1,344 research outputs found

    Performance Comparison of Static CMOS and Domino Logic Style in VLSI Design: A Review

    Get PDF
    Of late, there is a steep rise in the usage of handheld gadgets and high speed applications. VLSI designers often choose static CMOS logic style for low power applications. This logic style provides low power dissipation and is free from signal noise integrity issues. However, designs based on this logic style often are slow and cannot be used in high performance circuits. On the other hand designs based on Domino logic style yield high performance and occupy less area. Yet, they have more power dissipation compared to their static CMOS counterparts. As a practice, designers during circuit synthesis, mix more than one logic style judiciously to obtain the advantages of each logic style. Carefully designing a mixed static Domino CMOS circuit can tap the advantages of both static and Domino logic styles overcoming their own short comings

    On the Limits and Practice of Automatically Designing Self-Stabilization

    Get PDF
    A protocol is said to be self-stabilizing when the distributed system executing it is guaranteed to recover from any fault that does not cause permanent damage. Designing such protocols is hard since they must recover from all possible states, therefore we investigate how feasible it is to synthesize them automatically. We show that synthesizing stabilization on a fixed topology is NP-complete in the number of system states. When a solution is found, we further show that verifying its correctness on a general topology (with any number of processes) is undecidable, even for very simple unidirectional rings. Despite these negative results, we develop an algorithm to synthesize a self-stabilizing protocol given its desired topology, legitimate states, and behavior. By analogy to shadow puppetry, where a puppeteer may design a complex puppet to cast a desired shadow, a protocol may need to be designed in a complex way that does not even resemble its specification. Our shadow/puppet synthesis algorithm addresses this concern and, using a complete backtracking search, has automatically designed 4 new self-stabilizing protocols with minimal process space requirements: 2-state maximal matching on bidirectional rings, 5-state token passing on unidirectional rings, 3-state token passing on bidirectional chains, and 4-state orientation on daisy chains

    Developing Globally-Asynchronous Locally- Synchronous Systems through the IOPT-Flow Framework

    Get PDF
    Throughout the years, synchronous circuits have increased in size and com-plexity, consequently, distributing a global clock signal has become a laborious task. Globally-Asynchronous Locally-Synchronous (GALS) systems emerge as a possible solution; however, these new systems require new tools. The DS-Pnet language formalism and the IOPT-Flow framework aim to support and accelerate the development of cyber-physical systems. To do so it offers a tool chain that comprises a graphical editor, a simulator and code gener-ation tools capable of generating C, JavaScript and VHDL code. However, DS-Pnets and IOPT-Flow are not yet tuned to handle GALS systems, allowing for partial specification, but not a complete one. This dissertation proposes extensions to the DS-Pnet language and the IOPT-Flow framework in order to allow development of GALS systems. Addi-tionally, some asynchronous components were created, these form interfaces that allow synchronous blocks within a GALS system to communicate with each other

    Formal hardware verification of digital circuits

    Get PDF
    The use of formal methods to verify the correctness of digital circuits is less constrained by the growing complexity of digital circuits than conventional methods based on exhaustive simulation. This paper briefly outlines three main approaches to formal hardware verification: symbolic simulation, state machine analysis, and theorem-proving

    Dissipative, Entropy-Production Systems across Condensed Matter and Interdisciplinary Classical VS. Quantum Physics

    Get PDF
    The thematic range of this book is wide and can loosely be described as polydispersive. Figuratively, it resembles a polynuclear path of yielding (poly)crystals. Such path can be taken when looking at it from the first side. However, a closer inspection of the book’s contents gives rise to a much more monodispersive/single-crystal and compacted (than crudely expected) picture of the book’s contents presented to a potential reader. Namely, all contributions collected can be united under the common denominator of maximum-entropy and entropy production principles experienced by both classical and quantum systems in (non)equilibrium conditions. The proposed order of presenting the material commences with properly subordinated classical systems (seven contributions) and ends up with three remaining quantum systems, presented by the chapters’ authors. The overarching editorial makes the presentation of the wide-range material self-contained and compact, irrespective of whether comprehending it from classical or quantum physical viewpoints

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF

    Quantitative Easing and Corporate Surplus Hoarding in Contemporary Japan

    Get PDF
    • …
    corecore