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Preface to ”Dissipative, Entropy-Production Systems

across Condensed Matter and Interdisciplinary

Classical vs. Quantum Physics”

The XLVII Congress of Polish Physicists was, for the first time in over hundred years in

the history of the Polish Physical Society, held in Bydgoszcz, Poland, on 19–23 September 2021

(http://47zfp.utp.edu.pl/en/47th-congress-of-the-polish-physical-society/ (accessed on 26 August

2022)), gathering in total more than two hundred and fifty regular participants and more than

forty invited speakers. Amongst them, one may find the name of a 2004 Nobel Prize winner,

Professor Frank Wilczek, with his partly Polish roots and special online contribution titled “Time

Crystals”. Over the course of five days and around fifteen sessions, covering topics ranging from the

teaching and popularization of physics, the history of physics, and general physics to the physics of

high energy and cosmology, gravitation, and astrophysics, the participants presented their recent

contributions to the field. One of those sessions was titled “Statistical, Nonlinear and Complex

Systems’ Physics”, and another one, relevant for this book, was the session titled “Condensed Matter

Physics”. (Two other sessions on quantum information and photonics, as well as on biological and

interdisciplinary physics, complement the survey of subdisciplines covered.)

The book has collected ten papers (plus an editorial) addressing a range of topics in

condensed matter and interdisciplinary classical vs. quantum physics. All of them are linked

together by statistical physics/mechanics methods. The selection emerged from a survey of topics

presented at the XLVII Congress of Polish Physicists held in Bydgoszcz. The topics address

problems of classical and quantum statistical physics. As for the classical side, these comprise:

multistability and ergodicity breaking; the formation of dissipative (e.g., spherulitic) structures

in a nonequilibrium bath; ion-influenced conformation of biopolymers (glycosaminoglycans) near

biosurfaces; infectious-disease propagation in terms of social distancing; far-from-equilibrium

information processing employing networks of chemical oscillators; and a problem of equivalence of

the Carnot principle to the second law of thermodynamics and non-equivalence to the first Clausius

and Kelvin principles. As for the quantum side, in turn, these include: mixedness, coherence and

entanglement in three-qubit states; (anti)coherence caused by a thermal bath; and, finally, quantum

graphs split at vertices as simulated experimentally by using microwave networks. All contributions

can be united under the common flagship of maximum-entropy and entropy production principles

experienced by the respective classical and quantum systems in (non)equilibrium conditions.

The book has focused on relevant and fundamental issues of statistical classical/quantum

physics (and related subdisciplines), pointing to maximum-entropy and entropy production and/or

the spread of information principles experienced by the respective classical and quantum systems

in (non)equilibrium conditions. The studies presented in ten chapters, also including the editorial,

disclose both the theoretical depth as well as the practical usefulness of the applied classical and

quantum approaches.

Adam Gadomski

Editor

ix





Citation: Gadomski, A. Dissipative,

Entropy Production Systems across

Condensed Matter and

Interdisciplinary Classical vs.

Quantum Physics. Entropy 2022, 24,

1094.

https://doi.org/10.3390/e24081094

Received: 4 August 2022

Accepted: 8 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Editorial

Dissipative, Entropy Production Systems across Condensed
Matter and Interdisciplinary Classical vs. Quantum Physics

Adam Gadomski

Faculty of Chemical Technology and Engineering, Institute of Mathematics and Physics, Group of Modeling of
Physicochemical Processes, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland;
agad@pbs.edu.pl

This Special Issue collected ten papers addressing a range of topics in condensed
matter and interdisciplinary classical vs. quantum physics. All of them are linked together
by statistical physics/mechanics methods. The selection emerged from a survey of topics
presented at the XLVII Congress of Polish Physicists held in Bydgoszcz, Poland on the
19–23 September 2021 (http://47zfp.utp.edu.pl/en/47th-congress-of-the-polish-physical-
society/ (accessed on 4 August 2022)). The topics address problems of classical (CL)
and quantum (QU) statistical physics. As for the CL side, these comprise: multistability
and ergodicity breaking; the formation of dissipative (e.g., spherulitic) structures in a
nonequilibrium bath; ion-influenced conformation of biopolymers (glycosaminoglycans)
near biosurfaces; infectious-disease propagation in terms of social distancing; far-from-
equilibrium information processing employing networks of chemical oscillators; and a
problem of equivalence of the Carnot principle to the second law of thermodynamics, and
non-equivalence to the first Clausius and Kelvin principles. As for the QU side, in turn,
these include: mixedness, coherence and entanglement in three-qubit states; (anti)coherence
caused by a thermal bath; and finally, quantum graphs split at vertices as simulated
experimentally by using microwave networks. All contributions can be united under the
common flagship of maximum-entropy and entropy production principles experienced by
the respective CL and QU systems in (non)equilibrium conditions.

The XLVII Congress of Polish Physicists was, for the first time in over hundred years in
the history of the Polish Physical Society, held in Bydgoszcz, Poland on the 19–23 September
2021 (http://47zfp.utp.edu.pl/en/47th-congress-of-the-polish-physical-society/ (accessed
on 4 August 2022)) as a hybrid event, gathering in total more than two hundred fifty
regular participants and more than forty invited speakers. Amongst them, one may find
the name of a Nobel Prize winner (2004), Professor Frank Wilczek, with his special online
contribution titled “Time Crystals”. Over the course of five days and around fifteen
sessions, covering topics ranging from physics’ teaching and popularization, the history of
physics, and general physics to the physics of high energy and cosmology, gravitation, and
astrophysics, the participants presented their recent contributions to the field. One of those
sessions was titled Statistical, Nonlinear and Complex Systems’ Physics, whereas the other
one, relevant for this Special Issue (SI), was the session titled Condensed Matter Physics.
(Two other sessions on quantum information and photonics, as well as on biological
and interdisciplinary physics, complete the selection of valuable contributions to this SI.)
However, from these two sessions, one may expect to have a topical reflection contained in
the overarching SI.

The thematic range of the selected contributions seems to be broad and can loosely
be described as polydispersive. For example, it resembles a polynuclear path of yielding
(poly)crystals. It can be so taken when looking at it from the first side. However, a closer
inspection of the SI material gives rise to a much more monodispersive/single-crystal
and compacted (than crudely expected) picture of the SI contents presented to a potential
reader. Namely, all contributions collected can be united under the common denominator

Entropy 2022, 24, 1094. https://doi.org/10.3390/e24081094 https://www.mdpi.com/journal/entropy1
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of maximum-entropy and entropy production principles experienced by both classical
(CL) and quantum (QU) systems in (non)equilibrium conditions. In what follows, let us
unveil the main messages conveyed by the ten collected papers of the SI. The proposed
order of presenting the material commences with properly subordinated CL systems (seven
contributions) and ends up with three remaining QU systems, presented by their authors.

The paper “Velocity Multistability vs. Ergodicity Breaking in a Biased Periodic Poten-
tial” [1] investigates the concept of multistability, i.e., the coexistence of several attractors
for a given set of system parameters—it is one of the most important phenomena occurring
in dynamical systems. The authors consider it in the velocity dynamics of a Brownian
particle, driven by thermal fluctuations and moving in biased periodic-potential conditions.
At non-zero temperatures, the ergodicity is roughly restored, whereas in low-temperature
conditions, as occur in chaotic systems, the velocity dynamics are continuously affected by
initial conditions due to weak ergodicity breaking. For moderate and high temperatures,
the multistability is preserved with respect to the choice of both the starting position and
velocity of the Brownian particle.

In the paper titled “Accumulation of Particles and Formation of a Dissipative Structure
in a Nonequilibrium Bath” [2] it is demonstrated that in the non-Gaussian (Lévy noise)
conditions, an inhomogeneous distribution of particles can be seen as a dissipative structure,
i.e., a lower-entropy steady state of a system that permits the throughput of energy and
the concurrent production of entropy. After the mechanism that maintains nonequilibrium
is switched off, the relaxation stepping back to homogeneity gives rise to an increase in
entropy and a corresponding decrease in free energy. Intuitive analytical formulae are
proposed to connect the nonequilibrium Lévy noise and active particle behavior to the
entropy decrease and energy increase.

In the study “Spherulites: How Do They Emerge at an Onset of Nonequilibrium
Kinetic-Thermodynamic and Structural Singularity Addressing Conditions?” [3], the au-
thors discuss, within a non-dimensional physical–kinetic model for far-from-equilibrium
growth, the formation of special polycrystalline objects, named spherulites, exhibiting
different growing-mode conditions. It appears that according to the modeling offered, it
is feasible to foresee that the spherulites’ emergence is possible prior to a pure diffusion-
controlled (poly)crystal growth. It was demonstrated that the spherulitic onset addressing
factors of the two different evolution types of spherulitic growth modes, namely, diffusion-
controlled growth and mass-convection-controlled growth, emerge from the modeling
performed. This resulted in accepting a conclusion that a type of liaison of amorphous
and crystalline phases makes the system far better compromised to the actual (sometimes,
concurrent) thermodynamic–kinetic conditions.

The proposal of a prerequisite of a (paradigmatic) chemical computer is discussed
in “Information Processing Using Networks of Chemical Oscillators” [4]. It is argued
that a far-from-equilibrium and oscillatory chemical-reaction system can mimic a small
(three “chemical qubits”) network, reminiscent of a certain one-task (chemical) computing
device. As an example, the author considers a small network of three coupled chemical
oscillators designated to differentiate the white from the red points of the Japan flag. The
results are based on computer simulations with the two-variable Oregonator model of
the oscillatory Belousov–Zhabotinsky chemical reaction. An optimized network of three
interacting oscillators can discriminate between the (red vs. white) colors of randomly
selected points with more than 98% accuracy.

Another paper collected by the SI which refers to CL systems, “Effect of Ion and Bind-
ing Site on the Conformation of Chosen Glycosaminoglycans at the Albumin Surface” [5],
tackles the problem of ion-involving conformation of biopolymers called glycosaminogly-
cans near certain biopolymeric surfaces. Because of its negative surface charge, albumin
plays an essential role in many physiological processes, including the ability to form molec-
ular complexes. In turn, glycosaminoglycans such as hyaluronan and/or chondroitin
sulfate are key ingredients of synovial fluid involved in the boundary lubrication regime
of an articular cartilage. This study [5] uncovers an impact of relatively small ions (Na+,
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Mg2+ and Ca2+), on human serum albumin–hyaluronan/chondroitin-sulfate interactions
examined by means of molecular docking followed by molecular dynamics simulations. A
certain type of glycosaminoglycan binding is analyzed by using a conformational entropy
approach, and several protein–polymer complexes are studied to inspect, specifically, how
the binding site and presence of ions influence their affinity conditions.

The next CL-type paper [6] of the overarching SI, titled “Does Social Distancing Matter
for Infectious Disease Propagation? An SEIR Model and Gompertz Law Based Cellular
Automaton”, introduces a stochastic synchronous cellular automaton defined on a square
lattice. Its goal is the examination of a population dynamics phenomenon based on certain
automaton (Gompertz’s mortality law)-involving rules. The automaton rules are based
on the SEIR (susceptible → exposed → infected → recovered) model with probabilistic
parameters gathered from real-world data on human mortality and the characteristics of the
SARS-CoV-2 disease. With computer simulations, it is shown that there is an appreciable
influence of the radius of the neighborhood on the number of infected and deceased
individuals in the artificial population. Symptomatically, for a wide range of interactions
of exposed individuals (having neither certain hallmarks of the disease nor having been
diagnosed by suitable tests), even isolation of infected agents cannot prevent the progress
of disease propagation. This supports offensive testing against the disease as one of the
meaningful strategies to prevent high peaks of infection in the spread of SARS-CoV-2-like
diseases and those similar.

Another paper from the CL collection, “Proof of Equivalence of Carnot Principle to II
Law of Thermodynamics and Non-Equivalence to Clausius I and Kelvin Principles” [7],
covers a fundamental issue of the laws of thermodynamics. Based mainly on logical rules,
the author considers a principal assertion that the Kelvin principle is a weaker statement
than the so-called first Clausius principle, and the latter is a weaker statement than the
Carnot principle, which is equivalent to the (so-named) second Clausius principle. As a
result, the Kelvin principle and the first Clausius principle are not exhaustive formulations
of the second law of thermodynamics. It turns out that the Carnot principle eventually
becomes such a formulation. The author indicates where the methodological errors were
made in the presented proof of the equivalence of the Kelvin principle and both Clausius’
principles mentioned.

The paper titled “Mixedness, Coherence and Entanglement in a Family of Three-Qubit
States” [8] regards the problem of a family of states representing three-qubit systems.
Formulae are derived, showing the relations between linear entropy and measures of
coherence such as degree of coherence by first- and second-order correlation functions.
It is demonstrated that qubit–qubit states are strongly entangled when linear entropy
approaches some range of values. For such states, the authors derived the conditions
determining boundary values of the corresponding entropy as being well-parametrized by
the measures of coherence.

The second from the small series of QU papers, “Coherence and Anticoherence In-
duced by Thermal Fields” [9], addresses coherence and correlations emerging between
superpositions of two bosonic modes when the modes are coupled to a third intermedi-
ate mode, and are also coupled to external modes, i.e., thermal states of unequal mean
photon numbers. It turns out that one of the linear superpositions of the modes, which is
efficiently decoupled from the other modes, can express a perfect coherence with the other
orthogonal superposition of the modes, and can at the same time exhibit anticoherence
with the intermediate mode, giving rise to entanglement between the modes. Such a system
can be employed to cool modes to low-temperature values. It is demonstrated that the
entanglement between the directly coupled superposition and the intermediate modes may
appear in a less restricted range of the number of the thermal photons, such that the modes
could be tightly entangled, even at large numbers of the thermal photons.

The last in-presentation-order (QU) paper of the SI “The Generalized Euler Character-
istics of the Graphs Split at Vertices” [10] argues that there is a relationship between the
generalized Euler characteristic of an original graph that was split at vertices into two dis-
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connected subgraphs, and their generalized Euler characteristics. The theoretical results are
experimentally justified by employing microwave networks that mimic quantum graphs.
It is shown that the evaluation of the generalized Euler characteristics allows determining
the number of vertices for which case the two subgraphs were initially connected.

To summarize, this SI has focused on relevant and fundamental issues of statistical
classical/quantum physics (and related subdisciplines), pointing to maximum-entropy
and entropy production (and/or the spread of information) principles experienced by
the respective CL and QU systems in (non)equilibrium conditions. The studies [1–10]
disclose both the theoretical depth as well as the practical usefulness of the applied CL and
QU approaches.
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University of Science and Technology.
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Article

Velocity Multistability vs. Ergodicity Breaking
in a Biased Periodic Potential

Jakub Spiechowicz 1,*, Peter Hänggi 2 and Jerzy Łuczka 1

1 Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland; jerzy.luczka@us.edu.pl
2 Institute of Physics, University of Augsburg, Universitätstr. 1, 86135 Augsburg, Germany;

hanggi@physik.uni-augsburg.de
* Correspondence: jakub.spiechowicz@us.edu.pl

Abstract: Multistability, i.e., the coexistence of several attractors for a given set of system parameters,
is one of the most important phenomena occurring in dynamical systems. We consider it in the
velocity dynamics of a Brownian particle, driven by thermal fluctuations and moving in a biased
periodic potential. In doing so, we focus on the impact of ergodicity—A concept which lies at the core
of statistical mechanics. The latter implies that a single trajectory of the system is representative for
the whole ensemble and, as a consequence, the initial conditions of the dynamics are fully forgotten.
The ergodicity of the deterministic counterpart is strongly broken, and we discuss how the velocity
multistability depends on the starting position and velocity of the particle. While for non-zero
temperatures the ergodicity is, in principle, restored, in the low temperature regime the velocity
dynamics is still affected by initial conditions due to weak ergodicity breaking. For moderate and
high temperatures, the multistability is robust with respect to the choice of the starting position and
velocity of the particle.

Keywords: multistability; ergodicity; Brownian motion; tilted periodic potential

1. Introduction

Research in nonequilibrium statistical physics provides a wealth of intriguing dynam-
ics in which phenomena that are forbidden in equilibrium states may emerge. Prominent
examples include anomalous diffusion [1–4], Brownian yet non-Gaussian diffusion [5–9],
noise-assisted transport [10,11], and negative mobility [12–15], to name only a few. While
the behaviour of low dimensional systems, where usually only one or two attractors rule
the dynamics, has been studied intensively, much less is known for systems where several
attractors coexist for a given set of the system parameters. This feature, called multista-
bility is commonly found in different areas of science such as physics, chemistry, biology,
economy, and in nature [16].

In this paper, we reinvestigate in this context the paradigmatic model of nonequi-
librium statistical physics, namely, underdamped Brownian motion in a biased periodic
potential. This nonlinear system enjoys never ending interest as its different aspects have
already been studied for several decades [17–32]. The latter are mostly focused on the
diffusive properties of the system. For instance, it may exhibit unusual phenomena such
as the giant diffusion [19,20,25,32] or the non-monotonic temperature dependence of a
diffusion coefficient [25,30,32,33]. Both these effects are related to a bistability observed
in the velocity dynamics of the system. The later effect is well known due to the work by
Risken et al. [34] who found that at low friction and appropriate bias values the velocity
can be stable in a locked solution (the particle is trapped in a potential minimum) but also
in a running solution (the motion is unbounded in space).

Here, we focus on multistability of the Brownian velocity dynamics in a tilted periodic
potential. Despite so many years of intensive research on various aspects of this setup, the
latter peculiar effect has been addressed only very recently [30] and later it was explained by

Entropy 2022, 24, 98. https://doi.org/10.3390/e24010098 https://www.mdpi.com/journal/entropy5
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recoursing to the arcsine law [35], which is a cornerstone of extreme-value statistics. Specif-
ically, we investigate the role of ergodicity breaking and its consequences on the velocity
multistability. Ergodicity lies at the basis of statistical mechanics and implies that, over long
enough observation times, the time averages of observables correspond to the equilibrium
ensemble averages [1,36,37]. Equivalently, it states that a single trajectory is representative
for the ensemble. An increasing number of systems exhibit nonergodic properties [1,36,37],
in particular due to the ultra slow dynamics and non-exponential relaxation.

The paper is organized as follows. In Section 2, we recall the formulation of the
model and introduce the dimensionless quantities. In Section 3, we discuss the results, in
particular the effect of ergodicity breaking on the velocity multistability occurring in this
paradigmatic system. Finally, Section 4 provides a discussion and concluding remarks.

2. Methods

In this work, we study dynamics of a classical inertial Brownian particle of mass M
moving in a spatially periodic and symmetric potential U(x) = U(x + L) of period L and
subjected to a static bias F. This system can be described by the following Langevin equation

Mẍ + Γẋ = −U′(x) + F +
√

2ΓkBT ξ(t), (1)

where the dot and prime denote differentiation with respect to the time t and the particle
coordinate x, respectively. The parameter Γ is the friction coefficient, T is temperature, and
kB denotes the Boltzmann constant. We consider the potential U(x) in the form

U(x) = −ΔU sin
(

2π

L
x
)

, (2)

where ΔU denotes half of the potential barrier height. Thermal equilibrium fluctuations
are modeled by the δ-correlated Gaussian white noise whose statistical characteristics read

〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t− s). (3)

The noise prefactor 2ΓkBT satisfies the fluctuation–dissipation theorem that ensures the
canonical Gibbs statistics when the system is at the equilibrium state.

The above Langevin Equation (1) can be transformed into the dimensionless form

¨̂x + γ ˙̂x = −U′(x̂) +
√

2γθ ξ̂(t̂) (4)

by introducing the rescaled coordinate x̂ and time t̂,

x̂ =
2π

L
x, t̂ =

t
τ0

, τ0 =
L

2π

√
M

ΔU
, (5)

where the characteristic time τ0 is proportional to the inverse of frequency ω0 of small
oscillations in the potential well of U(x). The effective dimensionless potential is

U (x̂) = − sin x̂− f x̂. (6)

The dimensionless friction coefficient γ and bias f read

γ =
1

2π

L√
MΔU

Γ, f =
1

2π

L
ΔU

F. (7)

The rescaled temperature θ is the ratio of thermal energy kBT to half of the barrier height
the particle needs to overcome the original potential well, namely,

θ =
kBT
ΔU

. (8)
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The dimensionless thermal noise ξ̂(t̂) is statistically equivalent to ξ(t), meaning that it
is a stationary Gaussian stochastic process with vanishing mean. Later, we use only the
rescaled quantities, and therefore in order to improve the readability of notation from now
on we omit the hat appearing in Equation (4).

The model of a Brownian particle moving in a washboard potential formulated in terms
of the Langevin Equation (4) served for decades as a tool for the investigation of transport
effects occurring in both classical and quantum systems. For instance, it has been employed
for understanding the dynamics of phase across the Josephson junction [38], rotating
dipoles in external fields [39], superionic conductors [40], charge density waves [41], and
cold atoms dwelling in optical lattices [42–44]. Further systems are mentioned in Ref. [17].

The analytical methods of solution for the Fokker–Planck equation corresponding
to Equation (4) are not yet elaborated, therefore in doing so, we rely solely on precise
numerical simulations. All calculations have been completed using a Compute Unified
Device Architecture (CUDA) environment implemented on a modern desktop graphics
processing unit (GPU). This method allowed to speed up necessary calculations by a factor
of the order 103 as compared to the traditional methods. We refer interested reader to
Refs. [45,46] where more details on this scheme can be found. Here, we only mention that all
quantities of interest were averaged over the ensemble of 219 = 524,288 system trajectories.

3. Results

In this paper, we investigate various aspects of multistability in the velocity dynamics
of a Brownian particle dwelling in a tilted periodic potential. This interesting phenomenon
has been addressed for this setup only very recently [35], however, it has been also reported
in systems driven by other types of noise. Examples include fractional Gaussian noise [29],
Ornstein–Uhlenbeck, and harmonic Levy noise [47,48], to name but a few.

In Figure 1 we exemplify the velocity multistability phenomenon occurring in this
system. The probability distribution p(v) for the instantaneous long time velocity v ob-
tained from the histogram of the latter quantity is depicted for fixed time t = 104 (but is
time-invariant) and for different dimensionless temperatures θ. The issue of measurement
of the instantaneous velocity of a Brownian particle is presented in Ref. [49]. In Figure 1,
one can observe three well pronounced maxima. One of them corresponds to the velocity
v = 0 (the locked state) and the other two with v �= 0 are related to running solutions. This
means that these values occur significantly more frequently than the others and therefore
are more stable. This observation matches the common definition of multistability for
stochastic systems [50]. We note that, as temperature θ increases, the difference between
each maximum becomes less pronounced and eventually disappears.

0
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0.0015
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0.0025

0.003

−1−0.5 0 0.5 1 1.5 2 2.5
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)

v
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θ=0.02

θ=0.03

θ=0.05

Figure 1. The probability distribution p(v) for the instantaneous long time velocity v = v(t) of the
Brownian particle is illustrated for t = 104 and selected values of temperatures θ of the system. The
used parameters read γ = 0.66 and f = 0.91.
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In Ref. [35], the origin of the multistability effect is explained in terms of the arcsine
law for the velocity dynamics at the zero temperature limit θ = 0, i.e., as the trace of
deterministic dynamics perturbed by thermal noise. In such a case in the long time regime,
the velocity v(t) of the particle is a time-periodic function. Moreover, the ergodicity of
the setup is strongly broken, which means that its phase space can be divided into two
non-intersecting invariant sets corresponding to the locked and running state [51]. We
visualize this in Figure 2, where the time averaged particle velocity

v = lim
t→∞

1
t

∫ t

0
ds ẋ(s) (9)

is depicted as a function of the initial conditions for the coordinate x(0) = x0 and velocity
v(0) = v0. The black region corresponds to the locked state with v = 0 whereas the grey
one indicates the regime of a running solution for which v �= 0. Therefore, different initial
conditions {x0, v0} can lead to a distinct average velocity v. It is a disturbing situation, as
typically in experiments the initial conditions are not known a priori or can be settled only
with a finite resolution. To get rid of the dependence of the obtained results on the initial
conditions, one needs to average over them. In Ref. [35], the authors distributed x0 and
v0 uniformly over the intervals [0, 2π] and [−2, 2], respectively. Moreover, they found that
in such a case the initial conditions induce an almost uniformly distributed phase shift ϕ
in the time-periodic dependence of the velocity v(t) in the long time regime. This in turn
results in the arcsine law for the velocity probability density p(v) which constitutes the
backbone of multistability in this system.

Figure 2. The basins of attraction for the time averaged velocity v of the particle. The black colour
codes the locked state v = 0 whereas the grey part indicates the regime with running solutions v �= 0.
Parameters read γ = 0.66, f = 0.91 and θ = 0.

In this work, we present a complementary study. Namely, we investigate in detail the
influence of various distributions of initial conditions {x0, v0} on the velocity multistability
phenomenon. In Figure 3, we show the probability distribution p(v) for the instantaneous
long time velocity v of the Brownian particle for the deterministic system θ = 0 and different
choice of the initial conditions. In simulations, the moment of time is fixed ti = 104. In
the inset we depict the corresponding probability distribution P(v) for the time averaged
velocity v. In panel (a) the initial position and velocity are fixed, x0 = 0, v0 = 0. The
corresponding probability densities are represented by the Dirac-delta px0(x) = δ(x) and
pv0(v) = δ(v), respectively. Consequently, as the system is noiseless θ = 0, the resulting
probability distributions p(v) and P(v) for the instantaneous long time v and time averaged
velocity v, respectively, take the Dirac-delta forms. All phase space trajectories follow the
same route, and the multistability effect is absent. The situation changes drastically already
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if the initial position of the particle is distributed uniformly over the period L = 2π
of the potential U(x), i.e., px0(x) = U(0, 2π) (see panel (b)). Here, U(a, b) indicates the
uniform distribution over the interval [a, b]. The starting velocity of the particle can be fixed
pv0(v) = δ(v) but still the systems display multimodality in the probability density p(v).
In fact, in such a case, even four distinct maxima are visible there. In the inset, we note
that both locked v = 0 and running v = 0 states are represented in the ensemble of system
trajectories. If we permute the initial conditions, i.e., the starting coordinate px0(x) = δ(x)
but pv0(v) = U(−2, 2) (see panel (c)), the multistability emerges but the locked state is
not sampled at all. This situation can be modified depending on the choice of the initial
coordinate as it is demonstrated in panel (d) where, in contrast, px0(x) = δ(x− π).
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Figure 3. The probability distribution p(v) for the instantaneous long time velocity v of the Brow-
nian particle is depicted in the deterministic regime θ = 0 for t = 104 and different choice of the
initial conditions for the system. Panel (a): px0 (x) = δ(x), pv0 (v) = δ(v); (b): px0 (x) = U(0, 2π),
pv0 (v) = δ(v); (c): px0 (x) = δ(x), pv0 (v) = U(−2, 2); (d): px0 (x) = δ(x − π), pv0 (v) = U(−2, 2);
(e): px0 (x) = U(0, 2π), pv0 (v) = U(−2, 2); and (f): px0 (x) = N(0, 1), pv0 (v) = N(0, 1), where U(a, b)
indicates the uniform distribution over the interval [a, b]. Likewise, N(μ, σ2) is the Gaussian distribu-
tion with the mean μ and the variance σ2. In the inset, the corresponding probability distribution
P(v) for the time averaged velocity v is shown. Parameters read γ = 0.66, f = 0.91, and θ = 0.

Overall, if the ergodicity of the system is broken, the initial conditions are never for-
gotten and therefore crucially impact the results. Depending on the circumstances, this
behaviour may be seen as a feature, not a bug. Nevertheless, the only way to cure it is to
properly average over the initial conditions. In doing so, each of them must be taken into
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account equally; none can be preferred. This requirement translates to the fact that initial
conditions must be equally probable and therefore uniformly distributed over the whole
phase space. As the system under consideration is spatially periodic U(x) = U(x + L), the
periodic boundary condition can be employed to yield px0(x) = U(0, 2π). It is not the case
for the starting velocity v0 of the particle which in principle is unbounded. However, natu-
rally such a situation cannot be implemented in numerical simulations, and therefore one
needs to carefully check the impact of the initial velocity subspace volume on the obtained
results. As we demonstrated, if this is not performed thoroughly one can significantly spoil
the outcomes and, e.g., break the inherent symmetries of the system [52]. We checked that,
in the considered regime, the condition pv0(v) = U(−2, 2) is sufficient and that further
increase in the initially chosen velocity subspace volume would not alter the outcomes.
In Figure 3e, we reproduce the result from Ref. [35] obtained for px0(x) = U(0, 2π) and
pv0(v) = U(−2, 2). The characteristic U-shape part which portrays the arcsine law corre-
sponding to the running state is visible in the probability density p(v). Consequently, the
velocity dynamics is multistable.

One can claim that the initial conditions, especially the velocity, should be distributed
according to the Gaussian probability density, as then it obeys the canonical Gibbs statistics
(Maxwell–Boltzmann distribution) valid for equilibrium systems. Obviously, such a choice
does not satisfy the above discussed condition of equal probability. In panel (f), we show
that, as a consequence of the non-uniformity for px0(x) = N(0, 1) and pv0(v) = N(0, 1),
where N(μ, σ2) is the Gaussian distribution with the mean μ and the variance σ2, the results
are deformed and the arcsine law is not properly recovered. There is one more argument
that the condition of equal probability is the only one to be correct and consistent with
the case of non-zero temperature. In the running state, the long time velocity trajectory
v(t) is a periodic function of time and can be well approximated by the simple periodic
function [35]

V(t) = A sin (ωt + φ) + c. (10)

For a fixed set of the system parameters, the constants (A, ω, c) are the same for all initial
conditions {x0, v0}. However, the distribution of the phase shift φ depends on the distri-
bution of initial conditions {x0, v0}. This fact is reflected in different probability densities
p(v) for the instantaneous velocity depicted in Figure 3. As the ergodicity of the system
is broken, the distributions p(v) generally depend on the measurement time t = ti. The
exception is the uniform distribution for the phase φ corresponding to the panel (e) in
Figure 3 for which p(v) is time-invariant [35]. The latter feature is characteristic for ergodic
systems and is crucial from the experimental point of view.

As we just reported, the ergodicity of the deterministic system with θ = 0 is broken for
the parameter regimes in which it exhibits the multistability phenomenon [32]. One may
argue that the case θ = 0 is only an idealization and, in practice, there exists no realistic
situation with zero temperature. However, the ergodicity breaking in a deterministic system
often also carries prominent consequences for non-zero temperature. In particular, for any
positive temperature θ > 0 the system described by Equation (4) is always ergodic, although
it is not a trivial fact, as it is driven by noise [53]. At non-zero temperatures, the whole
phase space is accessible due to thermally activated escape events connecting the coexisting
deterministic disjoint attractors. However, if the temperature tends to zero θ → 0, the time
τ after it is fully sampled becomes extremely long and goes to infinity as τ → ∞. From an
experimental point of view, due to finite observation time, the system seemingly behaves
as being non-ergodic although in fact it is ergodic. Such a situation is often termed as weak
ergodicity breaking [36,37,51] and can be identified with an unusually slow relaxation of
the system towards its steady state which manifests itself as the nonequivalence of time
and ensemble averages. In the latter case, the initial conditions do not fade, but in fact
modify the results. We exemplify this feature in Figure 4a, where we depict the probability
distribution p(v) for the instantaneous long time velocity v of the Brownian particle for
different initial conditions and low temperature θ = 0.0001. Clearly, when the particle starts
from x0 = 0 and v0 = 0 (see the red solid line), even in the long time limit, there are only
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running solutions. On the other hand, if the initial position x0 and velocity v0 are either
uniformly or normal distributed (see the blue or green line, respectively), the multistability
emerges, but one can still note quantitative difference between these two initial conditions.
In contrast, in panel (b) we depict the same characteristics but for higher temperature
θ = 0.05. Then, thermal fluctuations are strong enough to recover the ergodicity of the
system and there are no longer differences between different initial conditions. Even when
the particle trajectories start from the same point in the phase space x0 = 0, v0 = 0 (see the
red solid line), the whole density is obtained.
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Figure 4. The probability distribution p(v) for the instantaneous long time velocity v of the Brownian
particle is depicted for t = 104 and different initial conditions of the system. The red solid line
indicates px0 (x) = δ(x), pv0 (v) = δ(v). The blue dotted line corresponds to px0 (x) = U(0, 2π),
pv0 (v) = U(−2, 2). The green dashed line denotes px0 (x) = N(0, 1), pv0 (v) = N(0, 1). In panel
(a) temperature is θ = 0.0001 while in (b) θ = 0.05. Other parameters read γ = 0.66, f = 0.91.

4. Discussion

In conclusion, we thoroughly investigated the influence of initial conditions distribu-
tion on the multistability of velocity dynamics for the Brownian particle in a tilted periodic
potential. The ergodicity of the deterministic system is strongly broken, and therefore the
initial conditions are never forgotten and crucially impact the obtained results. The only
way to correctly sample the whole state space of the system is to average over them in such
a way that no single one is preferred. The latter condition translates to a uniform distri-
bution in the initial phase space of the system. We demonstrated that, while for non-zero
temperatures the ergodicity is in principle restored, in a low temperature regime the results
are still significantly affected by the initial conditions due to the weak ergodicity breaking.
This means that the time needed for the ergodicity reinstatement tends to infinity when
temperature goes down to zero. For moderate and high temperature regimes, the detected
multistability is robust with respect to the choice of initial conditions. It is valid even when
the whole ensemble starts from a given point in the phase space of the system. A remaining
question is how the time needed for the ergodicity restoration depends on temperature.
This constitutes a challengeable objective which we hope to address in the future.
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Abstract: The standard textbooks contain good explanations of how and why equilibrium thermo-
dynamics emerges in a reservoir with particles that are subjected to Gaussian noise. However, in
systems that convert or transport energy, the noise is often not Gaussian. Instead, displacements
exhibit an α-stable distribution. Such noise is commonly called Lévy noise. With such noise, we see a
thermodynamics that deviates from what traditional equilibrium theory stipulates. In addition, with
particles that can propel themselves, so-called active particles, we find that the rules of equilibrium
thermodynamics no longer apply. No general nonequilibrium thermodynamic theory is available
and understanding is often ad hoc. We study a system with overdamped particles that are subjected
to Lévy noise. We pick a system with a geometry that leads to concise formulae to describe the
accumulation of particles in a cavity. The nonhomogeneous distribution of particles can be seen as
a dissipative structure, i.e., a lower-entropy steady state that allows for throughput of energy and
concurrent production of entropy. After the mechanism that maintains nonequilibrium is switched
off, the relaxation back to homogeneity represents an increase in entropy and a decrease of free energy.
For our setup we can analytically connect the nonequilibrium noise and active particle behavior to
entropy decrease and energy buildup with simple and intuitive formulae.

Keywords: Lévy noise; nonequilibrium thermodynamics; active particles; entropy production;
dissipative structures

1. Introduction

The thermodynamics and statistical physics of particles at equilibrium is a standard
part of the undergraduate curriculum. The First and Second Law of Thermodynamics
are powerful concepts that lead the way to the explanation of many real-life phenomena.
Further development led to notions such as the Boltzmann Distribution, the Fluctuation-
Dissipation Theorem, Onsager’s Reciprocal Relation, and Microscopic Reversibility [1].
Even setups that are close-to-equilibrium can often be successfully analyzed with these
ideas. No general theory, however, is available for systems that are far-from-equilibrium.
None of the above laws and notions apply in that case.

Imagine a liquid in which “active” particles are suspended. Such “active” particles
can be bacteria that propel themselves, i.e., swim. These can also be particles that are
manipulated through fields from the outside. Obviously, energy is pumped into such
systems and no First Law or any of the concepts mentioned in the previous paragraph
applies. Over the last two decades, setups with active particles have been the subject of
much experimental and theoretical research.

There are many different ways to model the movements of active particles. One can,
for instance, assume that the particle has the same speed all the time and that the change
of the direction of motion follows a diffusion equation [2]. The “Run-and-Tumble” model
is a more discrete version of this and it is inspired by the way that Escherichia coli bacteria
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move [3]. Here the particle or bacteria covers a finite-length straight segment at a constant
speed. After coming to a stop, it lingers for a moment. It “tumbles” and then picks a new
random direction for the next run. There are also different ways to let the active particle
interact with the wall of the reservoir in which it swims.

In our analysis below, we focus on the 2D random walk: At every timestep, a direction
is picked randomly and a displacement is drawn from a zero-centered distribution (cf.
Figure 1). We let the random walks happen in a confinement. Whenever the particle hits
the wall, it comes to a standstill. Subsequently, it only moves away from the wall again if a
random displacement makes it move inside the circular confinement.

If displacements are drawn from a zero-average Gaussian distribution, we eventually
see a homogeneous distribution of particle positions over the entire domain. However, if
we instead draw distances from a so-called α-stable distribution (sometimes called a Lévy-
stable distribution) [4–7], a nonhomogeneous distribution develops.

The Gaussian distribution has an exponential tail, i.e., p2(ξ) ∝ exp
[
−ξ2/2σ2] as

ξ → ±∞. Here σ denotes the standard deviation of the Gaussian. The rapid convergence
to zero of the exponential tail means that the probability to make a big jump is very small
and effectively negligible. Figure 1a shows this clearly.

For an α-stable distribution, the asymptotic behavior is described by a power law:

pα(ξ) ∝ |ξ|−α−1 as ξ → ±∞. (1)

Here α is the so-called stability index for which we have 0 < α < 2. For α = 2, the Gaussian
is re-obtained. The power law converges slower than the exponential. A result of this is
that outliers, i.e., large “Lévy jumps”, regularly occur (see Figure 1b). Ultimately, the Lévy
walk resembles a run-and-tumble walk, but, following Equation (1), the Lévy jumps have
no characteristic length and the average length of a Lévy jump actually diverges.

Figure 1. Random walk in a circular domain. Whenever the particle hits the wall, it comes to a
standstill and later only moves again when a computed step leads to a movement inside the circle.
For every step, the direction is picked randomly and the displacement is drawn from a (a) Gaussian
distribution or from a (b) Lévy-stable distribution. The circle has a radius of 20. Both distributions
are symmetric around zero. The Gaussian distribution has a standard deviation of

√
2. For the

Lévy-stable distribution, we have α = 1 and a scale factor of σ = 1.

The Central Limit Theorem [8] tells us that the Gaussian distribution is what ensues
when an outcome is the result of multiple stochastic inputs. However, the theorem only ap-
plies if all of the constituent stochastic inputs have a finite standard deviation. For stochastic
inputs with infinite standard deviations, the α-stable distribution is what results.

The α-stable distribution is a standard feature of the Mathematica software package
and the programming for a simulation as the one leading to Figure 1b is a matter of just a
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few lines of code. The probability density of the α-stable distribution is given by a big and
cumbersome formula [9] and we will not elaborate on it.

Alpha-stable distributions do not just provide a good model for the behavior of active
particles. It turns out that power-law tails commonly occur in systems that are far-from-
equilibrium with no active particles involved. Almost 60 years ago, Benoit Mandelbrot
discovered that variations in the price of cotton futures follow a distribution with an α = 1.7
power-law tail [10,11]. More power-law tails and α-stable distributions were identified
in the 1990s [12–14] when desktop computers became available that could rapidly and
easily perform the necessary data processing. As of yet, there is no complete and general
theory to explain how and why α-stable distributions are connected to far-from-equilibrium.
In this sense, the α-stable distributions are like 1/ f -noise [11,15]. The connection of far-
from-equilibrium with α-stable distributions and 1/ f -noise is still for the most part, a
phenomenological one.

Nevertheless, as mentioned above, nonequilibrium characteristics do emerge when,
instead of Gaussian noise, Lévy noise is added to particle dynamics. Take a particle
doing Brownian motion on a potential V(x). Microscopic reversibility means that every
trajectory x(t) from an initial position xi to a final position x f and taking a time Δt, is
traversed equally often in forward and backward direction. Microscopic reversibility is an
equilibrium feature that is implied by the fact that there can be no arrow of time for a system
at equilibrium, i.e., there must be time-reversal symmetry. In 1953, Onsager and Machlup
gave mathematical rigor to this idea when they proved that with Gaussian noise, the most
likely trajectory up a potential barrier is the reverse of the most likely trajectory down
that same barrier [16–18]. It can also be rigorously proven that for Lévy noise, the most
likely trajectory up a potential barrier is not the reverse of the most likely trajectory down a
potential slope [19]. The presence of Lévy noise breaks the time-reversal symmetry that is
implicit in equilibrium [20].

For the setup that is depicted in Figure 1b, the violation of time-reversal symmetry is in
the interaction of the particle with the wall. Elastic collisions have time-reversal symmetry
and had we taken the particle in Figure 1b to collide elastically with the wall, forward and
backward trajectories would have been indistinguishable. Lévy jumps are rare, but because
of their length, they are likely to end at the wall. Once the particle is located at the wall,
the probability that the first subsequent step is already a Lévy jump away from the wall is
small. Moreover, only a step that leads to a movement inside the reservoir will be processed
in the simulation. Thus, the particle can “linger” near the wall after hitting it. In the end it
appears as if it is easier to get to the wall than it is to get away from it, i.e., it looks as if there
is reduced mobility near the wall. Figure 2 shows how this is the case on a 1D interval.

In the previous paragraph, we put the finger on something that applies generally
for active particles in a confinement. They do not distribute homogeneously, but instead
accumulate near a wall. It furthermore appears that the accumulation is stronger if the
wall has a stronger inward curvature [21]. Active particles tend to get stuck in nooks and
corners of a confinement and even more so if the nooks and corners are tighter. This is the
phenomenon that we will elaborate on below.

The way Lévy particles distribute on a confined 1D segment (cf. Figure 2) can be
described with a Fractional Fokker–Planck Equation [22]. The steady-state solution of that
equation is available [23]. We show in Appendix A how this solution readily generalizes
to higher dimensional setups. Below we examine how Lévy particles distribute over two
connected reservoirs where one reservoir is a scaled down version of the other. We will see
a deviation from the homogeneous distribution that is obtained when the noise is Gaussian
and when equilibrium theory applies.

Suppose we have a volume V with N indistinguishable particles in it. We partition the
initially empty V into two reservoirs of a volume V/2 each. Next the particles are inserted.
Each reservoir has a probability of 1/2 to receive each particle. Eventually, the probability
for all particles to end up in one particular reservoir is 2−N . The probability for an equal
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distribution over the two reservoirs is ( N
N/2)2

−N . The binomial coefficient ( N
N/2) grows very

rapidly with N.

-0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2. A Lévy walk on the interval −1 ≤ x ≤ 1 (cf. Equation (3)). The value of the stability index
is α = 0.8. Whenever the particle hits x = ±1, it stays there until an iteration occurs in the direction
away from the wall. The red curve shows the analytic solution (cf. Equation (4)). The normalized
histogram is the result of a numerical simulation of Equation (3); the timestep was Δt = 0.001, there
were 107 iterations, and the scale factor of the symmetric, zero-centered Lévy distribution was taken
to be one.

The reason that the air in a room never spontaneously concentrates in one half of the
room is that there is just one way to put all molecules in one chosen half and ( N

N/2) ways to
distribute them equally. In other words, the macrostate in which all air is concentrated in
one particular half of the room has one microstate and the macrostate with a homogeneous air
distribution over the entire room has ( N

N/2) microstates. The entropy of a macrostate can be
defined as a scalar value that is proportional to the logarithm of the number of microstates
of that macrostate [1]. In this case, it is obvious that the homogeneous distribution leads to
maximal entropy.

With a partition and a pump it is, of course, possible to bring all of the air molecules to
one half of the room. Such a process requires energy and with standard thermodynamics,
the involved energies can be calculated. That energy-consuming, active particles can
accumulate in a smaller subvolume does not violate laws of nature, and it is also possible
to calculate the entropy change associated with such accumulation. We will perform such
a calculation.

The ultimate goal would be a Lévy-noise-equivalent of entropy. This would be a
quantity that takes its extreme value when Lévy-noise-subjected particles reach a steady
state distribution. The Kullback–Leibler divergence [24] is a positive scalar value that
can be thought of as a “distance” between two given distributions. The Kullback–Leibler
divergence between the steady state distribution and another distribution could be a
good candidate. With tools like Noether’s Theorem, alternative formulations of active-
particle statistical mechanics and of the Fractional Fokker–Planck Equation have been
derived [25,26], with work in this direction appearing to be promising.

No general formalism is developed in this article, but we present a setup where the
entropy decrease associated with the accumulation can be readily described with simple
and intuitive formulae. The nonhomogeneous steady-state distributions that develop
in the presence of nonequilibrium noise can be interpreted as dissipative structures [27].
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The deviation from homogeneity decreases the entropy. However, active particles pump
energy into the system and the dissipative structure ultimately facilitates a steady-state
dissipation of energy and production of entropy.

2. The 1D and 2D Random Walk in a Confined Domain

For a particle in 1D, Brownian motion is commonly described with a Langevin equation:

ẋ(t) =
√

2D ξ2(t), (2)

where x(t) is the time-dependent position of the particle, • ≡ d/dt, D is the diffusion
coefficient, and ξ2(t) is a stochastic function that describes the effect of collisions with
molecules in the medium. To account for the effect of such collisions, a random number
θ2,i is drawn at the i-th timestep. In a simulation with finite timesteps of Δt, we then
take Δxi =

√
2D ξ2,i(ti)Δt =

√
2DΔt θ2,i. If Δt is large enough to contain a significant

number of collisions, then the aforementioned Central Limit Theorem [8] can be invoked to
justify drawing the θi’s from a zero-average Gaussian distribution. Upon taking 〈θ2

2,i〉 = 1,
we readily come to the traditional equation for the average squared distance that is diffused
in a time interval Δt: 〈Δx2〉 = 2DΔt.

The equation 〈Δx2〉 = 2DΔt does not contain a characteristic timescale. It is in order
for the scale-free diffusion equation to ensue that we need to “adjust” the θ2,i’s and take
ξ2(ti) = θ2,i/

√
Δt in Equation (2).

In case of the 1D Lévy flight, we have for the stochastic ordinary-differential-equation
and its discretized version, respectively:

ẋ = σ ξα(t) and Δxi = σ θα,i Δt1/α. (3)

Now the values for θα are drawn from a symmetric, zero-centered α-stable distribution with
a value of one for its scale factor. The Lévy flight is still scale-free, but because 〈θ2

α,i〉 → ∞
for 0 < α < 2, there is no longer a traditional diffusion equation and σ is a mere scale factor.

Figure 1 shows simulations of 2D random walks. At every timestep, a direction is
chosen randomly from a flat distribution between zero and 2π. The displacement is the
result of a random draw from a Gaussian distribution (Figure 1a) or from an α-stable
distribution (Figure 1b). Both the Gaussian walk and Lévy walk are isotropic, i.e., taken
from the center of the circle, all directions are equivalent. A generalization to more than
2 dimensions is readily formulated and simulated. The random walks then occur inside
a ball with a finite radius. Whenever the domain boundary is hit, the particle comes to
a standstill. For α = 2, the random walk is symmetric under time reversal. However,
as was already mentioned in the Introduction, for 0 < α < 2 the time-reversal symmetry is
broken. It is not hard to understand why this is the case. When the particle is followed in
forward time, we will often see a Lévy jump that makes the particle come to a standstill at
the domain boundary. More rare will be a large jump from the domain boundary into the
interior. When a movie of the moving particle is played backward, it will be the other way
round. The forward and backward played movie are distinguishable.

Figure 2 shows the position distribution that results after a many-step 1D simulation
on −1 ≤ x ≤ 1 for α = 0.8. For α = 2, a flat distribution results. However for 0 < α < 2,
the Lévy jumps that terminate at x = ±1 and the decreased mobility there lead to an
increased probability density near x = ±1. The Langevin Equation, Equation (3), can
be equivalently formulated as a fractional Fokker–Planck Equation for the evolution of
a probability distribution, i.e., ∂t p(x, t) = σα∂α

x p(x, t). The stationary distribution is then
obtained as the solution of the ordinary differential equation that results when the left hand
side is set equal to zero. The fractional derivatives are nontrivial, but in Ref. [23], a solution
for the 1D case is presented:

pst(x) =
21−αΓ(α)
Γ2(α/2)

(
1− x2

)α/2−1
, (4)
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where Γ(.) denotes the gamma function. Figure 2 shows this solution together with the
results of the Langevin simulation. In Appendix A, we show with symmetry arguments
that the normalized (1− r2)α/2−1-form generalizes to the nD case, with r being the distance
from the center of the ball.

It is worth noting that the U-shaped function as in Equation (4) and Figure 2 has been
encountered in other systems in stochastic dynamics. For α = 1, the Lévy stable distribution
is actually the Cauchy distribution, p1(ξ) = (1/π)(σ/(σ2 + ξ2)). For α = 1 and upon
taking x = 2u− 1, Equation (4) turns into p(u) = (1/π)(u(1− u))−1/2, where 0 ≤ u ≤ 1.
This is called the arcsine distribution because the cumulative distribution yields an arcsine:∫ u

0 p(u′) du′ = (2/π) arcsin
√

u. In 1939, it was the same Paul Lévy who derived that the
arcsine distribution emerges in the following case [28]. Let a 1D Brownian walk of duration
t start at x = 0. Next look at the fraction of time that the Brownian particle spends on
the positive semi-axis. It is found that these fractions follow an arcsine distribution. This
is called the arcsine law. Recently it has been discovered that arcsine laws occur more
generally [29]. Driven mesoscopic systems are obviously out-of-equilibrium, but also in
such systems, an arcsine law results when one considers, for instance, fractions of time that
a current stays above its average value. Arcsine laws in nonequilibrium setups is currently
a much researched topic [30,31] and Equation (4) may be a manifestation of something
deeper and more general.

3. Two Connected Semicircular Reservoirs

Imagine a semicircular 2D domain with radius R1 as in Figure 3. There is a small
opening with a width d that gives access to a semicircular domain with radius R2. We
have R2 < R1. Next imagine a large number of particles in this system. The particles
are subjected to Lévy noise. In Appendix B, it is derived how there is a net flow into the
smaller reservoir if both reservoirs have the same homogeneous particle density. Thus,
when starting from thermodynamic equilibrium, a higher density develops in the smaller
reservoir once Lévy noise starts being applied.

Figure 3. Two semicircular reservoirs with a small opening between them. The system contains
a large number of noisy particles. At each timestep, each particle moves in an arbitrary direction
with a displacement that is drawn from a Gaussian distribution or a Lévy-stable distribution as in
Figure 1a,b. If a particle hits a semicircular wall, it comes to a standstill and only moves again if a
computed displacement leads to motion inside the system. If a particle hits the straight vertical wall,
it bounces elastically. For Gaussian noise, the system goes to an equilibrium with equal concentration
on both sides of the opening. However, when the particles are subjected to Lévy noise, the steady
state has an accumulation in the smaller reservoir.
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3.1. Distribution over the Two Reservoirs in Case of Lévy Noise

If the noise in the setup of Figure 3 is Gaussian, then the system will relax to an equi-
librium with equal concentration in the two reservoirs. Each particle then has a probability
P1 = R2

1/(R2
1 + R2

2) to be in the larger reservoir and a probability P2 = R2
2/(R2

1 + R2
2) to be

in the smaller reservoir. The probability to be in a certain reservoir is in that case, simply
proportional to the volume of that reservoir. In 2D, the “volume” is the area Vi = πR2

i /2.
Next consider Lévy particles. The distribution will now be different. As was shown in

the previous section and in Appendix A, Lévy particles tend to accumulate near the walls
and in the smaller “nooks and corners”. With Lévy particles, the probability to be in the
smaller reservoir will be larger than the reservoir’s fraction of the total volume.

For a stochastic simulation, we let the semicircular walls be “sticky” again, i.e., the
particle comes to a standstill upon hitting the wall and only displaces again if a subsequent
computed step leads to motion inside the system. If the linear vertical wall in the middle is
hit, an elastic collision occurs. Thus, that wall is “bouncy”.

We will use the 2D solution for a circle, pst(r) = (α/(2π))
(
1− r2)α/2−1, to come

to an estimate of the steady-state distribution for the setup in Figure 3. We move to a
description where ρi(ri), with i = 1, 2, denotes the normalized particle density in reservoir
i at a distance ri from the opening. With:

ρi(ri) =
α

πR2
i

(
1−
(

ri
Ri

)2
)α/2−1

(5)

it is readily verified that:

∫ Ri

ri=0

∫ π/2

φ=−π/2
ρi(ri)ri dri dφ = 1. (6)

With a large number of particles in the setup, there will be a relaxation to a distribution with
a fraction ϕ1 in reservoir 1 and a fraction ϕ2 in reservoir 2. Obviously we have ϕ1 + ϕ2 = 1.
For any distribution over the two reservoirs we have:

ρ(r1, r2) = ϕ1ρ1(r1) + ϕ2ρ2(r2). (7)

It is easy to see that
∫ ∫

ρ(r1, r2) = 1, where the integration is over the entire 2-semicircle
system in the figure.

The steady state occurs if there are as many 1 → 2 transitions as there are 2 → 1
transitions. We will next derive what values of ϕ1 and ϕ2 lead to steady state. In the
above figure, imagine a semicircular strip of width dri at a distance ri from the opening.
The number of particles in the strip is ρi(ri)πridri (i = 1, 2). We assume that for r > r0,
we are in the region where the power-law-description of the tail of the Lévy distribution
(pα(r) ∝ r−(α+1) as r → ∞) applies. The probability that the displacement during one
timestep is larger than r is then proportional to r−α. For small d and sufficiently large r0,
the angle θ, cf. Figure 3, will be small and we have d = θr. For a Lévy jump to lead to
a particle transiting to the other reservoir, the jump must also be in the right direction.
This brings in a factor (d/r) cos φ, where φ is the indicated angle of the position on the
semicircle with the horizontal. Integrating over φ from −π/2 to π/2, the full direction
factor is found to be 2d/r. All in all, during one timestep we have for the number of
cross-reservoir transitions from a distance between r and dr:

dntr
i (ri, ri + dri) ∝ ϕi

d
ri

r−α
i ρi(ri)ri dri. (8)
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Integrating from r0 to the boundary Ri, we obtain for the number of Lévy-jump-associated
transitions from reservoir i:

Ntr
i ∝

ϕi

R2
i

∫ Ri

ri=r0

r−α
i

(
1−
(

ri
Ri

)2
)α/2−1

dri. (9)

The proportionality constant (associated with the ∝) and the r0 (the radius from which the
power law is taken to describe the Lévy-stable distribution) are the same for both reservoirs.
At this point, it is also important to realize that for the Lévy jumps to dominate the number
of 1 → 2 and 2 → 1 transitions, R1 and R2 must both be much larger than r0.

Mathematica will readily give an analytical solution for the integral Equation (9).
The solution involves the hypergeometric function [32]. Before working out Equation (9)
in its full generality, we make a further simplification that will not affect the solution too
much: As Ri 
 r0 for both i = 1 and i = 2, we take r0 = 0 to be the lower limit of the
integral. With 0 < α < 1, the integral will not diverge with ri → 0. Next, the all-important
reservoir radius Ri can be scaled out of the actual integral and incorporated in the prefactor:

Ntr
i ∝

ϕi

R2
i

R−α
i Ri

∫ Ri

ri=0

(
ri
Ri

)−α
(

1−
(

ri
Ri

)2
)α/2−1

d
(

ri
Ri

)
. (10)

Upon taking u = ri/Ri and v = u2 (so dv = du2 = 2u du and thus du = 1/(2
√

v) dv),
further simplification is achieved:

Ntr
i ∝ ϕiR−1−α

i

∫ 1

v=0
v−α/2−1/2(1− v)α/2−1 dv. (11)

The integral on the right-hand side is the well-known Euler integral, which is also known as
the beta function [32]. Ultimately, this integral depends only on α. It is finite for 0 < α < 1
and as it is the same for both reservoirs, we find:

Ntr
i ∝ ϕiR−1−α

i . (12)

The steady state condition is ϕ1R−1−α
1 ≈ ϕ2R−1−α

2 . With ϕ1 + ϕ2 = 1 we then get:

ϕ1 ≈
R1+α

1

R1+α
1 + R1+α

2

, ϕ2 ≈
R1+α

2

R1+α
1 + R1+α

2

, and
ϕ1

ϕ2
≈
(

R1

R2

)1+α

. (13)

The better approximation is obtained by not fully carrying through the r0 = 0 simpli-
fication of the last paragraph. That the simple approximation according to Equation (13)
fails for larger values of α is partly due to scaling issues. For the analytic approximation
to be consistent with the numerics, we need Δt1/α to be significantly smaller than r0 (cf.
Equation (3) with σ = 1). Setting r0 = 0 leads to a range where this is no longer true. As α
becomes larger, this range becomes larger. Keeping r0 > 0 in Equation (9), we find after
some algebra and use of Mathematica for the equivalent expression of Equation (12):

Ntr
i ∝ ϕi

[
R−1−α

i −
√

π

Γ( α
2 )Γ(

3−α
2 )

r1−α
0
R2

i
2F1

(
1− α

2
, 1− α

2
;

3− α

2
;
( r0

R i

)2
)]

, (14)

where 2F1(a, b; c; z) is the aforementioned hypergeometric function. It is readily verified
that the second term in the square brackets dominates for α → 2 and small r0. This is due to
the r1−α

0 term. The hypergeometric function is defined as a power series [32] and under the
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r0 � 1 condition we can still take (r0/Ri)
2 ∼ 0 and hence 2F1(.) ≈ 1. The ratio of particles

in the two reservoirs is then:

ϕ1

ϕ2
≈
(

R1

R2

)1+α√π Rα−1
2 − rα−1

0 Γ( 3−α
2 )Γ( α

2 )√
π Rα−1

1 − rα−1
0 Γ( 3−α

2 )Γ( α
2 )

, (15)

which reduces to (R1/R2)
1+α (cf. Equation (13)) if we take α < 1 and r0 → 0 concurrently.

Note, furthermore, that the equilibrium distribution, i.e., ϕ1/ϕ2 = (R1/R2)
2, is properly

approached if we concurrently take α → 2 and r0 → 0. Both the approximations according
to Equations (13) and (15) are depicted in Figure 4 and compared with the results of
a stochastic simulation. Finally, it is worth pointing out that Equation (15) is still an
approximation. The power law, Equation (1), that characterizes the Lévy-stable distribution
is not valid for small values of ξ. For values of ξ near zero, the distribution is Gaussian-like
and this is what is relevant for the behavior of particles close to the opening, i.e., r → 0.
Gaussian diffusion near the opening will lead to a continuous and differentiable steady-state
concentration profile near the opening. This is also what Figure 5 shows.

Figure 4. For the setup of Figure 3 with R1 = 10 and R2 = 1, we let ϕ1 and ϕ2 represent the
fraction of particles in reservoir 1 and 2, respectively, at steady state. The curves depict the analytic
approximations, Equation (13) (dashed) and Equation (15) (solid), of ϕ1/ϕ2. Each dot is the result of
a stochastic simulation of 40,000 particles for 4× 105 timesteps (with Δt = 0.001) following a 2× 105

timestep relaxation period. For the approximation according to Equation (15), we let r0 = 0.05 and
find good agreement with the result of the stochastic simulation.

Figure 4 shows the ratio ϕ1/ϕ2 as a function of α and compares the result of a stochastic
simulation with Equations (13) and (15). We took R1 = 10 and R2 = 100. For α → 0,
the simple approximation according to Equation (13) leads to ϕ1/ϕ2 = 10. For the more
sophisticated approximation according to Equation (15), the ϕ1/ϕ2 value at α → 0 can be
brought arbitrarily close to 10 by taking R1 and R2 much larger than r0. There is 10 times as
much “sticky wall” in the large reservoir and this result tells us that for α → 0, all particles
are concentrated at the sticky walls as would intuitively be expected.

The result that is derived in Appendix B hints at the reason that α = 1 is “almost like”
α = 2. As we move away from the opening, the probability to hit the opening decreases
as r−α. However, with a homogeneous distribution of particles, the number of particles
at a distance between r and r + dr increases proportional to r. For an n-dimensional setup,
the increase is proportional to rn−1 (for n = 2 we have circular strips and for n = 3 we
have spherical shells). All in all, we find that the number of “hits” from a distance r is
proportional to rn−α−1. Note that for n = 3, the entire range of α leads to an increase of
“hits” with r. We have not done any further investigation of the 3D case. We see that for
n = 2, an increase of “hits” with r only occurs if α < 1. For 1 < α < 2, the number of “hits”
decreases with r and in that case transitions mostly happen from the region around the
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opening. This decrease with 1 < α < 2 also means that the particle exchange through the
opening does not “feel” the different radii of the different reservoirs anymore.

Figure 5. The figure on the left depicts a steady-state distribution for 50,000 Lévy particles in a
two-reservoir confinement as depicted in Figure 3 after 105 timesteps. We have R1 = 2, R2 = 1,
and the opening has a width d = 0.1. For the figure on the right we started with a steady-state
distribution and ran the simulation for another 105 iterations. We took a horizontal strip through
the center with a width of 0.02 and partitioned it into 300 bins. Particles in each bin were counted
and the results of the subsequent 105 iterations were added. The solid line represents the resulting
normalized 1D histogram. The dashed reference curve is the solution Equation (4). For the left
reservoir, the domain was scaled to a length 2. Normalization of the combination of analytic solutions
was done such that the probability to be in the left reservoir is 2/3. It is readily verified that this leads
to continuity at the location of the opening.

Equation (4) describes and Figure 5 shows a nonhomogeneous distribution: As we
move away from the opening, the concentration actually increases. This should add to
the exponent n− α− 1 that we derived in a previous paragraph. Some of this effect is
incorporated in the approximation that led to Equation (15). Both that approximation and
the simulations show an asymptotic approach to (R1/R2)

2 as α → 2 and r0 → 0.

3.2. Entropies and Energies Associated with Lévy Noise

The nonhomogeneous distributions shown in Figures 2 and 5 essentially function
as dissipative structures [27]. The depicted nonhomogeneous steady-state distributions
represent a lower entropy than homogeneous distributions. However, these lower-entropy
structures facilitate the transfer and dissipation of energy at steady state. The transferred
energy comes in through the non-thermal motion of the active particles. It is next dissipated
and released. Ultimately the low-entropy dissipative structures help the energy throughput
and the entropy production.

As a result of the divergent standard deviation of the α-stable noise, the energy that
is dissipated per unit of time is in principle infinite. The finite container size, however,
truncates the Lévy jumps and make the aforementioned standard deviation of the jump
sizes finite. We will not elaborate on this. What we will instead focus on in this subsection
is the entropy decrease that is associated with the apparent nonhomogeneous distribution
shown in Figure 5.

Imagine that the steady flow of energy that maintains the dissipative structure is
suddenly halted. Such halting is straightforward if the active-particle-motion is, for instance,
driven by magnetic forces or by optics. The distribution in Figure 5 will then homogenize.
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Such homogenization implies an increase in entropy and a concurrent decrease in free
energy. Below we will find remarkably concise analytic expressions for the entropy change.

The relaxation towards homogeneity is two-part. First there is an intra-reservoir
relaxation inside each of the two reservoirs to a spatially homogeneous spread. Next there is
the slower relaxation between the two reservoirs towards a ratio ϕ1/ϕ2 = V1/V2 = R2

1/R2
2.

The entropy change associated with the intra-reservoir relaxations is hard to compute for
the semicircular reservoirs of Figures 3 and 5. However, for a circular reservoir as in Figure 1,
it is easier and no resort to numerics is necessary. We take pini(r) = (α/2π)(1− r2)α/2−1

as the initial distribution and p f in(r) = 1/π as the final homogeneous distribution. It is
well known that for a discrete set of probabilities, pi, the associated entropy is given by
S = −Σi pi log pi. However, this summation cannot be straightforwardly extended to an
integral for the case of a continuous probability density p(r). An obvious issue is that
density is not dimensionless and that a logarithm can only be taken of a dimensionless
quantity. In Ref. [33], it is explained how a sensible definition is only obtained after
introducing another probability density that functions as a measure. We then obtain what
is known as the relative entropy or Kullback–Leibler divergence [24]:

DKL(p f in||pini) =
∫

r≤1
p f in(r) log

(
p f in(r)
pini(r)

)
dr. (16)

When working out this integral, it is important to realize that the integration is from r = 0
to r = 1 over the area of a circle and that a term 2πr needs also be included. With the above
expressions for pini(r) and p f in(r), we find after some algebra that DKL(p f in||pini) = −1 +
α/2 + log(α/2). No such easy analytic solution ensues for more than two dimensions or
even in the 1D case. The Kullback–Leibler divergence can be thought of as a kind of distance
between two probability densities. However, it is generally not symmetric in the two
involved distributions. In our case, we find DKL(pini||p f in) = −1 + 2/α + log(2/α). Both
DKL(p f in||pini) and DKL(pini||p f in) are remarkably simple expressions; they are continuous
and concave up as α increases and reduce to zero for α = 2.

The speed of the inter-reservoir relaxation depends on the size of the opening. For the
small opening that is necessary for our approximations to be accurate, it will generally
be slower than the intra-reservoir relaxation. For the inter-reservoir relaxation, the basic
quantity is the probability to be in either of the two reservoirs. We go back to the basics to
calculate what the entropy is for a given distribution over the two reservoirs.

In the Statistical Physics context, entropy is commonly defined as proportional to the
logarithm of the number of microstates [1]. Imagine that there are N identical particles in
the setup of Figures 3 and 5. Here N is taken to be very large. In case of equilibrium, the
number of particles in a reservoir is proportional to the volume Vi = πR2

i /2 of a reservoir.
With ϕi N identical particles in reservoir i, the number of microstates in each of the two
reservoirs is given by:

Ωi =
Vϕi N

i
(ϕi N)!

. (17)

The numerator has the ϕi N-exponent because it is for each particle that the number of
microstates is proportional to the volume. The microstate is the same, however, when two
or more particles are exchanged. The denominator takes this into account and denotes the
number of permutations among ϕi N particles. With the definition S = log Ω and using
Stirling’s approximation [1] (log N! = N log N, if N is very large), we derive:

Si = ϕi N log
(

Vi
ϕi N

)
, (18)

where “log” denotes the natural logarithm. As was mentioned before, at thermodynamic
equilibrium the fraction of particles in a reservoir is proportional to the volume of that reser-
voir, i.e., ϕi ∝ Vi. The argument of the logarithm in Equation (18) is then the same constant
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for both reservoirs. This leads to Si ∝ ϕi, as should be expected from an equilibrium-
thermodynamics perspective.

We take for the total volume and the total entropy Vtot = V1 +V2 and Stot = S1 + S2,
respectively. It is next derived from Equation (18) that Stot = N(ϕ1 log(V1/ϕ1)+
ϕ2 log(V2/ϕ2))− N log N. The additive N log N-term is the same for all values of α.
As it is only differences in entropy that matter, we discard this term. For the entropy
per particle, stot = Stot/N, it is next found:

stot = ϕ1 log
(

V1

ϕ1

)
+ ϕ2 log

(
V2

ϕ2

)
. (19)

Figure 6 depicts stot as a function of α following Equation (19). We took Vtot = 1
(leading to V1 = R2

1/(R2
1 + R2

2) and V2 = R2
2/(R2

1 + R2
2)) and R1 = 10R2. For the dashed

curve, Equation (13) was used to come to the values of ϕ1 and ϕ2. For the solid curve
the improved approximation, Equation (15) was used with r0 = 0.05. The curves appear
almost indistinguishably close. It is important to realize that this entropy also represents
free energy. The free energy release associated with the equilibration can be obtained by
multiplying the entropy (cf. Equation (19)) with the temperature. Again we emphasize
that Equation (19) is related to just the inter-reservoir relaxation and does not incorporate
intra-reservoir relaxation.

Figure 6. Given the setup of Figures 3 with Vtot = 1 and R1 = 10R2, the curves show the entropy per
particle, stot, as a function of the stability parameter α of the Lévy noise. The nonequilibrium noise
leads to a concentration difference between the two reservoirs. The associated entropy decrease stot is
obtained by substituting into Equation (19) the approximate ratio according to Equation (13) (dashed
curve) and according to Equation (15) (solid curve). For Equation (15) we took r0 = 0.05, i.e., the
value that led to good agreement with the stochastic stimulation (cf. Figure 4).

There is more thermodynamic way to derive the right-hand side of Equation (19) as the
energy per particle that is invested in the building of the dissipative structure. With intra-
reservoir equilibrium established, the chemical potential μ that is driving flux through the
opening is the logarithm of the concentration ratio [1]. If we let φ be the fraction of the
particles in the smaller reservoir, then we have μ(φ) = log

(
φ
V2

)
− log

(
1−φ
V1

)
. The energy

that is dissipated when an infinitesimal fraction dφ follows the potential and flows through
the opening is μ(φ) dφ. The entire equilibration takes φ from ϕ2 to V2. After some algebra
and setting the temperature and the Boltzmann constant all equal to unity, it is found that
the resulting total-equilibration-energy integral reduces to −stot (cf. Equation (19)).

Equations (13) and (19) are concise and intuitive. Equation (13) is already a fairly
accurate approximation. Given the geometry of the system and the value of α, Equation (13)
gives the distribution over the two reservoirs. Equation (19) tells us what entropy decrease
and what free energy “investment” is associated with the concentration difference between
the reservoirs that gets established due to the active particle movement. It gives a measure
for how far the system is driven from equilibrium by the active particle motion.
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4. Discussion

In this article we explored a significant consequence of a bath in which particles
velocities are Lévy-stable distributed. With the ordinary Gaussian velocity distribution
that is associated with equilibrium systems, the maximization of entropy leads to particles
homogeneously distributing in the confined domain. With a Lévy-stable distribution for the
velocities, larger concentrations occur near the walls and in the smaller cavities. We have
analytic expressions for the distribution of Lévy particles in the circular and the spherical
domain. For the two connected reservoirs as depicted in Figure 3, we have derived a good
approximation for the concentration difference between the reservoirs at steady state. We
have presented an accounting of the entropies, and ensuing energies, for such divergence
from equilibrium.

We have interpreted the nonhomogeneous particle distribution (cf. Figure 5) as a
dissipative structure, i.e., a lower-entropy arrangement of particles that facilitates a larger
dissipation of energy and concurrent larger production of entropy. There is nothing about
heat conduction in the equations. However, it is tempting to hypothesize that with the
particles being closer to the surface area, the system would be better able to transfer heat to
the environment and do so at a larger rate.

In the 1990s, experiments were performed in which DNA, RNA, and proteins were
manipulated on the molecular scale. This commonly involved breaking of molecular
bonds. The involved energies were significantly larger than the kBT that can be considered
as the quantum of thermal energy. In such far-from-equilibrium processes, Onsager’s
reciprocal relations and other close-to-equilibrium concepts are no longer valid. Fortunately,
at about the same time, theory was developed to handle fluctuations in far-from-equilibrium
conditions. The Fluctuation Theorem [34] and the Jarzynski Equation [35,36] could very
accurately account for the results of experiments in which microscopic beads were pulled
by optical tweezers [37] and experiments in which RNA was forcibly unfolded [38,39].
However, it should be realized that the Fluctuation Theorem and the Jarzynski Equation
apply when far-from-equilibrium events take place in an equilibrium bath with a temperature.
In many experiments and real-life systems, the bath is the very source of nonequilibrium.
The Fluctuation Theorem and the Jarzynski Equation are of no help in that case and new
theory needs to be developed. An obstacle here is constituted by the fact that there is no
equivalent of temperature for the Lévy-stable distribution of velocities that is commonly
associated with the nonequilibrium bath. For a Gaussian velocity distribution, the standard
deviation is proportional to the square root of the temperature. However for a Lévy-stable
distribution, the standard deviation diverges and, technically, the temperature works out
to be infinite. In this article we have tried to contribute to the development of description
and understanding of what can happen in nonequilibrium baths.

As was explained in the Introduction, baths consisting of Lévy particles lead to similar
physics as baths in which active particles are suspended. In both cases there is a continuous
input of energy into the system and there is no longer a Fluctuation-Dissipation Theorem
to guide the understanding and description. Swimming bacteria are a prime example of
active particles. That swimming Escherichia coli bacteria can indeed be accumulated in
cavities as has been experimentally demonstrated [40].

In a recent paper, results are presented of a numerical simulation of an active-particles-
containing liquid [41]. A passive particle in this liquid was followed as a probe. This passive
particle turned out to display Lévy-stable distributed displacements. What was simulated
in this work was merely the Navier–Stokes equations and that passive particles exhibit
these Lévy-stable distributed displacements is therefore a purely hydrodynamic effect due
to active-particle-activity. That interesting and unexpected hydrodynamics can develop in
liquids with immersed swimming bacteria has also been experimentally established [42].

The density profiles in Figures 2 and 5 are mindful of the coffee ring effect. When
a coffee drop on a surface evaporates, the stain that is left behind is darkest towards the
edge [43]. This effect is common with liquids that carry solutes. There are technological
applications where it is important to control the coffee ring effect. The simple explanation
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for the effect goes as follows. The drop has the shape of a disk. It has a fixed radius and
the height of the drop vanishes near the edge. With a uniform evaporation across the
surface area of the drop, there must be a net outward radial flow to replenish lost fluid near
the contact line. Solute is carried along with this flow and ultimately deposited near the
contact line. Much theoretical, numerical, and experimental research has been devoted to
the effect in the last quarter century (see Ref. [44] and references therein). It is common to
use equilibrium concepts like Einstein’s Fluctuation-Dissipation theorem when trying to
account for the phenomenon. However, an evaporating drop is not in a thermodynamic
equilibrium. It is certainly possible that solute particles exhibit the large jumps that are
commonly encountered in nonequilibrium systems. The accumulation at the edge could
then also be due to the mechanism that we discussed in this article.

In plasma physics, it is common to assume that the particles in a dense plasma follow
the well-known Maxwell–Boltzmann distribution for particle speeds [1]. However, this
equilibrium assumption may not always be valid, especially if the plasma is short lived and
associated with an energy pulse. At Lawrence Livermore Lab, a table-top-size construction
was developed to generate pulses of fast neutrons from high-energy deuterium collisions
in plasma. Such collisions lead to the nuclear reaction D + D →3He + n [45]. In the
experiments, it appears that the number of produced neutrons exceeds the theoretical
predictions by more than an order of magnitude. The reason for this is most likely that the
Maxwell–Boltzmann distribution only applies at thermodynamic equilibrium.

Plasmas in which energy is converted or transferred are of course not in a thermody-
namic equilibrium. In containers with plasma, a homogeneous distribution is therefore
unlikely and accumulation at the edge as described in this work is possible. This is im-
portant because it means that fusion reactions in a plasma will occur at different rates at
different positions. Through feedback mechanisms, such inhomogeneities may rapidly
augment and possibly develop into serious instabilities.

Engineered microswimmers is probably the field where our results could ultimately
be most applicable. There are good methods and technologies for manipulating suspended
micrometer size particles from the outside with acoustic, magnetic, or optic signals (see
e.g., Refs. [46,47]). Today the exciting new developments are in the medical application of
such microrobots. Clinical uses for imaging, sensing, targeted drug delivery, microsurgery,
and artificial insemination are envisaged and researched [48]. The microswimmers and
microrobots are particles that are operating in a very noisy environment. Accumulations as
described and explained in this article are likely to be encountered.
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Appendix A. Extension of the 1D Solution to nD

Consider the steady-state solution p(r) = C(α)
(
1− r2)α/2−1, where C(α) is the nor-

malization factor (cf. Equation (4)). In this Appendix we will use symmetry arguments to
show that this form generalizes to higher dimensional setups.

First consider the 1D ball depicted in Figure A1a and imagine a large number of
particles distributed according to Equation (4). Next take two small intervals on the right
side of r = 0: r1 < r < r1 + dr and r2 < r < r2 + dr, as depicted. At steady state and within
any time interval Δt, there is as much flow from the r1-interval to the r2-interval as that
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there is from the r2-interval to the r1-interval, i.e., J12 = J21. This is detailed balance [1].
Next we define a transition rate, k12, that is the probability per unit of time for a particle
in the r1-interval to transit to the r2-interval. The rate k21 is analogously defined. Detailed
balance implies that k12 p(r1) = k21 p(r2) and thus:

k12

k21
=

p(r2)

p(r1)
=

(
1− r2

2
1− r2

1

)α/2−1

. (A1)

(a)

(b)

(c)

Figure A1. A Lévy walk in a confined domain. Whenever the particle hits the confinement wall,
it comes to a standstill there. The 1D steady-state probability distribution (a) is solved in Ref.

[23]: pst(r) ∝
(
1− r2)α/2−1. Between any two small intervals along the 1D domain, steady state

implies p(r1)k12 = p(r2)k21, where the k’s denote transition rates. In 2D (b) there is circular sym-
metry. If we take any narrow bar through the origin and look exclusively at traffic inside that bar,

pst(r) ∝
(
1− r2)α/2−1 applies again. Next, we take a state R3 outside the bar (c) and include tran-

sitions between r1 and r2 that go via any area R3. As the circular symmetry implies the absence of
vortices, transitions k′12 and k′21 that go via R3 must also follow p(r1)k′12 = p(r2)k′21. From here it

follows that pst(r) ∝
(
1− r2)α/2−1 also applies to higher dimensional setups. See the text of this

Appendix for more detail.

Next consider the 2D setup depicted in Figure A1b. A bar of width δ is going through
the center of the circle. We take two little areas at distances r1 and r2 from the center.
Consider only trajectories between these two areas that stay within the bar. The traffic
inside the bar should mimic the 1D system that was considered in the previous paragraph
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and Figure A1a. Now consider also the transitions between the two little areas that proceed
through trajectories that are not restricted to the narrow bar. Without loss of generality, we
take an area R3, cf. Figure A1c, and we consider trajectories between r1 and r2 that pass
through R3.

It is important to realize that the circular symmetry implies that there can be no
vortices within the circular domain. Flow along any simple, closed curve within the unit
circle would imply that there are points with net flow in the angular direction. Thus,
along the r1, r2, R3-loop there must be as much clockwise flow as there is counterclockwise,
i.e., Jcw = Jccw. This implies k12k23k31 = k13k32k21 [49] and thus:

k12

k21
=

k13k32

k23k31
. (A2)

The “state” R3 can be taken to be anywhere within the circle and be of any size and shape.
We can conclude that the ratio k′12/k′21 for transitions along any path between r1 to r2 within
the circle must be equal to the ratio k12/k21 for transitions with trajectories inside the bar.

It follows that, for any dimensionality, the probability density at radius r must be pro-
portional to

(
1− r2)α/2−1. For a normalized probability density in n dimensions we derive:

p(n, r) =
Γ
( n+α

2
)

πn/2Γ
(

α
2
)(1− r2

)α/2−1
. (A3)

For n = 2 the prefactor reduces to a simple α/(2π).

Appendix B. Traffic between the Larger and the Smaller Semicircular Reservoir

Consider the setup in Figures 3 and 5 and let a homogeneous particle density ρ be
same in both reservoirs. In this Appendix we show that, if the particles are subject to
Lévy noise, accumulation in the smaller reservoir develops. Imagine a semicircular strip
of width dr at a distance r from the opening. There are ρπrdr particles in this strip. We let
the power-law approximation, cf. Equation (1), be valid for r > r0. Here r0 is much larger
than the width of the opening d and much smaller than the radii R1 and R2. The angle θ is
small and with θ expressed in radians we have d = θr. For a particle in the semicircular
strip at distance r > r0, there is a probability that a Lévy jump will bring it to the other
reservoir. To achieve such transition, the jump needs to be larger than r. For such a jump,
the probability is proportional to r−α. In order to go through the opening, the jump must
also be in the right direction. This leads to a factor (d/r) cos φ (cf. Figure 3). After the
integration from φ = −π/2 to φ = π/2, we derive a “direction factor” of 2d/r, i.e., ∝ 1/r.
Putting together all of the effects specified in this paragraph, we have the following formula
for the number of transitions during a small timestep from a distance between r and r + dr:

dntr(r, r + dr) ∝
1
r

r−αr dr = r−α dr. (A4)

Next we integrate from r0 to the boundary Ri (i = 1, 2) and find for the number of Lévy-
jump-associated transitions from reservoir i:

Ntr
i ∝

∫ Ri

r0

r−α dr ∝ sgn(1− α)
(

R1−α
i − r1−α

0

)
. (A5)

Care must be taken in case of α = 1. In that case Ntr,α=1
i ∝ log Ri − log r0. We thus conclude

that for 0 < α ≤ 1, the number Ntr
i diverges as Ri is taken to infinity. For 1 < α < 2, a

constant value for Ntr
i ensues if Ri → ∞.

The proportionality constant (associated with the ∝) and r0 (the radius from which
the power law is taken to describe the Lévy distribution) are the same for both reservoirs.
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Thus, if both reservoirs in Figures 3 and 5 have the same uniform ρ, then we find for the net
number of particles ΔNtr = Ntr

1 − Ntr
2 that transits from the larger to the smaller reservoir:

ΔNtr ∝ sgn(1− α)
(

R1−α
1 − R1−α

2

)
. (A6)

If 0 < α ≤ 1 and if values for R1 and R2 are large, then there is accumulation in the
smaller reservoir.

For 1 < α < 2, there will again be accumulation in the smaller reservoir, but the effect
becomes smaller as R2 and R1 grow and will become negligible as R1,2 → ∞. Effectively,
the geometry of the reservoirs is irrelevant for large R1 and R2. In that case it is particles
near the opening that dominate the traffic through the opening.

In the main text, the above derivation is carried out for the case of a density ρi(ri)
(i = 1, 2) that depends on the distance ri from the opening.

Finally, it is worth pointing out that the above derivation readily generalizes to higher
dimensional reservoirs. In the 3D case, we face hemispheres. The number of particles in a
hemispheric shell is ρ2πr2dr. For the nD case, the shell contains a number of particles that
is proportional to rn−1dr. We thus have for dntr

nD:

dntr
nD(r, r + dr) ∝

1
r

r−αrn−1 dr = rn−2−α dr. (A7)

This leads to:

Ntr
i,nD ∝

∫ Ri

r0

rn−2−α dr ∝
(

Rn−1−α
i − rn−1−α

0

)
. (A8)

and
ΔNtr

nD ∝
(

Rn−1−α
1 − Rn−1−α

2

)
. (A9)

This is an interesting result. For 3 and more dimensions, we do not need to discriminate
between different ranges of α. Lévy noise with any α (0 < α < 2) will in that case lead to
a significantly higher density in the smaller reservoir and the effect will be stronger for
higher values of R1,2.
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19. Kuśmierz, Ł.; Chechkin, A.V.; Gudowska-Nowak, E.; Bier, M. Breaking microscopic reversibility with Lévy flights. Eur. Lett. 2016,
114, 60009. [CrossRef]

20. Yuvan, S.; Bier, M. The breaking of time-reversal symmetry for a particle in a parabolic potential that is subjected to Lévy
noise—Theory and an application to solar flare data. Phys. Rev. E 2021, 104, 014119. [CrossRef]

21. Fily, Y.; Baskaran, A.; Hagan, M.F. Dynamics of self-propelled particles under strong confinement. Soft Matter 2014, 10, 5609–5617.
[CrossRef]

22. Jespersen, S.; Metzler, R.; Fogedby, H.C. Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations
and their solutions. Phys. Rev. E 1999, 59, 2736–2745. [CrossRef]

23. Denisov, S.I.; Horsthemke, W.; Hänggi, P. Steady-state Lévy flights in a confined domain. Phys. Rev. E 2008, 77, 061112. [CrossRef]
24. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Statist. 1951, 22, 79–86. [CrossRef]
25. Kadkhoda, N.; Lashkarian, E.; Inc, M.; Akinlar, M.A.; Chu, Y.-M. New exact solutions and conservation laws to the fractional-order

Fokker–Planck equations. Symmetry 2020, 12, 1282. [CrossRef]
26. Hermann, S.; Schmidt, M. Noether’s theorem in statistical mechanics. Commun. Phys. 2021, 4, 176. [CrossRef]
27. Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures; Wiley & Sons: New York, NY,

USA, 1998.
28. Lévy, P. Sur certains processus stochastiques homogènes. Compos. Math. 1939, 7, 283–339.
29. Barato, A.C.; Roldán, E.; Martínez, I.A.; Pigolotti, S. Arcsine laws in stochastic thermodynamics. Phys. Rev. Lett. 2018, 121, 090601.

[CrossRef] [PubMed]
30. Wang, W.; Höll, M.; Barkai, E. Large deviations of the ballistic Lévy walk model. Phys. Rev. E 2020, 102, 052115. [CrossRef]

[PubMed]
31. Spiechowicz, J.; Łuczka, J. Arcsine law and multistable Brownian dynamics in a tilted periodic potential. Phys. Rev. E 2021,

104, 024132. [CrossRef]
32. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; Dover Publica-

tions: New York, NY, USA, 1965.
33. Jaynes, E.T. Information theory and statistical mechanics. In Statistical Physics—1962 Brandeis Summer Institute Lectures in Theoretical

Physics; Ford, K., Ed.; Benjamin: New York, NY, USA, 1963; Volume 3, pp. 181–218.
34. Evans, D.J.; Searles, D.J. Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 1994, 50, 1645–1648.

[CrossRef]
35. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997, 78, 2690–2693. [CrossRef]
36. Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Phys. Rev. E

1997, 56, 5018–5035. [CrossRef]
37. Wang, G.M.; Sevick, E.M.; Mittag, E.; Searles, D.J.; Evans, D.J. Experimental demonstration of violations of the second law of

thermodynamics for small systems and short time scales. Phys. Rev. Lett. 2002, 89, 050601. [CrossRef]
38. Liphardt, J.; Dumont, S.; Smith, S.B.; Tinoco, I., Jr.; Bustamante, C. Equilibrium information from nonequilibrium measurements

in an experimental test of Jarzynski’s equality. Science 2002, 296, 1832–1835. [CrossRef]
39. Collin, D.; Ritort, F.; Jarzynski, C.; Smith, S.B.; Tinoco, I.; Bustamante, C. Verification of the Crooks fluctuation theorem and

recovery of RNA folding free energies. Nature 2005, 437, 231–234. [CrossRef]
40. Galajda, P.; Keymer, J.; Chaikin, P.; Austin, R. A wall of funnels concentrates swimming bacteria. J. Bacteriol. 2007, 189, 8704–8707.

[CrossRef] [PubMed]
41. Kanazawa, K.; Sano, T.G.; Cairoli, A.; Baule, A. Loopy Lévy flights enhance tracer diffusion in active suspensions. Nature 2020,

579, 364–367. [CrossRef] [PubMed]
42. Sipos, O.; Nagy, K.; Di Leonardo, R.; Galajda, P. Hydrodynamic trapping of swimming bacteria by convex walls. Phys. Rev. Lett.

2015, 114, 258104. [CrossRef] [PubMed]
43. Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried

liquid drops. Nature 1997, 389, 827–829. [CrossRef]
44. Moore, M.R.; Vella, D.; Oliver, J.M. The nascent coffee ring: How solute diffusion counters advection. J. Fluid Mech. 2021, 920, A54.

[CrossRef]
45. Zweiback, J.; Cowan, T.E.; Smith, R.A.; Hartley, J.H.; Howell, R.; Steinke, C.A.; Hays, G.; Wharton, K.B.; Crane, J.K.; Ditmire, T.

Characterization of fusion burn time in exploding deuterium cluster plasmas. Phys. Rev. Lett. 2000, 85, 3640–3643. [CrossRef]
46. Jiang, H.-R.; Yoshinaga, N.; Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys.

Rev. Lett. 2010, 105, 268302. [CrossRef]
47. Peng, X.; Chen, Z.; Kollipara, P.S.; Liu, Y.; Fang, J.; Lin, L.; Zheng, Y. Opto-thermoelectric microswimmers. Light. Sci. Appl. 2020,

9, 141. [CrossRef]
48. Bunea, A.-I.; Taboryski, R. Recent advances in microswimmers for biomedical applications. Micromachines 2020, 11, 1048.

[CrossRef]
49. Hill, T.L. Free Energy Transduction and Biochemical Cycle Kinetics; Dover Publications: New York, NY, USA, 2004.

32



Citation: Siódmiak, J.; Gadomski, A.

Spherulites: How Do They Emerge at

an Onset of Nonequilibrium

Kinetic-Thermodynamic and

Structural Singularity Addressing

Conditions? Entropy 2022, 24, 663.

https://doi.org/10.3390/e24050663

Academic Editor: Antonio M. Scarfone

Received: 12 April 2022

Accepted: 6 May 2022

Published: 9 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Communication

Spherulites: How Do They Emerge at an Onset of
Nonequilibrium Kinetic-Thermodynamic and Structural
Singularity Addressing Conditions?

Jacek Siódmiak * and Adam Gadomski

Institute of Mathematics and Physics (Group of Modeling of Physicochemical Processes), Faculty of Chemical
Technology and Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland;
agad@pbs.edu.pl
* Correspondence: siedem@pbs.edu.pl; Tel.: +48-523-408-697

Abstract: This communication addresses the question of the far-from-equilibrium growth of spherulites
with different growing modes. The growth occurs in defects containing and condensed matter
addressing environments of (bio)polymeric and biominerals involving outcomes. It turns out that it is
possible to anticipate that, according to our considerations, there is a chance of spherulites’ emergence
prior to a pure diffusion-controlled (poly)crystal growth. Specifically, we have shown that the
emergence factors of the two different evolution types of spherulitic growth modes, namely, diffusion-
controlled growth and mass convection-controlled growth, appear. As named by us, the unimodal
crystalline Mullins–Sekerka type mode of growth, characteristic of local curvatures’ presence, seems
to be more entropy-productive in its emerging (structural) nature than the so-named bimodal or
Goldenfeld type mode of growth. In the latter, the local curvatures do not play any crucial roles.
In turn, a liaison of amorphous and crystalline phases makes the system far better compromised
to the thermodynamic-kinetic conditions it actually, and concurrently, follows. The dimensionless
character of the modeling suggests that the system does not directly depend upon experimental
details, manifesting somehow its quasi-universal, i.e., scaling addressing character.

Keywords: spherulites; (poly)crystal formation; complex growing phenomenon; soft condensed
matter; nonequilibrium thermodynamics; physical kinetics; entropy production

1. Introduction

Defects in condensed matter phase are ubiquitous in their appearances and types.
As for the point defects, one can mention atomic vacancies and interstitial positions for the
abundant atoms covering the corresponding material’s locations.

As for extended defects, in turn, it is appropriate to list grain boundaries, two-di-
mensional defects, very characteristic of polycrystals, whether composed of metallic or
of (bio)polymeric material. Stepping up one dimension higher, one can address (screw)
dislocations and disclinations, to mention but two [1].

Spherulites are complex defects emerging in condensed phase. They bear something
from the notion of extended defects, but they mean something distinctly more than this.
They are typically recognized as an imperfect crystalline phase comprised from radi-
ally distributed polycrystal’s needles, crossed at certain non-crystallographic angles with
each other, but intermingled with a not-yet-crystallized amorphous phase in between,
cf. Figure 1. The most known technique to visualize the spherulites as defects is polar-
ized light microscopy, which yields the famous Maltese cross. Especially, the amorphous,
non-radial phase of the object is named a “band defect” the expression of which depends
on peculiarities of the system studied [2]. It seems as if it was a process of competition
between crystal and amorphous emerging phases that tend to evolve in a diffusional man-
ner, r(t) ∼ t1/2 (r—arbitrary spherulite’s radius in diffusion-controlled mode; t—time),
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and then, they change their growing mode toward its mass-convection-like (long times)
counterpart, r(t) ∼ t. This implies that the evolution goes with a constant speed [3–5]
and proceeds with certain massive steps in absorbing the amorphous matter of the system.
It looks as if it was that the emerging (poly)crystalline phase imposes a confinement on the
diffusion space, yielding an accelerated absorption of the diffusing material onto the crystal
phase, with a remnant non-absorbed amorphous phase still available for diffusion to occur.
The method of revealing this phenomenon turns out to be the DSC (Differential Scanning
Calorimetry), and the underlying process is coalescence of the spherulitic material, also
resulting in a structural impingement of the spherulites [6].

(a) (b) 

Figure 1. Mullins–Sekerka (M–S) type and Goldenfeld (G) type: (a) M–S, local curvatures are
indicated by blue dashed circles; (b) G, mean curvature is signified by blue dashed circle.

An intriguing question that appears sounds: Why the spherulitic evolution changes
its mode from the diffusion-like to that mass-convection-like? Amongst many answers
to this question, there is at least a pronounced streamline of arguments proclaiming that
the growing system of interest is evolving in nonequilibrium thermodynamic boundary
conditions [3,7]. Being motivated by the aforepresented and not-answered-in-full experi-
mental observations, in what follows, we are attempting to provide a simple theoretical
rationalization that it is convincingly seen in terms of our type of modeling.

To achieve our goal, we shall employ in a natural way a spherical approximation
to a conserved-mass deposition, mimicking the spherulitic growth. It seems to be really
natural here, because the complex defects called spherulites assume ultimately a sphere-
like form. The spherical approximation to the mass conservation law has been presented
elsewhere [8–10]. However, the essential novelty applied to it is going to rely on a spe-
cial boundary condition of nonequilibrium character [11]. Another relevant precondition
applied to the spherulite’s modeling, especially important for (bio)macromolecular realiza-
tions, is that the mass-convective instead of purely diffusive mass transportation conditions
are employed decisively to create the spherulite’s evolution. However, the diffusion limit is
not completely ruled out, but it is also discussed when considering the onset of spherulitic
formations [8–11].
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In the subsequent sections, we shall present the model of spherulitic formation, cap-
turing both diffusional and non-diffusional/mass-convection-like competitive modes,
and bearing a signature of nonlinear ordinary differential equation (ode), solvable when
resorting to its numerical solutions [12]. The presentation of the spherulite-formation model
in terms of nonlinear ode with the corresponding initial conditions gives also a chance
of its qualitative analysis. It leads to determining spherulite’s characteristic linear dimen-
sion valid for both regimes recalled, albeit the radius’ value for the immature spherulite
(rather, its prerequisite) at the onset of the spherulitic growth is half the size as it would
be for its purely diffusive counterpart. The proposed semi-quantitative model looks fairly
manageable to solicit firm-basis addressing conclusions toward spherulites’ formation.
It is because this is to a major extent presented in terms of rescaled variables [12], both
independent and dependent (the key parameters as well). Thus, all quantities of interest
are nondimensional, and the number of the key governing parameters is reduced from
five to two, see Section 2. It univocally allows to conclude on the principal features of the
proposed modeling, showing up basic signatures of the spherulitic growth [3,4,7], and its,
most importantly, inherent passage from diffusional to mass-convection-like limit, a type
of structural, nonequilibrium phase transition [6].

The article is organized as follows. In Section 2, a kinetic-thermodynamic nonequi-
librium model of spherulitic growth is presented, whereas in Section 3 its main results
toward the onset of the spherulitic growth are disclosed, and its properties, also certain
proposals for legitimate and/or useful extensions, are discussed. Section 4 serves for the
main conclusions.

2. Spherulites’ Formation in Terms of a Kinetic-Thermodynamic Model

Herein below, let us consider in brief a model of the spherulitic growth that is based on
a mass-convection conserved field instead of a diffusion field. We would like to state clearly
that, considering the growth of spherulites, here from solution of a certain concentration,
we propose our simple approach in which the spherulites are represent by spherical
objects. Note that a spherulite is a 3D-system (there also exist some 2D objects commonly
known as cylindrulites). The non-equilibrium character of the process can quantitatively
be manifested by at least: (i) external concentration field feeding the growing object,
(ii) internal boundary condition prescribed at the interface: spherulite-surroundings.

It is worth recalling the following experimental observation: the growth rate v ≡ dR/dt
(R is the spherulite’s radius; R ≡ R(t), where t is time) is mainly a parametric function of
temperature T (the process under study is isothermal) and slightly depends on a particular
system of interest. Thus, we may solely expect that asymptotically R ∝ t. Note that, espe-
cially in the long times’ domain, it substantially differs from the well-known relationship
R ∝ t1/2 characteristic for purely diffusion-controlled crystal growth processes, as first
uncovered by the perennially alive Mullins–Sekerka approach [13]. This approach assumes
that the growth rate depends on local curvatures of the interface, the growing object vs.
surroundings. From this, the square root radius vs. time relationship emerges.

An evolution equation for spherulites can be formulated as follows:

(i) the mass conservation law as a fundamental evolution equation for growing spherulite,
with an initial condition which is an initial shape (a surface) of the growing spherulite;

(ii) specification of the concentration field of the mass-feeding medium and of the
spherulite at the interface; it, in general, should be associated with non-equilibrium
boundary conditions;

(iii) specification of fluxes through the interface and its connection with the concentration
field of the corresponding surroundings; in general, it allows to introduce not exclu-
sively diffusive but also others, such as mass-convection fluxes of atoms, molecules,
oligomers and aggregates, etc.
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It has been shown that an evolution equation for growing objects (like polycrystals)
with an ideal or perturbed spherical symmetry has the form:

[C− c(R)]
.
R = −→j [c(R)] ◦ →n 0, (1)

where
.
R = dR/dt, C is the object’s density, which may depend on space variables and

can generally be of stochastic nature, c(R) stands for concentration of external particles at
the surface,

→
j [c(R)] is the flux of particles outside the object which depends functionally

on concentration and
→
n 0 is the outer normal to the surface of the object. Both sides of

Equation (1) are given in SI units of kg/m2s.
As regarding point (ii), the concentration of the particles at the surface of the growing

object is determined by thermodynamic conditions and geometry of the surface. Under
assumption of local thermodynamical equilibrium near the interface, it has the form of the
Gibbs–Thompson relation. In a more realistic model, the surface is far from equilibrium
and its deviation from equilibrium is proportional to the growth velocity of the interface:

c(R) = c0

(
1 +

2Γ
R
− β

.
R
)

, (2)

where c0 is the concentration field at a flat interface, Γ is the capillary constant which
aims at smoothening out the surface of the growing object and is proportional to the
surface tension [14], β is a positive kinetic coefficient, 2/R is twice the mean curvature
of the spherical object, and the last term describes a deviation from the thermodynamic
equilibrium. When β = 0, one gets the well known Gibbs–Thomson condition.

Let us consider point (iii). If the feed of the growing object is purely mass-convective, then:

→
j [c(R)] = c(R)

→
v (R), (3)

where
→
v (R) is a mass-convection velocity. (For the diffusion-limited, Mullins–Sekerka type

growth, r.h.s. of Equation (3) assumes a concentration-gradient form [13]).
From the above, a basic evolution equation can be derived:[

C− c0

(
1 +

2Γ
R
− β

.
R
)]

.
R = c0v0

[
1 +

2Γ
R
− β

.
R
]

, (4)

where R(t = t0) > 0.
The growth process described by Equation (4) is influenced by five parameters: C,

c0, Γ, β and v0. However, in fact, only two parameters are physically meaningful: (i) the
quantity Δ which is a measure of the saturation in the system:

Δ =
C− c0

c0
=

C
c0
− 1, (5)

and (ii) rescaled kinetic coefficient β0:

β0 = βv0. (6)

Indeed, rescaling the bare variables R and t to dimensionless quantities r = r(τ) and τ via
the relations:

r =
R
2Γ

, (7)

and
τ =

v0

2Γ
t (8)

is useful for carrying out a solid semi-quantitative description of the spherulite’s
formation equation.
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From the system (4)–(8), one derives the following nonlinear differential equation

β0

(
dr
dτ

)2
+

(
Δ + β0 −

1
r

)
dr
dτ
− 1

r
− 1 = 0. (9)

Equation (9) is an algebraic quadratic equation with respect to dr/dτ, where x = dr/dτ,
which can be rewritten as:

β0x2 +
(Δ + β0)r− 1

r
x− r + 1

r
= 0. (10)

The real valued roots of this equation can be determined by using the conventional
method of solving quadratic equations, namely, with specifying the characteristic Δx:

Δx =
[(Δ + β0)r− 1]2 + 4β0r(r + 1)

r2 > 0, (11)

and its necessary square root:

√
Δx =

√
[(Δ + β0)r− 1]2 + 4β0r(r + 1)

r
:= d(r)/r, (12)

thus, if the numerator of the fraction in Equation (12) is denoted for convenience by d(r).
The roots of the quadratic equation are explicitly given by:

x1|2 =
−[(Δ + β0)r− 1]±

√
[(Δ + β0)r− 1]2 + 4β0r(r + 1)

2β0r
. (13)

One of its roots has to be ruled out. It is determined by the limiting case β0 → 0 . (This,
contrary to the vanishing kinetic limit of the phenomenon, can rather be ascribed to its
thermodynamic counterpart.) Finally, one gets:

dr
dτ

= x2 =

√
[(Δ + β0)r− 1]2 + 4β0r(r + 1)

2β0r
+

1
2β0r

− Δ + β0

2β0
, (14)

or by employing the shorter notation with d(r)

dr
dτ

=
d(r) + 1

2β0r
− Δ + β0

2β0
> 0, (15)

where explicitly

d(r) =
√
[(Δ + β0)r− 1]2 + 4β0r(r + 1). (16)

Notice that, by presenting above the rescaled spherulite’s evolution equation, that
means Equation (15) with its supporting Equation (16), we have arrived at the equation on
which we wish to perform a simplified structural stability analysis in order to reveal the
onset of the spherulitic growth.

Numerical solutions of Equation (15) by using Euler’s discretization method are pre-
sented in Figure 2. The dependence of r(τ) on the rescaled kinetic (β0) and thermodynamic
(Δ) dimensionless parameters indicate the edge of diffusion- and mass-convection-driven
growth at the onset of spherulitic formation around β0 ≈ Δ ≈ 0.2. A square root tendency
manifests earlier for the set of upper curves, thus for smaller values of β0.
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Figure 2. The dependence of r(τ) on the rescaled kinetic β0 and thermodynamic Δ dimensionless
parameters. In the chosen time interval, the curves reflect a visible tendency to pass from the
diffusion-like (β0 → 0) to mass-convective-type mode (β0 � 0). Other realizations of r(τ) are
presented in [12].

3. Results and Discussion

First of all, let us note that, at the onset of the spherulitic growth at which the overall
system is settled in front of a decision whether it will evolve either in diffusional or in
non-diffusional (mass-convection-like) limit, one can derive the double root (Δx = 0) of the
quadratic Equation (10)

x0 =
1− (Δ + β0)r

2β0r
=

dr
dτ

(17)

to be equivalent to
dr
dτ

=
1

2β0r
− Δ + β

2β0
(18)

which, after denoting the radius by rd, can be named the diffusion limit if

1
rd
− Δ + β0 > 0 (19)

or
1
rd

> Δ− β0. (20)

It implies that the critical value of the non-spherulitic or diffusional growth reads

rd =
1

Δ− β0
. (21)

The non-dimensional radius given by Equation (21) reflects an interplay between
thermodynamic (Δ) and kinetic (β0) parts at the onset of the diffusion-driven but non-
spherulitic growth. Cleary, one can also expect such mode of growth if one puts d(r) = 0 in
Equation (15), making then use of its equivalence with Equation (18) with zeroth condition
applied to Equation (16).

The non-diffusive, thus, the spherulitic onset of the evolution, arises if one assumes a
proportionality of d(r) to r; thus, when providing a linearity thereof (but not a constancy
with non-negative property), namely

d(r) ∼ r ⇒ [(Δ + β0)r− 1]2 + 4β0r(r + 1) ∼ r2 (22)
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which implies that

(Δ + β0)
2r2 − 2(Δ + β0)r + 1 + 4β0r2 + 4β0r ∼ r2 (23)

and a simple limit of the form after postponing all in-r quadratic (counter-balancing) terms

2r(2β0 − Δ− β0) + 1 → 0 (24)

can ultimately be taken, which results in

2r(β0 − Δ)→ −1 (25)

and eventually leads to (denote the limit by rnd)

rnd =
1

2(Δ− β0)
. (26)

It is if β0 ≈ 0.2, cf. Figure 2, which is when the kinetics and thermodynamics
work at the singularity-expressing onset of the spherulitic formation, with Δ ≈ 0.2, c.f.
Equations (21) and (26).

Comparing Equation (26) with Equation (21), one immediately recognizes that a
simple relation

rd = 2·rnd (27)

prevails. Despite the physical fact that the factor two in proportionality relation (27)
means an earlier onset (as compared to that non-spherulitic viz diffusional mode) of the
spherulitic growth to manifest. The factor two can also be interpreted in graphical terms
of Figure 1, namely, that in the diffusion (Mullins–Sekerka type) limit characteristic of
r ∼ t1/2, the only one crystalline phase builds the object (Figure 1a), while in the case of
the spherulitic growth, two concurrent phases (crystalline vs. amorphous) constitute the
spherulite’s body, cf. Figure 1b.

Thus, this way it has been shown that, at the onset of the growth under study and pre-
sumably around the kinetic-thermodynamic singularity β0 ∼ Δ, cf. Equations (21) and (26),
the spherulitic growth will prevail earlier in terms of the spherulite’s nucleus value, cf.
Equation (27), if the mass-convection and nonequilibrium (Goldenfeld type [3]) boundary
conditions win over those of the Mullins–Sekerka kind. This feasible singularity limit at
the onset of the growth, namely, β0 ∼ Δ, suggests that, though the model is determin-
istic, its extension can fairly be envisioned towards applying prospectively a stochastic
approach [15], wherein the corresponding fluctuations around the β0 ∼ Δ condition can
show up in subtle or pronounced ways.

The overall spherulitic formation as viewed in the so-called entropy-production (e)
terms [16] detected at the interface can be associated with the stochastic-fluctuational

context. The scalar product
→
j [c(R)] ◦ →n 0 put at the r.h.s. of Equation (1) involves the

matter flux
→
j [c(R)] of the external feeding field. The field is twofold, namely, either

of mass-convective or of locally diffusional character. In the former, it does not in-
clude curvatures, whereas in the latter it receives them for granted, see Figure 1a, and

it basically goes like
→
j [c(R)] ◦ →

n 0 ∼ 1/r. For the mass-convective counterpart, one

gets
→
j [c(R)] ◦ →n 0 ∼ const, when late times conditions readily apply. (In fact, in this

time zone, the local curvatures of the Mullins–Sekerka mode also cease to grow, yielding

ultimately a similar physical scenario.) The entropy production e =
→
j [c(R)] ◦ →x with

→
x

representing the (Onsager type) thermodynamic force enables, while based on the same
reasoning, to ascertain that the involvement of (local) curvature term and the application of
the Fick’s law

→
x ◦ →n 0 ∼ 1/r to e gives a bigger non-negative account to it based thoroughly

on the Mullins–Sekerka [13,17] (crystal growth) mode than in the case of mass-convective,
thus spherulitic mode, cf. Equation (3).
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4. Conclusions

In this study, we have demonstrated, while based on the non-dimensional model
(suitable for numerics), that upon mass-convection and nonequilibrium boundary criteria
for the (poly)crystal’s growth, such as the one of (bio)polymers addressing or that con-
cerning biominerals (geophysical objects), realized in defects containing and condensed
matter involving matrix, that a well-justifiable chance of spherulites’ emergence prior to
a pure diffusion-controlled crystal growth exists at the onset of the growing conditions.
The argumentation line is based on the physical fact that, in spherulites (polycrystals) two
phases may “synergistically” coexist, whereas in single crystals the only ordered crystalline
phase has to be built in suitably, presumably at a higher energetic cost than in the former.
As named by us, the unimodal crystalline Mullins–Sekerka type mode of growth, charac-
teristic of local curvatures’ presence, seems to be more entropy-productive in its emerging
(structural) nature than the so-named bimodal or Goldenfeld type mode of growth in which
the local curvatures do not play any crucial roles, and in which kinetics seems to win
over thermodynamics. In turn, a liaison of amorphous and crystalline phases makes the
system far better compromised to the thermodynamic-kinetic conditions it actually, and
concurrently, follows.

The final conclusions presented are based on the peculiar evolution equation, having
corroborated cooperatively mass-convective and nonequilibrium (boundary) conditions,
that basically drive the growing system far from equilibrium. Interestingly, one may
qualitatively predict that the entropy production [16] in such massive (poly)crystalline
forms is more expressed in the unimodal non-compromised Mullins–Sekerka type mode. In
this mode, a thermodynamic, close-to-equilibrium supersaturation factor prevails, unlike in
its Goldenfeld-like bimodal nonequilibrium counterpart. This bimodality, i.e., a synergistic
coexistence of crystalline and amorphous phases within a growing spherulite, rests on
terms of internal stress–strain material conditions, and does not admit the local curvatures
at the interface to prevail. The latter is not the case of any diffusion-controlled (unimodal)
growth in which the so-called Mullins–Sekerka instability manifests readily. Finally, let us
stress that it seems to us that the non-dimensionality of the proposed modeling suggests
that the system does not depend upon experimental details, manifesting somehow a
quasi-universal, that means, mainly the scaling addressing character of the performed
modeling [18].
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Abstract: I believe the computing potential of systems with chemical reactions has not yet been
fully explored. The most common approach to chemical computing is based on implementation
of logic gates. However, it does not seem practical because the lifetime of such gates is short,
and communication between gates requires precise adjustment. The maximum computational
efficiency of a chemical medium is achieved if the information is processed in parallel by different
parts of it. In this paper, I review the idea of computing with coupled chemical oscillators and
give arguments for the efficiency of such an approach. I discuss how to input information and
how to read out the result of network computation. I describe the idea of top-down optimization
of computing networks. As an example, I consider a small network of three coupled chemical
oscillators designed to differentiate the white from the red points of the Japanese flag. My results are
based on computer simulations with the standard two-variable Oregonator model of the oscillatory
Belousov–Zhabotinsky reaction. An optimized network of three interacting oscillators can recognize
the color of a randomly selected point with >98% accuracy. The presented ideas can be helpful for
the experimental realization of fully functional chemical computing networks.

Keywords: chemical computing; network; oscillators; top-down design; Oregonator model; Japanese
flag problem

1. Introduction

Chemical computers are everywhere because all living organisms use them for acquir-
ing and transmitting information and for decision-making. Animals and humans, using
chemical computers represented by their nervous systems and brains [1], are able to control
complex life processes such as orientation in space, navigation in crowded environments,
creating models of the environment they live in, developing self-awareness and even pre-
dicting the future. This demonstrates that Nature-made chemical computers can perform
very complex computational tasks with low energy consumption.

The information-processing industry is based on semiconductor technology. The un-
precedented success of this technology in machine information processing [2] is possible
because semiconductor logic gates are highly reliable. They are characterized by a long time
of error-free operation and can be downsized to the nanoscale [3]. The gates can be concate-
nated within a single integrated circuit and perform more complex information processing
functions. These properties of semiconductor information-processing devices perfectly
match the bottom-up design strategy, according to which more complex operations are
represented by combinations of simpler tasks for which constructions of corresponding
circuits have already been developed [4].

The concept of logic gates and binary information coding, so successfully used for
information processing with semiconductor devices, has strongly influenced other fields of
unconventional computation, including the use of chemicals [5]. There are many reports
on chemical realization of logic gates or binary operations [6–14]. The fact that a chemical
medium allows for implementation of all basic logic gates proves that a universal chemical
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computer can be constructed. In exceptional cases, molecular logic gates used as molecular
probes offer an interesting alternative to standard techniques [14]. However, most chemical
logic gates, especially those constructed with a reaction-diffusion medium [15], are neither
small nor fast. For the Belousov–Zhabotinsky (BZ) reaction, the output signal of a gate
appears a few seconds after the input is introduced [7,8,10]. For other chemical media, this
time can be much longer. In the case of information coded in DNA molecules, it may take
a few hours before the gate answer is obtained [16]. In typical experimental conditions,
the time of reliable chemical gate operation is measured in hours, not years as for semicon-
ductors. In my opinion, it would be difficult to make a chemical device in which many
chemical gates are concatenated, communicate and demonstrate stable functionality for
a long time.

I think the BZ reaction [17,18] is the most frequently used medium in experimental
studies on chemical computation. The BZ reaction is a complex catalytic oxidation of
an organic substrate (usually malonic acid) in an acidic environment [19,20]. Two stages
of the BZ reaction can be visually identified. One is fast oxidation of the catalyst, and the
other is slow reduction of the catalyst by an organic substrate. The solution color reflects
concentrations of catalyst in the oxidized and reduced forms. Therefore, many types of
nonlinear evolution of the medium as oscillations or spatio-temporal patterns can be easily
observed. If the BZ reaction proceeds in a spatially distributed medium, then local excitation
corresponding to a high concentration of the reaction activator can propagate in space
in the form of a concentration pulse. This type of behavior resembles the propagation of
nerve impulses in living organisms. As a result, the BZ reaction has attracted attention
as a medium for experiments with neuron-like chemical computing [21–23].

Within the most popular approach to computing with BZ medium, it is assumed
that information is transmitted by propagating pulses of the oxidized form of catalyst.
For binary coding, the presence of a pulse represents the logic TRUE state, and the state
with a low concentration of the catalyst in the oxidized form is the logic FALSE state [13,21].
If the ruthenium complex (Ru(bpy)2+

3 ) is used as the reaction catalyst, then the BZ reaction
becomes photosensitive [24,25] and can be externally controlled by illumination. Oscil-
lations can be inhibited by light, which means that for the same initial concentrations of
reagents, the medium oscillates in the dark, is excitable at a low light intensity, and shows
a strongly attracting stable steady-state when illumination is strong. In a medium with the
photosensitive BZ reaction, excitable channels through which signals can propagate can be
formed by specific illumination of a spatially distributed medium. Using a suitable geome-
try of excitable and non-excitable channels, one can control the propagation of excitations
and, for example, make a signal diode [26], a memory cell [27,28] or logic gates [13,15].
However, in typical applications, such gates are big (with an area of about 1 cm2), and a
single operation takes more than 10 s [20]. Therefore, the bottom-up approach from gates
to complex information processing tasks does not look promising if binary information
coding is used with BZ medium.

Literature reports demonstrate that a chemical medium can be efficiently applied for
specific computing tasks. Parallel processing of information by the medium as a whole is
a common feature of efficient implementations. The classic example is the Adleman experi-
ment proving that the Hamiltonian path problem can be solved with DNA molecules [29,30].
Another example is the so-called prairie-fire algorithm for verifying if there is a path linking
two randomly selected points in a labyrinth. This problem can be solved by a labyrinth
formed from an excitable medium where stable pulses of excitation can propagate [31,32].
If there is a path linking two points, an excitation generated at one of the points will then
appear at the other, and the time difference between excitation and detection can be used to
estimate the shortest path linking these points. Yet another famous computing application
of a chemical medium working in parallel is the image processing of black and white pho-
tos performed using a photosensitive variant of the BZ reaction proceeding in a uniform,
spatially distributed system [33,34]. In such a medium, image processing is the conse-
quence of a non-homogeneous initial state generated by initial illumination with intensity
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proportional to the grayscale of pixels of the processed image. In all methods mentioned
above, the output information is coded in the time evolution of the computing medium.

However, the number of man-written parallel algorithms that can be efficiently ex-
ecuted using a chemical medium of parallel algorithms for chemical computers is very
limited. A top-down design strategy offers a promising approach for finding new ones.
The strategy can be summarized as follows. In the beginning, we select a problem we want
to solve and the computing medium that is supposed to do it. Next, we define how the in-
put information is introduced and how the output is extracted from observing medium
evolution. The top-down approach can be applied if the properties of the medium—and
thus of the medium evolution—can be controlled by a number of adjustable parameters.
Within this strategy, we are supposed to find the values of parameters for which the medium
answer (the output) gives the most accurate solution to the considered problem. To perform
such optimization, we need a number of examples (the training dataset) that can be used to
verify the accuracy of computation performed by the medium.

Networks of interacting chemical oscillators seem to be an interesting candidate for a
chemical computing medium. Networks of BZ oscillators can be assembled using droplets
containing reagents stabilized by lipids dissolved in the surrounding oil phase [35–37].
The idea of information processing with networks of interacting chemical reactors was
formulated in [38]. In such an approach, a node is defined by a set of reactions sharing
the specific reagents. Interaction between nodes consists of reactions providing the ex-
change of reagents between nodes. In [38–41], the authors focused on nodes that show
excitable or bistable behavior; thus, the concentration of reagents in a single node can
evolve towards one of two values that can be interpreted as corresponding to binary logical
values [6]. It has been demonstrated that such nodes can perform logic gate operations.
The idea of computing with oscillator networks generalizes the approach described above.
First, the dynamics of a node are more complex. Second, the node answer is not a sta-
tionary state but reflects the character of evolution observed within a finite time interval.
As the system is continuously evolving, the time of observation is an important parameter.

Several theoretical studies demonstrate the computing potential of oscillator net-
works [42–44]. It has been shown that oscillator networks could be optimized to perform
classification tasks [45,46] and process information with the best possible use of the chem-
ical medium. In this paper, I am concerned with the previously reported determination
of color for a randomly selected point on the Japanese flag [47]. I introduce a few new
elements to computing oscillator networks, including the comparison between two Oreg-
onator models for node evolution that exhibit the different character of oscillations and
generalization of the node–node interaction model with coupling parameters individually
adjusted for pairs of nodes. Moreover, a new concept of extracting the output information
from the network is proposed. In all previous papers on the subject, the number of activator
maxima observed on a selected network node was regarded as the network answer. Here
the total amount [48] of activator or inhibitor observed on the output oscillator is regarded
as the network output. The results presented below demonstrate that such an approach is
equally useful and leads to similar accuracy in determining the color of a point on the flag
based on its coordinates as the number of activator maxima.

The paper is organized as follows. The information on the computational problem
I am concerned with, the mathematical model of the time evolution of a node and of
the network, and the optimization procedure are described in Section 2. Section 3 contains
obtained results and their discussion. The final section presents verification of obtained
results and presents suggestions for future studies.

2. Information Processing with Oscillator Networks

In this section, I present general information on the types of problems that can be
solved with oscillator networks. Moreover, I discuss the network structure and a chemical
model used to simulate its evolution.
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2.1. Classification Type Problems

In a number of recent papers, it has been shown that networks of interacting chemical
oscillators can be trained to perform classification tasks with reasonable accuracy [45,46,49].
Let us consider a problem A defined by a set of records DA = {rn, n = 1, N}. Each record
rn = (p1

n, p2
n, . . . , pk

n, sn) is in the form of a (k + 1) tuple, where the first k elements are
predictors represented by real numbers, and the last element (sn) is the record type, and
it is represented by an integer. It is assumed that the number of possible predictor values is
limited. Let DA denote a database of records related to problem A. The classifier of DA is
supposed to return the correct data type if the predictor values are used as its input.

There are classification problems for which DA is finite. For example the AND logic gate
is equivalent to classification of the database: DA = {{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {1, 1, 1}}.
In this paper, I consider a geometrically inspired problem of determining the color of a ran-
domly selected point located on the Japanese flag (cf. Figure 1). The red disk (sun) is centrally
located in a white square (here represented by the Cartesian product [−0.5, 0.5]× [−0.5, 0.5]).
Let us notice that the location of the Japanese flag differs from the one considered in our
previous paper on the problem [47] where it was [0.0, 1.0]× [0.0, 1.0]. This has been done
intentionally to see if object location can influence classifier accuracy. The disk radius
is r = 1/

√
(2π); thus, the areas of the sun and the white region are equal. Records of

the considered problem have the form: (x, y, s), where (x, y) ∈ [−0.5, 0.5] × [−0.5, 0.5]
are the point coordinates, and the record type s ∈ {0, 1} tells if the point (x, y) is located
in the red s = 1 or in the white region s = 0. A network that gives a random answer or
a network that always gives the same answer (“the point is red” or “the point is white”)
to all inputs solves the problem with 50% accuracy (or with a 50% chance of obtaining
the wrong answer). I postulate that the Japanese flag problem can be solved with much
higher accuracy by a network of chemical oscillators.

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

x

y

Figure 1. The geometrically inspired problem of determining the color of a randomly selected point
located on the Japanese flag formed by the central red disk and the surrounding white area. The flag
is represented by the Cartesian product [−0.5, 0.5]× [−0.5, 0.5]), and the disk radius is r = 1/

√
(2π);

thus, the areas of the sun and the white region are equal.
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2.2. The Node Model

Before applying the top-down network optimization strategy, we should select the
medium that is supposed to perform the classification. Here I use the two-variable Orego-
nator model [50] of the BZ reaction to describe the time evolution of an individual oscillator.
The model equations are:

du
dt

=
1
ε
(u(t)− u(t)2 − ( f v(t) + φ(t))

u(t)− q
u(t) + q

)− αu(t) (1)

dv
dt

= u(t)− v(t) (2)

where u and v, respectively, represent concentrations of the reaction activator U correspond-
ing to HBrO2 and inhibitor V that in the two-variable Oregonator model is the oxidized
form of the catalyst. The time evolution of a medium where the BZ reaction proceeds
is determined by the values of parameters: f , q and ε. The parameter ε sets up the time
scale ratio between variables u and v, q is the scaling constant, and f is the stoichiometric
coefficient. The time-dependent function φ(t) that appears in Equation (1) is related to
medium illumination. The Oregonator model is computationally simple, and it allows for
performing complex evolutionary optimization involving the massive number of evalu-
ations of network evolution needed for evolutionary optimization. It takes into account
the effect of the combined excitation of one node by a few neighbors. Despite its simplicity,
the Oregonator model provides a better-than-qualitative description of many phenom-
ena related to the BZ reaction. It correctly describes the oscillation period as a function
of reagent concentration and also can be used to simulate nontrivial phenomena such
as the migration of a spiral in an electric field [51] or reaction of a propagating pulse to
time-dependent illumination [52]. Of course, a model with a larger number of variables
gives a more realistic description of the BZ reaction but, on the other hand, requires a more
precise model of interactions between oscillators.

The last term in Equation (1) describes the activator decay, and it does not appear
in the standard form of the Oregonator model. This term can be related to a reaction:

U + D → products (3)

where D describes the other reagents of the process that occur with the rate α. As I dis-
cuss later, the existence of this process is equivalent to the presence of a “sink” node
in the network that adsorbs the activator molecules.

The reported simulations of network evolution have been performed for two different
sets of Oregonator model parameters. The time evolution in one of the considered networks
is described by Model I: ε = 0.2, q = 0.0002 and f = 1.1, which was used in the previ-
ous study on the color of a point on the Japanese flag [47]. For this set, the period of
oscillations is ∼10.7 time unit if φ(t) = 0. The optimization of other networks was done
for the Oregonator Model II defined by: ε = 0.3, q = 0.002 and f = 1.1. The period of
oscillations is∼8 time unit for φ(t) = 0. The character of activator and inhibitor oscillations
for the above-mentioned models and α = 0.7 or α = 0.5 is illustrated in Figure 2. For both
sets of parameters, the system converges to a stable stationary state for φ ∼ 0.2 [25,53].

47



Entropy 2022, 24, 1054

Figure 2. (a) Time-dependent illumination φ(t) = (1.001 + tanh(−10 ∗ (t− tillum)))/10 for tillum = 5.
(b,c) The character of oscillations for the 2-variable Oregonator models used in simulations:
(b) Model II: f = 1.1, q = 0.002, ε = 0.3; (c) Model I: f = 1.1, q = 0.0002, ε = 0.2. Red and
blue curves represent concentrations of activator (u) and inhibitor (v), respectively. The values of α are
0.5 (b) and 0.7 (c).

The value of φ can be interpreted as the light intensity in the Ru-catalyzed BZ reaction,
and it can be used as an external factor to suppress or restore oscillations. For the control of
computing networks discussed below, I considered φ(t) in the form:

φ(t) = W · (1.0 + η + tanh(−ξ · (t− tillum)) (4)

48



Entropy 2022, 24, 1054

Such a definition of φ(t) involves a few parameters: W and η determine the limiting values
of illumination at t → ±∞. The value of illumination time tillum defines the moment
of time when the most rapid changes in illumination occur, and ξ represents the rate at
which the transition occurs. The minus sign in the argument of the tanh() function implies
the transition from steady state (high illumination) towards oscillations (low illumination).
In the presented simulations, I used fixed values: W = 0.1, η = 0.001 and ξ = 10. For such
parameters, the value of φ(t) is high (∼0.2) in the time interval [0, tillum − δ] (δ = 0.1) (cf.
Figure 2a). Oregonator models with parameters given above predict stable steady state.
For long times (t > tillum + δ), the value of φj(t) approaches 0.0001, which corresponds
to oscillations.

The use of illumination time (or, in general, the inhibition time for oscillations inside
a node) tillum to control oscillators is inspired by experiments in which oscillations of indi-
vidual BZ droplets were regulated by blue light [54]. In these experiments, two illumination
levels were used: a low one, for which the droplet was oscillating; and a high one, for which
oscillations were inhibited. The transitions between steady state and oscillations predicted
by the two-variable Oregonator model were in qualitative agreement with experiments.

2.3. The Model of a Network

An example illustrating the idea of a considered computing oscillator network is
shown in Figure 3. The network is formed by three coupled chemical oscillators (nodes)
graphically represented by circles. The nodes have different functions in networks. The up-
per one (#1) is a normal node whose illumination time is fixed. Two bottom nodes (#2) and
(#3) are inputs of x and y coordinates, respectively. The arrows interlinking the oscillators
represent reactions that exchange the activators between nodes. The arrows directed away
mark the activator decay.

N

input x input y

1

2 3
Figure 3. The idea of a computing oscillator network. Circles represent network nodes that are
chemical oscillators. The nodes have different characteristics. The upper one (#1) is a normal one,
and its illumination function is fixed. The bottom nodes (#2) and (#3) are inputs of x and y coordinates,
respectively. The arrows interlinking oscillators represent reactions that exchange the activators
between nodes. The arrows directed away mark activator decay (reaction 3).
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If the jth oscillator is a normal one, then the value of tillum(j) that appears in the defi-
nition of φ(t) (Equation (4)) does not depend on input values. Normal nodes are supposed
to moderate the interactions within the network. The set of their illuminations can be
regarded as a program executed by the network. If an oscillator is considered the input
of a predictor pi. then the value of tillum(j) is functionally related to pi. For the analysis
presented below, it is assumed that this function is defined by two parameters, tstart and
tend, and has the form:

tillum(j) = tstart + (tend − tstart) · pi (5)

Keeping in mind the symmetry of the Japanese flag problem, the values of tstart and
tend are the same for all predictors corresponding to x- and y-coordinates. This means that
for record (xn, yn, sn):

tillum(2) = tstart + (tend − tstart) · xn (6)

and
tillum(3) = tstart + (tend − tstart) · yn (7)

In a general case the values of tstart and tend can be different for different predictors.
The above form of relationship between the predictor value and illumination is simple.
More complex functions can be used in specific cases and produce a network with higher
accuracy. However, if the relationship between the input and the illumination time is
represented by a complex function, then one can argue that part of the computation is done,
not by the network, but by the specific form of this relationship.

Coupling between oscillators, indicated by arrows in Figure 3, is achieved by reactions
that extend the original Oregonator model. I assume that the coupling is of the activatory
type and occurs via the exchange of reactor activators between oscillators [49]. Let Ui
denote the activator of the ith node. The interactions between the nodes #k and #j appear
as the results of reactions involving the activators Uk and Uj:

Uj + Bj,k → Uk + Ck (8)

Uk + Bk,j → Uj + Cj (9)

with the reaction rate constants kB,j,k and kB,k,j.
The changes in concentrations of Uk and Uj as the result of reactions (8) and (9) are

described by:

duj

dt
= −kB,j,kbj,kuj (10)

duk
dt

= −kB,k,jbk,juk (11)

and the changes in concentration of Uj as the result of reaction (3) by:

duj

dt
= −kDdjuj (12)

In Equations (10)–(12), bj,k, bk,j and dj denote concentrations of Bj,k, Bk,j and Dj, respectively.
We assume that these concentrations are high with respect to the concentrations of the
activators involved, are the same for all oscillators, and remain almost constant during
the network evolution. Therefore, they are not included in the model of network evolution.
Let us introduce symbols αj and β j,k, defined as: αj = kDdj and β j,k = kB,j,kbj,k. Keeping
in mind that values of αj and β j,k can be modified by concentrations of Dj and Bj,k, we can
treat them as free parameters that can be easily adjusted. The values of αj and β j,k are in-
cluded in the optimization procedure. Let us also notice that all information on the network
geometry is included in the values of β j,k, because for non-coupled nodes β j,k = βk,j = 0.
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On the basis of the above assumptions, we can write equations describing the time
evolution of the network:

duj

dt
=

1
ε
(uj − u2

j − ( f vj + φj(t))
uj − q
uj + q

)− (αj + ∑
i=1,m

β j,i)uj + ∑
i=1,m

βi,jui (13)

dvj

dt
= uj − vj (14)

where i,j represent the ith and jth oscillator, respectively, and m is the number of oscilla-
tors in the network. This set of equations is solved numerically with a fourth-order RK
algorithm [55] and time step of dt = 0.0005.

I assume that the output information can be extracted from observation of the network
evolution during the time interval Z = [0, tmax]. This assumption is essential. In many
previous studies on chemical computing, it was assumed that the system reaches a specific
steady-state that represents the answer. In the present approach, the output information
can be read from the time evolution of a selected oscillator observed in a finite time interval,
and what happens later is irrelevant to computation.

Let us notice that Equation (5) has a physical meaning for any value of tillum(j).
If tillum(i) < 0, then φi(t) is small and the oscillator #i is active during the whole observation
interval. When tillum(k) > tmax, then φk(t) is large and the oscillator #k is inhibited within
Z and does not oscillate.

In previous papers on classification with networks of interacting chemical oscillators,
the number of activator maxima observed within the time interval Z− {0, tmax} on a se-
lected node (say #j ) was considered as the output [47,49]. However, there is a question:
What is the maximum of activator? I assume that uj(t) should have a maximum in a strict
mathematical sense. This means that if uj(t) has a maximum at t0, then there exists ν > 0
such that uj(t) < uj(t0) for all t ∈ [t0 − ν, t0 + ν] ⊂ Z. Therefore, if uj(t) is growing at
the end of Z, then uj(tmax) is not regarded as a maximum. Moreover, the value of uj(t0)
should be larger than the activator concentration in the part of the oscillation cycle when
the catalyst is in its reduced form. Here, I assume that the threshold value is 0.05. To
illustrate maxima counting, let us consider the network with parameters given in the first
row of Table 1. Figures 4 and 5 show the time evolution of activator (red curves) and
inhibitor (blue curves) at all nodes for two selected points of the flag. The green line marks
the threshold for the activator maximum (0.05). The results in Figure 4 illustrate the time
evolution of activator and inhibitor on all nodes when the coordinates of the input point
are: (−0.25, 0.25). The point characterized by such coordinates is located in the red area
of the flag. For this input, there are two maxima of the activator at all network nodes.
It can also be seen that on all nodes, the concentration of the activator is larger than 0.05 at
the final stage of the evolution. However, the function u(t) is still growing at the end of
Z, so the third maximum of u(t) is not observed. Figure 5 illustrates the time evolution of
activator and inhibition on all nodes if the coordinates of the input point are: (0.29,−0.29).
This point is located in the white region of the flag. Now, we observe three maxima of
the activator at nodes #1 and #3, and two maxima at node #2. Therefore, if we consider
the number of maxima on a selected oscillator as the network answer, then by selecting
nodes #1 or #3, one can distinguish which of two points {(−0.25, 0.25), (0.29,−0.29)} is
white and which is red. Such classification is not possible if node #2 is considered the output.
Selection of the output node can be made on the basis of correct answers for the records
included in the training dataset.
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Figure 4. The time evolution of activator (the red curves) and inhibitor (the blue curves) observed on
all nodes of the network defined by the parameters listed in the first line of Table 1. The coordinates
of the input point are: (−0.25, 0.25). The green line marks the threshold for the activator maximum.
There are 2 maxima at all nodes in the network.
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Figure 5. The time evolution of activator (the red curves) and inhibitor (the blue curves) observed
on all nodes of the network defined by the parameters listed in the first line of Table 1. The coor-
dinates of the input point are: (−0.29, 0.29). The green line marks the threshold for the activator
maximum. There are 3 maxima of u(t) on nodes #1 and #3 and two maxima of u(t) on node #2
within the observation time [0, tmax]. The green line marks the threshold for the activator maximum.

Figure 6 shows another example of classification with a number of activator maxima
recorded on the selected node. Here, we consider the time evolution of the activator
(the red curve) and the inhibitor (the blue curve) on node #1 of the network defined
by the parameters listed in the second line of Table 1. Figure 6a illustrates the time
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evolution of concentrations for the point outside the red area (−0.25, 0.28), and Figure 6b for
the point inside it (−0.39,−0.43). In the first case, no maximum of activator concentration
is observed for times in Z − {0, tmax}; in the second case, we have a single maximum.
Therefore, by observing the number of maxima on node #1, one can distinguish a red
point from a white point, and a binary answer (0 or 1) is given. A classifying network
with such properties can be regarded as highly optimized because the answer is obtained
within a time similar to a single period of oscillation.
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Figure 6. The time evolution of the activator (the red curve) and the inhibitor (the blue curve) on node
#1 of the network defined by the parameters listed in the second line of Table 1: (a) u1(t) and v1(t)
for the point inside the red area (−0.25, 0.28); (b) u1(t) and v1(t) for the point outside the red area
(−0.39,−0.43).

Figures 7 and 8 illustrate another method for extracting the output information from
the network evolution. This was inspired by [48], in which the output of an information-
processing chemical BZ oscillator was related to the concentration of a selected reagent
integrated over a specific time interval. Here we use the concentration of activator u(t)
(red, Figure 7) and the concentration of inhibitor v(t) (blue, Figure 8) integrated over
the observation time [0, tmax] as the network output. In these figures, the shaded areas below
the function represent the integrals Ju =

∫ tmax
0 u1(t)dt and Jv =

∫ tmax
0 v3(t)dt, respectively.

The integral value J is a real number, whereas an integer output is expected. In order to get
such an output, I applied the following transformation:

output = f loor(40 · J) (15)

where J stands for Ju or Jv. For the integrated concentration of the activator (Figure 7),
we obtained Ju = 0.101 for the considered point inside the red area and Ju = 0.073
for the point outside it. Therefore, the network answers were 4 and 2 for these points,
respectively. The method applied to the integral of the inhibitor (Figure 8) produced
the outputs Jv = 0.203 for the considered point inside the red area and Ju = 0.181 for
the point outside it. In this case, the network outputs were 8 and 7, respectively. Therefore,
the integrals of the activator and inhibitor can also be used to classify points of different
colors on the Japanese flag.
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Figure 7. The time evolution of the activator at node #1 of the network defined by the parameters
listed in the third line of Table 1: (a) u1(t) for the point (−0.25, 0.28) located inside the red area;
(b) u1(t) for the point (−0.39,−0.43) located outside the red area. The red shaded area below
the function represents the integral of Ju =

∫ tmax
0 u1(t)dt, considered as the network output.
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Figure 8. The time evolution of the inhibitor at node #3 of the network defined by the parameters
listed in the fourth line of Table 1: (a) v3(t) for the point (−0.25, 0.28) located inside the red area;
(b) v3(t) for the point (−0.39,−0.43) located outside the red area. The blue shaded area below
the function represents the integral Jv =

∫ tmax
0 v3(t)dt, considered as the network output.
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Table 1. The parameters of networks that give the best correlations between the time evolution of
the output oscillator and the point color.

Oregonator Method tmax tstart tend tillum(1) α1 α2 = α3 β1,2 = β1,3 β2,1 = β3,1 β2,3 = β3,2

Model I activator maxima 34.4 11.6 19.9 10.1 0.87 0.72 0.16 0.43 0.29
Model II activator maxima 8.45 3.77 8.03 5.42 0.96 0.46 0.53 0.38 0.42
Model II u-integral 8.43 3.77 7.41 5.00 0.65 0.50 0.83 0.26 0.29
Model II v-integral 9.06 3.77 7.56 5.71 0.75 0.44 0.60 0.29 0.33

2.4. Top-Down Design of Computing Networks

To define an information-processing chemical oscillator network, we have to specify
many parameters:

- The observation time tmax;
- All parameters for a model of chemical oscillations inside a node; for the Oregonator

model, they are ε, q and f ;
- Parameters tstart and tend that translate an input value into the illumination of an input

oscillator (cf. Equation (5));
- The rates for reactions responsible for interactions between oscillators (αj, β j,i);
- Location of input and normal oscillators;
- Finally, the illumination times for all normal oscillators tillum(i).

Obviously, a network with randomly selected parameters has a small chance of work-
ing as a good classifier. All parameters listed above should be optimized for executing
the required function. I do not know any algorithm that allows for a straightforward design
of the optimum oscillator network for a given problem. Still, we can apply the idea of
supervised training for parameter optimization. Training means that we need a teacher,
and in our optimization, it is a specific database TA that contains a sufficient number of
records related to the considered problem A [56].

The network should include the output oscillator whose time evolution is transformed
into the network answer. Here I consider two types of answers. One is the number of
activator maxima observed in the time interval [0, tmax]. Another is the integral of the
activator or inhibitor concentration. If the network parameters are known, the output
oscillator can be located.

In order to find which oscillator should be used as the output, one can calculate
the mutual information I(S; Oj) [57] between the discrete random variable S of record
types in the training dataset TA (S = {sn, n = 1, N}) and the discrete random variable
Oj representing the output of the jth oscillator in the network when the predictors of nth
database record are used as the network input (Oj = {oj(n), n = 1, N}). The mutual
information I(S; Oj) can be calculated as:

I(S; Oj) = H(S) + H(Oj)− H(S, Oj) (16)

where H() is the Shannon information entropy [58], and the discrete random variable
(S, Oj) = {(sn, oj(n)), n = 1, N}. The oscillator #i for which the mutual information
between S and Oi is maximal is used as the network output. The mutual information
calculated for the output oscillator is considered the measure of network fitness:

Fitness = maxj∈{1,2,3} I(S; Oj) (17)

It can be expected that in the majority of cases, optimization based on mutual information
leads to a classifier with the highest accuracy [59].

The fitness function based on mutual information does not require specifying how
the network evolution translates into the network output. However, if we know how to
link the output oj(n) with the record type, then we can calculate the accuracy on node
#j for training dataset Ej as the ratio between correctly classified cases and all cases of
TA. For example, we can relate a specific number of activator maxima to the color of
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a point based on the majority of cases obtained for the training dataset. Therefore, we can
alternatively define Fitness as:

Fitness = maxj∈{1,2,3} Ej (18)

Both formulae (17) and (18) allow us to locate the output oscillator in the network.
It has been demonstrated that evolutionary optimization [60] oriented towards ob-

taining the best classifier for a representative training dataset of the problem can lead to
a computing network that performs the anticipated task with reasonable accuracy [45,46,49].
In this approach, we represent the parameters as a code that undergoes recombination be-
tween the fittest members and mutations of an offspring. For recombination, two networks
are selected, and their parameters are randomly separated into two parts. Next, an offspring
is generated by combining one part of the first network with the other part of the second
one. At this step, the function of an oscillator (input, normal) and illumination times of
normal oscillators are copied to the offspring. For the next step, mutation of all parameters
of the newborn offspring is considered. The probability of mutation rate is 0.5 per step,
and the change in parameter value does not exceed 20%. Each generation of networks
consists of the same number of elements. It includes a few fittest networks from the previ-
ous generation that are copied without changes in parameters. The remaining members
of the next generation are offspring created by recombination and mutation operations
applied to oscillators from the top 50% of networks from the previous population.

However, optimization of all parameters as mentioned above represents a compu-
tational problem of very high complexity. Before starting optimization, we introduce
a number of simplifications:

(1) My attention is restricted to classifiers formed by m = 3 oscillators;
(2) There have to be input oscillators for each coordinate in the network and a normal

oscillator. Keeping in mind the symmetry of the considered network, we can assume
that node #1 is the normal oscillator and nodes #2 and #3 are the inputs of x- and
y-coordinates, respectively;

(3) The system symmetry reduces the number of parameters in the networks because:
α2 = α3, β1,2 = β1,3, β2,1 = β3,1 and β2,3 = β3,2.

After all these simplifications, the network is fully defined by the parameters listed
in Table 1.

3. What Is the Color of a Point on the Japanese Flag? (As Seen by the Networks)

Here I present the results of network optimization. The training dataset is composed
of 1000 records; 501 represent points inside the sun area and 499 are points outside it.
The location of points can be seen, for example, in Figure 9. The applied evolutionary
algorithm is a standard one, and it has been described in [45,46,49]. Optimization starts
with 80 networks with randomly selected parameters. All networks in the initial population
are evolved for maximum fitness. The fittest 10% (8) of the networks are copied to the next
generation. The population of the next generation is completed to 80 networks by classifiers
obtained by recombination and mutation operations applied to networks randomly selected
from the upper 50% of the fittest. Next, the evolution step is repeated on the new population.
The optimization procedure is executed for 1000 steps.

Figures 9–12 illustrate the answer of the fittest networks obtained for two Oregonator
models and three different methods of interpreting the network output. The parameters
of the discussed networks are given in Table 1. In all cases, the network output is based
on the time evolution of a selected node in the network. For the first and second networks
(Figures 9 and 10), this is the number of activator maxima observed on a selected node
in the time interval [0, tmax]. For the third and fourth network, this is the integrated
concentration of activator on a selected node (Figure 11) and the integrated concentration
of inhibitor on a selected node (Figure 12). In all networks, the classification rule is derived
after network optimization.
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Figure 9. The answer of the network defined by the parameters listed in the first line of Table 1 to
the records of the training dataset. Subfigures (a,c,d) are probability distributions of obtaining a given
number of activator maxima on nodes #1, #2 and #3, respectively. The red bars correspond to points
inside the red area; the blue bars refer to points outside the red area. Subfigure (b) illustrates correctly
(yellow and red) and incorrectly (green and blue) classified points of the training dataset when node
#1 is used as the output.
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Figure 10. The answer of the network defined by the parameters listed in the second line of Table 1
to the records of the training dataset. Subfigures (a,c,d) are probability distributions of obtaining
a given number of activator maxima on nodes #1, #2 and #3, respectively. The red bars correspond to
points inside the red area; the blue bars refer to points outside the red area. Subfigure (b) illustrates
correctly (yellow and red) and incorrectly (green and blue) classified points of the training dataset
when node #1 is used as the output.
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Figure 11. The answer of the network defined by the parameters listed in the third line of
Table 1 to the records of training dataset. (a) The probability distribution of obtaining the value of
Ju =

∫ tmax
0 u1(t)dt in the intervals [k ∗ 0.025, (k + 1) ∗ 0.025) for k ∈ {1, 2, 3, 4}. The red bars correspond

to points inside the red area; the blue bars refer to points outside the red area. Subfigure (b) illustrates
correctly (yellow and red) and incorrectly (green and blue) classified points of the training dataset.

Figure 9 shows the probability distribution of the number of activator maxima for
the network defined by the parameters listed in the first line of Table 1. The red and blue
bars correspond to points located in the sun and outside it, respectively. On nodes #2 and
#3, we observe a large number of records representing points both in and out of the sun area
that produced two maxima of the activator (cf. Figure 9c,d). On the other hand, for node
#1, the number of activator maxima is two for most of the records representing points
inside the sun area, and three maxima are observed for a large majority of points outside it.
Therefore, node #1 is considered the output, and the classification rule is:

- If one or two maxima are observed, then the record represents a point in the sun area
of the training dataset;

- If three or more maxima are observed, then the record represents a point outside
the sun area.

Such a rule incorrectly classifies 24 points located outside the sun and 8 points located
inside the sun area. Therefore, the accuracy of this network with this classification rule
on the training dataset is 96.8%. The geometry of correctly and incorrectly classified records
of the training database is illustrated in Figure 9b. In this figure, as well as on similar
figures for the other considered classifiers, the red dots represent points inside the sun area
that are correctly recognized by the network. Similarly, the yellow dots represent points
outside the sun area that are correctly recognized by the network. The green dots are points
located within the sun area, but the network classifies them as belonging to the white
region. Finally, the blue dots are misclassified points located in the white region. In order
to see the errors more clearly, the dots corresponding to incorrectly classified points are
larger than those representing correct answers. The location of errors at the edge of the red
area is non-homogeneous and suggests the existence of regions where errors dominate.
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Figure 12. The answer of the network defined by the parameters listed in the fourth line of
Table 1 to the records of training dataset. (a) The probability distribution of obtaining the value
of Jv =

∫ tmax
0 v1(t)dt in the intervals [k ∗ 0.025, (k + 1) ∗ 0.025) for k → {1, 2, 3, 4}. The red bars corre-

spond to points inside the red area; the blue bars refer to points outside the red area. Subfigure (b)
illustrates correctly (yellow and red) and incorrectly (green) classified points of the training dataset.
As in (a,b) but for node #3: (c) the probability distribution of obtaining the value of Ju =

∫ tmax
0 v3(t)dt

in the intervals [k ∗ 0.025, (k + 1) ∗ 0.025) for 3 ≤ k ≤ 10. Subfigure (d) illustrates correctly (yellow
and red) and incorrectly (green and blue) classified points of the training dataset.

Similar results, but for the network defined by the parameters listed in the second line
of Table 1, are shown in Figure 10. Again, node #1 is the network output because on nodes
#2 and #3, we observe one activator maximum for a large number of records representing
points located both in and out of the sun area (cf. Figure 10c,d). For node #1 (Figure 10a),
most records representing points inside the sun area produced a single maximum, and for
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most points located outside the sun, no maximum was observed (cf. Figure 6b). Therefore,
node #1 is the output, and the classification rule is:

- If a single maximum of the activator is observed, then the record represents a point
in the sun area of the training dataset;

- If we record no maxima, then the processed data represent a point outside the sun area.

Such a rule incorrectly classifies just three points located outside the sun and seven
points located inside the sun area. The accuracy of the second considered network with
the classification rule listed above is 99% on the training dataset. The geometry of correctly
and incorrectly classified records of the training database is illustrated in Figure 10b.
All incorrectly classified points are located close to the boundary between the sun and
the white region. Let us notice that the accuracy is 2% higher than for the previous
network, and the only difference between these networks is the character of oscillations
(cf. Figure 2b,c). This result suggests that “softer” oscillations may give networks with
higher accuracy. This is the reason why the Oregonator Model II was used to investigate
the alternative methods for relating the time evolution of concentration on a selected node
with the network output.

Figure 11 presents results for the network defined by the parameters listed in the third
line of Table 1. The network output is defined as: Ju =

∫ tmax
0 uj(t)dt, where j denotes

the output node. The range of Ju values is divided into subintervals Ik with length 0.025 as
follows: Ik = [k ∗ 0.025, (k + 1) ∗ 0.025) for k ∈ 1, 2, 3, 4. Figure 11a illustrates the probability
distribution of Ju values for output node #1. The classification rule can be formulated as
follows:

- If the value of Ju ≥ 0.1, then the record represents a point in the sun area of the training
dataset;

- If the value of Ju < 0.1, then the record represents a point outside the sun area.

Such a rule incorrectly classifies just 2 points located inside the sun area and 11 points
located outside it. All of the misclassified points are located close to the sun edge (cf.
Figure 11b). The accuracy of the third of the considered networks with the above classifica-
tion rule is 98.7% on the training database.

Keeping in mind the problem symmetry, we expect that node #1 should be the output.
This was confirmed in the first three considered networks. However, node #1 gives poor
accuracy for the network defined by the parameters listed in the fourth line of Table 1.
For this network, the output is defined as: Jv =

∫ tmax
0 vj(t)dt, where j denotes the output

node. As for the previously discussed network, the range of Jv values is divided into
subintervals Ik. Figure 12a illustrates the probability distribution of Jv values for output
node #1. The records representing points in the sun area and those located outside it return
values of Jv in the third subinterval I3. Figure 12b shows the distribution of correctly and
incorrectly classified records. For the majority rule derived from Figure 12a, all points
located outside the sun are correctly classified, but there are many points inside the sun
that are classified as located outside. Figure 12c illustrates the probability distribution
of Jv values for output node #3. We observe a nice separation of records representing
points in the sun area from those located outside. On the basis of this result, we formulate
the following classification rule:

- If the value of Jv ≥ 0.2, then the record represents a point in the sun area of the train-
ing dataset;

- If the value of Jv < 0.2, then the record represents a point outside the sun area.

Such a rule incorrectly classifies just five points located inside the sun area and nine
points located outside it. All of the misclassified points are located close to the sun’s
edge (cf. Figure 12d). The accuracy of the fourth considered network with the above
classification rule is 98.6% on the training database. Network symmetry is reflected by
high classification accuracy based on the inhibitor’s time evolution on node #2. If we use
this node as the output, we get classification accuracy of 97.9%. It can be expected that
the difference between the accuracy with node #2 versus node #3 as the output is related to
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the choice of the training dataset, and in a perfectly balanced choice, both of these nodes
should have the same accuracy.

4. Discussion and Conclusions

In the previous section, I demonstrated that three-node networks can be optimized
to determine the color of a point in the Japanese flag with high accuracy. However, the
accuracy was achieved on the training dataset, raising the question of whether the results
shown in Figures 9–12 are general, or if they reflect correlations inevitable in the small set
of randomly selected points that formed the training database.

To produce a stronger argument for the accuracy of optimized networks, I verify them
on a large test dataset that contained 100,000 records. The points are generated randomly,
and the test dataset includes 49,916 records corresponding to points inside the sun area and
50,084 points outside it.

The answers of the networks defined by the parameters listed in Table 1 to the records
of the testing dataset are presented in Figure 13. Red and yellow dots represent correctly
classified points located inside and outside the red area of the flag. To reduce the figure
size, the number of points is limited to 10,000. The green color marks points located
in the red area that are wrongly classified as being located in the white part. The blue color
denotes points from outside that are classified as belonging to the sun area. In all cases,
the classification is accurate, and the flag is nicely represented.

Figure 13a shows the results for the networks defined by the parameters listed
in the first line of Table 1. As suggested by the results in Figure 9, the number of acti-
vator maxima on node #1 is used as the output. The majority rule is:

- If one or two maxima are observed, then the point is within the sun area;
- If three or more maxima are observed, then the point is outside the sun area.

Such a rule incorrectly classifies 3216 points located outside the sun (blue in Figure 13a)
and 1111 points located inside the sun area (green in Figure 13a). Therefore, the accuracy
of this classifier is 95.668%. The sun area considered in this paper is more symmetri-
cally oriented in the coordinate system than the Japanese flag located in the unit square
[0, 1]× [0, 1] studied in [47]. For such a flag location the optimized classifier is character-
ized by: tmax = 20.23, tstart = 3.78, tend = 12.10 and tillum(3) = 6.37. Its accuracy tested on
100,000 records is 95.145%. However, to obtain this result, it was assumed that the values
of parameter αj were identical for all nodes (= 0.849). Moreover, the values of βi,j = 0.251
were the same for all pairs of nodes. These assumptions definitely decreased the accuracy
of the network reported in [47] if compared to the one defined in the first row of Table 1.
Therefore, I expect that the accuracy of the three-oscillator classifier that codes the output
in the number of activator maxima on a selected node does not systematically depend
on the location of the flag in the coordinate system. The points classified as the sun (red
and blue Figure 13a) form a characteristic horned disk already observed for a three-node
classifier optimized to recognize the Japanese flag in the unit square [0, 1] × [0, 1] [47].
The fact that the horned shape is repeated by optimization using a training database con-
taining points with coordinates in different ranges suggests that this shape is related to
the parameters of the Oregonator Model I.
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Figure 13. The answer of networks defined by the parameters listed in Table 1 to a testing dataset of
100,000 records. Yellow and red points are classified correctly. The network gives a wrong answer on
points marked green (they belong to the sun but are classified as located outside it) and points marked
blue (they are located outside the sun but are classified as belonging to the red area). Subfigures (a–d)
correspond to networks with parameters listed in lines 1–4 of Table 1, respectively. The accuracy of
these networks is (a) 0.957, (b) 0.984, (c) 0.976 and (d) 0.979, respectively.

The horned shape is not observed if one still uses the number of activator maxima as
the output but considers another set of Oregonator parameters (Model II, (cf. Figure 13b)).
A trace of undeveloped horns can be seen on the decreasing diagonal, but the sun disk
is well represented. The classification rule (cf. Figure 10a) incorrectly predicts the color
for 446 points located outside the sun (blue in Figure 13b) and 1192 points located inside
the sun area (green in Figure 13b). The classifier accuracy is 98.362%. This result shows
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that the change in the oscillator model can improve the accuracy and modify the geometry
of incorrectly classified points.

Figure 13c,d represent classifiers where the integrals of activator and inhibitor observed
on the output node were used as the output. The analysis of output related to activator
concentration is shown in Figure 13c. The points inside the sun were those for which
Ju ≥ 0.1. This rule incorrectly predicts the color for 2021 points located outside the sun
(blue in Figure 13c) and only 401 points located inside the sun area (green in Figure 13c).
The corresponding accuracy is 97.578%.

In the case of output related to inhibitor concentration (Figure 12c,d), the points
inside the sun were those for which Jv ≥ 0.2. This rule incorrectly predicts the color
for 1409 points located outside the sun (blue in Figure 13d) and only 691 points located
inside the sun area (green in Figure 13d). The corresponding accuracy is 97.900%. The use
of node #3 as the output is suggested due to its having the highest accuracy obtained
on the training dataset. However, slightly higher accuracy (97.963%) is obtained if node #2
acts as the output. This indicates that even for such a simple problem as the Japanese flag
one, the size of the training dataset is important to obtain the correct rule of classification.

The comparison between the accuracy of described classifiers shows that the method
based on the integration of activator or inhibitor concentration is as good as the output rep-
resented by the number of the corresponding maxima. In the method of maxima counting,
there was a magic parameter—the threshold value for acceptance of maximum. The method
based on integration does not need to involve such additional parameters to obtain the re-
sult and seems to be a promising candidate for future investigation on the computing
potential of networks composed of interacting chemical oscillators.
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Abstract: Albumin is one of the major components of synovial fluid. Due to its negative surface
charge, it plays an essential role in many physiological processes, including the ability to form molec-
ular complexes. In addition, glycosaminoglycans such as hyaluronic acid and chondroitin sulfate are
crucial components of synovial fluid involved in the boundary lubrication regime. This study presents
the influence of Na+, Mg2+ and Ca2+ ions on human serum albumin–hyaluronan/chondroitin-6-
sulfate interactions examined using molecular docking followed by molecular dynamics simulations.
We analyze chosen glycosaminoglycans binding by employing a conformational entropy approach.
In addition, several protein–polymer complexes have been studied to check how the binding site
and presence of ions influence affinity. The presence of divalent cations contributes to the decrease of
conformational entropy near carboxyl and sulfate groups. This observation can indicate the higher
affinity between glycosaminoglycans and albumin. Moreover, domains IIIA and IIIB of albumin have
the highest affinity as those are two domains that show a positive net charge that allows for binding
with negatively charged glycosaminoglycans. Finally, in discussion, we suggest some research path
to find particular features that would carry information about the dynamics of the particular type of
polymers or ions.

Keywords: human serum albumin; hyaluronan; conformational entropy; dihedral angles; frequency
distribution

1. Introduction

Lubrication in natural joints is a complex multiscale process that involves interac-
tions between constituents of articular cartilage and synovial fluid [1–3]. Although two
main mechanisms—hydration repulsion and molecular synergies—have been found, the
atomistic details on phenomena are still studied due to the lack of knowledge of how the
cooperation between them results in facilitated lubrication [4–8]. Synovial fluid consists of
up to 80% of water, macromolecular and small-molecular components.

The most recognizable components are: albumin, hyaluronan, phospholipids, γ-
globulin and lubricin [9]. Human serum albumin (HSA) deserves special attention due
to its binding and transporting properties of various compounds (fatty acids, ions: K+,
Na+, Mg2+, Ca2+ and many other molecules [10,11]). It was demonstrated in [12,13] that
albumin and γ-globulin play an important role in lubrication. However, their influence
on lubricating properties starts to be vital when taking into account their cooperation
with other synovial fluid components. Locally positively charged sites of albumin favor
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interactions with the ionized carboxylic and sulfate groups in glycosaminoglycans (GAGs).
Even though both macromolecules have a global negative charge under physiological
conditions, it was shown that HSA could bind to negatively charged surfaces [14].

This study presents the analysis of the interactions between HSA and hyaluronic acid
(HA)/ chondroitin-6-sulfate (CS6) in terms of the influence on conformations. As the topic is
extensive, we are skipping here the conformation changes within albumin, focusing only on
the GAGs. Such analysis of interaction between HSA and HA has been performed recently
in [15]. HSA consists of a single chain of 585 amino acids, incorporating three homologous
domains (I, II, and III) [16]. Domain I consists of residues 5–197, domain II includes residues
198–382, and domain III is formed from residues 383–569. Each domain comprises two sub-
domains termed A and B (IA; residues 5–107, IB; residues 108–197, IIA; residues 198–296,
IIB; residues 297–382, IIIA; residues 383–494, IIIB; residues 495–569), these are depicted in
Figure 1. Some of the domains are more prone to binding to GAGs than others; however,
the binding map can alter under some conditions of various diseases [17,18]. The binding
mechanism is mainly due to ionic, hydrogen bonding and hydrophobic interactions [17].

Figure 1. Structure of (a) HSA-HA, (b) HSA-CS6 complexes for highest affinity result in CaCl2
solution (solution is transparent on the picture). HSA is depicted as ribbon (bottom parts of picture),
and its domains are colored as follows: IA-pink, IB-violet, IIA-light green, IIB-green, IIIA-light blue,
and IIIB-blue. HA and CS6 are depicted as ball-stick (top parts of picture). Light blue atoms represent
carbon, dark blue nitrogen, red oxygen, green sulfur and white hydrogen. Snapshots was taken using
YASARA software after 100 ns MD simulations [19].

GAGs are large complex carbohydrates. Depending on the monosaccharide types
and the glycosidic bonds, GAGs can be divided into four groups: (i) hyaluronic acid,
(ii) chondroitin sulfate, and dermatan sulfate (iii) heparan sulfate and heparin, and (iv)
keratan sulfate. First, let us underline that HA is only a non-sulfated GAG. It is vital because
sulfate groups in the GAG is one of the most crucial factors influencing the interaction map
between a protein and the GAG [20]. Thus, two different examples of GAGs have been
picked, which are essential components of synovial fluid, to study their conformational
entropy while they are in the vicinity of the albumin: CS6 and HA. CS6 was shown to be an
excellent material for bone regeneration as it is the main constituent of glycosaminoglycan
in cartilage. CS6 is involved in bone homeostasis and in the coordination of osteoblastic
cell attachment. Kim et al. investigated the role of chondroitin sulfate’s negative charge on
the binding of cations (e.g., calcium and phosphate) and showed that the hydroxyapatite
crystal formation was enhanced, accelerating osteogenesis.

The analysis of the interaction between HSA and HA or CS6 in the presence of various
species such as water and ions is a meaningful task; as such, interaction is closely related
to synovial systems’ unique properties [4]. The use of molecular modeling allows for
researchers to evaluate the influence of various factors, such as the presence of ions and
solvation on the properties of proteins, including their ability to bind ligands [21]. Following
this, the present study aims to evaluate the effect of Na+, Mg2+, Ca2+ cations on the affinity
of this two specific GAGs to HSA using: firstly docking, and secondly molecular dynamics
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(MD) methods. The studies are focused on the description of changes in conformation of
the GAGs in the vicinity of the HSA.

GAGs are important complexes that participate in many biological processes through
the regulation of specific proteins. Hence, their secondary structure and stability are very
important to study. Both of above-mentioned properties can be well quantified by con-
formational entropy. As conformational entropy, we understand the Shannon entropy
computed for bivariate histograms of chosen pairs of dihedral angles (see, Section 2.1) [22].
Variations of such entropy are considered to measure important properties of the biochem-
ical processes [23,24]. In this research, we also refer to the informative interpretation of
entropy. Basically, one can compute this entropy by studying the motion of the molecule.
There are various methods dedicated to characterize these motions (e.g., NMR relaxation
methods [25], AFM-unfolding [26], and neutron spectroscopy [27]). Theoretical studies
based on classical mechanics approach are a reasonable alternative but computationally
demanding [28,29]. The intermediate approach, we follow, is the computation of conforma-
tional entropy from all-atom MD simulations, see [23,30,31].

In more detail, conformation description of the GAGs relays on the analysis of their
structures bound to HSA domains in aqueous ionic solution. This analysis is carried out
to check whether there are any differences in the conformation of the glycosidic linkages
between each oligosaccharide monomer of the GAG, when the kind of the ion is changed in
aqueous solution. The linkages are investigated basing on specific dihedral angles. In the
present paper, conformational entropy is computed from the frequency distribution of those
angles’ values. We anticipate that those angles determine important characteristics, such as
shape and stiffness. As the conformational entropy is calculated from the distribution of
the angles, it is expected to be a crucial feature (enclosing the quantitative description in
one numerical value).

2. Materials and Methods

We have performed all-atom simulations of the two model biosystems (one is HSA
with HA and the other is HSA with CS6) in aqueous ionic solution. First, a molecular
docking procedure has been executed to obtain preliminary information on the stability of
the structure and to find the most energetically optimal places where each GAG attaches to
the HSA. Next, energetically best-docked structures (sorted from the strongest connection
to the weakest connected), with added water solution of chosen ions (Na+, Mg2+, Ca2+

and Cl−), have been subjected to MD simulations.
Chemical structures of HA and CS6 were obtained from Pubchem and modified to

obtain chains of around 8 kDa (24 units). This modification relied on connecting units of
selected GAGs until polymers of desired length were obtained. To acquire the most stable
complexes, we docked GAG ligand (HA or CS6) to HSA using the VINA method [32]
with their default parameters and point-charge force field [33] initially assigned according
to the AMBER14 force field [34] (the HA molecule was parametrized by applying the
GLYCAM06 force field [35]). Then, we damped the system to mimic the less polar Gasteiger
charges used to optimize the AutoDock scoring function. The simulation was done with
the YASARA molecular modeling program [19]. In each case (HA and CS6), 10 of the best
distinctive complexes which differs in the position of GAG docked to HSA (best complexes
means the complexes of the highest energy of binding and RMSD of complexes from the
best binded complex values, which were computed by VINA) with −10 kcal/mol free
energy of binding prepared for MD simulation.

MD simulations of HSA (PDB code: 1e78) with GAG have been run with YASARA
software. Optimization of the hydrogen bonding network was included in the setup to
increase the solute stability and a pKa prediction (based on a Henderson–Hasselbalch equa-
tion) to fine-tune the protonation states of the protein residues at the given pH = 7.4 [36,37].
Optimization was done in three main steps: (a) pKa prediction was included to consider the
influence of the pH on the hydrogen bonding network, (b) nonstandard amino acids and
ligands were fully accounted for with the help of a chemical knowledge library in SMILES
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format, and (c) the use of the SCWRL algorithm allows for finding the globally optimal solu-
tion. In the case of the HSA-HA system, the complex has been immersed in one of the three
aqueous 0.9% salt solutions NaCl, CaCl2 or MgCl2. In the case of HSA-CS6, it was 2% water
solution of the same salts in pH = 7.0. After necessary minimization of the model system to
remove clashes, the simulation was run for 100 ns using the AMBER14 force field [34] for
the HSA, GLYCAM06 [35] for HA and CS6, and TIP3P for water. The van der Waals forces’
cut-off distance was set to 10 Å [38]. The particle Mesh Ewald algorithm was used for
computing long-range interactions (e.g., electrostatic interactions) [39]. Simulations were
performed under following conditions: temperature 310 K and pressure of 1 atm (NPT
ensemble) [37]. Periodic boundary conditions were applied to a box of size roughly equal
to 120 Å3. Berendsen barostat and thermostat were used to maintain constant pressure and
temperature (relaxation time of 1 fs) [40]. The equations of motions were integrated with
multiple time steps of 1.25 fs for bonded interactions and 2.5 fs for non-bonded interactions.
In the considered simulations, the time step between saved states of the system equals
100 ps. Thus, the time series for 100 ns of simulations obtained 1000 save points. Snapshots
of the two complexes after 100 ns of MD simulation have been presented in Figure 1.

All analyses and computation have been performed using YASARA and in-house
written data processing programs in Python 3.8 [41].

2.1. Backbone Angles Determination

The method of entropy calculation, used in this study, relies on computation of the
frequency distribution of the backbone’s dihedral angles (Φ,Ψ), usually presented in the
form of a Ramachandran-type plot [31,42]. It provides a simplistic view of the conformation
of a molecule by clustering angles (Φ,Ψ) into district regions (bear in mind that there are
two sets of such pairs of angles, which will be discussed later).

The CS6 consists of glucuronic acid (GlcA) and galactosamine (sulfated at C-6 atom
of galactosamine; GalNAc), while HA consists of glucuronic acid (GlcA) and acetylglu-
cosamine (GlcNAc). Linkages between the two monosaccharides are as follows: in the
case of CS6, it is [4)-β-GlcA-(1−→3)-β-GalNAc-)1−→], and for HA: [4)-β-GlcA-(1−→3)-β-
GlcNAc-)1−→] (see, Figure 2). Using abbreviation G for GlcA and N for GlcNAc (in HA)
or GalNAc (in CS6), we can depict the glycosaminoglycans as linear heteropolysaccharide
chains consisted of repeating disaccharide units [31]. In the presented study, the chains
consist of NG units repeated 24 times. Two sets of torsion angles describe the conformations
around the glycosidic linkages: Φ1−4 and Ψ1−4 (N-G linkage), and Φ1−3 and Ψ1−3 (G-N
linkage) [31]. Thus, in the GAG chains, there are 24 of Φ1−4 and Ψ1−4 angles, and 23 Φ1−3
and Ψ1−3. These angles can be written as follows:

Φ1−4 = O5(N)-C1(N)-O1(N)-C4(G),

Ψ1−4 = C1(N)-O1(N)-C4(G)-C5(G),

Φ1−3 = O5(G)-C1(G)-O1(G)-C3(N),

Ψ1−3 = C1(G)-O1(G)-C3(N)-C4(N).

(1)

All dihedral angles in Equation (1) have been presented in Figure 2. The available con-
formational space of the GAGs’ chains depends mainly on the two torsion angles. As
mentioned before, a goal of the present study is to investigate how various features of
the system (ions, HA vs. CS6) affect the frequency distribution of Φ and Ψ torsion angles.
As the informative feature of above-mentioned frequency distribution, conformational
entropy has been used [24,31]. Note that, in information theory, entropy is the measure of
the information tied directly to the variable (univariate or multivariate) [22,43]. Using this
analogy, we can analyse which pairs of dihedral angles are more or less informative for
specific GAGs and ions.
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Figure 2. Structures of (a) HA and (b) CS6 with dihedral angles: Φ1−4—red circles, Ψ1−4—blue
circles (N-G linkage), Φ1−3—green circles, Ψ1−3—violet circles (G-N linkage).

2.2. Entropy Calculation

For each pair of subsequent mers of GAG’s chain, the time series (containing 1000 points)
of the dihedral angles have been obtained. As described in Section 2.1, following pairs of
these angles: Φ1−4 vs. Ψ1−4 and Φ1−3 vs. Ψ1−3 have been analyzed [31]. 2D histograms
have been calculated from angles values of all subsequent pairs of mers (and all time steps).
Histograms of the stronger bound structures (from the 10 picked as described in Section 2),
for different ionic solutions, have been presented in Figure 3 for CS6 and in Figure 4 for HA.

Following an approach described in [44] (see Figure 8 therein), the conformation
entropy has been computed from the 2D histograms of pairs of angles. In more detail, from
each histogram, the Shannon entropy [22,23,30] has been computed using the formula:

S = −R0 ∑
i,j

pi,j log(pi,j). (2)

Here, pi,j is the empirical probability of the first angle being in the ith bin and the
second angle being in the jth bin, and R0 = 8.314 J·K−1·mol−1 is the (scaling) gas constant.

Figure 3. Normalized histograms of values of angles (Φ1−4, Ψ1−4) (top) and (Φ1−3,Ψ1−3) (bottom)
for main chain CS6 with (a) Na+, (b) Ca2+, and (c) Mg2+. Angles were taken from the whole time
series of the YASARA simulation. The symbol n is a number of angles’ pairs and is equal to number
of angles type (24 for angles 1, 4 and 23 for angles 1, 3, cf. Section 2.1) multiplied by number of time
points (1, 000).
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Figure 4. Normalized histograms of values of angles (Φ1−4, Ψ1−4) (top) and (Φ1−3,Ψ1−3) (bottom)
for main chain HA with (a) Na+, (b) Ca2+, and (c) Mg2+. Angles were taken from the whole time
series of the YASARA simulation. The symbol n is a number of angles’ pairs and is equal to number
of angles type (24 for angles 1, 4 and 23 for angles 1, 3, cf. Section 2.1) multiplied by number of time
points (1, 000).

3. Results

Some HSA segments are more prone to creating intermolecular interactions than
others. The complexity of protein–GAG interactions is in part caused by the conformational
flexibility of the GAG’s chain. An affinity of the HSA to GAGs, firstly tested by docking
method, has been present in Table 1 sorted by binding energy. While the docking method
relies on adjusting a ligand to a receptor in crystal form, then putting the complex into a
water solution changes the intermolecular interactions map. After equilibration and 100 ns
of MD simulations, the binding energy changed, and the order of best-bound complexes
changed. In the case of CS6, the new order depended on added ions, and its value (averaged
over three realizations’ binding energies with a different salt added) has been written in
the first column of Table 1 in the brackets. HSA binding sites did not change much during
the MD simulations. However, the number of interactions such as hydrophobic-polar,
hydrogen bonds, ionic, and bridges have changed.

Table 1. Binding ranks of HSA-CS6 complexes. The first column contains: rank after docking
(averaged rank after MD simulations). The strongest connected domains are marked in bold letters.

HSA-CS6
Complex Rank

HSA Binding Sites

1(5) IA-IIA-IIIA-IIIB
2(1) IA-IB-IIA-IIIA-IIIB
3(8) IA-IIA
4(6) IA-IIA-IIIA-IIIB
5(7) IA-IIA-IIIA-IIIB
6(2) IB-IIIA-IIIB
7(3) IA-IIA-IIB-IIIA
8(10) IA-IB
9(4) IB-IIIA-IIIB
10(9) IIA-IIB

A closer analysis of the interactions for HSA-CS6 complexes will be the subject of
another study, similar to the ones performed for HSA-HA complexes [15]. In the present
paper, we are focused only on the conformational entropy of the GAGs chains. In the case
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of CS6, the most stable turned out realization was number 2, thus the situation when CS6
wrapped around the HSA and bound to IA-IB-IIA-IIIA-IIIB domains had the strongest
binding to IIIA. No matter what ions have been added to the system, the binding energy
stays high compared to the rest of the realizations (thus with different initial conditions of
the binding map). After docking, amino acids that created the higher number of interactions
with CS6 were Glu and Thr, and next in frequency: Lys and Asp. MD simulations show
that Arg and Lys are more prone to create more ionic interactions and hydrogen bonds
than the other amino acids due to their positive charge with negatively charged sulfate and
carboxyl groups.

In the case of HA, a similar situation can be seen. The most stable was complex 2, i.e.,
composed of HSA’s domains IA-IB-IIIA-IIIB. The most binding amino acids, in general,
were Thr, Glu and Lys. It is very important that domains IB, IIIA, and IIIB are key domains
for the HSA transport function responsible for the heme-binding site (IB), Sudlow’s site
II (IIIA), and thyroxine-binding site (IIIB) [45]. Comparing Table 1 to Table 2, one can
notice that the HSA best binding segments differ slightly between HA and CS6 but are
similar for the two first best-docked structures. In both cases, IIIA and IIIB domains clearly
prevailed in creating the highest number of interactions between GAG and the protein.
This is because domains IIIA and IIIB are domains that show a positive net charge on the
surface that allows for binding with negatively charged GAGs. In addition, in both cases, a
fragment of GAG’s chain strongly interacted with an IA domain. Analyzing differences
between the values of energy of binding (averaged) in both cases, HA bound to albumin
about 10% stronger than CS6 (see Table S1 in Supplementary Materials).

Table 2. Binding ranks of HSA-HA complexes. The first column contains: rank after docking
(averaged rank after MD simulations). The strongest connections are marked in bold letters.

HSA-HA
Complex Rank

HSA Binding Sites

1(4) IA-IB-IIIA-IIIB
2(1) IA-IB-IIIA-IIIB
3(6) IA-IB-IIIA-IIIB
4(10) IIIA-IIIB
5(5) IIB-IIIA-IIIB
6(8) IA-IIIA-IIIB
7(2) IA-IB-IIIA-IIIB
8(9) IIIA-IIIB
9(7) IA-IB-IIIA-IIIB
10(3) IIA-IIB-IIIA

The method for computation of conformational entropy, based on a Ramachandran-
type plot created for the pairs of dihedral angles (Φ,Ψ) [31,42], has been discussed in
Section 2. Results of the computation have been presented in Figure 3 for the CS6 and
in Figure 4 for the HA. Both of the results have been presented only for the best-bound
complexes because the rest of the results had very similar characteristics. For comparison,
three different realizations of YASARA simulations (thus, realizations with different initial
structures) have been presented in Supplementary Materials Figures S1 and S2. The most
probable angles, taken from Figures 3 and 4, have been presented in Table 3.

In the case of CS6, (Φ1−4, Ψ1−4) angles arranged in few clusters at ranges about:
−150◦ – −60◦ for Φ1−4 and −180◦ – −60◦ for Ψ1−4 with the highest probability of occu-
pancy near two more narrow angle ranges with a maximum at (−72◦,−76◦) (cf. Figure 3,
top line). There can also be seen, however, the second angle region of about: 50◦–180◦ for
Φ1−4 and −180◦ – −50◦ for Ψ1−4, also with few narrowed clusters with a high probability
of occupancy. The places of the spots and their intensity differ slightly between simulations
with different ionic solution. In particular, in the case of Ca2+, most of the angles have
been centered in one specific range around (−104◦,−76◦), while, in the cases of Mg2+
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and Na+, more than one high probability place can be seen. In the case of Mg2+, the
distribution of the angles is the most uniform but with, similar to the Na+ case, a maximum
at (−68◦,−76◦).

Table 3. Most frequent (Φ1−4, Ψ1−4) and (Φ1−3, Ψ1−3) angles for the best bound complexes of
HSA-GAG.

CS6

n.o. Realization Na+ Ca2+ Mg2+

2

Φ1−4 Ψ1−4 Φ1−4 Ψ1−4 Φ1−4 Ψ1−4
−72◦ −76◦ −104◦ −76◦ −68◦ −76◦

Φ1−3 Ψ1−3 Φ1−3 Ψ1−3 Φ1−3 Ψ1−3
−76◦ 169◦ −86◦ −76◦ −79◦ 173◦

HA

n.o. Realization Na+ Ca2+ Mg2+

2

Φ1−4 Ψ1−4 Φ1−4 Ψ1−4 Φ1−4 Ψ1−4
−72◦ −126◦ −68◦ −126◦ −97◦ −155◦

Φ1−3 Ψ1−3 Φ1−3 Ψ1−3 Φ1−3 Ψ1−3
−115◦ −61◦ −47◦ −47◦ −54◦ 151◦

The Ca2+ cations are distinguished by the fact that they form many more ionic interac-
tions with the molecules than Na+ and Mg2+. This can be the reason for the differences
in the (Φ1−4, Ψ1−4) distribution plot. The greater probability cluster, which contains the
maximum, is placed in the range of angles obtained lately in [46] for similar computer
simulations of various kinds of chondroitin sulfate in water solution without any protein
contribution. Thus, it can be clearly seen that the vicinity of HSA changed this crucial angle
distribution, making them more disordered but still in a specific way. For proteins, similar
(Φ, Ψ) angles are responsible for the formation of right-handed α-helices [42].

Despite the different chemical nature of protein and GAG molecules because peptide
groups are linked at an α-carbon atom, not an oxygen like in the case of GAGs, the dihedral
angles show how the chain-building units are rotated across the whole chain. Thus, the
output secondary structure looks similar. In [46], there is, however, a lack of the second
region on the angles, observed in our case with the positive values of Φ1−4 angles.

In the case of angles (Φ1−3,Ψ1−3) for CS6, we can see quite different plots than the
ones for (Φ1−4,Ψ1−4) (see Figure 3 bottom line, and Figure S1 in Supplementary Materials).
According to [46], the differences were expected because, for angles 1–3, the most probable
occupancy should be in the region of −100◦–−30◦ (Φ) and 70◦–180◦ (Ψ). In our results, the
shadow (slightly visible red color on the plot) of those angles can be seen, especially in the
case of Na+ and Mg2+, where the maximum is placed within this range (cf. Table 3), near
(−76◦, 169◦). Most of the angles have had the values similar like in the case of (Φ1−4,Ψ1−4)
but more focused on regions near (−86◦,−76◦) (maximum for Ca2+ case).

Conformational entropy for most cases is in the same range. However, there are
noticeable differences in entropy between 1–3 and 1–4 angles. HA 1-4 angles show lower
entropy i.e., are more stable than 1–3. The opposite is true for CS6. This can be explained
by neighbouring groups. Carboxyl in HA and sulfur for CS6 form more stable contacts.
Although acetyl group is highly reactive, it does not influence stability as dominant groups.
The carboxyl group in CS6 is still weaker as compared to sulfur, which makes the contact
more stable, as can be seen in Figure 5. The same behavior can be seen in Figure 6. The
introduction of divalent ions increases entropy due to their destabilizing impact on protein,
which is even more prominent for concentrations used in the present study.

Molecular conformational space available for HA chain in solution has been studied
in [31]. The authors have searched for stable ordered forms of HA and have found many
helices-type conformations (right- and left-hand side) that the HA chains prefer. Their
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findings based on potential energy computation for specific (Φ1−4,Ψ1−4) and (Φ1−3,Ψ1−3)
angles are presented in Figure 2 of [31] . They obtain the location of three distinct regions
with minimum potential energy surfaces. A main region consists of two wells (denoted
as A–B in Figure 2 of [31] mentioned). Using the approach presented in this study, it is
possible to compare the preferred dihedral angles for the HA chain, which is placed alone
in the solution and in the vicinity of the HSA protein. In general, all these A-E regions
(cf., Figure 2 in [31]) have been found in presented simulation results, but the intensity
of these regions on the probability map varies depending on realizations (thus binding
sites) and ion addition (see Figure 4 and Figure S2 in Supplementary Materials. In [31], for
(Φ1−4,Ψ1−4) angles, the main A–B region is placed in the area about −120◦–−60◦ for Φ1−4
and −180◦–−100◦ for Ψ1−4, which is in accordance with results obtained in Figure 4 for
the best docked HSA-HA complex. The probability of finding the angles in clusters A and
B is almost equal in cases of realizations with the addition of Na+ and Mg2+, but, in the
case of Ca2+, B prevails over A. The maximum has been found about (−72◦,−126◦) (B)
and (−97◦,−155◦) (A). Moreover, a few different lighter clusters have been found similar
to regions C, D and E.

In Figure 4, one can see two clearly identified clusters for (Φ1−3,Ψ1−3) angles and two
smaller ones. The first of the bigger cluster, with a maximum at about (−115◦,−61◦) in the
case of Na+, suits region C in [31], and the second, near the maximum (−54◦, 151◦) in the
case of Mg2+, is placed in region A overflowing to region B. Region D, about (50◦, 120◦)
angles, is also present.

Figure 5. Median, maximal and minimal entropy (over N = 10 realizations) for chosen ions and
angles pairs for CS6 (left panel) and HA (right panel). As we have N = 10 realizations, the minimal
entropy can by considered as the estimate of the 10’th percentile (first quantile), and the maximal one
as the estimate of the 90’th percentile (9’th quantile).

Median, minimal and maximal values (over realizations) of entropy for various ions,
angles and GAGs are presented in Figure 5. Bear in mind that, as we used N = 10
realizations, the minimal value can be used to roughly estimate first quantile, while the
maximal value to roughly estimate the 9’th quantile.

In Figure 5, one can observe that, for analysed angles, ions and GAG type, entropy
was in general greater for (Φ1−4,Ψ1−4) angles than (Φ1−3,Ψ1−3) in the case of CS6, but it
was the opposite situation for HA: the entropy was slightly greater for (Φ1−3,Ψ1−3). As
lower entropy shows lesser disorder in the system, the most stable systems were those
with Na+ ions added in both cases: HA and CS6 (cf., Figure 5). Complexes with Ca2+ ions
usually have had slightly higher entropy. Referring to the informative interpretation of
entropy, one can conclude that, in the case of CS6, the pair (Φ1−3,Ψ1−3) carries significantly
less information of the system than the pair (Φ1−4,Ψ1−4). This is not the case for HA. The
difference is related to the presence of the sulfate group in GalNAc in CS6 that is more
prone to forming hydrogen bonds and ionic contacts with HSA.

Entropy values for CS6 and HA with different ions, taken separately for each of
computer experiment realizations, have been presented in Figure 6.
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Figure 6. Conformational entropy for CS6 with (a) Na+, (b) Ca2+, and (c) Mg2+, and HA with
(d) Na+, (e) Ca2+ and (f) Mg2+.

Relatively large variations of the entropy between realizations are observed in the
case of HSA-HA simulation results. Entropy varies within the range of 53–62 J

Kmol for
CS6 and within the range of 55–61 J

Kmol for HA. Thermal noise, or some non-equilibrium
processes, can have some effect on these variations, but also the different binding sites of
the two molecules (that varies between realizations) are of big importance for the entropy
behaviour. The variations of entropy values may also coincide with rather high estimation
error of this value.

The hypothesis that entropy value is tied to the value of the binding energy between
the protein and the GAG is not supported by our simulation results. In more detail, the
smallest entropy value, roughly 53 J

Kmol , has been obtained for realization number 8 of the
HSA-CS6 complex with Na+. This was the case, where only IA and IB domains of HSA
were bound to CS6; thus, the protein did not affect the conformation of the GAG’s chain by
deformation of the (Φ,Ψ) angles much. The highest entropy value has been reported for
case 3 of the HSA-CS6 complex with Mg2+. Here, the binding site was very similar to the
one with greater entropy (number 8): IA and IIA. Entropy records for realization number
2 of the HSA+HA complex with addition of Ca2+ are very interesting. In this realization,
there were a huge difference between entropy for (Φ1−4,Ψ1−4) angles and (Φ1−3,Ψ1−3)
angles. In this case, the HSA and HA molecules were best bound after MD simulation from
all the realizations.

4. Discussion

A common pattern on the maps presented in Figure 4 and the ones presented in
Figure 2 in [31] indicates that the proximity of the HSA protein does not prevent the HA
chain from taking the shape of a helix (cf., Figure 5 in [31]). In the case of CS6, positions
of preferred (Φ,Ψ) angles regions have been recently reported in [46]. The location of
the angles presented in this study for HSA-CS6 complexes overlaps with those for the
HA chain in [31]. Therefore, it can be concluded that CS6 keeps its α-helix structure.
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However, distributions of the (Φ,Ψ) angles (Figures 3 and 4) show that GAGs can show
helix structures and the random coil conformations at various ratios. Bear in mind that the
frequency distributions of the (Φ,Ψ) angles are created from all NG units over the whole
time; thus, we cannot say anything about how the conformations of the chains evolved.
Instead, we see the static characteristic maps, which can tell us about the stability of the
conformations in the simulation process.

We have demonstrated that conformational entropy is a parameter that enables us
to characterize the structure of GAGs in interaction with HSA globally. We can see that
it is slightly dependent on the pair of angles but rather for the CS6 case. In the case of
CS6, the lower entropy value of the (Φ1−3,Ψ1−3) angles compared to the entropy value
of (Φ1−4,Ψ1−4) angles indicate that mathematical features of the histograms for the angle
pair 1-4 relative to the angle pair 1–3 must be more uniform. We understand this idea that
(Φ1−4,Ψ1−4) angles during simulations appear more uniform in the space of its value than
angles (Φ1−3,Ψ1−3) in the space of its value. This property is not visible for the angles in
the case of HA.

Numerically derived histograms have various numbers of maxima, but these local
maxima may be wider or narrower, which is essential in the entropy calculated here.
Therefore, our work builds upon [46], which focuses on a sole CS6 and shows that a smaller
number of regions are preferred to occupy by (Φ,Ψ) angles than our work that shows a
larger number where HSA was added to the solution.

As the entropy is one of the features of above-mentioned histograms, we may expect
other features of these histograms to be also informative about particular GAG, ion, or
monomer. Hence, further analysis concerning pattern recognition machine learning tech-
niques like SVM (Support Vector Machine) [47] and its modification for colored image
processing [48] can be performed to extend the research. Another approach to this problem
may be the colored image segmentation by a random walk [49], Sub-Markov random
walk [50] or the Hurst Exponent image processing in [51,52]. Alternatively, one can analyze
angles as multivariate series and process them with dedicated tools such as higher-order
multivariate cumulants, see [53]. The goal of deep analysis mentioned above would be to
search for more sensitive features and analyze whether entropy is a stable feature compared
to others. If such features can be determined, their utility may appear in analytical, chemical
medical applications. The secondary GAGs structure resembles flat bands transformed into
a helix or twisted into a sheet originating from intermolecular hydrogen bonds. In diluted
GAG solutions, the macromolecules have semi-rigid coiled chains and could form helix
bands and even helical rings. Due to formation of a rigid helix, the macromolecules of GAG
attract a great quantity of water and organize the broad domains of the tertiary polymer
structure [54]. Binding to HSA reduces degrees of freedom of polymer and thus mechanical
properties. On the other hand, HA and CS6 at higher concentrations, external force or other
factors can change HSA’s tertiary structure, forming material of different properties.

5. Conclusions

Macromolecular complexes are building blocks in the functioning of physiological
processes. When optimal conditions are fulfilled for given pairs, the system can function
efficiently. Protein–ligand interactions are critical to optimal biochemical, biological, or
biophysical results. Often, a given complex can serve several functions, as in the case
presented in this study, where HA-HSA complexes decrease friction and can be used
in drug delivery systems. Our results show how crucial components of synovial fluid
interplay with each other at equilibrium. We have shown that HA and CS6 can form stable
complexes with HSA.

Moreover, the binding sites for both molecules overlap, which indicates that they
both can induce a similar effect on HSA while functioning. The molecular mass used in
this study is one limitation of the presented results, as interactions (and mechanical and
biological properties) between GAGs and proteins strongly depend on their molecular
mass and concentration. This fact emerges from the chemistry of polymers of interest.
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GAGs chain’s amount of expansion is enormous for a semi-flexible polymer. The polymer
configuration is constantly in a state of motion and change. However, the water increases
the effective size of each hyaluronic acid because of its hydrophilic nature. The mass
increase results in the average density decrease because the increase in mass is slower than
in the volume. Thus, GAGs chains with a high molecular weight (more than 1, 000 kDa)
occupy a substantial volume. However, adsorption at HSA strongly influences the local
mechanical properties of GAGs resulting in efficient lubrication.
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Abstract: In this paper, we present stochastic synchronous cellular automaton defined on a square
lattice. The automaton rules are based on the SEIR (susceptible→ exposed→ infected→ recovered)
model with probabilistic parameters gathered from real-world data on human mortality and the
characteristics of the SARS-CoV-2 disease. With computer simulations, we show the influence of the
radius of the neighborhood on the number of infected and deceased agents in the artificial population.
The increase in the radius of the neighborhood favors the spread of the pandemic. However, for a
large range of interactions of exposed agents (who neither have symptoms of the disease nor have
been diagnosed by appropriate tests), even isolation of infected agents cannot prevent successful
disease propagation. This supports aggressive testing against disease as one of the useful strategies
to prevent large peaks of infection in the spread of SARS-CoV-2-like diseases.

Keywords: epidemy; compartmental models; computer simulation; SARS-CoV-2-like disease spreading

1. Introduction

Currently, the death rate of SARS-CoV-2 [1] in the whole world reached around 1.2% of
the infected population and more than 5× 108 cases have been confirmed [2,3], (tab ‘Closed
Cases’) . Thus, one should not be surprised of the publication rash in this subject giving
(i) theoretical bases of SARS-CoV-2 spreading, (ii) practical tips on preventing plagues or
even (iii) clinical case studies making it easier to recognize and to treat cases of the disease.
The Web of Science database reveals over 80,000 and over 110,000 papers related to this
topic registered in 2020 and in January–November 2021, respectively, in contrast to only
19 papers in 2019. Among them, only several [4–20] are based on the cellular automata
technique [21–24].

The likely reason for this moderate interest in using this technique to simulate the
spread of the COVID-19 pandemic is the large degree of simplification of ‘rules of the game’
in cellular automata. To fill this gap, in this work, we propose a cellular automaton based on
a compartmental model, the parameters of which were adjusted to the realistic probabilities
of the transitions between the states of the automaton. Let us note that modeling the spread
of the pandemic is also possible with other models (see Refs. [25–28] for mini-reviews)
including, for instance, those based on the percolation theory [29].

The history of the application of compartmental models to the mathematical modeling
of infectious diseases dates to the first half of the 20th century and works of Ross [30], Ross
and Hudson [31,32], Kermack and McKendrick [33,34] and Kendall [35]; see, for instance,
Ref. [36] for an excellent review. In the compartmental model, the population is divided
into several (usually labeled) compartments so that the agent only remains in one of them
and the sequences of transitions between compartments (label changes) are defined. For
instance, in the classical SIR model, agents change their states subsequently from susceptible
(S) via infected (I) to recovered (R) [33,34,37]. Infected agents can transmit the disease
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to their susceptible neighbors (S → I) with a given probability p1. The infected agent
may recover (I → R) with probability p2. After recovering, the agents are immune and
they can no longer be infected with the disease. These rules may be described by a set of
differential equations:

dnS
dt

= −〈k〉p1nSnI ,
dnI
dt

= 〈k〉p1nSnI − p2nI ,
dnR
dt

= p2nI ,

(1)

where 〈k〉 is the mean number of agents’ contacts in the neighborhood and nS , nI , nR
represent the fraction of susceptible, infected, and recovered agents, respectively. Typically,
the initial condition for Equation (1) is:

nS (t = 0) = 1− n0,
nI (t = 0) = n0,
nR(t = 0) = 0,

(2)

where n0 is the initial fraction of infected agents (fraction of ‘Patients Zero’).
The transition rates between states (i.e., probabilities p1 and p2) may be chosen arbi-

trarily or they may correspond to the reciprocal of agents’ residence times in selected states.
In the latter case, residence time may be estimated by clinical observations [38,39]. The
probability p1 describes the speed of disease propagation (infecting rate) while the value of
p2 is responsible for the frequency of getting better (recovering rate). In this approximation,
the dynamics of the infectious class depends on the reproduction ratio:

R0 =
〈k〉p1

p2
. (3)

The case of R0 = 1 separates the phase when the disease dies out and the phase when the
disease spreads among the members of the population.

Equation (1) describe a mean-field evolution, which simulates a situation in which
all agents interact directly with each other. In low-dimensional spatial networks, the
mean-field dynamics (1) is modified by diffusive mechanisms [40]. In a realistic situa-
tion, the diffusive mode of pandemic spreading is mixed with the mean-field dynamics,
corresponding to nonlocal transmissions resulting from the mobility of agents [41].

We use the SEIR model [42,43], upon extending the SIR model, where an additional
compartment (labeled E ) is available and it corresponds to agents in the exposed state. The
exposed agents are infected but unaware of it—they neither have symptoms of the disease
nor have been diagnosed by appropriate tests. This additional state requires splitting the
transition rate p1 into pE and pI corresponding to transition rates (probabilities) S → E
after contact with the exposed agent in state E and S → E after contact with the infected
agent in state I , respectively. We would like to emphasize that both exposed (in state E )
and infected (in state I) agents may transmit disease.

According to Equation (1), after recovering, the convalescent in stateR lives forever,
which seems contradictory to the observations of the real world. Although the Bible
Book of Genesis (5:5–27; 9:29) mentions seven men who lived over 900 years, in modern
society—thanks to public health systems (and sometimes in spite of them)—contemporary
living lengths beyond one hundred years are rather rare. Mortality tables [44] show some
correlations between probability of death and age [45]. This observation was first published
by Gompertz in 1825 [46]. According to Gompertz’s law, mortality f increases exponentially
with the age a of the individual as:

f (a) ∝ exp(b(a + c)), (4)
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where b and c are constants. Moreover, as we mentioned in the first sentence of the
Introduction, people can also die earlier than Gompertz’s law implies. For example, an
epidemic of fatal diseases increases the mortality rate. To take care of these factors in
modeling disease propagation, we consider removing agents from the population. This
happens with agents’ age-dependent probabilities fG and fC for healthy and ill people,
respectively. The removed individual is immediately replaced with a newly born baby.

In this paper, we propose a cellular automaton based simultaneously on SEIR model of
disease propagation and Gompertz’s law of mortality. In Section 2, the cellular automaton,
its rules and the available site neighborhoods are presented. Section 3 is devoted to
the presentation of the results of simulations based on the proposed cellular automaton.
Discussion of the obtained results (Section 4) and conclusions (Section 5) end the paper.
We note [47,48], where age-structured populations were also studied with SEIR-based and
multicompartments models, respectively.

2. Model

We use the cellular automata technique [21–24] to model disease propagation. The
cellular automata technique is based on several assumptions, including:

• Discrete (geometrical) space (i.e., regular lattice) and time;
• Discrete and finite set of available states of the single lattice’s site;
• Local rule F of synchronous site states update.

The rule F defines the state si of the site i at time (t + 1) based on this site’s state si at
time t and the state of the sites in the i-th site’s neighborhood N

si(t + 1) = F
(

si(t);N (si(t))
)

.

We adopt the SEIR model for the simulation of disease spreading by probabilistic
synchronous cellular automata on a square lattice with various neighborhoods N . Every
agent may be in one of four available states: susceptible (S), exposed (E ), infected (I) or
recovered (R). The agents in E and I are characterized by different values of the probability
of infection (pE and pI ) and different ranges of interactions (radii of neighborhoods rE and
rI ). The considered neighborhoods (and their radii) are presented in Figure 1.

(a) (b) (c) (d) (e)

Figure 1. Sites in various neighborhoods N on a square lattice. (a) Von Neumann’s neighborhood
(r = 1, z = 4); (b) Moore’s neighborhood (r =

√
2, z = 8); (c) neighborhood with sites up to the third

coordination zone (r = 2, z = 12); (d) neighborhood with sites up to the fourth coordination zone
(r =

√
5, z = 20); (e) neighborhood with sites up to the fifth coordination zone (r = 2

√
2, z = 24).

Initially (at t = 0), every agent is in the S state, their age a is set randomly from a normal
distribution with the mean value 〈a〉 = 50× 365 days and dispersion σ2 = 25× 365 days.
‘Patient Zero’ in the E state is placed randomly at a single site of a square lattice with
L2 = 1002 nodes.

Every time step (which corresponds literally to a single day in the real-world) the
lattice is scanned in typewriter order to check the possible agent state evolution:

• The susceptible agent may be infected (S → E ) by each agent in state E or I present
in his/her neighborhood N with radius rE or rI ≤ rE , respectively. We set rI ≤ rE
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as we assume that infected (and aware of the disease) agents are more responsible
than exposed (unaware of the disease) ones. The latter inequality comes from our
assumption that the exposed agent is not careful enough in undertaking contacts
with his/her neighbours while the infected agent is serious-minded and realizing
the hazard of possible disease propagation and thus he/she avoids these contacts at
least on the level assigned to exposed agents. The number and position of available
neighbours who may infect the considered susceptible agent depend on the value
of radius rE and/or rI as presented in Figure 1. The infection of the susceptible
agents occurs with probability pE (after contacting with agent in state E ) or pI (after
contacting with agent in state I), respectively.

• The incubation (i.e., the appearance of disease symptoms) takes τE days—every agent
in E state is converted to infected state (E → I) with probability 1/τE . The exposed
agent may die with age-dependent probability fC(a). In such a case, he/she is replaced
(E → S) with newly born agent (a = 0).

• The disease lasts for τI days. The ill agent (in state I) may either die (and be replaced
by a newly born child I → S) with age specific probability fC(a) or he/she can
recover (and gain resistance to disease I → R) with probability 1/τI .

• A healthy agent (S orR) may die with a chance given by age dependent probability
fG(a). In such a case, it is replaced with a newly born susceptible baby (in state S and
in age of a = 0).

The agents’ state modifications are applied synchronously to all sites. A single time
step (from t to t + 1) of the system evolution described above is presented in Algorithm 1.
The L2-long vector variables tmp_pop[] and pop[] represent the current population (at time
t) and the population in the next time step (t + 1), respectively. The presence of two such
variables in a model implementation is caused by the synchronicity of cellular automaton.
The i-th element of these vectors keeps information on the state (either S , E , I orR) of the
i-th agent in the population. The age a (measured in days) for the i-th agent is kept in the
L2-long vector age[] and its i-th element is either incremented (line 4 of Algorithm 1) or
reset (lines 28 and 35 of Algorithm 1) in the case of removal. The random() function returns
a real pseudo-random number uniformly distributed in [0, 1). The function ‖i, j‖ measures
the Euclidean distance between agents i and j. The age-dependent daily death probability
functions fC(·) and fG(·)—based on real-world data—are defined in the next paragraph
in Equations (5) and (6). The numbers nS , nE , nI and nR of agents in various states must
be initialized at t = 0 based on initial conditions. The cumulative number nD of deceased
agents—earlier either in the exposed (E ) or in the infected (I) state—is incremented in line
39 of Algorithm 1. The numbers nS , nE , nI , nR and nD are normalized to the total number
L2 of agents in the system before their return.

Based on American data on annual death probability [44] and assuming 365 days a
year, we predict the daily death probability as:

fG(a) = 184 · 10−10 exp(0.00023(a + 40259)), (5)

where a is the agent’s age expressed in days. The data follow Gompertz’s exponential law
of mortality [46,49].

Using the same trick, we estimate the probability of daily death for infected people of
age a (expressed in days) as:

fC(a) =

{
5 · 10−5 ⇐⇒ a ≤ 30 y,
2 · 10−6 exp(0.0003a) ⇐⇒ a > 30 y.

(6)

These probabilities are calculated as the chance of death during SARS-CoV-2 infection
(based on Polish statistics [50]) divided by (τE + τI ). We assume that infection lasts
τI ≈ 14 days and that an incubation process takes τE ≈ 5 days [39]. Exponential fits
(Equations (5) and (6)) to real-world data are presented in Figure 2.
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Algorithm 1 Single time step in automaton

1: t ← t + 1
2: tmp_pop← pop
3: for all i ∈ pop do
4: age[i]← age[i]+1
5: if tmp_pop[i] = S then
6: for all j ∈ pop, j �= i do
7: if tmp_pop[j] = I ∧ ‖i, j‖ ≤ rI∧ random()≤ pI then
8: pop[i]← E � S → E after contacting with I
9: nS ← nS − 1

10: nE ← nE + 1
11: break
12: if tmp_pop[j] = E ∧ ‖i, j‖ ≤ rE∧ random()≤ pE then
13: pop[i]← E � S → E after contacting with E
14: nS ← nS − 1
15: nE ← nE + 1
16: break
17: if tmp_pop[i] = E ∧ random() < 1/τE then
18: pop[i]← I � E → I
19: nE ← nE − 1
20: nI ← nI + 1
21: if tmp_pop[i] = I ∧ random() < 1/τI then
22: pop[i]← R � Recovered
23: nI ← nI − 1
24: nR ← nR + 1
25: if tmp_pop[i] = S ∨ tmp_pop[i] =R then
26: if random() < fG(age[i]) then
27: pop[i]← S � Removed. . .
28: age[i]← 0 � . . . then Susceptible
29: if tmp_pop[i]=S then nS ← nS − 1
30: if tmp_pop[i]=R then nR ← nR − 1
31: nS ← nS + 1
32: else � tmp_pop[i] = E ∨ tmp_pop[i] = I
33: if random() < fC(age[i]) then
34: pop[i]← S � Removed. . .
35: age[i]← 0 � . . . then Susceptible
36: if tmp_pop[i]=E then nE ← nE − 1
37: if tmp_pop[i]=I then nI ← nI − 1
38: nS ← nS + 1
39: nD ← nD + 1 � cumulative number of deaths caused by infections
40: return(t, nS/L2, nE/L2, nI/L2, nR/L2, nD/L2)
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Figure 2. Daily death probability f (a) for patients infected by the coronavirus (SARS-CoV-2, ×,
fC(a), [50]) and natural death probability (+, fG(a), [44]).

3. Results

In Figure 3 snapshots from a single-run simulation are presented. They give a quantita-
tive picture of the influence of the interaction range (neighborhood radius) on the spread of
the disease. The snapshots in Figure 3a–e show the situation for fixed parameters pE = 0.03
and pI = 0.02 at the t = 150 time step, which corresponds to five months after introducing
(at random site) ‘Patient Zero’. The last subfigure (Figure 3f) presents a situation after a
very long time of simulations (t > 20,000) where the recovered agents die due to their age
(according to Equation (5)) and are subsequently replaced by newly born children. For
the interaction limited to the first coordination zone (Figure 1a) the disease propagation
stays limited to the nearest neighbors of ‘Patient Zero’. On the other hand, for the neighbor-
hood with sites up to the fifth coordination zone (Figure 1e) for the same infection rates
(pE = 0.03 and pI = 0.02) the disease affects all agents in the population (see Figure 3e).
The direct evolution of the system based on [51] can be simulated and observed with the
JavaScript application available at [52].

In Figure 4 the fraction nI of infected agents (in state I) is presented. The figure shows
the results of ten different simulations for values of the neighborhood radius rE = rI = 1.5,
pE = 0.03, pI = 0.02. In addition, the results of averaging over R = 10 simulations are
presented. In two out of ten cases, the epidemic died out right after the start, while in the
remaining eight cases it lasted from about eight hundred to over a thousand time steps
(days). The figure also shows that the averaging of the results allows for a significant
smoothing of the curves, which fluctuate strongly for individual simulations. Based on
this test (for (not shown) roughly doubly large statistics, R = 25, which do not reveal
significant deviations), we decided to average our results (presented in Figures 5–7) over
ten independent simulations.

The diagrams in Figures 5 and 6 show the evolution of the epidemic. Namely, they
show the number of agents in each state on each day of the epidemic, as well as the
cumulative fraction nD of deaths (D). The fraction nS of susceptible agents and the fraction
nR of recovered agents are shown on the left vertical axis, while the fractions nE of exposed
agents and nI of infected agents and the cumulative fraction nD of deaths caused by
infection are shown on the right vertical axis.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Snapshots from direct simulation [52] for pE = 0.03, pI = 0.02, R = 1. The assumed ranges
of interactions are (a) rE = rI = 1, (b) rE = rI = 1.5, (c) rE = rI = 2, (d,f) rE = rI = 2.5, and
(e) rE = rI = 3. The simulation took t = 150 time steps except for Figure 3f, where the situation after
t > 20,000 time steps is presented.
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Figure 4. Ten different simulations for values of the neighborhood radius rE = rI = 1.5. pE = 0.03,
pI = 0.02.

3.1. rE = rI = 0

The case of rE = rI = 0 (corresponding to total lockdown) leads to immediate disease
dieout as only n0L2 ‘Patients Zero’ at t = 0 are infected and recover after about ∼1/qC(a)
time steps (days) depending on the agent’s age a.

3.2. rE = rI > 0

In Figure 5 the dynamics of states fractions n for various values of the neighborhood
radius rE = rI are presented. We assume infection rates pE = pI = 0.005. The assumed
transition rates pE and pI are very low. As a result, the disease has a very limited chance of
spreading in society.
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80
 0

 0.0001

S

E

I

R

D

n
S
,n

R

n
E
,n

I
,
n
D

t [days]

Figure 5. Cont.
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(c) rI = rE = 2
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(d) rI = rE = 2.5
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(e) rI = rE = 3
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Figure 5. Dynamics of states fractions for various values of the neighborhood radius rE = rI .
pE = pI = 0.005, R = 10.

Figure 5a illustrates the situation where an infected person (independently either in the
E or I states) can only infect the four closest neighbors. The epidemic lasted a maximum
of forty days, the number of agents who were ill at the same time was less than one (on
average, in ten simulations), there were only two deaths out of ten simulations, and the
population was not affected by the disease.

The case presented in Figure 5b illustrates the situation in which each person can
infect up to eight neighbors. This does not cause significant changes during the epidemic
compared with Figure 5a; the average number of simultaneously ill agents remained below
one, this time only one person in ten simulations died due to SARS-CoV-2 infection, and
the duration of the epidemic was approximately 75 days—twice longer than presented in
Figure 5a. We would like to emphasize that the term ‘duration of the epidemic’ determines
the time of the longest duration of the epidemic among the ten simulations carried out.
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Figure 5c shows the situation where there were twelve agents in the neighborhood of
each cell. The transition rates (pE and pI ) turned out to be so low, that—despite extending
the neighborhood—the epidemic vanished quickly. This time the fractions of exposed
and infected agents were slightly higher, the maximum number of sick agents in one day
was more than one, the longest simulation lasted 80 days, and four agents died within
ten iterations.

Increasing the radius of the neighborhood to 2.5 (see Figure 5d) increased the number
of exposed and infected agents more than twice compared to Figure 5c. On the day of
the peak of the epidemic, five agents were sick and seven died during the epidemic (on
average). The epidemic lasted about 600 days, but only about 1–2% of the population
became infected throughout the epidemic.

Only an increase in the number of agents in the neighborhood to 24 (as presented
in Figure 5e) caused a smooth and rapid development of the epidemic. In this case, it
lasted about 550 days, the largest number of sick agents in one day was approximately 500,
and the same number of agents also died throughout the epidemic. During the epidemic,
around 75% of the population became infected.

In the left column of Figure 6 the dynamics of states fractions n for various values of
the radius of the neighborhood rE = rI are presented. We assume pE = 0.03, pI = 0.02. As
we still keep rI = rE , setting pE > pI simulates the fact that exposed agents (who are not
aware of their infection) are more dangerous to those around them than those who know
that they are sick, and therefore avoid contact if they show severe symptoms of the disease.

In Figure 6a the results for the smallest possible neighborhood radius r > 0 is presented.
As in the previous cases with r = 1, the epidemic stopped quite quickly. The largest number
of agents who were ill (nIL2) at the same time was two, the longest simulation time was
120 days, the average number of deaths was well below one, and totally only a few agents
were infected (the curve representing agents in the state ofR is almost not visible).

Figure 6d shows that contact with eight agents in the neighborhood (for assumed
values of infection rates pE and pI ) is enough for the pandemic to affect society to a very
large extent and last for a long time. The longest simulation took about 1000 days. During
the epidemic, almost half of the population was infected, approximately 350 agents died,
and at epidemic peak there were just over 180 sick agents in a single day.

Increasing the range of interaction to the next coordination zone (see Figure 6g) caused
a significant reduction in the duration of the epidemic, as well as causing greater havoc
among agents. In approximately 350 days, roughly 75% of the population was infected,
approximately 500 died, and up to 800 were sick on the day when this number was highest.

Increasing the radius to 2.5, as shown in Figure 6j, further shortened the epidemic
time, this time to just two hundred days. Almost all agents were infected, slightly more
than 600 agents died, and the maximum number of patients on one day was 2000, which is
as much as 20% of the population. Every fifth person was infected by the disease on that
day, and if one adds about 800 agents who were in the exposed state E , we get a situation
where more than one quarter of the population is under the influence of this disease at the
same time.

Further increasing the range of interactions (to the fifth coordination zone and 24 neigh-
bors in it, shown in Figure 6m) gave very similar results to the previous one, except that the
virus spread even faster, in less than 150 days. The number of deaths was similar (a little
below 600), almost all agents had contact with the disease at some stage of the pandemic,
and the maximum number of sick agents in one day was 2800. If one adds over 1100 agents
in the E state on the same day, the effect is that the disease affected nearly 40% of agents on
the same day.
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(c) rI = 1
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(d) rI = rE = 1.5
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(e) rE = 1.5
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(f) rI = 1.5
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(g) rI = rE = 2
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(h) rE = 2
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(i) rI = 2
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(j) rI = rE = 2.5
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(k) rE = 2.5
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(l) rI = 2.5
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(m) rI = rE = 3
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(n) rE = 3
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(o) rI = 3
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Figure 6. Dynamics of states fractions for various values of the neighborhood radius (left) rE = rI ,
(middle) rE ≥ rI = 1, (right) 3 = rE ≥ rI . pE = 0.03, pI = 0.02, R = 10.
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3.3. rE ≥ rI
In the middle column of Figure 6 the dynamics of the state fractions nS , nE , nI , nR

for various values of the neighborhood radius rE are presented. We assume pE = 0.03 and
pI = 0.02. For this set of plots, rI has been predefined as 1 and only rE changes. Translating
this into a description of the real world, sick agents who have disease symptoms are aware
of their illness (infected) and limit their contact with the environment to a minimum, while
oblivious agents (exposed) do not realize that they can transmit the disease. In each of the
tested parameter sets, agents in the I state can infect only four of their closest neighbors.

The case illustrated in Figure 6b was analyzed in Section 3.2 in Figure 6a.
The plot in Figure 6e shows the situation where agents in the state E can infect up

to eight agents in their neighborhood. We see irregularities in the shapes of the curves
showing the fraction of agents in the states I and E , and the duration of the epidemic
is relatively long, over 400 days. However, the values shown in the graphs show that
the pandemic was not dangerous for the entire population. Death from the disease was
recorded on average in less than eight agents, the maximum number of sick agents in one
day was just over six, and the total number of infected agents in the entire epidemic was so
low that the deviation of the curve representing the number of agents in the state S from
the top of the graph is almost imperceptible.

In Figure 6h, the plots for further extension (to the third coordination zone, with z = 12
neighbors) of the radius of the neighborhood of exposed agents (in the state E ) are presented.
The curves are much smoother than those presented in Figure 6e; however, we can still see
some irregularities in the curves describing agents in the E and I states. The duration of
the longest simulation was approximately 700 days, the number of deaths was less than
330, and at the peak of the pandemic, approximately 220 agents were simultaneously ill.
The curves presenting the fraction of agents in the states of S andR almost perfectly line
up on the right side of the chart, meaning that half of the population contracted the disease
while the other half remained healthy throughout the epidemic.

The case where agents in the state E can infect agents within a radius of 2.5 is shown
in Figure 6k. The epidemic was definitely more dynamic than in the previously studied
case (Figure 6h), lasting only a little over two hundred days, and the maximum number of
sick agents in one day nIL2 reached almost 1500 agents. The sum of those who died from
the coronavirus was less than 600, and during the pandemic, approximately 85% of the
population became recovered (and earlier exposed and/or infected).

Finally, for the radius rE increased to three (see Figure 6n) we did not observe too
many changes compared to the previous case (Figure 6k). The epidemic was even shorter,
it lasted a little more than 150 days, the number of deaths was very similar (it could be
estimated at 600), slightly more than 85% of agents in the population were infected, and at
the hardest moment of the pandemic there were at the same time about 2370 sick agents
(in the I state). The results are therefore almost identical to those of rE = 2.5, except that
disease propagation is faster.

The right column of Figure 6 shows cases with predetermined rE = 3 and various rI .
We keep pE = 0.03 and pI = 0.02

All graphs are very similar to each other, as a large range of infections of agents in
the state E makes the influence of rI on epidemic evolution only marginal. This can be
easily observed by comparing the scales presented in all subfigures. The assumed range of
infection rE = 3 is large enough (at least for assumed values of transmission rates pE and
pI ) to prevent any observable influence of rI on epidemic trajectories.

4. Discussion

Let us start the discussion with comparing the leftmost (Figure 6a,d,g,j,m) and the
middle (Figure 6b,e,h,k,n) columns of Figure 6. The comparison reveals that quarantining
or limiting the connectivity of agents in the I state (both infected and informed) may
bring good or even very good results in preventing disease propagation, depending on the
arrangement of the other parameters. For rE = 1.5, this completely brought the epidemic to
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a halt, which would otherwise affect more than half the population. With rE = 2, it makes
it possible to reduce the share of infected agents in the population from 75% to 50%. The
effects on rE = 2.5 and rE = 3 are similar—instead of the total population, less than 90%
of population became infected. When the rE = 1.5 pandemic duration was significantly
shortened, it is because the virus was unable to survive, and the disease was extinct. In
other cases, the duration of the epidemic increased; the restrictions introduced for agents
in the I state did not completely extinguish the disease, but allowed to slow it down and
mitigate its effects.

For low values of the probability of infection (pE = pI = 0.005), that is, in a situation
where the transmission of the virus is not too high, even a slight limitation of the contact
among agents allows for a complete inhibition of the disease and protection of the society
against its negative effects (see Figure 5). We note that manipulating the pE and/or pI
parameters may reflect changes in disease transition rates with their low values correspond-
ing to wild variant of the SARS-CoV-2 virus while higher values correspond to the fiercer
(including delta and specially omicron) variants of the SARS-CoV-2 virus. For instance,
for a fixed radius of interaction (rI = rE = 3) for low values of pE = pI = 0.005 nearly
75% of the population reached the R state (Figure 5e) while increasing infection rates to
pE = 0.03 and pI = 0.02 caused the entire population to fall ill (Figure 6m). The summed
values of the fractions nE of exposed and nI infected agents at the peaks of disease are
6.6% (for pE = pI = 0.005, Figure 5e) and 39% (for pE = 0.03 and pI = 0.02, Figure 6m) of
the population.

The results presented in Figures 5 and 6 are summarized in Figure 7, where the
maximum fraction of agents in state I vs. the neighbours number z for various sets of
parameters is presented. We observe a gradual increase in the maximum number of infected
agents (up to 30%) as the number of agents in the neighborhood increases. An exception to
this rule is observed only when rE = 3, when the maximum level of infections is constant
and it does not change with the increase of the range of the interaction of agents in state I .
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Figure 7. Maximal fraction nI of agents in state I as dependent on the number of agents’ neighbours z
in the neighborhood. (a) pE = pI = 0.005, zE = zI = z, (b) pE = pI = 0.01, zE = zI = z, (c) pE = 0.03,
pI = 0.02, zE = zI = z, (d) pE = 0.03, pI = 0.02, zE = z, zI = 4, (e) pE = 0.03, pI = 0.02, zE = 24,
zI = z.

5. Conclusions

In this article we present a stochastic synchronous cellular automaton defined on a
square lattice. The automaton rules are based on the SEIR model with probabilistic param-
eters collected from real human mortality data and SARS-CoV-2 disease characteristics.
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Automaton rules are presented in Algorithm 1. With computer simulations, we show the
influence of the radius of the neighborhood on the number of infected and deceased agents
in the artificial population.

The study presented in this paper is based on static automaton. Thus, our approach
is equivalent to disease propagation described in terms of conduction-like processes (i.e.,
the position of each cell is fixed and can infect a neighbor, at distance rE or rI ). The latter
is a natural way to model with the cellular automata technique. However, we note that
also convection-like processes (i.e., the population can flow within the system) may play a
crucial role at both large [53] and local scales [19,54].

Further enrichment of the model can lead to the introduction of additional compo-
nents, including the compartment V that describes the vaccinated agents. This model
improvement allows us to study scenarios with limited and unlimited vaccine supply [20]
or the existence and stability of steady states [55,56]. Vaccinations seem to be particularly
effective when the vaccination campaign starts early and with a large number of vaccinated
individuals [20]. Moreover, the realistic models should take into account people’s attitudes
to vaccination programs [57,58].

In conclusion, increasing the radius of the neighborhood (and the number of agents
interacting locally) favors the spread of the epidemic. However, for a wide range of
interactions of exposed agents, even isolation of infected agents cannot prevent successful
disease propagation. This supports aggressive testing against disease as one of the useful
strategies to prevent large peaks of infection in the spread of SARS-CoV-2-like disease. The
latter can have devastating consequences for the health care system, in particular for the
availability of hospital beds for SARS-CoV-2 and other diseases.
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Abstract: The II law of thermodynamics is most often given in three supposedly equivalent formula-
tions: two Clausius (I and II) and one Kelvin. The most general and indisputable entropy formulation
belongs to Clausius (II). The earlier Clausius I principle determines the natural direction heat flow
between bodies at different temperatures. On the other hand, the Kelvin principle states that it is
impossible to completely convert heat into work. The author argues that the Kelvin principle is
a weaker statement (or more strictly non-equivalent) than the Clausius I principle, and the latter
is a weaker statement than Carnot principle, which is equivalent to Clausius II principle. As a
result, the Kelvin principle and the Clausius I principle are not exhaustive formulations of the II
law of thermodynamics. At the same time, it turns out that the Carnot principle becomes such a
formulation. Apart from providing a complete set of proof and disproof, the author, indicates where
the methodological errors were made in the alleged proof of the equivalence of the Kelvin principle
and both Clausius principles.

Keywords: II law of thermodynamics; Carnot principle; Kelvin principle; Ostwald principle;
perpetuum mobile type III; Clausius I and II principles; formal implication; model theory

1. Introduction

We shall start with the chronological formulation of the fundamental principles of
thermodynamics according to Carnot, Clausius I, Kelvin and Clausius II. These four prin-
ciples are closely related to the II law of thermodynamics. It can be said that the Carnot
principle opened the way to the formulation of the II law of thermodynamics, and the
Clausius II principle fully achieved this goal. It is commonly claimed (allegedly proven)
that the principles of Clausius I and II and the Kelvin principles are equivalent, and thus
they constitute the II law of thermodynamics. On the other hand, the Carnot principle
is claimed to be only a consequence of the II law of thermodynamics, not its equivalent
formulation. Therefore, the relationship between all four principles needs to be verified.

In order for the formulated principles to be exact, it is necessary to define the context:
the virtual space of thermodynamic processes and the elementary rules by which they
are governed. The processes will be represented on the basis of diagrams characteristic
of heat engines or heat pumps (see Figure 1). Such diagrams include a heat reservoir
(thermostat) with a temperature of T1 (heater) and a heat reservoir (thermostat) with a
temperature of T2 (cooler, T2 < T1). The reservoirs can exchange heat naturally between
each other or with a device that can perform work (engine) or, at the expense of work, force
unnatural heat transfer between the reservoirs (heat pump or refrigerator). The diagrams
can also show impossible virtual thermodynamic processes. The role of the formulated
thermodynamic principles is to narrow the set of thermodynamic processes to a set of
physically possible processes. Nevertheless, the initial Ω set of all considered diagrams
(processes) must also include non-physical processes. Otherwise, it would not be possible
to prove or disprove the implications of the two principles, which are often based on the
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negation of physical processes. The set of diagrams of Ω virtual processes will, however,
be limited by the assumption that the I law of thermodynamics (or more precisely, the law
of energy conservation) is met (Q1 = W + Q2).

Figure 1. Schemes of two basic thermal devices: (a) A typical heat engine operating at the expense
of the heat from the higher temperature reservoir. (b) A device that extracts heat from the lower
temperature reservoir is necessarily (e.g., in the Carnot principle) a heat pump or a refrigerator that
must be powered by work.

The simplicity of the diagrams allows them to be added naturally, reflecting the su-
perposition of physical processes. Such a superposition appears implicitly in any textbook
proof of the equivalence of the thermodynamic principles which are under consideration in
this work. It is, therefore, natural that where two diagrams comply with a given principle,
their sum should also comply with that principle. In other words, it is assumed that the set
of diagrams in accordance with a given physical principle should be a convex set in the
above-mentioned sense.

Carnot principle (C0)

The efficiency of the heat conversion process Qin > 0 to work W in the device operating in the range
between the temperature of the heat source Tin and the temperature of the heat receiver Tout, cannot
be greater than the ratio of the difference of these temperatures to the temperature of the heat source:

W
Qin

≤ Tin − Tout

Tin
. (1)

Such a formulation does not explicitly contain the information that the temperature of
the heat source must be higher than that of the heat receiver. However, the implicit
condition that the engine performs real positive work (W > 0) entails the aforementioned
temperatures relationship Tin = T1 > Tout = T2. In this case, the condition of the Carnot
principle takes the form:

η :=
W
Q1

≤ T1 − T2

T1
=: ηC. (2)

Mathematically speaking, we can also consider the process of work performed by an
external force (W < 0), then Tin = T2 < Tout = T1 and:

W
| Q2 |

≤ T2 − T1

T2
< 0. (3)

This correct condition applies to refrigeration processes in which, thanks to external work,
it is possible to pump heat from a lower to a higher temperature. Such processes exhibit
high coefficients of cooling efficiency | Q2 | / | W | or the efficiency of the heat pump
| Q1 | / | W |≥ 1. However, it is convenient to introduce an efficiency parameter η̃ ≤ 1 for
the refrigeration processes, which corresponds to an engine process running in the opposite
direction. Thus, such a parameter is determined analogously to (2), with the sense that the
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minuses are shortened η̃ =| W | / | Q1 |= (−W)/(−Q1) = W/Q1. To find the condition
for η̃, let us transform (3) by virtue of W =| Q2 | − | Q1 |< 0:

1− | Q1 |
| Q2 |

≤ 1− T1

T2
⇒ | Q2 |

| Q1 |
≤ T2

T1
⇒ η̃ ≥ ηC. (4)

Thus, the efficiency parameter of η̃ cooling processes is not lower than the Carnot efficiency
(unlike the engine processes which have the efficiency not greater than the Carnot efficiency).
This result was obtained here on the basis of the application of the Carnot principle for
negative work W < 0. This result will be later deduced through independent considerations
of a different kind.

Historically speaking, Carnot in 1824 [1] did not yet know the concept of absolute
temperature and only defined the dependence of efficiency on a temperature difference [2].
Nevertheless, his considerations on the isothermal-adiabatic cycle implied the existence of
maximum efficiency and minimal temperature. This minimum temperature along with the
absolute temperature scale were formally introduced by Thomson (Lord Kelvin) [3]. Such
absolute temperature scale is adopted in this work. This temperature is consistent with
the zeroth law of thermodynamics, and its changes are consistent with the operation of a
thermometer—so there is no need to give its elementary definition. The expression for the
efficiency ηC(T1, T2) of the Carnot cycle was known as the Carnot function, which was not
originally fully defined by Carnot. This function was intensely sought after by Clausius
and Kelvin. Thus, the above-mentioned scholars, who had always referred to Carnot, also
made an important contribution to the contemporary form of the C0 principle [4].

Carnot, as a pioneer of thermodynamics [3,5,6], did not know yet either the law of
conservation of energy or the I law of thermodynamics [7], so he used the concept of the
flow of the indestructible fluid of heat (caloric) [2]. Nevertheless, the Carnot principle can
be considered in the context of the II law of thermodynamics [8–10], putting aside the fact
that Carnot did not know the I law of thermodynamics. In the context of the [11] research
of the finite-time Carnot cycle, it can be concluded that the idea of a Carnot engine, in a
sense, is still not a closed concept in terms of engineering and experience.

Clausius I principle (CI)

Heat naturally flows from a body at a higher temperature to a body at a lower temperature. Therefore,
a direct (not forced by work) process of heat transfer from the body at a lower temperature to the
body at a higher temperature is not possible.

An absolute temperature scale is not needed to determine which reservoir has a higher
temperature—even the Celsius scale is sufficient here. The Clausius I principle seems
so trivial that one might suppose that it has no far-reaching, less trivial consequences.
Nevertheless, it is allegedly proved, that the Clausius I principle is equivalent to the full II
law of thermodynamics [12–15]. Criticism of this popular proof could only be found in a
2008 preprint by a scholar Bhattacharyya [16].

The CI principle is ascribed to Clausius’ publications from 1850, 1851 [17,18] and 1854,
1856 [19,20]. Contemporary work by Xue and Guo suggests that the above assignment
is not strict [21]. These authors do not distinguish two Clausius principles (CI, CII), so
it is not surprising that their reference to later Clausius textbooks [22,23] has to do with
the second version of the Clausius principle (CII). However, in the chapter: “III. Second
Main Principle of the Mechanical Theory of Heat” and in section: “5. New Fundamental Principle
concerning Heat” of textbook [23], Clausius wrote: “...and then enunciate the principle as
follows: ‘A passage of heat from a colder to a hotter body cannot take place without compensation’.
This proposition, laid down as a Fundamental Principle by the author...” Such a declaration by
Clausius from 1879 constitutes his principle in the first version (CI).
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Kelvin principle (K).

The processes of converting heat to work and work to heat do not run symmetrically. A full conver-
sion of work to heat (internal energy) is possible. However, a full conversion of the heat to the work
is not possible in a cyclical process.

The principle called the Kelvin principle is formulated in various but similar ways. This
relates not so much to the original formulation of Kelvin [24,25], but more to a later formula-
tion of Planck (see [26]), called the Kelvin–Planck formulation (see [27]). The above version
of the K principle reflects, as intended by the author, the essence of all these formulations—
although this form of the principle comes from Planck or Ostwald ([26]) rather than initially
from Kelvin. Nevertheless, traditional formulations identically equivalent to the K ver-
sion of the principle are called the Kelvin principle, not the Kelvin–Planck or Ostwald
principle [12–15,28–31]. In the publications [24,25,32], Kelvin expressed his principle as
follows: “It is impossible, by means of inanimate material agency, to derive mechanical effect from
any portion of matter by cooling it below the temperature of the coldest of the surrounding objects”.
Such a formulation, however, seems weaker than the formulation of K, as it seems to refer
to the performance of work at the expense of the cooler heat, and not more naturally at
the expense of the heater heat. Therefore, it is not known which of the following elements
Kelvin wanted to emphasize in this formulation: (i) a change in the temperature of the
reservoir when taking heat converted into work, (ii) limitations in this conversion of heat
to work, (iii) the impossibility of cooling down the coldest body by means of the work
performed by this body? Thus, it can be said that Kelvin did not provide his own formu-
lation of the II law of thermodynamics in a very strict and careful manner [2]. Therefore,
it is not surprising that we use a version of the rule of the type K slightly different from
the original formulation (see also [33]). Nevertheless, Kelvin’s formulation of the II law
of thermodynamics is dated to 1851 in connection with his lectures published in the form
of articles in two journals [24,25]. In addition, in the second journal, Kelvin separated a
short article in which he repeated the formulation of his principle, and also gave a general
interpretation of the II law of thermodynamics [32].

It can be concluded that the Kelvin principle in the K version (not original Kelvin
version) is the same as the Ostwald principle, which says that there is no perpetuum mobile
of type II (πI I) [26,28]. In other words, there is no heat engine with an efficiency of 100%:

η =
W
Qin

=
W
Q1

< 1. (5)

It is assumed here that the heat source has a higher temperature than the heat receiver
(Tin = T1 > Tout = T2). Formally, however, it is possible to consider taking heat from a
reservoir with a lower temperature (conventionally Q2 < 0) and converting it into work
W > 0:

η2 =
W
| Q2 |

< 1. (6)

And for the processes going in the opposite direction, the equivalent of this efficiency will
have the form η̃2 =| W | / | Q2 |.

At first glance, the Kelvin principle seems to be very trivial and seems to be signifi-
cantly weaker than the Carnot principle. Nevertheless, it is allegedly proved that the Kelvin
principle in the form of K is equivalent to the full formulation of the II law of thermodynam-
ics [12–15]. Criticism of this proof based on combining engine and heat pump processes
could only be found in the aforementioned work by a scientist Bhattacharyya [16].
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Clausius II principle (CII)

There is a function of the state of the thermodynamic system called entropy, which the dependence
of the value on time allows to determine the system’s following of the thermodynamic equilibrium.
Namely, in thermally insulated systems, the only possible processes are those in which the total
entropy of the system (two heat reservoirs) does not decrease:

ΔS = ΔS1 + ΔS2 ≥ 0. (7)

For reversible processes, the increase in total entropy is zero, and for irreversible processes it is
greater than zero. The change in entropy of a reservoir is here understood as the ratio of the heat
introduced into it to its temperature.

Thus, when using standard notations, Clausius II principle takes the following form for the
processes considered here:

ΔS =
−Q1

T1
+

Q2

T2
≥ 0. (8)

It is assumed that a specific device operating cyclically between heat reservoirs does not
change its entropy by definition of cyclicity. Additionally, similarly for the C0 principle, the
absolute temperature scale is assumed here.

The Clausius II principle is the most elegant formulation of the II law of thermody-
namics. Some textbooks only introduce an entropy formulation of this principle (e.g., [34]).
Only the definition of entropy presents some difficulty and challenge here. Clausius’s defi-
nition of entropy (integral of heat divided by temperature) is not always general enough
in thermodynamics. However, we assume that it is sufficient for the process diagrams
considered here. Another, usually overlooked, subtlety of the II law of thermodynamics
(Clausius II principle and others) is that it actually speaks of states beyond the thermody-
namic equilibrium (T1 �= T2) to which the system is approaching but which it does not
necessarily achieve (e.g., on diagrams with unlimited heat reservoirs—thermostats).

The year 1865 of the publication of work [35] is regarded to be the year when principle
CII was created, even though in the years 1854 and 1856 in Clausisus works [19,20] there
were expressions of the type N = ∑ Q/T or N =

∫
dQ/T with the correct analysis of signs

(N > 0 for irreversible processes, N < 0 for impossible and N = 0 for reversible). The use
of inequalities in physics would be something completely new, so in the 1850s in Clausius
works they do not appear explicitly. Inequalities in the mathematical formula can be found
in Clausius, for example, in the textbook [22] from 1867. In this textbook, Clausius also
changes the notation of N to S by calling this quantity a transformation value (process
measure). Then, translating transformation into Greek (τρoπη), Clausius introduces the term
entropy. Of course, Clausius distinguished the entropy change in a process from its absolute
value. The concept of entropy entered the canon of physics, and the principle of its growth
(more precisely, its not decreasing) constitutes, for example, the term entropy production [36].
This form of the principle is valid in elementary systems of statistical mechanics [37].

There are also other attempts to formulate the II law of thermodynamics. The formula-
tion by Caratheodory is sometimes given: “In the surroundings of each thermodynamic state,
there are states that cannot be achieved by adiabatic processes”. However, such a formulation is
expressed in a completely different language than that considered in this work. Moreover,
this statement sounds as tautological as the statement: there are places in the mountains that
are inaccessible to hiking trails. At the same time, Caratheodory’s statement is given very
often without strict proof of equivalence with other formulations (see [29,31]). From a
contemporary critique of Caratheodory’s formulation in preprint [38] we also learn that
this formulation was greatly criticized by Planck.

The second law of thermodynamics is also formulated in the language of statistical
physics. The outstanding physicist Ludwig Boltzmann was the first to undertake this task.
Unfortunately, this article is limited to phenomenological thermodynamics only.

103



Entropy 2022, 24, 392

In the context of thermodynamic considerations, the abstract concept of perpetuum
mobile often appears. It is, therefore, worthwhile to clarify and differentiate this concept
as follows.

Perpetuum mobile (π0, πI , πI I , πI I I)

A perpetuum mobile is a hypothetical machine, the movement and efficiency of which would con-
tradict certain recognized laws of physics. The most faithful meaning of the Latin name (“forever
moving") perpetuum mobile type 0 (π0) would not be stopped in spite of the existence of frictional
forces and resistance to motion. A perpetuum mobile type I (πI ) would do work from nothing (or
almost nothing—efficiency greater than 100%) against the principle of conservation of energy and
against the I law of thermodynamics. A perpetuum mobile type II (πI I ) would be 100% efficient
and would be against the Kelvin principle. On the other hand, the perpetuum mobile type III (πI I I )
would have efficiency lower than 100%, but higher than the maximum efficiency predicted by the
Carnot principle.

Most often it only stands out perpetuum mobile πI and πI I . However, perpetuum mobile
πI I I is crucial for this article. Sometimes the term perpetuum mobile of type III is understood
as π0. However, the proposed terminology seems clear and consistent with the meaning of
the Latin words perpetuum mobile for π0 and consistent with the classification of various
ways of doing work by πI , πI I , πI I I—while machine π0 does not do the work. A similar no-
tation to perpetuum motion will also be applied to the π↑ process where heat spontaneously
flows uphill (towards higher temperature). Such a process, despite its similarities, does not
have to be automatically equivalent to πI I .

Laws of physics, such as the thermodynamic principles under consideration, are sub-
ject to some kind of experimental verification. Unfortunately, from a formal point of view,
these principles are not subject to truth proof like mathematical theorems. Nevertheless,
the two principles may result from each other. Unfortunately, the implication of principles
is something more complex than the material implication of Table 1, that depends only on
logical values.

Table 1. Table of logical values of material implication and (material) equivalence.

p q p ⇒ q p ⇔ q

0 0 1 1
0 1 1 0
1 0 0 0
1 1 1 1

Two principles may be subject to a relationship of formal implication. The formal
implication related to a specific theoretical system implemented by certain models becomes
a semantic implication. A provable formal implication is called syntactic implication.
Kurt Gödel proved the theorem that a semantic implication is a syntactic implication. In
other words, a model-based system is needed to prove formal implication. In the case of
thermodynamic principles, models are sets of processes (diagrams) that follow a given
principle. Thus, the formal implication of the two principles can be written as follows:

Z1 |→ Z2 ⇔ ∀d ∈ Ω : d ∈ {Z1} ⇒ d ∈ {Z2}, (9)

where {Z} stands for the model, i.e., the set of processes consistent with the Z principle. If
there are several (or many) models, the formal implication should apply for all Z1 models,
and there should be at least one Z2 model containing the same d process. The symbol
of formal (syntactic) implication |→ used here was created from the combination of the
symbol known from the formal logic � and the usual symbol of the implication arrow→
(see [39]). Strictly speaking, this symbol in LaTeX transcription is a combination of the
sign | with the sign→ using a negative space (“\med \!\rightarrow”). In formal logic, the
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symbol |= is also used for the semantic formal implication. In model theory, this symbol
is synonymous, but it is used to constitute a sentence, thesis, or a principle within some
system [40]. For example, the fact that in the system of theoretical thermodynamics T the
Kelvin law is true we write as T |= K or more precisely T |= (CII |→ K), where we assume
the truth of the CII principle.

We can see that the system of models (sets of processes) allows us to reduce the formal
implications to the material implications. The significant difference, however, is that the
material implication must hold true for all the processes (diagrams) of the system to which
the formal implication relates. This also applies to transposition law, which is used in the
scheme of proof by contradiction:

Z1 |→ Z2 ⇔ ∀d ∈ Ω : d /∈ {Z2} ⇒ d /∈ {Z1}. (10)

Thus, in order to prove the implication of the principles, it is not enough to point to the
d′ process, which contradict the Z2 principle, and to show that it implies a contradiction
with the Z1 principle (compare Figure 2a with Figure 2b). It is also worth noting that
proof by contradiction is not the most valued method of proof. Constructive proof that
follows the original direction of implication is the most valued. There is even an orthodox
version of logic (intuitionistic logic), that rejects the law of the excluded middle—including
proof by contradiction. There have even been attempts to integrate intuitionism into the
mathematical proving system. The Brouwer’s program is the best known in this respect.

Figure 2. Schematic representation of the relationship between two physical principles Z1 and Z2

in a set of virtual physical processes Ω ({} brackets to distinguish the model from the principle
are omitted here): (a) The case of implication of principles means the inclusion of appropriate sets
(models). (b) A case of principles that do not implicate each other. The counterexample in the form
of the d1 process disproves the implication Z1 |→ Z2, despite pointing to the d′ process that would
allegedly prove this implication by contradiction.

So, in order to prove the Z1 |→ Z2 implication of the principles, it is necessary to
show that the sets of processes conforming to these principles (their models) are subsets
{Z1} ⊂ {Z2}. The set of the resulting (often weaker) principle should, therefore, be a set
greater than or equal to the set of the previous (often stronger) principle. It is a little easier
to rebut the implications of two principles. For this purpose, it is enough to indicate the d1
process, which belongs to the {Z1} set, and does not belong to the {Z2} set (see Figure 2b).

The principles are formally equivalent when the formal implication acts both ways:

Z1 ↔ Z2 ⇔ (Z1 |→ Z2) ∧ (Z2 |→ Z1)⇔ ∀d ∈ Ω : (d ∈ {Z1} ⇔ d ∈ {Z2}). (11)

Usually the equivalence of the three principles is proved by a looped chain of implications
Z1 |→ Z2 |→ Z3 |→ Z1 (or just as well in the opposite direction). However, this way of
proving is prone to error—it is enough to undermine the weakest link in the chain loop
for the equivalence proof to be invalid. A more comprehensive approach is to analyze the
entire matrix of implications (Table 2).
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Table 2. Full status quo matrix of the mutual implications of the four principles related to the II law of
thermodynamics. Question mark “?” refers to the vague status quo of implication, and the annotation
“(?)” refers to the implications questioned by the author.

Principle Carnot Clausius I Kelvin Clausius II

Carnot ≡ C0 |→ CI ? C0 |→ K ? C0 |→ CII ?
Clausius I CI |→ C0 (?) ≡ CI |→ K (?) CI |→ CII (?)
Kelvin K |→ C0 (?) K |→ CI (?) ≡ K |→ CII (?)
Clausius II CII |→ C0 CII |→ CI CII |→ K ≡

We can see that of the 12 implications, 3 do not have a clear status quo. The point is that
Carnot’s principle is not given as an equivalent formulation of the II law of thermodynamics,
but as a consequence of this law. Moreover, we see that as many as 6 other implications
are being questioned. The point is that the author supposes that the principles of Clausius
I and Kelvin are not equivalent to each other and are not equivalent to the II law of
thermodynamics. The main goal of this paper is to formally prove these hypotheses.

2. Materials and Methods

The work is theoretical in nature, based on strict proof of the formal implications of the
relevant principles and the rebuttals of the remaining formal implications, which are not
satisfied. The considered formal implications relate to the defined simplified conceptual
system of thermodynamics. This system consists of a set of Ω of all real or virtual processes
(diagrams), along with some elementary operating rules for these processes.

An exemplary engine diagram is shown in Figure 3. For convenience, such a diagram
will be marked with the arrows ↓→↓, informing respectively that: heat flows from the
heater, work is performed by the device (engine), heat flows to the cooler. The arrows
of such a diagram determine the signs of heat and work in the associated record of the
(Q1, W, Q2) process, which in this case of the engine process means the positivity of all
parameters: Q1 > 0, W > 0, Q2 > 0. If an arrow is pointing in the opposite direction, it
means that the part of the process is going the opposite way and the corresponding heat
or work symbol is negative (Figure 4). However, if a given part of the process does not
occur, it is marked with 0, e.g., diagram ↓ 0 ↓ represents a process in which heat flows from
the heater to the cooler without any work being done. It is assumed that the symbols of
the diagrams represent (apart from the null 000 process) a continuum of processes with
different values of heat and work following the arrows (and the I law of thermodynamics).
In addition, diagrams specifying the efficiency of the engine (↓→↓)η or the efficiency of
the heat pump (↑←↑)η̃ will also be considered.

Figure 3. Schematic drawing of the engine process with the equivalent arrows diagram and the
equivalent notation used in the text. Most often, the engine process denoted by capital letters will
denote a Carnot efficient engine. The ↓→↓ engine process with a different efficiency may then be
labeled as (Q1 ± q, W, Q2 ± q) or (q1, w, q2).
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Figure 4. Schematic drawing of the cooler process with the equivalent arrows diagram and the
equivalent notation used in the text. The directions of the arrows show the actual direction of heat
flow or how the work was done. The heat and work symbols refer nominally to the engine process,
so they have negative values here.

As mentioned before, a priori is assumed that the diagrams satisfy the law of conserva-
tion of energy, or the I law of thermodynamics: Q1 = W + Q2. Additionally, in the diagram
set, a rule for adding diagrams is introduced, which physically means linking the processes.
Adding diagrams is used, among other things, to define the concept of a convex of a set
of diagrams:

The definition of a convexity (for a set of diagrams—for a model)

A set of diagrams will be called convex if the sum of any two diagrams of this set belongs to this set.
In other words, the convexity of the set requires that the add diagrams operation be internal to that set.

Thus, the definition of the convexity of the set is here simplified to the operation of adding
elements without having to consider multiplying diagrams by non-negative real numbers.
However, the ability to scale diagrams means that the above definition is equivalent to
the standard geometric definition of a convex set. The definition of a convex set helps to
formulate the following important condition:

Completeness condition (for model of principle)

It is assumed that the set of diagrams (processes), consistent with a given principle and called the
model of this principle, must be the largest convex set possible. It is allowed to have many alternative
sets (models) that meet the above condition, in the sense that a given set (model) cannot be enlarged
without breaking compliance with the principle or without breaking the convexity requirement.

The completeness condition allows for the consideration of richer models (sets of diagrams)
for a given principle. Thanks to this condition, diagrams (processes) whose compliance
with the principle is not obvious can be attached to the model. An attached diagram
(process) can be created as a result of adding two trivial diagrams or diagrams already
belonging to the model. In addition, a diagram (process) can be attached to the model, the
addition of which to existing diagrams results in a trivial diagram or a diagram belonging
to the model. This procedure can fork the model into two models or the entire model family.
Regardless of the number of models in the family, each model should be considered an
alternative independent model. If there is only one model, it will be called a homogeneous
model here, and in the literature it is sometimes called a stable model.

Given the above theoretical structure, we can study the formal implications (or lack
thereof) between the four elementary principles of thermodynamics (C0, CI, K, CII). There
are as many as 12 formal implications from Table 2 to be proved or disproved. Proof of the
Z1 |→ Z2 implication will be performed double, once by checking the content of the sets
of diagrams (models) of both principles {Z1} ⊂ {Z2}, two by formal constructive proof
(proof by contradiction will not be used). Similarly, disproving the implications will consist,
firstly, in checking that the models do not contain themselves {Z1} �⊂ {Z2}, and secondly,
in pointing to a counterexample in the form of a diagram d1 consistent with principle Z1,
but inconsistent with principle Z2 (see Figure 2b). The negation of the formal implication
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will be denoted by the standard negation operator ¬(Z1 |→ Z2) or by the crossed arrow
Z1 |� Z2.

The proof and rebuttals will be presented in the Discussion section and summarized
in the Results section. A synthesis will be given in the Conclusions.

3. Discussion: Principles Structure, Proof and Rebuttals

Before starting the analysis of formal implications between thermodynamic principles,
it is worth writing out sets of diagrams (models) for individual principles. Some principles
have a complex structure of models that take into account different possible scenarios for
realizing a given principle.

3.1. Structure of the Carnot Principle Model

The main processes mentioned in the Carnot principle are ↓→↓ engine processes with
efficiency not higher than ηC. This set can be extended to include limit cases in the form of
processes: zero efficiency ↓ 0 ↓ and null process 000.

The remainder of the model will be found by eliminating processes, that are inconsis-
tent with the condition of internality of adding processes. Consider the (↓→↓)ηC engine
process with a maximum Carnot efficiency of ηC. Let us describe the parameters of this
non-zero process with three values (Q1, W, Q2). Less efficient processes have the form
(Q1 + q, W, Q2 + q), where q > 0. Note that such processes are the sum of the Carnot process
with the maximum efficiency (↓→↓)ηC and the process with zero efficiency ↓ 0 ↓ (q, 0, q).
On the other hand, adding the ↑ 0 ↑ (−q, 0,−q) process to the Carnot process would lead to
obtaining a virtual (impossible) process with efficiency greater than Carnot efficiency. Thus,
processes of type ↑ 0 ↑ should be excluded from the Carnot principle model. Similarly,
we will exclude type ↑←↑ (−Q1 − q,−W,−Q2 − q) refrigeration processes, which are the
inverse of engine processes with less than maximum efficiency. Well, by adding the Carnot
process to this process, we get a process outside the model (q > 0):

(−Q1 − q,−W,−Q2 − q) + (Q1, W, Q2) = (−q, 0,−q) /∈ {C0}. (12)

In addition to the excluded refrigeration processes, there are form ↑←↑ (−Q1 +
p,−W,−Q2 + p) refrigeration processes which are not excluded for p ≥ 0. It is most
convenient to assign the efficiency parameter η̃ to such refrigeration processes, which refers
to the inverse engine process. Although the inverse engine process is virtual (η̃ ≥ ηC), the
refrigeration process (↑←↑)η̃ exists and belongs to the Carnot principle model.

A borderline case of the ineffective refrigeration process of ↑←↑ for η̃ → 1 is the
process of converting work into heat of the heater ↑← 0. The superposition of the ↑←
0 process with an appropriately selected ↓ 0 ↓ process gives the 0 ←↓ process. And
combining the last two processes results in a new type of process ↓←↓. However, as we
add a small heat flow in the form ↓ 0 ↓ to the ↑← 0 process, we get ↑←↓.

In summary, the Carnot principle model consists of the following processes:

{C0} = {000, ↓ 0 ↓, 0 ←↓, ↑← 0, ↓←↓, ↑←↓, (↓→↓)0<η≤ηC , (↑←↑)ηC≤η̃<1}. (13)

We can see that the uniform (stable) model of Carnot principle consists of diagrams of
8 types. There are 3× 3× 3 = 27 possible all diagram types (make sense or not ). However,
some diagrams contradict the principle of conservation of energy: with two zeros 3× 2 = 6,
with one zero 3× 2 = 6, without zeros 2—which adds up to 6 + 6 + 2 = 14 for diagrams
outside areas of consideration. So in the domain of consideration there are 27− 14 = 13 of
diagram types. This means that the Carnot principle model rejects five types of diagrams.

Therefore, it is worth listing the complement to the Carnot model (a set of impossible
processes):

{C0} = {↑ 0 ↑, 0 →↑, ↓→ 0, ↑→↑, ↓→↑, (↓→↓)ηC<η<1, (↑←↑)0<η̃<ηC}. (14)
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Indeed, five new types of diagrams were created simply by changing the direction of the
corresponding arrows. The other two diagrams do not differ in type but have different
ranges of efficiency values. Thus, combinatorics is here in line with the resulting model of
Carnot’s principle.

3.2. Structure of Models for Clausius I Principle

The Clausius principle I has a whole family of models, that can be parameterized with
the maximum efficiency ηm ∈ [0, 1]:

{CI} = {CI}ηm = {CI}0, {CI}0<ηm<1, {CI}1. (15)

We have a separate principle model for each value of maximum efficiency. The principle
allows for both a zero efficiency model containing only refrigeration processes without
engine processes, and also allows for an efficiency model of 1 (perpetuum mobile πI I) without
refrigeration processes:

{CI}0 = {000, ↓ 0 ↓, 0 ←↓, ↑← 0, ↓←↓, ↑←↓, no engines, ↑←↑}, (16)

{CI}0<ηm<1 = {000, ↓ 0 ↓, 0 ←↓, ↑← 0, ↓←↓, ↑←↓, (↓→↓)0<η≤ηm , (↑←↑)ηm≤η̃<1}, (17)

{CI}1 = {000, ↓ 0 ↓, 0 ←↓, ↑← 0, ↓←↓, ↑←↓, no re f rigerators, ↓→ 0, ↓→↓}. (18)

The first six trivial processes are common to all models, but the engine and refrigeration
processes already differ in the sense that in extreme cases one of them does not occur.

3.3. Structure of Models for Kelvin Principle

The structure of the Kelvin principle models is the most complex of all the principles
considered in this paper. It turns out that this principle allows scenarios of models with
both “top-down” ↓ and “bottom-up” ↑ heat flows. The zero-efficiency scenario model
allows for both directions simultaneously. Thus, the structure of the Kelvin models can be
represented as follows:

{K} = {K}�0, {K}↓0<ηm<1, {K}↓1− , {K}↑0<ηm<1, {K}↑1− . (19)

Models containing processes of arbitrarily high efficiency but less than one (1−), which
should not be confused with models with a specified maximum efficiency of ηm, have been
distinguished here. The zero-efficiency model is as follows:

{K}�0 = {000, ↓ 0 ↓, 0 ←↓, ↑← 0, ↓←↓, ↑←↓, no engines, ↑←↑, ↑ 0 ↑}. (20)

Models with a natural direction of heat flow (“downwards”) and with an intermediate
maximum efficiency coincide with the analogous models for the Clausius I principle:

{K}↓0<ηm<1 = {000, ↓ 0 ↓, 0 ←↓, ↑← 0, ↓←↓, ↑←↓, (↓→↓)0<η≤ηm , (↑←↑)ηm≤η̃<1}. (21)

On the other hand, the model containing the efficiencies arbitrarily close to one, differs from
the analogous model of the CI principle only by the lack of processes with the efficiency
of one:

{K}↓1− = {000, ↓ 0 ↓, 0 ←↓, ↑← 0, ↓←↓, ↑←↓, no re f rigerators, ↓→↓}. (22)

In models with the opposite direction of heat flow, it is enough to reverse the directions of
the corresponding arrows:

{K}↑0<ηm<1 = {000, ↑ 0 ↑, 0 ←↓, ↑← 0, ↑←↑, ↓←↑, (↑→↑)0<η2≤ηm , (↓←↓)ηm≤η̃2<1}, (23)

{K}↑1− = {000, ↑ 0 ↑, 0 ←↓, ↑← 0, ↑←↑, ↓←↑, no ”re f rigerators”, ↑→↑}. (24)
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The term “refrigerators” is given here in quotation marks, because the heat in such a device
would be pumped from a higher temperature to a lower temperature, in these models. It is
worth noting that these models do not have the usual engines (no engines), i.e., processes in
which the work is done at the expense of the heat of the heater, not the cooler. The lack of
typical engines ensures the consistency of these models. Such a class of models obviously
contradicts the tendency towards thermodynamic equilibrium, but the Kelvin principle
does not seem to determine this condition.

Above all, however, both classes of heat flow direction, similarly to the Clausius
I principle, have the efficiency values ηm, which may exceed the Carnot efficiency ηC
(ηm > ηC). The value of ηm < 1 is not related in any way to the value of ηC. Hence, we
have whole classes (sets families) of Kelvin (and Clausius I) models. Models for which
ηm > ηC contain more engine diagrams than the uniform (stable) and common model for
the Carnot principle and Claussius II principle.

3.4. Structure of the Clausius II Principle Model

The principle CII about non-decreasing entropy of physical processes is consistent
with adding processes and the condition of completeness of the model. In other words, the
compliance of processes with the CII principle automatically guarantees the internality
of adding processes. As a result, the model of the Clausius II principle is a homogeneous
single set (stable model):

{CII} = {000, ↓ 0 ↓, 0 ←↓, ↑← 0, ↓←↓, ↑←↓, (↓→↓)0<η≤ηC , (↑←↑)ηC≤η̃≤1}. (25)

The above model closely follows the Carnot principle model:

{CII} = {C0}, (26)

but it is narrower than the families of models for Clausius I and Kelvin principles. Strictly
speaking, the {CII}model coincides with only one model {CI}ηm=ηC of Clausius I principle
and only one model {K}↓ηm=ηC of Kelvin principle. Therefore, Clausius II principle and the
equivalent Carnot principle are stronger principles than those of Clausius I and Kelvin.

The structure of the (13), (15), (19), (25) models already specifies the table of all
implications or their absence. However, these implications will be subject to a more
detailed proof analysis.

First, the implications of the remaining principles from the Carnot principle will
be analyzed.

3.5. Theorem C0 |→ CI

Proof. Based on (13) and (15), (17) we can see that {C0} ⊂ {CI}ηm for ηm = ηC. Consider a
Carnot heat engine denoted by the diagram (↓→↓)ηC , in which heat input, work done and
output heat can be written as (Q1, W, Q2). Similarly, we will write the process of heat flow
(q, 0, q), which is a flow down (towards a lower temperature) ↓ 0 ↓ for q > 0 or a flow up
(towards a higher temperature) ↑ 0 ↑ for q < 0. Now let us combine these two processes:

(Q1, W, Q2) + (q, 0, q) = (Q1 + q, W, Q2 + q). (27)

Let us only consider the resultant processes which follow the Carnot principle:

η =
W

Q1 + q
≤ W

Q1
= ηC ⇒ q ≥ 0. (28)

Therefore, on the basis of the completeness condition, we can conclude that the Carnot
principle is compatible with the processes of heat flow downwards ↓ 0 ↓ (q > 0), and the
processes of heat flow upwards ↑ 0 ↑ (q < 0) do not occur. Thus, we obtained the thesis of
Clausius I principle.
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3.6. Theorem C0 |→ K

Proof. Based on (13), (19) and (21) we can see that {C0} ⊂ {K}↓ηm for ηm = ηC. Since

essentially {K} = {K}�0, {K}↓, {K}↑, it can be assumed that {C0} ⊂ {K}. Thus, the set of
Carnot principle processes follows the Kelvin principle. These are, of course, processes
with the natural direction of heat flow downwards (as in principle of Clausius I).

Consider a process involving an ↓→? heat engine in which we do not know if the
cooler absorbs heat (Q2 =?). Let us describe this process with three parameters (Q1, W, Q2),
where Q1 > 0, W > 0, Q2 = Q1 −W. The Carnot principle implies the condition for Q2:

η = 1− Q2

Q1
≤ ηC < 1 ⇒ Q2 ≥ (1− ηC)Q1 > 0. (29)

This means that heat must be transferred to the cooler, so it is a ↓→↓ process with less than
1 efficiency, which is in line with the Kelvin principle.

3.7. Theorem C0 |→ CII

Proof. Based on (13) and (25) we can see that {C0} = {CII}, so in particular also {C0} ⊂
{CII}. Thus, on the basis of the models (sets of processes), there is implication (or even
equivalence).

Consider the Carnot engine process ↓→↓ (Q1, W, Q2) and the natural heat flow down-
ward process ↓ 0 ↓ (q, 0, q). On the basis of (28) within the Carnot principle we know that
the process inverse to the second process cannot take place (so q ≥ 0). The completeness
condition implies the existence of a summary process (Q1 + q, W, Q2 + q). Let us calculate
the entropy change of the heat reservoirs in this process:

ΔS =
−Q1 − q

T1
+

Q2 + q
T2

= 0 +
T1 − T2

T1T2
q ≥ 0. (30)

which is in line with the Claussius II principle.
Now consider the Carnot refrigeration process ↑←↑ (−Q1,−W,−Q2). By adding

the ↓ 0 ↓ (q, 0, q) process to it, we get the allowed (−Q1 + q,−W,−Q2 + q) process. The
change in the entropy of the heater and cooler in this refrigeration process is:

ΔS =
Q1 − q

T1
+
−Q2 + q

T2
= 0 +

T1 − T2

T1T2
q ≥ 0. (31)

which, again, is in line with the Clausius II principle. The change of entropy would be
negative for the (−Q1 − q,−W,−Q2 − q) refrigeration process—however, such a process
is not compatible with the Carnot principle, as the convexity condition allows for addition,
not subtraction, of process diagrams.

Equality of process sets of the C0 and CII principles and the fulfillment of the CII
principle for processes permitted by the C0 principle ends the proof.

Now we turn to the implications of Clausius I principle. The first implication, however,
does not hold true (as do the other two).

3.8. Theorem ¬(CI |→ C0)

Proof. Based on (13) and (15) we can see that the model family for the CI principle is larger
than the uniform set of processes (stable model) for the C0 principle. These are additional
models that contain engine processes with an efficiency greater than that of the Carnot
cycle (ηC < ηm < 1). In addition, there is even a {CI}1 model containing perpetuum mobile
type II, which is contrary to the Carnot principle.

First of all, it should be shown that processes with the maximum efficiency in the
range ηC < ηm < 1 are allowed by the CI principle. Although this principle distinguishes
between higher and lower temperatures and the direction of heat flow, it does not impose
quantitative restrictions on efficiency (even a model with ηm = 1 is possible).
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Consider the Carnot engine cycle process ↓→↓ (Q1, W, Q2). We assume that this
process complies with the Clausius I principle. Let us consider whether there is a possible
model of the CI principle, in which there is a process with even greater efficiency, i.e.,
process ↓→↓ (Q1 − q, W, Q2 − q), where q > 0. The inclusion of such a process will not
lead to a contradiction, if only some refrigeration processes exist in the model. For example,
↑←↑ (−Q1 + q + p,−W,−Q2 + q + p) refrigeration processes will be acceptable for p ≥ 0.
Their addition to the Carnot cycle process and their addition to the more efficient process
under consideration leads to downward heat flow processes ↓ 0 ↓ or to a null process 000,
which are in accordance with the CI principle. In the considered model of the CI principle,
however, the refrigeration process type ↑←↑ (−Q1,−W,−Q2) cannot occur because the
higher efficiency engine added to the process would generate a heat flow upwards ↑ 0 ↑
contrary to the CI principle. However, the absence of (−Q1,−W,−Q2) in the model does
not make it contradictory. Thus, the considered model of the CI rule is acceptable. At
the same time, this model of the CI principle is not compatible with the model of the C0
principle, as it contains engine processes with efficiency greater than the Carnot cycle.

3.9. Theorem ¬(CI |→ K)

Proof. Based on (15), (18) and (19), (22) we can see that {CI} �⊂ {K}. The absence of
inclusions here is quite subtle and is due to the lack of inclusions of special models {CI}1 �⊂
{K}↓1− . This is due to the existence of a perpetuum mobile process of the II type ↓→ 0 ∈ {CI}1,

which is not allowed by the Kelvin principle ↓→ 0 �∈ {K}↓1− .
Thus, the rebuttal of the implication in this case is based on the existence of one

counterexample: the ↓→ 0 process in one model of Clausius I principle. It is about the
{CI}1 model the processes of which are listed in (18). The ↓→ 0 process in this model does
not lead to a contradiction because there are no refrigeration processes in this model that
could lead to a contradiction. Refrigeration processes may exist in other models, however,
where there is no process ↓→ 0. The existence of the {CI}1 model removes the formal
implication between the CI principle and the K principle.

It is also necessary to point out the error in the alleged contemporary proof by the
contradiction of the considered implication. Consider two processes that contradict Kelvin
principle: ↓→ 0(W, W, 0) and 0 →↑ (0, W,−W), whose efficiency is 100%. Let us assume
a non-zero refrigeration process ↑←↑ (−Q1,−W,−Q2). Combining such a refrigeration
process with the above 100% efficiency processes leads to upward heat flow processes,
respectively: ↑ 0 ↑ (−Q2, 0,−Q2) and ↑ 0 ↑ (−Q1, 0,−Q1). Thus, it might seem that break-
ing Kelvin principle entails breaking Clausius I principle (alleged proof by contradiction).
However, it is not so. First, the consideration of the ↑←↑ refrigeration process is consistent
with, and not in contradiction to, the Kelvin Principle—upon which proof by contradiction
should be based. Not surprisingly, considering contradicting the Kelvin principle and
adopting the Kelvin principle leads to a contradiction. Second, there is nothing to prove
that the combination of a virtual process (outside the model) with a process within the
model that leads to a process outside the model (one or the other principle). The condition
for the internality of adding processes in the completeness condition applies to the situation
when both the processes being added belong to the model. Third, the alleged proof by
contradiction relies on a material implication for two cases, while it should be based on a
formal implication based on all possible processes.

3.10. Theorem ¬(CI |→ CII)

Proof. Based on (15) and (25) we can see that {CI} �⊂ {CII}. From the whole family of
ηm ∈ [0, 1] models for the CI principle, only the ηm = ηC model coincides with the CII
principle model. Even the zero-efficiency ηm = 0 model is not included in the {CII}model
because it contains too many refrigeration processes. Thus, there is not formal implication
from the CI principle to the CII principle.

Consider two counterexamples of implications in the form of processes, that are
allowed in the CI principle models but not in the CII principle model. The first counterex-
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ample would be perpetuum mobile type II ↓→ 0, which was already given in the previous
section in the context of the CI rule. The second counterexample should be the efficient
refrigeration process (−Q1 − q,−W,−Q2 − q) related to the Carnot cycle (Q1, W, Q2). It
is easy to verify that for q > 0 the refrigeration process would increase the entropy of the
heat reservoirs (ΔS > 0), so it does not follow the CII rule. However, this refrigeration
process will follow the CI principle model, which does not include the Carnot cycle, but
the less efficient cycle (Q1 + q, W, Q2 + q). Then adding these processes does not lead to
contradiction with the model for the CI principle. The indicated counterexamples disproves
the implication CI |→ CII.

Errors in the alleged proof of the disproved implication will now be shown. Consider
the virtual engine process ↓→↓ (Q1 − q, W, Q2 − q) with efficiency greater than that of
a Carnot engine ↓→↓ (Q1, W, Q2) for q > 0. Such a process obviously increases the
entropy of the system and is against the CII principle. Additionally, consider the Carnot
refrigeration cycle ↑←↑ (−Q1,−W,−Q2). The superposition of the virtual engine cycle
with the Carnot refrigeration cycle gives:

(Q1 − q, W, Q2 − q) + (−Q1,−W,−Q2 − q) = (−q, 0,−q), (32)

which is contrary to the CI principle of the upward heat flow process ↑ 0 ↑. One might
think that this is proof by contradiction for the implication under consideration. However,
nothing could be more wrong. Firstly, the simultaneous use of the process contrary to the
CII principle and the second process consistent with the principles of CI and CII raises
doubts as to whether the CII principle was actually negated (in the proof by contradiction).
Secondly, the proof should apply to all processes, not just one process (material implication
vs formal implication).

Thus, based on the lack of inclusion of models, two counterexamples, and an error
indication in the supposed typical proof, the implication CI |→ CII is rebutted.

It will now be shown that the other principles do not formally follow from the
Kelvin principle.

3.11. Theorem ¬(K |→ C0)

Proof. Based on (13) and (19) we can see that {K} �⊂ {C0}. The K principle has rich family
of models, so they cannot be contained in a single model for the C0 principle. At the level
of the model structure, the lack of the considered formal implication is quite clear.

However, let us give two counterexamples of processes that conform to the K rule,
but not the C0 rule. Let it be the ↓→↓ (Q1 − q, W, Q2 − q) engine process with any high
efficiency less than 100 % (q < Q2, q ≈ Q2) and the ↑ 0 ↑ process heat flow upward (towards
higher temperature). These processes are found in the models of K principle and do not
appear in the model of C0 principle. Contrary to appearances, the inverse Carnot cycle
(−Q1,−W,−Q2) cannot be added to the engine process in order to obtain a contradictory
process ↑ 0 ↑ for these models. This cannot be done because the ultra high efficiency model
does not have cooling cycles for η̃ = ηC. However, when it comes to the ↑ 0 ↑ process, it is
possible in separate models that implement the scenario of spontaneous heat flow upward
(towards a higher temperature). The Kelvin Principle does not speak of heat reservoirs
temperatures, so it should come as no surprise that it determines neither the heat direction
nor the Carnot efficiency.

3.12. Theorem ¬(K |→ CI)

Proof. Based on (19) and (15) we can see that {K} �⊂ {CI}. Both principles have large
families of models, but the Kelvin family of models is larger with models with opposite
heat flow directions.

Counterexamples for the considered implication may be the process of heat flow
upward ↑ 0 ↑ or a process of finite efficiency ↑→↑ of heat conversion from the lower
temperature reservoir to work. Both processes are simultaneously included in the two
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models {K}↑0<η2<ηm
, {K}↑1− of Kelvin principle. Within these models, these processes cannot

be excluded by adding another process from a given model, because as one can check the
operation of addition, it is an internal operation in these models. At the same time, the
indicated two counter-examples are directly contrary to the CI principle.

Now the errors in the supposed typical proof of K |→ CI implication will be pointed
out. This typical pseudo-proof is proof by contradiction. It relies on the ↑ 0 ↑ (−Q2, 0,−Q2)
process, which contradicts the CI principle (Q2 > 0). This process is then combined with
the engine process ↓→↓ (Q1, W, Q2):

(−Q2, 0,−Q2) + (Q1, W, Q2) = (Q1 −Q2, W, 0). (33)

The resulting process ↓→ is a perpetuum mobile type II, which contradicts the K principle.
Then it is claimed that the K |→ CI implication has been proved, but this is not true. First, it
is not clear whether it is allowed to add a process ↓→↓ that complies with the CI principle,
since we want to contradict this principle in the proof by contradiction. The result of adding
this process is a process that formally no longer contradicts the CI principle. Secondly, the
formal implication should be checked for all processes, not just for one type of processes
↑ 0 ↑ in the proof scheme by contradiction. There are more processes that contradict the CI
principle, e.g., ↑→↑, 0 →↑.

Thus, the structure of the K and CI models and the two counterexamples, as well as
the alleged proof errors, disprove the implication K |→ CI.

3.13. Theorem ¬(K |→ CII)

Proof. Based on (19) oraz (25) we can see that {K} �⊂ {CII}. The family of models for the
K principle is too large to be a subset of the CII principle model. The K principle models
include too efficient engine processes η > ηC, as well as refrigeration processes with too
low efficiency η̃ < ηC. Such processes, on the other hand, are contrary to the CII principle.

The processes ↓→↓ (Q1 − q, W, Q2 − q), ↑←↑ (−Q1 − q,−W,−Q2 − q) are coun-
terexamples for the implication under consideration. They were referenced to the ↓→↓
(Q1, W, Q2) process with Carnot efficiency ηC. For q > 0 these two counterexamples con-
tradict the CII principle, since for them ΔS < 0. However, they do not contradict the K
principle, which does not allow 100% efficiency, but does not give a stronger limitation
with Carnot efficiency.

However, one might get the impression that the processes (Q1 − q, W, Q2 − q) and
(−Q1 − q,−W,−Q2 − q) do not follow the K principle because, when added to the inverse
(−Q1,−W,−Q2) or the regular (Q1, W, Q2) of the Carot process, they give respectively
in both cases the process ↑ 0 ↑ (−q, 0,−q), which is impossible in the considered models
(disregarding the existence of a separate class of models of the type {K}↑). The point
is, however, that in the model suitable for the (Q1 − q, W, Q2 − q) process, there is no
inverse Carnot cycle with Carnot efficiency (η̃ = ηC). For the model suitable for the
(−Q1 − q,−W,−Q2 − q) process, there is no Carnot engine cycle with Carnot efficiency
(η = ηC). Moreover, both counterexamples of processes belong to different models, so these
processes should not be added, either.

It is also worth pointing to the errors in the alleged proof by the contradiction of the
implication under consideration. It is known that the ↑ 0 ↑ (−q, 0,−q) process for q > 0
does not comply with the CII rule because in this case ΔS < 0. By combining the above
process with the ↓→↓ (q +W, W, q) engine process, we get perpetuum mobile type II, i.e., the
process ↓→ 0(W, W, 0). However, this does not prove anything, since the proof of formal
implication cannot be based on one example of a process impossible for a given principle
(and consequently impossible for a second principle). Moreover, considering both the
impossible and the possible process (for the CII principle) is unclear. However, consider
another impossible process ↓→↓ (Q1 − q, W, Q2 − q) with an efficiency greater than that of
the Carnot process. Combining it with the Carnot inverse cycle ↑←↑ (−Q1,−W,−Q2) we
get the process ↑ 0 ↑ (−q, 0,−q) impossible for the CII principle, but not excluded by the
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K rule. Such a process ↑ 0 ↑ occurs, for example, in the model {K}�0, which includes any

refrigeration process {K}�0, but does not contain any engine process ↓→↓.
On the basis of the structure of the {K}, {CII} models, two counterexamples and

pseudo-proof errors, the formal implication of K |→ CII has been rebutted.

Three formal implications of the CII principle remain to be proved.

3.14. Theorem CII |→ C0

Proof. Based on (25) and (13) we can see that {CII} = {C0}, so in particular also {CII} ⊂
{C0}. Thus, on the basis of the models (sets of processes), the considered implication holds
(and even equivalence).

However, we will show directly that the CII principle applied to the ↓→↓ (q1, w, q2)
engine process leads to the Carnot efficiency condition:

−q1

T1
+

q2

T2
≥ 0 ⇒ −T2

T1
≥ −q2

q1
⇒ 1− T2

T1
≥ 1− q2

q1
⇒ ηC ≥ η. (34)

Since the Carnot principle applies essentially to engine processes, the proof of formal
implication may be limited here to such processes. On the other hand, the generality of the
proof is additionally secured by the equality of the models.

3.15. Theorem CII |→ K

Proof. Based on (25) and (19), (21) we can see that {CII} ⊂ {K}. There is even equality
with the particular model of the result principle {CII} = {K}↓0<ηm<1 for ηm = ηC.

The analyzed implication is a weaker version of the implication (34):

η ≤ ηC = 1− T1

T2
< 1. (35)

Thus, the K principle is weaker than the CII principle. Since the K principle applies
essentially to engine processes (or the absence of perpetuum mobile type II), the proof can be
limited to processes of this type. On the other hand, the generality of the proof is secured
by the fact that one model is included in the other model.

3.16. Theorem CII |→ CI

Proof. Based on (25) and (15), (17) we can see that {CII} ⊂ {CI}. Strictly speaking, the
first-principle model is equal to the special result-principle model {CII} = {CI}0<ηm<1 for
ηm = ηC.

However, we will show directly that the principle CII applied to the processes of heat
flow (q, 0, q) allows heat to flow downwards ↓ 0 ↓, but does not allow spontaneous flows
upwards ↑ 0 ↑:

−q
T1

+
q
T2
≥ 0 ⇒ T1 − T2

T1T2
q ≥ 0 ⇒ q ≥ 0. (36)

This condition expresses the essence of the CI principle (assuming T1 > T2), so the proof
need not include other processes. On the other hand, the generality of the formal implication
is secured by the inclusion of the CII principle model in the CI principle model.

Thus, six formal implications were proved and six other formal implications were
rebutted. The proof was made double: the first method was based on the inclusion rela-
tionship of models, and the second method was direct proof (not by contradiction). The
rebuttals, on the other hand, were threefold: the first method showed the absence of inclu-
sion relationship of models, the second method was based on one or two counterexamples,
and the third method indicated errors in the alleged pseudo-proof by contradiction.
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4. Results

The proved and disproved implications of the four principles (C0, CI, K, CII) are sum-
marized in Table 3. Thus, only the two principles C0 and CII turned out to be equivalent.
These principles are also stronger than the CI and K principles that follow from the previ-
ous ones. Thus, what Smoluchowski postulated in 1914 is being implemented: “We call the
Carnot principle as the second law of thermodynamics since Clausius time” [41,42]. It is worth
noting that the equivalence of the principles C0 and CII occurs in the conceptual system
of thermodynamics assuming convexity and completeness of models. These additional
rules were needed to give general meaning to the principles C0, CI, and K. The convexity
assumption in the sense of internality of addition is implicitly commonly used, and the
completeness rule only extends this assumption. The CII principle, on the other hand, does
not need these additional rules.

Table 3. The resulting matrix of mutual formal implications (or the lack of them) of the four prin-
ciples: Carnot, Clausius I, Kelvin, Clausius II. Each implication was proved or disproved, and was
additionally analyzed on the basis of the structure of the models (sets of processes).

Principle Carnot Clausius I Kelvin Clausius II

Carnot ≡ C0 |→ CI C0 |→ K C0 |→ CII
Clausius I CI |� C0 ≡ CI |� K CI |� CII
Kelvin K |� C0 K |� CI ≡ K |� CII
Clausius II CII |→ C0 CII |→ CI CII |→ K ≡

Another way to show relationships between principles is to represent relationships
between sets of all their processes belonging to all models. It has been marked, in a
simplified manner, in the diagram of Figure 5. We see that the largest set of possible
processes is allowed by the Kelvin principle. The only process that is not covered by the
Kelvin principle, and which the Clausius I principle does not exclude, is a perpetuum mobile
type II. Both the Clausius I principle and the Kelvin principle allow for a perpetuum mobile
type III and, thus, differ significantly from the principles of Carnot and Clausius II. The
Kelvin principle additionally includes processes of spontaneous flow of heat upwards
(towards a higher temperature).

Figure 5. Resulting diagram showing the relationship between the fundamental principles crucial to
the II law of thermodynamics. Additionally, the location of the fictitious perpetuum mobile processes
of three types was marked, along with the heat flow process “upwards” π↑. Perpetuum mobile πI goes
beyond a dozen considerations, and it would be even more difficult to locate π0 here. On the other
hand, the physical process (diagram), consistent with the II law of thermodynamics (with principles
C0 or CII), was denoted by d.

The relationships between the principles are also shown in Figure 6 in a “logical square”
design. One diagonal of the square indicates equivalence, and the other diagonal is not
marked, as it is neither equivalence nor implication.
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Figure 6. The resulting “logical square” of the implications of the four principles related to the II law
of thermodynamics. This law is determined equivalently by the principles on the main diagonal. On
the other hand, non-diagonal principles result from diagonal ones, but they are weaker and do not
result from each other.

5. Conclusions

Of the four principles (Carnot, Clausius I, Kelvin, Clausius II) pretending to formulate
the II law of thermodynamics, only the Carnot and Clausius II principles turned out to be
equivalent and strong principles, that forbid the decrease of the entropy of a heat-insulated
system. The principles of Clausius I and Kelvin turned out to be less restrictive principles
that say little about the reversibility of processes, and even allow impossible processes.
These principles are true, but they are also so obvious that their predictions contribute very
little. Moreover, the principles of Clausius I and Kelvin turned out to be, strictly speaking,
independent (they do not imply each other). However, if we omit the perpetuum mobile of
the II kind, it can be said, that the Clausius I principle is stronger than the Kelvin principle.

The most elegant formulation of the II law of thermodynamics is the entropic principle
of Clausius II. The only competing formulation of this law, as it turns out, is the equivalent
Carnot principle. Carnot principle is often implicite treated as the equivalent of the II law of
thermodynamics, but explicite was not included in the formulation of this principle. Instead,
the formulations of the II law mistakenly included the Clausius I principle and the Kelvin
principle (as well as the Caratheodory principle). It can be said that it has not been noticed
that the Carnot condition η ≤ ηC is stronger than the Kelvin condition in terms of Ostwald
η < 1. The II law of thermodynamics excludes not only the perpetuum mobile type II, but
also the perpetuum mobile type III, that is a heat engine with an efficiency greater, than that
of the Carnot engine. In the context of Carnot, who was a historical pioneer of the II law of
thermodynamics, the distractor was the lack of knowledge of the I law of thermodynamics
in his time. Carnot used the concept of indestructible heat (caloric), but in the sense of
heat, not energy. Nevertheless, it did not prevent him from formulating correct conclusions
regarding the II law of thermodynamics.

So how to explain the incorrect proof of the equivalence of Clausius I and Kelvin
principles with the II law of thermodynamics? The first cause and distractor may be the
frequent consideration of only Clausius I and Kelvin principles, regardless of the entropy
formulation (Clausius II), or even more so the Carnot principle. In this approach, we lose
the stronger context of the II law of thermodynamics. This, however, does not explain
the alleged proof of a substantially incorrect implication of K |→ CI. Here a second cause
appears, based on the formal implication |→ distractor, which is a material implication
⇒. The formal implication requires more subtle methods of proving, than the material
implication. The main difference is the necessity to use the universal quantifier in formal
implication, i.e., the necessity to check all the processes belonging to the model of the
principle, which is the antecedent of the implication.
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1 Quantum Optics and Engineering Division, Institute of Physics, University of Zielona Góra,
Prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland; j.kalaga@if.uz.zgora.pl
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Abstract: We consider a family of states describing three-qubit systems. We derived formulas showing
the relations between linear entropy and measures of coherence such as degree of coherence, first-
and second-order correlation functions. We show that qubit–qubit states are strongly entangled when
linear entropy reaches some range of values. For such states, we derived the conditions determining
boundary values of linear entropy parametrized by measures of coherence.

Keywords: quantum entanglement; linear entropy; coherence; purity of states; concurrence; three-
qubit systems

1. Introduction

Recent developments in modern physics showed that quantum correlations such
as quantum entanglement and their relations to quantum coherence play a valid role in
understanding the nature of various physical systems.

Coherence is a phenomenon studied not only in classical theories such as ray optics
but also is discussed for a variety of quantum systems, for instance, those related to
quantum information theory. For the first time, the concept of the degree of coherence
was introduced in the area of classical field propagation theory by Zernike in 1938 [1].
Next, in 1950, Hanbury Brown and Twiss investigated the higher-order coherence in the
stellar interferometer system [2]. The quantum coherence theory was formulated in 1963 by
Glauber [3,4] and Sudarshan [5] and then developed in 1965 by Metha and Sudarshan [6].
On the other hand, we can find an exhaustive presentation of classical and quantum
coherence theory in [7] and [8,9], respectively. The quantum coherence theory found
numerous applications in research in the field of quantum optics [3,4]. Primarily, in recent
years, the relations between quantum coherence and entanglement have been investigated
in various models, including those describing atomic ensembles in high-Q cavities [10],
optomechanical systems [11], two strongly coupled bosonic modes [12], or three-mode
optomechanical systems [13].

The entangled systems found various implementations in the quantum information
theory, especially in quantum communication, quantum cryptography [14], and quantum
computations [15–22]. The maximally or strongly entangled states play a fundamental
role in such processes as quantum teleportation [23–26] or secure quantum communica-
tion [27,28]. Thus, it is still essential to deepen knowledge about the nature of entanglement
and its relations to other forms of quantum correlations and coherence. Thus, in our
research, we will not only consider the relations between entanglement and coherence
but also the mixedness of states. The mutual relations between the quantities describing
entanglement and mixedness [29–35] or coherence and mixedness [36–41], or coherence
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and entanglement [42–48] have already been studied in recent years. Our research concerns
a three-qubit model that can be implemented in various physical systems. For instance, it
could be three two-state spin mutually interacting systems [49] or three two-level atoms
[50,51]. In fact, all tripartite systems for which evolution remains closed within a finite set
of the states (here, to two states) could be considered in that context. Therefore, our studies
are more general, and obtained results can be used in various physical systems.

The paper is organized as follows: in Section 2, we introduce two families of states
describing the three-qubit systems of our interest. For such defined groups of states, in
Section 3, we study the relations between the mixedness defined by linear entropy and
coherence for a qubit–qubit subsystem of our tripartite model. Applying entanglement
measures, we find the conditions determining when strongly entangled mixed states
appear for the qubit–qubit subsystems. In Sections 4 and 5, for the double excited systems,
we analyze the first- and second-order correlation functions, respectively. For two-qubit
states, we find possible values of linear entropy parametrized by both correlation functions
considered here and derive the formulas which allow identifying ranges of values of
discussed parameters for which strongly entangled states can be found.

2. The Three-Qubit System

In this paper, we concentrate on the states describing three-qubit systems (see Figure 1)
and studying relations among various quantities describing two-qubit correlations and
mixedness of states. The presented analysis is devoted to the bosonic systems that can
behave as linear or nonlinear quantum scissors [52]. In other words, the wave function de-
scribing the states of such systems is defined in the finite-dimensional Hilbert space [53,54].
Here, we discuss a particular case when only two states are populated for each subsystem.
For instance, in the cases of quantum-optical systems, they are vacuum |0〉 and one-photon
|1〉 states. However, we do not analyze a specific quantum model, but we examine the
various states generated in such systems.

2

1 3

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

Figure 1. The model of a three-qubit system. The qubits are represented by the black circles and the
arrows symbolize the analyzed here the bipartite correlations.

In particular, we shall focus on the two families of states: those corresponding to
one excitation in the system and, next, two excitations. First, we concentrate on the
situation when we deal with a single excitation, so the total number of photons/phonons
〈n〉 = 〈n1〉+ 〈n2〉+ 〈n3〉 = 1, where indices 1–3 label the qubits. For such a case, the wave
function describing the system’s state is

|ψ〉 = C001|001〉+ C010|010〉+ C100|100〉 , (1)

and the corresponding density matrix takes the following form:
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ρ = |ψ〉〈ψ| =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 P001 C∗001C010 0 C∗001C100 0 0 0
0 C∗010C001 P010 0 C∗010C100 0 0 0
0 0 0 0 0 0 0 0
0 C∗100C001 C∗100C010 0 P100 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The Cijk are the complex probability amplitudes corresponding to the states |ijk〉,
whereas Pijk = C∗ijkCijk are the probabilities related to the latter.

For the second situation that we are interested in, two excitations are present in
the system – 〈n〉 = 〈n1〉+ 〈n2〉+ 〈n3〉 = 2. For such a case, we consider the following
wave-function:

|ψ〉 = C011|011〉+ C101|101〉+ C110|110〉 , (3)

and the corresponding density matrix

ρ = |ψ〉〈ψ| =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 P011 0 C∗011C101 C∗011C110 0
0 0 0 0 0 0 0 0
0 0 0 C∗101C011 0 P101 C∗101C110 0
0 0 0 C∗110C011 0 C∗110C101 P110 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

The two families of states analyzed here are three-qubit states and belong to the same class—
that of W-states (for the discussion of various classes of three-qubit states, see [55–57] and
the references quoted therein). Despite this fact, as we shall show, the values of the first and
second-order correlation functions allow for discriminating the states from the two families.
Thus, those parameters behave differently from the concurrence and degree of coherence,
where those two parameters do not allow for such discrimination. From the other side,
the states considered here are those involving one or two excitations. Such states could
be physically generated by the systems called quantum scissors (both linear and nonlinear
ones) [52], and, thus, they seem to be interesting from the practical point of view.

Due to the great attention recently given to W-states [58–64] and a broad range of their
application in quantum information systems, we shall focus here on two types of such
states. W-states can be employed, for instance, in quantum teleportation systems [65–67],
dense coding [68–70], and cryptographic protocols [71,72].

3. The Linear Entropy and Degree of Coherence

In our studies, we concentrate on finding the relation among various quantities char-
acterizing bipartite systems, being subsystems of our three-qubit model. Such two-qubit
subsystems appear to be in mixed states. Therefore, one of the quantities analyzed by us
is the degree of mixedness. As a measure of mixedness, we will apply the linear entropy
defined with the application of purity parameter [31]

E(ρ) ≡ Dim
Dim− 1

[
1− Tr

(
ρ2
)]

, (5)

where Dim denotes the dimension of ρ. In our studies, we analyze the mixedness of two-
qubit states. Therefore, we assume that Dim = 4 and thus the linear entropy can be written
as:
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Eij = E(ρij) ≡
4
3

[
1− Tr

(
ρ2

ij

)]
. (6)

where ρij is the reduced density matrix describing the two-qubit state.
Next, we will analyze the coherence. In this paper, we will study two manifestations of

that phenomenon. Firstly, we concentrate on the internal coherence of any two subsystems
(from all three), described by the degree of coherence. In the next section, we will focus on the
mutual coherence—cross-coherence.

The degree of coherence that will be applied here can be defined with an application
of the degrees of first-order coherence Di and Dj corresponding to the qubits i and j

Dk =
√

2Tr
(
ρ2

k
)
− 1, k = i, j = {1, 2, 3} , (7)

where ρk is the reduced density matrix related to qubit k. Next, the parameter Dk is used to
define the degree of coherence D2

ij in the bipartite system [9,73]:

D2
ij =

(
D2

i + D2
j

)
/2. (8)

The quantity D2
ij can be treated as a measure of the total coherence inside the two

independently considered subsystems. Thus, D2
ij is equal to 0 only if both subsystems show

no coherence. The states with D2
ij = 0 are the state that gives maximal violation of the

CHSH inequality—the Bell states [73].
To find the relations between the values of linear entropy and the degree of coherence

for two-qubit mixed states, we have generated 106 random three-qubit states defined by the
density matrix ρ (2). Next, we have found a reduced density matrix ρij representing the two-
qubit states discussed by us. Such matrices were derived from the full three-qubit density
matrix by tracing out one subsystem—the qubit k. Next, for each qubit–qubit state, we have
calculated both linear entropy E(ρij) and degree of coherence D2

ij. The results showing how
the value of linear entropy depends on the values of the degree of coherence for the system
involving single excitations are presented in Figure 2. It is interesting that those results are
identical to those corresponding to the systems with two excitations and described by the
density matrix defined by Equation (4). This is the consequence of the fact that, since the
states (2) can be transformed into states (4) by a local unitary transformation, linear entropy
and degree of coherence are invariant quantities under a local unitary transformation.

Figure 2. (a) Linear entropy Eij versus degree of coherence D2
ij for two-qubit states described by the

density matrix ρij, found numerically (green area). Black lines are plotted according to the analytical
formulas derived here determining the borders between various regions of the states. (b) The same
as in (a). Additionally, the red area presents the possible values of linear entropy and degree of
coherence for two-qubit states with concurrence Cij > 0.9 (red area).
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For two-qubit mixed states, we see that, for a given value of D2
ij, the linear entropy

reaches only some values represented in Figure 2 by the green area. Moreover, the
black lines appearing in Figure 2 correspond to the boundary values of Eij defined by
Equations (17), (20), and (24).

To find the upper bound of the degree of mixedness for two-qubit states, we express
Eij and D2

ij for each pair of qubits by the probabilities Pijk. For the system described by the
density matrix ρ (2), the entropy and degree of coherence are given by (for more details of
the calculation method, see in [34,74]):

E12 ≡ 8
3

(
−P2

100 + P100 − P2
010 + P010 − 2P100P010

)
,

E13 ≡ 8
3

(
−P2

100 + P100 − P2
001 + P001 − 2P100P001

)
, (9)

E23 ≡ 8
3

(
−P2

010 + P010 − P2
001 + P001 − 2P010P001

)
,

D2
12 = 1 + 2

(
P2

100 − P100 + P2
010 − P010

)
,

D2
13 = 1 + 2

(
P2

100 − P100 + P2
001 − P001

)
, (10)

D2
23 = 1 + 2

(
P2

010 − P010 + P2
001 − P001

)
,

whereas, for the double excited system, the formulas describing Eij and D2
ij take the

following forms:

E12 ≡ 8
3

(
−P2

011 + P011 − P2
101 + P101 − 2P011P101

)
,

E13 ≡ 8
3

(
−P2

011 + P011 − P2
110 + P110 − 2P011P110

)
, (11)

E23 ≡ 8
3

(
−P2

110 + P110 − P2
101 + P101 − 2P110P101

)
,

D2
12 = 1 + 2

(
P2

101 − P101 + P2
011 − P011

)
,

D2
13 = 1 + 2

(
P2

011 − P011 + P2
110 − P110

)
, (12)

D2
23 = 1 + 2

(
P2

101 − P101 + P2
110 − P110

)
.

When D2
ij ∈ 〈0; 0.25〉, the maximal values of linear entropy are represented in Figure 2

by the black dashed line. The two-qubit states maximizing the linear entropy for a given
value of the degree of coherence are the Werner states. Such states are mixtures of the Bell
states and separable ones. The density matrix corresponding to the Werner states discussed
here and corresponding to the single excitation’s case can be written as:

ρW =

⎡
⎢⎢⎣

1− α 0 0 0
0 α/2 α/2 0
0 α/2 α/2 0
0 0 0 0

⎤
⎥⎥⎦ , (13)

whereas, for systems with two excitations, has the form:

ρW =

⎡
⎢⎢⎣

0 0 0 0
0 α/2 α/2 0
0 α/2 α/2 0
0 0 0 1− α

⎤
⎥⎥⎦ , (14)
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and the wave-function describing such states is

|ψ〉 =
√

α/2|ψ1〉+
√

α/2|ψ2〉+
√

1− α|ψ3〉, (15)

where ψi = {|001〉, |010〉, |100〉} and ψi = {|011〉, |101〉, |110〉} for the system with single
and double excitation, respectively. The parameter α is related to the probabilities of finding
the system in one of these states. Thus, using α, Eij and D2

ij can be expressed as:

Eij =
8
3

(
α− α2

)
,

D2
ij = 2

(
α2

2
− α

)
+ 1 . (16)

From Equations (16), we obtain the maximal values of linear entropy for D2
ij ∈ 〈0; 0.25〉

(the black dashed line in Figure 2)

Eij = −
8
3

(
D2

ij −
√
(D2

ij)
)

. (17)

In Figure 2, the solid black line represents the maximal value of Eij when D2
ij ∈

〈0.25; 0.5〉. For such a case, the reduced density matrix ρij for the system with a single
excitation takes the following form:

ρij =

⎡
⎢⎢⎣

1/2 0 0 0
0 α

√
(1/2− α)α 0

0
√
(1/2− α)α 1/2− α 0

0 0 0 0

⎤
⎥⎥⎦ , (18)

while the density matrix for a double excited system is equal to

ρij =

⎡
⎢⎢⎣

0 0 0 0
0 α

√
(1/2− α)α 0

0
√
(1/2− α)α 1/2− α 0

0 0 0 1/2

⎤
⎥⎥⎦ , (19)

and α reaches values from zero to 1/2. When α = 1/4, the linear entropy Eij = 2/3, and
the degree of coherence D2

ij = 1/4. Whereas, if α is equal to 0 or 1/2, the linear entropy

Eij = 2/3 and D2
ij = 1/2. For states defined by the density matrix (18) and (19), the linear

entropy takes the following form:

Eij =
8
3

(
α− α2 − (1/2− α)2 + 1/2− α− 2α(1/2− α)

)
=

2
3

, (20)

and does not depend on D2
ij. We note that this value is the maximal value of linear entropy

obtained in analyzed families of states.
For the remaining values of degree of coherence D2

ij fulfilling relation D2
ij > 0.5, the

density matrix ρij describing the states corresponding to the maximal values of the linear
entropy for single excited states’ case is

ρij =

⎡
⎢⎢⎣

1− α− β 0 0 0
0 α 0 0
0 0 β 0
0 0 0 0

⎤
⎥⎥⎦ , (21)

while, for the case of the double excitation, it takes the form

126



Entropy 2022, 24, 324

ρij =

⎡
⎢⎢⎣

0 0 0 0
0 α 0 0
0 0 β 0
0 0 0 1− α− β

⎤
⎥⎥⎦ . (22)

The full density matrix (describing three-qubit system) for such situations is

ρ = α|ψ1〉〈ψ1|+ β|ψ2〉〈ψ2|+ (1− α− β)|ψ3〉〈ψ3|, (23)

where ψi = {|001〉, |010〉, |100〉} and α, β = {P001, P010, P101} or ψi = {|011〉, |101〉, |110〉}
and α, β = {P011, P101, P110} for the system with single and double excitation, respectively,
and one of the probabilities, α or β, equals zero. If α = 0, the probability β can take values
from zero to unity. When β is 0 or 1, the linear entropy reaches zero, and the degree of
coherence is equal to 1—while, for β = 1/2, the linear entropy Eij = 2/3 and D2

ij = 1/2.
In fact, the two-qubit states discussed here are the mixtures of two separable states.

For such a case, the relation between the linear entropy and the degree of coherence derived
for those density matrices using the Formulas (10)–(13) can be expressed as

Eij =
4
3
− 4

3
D2

ij , (24)

which is represented by the dash-dotted line in Figure 2.
In the following steps, we will derive the formula determining the boundary values of

linear entropy parametrized by the degree of coherence for the strongly entangled states.
In Figure 2b, the red area corresponds to such states, and the dotted line presents such
boundary values of linear entropy.

To determine the degree of entanglement between two qubits, we will apply the
concurrence. The concurrence of the qubit–qubit subsystem can be calculated with the
application of the definition proposed by Hill and Wootters [75,76]

Cij = C(ρij) = max
(√

λI −
√

λI I −
√

λI I I −
√

λIV , 0
)

, (25)

where the parameters λl are the eigenvalues of matrix R obtained from the relation R =
ρijρ̃ij, ρ̃ij is defined as ρ̃ij = σy ⊗ σyρ∗ijσy ⊗ σy, and σy is a 2× 2 Pauli matrix.

Next, applying definition (25), we derive the formulas describing concurrence for dif-
ferent pairs of qubits. For the systems with single excitation, concurrence can be expressed
by the probabilities as:

C12 =
√

4P100P010 ,

C13 =
√

4P100P001 , (26)

C23 =
√

4P010P001 ,

and, for the double excited system, is

C12 =
√

4P011P101 ,

C13 =
√

4P011P110 , (27)

C23 =
√

4P101P110 .

In the next step, we shall identify states that are strongly entangled. In our consider-
ation, we assume that the strongly entangled states are those for which the concurrence
takes values equal to or higher than 0.9. Applying definition (27,28) and assuming that

127



Entropy 2022, 24, 324

Cij = 0.9, we can find the relations among probabilities Pijk and obtain the formula that
gives the value of the linear entropy represented in Figure 2b by the dotted line:

Eij =
19
75
− 4

3
D2

ij . (28)

From Figure 2b, we see that the two-qubit states are strongly entangled when the
linear entropy and degree of coherence reach small values. More precisely, the strongly
entangled states (when Cij ≥ 0.9) can be generated when the linear entropy becomes equal
to or smaller than those defined by Equation (28) for D2

ij ∈ 〈0.01; 0.19〉 and when D2
ij < 0.01

by Formula (17).
In three-qubit systems, in addition to entanglement between two qubits, we can also

analyze the entanglement of one qubit with the other two. Such entanglement can be
quantified by the bipartite concurrence [77]

Ck−ij =
√

2− 2Tr
(
ρ2

k
)

, (29)

where ρk is the reduced density matrix related to qubit k, and the quantity Ck−ij describes
entanglement between qubit k and pair of qubits i and j.

The families of states analyzed here are W-class states. For such states, the three-tangle
τijk that describes the three-way entanglement vanishes. Therefore, using the definition of
three-tangle [77],

τijk = C2
k−ij − C2

ik + C2
jk , (30)

we can write the monogamy relation in the following form:

C2
k−ij = C2

ik + C2
jk . (31)

The relation (31) can be confirmed using Equations (27), (28) and (29), and is in agree-
ment with the results presented in [77].

Next, applying formulas (10), (12), (27), (28) and (31), we can find the relation between
linear entropy Eij and concurrence Ck−ij:

Eij =
2
3

C2
k−ij . (32)

Analyzing Equations (27) and (28), we find that maximal value of C2
ik parametrized by

C2
jk is

max C2
ik = 1− C2

jk , (33)

and the maximal reachable value by concurrence Ck−ij is 1. Therefore, based on Equation
(32), we can confirm that the maximal value of linear entropy obtained in analyzed families
of states is 2/3.

4. The First-Order Correlation Function and Linear Entropy

In Section 3, we discussed the relationship between the internal coherence of subsys-
tems (quantified by the degree of coherence D2

ij), linear entropy and concurrence. Here, we
shall consider the relationships among the mutual coherence quantified by the first-order
correlation function and linear entropy and concurrence. Such first-order cross-correlation
function for subsystems i and j can be written as [78,79]:

g(1)ij =
|〈â†

i âj〉|√
〈â†

i âi〉〈â†
j âj〉

. (34)
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The function g(1)ij can take values from zero to unity. For maximally coherent states, it

equals 1, whereas, when we do not observe coherence between subsystems i and j, g(1)ij = 0.
All states corresponding to the single excitation’s case, described by the wave func-

tion (1), are fully coherent and thus g(1)ij = 1. In contrast, if we assume the presence of two
excitations (see, the wave function (3), the first-order correlation function can take various
values from 0 to 1. Therefore, in further analysis, we focus only on the relations between
linear entropy and first-order coherence for double excited systems.

In Figure 3, we present the results of numerical analysis concerning the ensemble of
randomly generated states describing double excited systems. For such states, the blue
area shows possible values of linear entropy for given values of the first-order correlation
function. The boundary values of linear entropy are represented by black lines: solid and
dashed ones.

To derive the maximal values of linear entropy parametrized by the first-order correla-
tion function, we find the formulas describing g(1)ij function expressed by probabilities:

g(1)12 =
C∗011C101√

(P101 + P110)(P011 + P110)
,

g(1)13 =
C∗011C110√

(P110 + P101)(P011 + P101)
, (35)

g(1)23 =
C∗101C110√

(P110 + P011)(P101 + P011)
.

In further analysis, we will consider real probability amplitudes C∗ijk = Cijk =
√

Pijk.

From Figure 3, we see that, for g(1)ij ≤ 1/3, the maximal value of Eij does not depend
on the value of the first-order correlation function. For such a case, the two-qubit matrix
is expressed by Equation (19), and the corresponding first-order correlation function is
given as

g(1)ij =

√
(1/2− α)α√

(1− α)(α + 1/2)
. (36)

Thus, for g(1)ij ≤ 1/3, the maximal value of Eij is equal to 2/3 and does not depend on
the values of the parameter α.

From the other side, when g(1)ij > 1/3, the maximal possible value of linear entropy
decreases with the increasing value of the first-order correlation function (see the dashed
line in Figure 3). In such a case, the density matrix describing the system is:

ρij =

⎡
⎢⎢⎣

0 0 0 0
0 α

√
αβ 0

0
√

αβ β 0
0 0 0 1− α− β

⎤
⎥⎥⎦, (37)

where the probabilities α and β have to be equal to

α = β =
g(1)ij

1 + g(1)ij

, (38)

and the probabilities α and β can take values within the range 〈1/4, 1/2〉. When α = β =
1/4, the first-order correlation function is 1/3, and Eij = 2/3. However, if α = β = 1/2, the

linear entropy reaches zero, and function g(1)ij is equal to unity.
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In general, for the two-qubit states represented by Equation (37), Eij fulfills the follow-
ing relation:

Eij = −
16
(

g(1)ij − 1
)

g(1)ij

3
(

1 + g(1)ij

)2 . (39)

In the next step, we discuss the case when the states are strongly entangled ones, i.e.,
the concurrence is assumed to be equal to or higher than 0.9. For such a situation, the
minimal value of Eij parametrized by g(1)ij is defined by the condition represented by the
dash-dotted line in Figure 3b. The red area corresponds to the values linear entropy and
first-order correlation function for states presenting strong entanglement. From Figure 3b,
we see that the states with Cij ≥ 0.9 exhibit a high level of the first-order correlation

function g(1)ij ∈ 〈9/11; 1〉. Moreover, for such the case, the linear entropy is limited to values
determined by:

Eij ≥ −
27
(

g(1)
2

ij − 1
)(

481g(1)
2

ij − 81
)

20000g(1)
4

ij

. (40)

We derived that condition using the definitions (12), (28) and (36) and assuming that
Cij = 0.9.

Thus, one can state that the strongly entangled two-qubit states are simultaneously
characterized by low levels of mixedness and high values of the first-order coherence
function.

Figure 3. (a) Linear entropy Eij versus first-order correlation function g(1)ij for two-qubit states
described by the density matrix ρij, calculated numerically (blue area). Black lines are plotted
according to the analytical formulas derived here determining the borders between various regions
of the states. (b) The same as in (a). Additionally, the red area presents the possible values of linear
entropy and the first-order correlation function for two-qubit states with concurrence Cij > 0.9
(red area).

5. The Second-Order Correlation Function and Linear Entropy

Analogously, as in the previous section, we will analyze at this point relations between
the degree of mixedness and second-order coherence function g(2)ij . This function quan-

tifies the correlations between intensities of field, contrary to g(1)ij considered earlier that

described the correlations between the amplitudes of two fields. g(2)ij is defined here for
two subsystems i and j and can be expressed as [78,79]:

g(2)ij =
〈â†

i â†
j âi âj〉

〈â†
i âi〉〈â†

j âj〉
. (41)
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Applying the procedure described in the previous section, we shall concentrate here
on the case of double excited systems described by the density matrix (4). For such a
situation, the second-order correlation function expressed by probabilities for each qubit–
qubit subsystem can be written as:

g(2)12 =
P110

(P101 + P110)(P011 + P110)
,

g(2)13 =
P011

(P110 + P101)(P011 + P101)
, (42)

g(2)23 =
P101

(P110 + P011)(P101 + P011)
.

Figure 4 depicts numerical results of analysis of randomly generated states for the
system with double excitation. The same as previously, colored areas correspond to the
possible achievable states characterized by various pairs of the values of the linear entropy
and g(2)ij . The black lines appearing there denote the boundary values of the entropy for the

particular g(2)ij . When g(2)ij < 8/9, the maximal possible value of Eij monotonously increases
with the increasing value of the second-order correlation function (see the dashed line in
Figure 4). In such a case, using Equations (12) and (43), we find that the maximal value of
Eij fulfills the relation:

Eij =

16
(√

1− g(2)ij − 1
)2(√

1− g(2)ij + g(2)ij − 1
)

3g(2)
2

ij

. (43)

The entropy Eij given by (43) reaches its maximal values when the system is described
by the density matrix (37) with the probabilities α and β equal to:

α = β =
g(2)ij +

√
1− g(2)ij − 1

g(2)ij

(44)

where α and β can take values in the range 〈0; 1/2〉. When both α and β are simultaneously
equal to 0 or 1/2, the second-order correlation function and entropy become equal to zero.
However, if α = β = 1/4, the linear entropy Eij = 2/3, and g(2)ij reaches = 8/9.

However, when g(2)ij ≥ 8/9, the maximal possible value of linear entropy stops being
dependent on the second-order correlation function and remains equal to 2/3 (see the
black solid line in Figure 4. For such a case, the two-qubit density matrix is described by
Equation (19).

In Figure 4b, the red area corresponds to the strongly entangled states with concurrence
Cij ≥ 0.9. The dash-dotted line appearing there represents the condition for the minimal

values of Eij parametrized by g(2)ij . Simultaneous analysis of Equations (12), (28) and (43),
describing the entropy, second-order correlation function, concurrence, respectively, and
assuming that concurrence is equal to 0.9 gives us the minimal achievable entropy for
strongly entangled states:

Eij =
27
(

400− 481g(2)ij

)
g(2)ij

20000
(

g(2)ij − 1
)2 , (45)
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where g(2)ij ∈ 〈0; 40/121〉. It is seen that the strongly entangled two-qubit states are char-
acterized by simultaneously low levels of both mixedness and second-order coherence
function.

Figure 4. (a) Linear entropy Eij versus second-order correlation function g(2)ij for two-qubit states
described by the density matrix ρij, calculated numerically (yellow area). Black lines are plotted
according to the analytical formulas derived here and determining the borders between various
regions of the states. (b) The same as in (a). Additionally, the red area presents the possible values
of linear entropy and the second-order correlation function for two-qubit states with concurrence
Cij > 0.9 (red area).

6. Conclusions

In this work, we have analyzed two families of three-qubit states in the context of the
appearance of coherence and entanglement as quantum resources, and the mixedness of
discussed states. In particular, we have focused on the characteristics of possible achievable
states describing the two-qubit subspace of the system. Applying the tracing out proce-
dure, we have analyzed the degree of mixedness of such two-qubit states, the bipartite
coherences, and entanglement. We have compared the degree of mixedness and the param-
eters describing coherences, such as the degree of coherence, the first- and second-order
correlation function, and have shown the relations among them. Based on such performed
analysis, we have derived boundary conditions for possible achievable strongly entangled
two-qubit states. We have shown that the strongly entangled states can be characterized
by low levels of mixedness and degree of coherence. On the other hand, analyzing the
correlation functions g(1)ij and g(2)ij , it turned out that highly entangled states are states with
high and low levels of the first and second-order correlation function, respectively.
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Abstract: Interesting coherence and correlations appear between superpositions of two bosonic
modes when the modes are parametrically coupled to a third intermediate mode and are also coupled
to external modes which are in thermal states of unequal mean photon numbers. Under such
conditions, it is found that one of linear superpositions of the modes, which is effectively decoupled
from the other modes, can be perfectly coherent with the other orthogonal superposition of the modes
and can simultaneously exhibit anticoherence with the intermediate mode, which can give rise to
entanglement between the modes. It is shown that the coherence effects have a substantial effect on
the population distribution between the modes, which may result in lowering the population of the
intermediate mode. This shows that the system can be employed to cool modes to lower temperatures.
Furthermore, for appropriate thermal photon numbers and coupling strengths between the modes, it
is found that entanglement between the directly coupled superposition and the intermediate modes
may occur in a less restricted range of the number of the thermal photons such that the modes could
be strongly entangled, even at large numbers of the thermal photons.

Keywords: coherence; anticoherence; entanglement; nonlinear systems

1. Introduction

The problem of the creation of coherence and correlations between quantum systems
has attracted considerable interest over the years not only because of a basic desire to
understand how coherence and correlations could be created but also because of their
importance in determination of nonclassical states of quantum systems [1–4]. Various types
of correlations can exist between quantum systems, and their importance in understanding
properties of quantum systems is often discussed in connection with different phenomena.
For example, interference and quantum beats are among the simplest examples of phenom-
ena resulting from the presence of mutual coherence, the so-called first-order correlation
between quantum systems. Nonclassical phenomena, such as squeezing and entanglement,
result from the presence of a different kind of correlation, often referred to as anomalous
correlations [5,6]. The mutual coherence resulting from the first-order correlation is pro-
duced by a constant or nearly constant phase difference between quantum systems [3,4,7,8].
There are, however, coherence effects resulting from higher-order correlations, e.g., the
intensity correlations, which are possible even when the phase difference between systems
is random [9–12].

Anomalous and intensity correlations are the natural products of a range of two-
photon processes in which simultaneous or nearly simultaneous pairs of photons are
produced [13,14]. Because each photon in the pair has no definite phase, there is no con-
stant phase relation between them. Therefore, photons in the pair behave as mutually
incoherent. This property has been observed experimentally in the process of parametric
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down conversion where pairs of photons, called the signal and idler photons, are pro-
duced [15,16]. Although the signal and idler photons are mutually incoherent, they are
found in an entangled state which results from the anomalous correlation between the
photons [17,18]. This observation suggests that the first-order correlation, which is respon-
sible for the coherence and the anomalous correlation, are mutually exclusive. Following
this observation, Mandel [19] proposed to call quantum systems exhibiting anomalous
correlation as anticoherent.

The purpose of the present paper is to explore further possibilities to create coherence
and anticoherence in a multipartite system. We consider a tripartite system composed of
three coupled bosonic modes and investigate their coherence and anicoherence properties
in an example of a three-mode optomechanical system, which consists of two cavity modes
simultaneously coupled to the mode of a vibrating membrane. We assume that the cavity
modes are affected by external input modes, which are in thermal states of unequal mean
photon numbers. The difference in the mean number of photons of the input thermal
fields constitutes an important and essential aspect of the work presented here. We will
show how the populations of the modes and the correlations between them are sensitive
to the population of the external thermal modes. When the external modes are in thermal
states of different mean number of photons, we find that the steady-state populations of
the modes can be dramatically altered, even to the point of the complete transfer of the
population between the modes. Moreover, coherence and anticoherence, which may lead
to entanglement between modes, can be established between modes which are completely
decoupled from each other. This is certainly a surprising result since one would expect no
correlations between decoupled modes affected by external thermal fields.

The paper is organized as follows. In Section 2, we introduce our model and the
method of the evaluation of the dynamics of the systemś modes using an optomechanical
system as an illustration. In Section 3, we study the properties of the steady-state population
distribution between the modes. Section 4 is devoted to studying the correlations between
the modes. We finish in Section 5 with the conclusion. In Appendix A, we present, as an
illustration, a detailed derivation of the analytical expression for the steady-state population
of the membrane mode.

2. Three-Mode System

The system we study consists of three parts; two modes whose fields are described by
annihilation operators a1 and a2, coupled to a third mode whose field is described by an
annihilation operator b. The modes a1 and a2 are coupled to mode b through the nonlinear
(parametric) squeezing-type interactions. There is no direct coupling between modes a1
and a2. The Hamiltonian interaction for the three coupled modes is taken to be

H = h̄g1

(
a†

1b† + a1b
)
+ h̄g2

(
a†

2b† + a2b
)

, (1)

where g1 and g2 are the coupling constants between modes a1 and b, and a2 and b, re-
spectively. The nonlinear squeezing-type interactions, as described by the Hamiltonian (1)
can be created in a variety of systems. For example, squeezing-type interactions between
several modes have been realized in linear optical schemes involving external source of
squeezed light and networks of beamsplitters [20]. Another example where this type
of interaction can be created is a ring cavity containing an atomic ensemble coupled to
counter-propagating modes of the cavity [21,22].

A good example of such a system is an optomechanical system consisting of two
single-mode cavities sharing an oscillating mirror [23], or a single-mode optical cavity
coupled to two mechanical modes of a vibrating membrane [24–26]. The method of how to
achieve the parametric-type interaction between cavity modes and mechanical (mirror or
membrane) mode has been discussed in several review papers [27–29]. In what follows,
we consider an optomechanical system similar to that considered by Paternostro et al. [23]
where entanglement properties between the modes were studied, assuming that only
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the mirror mode is affected by external thermal fluctuations, i.e., the cavity modes were
assumed to be in the ordinary vacuum states. This a a common practice in the study of
the dynamics of optomechanical systems to assume that only the oscillating mirror or
membrane is in contact with external modes (reservoir), being in a thermal state [30–35].
The ordinary vacuum states of the cavity modes are achieved by the coupling of the modes
to an input (external) zero temperature modes. In practice, external modes are not in the
ordinary vacuum but rather in non-zero temperature thermal states. Therefore, in what
follows, we explore some correlation properties of a three-mode system, illustrated in
Figure 1, assuming that the input modes to each of the cavities are in thermal states of
unequal mean numbers of photons. The correlation properties of the modes affected by
input thermal fields of unequal number of photons is the key point of the present work.

a1 a2 a2ina1
in

b

Figure 1. Schematic diagram of the system composed of two single-mode cavities sharing a vibrating
membrane. The input fields to the cavities are in thermal states of unequal mean photon numbers.

2.1. Time Evolution of the Modes

We start by writing a complete set of the quantum Langevin equations for the system
which can be easily obtained from the Hamiltonian (1) when taking into account dissipation
(damping) of the modes and coupling of the modes to external input modes. In the rotating
frame, the equations are of the form

ḃ = −γ b +
1
2

i
(

g1a†
1 + g2a†

2

)
+
√

2γ bin,

ȧ1 = −κa1 +
1
2

ig1b† +
√

2κ ain
1 , (2)

ȧ2 = −κa2 +
1
2

ig2b† +
√

2κ ain
2 ,

where γ is the decay rate of the membrane mode, and we have assumed the same decay rate
κ for both cavity modes. Throughout Equation (3), operators ain

1 , ain
2 and bin are the input

noise operators arising from the coupling of the modes to external modes (reservoirs). Here,
we assume that the external modes are statistically independent, δ correlated, Gaussian,
and in thermal states with

〈ain
i (t)ain†

i (t′)〉 = (ni + 1)δ(t− t′),
〈ain†

i (t)ain
i (t′)〉 = niδ(t− t′),

〈bin(t)bin†(t′)〉 = (nb + 1)δ(t− t′),
〈bin†(t)bin(t′)〉 = nbδ(t− t′),

(3)

where ni = (exp{h̄ω/kBTi} − 1)−1 is the average number of photons in the external modes
coupled to the i-th cavity mode of frequency ω and temperature Ti, and
nb = (exp{h̄ω/kBTb} − 1)−1 is the average number of photons in the external modes
of temperature Tb coupled to the membrane mode. Thus, in the absence of coupling to
the membrane mode the cavity modes, a1 and a2 are in thermal states with mean numbers
of photons n1 and n2, respectively, whereas the membrane is in thermal state with mean
number of photons nb.
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2.2. Linear Superpositions of the Modes

It is seen from Equation (3) that mode b interacts simultaneously with both cavity
modes. When a mode interacts simultaneously with two other modes, they may act
collectively on the given mode. Therefore, it is more convenient to describe the dynamics
of the system under consideration in terms of linear superpositions of the cavity modes.
Thus, we can transform cavity annihilation operators to linear superpositions aw and au of
the form

aw = a1 cos θ + a2 sin θ,
au = a1 sin θ − a2 cos θ,

(4)

and similarly, for the annihilation operators of the external input fields

ain
w = ain

1 cos θ + ain
2 sin θ,

ain
u = ain

1 sin θ − ain
2 cos θ,

(5)

where the mixing angle θ is given by tan θ = g2/g1. Hence in terms of the superposition
modes, Equation (3) assumes the simplified form

ḃ = −γb +
1
2

iga†
w +

√
2γ bin,

ȧw = −κaw +
1
2

igb† +
√

2κ ain
w , (6)

ȧu = −κau +
√

2κ ain
u ,

where g is the effective coupling strength between the modes, g =
√

g2
1 + g2

2.
For both analytical and numerical analyses, it is convenient to write the set of differen-

tial Equation (7) in a matrix form

v̇ = Av + fin, (7)

where vT = [b, a†
w, au], fT

in = [
√

2γbin,
√

2κ(ain
w )†,

√
2κain

u ], and the drift matrix A is given by

A =

⎛
⎝ −γ 1

2 ig 0
− 1

2 ig −κ 0
0 0 −κ

⎞
⎠. (8)

From Equation (4) we see that the superpositions of the modes can be controlled
through θ by changing the relationship between coupling constants g1 and g2. However, the
most important property seen from Equation (7) is that the superposition mode determined
by the annihilation operator au is effectively decoupled from modes aw and b. On the
other hand, the mode aw is coupled to the membrane mode b with the effective coupling
constant g. Despite the lack of the coupling of the au mode to the remaining modes, we will
show that the mode au can exhibit first-order coherence with the mode aw and the so-called
anticoherence with the mode b. The coupling configurations between different modes is
shown in Figure 2.

Although the time-dependent solution of Equation (7) is complicated, see Appendix A,
the steady-state solution is simple and easily obtained. Therefore, we will focus on the
steady-state populations of the modes and correlations between them. We note that
the solutions for the populations and correlation functions can be obtained from Equa-
tion (7) without approximations by a direct integration of the equations of motion. In
the Appendix A, we present a detailed derivation of the steady-state population of the
membrane mode.
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b

a1

g
1

g
2

a2

(a)

b

(b)

aw au

g

(c)

b

aw au

g

coherent

anticoherent

Figure 2. Coupling configurations between modes of the system. (a) Couplings between the mirror
mode b and the cavity modes a1 and a2. (b) Couplings between the mode b and the superposition
modes aw and au. (c) Illustration that the decoupled mode au can be coherent with mode aw and
anticoherent with mode b.

3. Populations of the Modes

Let us first examine how different modes are populated in the presence of thermal
fields of different mean photon numbers ni. Solving Equation (7) for the steady-state, we
find that the populations of the modes are

〈b†b〉 = nb +
κ(nb + 1)g2

(κ + γ)(4κγ− g2)
+

κg2

(κ + γ)(4κγ− g2)
(n + δn cos 2θ),

〈a†
waw〉 =

γ(nb + 1)g2

(κ + γ)(4κγ− g2)
+

[
1 +

γg2

(κ + γ)(4κγ− g2)

]
(n + δn cos 2θ), (9)

〈a†
uau〉 = n− δn cos 2θ,

where n = (n1 + n2)/2 is the average number of photons, and δn = (n1 − n2)/2 is a differ-
ence between the average number of photons in the thermal fields coupled to the cavity
modes. Note that δn can vary from−n to +n. The populations depend also on the coupling
constant g, which cannot be arbitrarily large. The values of g are restricted to those at which
the steady-state solutions for the populations are stable, i.e., are positive. It is easily seen
from Equation (10) that the positivity of the populations requires g <

√
4κγ. Alternatively,

conditions for the stability of the steady-state solutions (10) can be determined by applying
the Routh–Hurwitz criterion [36] to Equation (7), which says that the components of vector
v decay to stable steady-state values when the determinant of the drift matrix A is negative.
It is easily verified from Equation (8) that det (A) < 0 when g <

√
4κγ.

The first important fact we can derive from Equation (10) is that in the case of δn = 0,
the populations depend only on the effective coupling constant g. The difference δn �= 0
induces a variation of the populations with the ratio of the coupling constants g1 and g2,
determined by the mixing angle θ. This means that in the case of δn �= 0, by changing the
ratio g2/g1, i.e., by varying the mixing angle θ, one can change the population of the mode
au which is decoupled from the remaining modes aw and b. The transfer rate is proportional
to δn, the difference of the thermal occupation of the modes a1 and a2. Thus, if only one of
the cavity modes is subjected to thermal excitation and the other mode is in a vacuum state,
then δn = ±n, indicating that the thermal excitation of the cavity mode can be completely
and reversibly transferred from modes b and aw to mode au.

The results of our discussion of variations of the populations with θ when the difference
δn �= 0 are illustrated in Figure 3. We present here variations of the populations with θ
for two different values of the effective coupling constant g. As it is seen, for a weak
coupling g � κ, the transfer of the population occurs between modes aw and au only. The
population of the mode b remains constant. Note the symmetry of the transfer process
about θ = π/4 corresponding to g1 = g2. For a strong coupling g, the transfer of the
populations between the superposition modes is asymmetric about θ = π/4 (g1 = g2)
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and is seen to be accompanied by a reduction of the population of mode b. In this case,
the population is transferred to mode au not only from mode aw, but also from mode b.
Lowering the population of the mode b implies that the system can be employed to cool
the mode to a lower temperature. Thus, when δn �= 0, it is possible to obtain dramatically
reduced populations of the modes. In other words, keeping modes a1 and a2 at levels of
different thermal occupations (n1 �= n2) can work as a mechanism for the cooling of the
membrane mode.
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Figure 3. Populations of the modes plotted as a function of θ for γ = κ, n = 1, δn = 1, nb = 0.1 and
two different values of the coupling strength g: (a) g = 0.1κ, and (b) g = 1.5κ. Black solid line shows
〈b†b〉, dashed red line 〈a†

waw〉, and dashed-dotted blue line 〈a†
uau〉.

4. Correlations between the Modes

We now investigate the coherence and correlation effects between the modes when the
modes are influenced by thermal fields. We assume that the thermal fields coupled to the
cavity modes are of unequal numbers of thermal photons n1 �= n2, and the mirror mode is
coupled a thermal state with the mean number of phonons nb.

Different kinds of correlations can exist between the modes. Since the modes are
in Gaussian states, which arises from the fact that the Hamiltonian (1) is quadratic, we
consider only correlation functions up to a second order only. The correlation functions are
expectation values of any combination of operators of two different modes. It is not difficult
to show, using Equation (7), that in the steady state, there are the following non-zero
correlation functions

〈a†
uaw〉 =

[
1 +

g2

8κ(κ + γ)− g2

]
δn sin 2θ,

〈awb〉 =
2iκγg

(κ + γ)(4κγ− g2)
(n + nb + 1 + δn cos 2θ), (10)

〈aub〉 =
4iκg

8κ(κ + γ)− g2 δn sin 2θ.

and 〈a†
wb〉 = 〈a†

ub〉 = 〈awau〉 = 0. It is seen that the thermal fields of unequal photon
numbers δn �= 0 induce the first-order coherence between the superposition modes au and
aw determined by the function 〈a†

uaw〉, and a correlation between between au and b modes
determined by the function 〈aub〉, usually called an anomalous correlation function [5,6],
or, after Mandel, called anticoherence [19]. As we already mentioned, the nonvanishing
correlation function 〈a†

uaw〉 is the signature of the first-order coherence, which may lead
to interference effects between the modes. It is well known that the nonvanishing anti-
coherence correlation functions 〈awb〉 and 〈aub〉 may lead to entanglement between the
involved modes.

It is interesting that the mode au which is decoupled from the other modes can exhibit
first-order coherence with the mode aw and anticoherence with mode b. According to
Equation (11), this can happen only when δn �= 0. To demonstrate this, we examine in
detail measures of the degree of coherence and anticoherence.
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4.1. Degree of Coherence and Visibility

We already saw that the cross-correlation or mutual coherence function 〈a†
uaw〉 is dif-

ferent from zero when δn �= 0. Therefore, the modes can be described as mutually coherent.
The degree of coherence of the modes au and aw is defined by the normalized quantity

γ
(1)
uw =

|〈a†
uaw〉|√

〈a†
uau〉〈a†

waw〉
, (11)

whose values lie between 0 and 1.
In Figure 4, we plot the degree of coherence as a function of δn and θ. Notice that at

δn = 0, the modes are mutually incoherent, regardless of the value of θ. When δn �= 0, the
modes become mutually coherent. It is clearly seen that for a weak coupling between the
modes g/κ � 1, illustrated in Figure 4a, the first-order coherence function is symmetric
about θ = π/4, and becomes asymmetric when g/κ > 1, the case corresponding to a strong
coupling between modes, illustrated in Figure 4b. In this case, the degree of coherence is
reduced in magnitude as θ increases. In the case of a weak coupling, an interesting situation
is reached where the coherence attains its maximal value, i.e., the modes become mutually
perfectly coherent when δn = n, i.e., when either n1 or n2 is equal to zero. On the other
hand, in the strong coupling regime, the degree of coherence is always less than unity.
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Figure 4. Variation of the degree of coherence between modes au and aw with δn and θ for γ = κ,
n = 1, nb = 0.1 and two different values of the coupling strength g: (a) g = 0.1κ, and (b) g = 1.5κ.

One can notice from Figure 4a that in the limit of δn = n, the modes are perfectly
coherent when θ = 0, but are completely incoherent when θ = π/2. The perfect coherence
arises because the definite phase relationship between the modes a1 and a2 through the
common coupling to the mode b.

Comparing the variation of γ
(1)
uw with the variation of the populations of the modes,

shown in Figure 3, we see that γ
(1)
uw can be of equal unity regardless of the distribution

of the population between the modes. This surprising behavior has been noticed before
in systems of couple parametric downconverters [15,16,37–40], where interference effects
were observed between the signal fields of the two downconverters with the degree of
coherence γ

(1)
ij = 1.

We saw that the modes can be perfectly mutually coherent regardless of the distribu-
tion of the population between them. However, the distribution of the population between
the modes has an effect on the visibility of the interference pattern and distinguishability of
the modes. The visibility V is determined by the coherence function

|V| = 2|〈a†
uaw〉|

〈a†
uau〉+ 〈a†

waw〉
, (12)
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whereas distinguishability is determined by the populations of the modes

|D| = |〈a†
uau〉 − 〈a†

waw〉|
〈a†

uau〉+ 〈a†
waw〉

, (13)

The visibility and distinguishability obey the complementarity relation |V|2 + |D|2 ≤ 1,
in which the equality holds when the system is described by a pure state. When |D| = 0,
the modes are indistinguishable. On the other hand, when |D| = 1, the modes are per-
fectly distinguished.

The distinguishability |D| is plotted in Figure 5 as a function of δn and θ. For δn = 0,
the distinguishability |D| = 0 for all values of θ, indicating that in the case the cavity modes
are affected by thermal fields of the same number of photons, and the superposition modes
aw and au are undistinguishable independent of the ratio g2/g1. For a weak coupling
and δn �= 0, illustrated in Figure 5a, the distinguishability varies between its minimal
value |D| = 0 at θ = π/4 to its maximal values at θ = 0 and θ = π/2. In the completely
asymmetric case where δn = ±n, the distinguishability |D| = 1. More precisely, the modes
can be perfectly distinguishable (|D| = 1) only if δn = n and either g1 or g2 is equal to zero.
Thus, in the case of weak and equal coupling constants, θ = π/4, the modes are completely
non-distinguishable, independent of δn. It is easy to understand if we refer to the fact that
in the case of θ = π/4, the superpositions aw and au are equally weighted, so that one can
not predict from which mode a detected photon came from.
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Figure 5. Dependence of the distinguishability |D| on δn and θ for γ = κ, n = 1, nb = 0.1 and
two different values of the coupling strength g: (a) g = 0.1κ, and (b) g = 1.5κ.

In the case of a strong coupling g, illustrated in Figure 5b, the distinguishability is
strongly dependent on the relationship between g1 and g2. We see that the modes are
always at least partly indistinguishable, except for δn = n and θ = 0 at which |D| = 1.
Moreover, the modes are perfectly indistinguishable at θ �= π/4, i.e., when the modes are
coupled to the membrane mode with unequal coupling strengths, g1 �= g2.

A close-up view of the variation of the distinguishability |D| with θ at δn = n is
shown in Figure 6. We also plot the visibility |V| and the complementarity S = |V|2 + |D|2.
The visibility vanishes only when g1 = 0 or g2 = 0, i.e., when one of the cavity modes
is decoupled from the membrane mode. In the limit of a weak coupling, g � κ, the
visibility and distinguishability are perfectly mutually exclusive, and S = 1 for all values
of θ, indicating that independent of the ratio g2/g1, the system is in a pure state. On the
other hand, in the limit of a strong coupling g > κ, they are no longer perfectly mutually
exclusive, i.e., the visibility is greatest for g1 �= g2 and the maximum of the visibility
does not correspond to the minimum of the distinguishability. Additionally, in this case,
V2 + |D|2 < 1, except θ = 0 at which the modes are perfectly distinguishable. Thus, except
θ = 0, the system is in a mixed state. The mixed state results from the fact that in the strong
coupling regime, not only the population from mode aw, but also a population from the
membrane mode b is transferred to mode au, as it is seen in Figure 3b.
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Figure 6. Close-up view of the variation of the distinguishability |D| (red dashed line) with θ at
δn = n shown in Figure 5 together with the visibility |V| (blue solid line) and complementarity
S = |V|2 + |D|2 (black dashed-dotted line) for γ = κ, n = 1, nb = 0.1 and two different values of the
coupling g: (a) g = 0.1κ, and (b) g = 1.5κ.

4.2. Degree of Anticoherence and Entanglement

For the uncoupled modes au and b, mutual coherence function 〈a†
ub〉 is equal zero,

and therefore the modes are mutually incoherent. Although the mutual coherence between
the modes is equal to zero, it must not be thought that all correlations between the modes
are zero. In fact, there are correlations present, but they are reflected by nonzero values
of the correlation function 〈aub〉. This happens when δn �= 0. Note that 〈aub〉 �= 0 is
accompanied by 〈a†

ub〉 = 0. Following Mandel [19], the correlation function 〈aub〉 is called
the anticoherence function, and to quantify the degree of anticoherence, he introduced the
measure of anticoherence

γ
(2)
ub =

|〈aub〉|√
〈a†

ub†aub〉
. (14)

The values of γ
(2)
ub lie between 0 and 1.

When the modes obey the Gaussian statistics, then [41]

〈a†
ub†aub〉 = 〈a†

ub†〉〈aub〉+ 〈a†
ub〉〈b†au〉+ 〈a†

uau〉〈b†b〉. (15)

Since 〈a†
ub〉 = 0, Equation (14) then gives

γ
(2)
ub =

ηub√
η2

ub + 1
, (16)

where

ηub =
|〈aub〉|√
〈a†

uau〉〈b†b〉
. (17)

is the normalized anomalous correlation function. Thus, the
The nonvanishing anticoherence corresponds to a situation in which the modes could

be entangled. In order to connect anticoherence to entanglement, we consider the Cauchy–
Schwarz inequality, which is often used to identify entanglement [3]. The Cauchy–Schwarz
inequality for the modes au and b is verified by reference to the so-called Cauchy–Schwartz
parameter χub involving the second-order correlation functions

χub =
g(2)u g(2)b(

g(2)ub

)2 , (18)
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where

g(2)ub =
〈a†

ub†aub〉
〈a†

uau〉〈b†b〉 (19)

is the normalized second-order cross correlation function, and

g(2)u =
〈a†2

u a2
u〉

〈a†
uau〉2

, g(2)b =
〈b†2b2〉
〈b†b〉2 , (20)

are the normalized intensity autocorrelation functions of the modes au and b, respectively.
Using the Gaussian-mode decomposition (15), the correlation functions can be readily

related to the coherence functions

g(2)i = 2 + η2
ii, i = u, b,

g(2)ub = 1 +
(

γ
(1)
ub

)2
+ η2

ub.
(21)

Since in our case, ηuu = ηbb = γ
(1)
ub = 0, the Cauchy–Schwarz parameter takes the form

χub =
4(

1 + η2
ub
)2 , (22)

which can be expressed in terms of the degree of the anticoherence as

χub = 4
[

1−
(

γ
(2)
ub

)2
]2

. (23)

To examine the occurrence of entanglement, we must check whether the Cauchy–
Schwarz inequality (χub > 1) is violated. From Equation (23), we see that the condition
that the modes are anticoherent, i.e., γ

(2)
ub is a necessary but not sufficient condition for

entanglement between the modes. In other words, the modes could be anticoherent but not
enough to obtain χub < 1. It is easily verified that for the Cauchy–Schwarz inequality to
be violated, it is necessary that γ

(2)
ub > 1/

√
2. Thus, for two modes to be entangled, they

should be anticoherent to a degree about 71%.
Figure 7a shows the Cauchy–Schwarz parameter χub as a function of δn and θ. It

is clearly seen that the parameter χub is reduced below its maximal value χub = 4 when
δn �= 0. The parameter χub decreases to a minimum value at δn = n, but unfortunately the
minimal value is not smaller than the threshold for entanglement (χub = 1). This indicates
that the anticoherence between the modes is not strong enough for the modes au and b to
be entangled.
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Figure 7. Variation of the Cauchy–Schwarz parameters (a) χub and (b) χwb with δn and θ for γ = κ,
n = 3, nb = 0.1 and g = κ.
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Although modes au and b are not entangled, there could be entanglement between
modes aw and b, which are directly coupled to each other. The results for the Cauchy–
Schwarz parameter χwb are shown in Figure 7b. It is seen that for certain values of δn and
θ, the parameter χwb can be reduced below the threshold for entanglement. It was noticed
before that in the case when the cavity modes are affected by thermal fields of the same
photon numbers (n1 = n2 = n), entanglement between cavity mode and the membrane
mode is restricted to very small values of n < 1/2. The results shown in Figure 7b are in
sharp contrast to the case of equal number of thermal excitations, where entanglement is
restricted to very small values of n and indicate quite clearly that in the case of unequal
photon numbers (n1 �= n2), entanglement between the modes can be observed, even for
large values of n.

In physical terms, we may attribute the appearance of entanglement between modes
aw and b when n1 �= n2 to the fact that a part of the population of the modes, which has a
destructive effect on entanglement, is transferred and stored in the decoupled mode au.

Before concluding, we note that although we have discussed and graphically illus-
trated the coherence and anticoherence properties of the modes only for the case of equal
damping rates of the modes, γ = κ, analogous results are obtained in the experimentally
realistic case of γ � κ [27–29].

As an illustration, in Figure 8, we plot γ
(1)
uw and χwb for γ = 0.01κ. Comparing the

results with those presented in Figures 4b and 7b we saw that γ
(1)
uw and χwb behave in

qualitatively the same manner as for γ = κ. While the maximal value of the coherence
γ
(1)
uw between uncoupled modes is reduced for γ � κ compared with Figure 4b, it is still

nonzero over the entire range of δn �= 0. Similarly, although the parameter χwb has risen
for γ � κ compared with Figure 7b, the region near δn = n still shows reduction of χwb
below the threshold for entanglement.
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Figure 8. (a) Variation of the degree of coherence γ
(1)
uw with δn and θ for γ = 0.01κ, n = 1, nb = 0.1

and g = 0.19κ. (b) Variation of the Cauchy-Schwarz parameter χwb with δn and θ for γ = 0.01κ,
n = 3, nb = 0.1 and g = 0.19κ.

5. Conclusions

We considered coherence properties between modes of a three-mode optomechanical
system composed of two cavity modes simultaneously coupled to a membrane mode. We
obtained analytical solutions for the steady-state populations of the modes and correlation
functions describing coherence effects between the modes. Working in terms of linear
superpositions of the cavity modes, we showed that one of the linear superpositions
can be completely decoupled from the remaining modes. In spite of this, we found that
the decoupled superposition can be completely coherent with the other superposition
modes and can simultaneously exhibit anticoherence with the membrane mode. A detailed
analysis showed that these correlation effects can happen only when the cavity modes are
affected by the external input modes being in thermal states of unequal average photon
numbers. In particular, we found that the coherences have a substantial effect on population
distribution between the modes such that the population can be reversibly transferred
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between the superposition modes. The transfer of the population can lead to lowering
of the population of the membrane mode. Therefore, the system can be considered as an
alternative way to cool modes to lower temperatures. We also showed that a difference of
the average numbers of photons in the thermal fields may affect entanglement between the
superposition mode directly coupled to the membrane mode such that it may occur in a
less restricted range of the number of thermal photons. In other words, the modes could be
entangled, even with large numbers of thermal photons.
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Appendix A. Evaluation of the Steady-State Population of the Membrane Mode

In this Appendix, we provide some details of the derivation of the analytical expression
for the steady-state population of the mode b. Using Equation (7), we find that a former
integration of the equations for b and aw leads to

b(t) = b(0)e−γt +
1
2

ige−γt
∫ t

0
dt′a†

w(t
′)eγt′ +

√
2γe−γt

∫ t

0
dt′bin(t′)eγt′ , (A1)

aw(t) = aw(0)e−κt +
1
2

ige−κt
∫ t

0
dt′b†(t′)eκt′ +

√
2κ e−κt

∫ t

0
dt′ain

w (t′)eκt′ . (A2)

Substituting the expression for a†
w into Equation (A1) and using the double integra-

tion rule
∫ t

0
dt′A(t′)

∫ t

0
dt′′B(t′′) =

∫ t′

0
dt′B(t′)

∫ t

t′
dt′′A(t′′) (A3)

we find that the expression for b(t) can be written as

b(t) = y(t) +
∫ t

0
dt′K(t, t′)b(t′), (A4)

where K(t, t′) is the kernel of the integral of the form

K(t, t′) =
g2

4(γ− κ)

(
e−κ(t−t′) − e−γ(t−t′)

)
, (A5)

and the term y(t) has the form

y(t) = b(0)e−γt − ga†
w(0)

2(γ−κ)

[
e−κt − e−γt]+√2γ

∫ t
0 dt′bin†(t′)e−γ(t−t′)

+ i
√

2κg
2(γ−κ)

∫ t
0 dt′ain†

w (t′)
[
e−κ(t−t′) − e−γ(t−t′)

]
.

(A6)

It is seen that the kernel K(t, t′) depends only on the time difference t− t′, and may be
written in the form

K(t, t′) =
g2

4(γ− κ)
H(t, t′) = λH(t, t′), (A7)
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where λ = g2/4(γ− κ).
The integral Equation (A4) can be solved using the Laplace transformation. Thus if

∫ t

0
dt′H(t′)e−pt′ = H(p),
∫ t

0
dt′y(t′)e−pt′ = y(p), (A8)

∫ t

0
dt′b(t′)e−pt′ = b(p),

we obtain from Equation (A4)

b(p) =
y(p)

1− λ H(p)
, (A9)

where

H(p) =
1

p + κ
− 1

p + γ
, (A10)

and y(p) is

y(p) =
{

b(0) +
√

2γB(p) + g
2(γ−κ)

[
a†

w(0)− i
√

2κA†
w(p)

]}
1

p+γ

− g
2(γ−κ)

[
a†

w(0) + i
√

2κA†
w(p)

]
1

p+κ ,
(A11)

with

B(p) =
∫ t

0 dt′bin(t′)e−pt′ ,
A†(p) =

∫ t
0 dt′ain†

w (t′)e−pt′ .
(A12)

Substituting the solution (A10) for H(p) into Equation (A9), we readily find

b(p) =
y(p)(p + κ)(p + γ)

(p + κ)(p + γ)− λ (γ− κ)
. (A13)

Having available the Laplace transform b(p), we find b(t) simply by taking the inverse
of the Laplace transformation (A13). We then obtain

b(t) = ∑2
i=1(p− pi)b(pi)epit

= b(0)
[
(κ−γ)

Δ sinh
(

1
2 Δt
)
+ cosh

(
1
2 Δt
)]

e−
1
2 (κ+γ)t + a†

w(0)
ig
Δ sinh

(
1
2 Δt
)

e−
1
2 (κ+γ)t

+ ig
√

2κ
2Δ

[
A†(p1)e

1
2 Δt − A†(p2)e−

1
2 Δt
]
e−

1
2 (κ+γ)t

+
√

2γ
2Δ

{
[(κ − γ) + Δ]B(p1)e

1
2 Δt − [(κ − γ)− Δ]B(p2)e−

1
2 Δt
}

e−
1
2 (κ+γ)t,

(A14)

where

p1,2 =
1
2
(κ + γ)± 1

2

√
(κ − γ)2 + g2 (A15)

are roots of the quadratic equation

(p + κ)(p + γ)− 1
4

g2 = 0, (A16)

and Δ =
√
(κ − γ)2 + g2.

We can use the solution b(t) to find the population of the mode b simply multiplying
b(t) from the left by b†(t) and then taking the expectation value. We thus find
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〈b†(t)b(t)〉 = 〈b†(0)b(0)〉
[
(κ−γ)

Δ sinh
(

1
2 Δt
)
+ cosh

(
1
2 Δt
)]2

e−(κ+γ)t

+
[
〈a†

w(0)aw(0)〉+ 1
] g2

Δ2 sinh2
(

1
2 Δt
)

e−(κ+γ)t

+ κg2

2Δ2

[
〈A(p1)A†(p1)〉eΔt + 〈A(p2)A†(p2)〉e−Δt

− 〈A(p1)A†(p2)〉 − 〈A(p2)A†(p1)〉
]
e−(κ+γ)t

+ γ
2Δ2

{
[(κ − γ) + Δ]2〈B†(p1)B(p1)〉eΔt + [(κ − γ)− Δ]2〈B†(p2)B(p2)〉e−Δt

+ g2(〈B†(p1)B(p2)〉+ 〈B†(p2)B(p1)〉
)}

e−(κ+γ)t,

(A17)

where

〈A(pi)A†(pi)〉 =
∫ t

0
dt′
∫ t

0
dt′′〈ain

w (t′)ain†
w (t′′)〉e−pi(t′+t′′), i = 1, 2, (A18)

and

〈B†(pi)B(pi)〉 =
∫ t

0
dt′
∫ t

0
dt′′〈bin†(t′)bin(t′′)〉e−pi(t′+t′′), i = 1, 2. (A19)

Since 〈bin†(t′)bin(t′′)〉 = nbδ(t′ − t′′), we get

〈B†(pi)B(pi)〉 = nb

∫ t

0
dt′e−2pit′ =

nb
2pi

(
1− e−2pit

)
, i = 1, 2, (A20)

and

〈B†(p1)B(p2)〉 = 〈B†(p2)B(p1)〉 =
nb

p1 + p2

[
1− e−(p1+p2)t

]
. (A21)

Similarly, since

〈ain
w (t′)ain†

w (t′′)〉 = (nw + 1)δ(t′ − t′′), (A22)

where nw = (g2
1n1 + g2

2n2)/g2, we get

〈A(p1)A†(p1)〉 = (nw + 1)
∫ t

0
dt′e−2p1t′ =

(nw + 1)
(κ + γ)− Δ

(
e(κ+γ−Δ)t − 1

)
, (A23)

and

〈A(p2)A†(p2)〉 =
(nw + 1)

(κ + γ) + Δ

(
e(κ+γ+Δ)t − 1

)
,

〈A(p1)A†(p2)〉 = 〈A(p2)A†(p1)〉 =
(nw + 1)
(κ + γ)

(
e(κ+γ)t − 1

)
. (A24)

Substituting these results for the correlation functions into Equation (A17), and taking
the limit of t → ∞, we obtain

lim
t→∞

〈b†(t)b(t)〉 = nb +
κ(nb + 1)g2

(κ + γ)(4κγ− g2)
+

κg2

(κ + γ)(4κγ− g2)
nw. (A25)

Writing nw in terms of n = (n1 + n2)/2, δn = (n1 − n2)/2, and tan θ = g2/g1, we
obtain the expression for the population of the mode b given in Equation (10).
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Abstract: We show that there is a relationship between the generalized Euler characteristic Eo(|VDo |)
of the original graph that was split at vertices into two disconnected subgraphs i = 1, 2 and their
generalized Euler characteristics Ei(|VDi |). Here, |VDo | and |VDi | denote the numbers of vertices with
the Dirichlet boundary conditions in the graphs. The theoretical results are experimentally verified
using microwave networks that simulate quantum graphs. We demonstrate that the evaluation of
the generalized Euler characteristics Eo(|VDo |) and Ei(|VDi |) allow us to determine the number of
vertices where the two subgraphs were initially connected.

Keywords: quantum graphs; microwave networks; Euler characteristic; Neumann and Dirichlet
boundary conditions

1. Introduction

The concept of graphs was already introduced in the XVIII century by Leonhard
Euler [1]. Two hundred years later, Linus Pauling [2] considered quantum graphs in order
to describe the motion of quantum particles in a physical network. The models of quantum
graphs were widely used to investigate many physical systems, e.g., quantum wires [3],
mesoscopic quantum systems [4,5], a topological edge invariant [6], and the photon number
statistics of coherent light [7]. Broad applications of graphs and networks mean that the
theory of quantum graphs has been a subject of extensive research [8–14].

We will consider a metric graph Γ = (V, E), which consists of v vertices, v ∈ V,
connected by e edges, e ∈ E. The edges e are intervals of the length le on the real line R.
The metric graph becomes quantum when we equip it with the free Schrödinger operator.
In our case, this is the one-dimensional Laplace operator, which equals L(Γ) = − d2

dx2
e

on
each of the edges e ∈ E of the graph Γ. The self-adjoint Laplace operator L(Γ) has a discrete
and non-negative spectrum [12].

A signal inside a graph moves along the edges, and at each vertex v ∈ V it splits and
enters all edges adjacent to v. If the signal enters the vertex v along the edge e′ and leaves it
along the edge e, then the ratio of amplitudes of entering and leaving signals is given by
the vertex scattering matrix, which depends on the vertex boundary condition. We will
consider two types of vertex boundary conditions. The standard boundary conditions are
called also Neumann boundary conditions, for which the eigenfunctions are continuous at
vertices and the sums of their oriented derivatives at vertices are zero. The vertex scattering
matrix corresponding to the Neumann boundary conditions [15] is given by

Nσ
(v)
e,e′ =

2
dv
− δe,e′ , (1)

where dv is the degree of the vertex v, i.e., the number of edges incident to the vertex v, and
δe,e′ is the Kronecker delta. The vertices with the Neumann boundary conditions will be
denoted as vN .
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For the Dirichlet boundary condition, an eigenfunction at the vertex takes the value
zero, which leads to the vertex scattering matrix [15,16]

Dσ
(v)
e,e′ = −δe,e′ . (2)

One should point out that the Dirichlet boundary conditions are imposed only at
degree one vertices and higher-degree Dirichlet vertices should be treated as separate
degree one Dirichlet vertices. The vertices with the Dirichlet boundary conditions will
be denoted as vD. Different types of the boundary conditions, including the Neumann
and Dirichlet ones for higher-dimensional systems such as grains, are comprehensively
described in Refs. [17,18].

The total number of vertices |V| in a general graph, consisting of both Neumann and
Dirichlet boundary conditions, is defined by |V| = |VN |+ |VD|, where |VN | and |VD| denote
the number of vertices with Neumann and Dirichlet boundary conditions, respectively.

One of the most important characteristics of metric graphs Γ = (V, E) with the
standard boundary conditions (|VD| = 0) is the Euler characteristic

χ = |V| − |E| , (3)

where |V| and |E| denote the number of vertices and edges of the graph. It is a purely
topological quantity; however, it has been shown in [19–22] that it can also be defined by
the graph and microwave network spectra. The formula describing the generalized Euler
characteristic E [22,23], which is also applicable for graphs and networks with the Dirichlet
boundary conditions, will be discussed later.

In the experimental investigation of properties of quantum graphs, we used microwave
networks simulating quantum graphs [16,24–29]. The emulation of quantum graphs by
microwave networks is possible because of the formal analogy of the one-dimensional
Schrödinger equation describing quantum graphs and the telegrapher’s equation for mi-
crowave networks [24,26]. Microwave networks are the only ones that allow for the
experimental simulation of quantum systems with all three types of symmetry within the
framework of the random matrix theory (RMT): Gaussian orthogonal ensemble (GOE)—
systems with preserved time reversal symmetry (TRS) [16,21,24,25,27,30–32], Gaussian
unitary ensemble (GUE)—systems with broken TRS [24,28,33–36], and Gaussian symplectic
ensemble (GSE)—systems with TRS and half-spin [37]. The other model systems, which are
not as versatile as microwave networks, but are often used in simulations of complex quan-
tum systems, are flat microwave billiards [38–54], and exited atoms in strong microwave
fields [55–67].

In this article, we will analyze the splitting of a quantum graph (network) into two dis-
connected subgraphs (subnetworks). Using a currently introduced spectral invariant—the
generalized Euler characteristic E [22]—we determine the number |Vc| of common vertices
where the two subgraphs were initially connected. The application of the generalized
Euler characteristic E for this purpose stems from the fact that it can be evaluated without
knowing the topologies of quantum graphs (networks), using small or moderate numbers
of their lowest eigenenergies (resonances). The theoretical results are numerically veri-
fied and confirmed experimentally using the spectra of microwave networks simulating
quantum graphs.

2. Theoretical Outline

2.1. The Generalized EULER Characteristic

In Refs. [21,22], the formulas for the Euler characteristic for graphs with the standard
boundary conditions at the vertices and with the mixed ones, standard and Dirichlet bound-
ary conditions at vertices, were derived. In the case of the standard boundary conditions,
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χ = 2 + 8π2 ∑
kn∈Σ(Lst(Γ))

kn �=0

sin(kn/t)
(kn/t)

(
(2π)2 − (kn/t)2

) |t≥t0 , (4)

where Σ(Lst(Γ)) denotes the spectrum of the Laplacian Lst(Γ) with the standard vertex
conditions, taken in the square root scale, i.e., the numbers kn are the square roots of the
eigenenergies λn and t is a scaling parameter [19–21] with t0 = 1

2lmin
, where lmin is the length

of the shortest edge of the graph. The above formula is equivalent to Equation (3); however,
instead of using topological information about graphs or networks, such as the number
of vertices |V| and edges |E|, it requires a certain number of the lowest eigenenergies
(resonances) of graphs or networks.

For graphs and networks with the mixed boundary conditions, namely the standard
and Dirichlet ones (|VD| �= 0), the generalized Euler characteristic can be expressed by the
following formula:

χG := χ− |VD| = 8π2 ∑
kn∈Σ(Lst,D(Γ))

sin(kn/t)
(kn/t)

(
(2π)2 − (kn/t)2

) |t≥t0 . (5)

In Equation (5), the spectrum of the Laplacian Lst,D(Γ) with the standard and Dirichlet
vertex conditions is denoted by Σ(Lst,D(Γ)).

The above two equations can be unified into a single one for the generalized
Euler characteristic:

E(|VD|) = 2δ0,|VD | + 8π2 ∑
kn∈Σ(L(Γ))

kn �=0

sin(kn/t)
(kn/t)

(
(2π)2 − (kn/t)2

) |t≥t0 . (6)

Depending on the boundary conditions, Σ(L(Γ)) denotes either the spectrum of the Lapla-
cian Lst(Γ) or Lst,D(Γ). In the borderline cases |VD| = 0 and |VD| �= 0, E(|VD| = 0) = χ
and E(|VD| �= 0) = χG, recovering, respectively, Equations (4) and (5).

From the experimental point of view, the usefulness of Equation (6) stems from the
fact that the generalized Euler characteristic can be evaluated using only a limited number
K = Kmin of the lowest eigenvalues (resonances) [21,22,68,69]

K ≥ |V|+ 2Lt
[

1− exp
(−επ

Lt

)]−1/2
, (7)

where |V| is the total number of graph vertices, L = ∑e∈E le is the total length of the graph,
and ε is the accuracy of determining the Euler characteristic from Formula (7). To obtain
the smallest possible number of resonances Kmin, for a given accuracy ε, we assign to t
its smallest allowed value t = t0 = 1

2lmin
. Since the Euler characteristic is an integer, the

accuracy of its determination should be taken ε < 1/2. In our calculations of Kmin, we
assumed ε = 1/4.

2.2. A Graph Split into Two Disconnected Subgraphs

In order to simplify the description of the graphs, we introduce the following notation
of graphs and networks Γ(|V|, |E|, |VD|), where |V| = |VN |+ |VD|. A graph or network
Γ(|V|, |E|, |VD|) contains |V| vertices, including |VN | and |VD| vertices with standard (Neu-
mann) and Dirichlet boundary conditions and |E| edges.

We will consider a general situation when an original graph Γo(|Vo|, |Eo|, |VDo |) is
split into two disconnected subgraphs Γi(|Vi|, |Ei|, |VDi |), i = 1, 2, at the common for the
subgraphs vertices Vc, which are characterized by the Neumann boundary conditions.
In the partition process, each common vertex v ∈ Vc will be split into two new vertices
belonging to the different subgraphs (see Figure 1).

The generalized Euler characteristics of the original graph and its subgraphs are
Eo(|VDo |) = |Vo| − |Eo| − |VDo | and Ei(|VDi |) = |Vi| − |Ei| − |VDi |, i = 1, 2, respectively.
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The relationships between the number of vertices and edges of the graphs are the following:
|Vo|+ |Vc| = |V1|+ |V2|, |Eo| = |E1|+ |E2|. It leads to the following relationship between
Eo(|VDo |) and Ei(|VDi |), i = 1, 2

E1(|VD1 |) + E2(|VD2 |) = Eo(|VDo |) + |Vc|+ |VDo | − |VD1 | − |VD2 |, (8)

where |Vc| denotes the number of common vertices.
In Figure 1, we show the case when the original graph Γo(|Vo| = 6, |Eo| = 9, |VDo | =

0) = Γo(6, 9, 0) is divided into two subgraphs Γ1(4, 6, 0) and Γ2(4, 3, 0). Using Equation (8),
one can find that the subgraphs before the disconnection were connected in |Vc| = 2 common
vertices. In this relatively simple situation, the generalized Euler characteristics of the graphs
or networks can be found from their topological properties, i.e., the numbers of vertices and
edges of the graphs. However, if we do not see the graphs and therefore do not know their
topological properties but we know their eigenvalues (spectra), the only available solution
to the problem is to use Equation (6) to find their generalized Euler characteristics and
consequently the number |Vc| of the common vertices. The same situation exists for the
graphs possessing the Dirichlet boundary conditions. In this case, in order to identify them,
one needs to know (measure) the eigenvalues (resonances) of graphs or networks and use
Equations (6) and (8) to evaluate the number |Vc| of the common vertices.

Figure 1. The scheme of the original graph Γo(6, 9, 0), which was divided into two subgraphs
Γ1(4, 6, 0) and Γ2(4, 3, 0). All graphs possess the vertices with the Neumann boundary conditions,
which are marked by blue capital letters N. In the case of the graphs with the mixed boundary
conditions, the original graph Γo(6, 9, 1) was divided into two subgraphs Γ1(4, 6, 0) and Γ2(4, 3, 1).
The vertices with the Dirichlet boundary conditions are marked by red capital letters D. The vertices
where a vector network analyzer was connected to the microwave networks simulating quantum
graphs presented in this figure are marked by VNA.

3. Measurements of the Spectra of Microwave Networks

In order to evaluate the generalized Euler characteristic E(|VD|) defined by Equation (6),
we measured the spectra of microwave networks simulating quantum graphs. In our
investigations, we used a set-up (see Figure 2) that consisted of an Agilent E8364B vector
network analyzer (VNA) and HP 85133-60016 flexible microwave cable that connected the
VNA to the measured network. The flexible cable connected to the network is equivalent to
attaching an infinite lead to the quantum graph [22,32]. In this way, the one-port scattering
matrix S11(ν) of the network was measured as a function of microwave frequency ν. The
modulus of |S11(ν)| was used to identify the network’s resonances. In Figure 2, we also
show the original microwave network Γo(6, 9, 1), which possesses a single vertex with the
Dirichlet boundary condition (VDo = 1), marked by the red capital letter D. The measured
spectrum of the network Γo(6, 9, 1) is shown in the inset of Figure 2 in the frequency
range ν = [0.01, 1] GHz. In order to reconfirm our experimental results, the spectra of the
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quantum graphs simulated by the microwave networks were also calculated numerically
using the pseudo-orbits method developed in Ref. [31].

Figure 2. The experimental set-up. It contains an Agilent E8364B vector network analyzer (VNA)
and HP 85133-60016 flexible microwave cable that connects the VNA to the measured network.
The original microwave network Γo(6, 9, 1) possesses a single vertex with the Dirichlet boundary
condition, which is marked by the red capital letter D. The measured spectrum of the network
Γo(6, 9, 1) is shown in the inset in the frequency range ν = [0.01, 1] GHz.

In the construction of microwave networks simulating quantum graphs, we used
microwave coaxial cables and junctions that corresponded to the edges and vertices of the
quantum graphs. The microwave cables consisted of an outer conductor with an inner
radius r2 = 0.15 cm and an inner conductor of radius r1 = 0.05 cm, which was surrounded
by the dielectric material (Teflon). The fundamental TEM mode propagates in such cables
below the cut-off frequency of the TE11 mode νcut =

c
π(r1+r2)

√
ε
= 33 GHz [70,71], where

the dielectric constant of Teflon ε = 2.06. It is important to point out that the lengths of
edges of the simulated quantum graph have to be compared to the optical lengths of the
edges of the microwave networks, i.e., lopt =

√
εlph, where lph is the physical length of the

network edges.
In this paper, we discuss two general situations that are possible when the original

network (graph) is split into two subnetworks (subgraphs): the case when the original net-
work and its subnetworks have only the standard boundary conditions and the case when
they are characterized by the mixed boundary conditions, when the Dirichlet boundary
conditions are present.

3.1. Networks with the Standard Boundary Conditions

Here, we will consider the original network Γo(|Vo|, |Eo|, |VDo |), which is split into two
disconnected subnetworks Γi(|Vi|, |Ei|, |VDi |), i = 1, 2, at the common for the subnetworks
vertices v ∈ Vc. All networks are characterized by the standard (Neumann) boundary
conditions. The experimental realizations of the networks Γo(6, 9, 0) and its two subnet-
works Γ1(4, 6, 0) and Γ2(4, 3, 0) are schematically shown in Figures 1 and 2. In this case, all
networks possess only standard (Neumann) boundary conditions, denoted with the capital
letter N.

The total optical lengths of the networks Γo(6, 9, 0), Γ1(4, 6, 0), and Γ2(4, 3, 0) are
Lo = 2.579 m, L1 = 1.675 m, and L2 = 0.940 m, respectively. The lengths of their shortest
edges are lmino = l6 = 0.221 m, lmin1 = l6 = 0.221 m, and lmin2 = l9 = 0.270 m, giv-
ing Kmino = 38, Kmin1 = 23, and Kmin2 = 8, respectively, which were estimated using
Equation (7). Experimentally, in order to find the minimum number of resonances deter-
mined by the parameters Kmino , Kmin1 , and Kmin2 , it was necessary to measure the spectra
of the microwave networks Γo(6, 9, 0), Γ1(4, 6, 0), and Γ2(4, 3, 0) in the frequency ranges
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[0.010, 2.347] GHz, [0.010, 2.234] GHz, and [0.010, 1.271] GHz, respectively. Taking into
account the above parameters, the generalized Euler characteristics Eo(|VDo |), E1(|VD1 |),
and E2(|VD2 |) were calculated using Equation (6).

In Figure 3a–c, we show the generalized Euler characteristics Eo(|VDo | = 0), E1(|VD1 | = 0),
and E2(|VD2 | = 0) (red dotted lines), evaluated experimentally as a function of the parame-
ter t. The numerically found generalized Euler characteristics are marked with blue full
lines. In all three cases, for both experimental and theoretical results, the plateaus at the
generalized Euler characteristics start close to the points t0o = 2.26 m−1, t01 = 2.26 m−1,
and t02 = 1.85 m−1 defined by the theory (see the discussion below Equation (7)). The
values of the generalized Euler characteristics are found to be Eo(|VDo | = 0) = −3,
E1(|VD1 | = 0) = −2, and E2(|VD2 | = 0) = 1, respectively. Using Equation (8), it is easy to
find that |Vc| = 2. It means that, before splitting, the two subgraphs were connected at the
two vertices. It is important to point out that the above information was obtained without
knowing anything about the topologies of the networks.

3.2. Networks with the Mixed Boundary Conditions

We used the same physical networks to investigate the split of the original network
Γo(6, 9, 1) possessing the mixed boundary conditions into two separated subnetworks
Γ1(4, 6, 0) and Γ2(4, 3, 1). The network Γo(6, 9, 1) and the subnetwork Γ2(4, 3, 1) possess a
single Dirichlet boundary condition. Figure 1 shows the schemes of the networks. The
Dirichlet boundary conditions are denoted by the capital letter D. All other parameters of
the networks, such as the total lengths and the shortest edges, are the same as in the case of
the networks with the standard boundary conditions, which were discussed above. How-
ever, for the networks with the mixed boundary conditions, one requires the same number
of resonances as, in the case of the networks with the Neumann boundary conditions, the
frequency ranges where they can be identified are different. For example, for the networks
Γo(6, 9, 1) and Γ2(4, 3, 1), they are [0.010, 2.500] GHz and [0.010, 1.131] GHz, respectively.

In Figure 4a–c, we show the generalized Euler characteristics Eo(|VDo | = 1), E1(|VD1 | = 0),
and E2(|VD2 | = 1) (red dotted lines), evaluated experimentally as a function of the parame-
ter t. The generalized Euler characteristics that were found numerically are marked with
blue full lines. Moreover, here, in all three cases, for both experimental and theoretical
results, the plateaus at the generalized Euler characteristics start close to the points t0o ,
t01 , and t02 defined by the theory. The values of the generalized Euler characteristics are
found to be Eo(|VDo | = 1) = −4, E1(|VD1 | = 0) = −2, and E2(|VD2 | = 1) = 0, respectively.
In addition, in this case, using Equation (8), we found that |Vc| = 2. One should remark
that in the case of the mixed boundary conditions, the knowledge of the topologies of the
experimental networks does not allow us to find their generalized Euler characteristics.
We also have to know the number of their Dirichlet boundary conditions. Therefore, the
measurements of the spectra of the networks and using Equation (6) are mandatory.

158



Entropy 2022, 24, 387

Figure 3. Generalized Euler characteristics evaluated for the networks with the standard boundary
conditions as a function of the parameter t. Panels (a–c) show the generalized Euler characteristics
Eo(|VDo | = 0), E1(|VD1 | = 0), and E2(|VD2 | = 0) of the networks Γo(6, 9, 0), Γ1(4, 6, 0), and Γ2(4, 3, 0),
respectively. The experimental and numerical results are marked with red dotted and blue full lines,
respectively. In all three cases, the plateaus at the generalized Euler characteristics start close to the
points t0o = 2.26 m−1, t01 = 2.26 m−1, and t02 = 1.85 m−1, respectively, defined by the theory (see
the discussion below Equation (7)). The black broken lines show the limits of the expected errors
Eq(|VDq |)± 1/4, where q = o, 1, and 2.
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Figure 4. Generalized Euler characteristics evaluated for the networks with the mixed boundary
conditions as a function of the parameter t. Panels (a–c) show the generalized Euler characteristics
Eo(|VDo | = 1), E1(|VD1 | = 0), and E2(|VD2 | = 1) of the networks Γo(6, 9, 1), Γ1(4, 6, 0), and Γ2(4, 3, 1),
respectively. The experimental and numerical results are marked with red dotted and blue full lines,
respectively. Moreover, here, in all three cases, the plateaus at the generalized Euler characteristics
start close to the points t0o = 2.26 m−1, t01 = 2.26 m−1, and t02 = 1.85 m−1, respectively, defined
by the theory. The black broken lines show the limits of the expected errors Eq(|VDq |)± 1/4, where
q = o, 1, and 2.

4. Summary

We analyzed a relationship between the generalized Euler characteristic Eo(|VDo |)
of the original graph (network), which was split into two disconnected subgraphs (sub-
networks) i = 1, 2, and their generalized Euler characteristics Ei(|VDi |). We showed that
the evaluation of the generalized Euler characteristics Eo(|VDo |) and Ei(|VDi |) allows us
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to determine the number |Vc| of common vertices where the two subgraphs were initially
connected. The theoretical results were numerically verified and confirmed experimen-
tally using microwave networks with the standard and mixed boundary conditions. The
application of the generalized Euler characteristics defined by Equation (6) requires the
measurement of the spectra of the networks but in return allows us to find |Vc| without
knowing their topologies. Therefore, it might be possible to apply the properties of the
splitting networks discussed in this article in some more practical applications, such as
the diagnostics of electronic or microwave networks. One should underline that the first
practical test of such diagnostics where the properties of splitting networks and the gen-
eralized Euler characteristic were applied was presented in this article. For this purpose,
we used real-world systems, such as microwave networks. They are open and dissipative
systems, which are completely different from the ideal dissipationless graphs considered in
their mathematical studies. In spite of this, even for more complex networks possessing the
mixed boundary conditions, we were able to find experimentally the number of common
vertices |Vc| where the two separated subnetworks were connected before their splitting.
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