of a sensing component into wireless communication networks has raised interest in recent years and it may become a compelling design objective for 6G. This article presents the evolution of the hitherto separate radar and communication systems towards their amalgam known as a joint radar and communication (RADCOM) system. Explicitly, we propose to integrate a radio sensing component into 6G. We consider an ultra-dense network (UDN) scenario relying on an active multistatic radar configuration and on cooperation between the access points across the entire coverage area. The technological trends required to reach a feasible integration, the applications anticipated and the open research challenges are identified, with an emphasis on high-accuracy network synchronization. The successful integration of these technologies would facilitate centimeter-level resolution, hence supporting compelling high-resolution applications for next-generation networks, such as robotic cars and industrial assembly lines.publishe
    corecore