

João Gonçalves de Almeida

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

Licenciado em Ciências da Engenharia Electrotécnica e de

Computadores

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

Setembro, 2019

Developing Globally-Asynchronous Locally-

Synchronous Systems through the

IOPT-Flow Framework

[Título da Tese]

Dissertação para obtenção do Grau de Mestre em

Engenharia Electrotécnica e de Computadores

Dissertação para obtenção do Grau de Mestre em

[Engenharia Informática]

Orientador: Doutor Filipe de Carvalho Moutinho, Professor Auxiliar, Facul-

dade de Ciências e Tecnologia da Universidade Nova de Lisboa

Co-orientador: Doutor Rogério Alexandre Botelho Campos Rebelo, Investigador,

Faculdade de Ciências e Tecnologia da Universidade Nova de

Lisboa

 Júri:

Presidente: Doutor José António Barata de Oliveira - FCT/UNL

Arguente: Doutora Anikó Katalin Horváth da Costa - FCT/UNL

Vogal: Doutor Filipe de Carvalho Moutinho - FCT/UNL

Developing Globally-Asynchronous Locally-Synchronous Systems through

the IOPT-Flow Framework

Copyright © João Gonçalves de Almeida, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o

direito, perpétuo e sem limites geográficos, de arquivar e publicar esta disserta-

ção através de exemplares impressos reproduzidos em papel ou de forma digital,

ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a di-

vulgar através de repositórios científicos e de admitir a sua cópia e distribuição

com objectivos educacionais ou de investigação, não comerciais, desde que seja

dado crédito ao autor e editor.

v

v

To my family

vi

vii

Acknowledgements

 First and foremost, I would like to thank both of my advisers Professor

Filipe de Carvalho Moutinho and Professor Rogério Alexandre Botelho Campos

Rebelo for the opportunity and for the support and insight provided throughout

the development of this dissertation.

 I would like to thank the Faculdade de Ciências e Tecnologia from Univer-

sidade NOVA de Lisboa for the opportunities provided during these five years.

 A special thanks to Professor Fernando Joaquim Ganhão Perreira for his

availability and assistance.

 And lastly, I would like to thank my friends for their friendship and my

family for love and encouragement.

viii

ix

Abstract

Throughout the years, synchronous circuits have increased in size and com-

plexity, consequently, distributing a global clock signal has become a laborious

task. Globally-Asynchronous Locally-Synchronous (GALS) systems emerge as a

possible solution; however, these new systems require new tools.

The DS-Pnet language formalism and the IOPT-Flow framework aim to

support and accelerate the development of cyber-physical systems. To do so it

offers a tool chain that comprises a graphical editor, a simulator and code gener-

ation tools capable of generating C, JavaScript and VHDL code. However, DS-

Pnets and IOPT-Flow are not yet tuned to handle GALS systems, allowing for

partial specification, but not a complete one.

This dissertation proposes extensions to the DS-Pnet language and the

IOPT-Flow framework in order to allow development of GALS systems. Addi-

tionally, some asynchronous components were created, these form interfaces that

allow synchronous blocks within a GALS system to communicate with each

other.

Keywords: DS-Pnets; IOPT-Flow; GALS; Asynchronous components;

model-based development.

x

xi

Resumo

Ao longo dos anos, os circuitos síncronos têm vindo a crescer em dimensão

e complexidade, consequentemente, distribuir um sinal clock tornou-se uma ta-

refa árdua. Sistemas Globalmente-Assíncronos Localmente-Síncronos (GALS)

surgem como uma possível solução, no entanto, estes requerem novas ferramen-

tas.

O formalismo DS-Pnet e o conjunto de ferramentas IOPT-Flow têm como

objetivo suportar e acelerar o desenvolvimento de sistemas ciber-físicos. E, por

essa razão, disponibilizam um conjunto de ferramentas que incluem um editor

gráfico, um simulador e ferramentas para geração de código seja ele C, JavaScript

ou VHDL. No entanto, as DS-Pnets e as IOPT-Flow não estão ajustadas para sis-

temas GALS, permitindo especificar parcialmente, mas não por completo.

Esta dissertação propõe extensões ao formalismo DS-Pnet e à IOPT-Flow

framework de forma a permitir o desenvolvimento de sistemas GALS. Adicio-

nalmente, são propostos alguns componentes, estes formam interfaces que per-

mitem comunicação entre blocos síncronos dentro de um sistema GALS.

Palavras-chave: DS-Pnets; IOPT-Flow; GALS; Componentes assíncronos;

Desenvolvimento baseado em modelos.

xii

xiii

Content

CHAPTER ONE - INTRODUCTION .. 1

1.1 - MOTIVATION ... 1

1.2 - OBJECTIVES ... 2

1.3 - DOCUMENT STRUCTURE ... 3

CHAPTER TWO - LITERATURE REVIEW ... 5

2.1 - SEQUENTIAL CIRCUITS .. 5

2.1.1- Synchronous Circuits ... 5

2.1.2 - Asynchronous Circuits.. 6

2.2 - GLOBALLY-ASYNCHRONOUS LOCALLY-SYNCHRONOUS (GALS) CIRCUITS 6

2.3 - ARCHITECTURES FOR GALS ... 8

2.3.1 - Asynchronous wrapper ... 8

2.3.2 - FIFO-based scheme .. 9

2.3.3 - Comparison between different FIFO ...17

2.3.4 - Lookup-Based Scheme ...20

2.4 - TOOLS FOR THE DEVELOPMENT OF CIRCUITS ... 21

2.4.1 - Hardware Description Language ...21

2.4.2 - High Level Synthesis ...21

2.4.3 - GALS Specific Tools..23

2.5 - DS-PNET & IOPT-FLOW.. 27

2.5.1 - DS-Pnet (Dataflow, Signals and Petri nets) ...27

2.5. 2 - IOPT-Flow Framework ...28

2.6 - LITERATURE REVIEW CONCLUSIONS .. 29

CHAPTER THREE - ASYNCHRONOUS COMPONENTS .. 31

3.1- COMMUNICATION PROTOCOL ... 31

3.2 - COMPONENTS DESCRIPTION .. 34

xiv

3.2.1 - Simple Interface ..34

3.2.2 - SimpleBuffer Interface ...38

3.2.3 - BurstBuffer Interface ...42

3.2.4 - Data Interface ..46

3.2.5 - DataBuffer Interface ..50

CHAPTER FOUR - EXTENDING DS-PNETS AND IOPT-FLOW FOR GALS 55

4.1 - GALS-DS-PNET DEFINITION .. 55

4.2 – EXECUTION SEMANTICS ... 56

4.1.1 – JavaScript Implementation ..57

4.1.2 – Hardware Implementation ...57

4.1.3 – Proposal for GALS ...58

4.3 – IOPT-FLOW TOOLS .. 59

4.3.1 - Editor ...59

4.3.2 - Simulator ...60

4.3.3 - VHDL Code Generator ..61

CHAPTER FIVE - VALIDATION .. 63

5.1 - ASYNCHRONOUS COMPONENTS ... 63

5.1.1 - Simple ..64

5.1.2 - SimpleBuffer ...66

5.1.3 - BurstBuffer ..69

5.1.4 - Data ..71

5.1.5 - DataBuffer ...74

5.2 - IMPLEMENTING SEVERAL TESTS ON AN FPGA BOARD ... 76

5.2.1 - Counting Events Transmitted with a Simple 4-phase Interface78

5.2.2 - Transmitting Events with a BurstBuffer 4-phase Interface80

5.2.3 - Data Transmission ..82

5.2.4 - 2-Phase Implementations of Previous Tests ..85

5.2.5 - Comparing Clock Edges to Event Transmission...87

5.2.6 - Data verification...91

5.3 - GALS SIMULATION IN THE IOPT-FLOW FRAMEWORK .. 92

5.4 - RESULTS ANALYSIS .. 94

CHAPTER SIX - CONCLUSION AND FUTURE WORK ... 99

BIBLIOGRAPHY ..103

xv

List of Figures

FIGURE 2.1 - GRAPH OF GALS ARCHITECTURES. .. 8

FIGURE 2.2 - IOPT-TOOLS FRAMEWORK BROWSER WINDOW. .. 24

FIGURE 2.3 - DS-PNET ELEMENTS. ... 27

FIGURE 2.4- IOPT-FLOW FRAMEWORK BROWSER WINDOW. .. 28

FIGURE 3.1 - EXAMPLES OF A PUSH CHANNEL FOR BOTH THE 4-PHASE AND 2-PHASE PROTOCOL................................. 32

FIGURE 3.2 - SIMPLE 4-PHASE TRANSMITTER. ... 34

FIGURE 3.3 - SIMPLE 4-PHASE RECEIVER. ... 35

FIGURE 3.4 - SIMPLE 2-PHASE TRANSMITTER. ... 36

FIGURE 3.5 - SIMPLE 2-PHASE RECEIVER .. 37

FIGURE 3.6 - COMMUNICATION BETWEEN SIMPLE 4-PHASE TRANSMITTER AND RECEIVER. .. 38

FIGURE 3.7 - COMMUNICATION BETWEEN SIMPLE 2-PHASE TRANSMITTER AND RECEIVER. .. 38

FIGURE 3.8 - SIMPLEBUFFER 4-PHASE TRANSMITTER... 40

FIGURE 3.9 - SIMPLEBUFFER 4-PHASE RECEIVER. .. 40

FIGURE 3.10 - SIMPLEBUFFER 2-PHASE TRANSMITTER. ... 41

FIGURE 3.11 - SIMPLEBUFFER 2-PHASE RECEIVER. ... 41

FIGURE 3.12 - COMMUNICATION BETWEEN SIMPLEBUFFER 4-PHASE TRANSMITTER AND RECEIVER. 42

FIGURE 3.13 - COMMUNICATION BETWEEN SIMPLEBUFFER 2-PHASE TRANSMITTER AND RECEIVER. 42

FIGURE 3.14 - BURSTBUFFER 4-PHASE TRANSMITTER. .. 43

FIGURE 3.15 - BURSTBUFFER 4-PHASE RECEIVER. .. 44

FIGURE 3.16 - BURSTBUFFER 2-PHASE TRANSMITTER. ... 45

FIGURE 3.17 - BURSTBUFFER 2-PHASE RECEIVER. .. 45

FIGURE 3.18 – COMMUNICATION BETWEEN BURSTBUFFER 4-PHASE TRANSMITTER AND RECEIVER. 46

FIGURE 3.19 – DATA 4-PHASE TRANSMITTER. ... 47

FIGURE 3.20 - DATA 4-PHASE RECEIVER. .. 47

FIGURE 3.21 - DATA 2-PHASE TRANSMITTER. .. 48

FIGURE 3.22 - DATA 2-PHASE RECEIVER. .. 49

FIGURE 3.23 - COMMUNICATION BETWEEN DATA TRANSMITTERS AND RECEIVERS. ... 49

FIGURE 3.24 - DATABUFFER 4-PHASE TRANSMITTER. ... 51

xvi

FIGURE 3.25 - DATABUFFER4-PHASE RECEIVER. .. 52

FIGURE 3.26 - DATABUFFER 2-PHASE TRANSMITTER. ... 53

FIGURE 3.27 - DATABUFFER 2-PHASE RECEIVER .. 53

FIGURE 3.28 - DATABUFFER 4-PHASE COMMUNICATION. ... 54

FIGURE 4.1 - CURRENT EXECUTION SEMANTICS. ... 56

FIGURE 4.2 - PROPOSED EXECUTION SEMANTICS FOR GALS. ... 58

FIGURE 4.3 - PROPOSED EXECUTION SEMANTICS FOR JAVASCRIPT SIMULATION. ... 61

FIGURE 5.1 - SIMULATION OF THE SIMPLE 4-PHASE INTERFACE ON THE IOPT-FLOW FRAMEWORK. 64

FIGURE 5.2 - SIMULATION OF THE SIMPLE 4- PHASE INTERFACE ON THE XILINX ISE. .. 64

FIGURE 5.3 - SIMULATION OF THE SIMPLE 2-PHASE INTERFACE ON THE IOPT-FLOW FRAMEWORK. 65

FIGURE 5.4 - SIMULATION OF THE SIMPLE 2-PHASE INTERFACE ON THE XILINX ISE.. 66

FIGURE 5.5 - SIMULATION OF THE SIMPLEBUFFER 4-PHASE INTERFACE ON THE IOPT-FLOW FRAMEWORK. 67

FIGURE 5.6 - SIMULATION OF THE SIMPLEBUFFER 4-PHASE INTERFACE ON THE XILINX ISE. 67

FIGURE 5.7 – SIMULATION OF THE SIMPLEBUFFER 2-PHASE INTERFACE ON THE IOPT-FLOW FRAMEWORK. 68

FIGURE 5.8 - SIMULATION OF THE SIMPLEBUFFER 2-PHASE INTERFACE ON THE XILINX ISE. 68

FIGURE 5.9 - SIMULATION OF THE BURSTBUFFER 4-PHASE INTERFACE ON THE IOPT-FLOW FRAMEWORK. 69

FIGURE 5.10 - SIMULATION OF THE BURSTBUFFER 4-PHASE INTERFACE ON THE XILINX ISE. 69

FIGURE 5.11 - SIMULATION OF THE BURSTBUFFER 2-PHASE INTERFACE ON THE IOPT-FLOW FRAMEWORK. 70

FIGURE 5.12 - SIMULATION OF THE BURSTBUFFER 2-PHASE INTERFACE ON THE XILINX ISE. 71

FIGURE 5.13 - SIMULATION OF THE DATA 4-PHASE INTERFACE ON THE IOPT-FLOW FRAMEWORK. 72

FIGURE 5.14 - SIMULATION OF THE DATA 4-PHASE INTERFACE ON THE XILINX ISE. ... 72

FIGURE 5.15 - SIMULATION OF THE DATA 2-PHASE INTERFACE ON THE IOPT-FLOW FRAMEWORK. 73

FIGURE 5.16 - SIMULATION OF THE DATA 2-PHASE INTERFACE ON THE XILINX ISE. ... 73

FIGURE 5.17 - SIMULATION OF THE DATABUFFER 4-PHASE INTERFACE ON THE IOPT-FLOW FRAMEWORK. 74

FIGURE 5.18 - SIMULATION OF THE DATABUFFER 4-PHASE INTERFACE ON THE XILINX ISE. 74

FIGURE 5.19 - SIMULATION OF THE DATABUFFER 2-PHASE INTERFACE ON THE IOPT-FLOW FRAMEWORK. 75

FIGURE 5.20 - SIMULATION OF THE DATABUFFER 2-PHASE INTERFACE ON THE XILINX ISE. 75

FIGURE 5.21 - NEXYS 4 DDR BOARD FROM XILINX. .. 77

FIGURE 5.22 - SYNCHRONOUS BLOCK TRANSMITTER, TEST ONE. ... 79

FIGURE 5.23 - SYNCHRONOUS BLOCK RECEIVER, TEST ONE. ... 79

FIGURE 5.24 - XILINX ISE WAVE GRAPH, SIMULATION ONE. ... 79

FIGURE 5.25 - SYNCHRONOUS BLOCK TRANSMITTER, TEST TWO. .. 81

FIGURE 5.26 - SYNCHRONOUS BLOCK RECEIVER, TEST TWO. .. 81

FIGURE 5.27 - XILINX ISE WAVE GRAPH, SIMULATION TWO. .. 82

FIGURE 5.28 - SYNCHRONOUS BLOCK TRANSMITTER, TEST THREE. .. 83

FIGURE 5.29 - SYNCHRONOUS BLOCK RECEIVER, TEST THREE.. 83

FIGURE 5.30 - XILINX ISE WAVE GRAPH, SIMULATION THREE. .. 83

FIGURE 5.31 - SYNCHRONOUS BLOCK TRANSMITTER, TEST FOUR. ... 84

FIGURE 5.32 - SYNCHRONOUS BLOCK RECEIVER, TEST FOUR. ... 84

FIGURE 5.33 - SYNCHRONOUS BLOCK TRANSMITTER, TEST FOUR. ... 85

FIGURE 5.34 - SYNCHRONOUS BLOCK RECEIVER, TEST FIVE. .. 85

FIGURE 5.35 - SYNCHRONOUS BLOCK TRANSMITTER, TEST SIX. ... 86

FIGURE 5.36 - SYNCHRONOUS BLOCK RECEIVER, TEST SIX. ... 86

xvii

FIGURE 5.37 - SYNCHRONOUS BLOCK TRANSMITTER, TEST SEVEN. ... 86

FIGURE 5.38 - SYNCHRONOUS BLOCK RECEIVER, TEST SEVEN. ... 87

FIGURE 5.39 - XILINX ISE WAVE GRAPH, SIMULATION SEVEN. ... 87

FIGURE 5.40 - SYNCHRONOUS BLOCK TRANSMITTER, TEST EIGHT. ... 88

FIGURE 5.41 - XILINX ISE WAVE GRAPH, SIMULATION EIGHT. ... 88

FIGURE 5.42 - SYNCHRONOUS BLOCK TRANSMITTER, TEST NINE. ... 89

FIGURE 5.43 - SYNCHRONOUS BLOCK RECEIVER, TEST NINE. .. 90

FIGURE 5.44 - XILINX ISE WAVE GRAPH, SIMULATION NINE. ... 90

FIGURE 5.45 - SYNCHRONOUS BLOCK TRANSMITTER, TEST TEN. ... 91

FIGURE 5.46 - SYNCHRONOUS BLOCK RECEIVER, TEST TEN. ... 92

FIGURE 5.47 - XILINX ISE WAVE GRAPH, SIMULATION TEN. ... 92

FIGURE 5.48 - IOPT-FLOW WAVE GRAPH WITH PROPOSED EXECUTION SEMANTICS, SIMULATION ONE. 93

FIGURE 5.49 - IOPT-FLOW WAVE GRAPH WITH PROPOSED EXECUTION SEMANTICS, SIMULATION TWO. 94

xviii

xix

List of Tables

TABLE 5.1 - TRANSMITTER COMPONENTS, EVENT TRANSMISSION. ... 95

TABLE 5.2 - TRANSMITTER COMPONENTS, DATA TRANSMISSION. ... 96

TABLE 5.3 - RECEIVER COMPONENTS, EVENT TRANSMISSION. ... 97

TABLE 5.4 - RECEIVER COMPONENTS, DATA TRANSMISSION. ... 98

xx

xxi

Acronyms

Ack - Acknowledge

DS-Pnet - Dataflow, Signals and Petri nets

FIFO - First In First Out

FPGA - Field Programmable Gate Array

GALS - Globally Asynchronous Locally Synchronous

HDL - Hardware Description Language

HLS - High-Level Synthesis

IOPT-Flow - Framework that employs the DS-Pnet Language

IOPT-net - Input-Output Place-Transition Petri-net class

IOPT-tools - Framework that employs the IOPT-net language

ISIM - Xilinx ISE Simulator

NoC - Network-on-Chip

Req - Request

SoC - System-on-Chip

xxii

1

Chapter One - Introduction

1.1 - Motivation

Circuits are ever evolving, over the years, they have greatly increased in

size and complexity. For this reason, distributing a global clock over the entire

circuit with minimal clock skew has become an issue subject to great analysis and

consideration by designers and researchers. [1][2][3]

More attention is given to alternative options such as asynchronous systems

and Globally-Asynchronous Locally-Synchronous (GALS) systems. A GALS sys-

tem is halfway between a synchronous and an asynchronous system, by breaking

down a fully synchronous system into several smaller blocks, these are their own

synchronous circuits with their respective clock generators and frequencies. Con-

sequently, since each block has its own individual clock signal, an asynchronous

interface is required for communication.

A GALS design provides benefits from both sides, much of the standard

synchronous methodology and design tools may still be employed. However,

asynchronous interfaces connect the synchronous blocks which suggests a natu-

rally modular design. This modular design is the greater benefit of employing a

GALS design since each block can be reused and replaced without any additional

cost, because they are not constrained by a global clock. [1][4]

1

2

On one hand, asynchronous interfaces between synchronous blocks imprint

latency and introduce a bottleneck in the design that may limit throughput. On

the other hand, while it is not a guarantee, a GALS system provides the possibil-

ity to fine tune each clock signal may achieve higher power efficiency and lower

electromagnetic noise. Lastly, the potential to reuse and replace synchronous

blocks will inevitably speed up development time giving designers an edge on

the time-to-market. [2][5]

1.2 - Objectives

While an ample range of different tools for developing circuits exist some

authors argue that there is a lack of GALS specific tools, especially when it comes

to verification and testing, this is due to the uncertainty of asynchronous com-

munication. For this reason, one of the objectives of this work is to analyse exist-

ing tools and methodologies for the development of GALS systems. [6][7][8]

The DS-Pnet (Dataflow, Signals and Petri nets) modelling language com-

bines Petri net nodes and data-flow nodes to support the development of cyber-

physical systems. Petri net nodes inherit the main characteristics of Input-Output

Place-Transition (IOPT) nets and are responsible for the reactive part of the con-

trollers, meaning they control the state of the system and its evolution. Data-flow

nodes employ mathematical expressions to calculate new values (data pro-

cessing), the output value of such nodes is an expression based on the inputs.

[9][10][11]

IOPT-Flow modelling framework is a web-based set of tools that supports

DS-Pnets. It comprises a graphical editor, a simulator/debugger and automatic

code generators, supporting a complete design work-flow. The tool outputs C

and JavaScript software code or VHDL hardware descriptions. [11]

Model-based development formalisms based on Petri nets bring several ad-

vantages, such as rapid prototyping, simulation and automatic model-checking

tools. Additionally, graphical languages are inherently more accessible to unex-

perienced users, which facilitates communication between different roles of the

development team.

3

Petri net-based formalisms tend to lack input/output and data processing

capabilities, which can sometimes make them unsuitable for real-world applica-

tions. The DS-Pnet language formalism and its associated framework, IOPT-

Flow, introduce these capabilities, evoking model-based development formal-

ism's advantages while covering for their shortcomings.

Additionally, while IOPT-Flow is not a commercial framework with a vast

and varied set of tools, such as LabView or Matlab/Simulink, it also does not

impose expensive license costs or large applications that need to be attached to

the user's personal computer. Nonetheless, it offers a higher-level abstraction

level than VHDL while being less verbose, however, it is still an abstraction level

below most languages used in High-Level Synthesis (HLS) which results in gen-

erated code that is more optimized. Lastly, it continues to be developed with ex-

tensions as soon as this year, which include a GUI builder.

This work aims to extend both the DS-Pnet formalism and the library of its

tool framework (IOPT-Flow) to include asynchronous interfaces. In doing so it

should also be possible to specify different time-domains to fully realize a GALS

system. The intended result is an environment for quick development/prototyp-

ing of GALS systems, further extending the capabilities of IOPT-Flow allowing

the development of new and different systems.

1.3 - Document Structure

This document is organized in five different chapters, where the first is a quick

introduction to the document of which this section belongs. Chapter two is a lit-

erature review of the subject at hand, synchronous and asynchronous circuits,

Globally-Asynchronous Locally-Synchronous (GALS) circuits and their different

architectures, already existing tools for FPGA design and the DS-Pnet and the

IOPT-Flow framework. Chapter three provides a description of the asynchro-

nous interfaces that were created utilizing the IOPT-Flow framework, five differ-

ent types of interfaces were created, with each following either a 2-phase or a 4-

phase communication protocol, the five categories of interface are Simple, Sim-

pleBuffer, BurstBuffer, Data and Databuffer of which the first three transmit

events and the latter transmit data. Chapter four, first, provides an analysis of the

current DS-Pnet language and IOPT-Flow framework's capability of modelling a

4

GALS circuit, and second, discusses possible adjustments that can be made to

improve its ability to accommodate the modelling of a GALS circuit. Chapter five

presents a set of simulations that aim to validate the created components and

alterations made to IOPT-Flow framework's simulator. Lastly, Chapter six offers

a conclusion and proposes future work.

5

Chapter Two - Literature Review

2.1 - Sequential Circuits

Sequential circuits distinguish themselves for their capability of remember-

ing previous states, meaning the value of the outputs is not only determined by

the value of the inputs but also by the value of the previous states. Two types of

sequential circuits will be further explored bellow, namely synchronous and

asynchronous circuits. [12]

2.1.1- Synchronous Circuits

Synchronous circuits are sequential circuits that require a global clock sig-

nal to advance to the next state. For this reason, this type of circuit is predictable

and by consequence safer to design around, thriving over its asynchronous coun-

terpart in most of today's circuits. [12]

These circuits separate themselves by their simplicity of design and under-

standing and their predictability that results in safer and more robust systems

that can more easily avoid hazards.

However, the global clock signal brings some disadvantages as well, mainly

due to the fact that this signal is required to reach every component simultane-

ously. That is to say, the speed at which the circuit can run is limited by this sig-

nal. The clock signal itself is limited by the longest path in the system requiring

to account for the worst case scenario and clock skew. Furthermore, since the

whole circuit is stimulated by the global clock signal additional energy is spend

2

6

on unused sections of the circuit, generating a large electromagnetic pulse. Ad-

ditionally, as a result of the need to design the clock signal specifically for the

circuit in hand the circuit is not easily adapted or repurposed. [1][13]

2.1.2 - Asynchronous Circuits

Asynchronous circuits are sequential circuits that are not governed by a

global clock signal. This allows them to progress as fast as its physical capabilities

allow. Furthermore, the absence of a global clock signal also implies lower power

dissipation and lower electromagnetic emissions. The need to optimize rarely

used paths is heavily devalued allowing design time to be invested elsewhere for

a higher overall gain since the worst-case scenario does not limit the entire sys-

tem. External outputs are more easily accommodated in comparison to its coun-

terpart due to its asynchronous nature. It also exhibits a better potential for mi-

gration which could cut down on design time since sections from other works

can be adapted. [13][14]

While asynchronous circuits have only been used as small circuits such as

peripherals, due to low scalability in synchronous circuits, have been gaining in-

creasingly more attention. [13]

However, this type of design is challenging since hazards and race condi-

tions are a constant issue and their lack of predictability makes them harder to

test, mainly due to a lack of design tools. Other issues involve intermediate states,

disparate arrival times cause different results and further time spent during

handshake protocols which ultimately results in a necessity for a larger number

of transistors. [14]

2.2 - Globally-Asynchronous Locally-Synchronous (GALS)

Circuits

Globally-Asynchronous Locally-Synchronous systems aspire to achieve a

middle ground between synchronous and asynchronous circuits taking ad-

vantage of qualities from both sides. The main principle is that there are synchro-

7

nous islands on an asynchronous environment. That is, the whole system is di-

vided into multiple blocks and each block has its own local clock, however the

blocks communicate with each other asynchronously.

Over the years, the increase in die size, transistor count and complexity has

increased the amount of design effort put into the clock distribution. It’s a chal-

lenging task to distribute a low skew clock with high frequency. A GALS design

solves this issue by replacing the global clock with multiple local clocks, inher-

ently generating lower electromagnetic impulses. Having multiple blocks iso-

lated from each other implies that the blocks are independent and, for this reason,

can be repurposed, this is the main advantage GALS exhibits. Furthermore, the

elimination of the global clock means that not every section of the system con-

sumes energy, only the active blocks do, while by itself a GALS system doesn’t

mean a lower consumption of energy it allows for the creation of more energy

sensible systems by fine-tuning the local clocks and even pausing the clock while

it is not necessary. [1][2]

Despite the issue not being as severe as in a fully asynchronous design, the

lack of tools for designing and testing are the biggest hurdle for a GALS ap-

proach, however, some of the tools used for synchronous design can be adapted

or used for partial testing. With the addition of asynchronous interfaces between

blocks, the partition of the blocks becomes a critical aspect of the design process

that requires considerable attention and design effort, furthermore, latency and

some loss in throughput is to be expect when in comparison to a fully synchro-

nous design, due to the crossing of timing domains. [6]

In [4], an older but still relevant article, after many years of research in the

subject of GALS some observations have been made. Contrary to speculation at

the time, GALS systems are not automatically faster, smaller or sufficient to re-

duce power. Each module can be fine-tuned to run at its own optimal rate. How-

ever, communication between blocks incurs a penalty. Large systems with rarely

used slow paths can profit from a GALS methodology. Where GALS’ true ad-

vantages lie, is on its methodology, the ability to break down complex large sys-

tems in multiple smaller and simpler blocks. Blocks become re-usable which al-

lows for the exchange of blocks according to specifications. Inherently, a GALS

system can be more easily integrated due to its ability to communicate through

8

an asynchronous environment. A GALS methodology might be the only ap-

proach for large SoC (system-on-chip) systems.

2.3 - Architectures for GALS

A GALS system can be characterized by the way the synchronous blocks

interact with each other. The two main schemes utilized are the introduction of

an asynchronous wrapper that envelops the block enabling it to communicate

asynchronously and the introduction of a FIFO buffer that hides the synchroni-

zation problems. A third scheme will be presented; however, this scheme is far

less popular than the other two, simply put each block communicates with a cen-

tral storage unit as opposed to with each other.

In figure 2.1, an overall GALS architecture graph is presented based on the

literature found, it's important to note that many of the techniques utilized for

the FIFO-based scheme may also be utilized for the Asynchronous wrapper

scheme; however, the most commonly found in literature was the clock control.

Figure 2.1 - Graph of GALS architectures.

2.3.1 - Asynchronous wrapper

The asynchronous wrapper allows communication via use of handshaking

schemes, input and output ports are added to the synchronous block that handle

request and acknowledge signals to assure that data can be safely transmitted.

Asynchronous
wrapper

FIFO-based

Clock control

Pausible clocking

Stretchable
clocking

Data driven

Asynchronous
Loosely

synchronous

Mesochronous

Plesiochronous

Heterochronous

Lookup-based

9

These ports are usually in control of the clock generator and whenever it is not

safe to transmit data the clock is stopped and the block ceases operation.

These handshakes require additional power and limit performance since

only one data value can be transmitted at a time and multiple signals are required

for each value. For these reasons this architecture as fallen in popularity. [7]

In [3], each synchronous island is enveloped by an asynchronous wrapper

that contains one clock generator and a controller for each input and output. To

avoid metastability during data transfer between synchronous islands the clock

generator needs to be pausible, so that whenever data transfer coincides with a

sampling clock edge the clock can be paused. However, such incidents are rare

and have little impact on throughput.

Information leaving or entering the synchronous island is accompanied by

a pair of request-acknowledge signals. A four-phase protocol is used in which a

handshake cycle has 4 sequential events (req↑, ack↑, req↓, ask↓), were infor-

mation is guaranteed to be valid between req↑ and ack↓.

The local clock should be large enough to accommodate the worst-case sce-

nario for its local circuit, same as any synchronous system. A pause request will

delay the next clock cycle stretching the low phase of the clock. A mutual exclu-

sion element is necessary to arbitrate between requests, for this reason the signals

are required to be persistent.

Two subdivisions of port controllers are described, demand-ports (D-ports)

and poll-ports (P-ports). These types of ports differentiate from each other by the

way they influence the clock generation, D-ports are useful whenever the syn-

chronous island cannot continue to function without new data, the clock is

paused in order to prevent unnecessary power usage. P-ports are useful when-

ever available data is not immediately needed, the clock is only paused to guar-

antee that information is safely transferred. Simply put, D-ports have a “sleep

while waiting” design and P-ports have a “proceed while waiting” design.

2.3.2 - FIFO-based scheme

The usage of a FIFO buffer connecting two synchronous blocks hides the

synchronization problem, the blocks only need to be able to send and request

10

data from the FIFO. The introduction of the FIFO buffer increases area overhead

but also inherently means that a synchronous block does not need to wait for its

receiver to be available it only requires for the FIFO to not be full, this leeway

increases throughput. There are multiple design styles through which blocks can

achieve communication with the FIFO, either clock control where the clock of the

block is affected as to avoid metastability, asynchronously through the use of

synchronizers or loosely synchronous methods were the bounds of the frequency

are known.

It’s important to note that some of the methods described could be applied

without the FIFO but were either not intended that way or benefit from its usage.

2.3.2.1 - Clock Control

Multiple clocked synchronous domains can be controlled by clock control

techniques in order to communicate. The synchronization strategy stops the

clock when data transfer takes place in order to avoid metastability. Different

clocking schemes can be applied, each dictate how and when the clock is stopped.

The clock generator is controlled by asynchronous port controllers similar to the

asynchronous wrapper, however these ports do not communicate with other

ports, instead they communicate with the FIFO buffer. Input and output ports

are implemented accordingly to the amount of inputs and outputs. To ensure

safe transmission computation on the synchronous block is halted during com-

munication between blocks. [15]

In [16], an early implementation of a pausible clock control scheme is de-

scribed, of which the principles still stand. Mutual exclusion elements and arbi-

ters are described as well as their role in the circuit, these elements are responsi-

ble for the arbitration between the internal clock’s sampling edges and external

signal transitions, since they share a common resource. In order for mutual ex-

clusion elements to function effectively signals need to be persistent. A ring os-

cillator substitutes the commonly used crystal oscillator due to the added possi-

bility of pause. Furthermore, an arbiter is required for multiple inputs. As many

connections as necessary can be implemented, however, a large amount will

make the arbiter impractical. A FIFO is used between blocks for one direction

communication and two for bidirectional communication. Communication with

11

the FIFO is done through handshake signals. Using SPICE, the behaviour of a

simplified architecture was simulated, consisting of two modules communi-

cating in a single direction through the use of pausible clock control. The FIFO is

not necessary to establish communication; however, its inclusion helps to

smother bursts of data common when dealing with modules that function at dif-

ferent rates. During simulation, the receiver operates at higher clock frequency

than the sender, so the FIFO never fills up.

In [15], three different clocking schemes are described and compared, them

being:

 Pausible clocking scheme

Characterized by its free running clock. A mutual exclusion element is used

to interrupt the clock whenever data needs to be transferred, providing safe com-

munication.

 Stretchable clocking scheme

Similarly to the pausible clocking scheme it has a free running clock. The

difference is that the pause is anticipated. This adjustment leads to an increase in

throughput. The computational segment is paused once a request signal is pre-

sent.

 Data driven clocking scheme

Contrary to the previous schemes, the clock is not free running, the clock

edges occur with the presence of input data. Resulting in a reduction in power

consumption due to only being active when data is received.

In [15], experiments show that with the increase in frequency of the pro-

ducer block (block that produces data to be sent) the number of pauses also in-

creases, as expected since lower frequencies mask the delay caused by the data

transfer. While a pausible clocking scheme and a stretchable clocking scheme

have similar number of pauses, once the frequency of the producer block is

higher than the frequency of the consumer block (block that consumes data it

receives) the latency, of pauses, of the stretchable clocking scheme is much longer

than those of the pausible clocking scheme. Furthermore, once the frequency of

the producer block surpasses the consumer block the FIFO will tend to fill, once

12

full more pauses will occur, since pauses take longer to resolve on a stretchable

clocking scheme it is much more impacted by a full buffer.

It can be observed that the throughput increases with the frequency of the

producer block until the FIFO is full, for this reason the ideal frequency is such

that both blocks run at a high frequency without filling the buffer. However, the

data driven has the best throughput followed by the stretchable clocking scheme.

Power consumption increases with the increase in frequency, as expected.

Data driven offers less power consumption as well, while the other two exhibit

similar results.

2.3.2.2 - Asynchronous

In order to avoid metastability, synchronizers are added between the tim-

ing domains. These synchronizers consist of a battery of flip-flops that resolve

the problem but add latency, for this reason while it is a simple solution it is not

the most elegant nor the most efficient.

In [17], communication across an elastic network fabric is analysed and

evaluated, measuring efficiency and overhead. A NoC (network-on-chip) pos-

sesses a large potential that is further enhanced through the use of GALS meth-

odologies. As a consequence, many design aspects need to be considered, and an

important aspect is the interface protocol between the network and the cores. La-

tency insensitive protocols (LIP) have some potential advantages in GALS sys-

tems, therefore it has been subject of testing in elastic systems.

Elastic systems are similar to clocked systems, however, two control wires

(valid and stall) implement a handshake between sender and receiver. Stall sig-

nals propagate backwards and allows that a second data arriving at the flip-flop

can be stored in the second latch, this is possible due to independent control for

each of the two latches that comprise a flip-flop. Three interfaces were imple-

mented, them being a fully synchronous interface, a clocked interface and an

asynchronous interface.

The network fabric has low latency, high throughput and a static worst-case

latency for all transmissions due to significantly different targets when compared

to other NoC designs. Since the blocks run at their own optimal frequency, data

13

transmitted must be synchronized, this synchronisation has a significant over-

head and is an important factor in a GALS system.

Two synchronizing interfaces are compared the aforementioned clocked

and asynchronous. Each composed of FIFOs and synchronizers. Both FIFOs are

simple four-deep linear shift, the clocked FIFO is implemented as four elastic half

buffers and takes four full clock cycles to propagate data, where in the asynchro-

nous FIFO, data propagates very quickly from tail to the head, this asynchronous

FIFO is implemented using domino gates.

The clocked synchronizer is implemented with two flip-flops and some ad-

ditional logic for handshaking. The asynchronous designs use a “fast synchro-

nizer” that substitutes flip-flops for mutual exclusion elements, being able to

send data and perform handshakes within a single clock cycle, whereas the

clocked synchronizer takes two clock cycles in each direction. However, while a

clocked interface requires a single synchronizer the asynchronous interface re-

quires two, this happens due to crossing the different timing domains, where the

asynchronous FIFO behaves like its own domain.

The three designs were implemented onto a chip with four components, the

computational module, network interfaces, network fabric and a scan interface.

Multiple chips can be used to emulate a SoC design, the SoC design was the in-

tended application, and however, due to space limitations the system had to be

broken down.

Two sets of results were had into account, characterization of the elastic

network and a comparison between clocked and asynchronous interfaces.

In the former, the test is done in a way that bypasses the synchronizing in-

terface, this way the links are operating at their maximum utilization factor. The

latency is effectively equal to the number of buffering elements, that is to say that

this test is meant to provide an analysis of the system at its ideal performance

without the latency introduced by the synchronizing interfaces. The latter set of

results has the computational module and the network fabric clocked at different

frequencies, this is done to compare the performance of each interface. The asyn-

chronous design exhibits reduced latency and a close to no synchronization cost,

as speculated previously.

14

2.3.2.3 - Loosely Synchronous

By exploiting known bounds of the frequency, it is possible to only allow

communication whenever it is safe to transmit losing only a few cycles from time

to time which deems handshaking unnecessary resulting in a higher throughput.

However, timing analysis between blocks is required and changes to the clock

frequency require further timing analysis. This design style can be further classi-

fied according to its timing relationships, such relationships have been classified

by Messerschmitt [18] and are as follows:

In [18], some basic concepts are first described, a Boolean signal represents

one of two possible values, due to physical limitations there is an undesired pe-

riod of transition between states, however with the goal of taxonomy of such sig-

nals this and similar behaviours will be ignored, in order to keep such classifica-

tions simple. Furthermore, a Boolean signal’s frequency and phase are those of

its associated clock. When a signal has a constant frequency it is said to be isoch-

ronous (from the Greek root “iso” meaning “equal”), if it is otherwise non-con-

stant, the signal is designated anisochronous (meaning “not equal”).

Secondly, when two signals are present we can define their relationship.

When two signals are both isochronous, have the same frequency offset and

have a zero instantaneous phase difference, they can be designated synchronous

(from the Greek root “syn” meaning “together”), any signal that does not follow

these criteria is then designated asynchronous (meaning “not together”), any two

anisochronous signals are therefore asynchronous expect when they exhibit the

same transitions, however this is a special and unusual case, only possible if both

signals originate from the same circuit.

For a GALS architecture the relevant relationships are the asynchronous re-

lationships, because locally synchronous blocks communicate through an asyn-

chronous environment, such relationships can be further categorized.

Two isochronous signals with the exact same frequency and yet with a sta-

ble but different phase, may be designated mesochronous (from the Greek root

“meso” for “middle), an example would be two signals sourced from the same

generator but suffering varying delays.

15

Two signals that have nominally the same average frequency, however not

exactly the same, such relationship is designated plesiochronous (from the Greek

root “plesio” for “different”). This happens when two different sources generate

the same signal.

Finally, if two signals have nominally different average frequencies they are

designated heterochronous (from the Greek root “hetero” for “different”). How-

ever, a further separation has been made by [6], a heterochronous relationship can

be classified as either ratiochronous, if the frequency of one signal an exact rational

multiple to the other signal and there is a predictable periodic phase relationship

due to a common source clock, or otherwise nonratiochronous in which the ex-

plained scenario is not true.

In [19], a network-on-chip (NoC) is introduced in a multiprocessor system-

on-chip (MPSoC) to realize dozens or hundreds of CPU cores. Each packet is seg-

mented into flits with a 26bit header and a 64-bit payload. A 2d-mesh topology

with XY-routing is used. Three different behaviours can be configured on the

router, synchronous, mesochronous or asynchronous.

For a synchronous router, incoming flits are registered, then flits are buff-

ered in a FIFO queue to smother possible bursts of data. The FIFO is also used

for flow control. Flits can be transmitted until the FIFO is nearly full, nearly as

opposed to full to accommodate some latency in signal transition. The flit is then

transmitted to its respective output. Any flit as a minimum latency of two clock

cycles to transverse through the router.

For a mesochronous router, the synchronous router is extended with mes-

ochronous links to allow unknown phase shifts between routers, this relaxes the

global clock tree. However, the register has to be replaced by a mesochronous

synchronizer, a tightly coupled mesochronous synchronizer (TCMS) is used. Ad-

ditionally, three clock cycles are required, which results on an increase in the

depth of the FIFO by one.

Lastly, for an asynchronous router, communication is carried out through a

two-phase handshake protocol, in which any change in the request signal implies

a new flit. The clusters still operate synchronously and may be operated by their

own independent clock. Synchronizers are needed to cross domains, addition-

16

ally, metastability needs to be accounted for. The block responsible for the rout-

ing decision is pure combinational logic and is the same for all designs. For flit

buffering, mousetrap circuits are used in every port. Multiple mousetraps may

be combined to make a FIFO, enabling higher throughput at the expense of la-

tency. The biggest challenge is arbitration between requests, and for that reason

an arbiter is added.

For a single cluster, a synchronous and a mesochronous router occupy

about the same area, while the mesochronous router replaces the register for a

synchronizer effectively increasing its size it compensates for it by having less

wires connecting each router, due to relaxed timing constrains. The asynchro-

nous router requires only 42% of the synchronous router’s area, due to the usage

of latches instead of flip-flops.

Power consumption is determined by gate-level simulations of two con-

nected cluster nodes. Power consumption was registered while both on an idle

state and during active communication. The synchronous router consumes the

most for both an idle state and during active communication, the mesochronous

router achieves slightly better results and the asynchronous router dissipates

only 22.4% of the synchronous router’s power while on idle state and 53% during

active communication.

Contrary to the other two designs the asynchronous router’s latency and

throughput are not dependent on a global clock, it is instead only limited by the

local handshake and wire delay. On average, the asynchronous NoC shows 15%

increased maximum throughput and 25% decreased minimum latency, the asyn-

chronous router benefits from fast handshaking handled by mousetraps. Addi-

tionally, the mousetrap in combination with fast arbitration by the asynchronous

join elements results in a better handling of packet collision.

Lastly, a comparison between the three designs for the global clock tree on

top level is made. The global clock three needs to connect to all cluster nodes,

however timing checks need only to be met for the synchronous design. With the

intent of analysing scalability, at this point, only the results for the clock tree top

level are had into account. Once again, while the mesochronous design exhibits

a small advantage over the synchronous design, the asynchronous design has a

17

much lower power consumption, 25% for 256 CPUs, this is due to smaller clock

trees within the cluster nodes.

All in all, while modern synchronous methods allow for some scaling, a

mesochronous or asynchronous design is more efficient.

2.3.3 - Comparison between different FIFO

In [20], with the apparition of Network-on-Chip (NoC) as new approaches

for high throughput and scalable design of Multi-Processor Systems-on-Chip

(MPSoS), FIFO buffers stand as an important component for asynchronous de-

sign, namely GALS.

A Muller pipeline is structurally simple, consisting of a simple C element

and an inverter gate, once full only every other stage stores data and each stage

should tightly interact with neighbouring stages.

A fully-decoupled latch controller can be introduced so that all stages store

data when the pipeline is full and each stage handshaking on the input channel

completes without any interaction with the output channel. But, having a more

complicated controller reduces throughput and slows down the handshaking.

Such pipelines require combinational logics between stages. However, in a

FIFO data is stored without processing, furthermore data is only read and written

on a single stage. The result is less power consumption in comparison with a

pipeline.

An option for a FIFO implementation is a modular FIFO which follows the

asP* handshaking protocol and is synthesizable by standard cell logics without

any particular asynchronous cell. However, it requires some timing considera-

tions due to not following the conventional 4-phase handshake protocol.

Another option is a FIFO based on a fully-decoupled pipeline. The FIFO

exhibits the throughput of a fully-decoupled FIFO in addition to some multiplex-

ing and demultiplexing penalties.

It’s of note that all presented FIFOs are all self-timed.

Furthermore, [21] proposes a FIFO architecture consisting of a RAM, read

and write pointers, full and empty detectors and input and output handshake

18

controllers. This design completely follows the 4-phase bundled data handshake

protocol.

Data is written into the RAM in the slot indicated by the write pointer while

the RAM is not full. An ack signal is sent when the RAM is not full, and the re-

quest is asserted, additionally the full and empty detectors are updated. When

the RAM is not empty a request is sent to the output port indicating new data is

available.

Memory is implemented with latches and pass-transistors. However, it

could be replaced by a memory plane to increase performance. Addresses are

one-hot, which discards the need for an address decoder. Handshake controllers

consist of an asymmetric C-element and n AND gates for input channel. Once a

request is asserted the signal is then blocked until the FIFO has free space. When

free space is available and ack is zero it enables the load signal regardless of the

request signal. FIFO requests to send out its data when it is not empty once the

ack signal is lowered. Upon reset the read and write pointers should be zero as

to point to the first memory slot. When both pointers are the same it indicates

that the FIFO is empty or full. To distinguish between full and empty, one extra

bit is added to both pointers and they toggle whenever their pointers circulate

and become zero again. Since the write pointer is triggered on the ack’s rising

edge the not-full flag can be evaluated before the ack signal lowers. However, if

the FIFO is full the detector should not change state until the read operation ends,

in order to avoid read/write races.

Through accurate SPICE simulation the proposed FIFO and some other de-

signs, the aforementioned Muller, Fully-Decoupled, asP* based and Domino-

controlled, were simulated with the intent to evaluate them. Verilog was used at

gate level for describing some available FIFOs that were then used as buffers.

All of the FIFOs require elaborate and engineering timing assumptions for

reliable operation. No wire delays were had into account. A random Galois LFSR

sequence of data words are used as to obtain results that don’t depend on certain

inputs.

All FIFOs were made from the same library and the conditions were iden-

tical. Results for comparisons should therefore be reasonable. Furthermore, dif-

ferent depths were tested.

19

The resulting throughputs seem to be sorted by complexity were the high-

est throughput is achieved by the simpler FIFO design, this is, the proposed FIFO.

Only the Muller and the Fully-Decoupled pipelines maintain throughput with

the increase of depth. However, the Muller and the Fully-Decoupled pipelines

have a sharp increase in energy per word with the increase of depth, Domino’s

energy consumption is much lower than the remaining due to a lack of Flip-

Flops.

The proposed FIFO also seems to have a lower latency than all the others in

must conditions, however if the FIFO is empty the Domino-controlled will have

a slightly less latency.

For further analysis, the proposed FIFO and the Domino-controlled are em-

ployed as buffers in routers of a 4x4 mesh network. The NoC used is fully asyn-

chronous based on QNoC and ASPIN using two cascaded Flip-Flops to connect

synchronous IP cores to the asynchronous network.

Each router addressable with a two-dimensional number contains five ports

connecting it to its neighbours and to the local IP cores. To route packets between

ports the asynchronous NoC uses distributed X-First algorithm to guarantee the

in-order-delivery property. Furthermore, each packet is divided in flits and when

a header flit of a packet is received the packet is forwarded to the corresponding

output port.

Parameters from the SPICE library are extracted and back-annotated in a

Verilog HDL library.

The router is modelled in gate level using the mentioned library and the 4x4

mesh network is constructed by behavioural model local IP cores.

Both the proposed FIFO and the domino are modelled and used as buffers

of the routers’ input ports. FIFOs are 5-stages deep with 34bit data word length.

The results show that the proposed FIFO exhibits less packet latency and more

network saturation threshold compared to its Domino controlled counterpart.

20

2.3.4 - Lookup-Based Scheme

A storage mapping unit (SMU) is added to each block. These SMU allow

the block to read and write from a central storage, removing the need to exchange

signals. Removing inter-component signals simplifies design, additionally mul-

tiple data values can be stored without having to wait. [7]

In [21], a Kahn Process Network (KPN) consists of processes that communi-

cate via point-to-point unbounded FIFO channels. A KPN model can be vali-

dated via functional simulation. Then, it is possible to construct a GALS system

from a KPN model, by refining it with a refinement components library. The

communication between processes is facilitated by asynchronous communica-

tion with a shared on-chip storage location. However, the KPN properties must

be preserved through the refinement.

Refining a KPN model into a GALS model requires that unbounded storage

elements are replaced by bounded storage elements, additionally blocking read

and blocking write conditions shall be enforced on the process. To achieve these

two requirements an on-chip lookup storage unit (LUS) is used to store data, a

LUS is bounded and allows communication between processes since all pro-

cesses read from and write on the LUS, furthermore each process is augmented

by storage mapping out unit (SMU).

The LUS is split into different segments, each segment is used for commu-

nication between two processes. Segments have limited size that should be

enough to accommodate delays on behalf of the consumer process. An index

points to the location of a data segment, additionally the bounds of the segments

are known. Data stored has a single control bit that indicates whether the data is

valid. To protect data integrity each segment has a read and a write controller.

A SMU is added to each process, this SMU governs the execution of the

process. It is capable of storing data relevant to the process, this is, inputs and

outputs. Furthermore, the SMU is responsible for communicating with the LUS,

each communication is established through control and data signals.

By maintaining the Kahn principles, each process is shown to be determin-

istic, continuous and monotonic, additionally the behaviours of the processes in

the GALS architecture are latency equivalent to its KPN counterpart.

21

2.4 - Tools for the Development of Circuits

2.4.1 - Hardware Description Language

A Hardware description language (HDL) is used to describe the structure and

behaviour of electronic circuits. The two most popular design languages for

FPGA are VHDL and Verilog, they are capable of description, synthesis, simula-

tion of logic circuits and multiple levels of design description. [22]

In [22], a comparison between Verilog and VHDL is presented, although the pa-

per's focus is on VHDL. Verilog is described as less verbose, easier to learn and

to model abstract hardware structures, while VHDL is described as having good

documentation, synthesis and simulation capabilities, with emphasis on reusa-

bility.

However, other languages may be used to describe circuits. MyHDL, a Python

package that outputs to either Verilog or VHDL, it still requires the developer to

understand design techniques while leveraging the power of the Python lan-

guage. SystemVerilog is an extension of Verilog in combination with OpenVera

and SuperLog, that can be used for developing the RTL for the FPGA or it can be

used for verification. [23]

Many commercial simulators are available such as Xilinx's ISE and Vivado, Intel's

Quartus II, Mentor Graphic's ModelSim and Synopsys' VCS, as well as some free

and open-source simulators such as Icarus Verilog, Verilator and QUCS.

2.4.2 - High Level Synthesis

On one hand, describing components in a hardware description language

(HDL) allows the creation of specialized hardware with great potential; however,

advanced hardware expertise is required and even then, the process is cumber-

some, resulting in long development times. [24]

On the other hand, High Level Synthesis (HLS) adds another layer of ab-

straction to the design process. Many tasks are automated, resulting in a greatly

improved design time at the expense of some chip area and performance. Some

of the automated tasks include, resource allocation, scheduling and resource

binding. Additionally, interface synthesis is handled, between the generated cir-

cuit and periphery. [24][25]

22

While a HLS tool will be capable of generating a hardware realisation the

result will be bloated and inefficient. A software mind set does not always trans-

late well into a hardware environment, such as, algorithms based on pointer

arithmetic or recursion, will have issues since memory is distributed and many

variables are stored in registers. Additionally, any concurrent system design will

cause issues due to the need of hardware synchronization [26]

The amount of code written by the designers is heavily reduced, saving time

and reducing risk of error. Additionally, some HLS tools can generate test

benches to reduce verification time. [25]

Field Programmable Gate Arrays (FPGAs) and HLS make a strong combi-

nation for rapid prototyping and a fast time to market. [24][25]

HLS tools start from a high-level software programmable language (HLL),

such as C, System C or Matlab, and generate a circuit specification in HDL that

performs the same function. [24]

In [25], a survey on the HLS tools compares them on criteria such as abstrac-

tion level, learning curve, documentation and design exploration. However, this

survey is from 2012 in a field with active research where the tools are constantly

evolving. Nevertheless, the tools analysed are Xilinx AccelDSP, Agility Com-

piler, AutoPilot, BlueSpec, Catapult C, Compaan, C-to-Silicon, CyberWork-

Bench, DK Design Suite, Impulse CoDeveloper, ROCCC and Synphony C.

In [24], a more recent survey from late 2015, offers an evaluation of past and

present HLS tools both commercial and academic, as well as an in-depth evalua-

tion and discussion of some of the selected tools in terms of performance and

area metrics. Some of the academic tools include LegUp, Bambu and DWARV,

while some of the commercial tools include VivadoHLS, CyberWorkBench,

Synphony C and ROCCC.

23

2.4.3 - GALS Specific Tools

2.4.3.1 - Introduction

Some GALS specific tools and methodologies exist; however, these tools are

still recent and have room to grow. To mention a few, in [27], Malik et al. present

a new system-level programming language SystemJ. SystemJ is a multiclock Java

based language that supports the GALS model of computation. Later, in [28],

Malik et al. propose DSystemJ, it is an extension of the SystemJ language that

enhances it with dynamic creation and process mobility. Another method may

be to extend synchronous languages to develop GALS systems, taking advantage

of the fact that the systems have a trustworthy base. Such is the case for Esterel,

Lustre and Signal languages that were proposed for distributed systems devel-

opment in [29].

2.4.3.2 - IOPT-nets and IOPT-Tools

Furthermore, other Petri net-based modelling tools have been used for the

development of GALS. Due to a scarcity of Petri net-based tools for embedded

systems design surges the Input-Output Place-Transition Petri-net class that ex-

tends the Place-Transition Petri net Class with input and output capabilities,

guard functions and output expressions. IOPT-Tools (figure 2.2) is a web-based

framework that employs the IOPT Petri net class to support the implementation

of embedded system controllers, it possesses a graphical editor complemented

with model-checking and system verification tools and is capable of generating

either C code for software solutions or VHDL code for hardware descriptions.

Later, a model-based development approach for Globally-Asynchronous Lo-

cally-Synchronous Distributed Embedded Systems was proposed relying and ex-

tending the IOPT Petri net class and its associated framework, IOPT-Tools.

[30][31][32][33]

24

Figure 2.2 - IOPT-Tools Framework browser window.

2.4.3.3 - A Toolset for Modelling and Verification of GALS Systems.

 For example, in [8], a toolset for design and verification of GALS systems

is presented, this toolset is based on Communicating Reactive State Machines

(CSRM), a visual formal language. Furthermore, it integrates a graphical editor,

simulator and verification engine. A CRSM is a network of nodes. These nodes

are locally synchronous, can execute concurrently and communicate with each

other on point-to-point channels.

The model is verified by translating the system into Promela. Promela code

ensures that the status of signals and states in the system are evaluated correctly,

additionally, each node should include a reactive kernel and an environment

process. Spin code has been modified to automatically and counter examples

generated are translated into traces and displayed in the simulator.

2.4.3.4 - Calibrating a Local Clock

In [34], a flexible method that through dedicated hardware circuits and of-

fline software analysis allows local clock generators to be calibrated. However,

this solution requires each clock generator to be connected by a serial synchro-

nous low-speed link. Each clock generator has allocated a unique address in the

chain. A main clock controller exists and is connected to the serial chain. This

25

controller is responsible for generating the serial sequence that calibrates the se-

lected clock generator to the desired frequency. The serial link communication is

achieved with frames that carry the commands. Two types of command are

enough for a ring oscillator, programming frames and calibration frames. Pro-

gramming frames write initial configuration values to the local clock divider, and

calibration frames perform incremental modification of the delay chain of the

ring oscillator.

Configuration and calibration is performed by a FSM sequence based on

both the data read from the ROM and the local clock period. A configuration

signal is sent to each local clock generator and afterwards calibrated. A calibra-

tion command can either increment or decrement in small amounts.

The clock parameter is stored in the ROM so they can easily be accessed by

the controller. These values are computed by an external tool that makes sure the

measurement of the clock frequency is kept to a minimum without impacting the

overall programming time.

A system with three clock generators was simulated to test different target

frequencies and different reference clock frequencies. It can be noticed that, a

higher reference clock produces better results in both programming time and

fewer errors, however it shouldn’t be so high that it doesn’t accommodate a sig-

nificant number of local generated clock periods. Higher local generated clocks

also produce better results because less time is needed to measure them. A pos-

sible approach to achieving faster programming time would be to have a higher

frequency that are then divided locally.

2.4.3.5 - Adapting Existing FPGA Tools for a GALS System

The authors of [35] defend that, Field Programmable Gate Arrays (FPGA)

are becoming larger and distributing a global clock is becoming a burden, for that

reason GALS are becoming an attractive alternative, however the lack of tools is

a pressing issue. And so, methodology for implementing asynchronous GALS

components using existing FPGA resources becomes an option.

26

A GALS system requires asynchronous elements to establish asynchronous

communication between synchronous islands. For a pausible clock, a delay ele-

ment and a Muller-C element are indispensable, an arbiter, while not essential,

greatly simplifies communication.

Look-up tables (LUT) and Flip-Flops (FF) are the only synchronous FPGA

resources numerous enough to enable implementation of such asynchronous el-

ements. However, the LUT must generate hazard-free output and have close de-

lay matching between each input and corresponding output.

The asynchronous component implementation is based on a Place & Route

(P&R) process that ensures component functionality. FPGA synthesis tools opti-

mize redundant paths which may not be desired when designing asynchronous

components, and for that reason needs to be constrained. These constrains are

necessary for GALS communications.

A delay element may be preserved in a FPGA by either creating a group

constraint with at least two elements or creating a KEEP constraint. However, the

first option is preferred due to KEEP not allowing P&R. A delay element required

two LUTs in an empty group and otherwise a single LUT.

A Muller-C element establishes the precedence of asynchronous events. A

Muller-C element only changes its output once every input is the same, which

protocols take advantage to establish communication. In order to implement a

Muller-C element two options are presented, using a single LUT or using tow

LUT and a FF. The first option has the obvious advantage of requiring less re-

sources, however the second option is generally preferred due to its robustness.

The arbiter must grant access to the signal that first arrives, however due to

its asynchronous inputs it’s subject to metastability which must be accounted for.

Three implementations exist. The first is a latch-based implementation on two

LUTs and two feedback paths, the second is similar but requires an additional

feedback path. The third option is to once again exploit the robustness provided

by the FFs, four LUTs and four FFs are required, despite more resources spent

and slower action this method is preferred, due to its added robustness.

27

2.5 - DS-Pnet & IOPT-Flow

Model-based development formalisms based on Petri nets bring several ad-

vantages, such as rapid prototyping, simulation and automatic model-checking

tools, however, they are not always suitable for real-world embedded system ap-

plications as they lack input/output and data processing capabilities. To over-

come this, the IOPT-nets and, later, DS-Pnets were proposed. [11]

2.5.1 - DS-Pnet (Dataflow, Signals and Petri nets)

 The DS-Pnet modelling language is a directed graph that combines Petri

net nodes with data-flow nodes to aid in the development of cyber-physical sys-

tems, it offers high level design concepts that hide low level platform details,

simplifying and accelerating development. [10]

It is composed of five types of nodes,

Petri net places, Petri net transitions, in-

put/output signals, input/output events

and data-flow operations, these are repre-

sented in figure 2.3. Additionally, two

types of arcs connect such nodes, normal-

arcs and read-arcs. [10]

Data-flow nodes, or operations, em-

ploy mathematical expressions to calcu-

late new values. Operations are connected

to other nodes via read-arcs and each out-

put is an expression where its operands are

its inputs. Computational time is considered instantaneous; therefore, feedback

loops are forbidden. Counters should be employed to work around this issue.

[10]

Input and output signals and events are used to communicate with the real

world. Signals have a lasting effect were events are instances. [10]

Petri net places and transitions follow the IOPT Petri net class and are used

to control the cyber-physical systems. The state of the system and its evolution is

controlled by these nodes. [10]

Figure 2.3 Figure 2.3 - DS-Pnet elements.

28

Normal-arcs are the traditional Petri net arcs used for communication be-

tween Petri net places and transitions. Read-arcs transmit data between the re-

maining nodes. [10]

The DS-Pnet language stands in between HDL and HLS. It is simple for

someone without experience to comprehend due to being a graphical language,

while avoiding the pitfall of a software mind set and as a result the generated

HDL code will be much closer to a handmade one.

2.5. 2 - IOPT-Flow Framework

Figure 2.4- IOPT-Flow Framework browser window.

The IOPT-Flow modelling framework is a web-based set of tools for design

of embedded and cyber-physical system controllers. The chosen modelling lan-

guage is named DS-Pnet and it employs elements from the IOPT-Flow Petri nets

class and from data-flows. The IOPT-Flow framework, depicted in figure 2.4, is

composed of a few tools, namely, a graphical editor capable of model edition, a

simulator capable of simulation, a debugger supporting monitoring and remote

control and an automatic code generator that produces the final code to run on

the prototype hardware. [11]

29

Upon opening the framework, the user is greeted with the editor tool, it's

from this tool that all others are invoked. The window is divided into three sec-

tions, the left section is the toolbox where all the tool's functionalities reside, in

the middle is the drawing are where the model will be implemented and lastly

on the right the selected element's properties will be shown. The toolbox allows

for typical edition tools such as element creation, copy and paste, undo and redo,

load and save, etc. Additionally, buttons specific to the framework exist, node-

fusion, complementary places and automatic semaphore creation, as well as,

check syntax errors and invoke the simulator and code generation tools. [11]

The simulator tool, is used to simulate and debug models without the need

to compile and deploy code onto physical hardware. Simulations run on the us-

er's web browser using automatically generated JavaScript code. To simplify de-

bugging a simulation may be run continuously or step-by-step. Additionally,

simulator history is recorded for later analysis for high speed simulations. This

recorded history can either be exported in CSV or viewed as graphical wave-

forms on the tool itself. [11]

Lastly, the goals of the framework go past modelling and simulation, it is

also possible to generate software or hardware code to run on embedded devices.

The automatic code generation tools were implemented using XSLT transfor-

mations. Currently, XSLT transformations for C, VHDL and JavaScript are avail-

able. [11]

2.6 - Literature Review Conclusions

Globally-Asynchronous Locally-Synchronous (GALS) circuits show poten-

tial going forward, since they take advantages from both synchronous and asyn-

chronous circuits, in particular its scalability and its modular nature.

 Some different architectures exist when it comes to GALS systems, most

notably asynchronous wrappers and FIFO based schemes. The former envelops

the synchronous block in an asynchronous wrapper that handles all communica-

tion with both other synchronous blocks and environmental inputs and outputs,

and the latter has the synchronous blocks communicate through a FIFO buffer

that covers any synchronization issues.

30

Currently, a myriad different tools capable of developing and implement-

ing algorithms into hardware each with their own set of advantages and disad-

vantages.

Labview and Matlab/Simulink have seen heavy use by the academic com-

munity with some incursions in the industrial environments. There are huge

frameworks with a vast and varied set of tools. However, these are commercial

products, with expensive license costs whose applications are comparatively

quite large and need to be attached to the user's personal computer. On the other

hand, the IOPT-Flow framework can be easily accessed on any simple phone,

tablet or computer due to being web based with the more computing intensive

tasks running on the user's web browser. Although Simulink supports Petri nets

and dataflows, the IOPT-Flow has been specifically designed for the purpose of

supporting the design of embedded and distributed cyber-physical systems,

bringing high performance implementations and precise semantics. Further-

more, this tool chain allows for reading and writing input and output signals and

events without the need for additional blocks supplied by the hardware venders.

[9]

The IOPT-Tools support many of the advantages that IOPT-Flow brings,

however, it is not as adequate to handle the complex data manipulations due to

the lack of dataflow nodes that the IOPT-Flow framework provides. IOPT- Tools

has had some development in the field of GALS systems that the IOPT-Flow has

not yet. And so, this dissertation aims to develop the IOPT-Flow framework in

that direction.

31

Chapter Three - Asynchronous Components

3.1- Communication Protocol

In a GALS system, an asynchronous interface is required in order to trans-

mit information between two blocks. To this end, some components were cre-

ated, utilizing the IOPT-Flow framework. Each asynchronous interface is com-

posed of a transmitter-receiver pair. As their names imply, information is loaded

onto the transmitter and from there sent to the receiver from which it may be

later retrieved. Synchronization is achieved through pairs of Re-

quest/Acknowledge signals, these signals may communicate either via a 2-phase

or 4-phase handshake protocol. A description of these protocols is readily pre-

sented, additionally, figure 3.1 displays an UML sequence diagram of a simple

example for each of the protocols.

On a handshake protocol, communication is initiated by setting the request

signal. Then upon receiving this signal the other component will respond by set-

ting the acknowledge signal. If data is being transmitted, then it may only be

valid during a portion of the exchange. [36]

For a 2-phase handshake protocol only two events are exchanged. The ini-

tial values of these signals are irrelevant since transitions are recognized rather

than the values themselves. Nevertheless, these signals will usually be synched,

meaning, they’d hold the same value while not communicating. If after commu-

nication both signals are high then the exchange is designated as an up hand-

shake and if, otherwise, both signals are low it is designated as a down hand-

shake. First, the exchange is initiated by the request signal’s shift in value. Then,

3

32

upon recognizing this transition the other component will shift the acknowledge

signal’s value. The exchange is considered finished once the component that ini-

tiated the exchange recognizes a transition on the acknowledge signal, and so, a

new handshake may occur. [36]

Figure 3.1 - Examples of a push channel for both the 4-phase and 2-phase protocol.

On the other hand, the 4-phase handshake protocol requires four events. It

is composed of an up handshake followed by a down handshake. In this protocol,

the signal’s values are read and not necessarily their transitions. Once the down

handshake concludes a new cycle may begin. [36]

When transmitting data, two types of channels may be distinguished, push

channels and pull channels. These pertain to when data is considered valid. On

a push channel data is valid during the handshake, the sender initiates commu-

nication by issuing the data-valid (request) signal. On a pull channel data is valid

between handshakes, it is the receiving party that requests data. [36]

For a 2-phase handshake, only one data-valid scheme exists for each chan-

nel. For a push channel, data is valid from the moment the request signal transi-

tion occurs to the moment the acknowledge signal transition is recognized. As

for a pull, channel data is valid from the moment the acknowledge signal transi-

tion occurs until the next request signal transition is recognized. [36]

33

For a 4-phase handshake, three different data-valid schemes exist for each

channel, these schemes can be designated as early, late or broad. First addressing

the push channel, for the early scheme, data is valid from Req↑ until Ack↑, for

the late scheme, data is valid from Req↓ until Ack↓, and lastly, for a broad

scheme, data is valid from Req↑ until Ack↓.

Now addressing the pull channel, for the early scheme, data is valid from

Ack↑ until Req↓, for the late scheme data is valid from Ack↓ until Req↑, and

lastly, for the broad scheme, data is valid from Ack↑ until Req↓. [36]

Furthermore, push channels are more commonly found in literature.

The interfaces created may be placed into five categories. These categories

will be explained in detail further bellow and they are Simple, SimpleBuffer,

BurstBuffer, Data and DataBuffer. For each category two pairs of transmitter/re-

ceiver components were created, one of them follows the 2-phase communication

protocol and the other the 4-phase communication protocol. Additionally, a sim-

ple communication example was created for each one.

For the components capable of transmitting data, push channels were used

and while data is set at the same instance as Req↑ it is only read by the receiver

after Req↓. This was the chosen approach in order to relax the wiring. If the data

was read immediately upon receiving Req↑, the data wire had to reach the re-

ceiver before the request signal, since data is read upon receiving Req↓, the data

wire has three events to reach the receiver.

Bellow, some communication graphs will be presented, they will display

exchange of signals between the synchronous block and the components de-

scribed in this chapter. Due to simplicity and quick understanding, only some

crucial signals will be visible, by consequence, it is not completely accurate. Ad-

ditionally, AB1 and AB2, respectively refer to the synchronous block to which

the transmitter is attached and the synchronous block to which the receiver is

attached.

A Delay event is present in every component in order to artificially simulate

communication delay in the framework, this event does not contribute to the

goals of the component and should be later removed, and that is to say, it should

only be present for simulation while the IOPT-Flow framework is not prepared

for asynchronous communication. Additionally, removing the Delay events may

34

require some simple adjustments in some components, specifically the ones that

communicate via 2-phase protocol.

3.2 - Components Description

3.2.1 - Simple Interface

The Simple interface is only capable of transmitting events. In other words,

no data is transmitted, instead the transmitter merely notifies the receiver that an

event has occurred. Only one event can be transmitted at a time.

Figure 3.2 - Simple 4-Phase Transmitter.

Figure 3.2 depicts the Simple 4-phase transmitter, in its initial state. This

state is held until the next load event, this load event is the means by which the

synchronous block informs the transmitter that a new event should be transmit-

ted. The component’s outputs are the Available signal and the Req (for request)

signal, both are connected to Petri net places from which their values are depend-

ent of, this is, their value is high whenever the Petri net place they are connected

to holds at least one mark and low otherwise. Once the load event occurs, the

transition t019 will fire consuming the mark in AllowCom (Available signal↓)

and creating a new mark on Req+ (Req signal↑). Once the Ack (for acknowledge)

signal is high the transition t020 fires, causing the mark in Req+ (Req signal↓) to

be consumed and a new mark on Req- to be created. Once Ack signal is low the

transition t021 will fire consuming the mark on Req- and creating a new mark on

35

AllowCom (Available signal ↑) and by doing so the component returns to its in-

itial state.

Figure 3.3 - Simple 4-Phase Receiver.

In figure 3.3, the Simple 4-phase receiver, in its initial state, is visible. This

state is held until the Req signal is high, meaning that the transmitter desires to

communicate a new event. In this component a place named DataReady_cmpl

exists, this place is complementary to DataReady, as its name implies, its sole

purpose is to impede DataReady of having more than one mark at any giving

time, as this scenario would disrupt the system. In a similar fashion, the upcom-

ing components will also have complementary places, these will not be further

described as their purpose is directly related to the place they are complementary

to. Once again, the component’s outputs are connected to Petri net places from

which their values are dependent of, them being the NewData output signal and

the Ack output signal. Just as the receiver perceives that the Req signal has been

set to high the transition t004 will fire, as a consequence, the mark in AllowCom

is consumed and marks are created in DataReady (NewData↑) and Ack+ (Ack↑).

Since NewData is now high the receiver’s synchronous block has been notified

that a new event has been transmitted, once the synchronous block is ready to

take in information, the Release event should be evoked in order to have the tran-

sition t040 fire, in consequence, consuming DataReady (NewData↓) and allowing

for new information to be received. Meanwhile, once Req is set to low the transi-

tion t006 will fire, consuming the mark on Ack+ (Ack↓) and creating a mark on

AllowCom. Once Req is low and DataReady is empty the system is again in its

initial state.

36

Figures 3.4 and 3.5 depict, respectively, the Simple 2-phase transmitter and

receiver, in their initial state. As it would be expected, they function in a similar

manner to their 4-phase protocol counterparts. Many of the elements are con-

served, in particular the same inputs and outputs are still present and connected

to the same Petri net places. Nonetheless, one main difference is that these com-

ponents communicate by detecting both the rising and falling edges instead of

simply reading the signals. The differences between these two protocols will be

further explained, starting with the transmitter.

Whenever a load event occurs, assuming the transmitter is available, either

the transition t021 (Req↓) or the transition t019 (Req↑) will fire consuming Allow-

Com (Available↓), whichever transition fires is determined by whether a mark is

present on either Req+ or Req-, a mark will always be consumed in one of these

Petri net places and created on the other, effectively controlling the Req output

signal. At any given time, a single mark will exist in either of these places. The

other main difference is how the response from the receiver impacts the system,

namely, once a shift in the Ack signal is detected a mark will be created in Allow-

Com (Available↑), this shift is detected by the operation that is connected to the

Ack signal.

Figure 3.4 - Simple 2-Phase Transmitter.

37

As for the receiver, it is readily visible that the left section of the component

remains untouched. Once again, divergences are mainly laid out on the sections

of the component responsible for communication, as it would be expected. Like-

wise, the transmitter’s Req+ and Req-, the transitions t029 and t028 are responsi-

ble for consuming the mark on either Ack+ (Ack↓) or Ack- (Ack↑) and creating a

new mark on the other, once more, effectively controlling the Ack output signal.

A shift in the Req signal will indicate that a new event is being transmitted, and

as long as DataReady is empty a new cycle may begin, else the system will wait

for DataReady to become empty.

Figure 3.5 - Simple 2-Phase Receiver

Figures 3.6 and 3.7 depict a Simple communication example for each proto-

col, the former for the 4-phase protocol and the latter for the 2-phase protocol. As

was mentioned before, the components have the same inputs and outputs re-

gardless of which communication protocol was employed.

As it is visible on each figure, the transmitter’s inputs are a load event (this

event should be the result of a Petri net transition being fired as shown in the

figure), a delay event and an Ack signal. On the other hand, the transmitter’s

outputs are an Available signal and a Req signal. While the transmitter is availa-

ble for communication the Available output signal should be high and otherwise

low. The transition connected to the load input event should only fire if the Avail-

able output signal is high, whenever new events need to be transmitted. The Req

and Ack signals are the Request and Acknowledge signals used for communica-

tion between blocks.

38

The receiver’s inputs are a release event (similar to the load event it should

be connected to a Petri net transition), a delay event and a Req signal. The re-

ceiver’s outputs are a NewData signal and an Ack signal. The NewData output

signal is high whenever an event has been received from the other block and low

otherwise. After the new information has been retrieved by the receiver’s block,

the Petri net transition connected to the Release event should fire which will re-

sult in NewData going from high to low, however, this transition should fire only

if NewData is high.

Figure 3.6 - Communication between Simple 4-phase transmitter and receiver.

Figure 3.7 - Communication between Simple 2-phase transmitter and receiver.

3.2.2 - SimpleBuffer Interface

The SimpleBuffer interface is akin the Simple interface, as one might infer

from their names, except for the presence of a buffer. This buffer is capable of

holding a pre-defined number of events before becoming unavailable in contrast

to the single one from the Simple interface.

Figure 3.8 illustrates an example of how this interface might be applied, as

was earlier explained, AB1 is the synchronous block to which the transmitter is

39

connected to and, in a similar manner, AB2 is

the synchronous block to which the receiver is

connected to. Three events are loaded in quick

succession before obtaining a response from

the receiver, once the first load event occurs

the Req is set to high to establish communica-

tion. Then, the receiver responds raising the

Ack signal, in the meanwhile, NewData also

raises indicating to AB2 that a new event has

been received. Communication proceeds as

expected, later, another event is loaded with-

out disrupting said communication. By the

point the receiver holds two events, a Release

event occurs from AB2, NewData is lowered

and then raised again, since it had more events

to transmit.

Figure 3.9 portrays the SimpleBuffer 4-

phase transmitter, in its initial state. As it

would be expected it is very similar to the cor-

responding Simple transmitter. Only a few el-

ements were added, for instance, whenever a

Load event occurs, if available, the transition

t004 will fire creating a mark on the Buffer

place, this Buffer holds the amount of events

yet to be communicated. The operation o005

is high while the buffer is not yet full, it does

so by comparing the BufferSize signal input with the buffer. The Available signal

is directly connected to this operation. The BufferEV output signal exists mainly

as a debugging method and may be later removed.

Figure 3.10 depicts the SimpleBuffer 4-phase receiver, in its initial state.

Once more, it is very similar to the corresponding Simple receiver. Only a few

elements were added, specifically, between the transition t004 and DataReady. A

Petri net place, Buffer, holds the amount of events that have been communicated

Figure 3.8 - SimpleBuffer 4-phase com-

munication example.

40

but are yet to be read. Furthermore, an additional condition is imposed onto the

t004 transition, gating off new information if the buffer is full.

Figure 3.8 - SimpleBuffer 4-phase transmitter.

Figure 3.9 - SimpleBuffer 4-phase receiver.

Figures 3.11 and 3.12 depict, respectively, the SimpleBuffer 2-phase trans-

mitter and receiver. Once more, these two components are similar to both the

Simple 2-phase components and to the SimpleBuffer 4-phase components.

Figures 3.13 and 3.14 illustrates a simple communication example of the

SimpleBuffer components, for both the 4-phase and the 2-phase protocols. What

is shown is very similar to figures 3.6 and 3.7, with the only additions being the

41

BufferSize input signal and the BufferEV output signal. The BufferSize signal in-

put dictates the size of the buffer up to a maximum of 255 (albeit this value could

be easily increased with few adjustments), this value should be set at the start, as

to permit events to be transmitted. However, this value can be altered knowing

that increasing it simply allows for more events onto the buffer and decreasing it

for less events, although decreasing this value does not in and of itself decrease

the amount of events to be sent/read on the buffer, causing it to possibly have

more events on the buffer than the buffer size.

Figure 3.10 - SimpleBuffer 2-phase transmitter.

Figure 3.11 - SimpleBuffer 2-phase receiver.

42

Figure 3.12 - Communication between SimpleBuffer 4-phase transmitter and receiver.

Figure 3.13 - Communication between SimpleBuffer 2-phase transmitter and receiver.

3.2.3 - BurstBuffer Interface

The BurstBuffer interface continues to build upon the previous interfaces.

It transmits events and has an adjustable buffer, however, it differs in its ability

to transmit multiple events at once. Nonetheless, despite having this ability,

events are loaded onto the transmitter one at a time and retrieved from the re-

ceiver, likewise, one at a time.

Figure 3.15 illustrates an example of how this interface might be applied.

Four events are loaded in quick succession, yet, once the first event is loaded,

since communication is available, is it immediately communicated, and only

upon its conclusions are the following events communicated. OutData, the data

signal that connects the transmitter and the receiver, is set to 1, since one event is

being transmitted, then, Req is set to high. However, since a late channel is being

employed, the data signal is only read after the lowered Req is received. Once

the first communication cycle has finished, OutData is set to 3 and Req is set to

high beginning a whole new cycle.

43

Figure 3.16 exhibits the BurstBuffer 4-

phase transmitter, in its initial state. The

communication section and the load mech-

anism are retained from the previous inter-

faces. Modifications lie on the buffer and

how information is transmitted. Operation

o038 increments whenever a load event oc-

curs and resets whenever the transition t019

fires, which signifies the start of communi-

cation. The internal signal IS1 reflects the

output from o038. The transition t019 fires

whenever there is both a mark to consume

in AllowCom and there are events to trans-

mit. Operation o019 verifies if there are

events in the Buffer and if so enables t019.

Operation o039 holds the Data to be sent, if

AllowCom has a mark then it becomes

transparent and its output is the value on

IS1, otherwise, it holds its output, this is im-

portant because data should be held during communication and loaded once a

new communication starts.

Figure 3.14 - BurstBuffer 4-phase transmitter.

Figure 3.15 - BurstBuffer 4-phase commu-

nication example.

44

Figure 3.17 displays the BurstBuffer 4-phase receiver, in its initial state.

While at first it might appear disjointed and peculiar when compared to the pre-

vious interfaces, yet, many of the main functionalities are still present. The com-

munication section and the section that outputs events to the synchronous block

remain untouched apart from the means by which they are triggered. Operation

o007 holds its output, aside from, whenever o019 rises (Req↓), were InData is

added to the output value held, additionally, whenever t012 fires the output

value is decremented by one. The transition t012 will fire if DataReady is empty

and there are events stored in the buffer. The transition t004 will fire if there is a

mark on AllowCom to be consumed, Req is high and it's enabled by the operation

o029. The operation o029 is high only if InData plus the Buffer is not higher than

BufferSize.

Figure 3.15 - BurstBuffer 4-phase receiver.

45

Figures 3.18 and 3.19 display, respectively, the BurstBuffer 2-phase trans-

mitter and receiver. These components are a mixture of both their 4-phase coun-

terparts and the 2-phase components from previous interfaces, the exception be-

ing the addition of the operation o001 in the receiver that introduces a delay of

one cycle so that data is read before the acknowledge shifts value.

Figure 3.16 - Burstbuffer 2-phase transmitter.

Figure 3.17 - BurstBuffer 2-phase receiver.

46

Figure 3.20 depicts a simple communication example between the Burst-

Buffer components. To avoid redundancy, since both components are undistin-

guishable once encapsulated, only the 4-phase protocol is shown. It is very sim-

ilar to the previous interface, were it differs is in its ability to transmit data, and

so, for this reason, the transmitter has an additional output, OutData, and the

receiver an additional input, InData.

Figure 3.18 – Communication between BurstBuffer 4-phase transmitter and receiver.

3.2.4 - Data Interface

The Data interface is most alike the Simple

interface, apart from the fact that it transmits

data instead of events. For each communication

cycle a data signal is added in order to transmit

information. A late approach with a push chan-

nel is used, meaning data is valid between the

moment the Request signal is set to low until the

moment the transmitter receives the lowered

Acknowledge signal.

In Figure 3.21, an example of communica-

tion using the Data interface is presented. In it,

two values are transmitted, first 3 and then 5. A

complete cycle is visible for the first value and

only the start is visible for the second value.

Figure 3.21 - Data 4-phase communica-

tion example.

47

Figure 3.19 – Data 4-phase transmitter.

Figure 3.20 - Data 4-phase receiver.

48

All of the Data interface components are very similar to those of the Simple

interface. In figures 3.22 and 3.23, the Data 4-phase transmitter and receiver are,

respectively, displayed in their initial state. The only difference between the

transmitter and that of the Simple interface is the addition of the operation o023

and its connected signals, however, this operation was also added to the receiver

with some minor differences. This operation becomes transparent, meaning its

output is equal to its input, InData, whenever the transition t019 fires, for the

transmitter, or the operation o019 rises (Req↓), for the receiver. For the transmit-

ter, OutData is the output signal through which data is communicated, it’s for

that reason that it’s important that the operation holds its value during commu-

nication and change it only upon a new communication cycle. For the receiver,

OutData is the output signal from which the synchronous block retrieves data,

likewise, it is necessary that this value is held until it is released. Additionally,

the receiver's DataReady output signal will only rise once the Req signal is low-

ered contrary to how it is in the Simple interface which would rise with t004 fir-

ing.

Figure 3.21 - Data 2-phase transmitter.

49

Similarly, figures 3.24 and 3.25 depict, respectively, the Data 2-phase trans-

mitter and receiver in their initial state. Just as the 4-phase components, these

components also function in the same manner as the correspondent Simple com-

ponents with the introduction of the operation responsible for holding data val-

ues, and its related signals.

Lastly, Figure 3.26 displays a simple communication example between the

Data 4-phase components. The single alteration from the Simple communication

interface is the addition of the data signals in and out of each component.

Figure 3.22 - Data 2-phase receiver.

Figure 3.23 - Communication between Data transmitters and receivers.

50

3.2.5 - DataBuffer Interface

The last interface is the DataBuffer in-

terface. Resembling the Data interface as it

transmits data between synchronous

blocks, moreover, it is capable of holding

more than one value. The current compo-

nents are ready for three values. However,

this quantity could be increased with the

addition of more operations, similar to

those already implemented. These values

are transmitted/retrieved in the same se-

quence they are loaded/received.

Figure 3.27 is a simple example of

communication between two synchronous

blocks using the DataBuffer interface. Three

values are quickly loaded onto the transmit-

ter before the Receiver is able to respond.

While not visible in the diagram, the trans-

mitter would’ve been full after the third

value was loaded, resulting in the available

signal being set to low. Then communica-

tion proceeds as usual and once a new cycle

begins the second value is sent.

The DataBuffer components are the most distinct, this is due to their ability

to hold multiple data values, for each data value an operation is required, the

register, and, regardless of how many data values there are, two additional point-

ers and a single multiplexer.

The register has three inputs, Indata, the incoming data, the write pointer

output, and lastly, its own output. Whenever the output from the write pointer

currently corresponds to the register's number but it did not in the previous cycle,

the register's output will mirror InData, otherwise its output value will be held.

The write pointer has four inputs, the load event, the available signal, a con-

stant that represents the amount of registers and its own output. The write

Figure 3.27 - DataBuffer 4-phase commu-

nication example.

51

pointer will increment its output by one every time the load event fires, unless

the available signal is low, in which case it will hold its output, or its output

matches the amount of registers in which case it will cycle back to one. If the load

event does not occur the current output is held. For the receiver, the load event

is replaced by both the Petri net place named Ack and the operation o019, with

the goal of triggering simultaneously with the transition t006, as a result the write

pointer on the receiver will have five inputs instead of four, albeit its behaviour

is identical.

Figure 3.24 - DataBuffer 4-Phase Transmitter.

The read pointer is very similar to the write pointer, the only differences are

the absence of the available input and instead of the load event, the input that

increments the output is the start of communication, t019 being fired, for the

transmitter. For the receiver, the load event is replaced by the transition t067 in

the data retrieval mechanism.

52

The multiplexer has as its inputs each of the register's outputs, the read

pointer's output and its own output. It will hold its own output, unless, the read

pointer alters its value, in which case, it will mirror the value of the register

whose number corresponds to the pointer's output.

Figure 3.25 - DataBuffer4-Phase Receiver.

Figures 3.28 and 3.29 depict respectively the DataBuffer transmitter and re-

ceiver. Both have three registers, each capable of holding a data value, a write

pointer, that determines in which register incoming data should be kept, a read

pointer, that determines from which register outgoing data should be read, data

to be transmitted in case of the transmitter and retrieved by the synchronous

block in case of the receiver, and lastly a multiplexer that selects the register ac-

cordingly to the read pointer. Additionally, both components have a simple

mechanism composed of two Petri net transitions (t147 and t150) and two Petri

net Places (Available and Buffer) that keep count of the number of data values

currently being held. The remaining mechanisms of the component are akin

those of previous interfaces, namely the communication segments and, in case of

the receiver, the data retrieval segment.

53

Figure 3.26 - DataBuffer 2-Phase Transmitter.

Similarly, figures 3.30 and 3.31 depict, respectively, the DataBuffer 2-phase

transmitter and receiver in their initial state. These are very similar to their 4-

phase counterparts, possessing the same elements described above.

Lastly, figure 3.32 presents the DataBuffer 4-phase communication example

between its respective components. Its appearance is identical to the Data com-

munication example as the single difference is the components themselves.

Figure 3.27 - DataBuffer 2-Phase Receiver

54

Figure 3.28 - DataBuffer 4-Phase Communication.

55

Chapter Four - Extending DS-Pnets and IOPT-

Flow for GALS

The DS-Pnet modelling formalism and the IOPT-Flow framework are first

and foremost a set of tools that aims to accelerate the development of synchro-

nous cyber-physical systems, and so, in their current state, some features are not

prepared for a GALS system, such as the execution semantics, which are globally

synchronous, and the generation of hardware code with a single clock signal.

There is a necessity to model a system composed of several synchronous

blocks capable of interacting asynchronously with one another, then this model

needs to be simulated within the framework and the generated code should al-

low for each synchronous block to have its own clock signal.

4.1 - GALS-DS-Pnet Definition

A GALS-DS-Pnet formalism emerges with the need to extend the DS-Pnet

formalism described in [9] and [10]. A GALS-DS-Pnet is always a top-level model

that encompasses components that are described with by the DS-Pnet formalism.

A GALS-DS-Pnet model contains components, signals, events, read-arcs,

synchronizing signals and signal edges, and is described as a tuple GALS − DS −

Pnet = (C, S, E, R, s0, ss, se) satisfying the following requirements:

1. C is a finite set of components

2. S is a finite set of signals

3. E is a finite set of events

4

56

4. R is a finite set of read arcs with:
𝑅 ⊆ (𝐶 × 𝐶) ∪ (𝑆 × 𝐶) ∪ (𝐸 × 𝐶) ∪ (𝑆 × 𝑆) ∪ (𝐶 × 𝑆) ∪ (𝐶 × 𝐸)

∪ (𝐸 × 𝐸)
5. ∀𝑠 ∈ 𝑆, #{(𝑥 × 𝑠)|(𝑥 × 𝑠) ∈ 𝑅} ≤ 1 (signals may have at most one

input arc)

6. ∀𝑒 ∈ 𝐸, #{(𝑥 × 𝑒)|(𝑥 × 𝑒) ∈ 𝑅} ≤ 1 (events may have at most one
input arc)

7. 𝑠0 is the initial signal values partial function with mapping 𝑆 ↛ 𝑁0
8. 𝑠𝑠 is the signal that synchronizes a component where 𝑠𝑠: 𝐶 → 𝑆

9. 𝑠𝑒 is the edge to which the component is synchronized where
𝑠𝑒: 𝐶 → 𝑒, 𝑒 ∈ {𝑓𝑎𝑙𝑙𝑖𝑛𝑔, 𝑟𝑖𝑠𝑖𝑛𝑔}

In essence, a GALS-DS-Pnet model is a top-level model that contains

components, which employ the DS-Pnet formalism with its execution

semantics defined in [9] and [10], that are connected to other compo-

nents and/or signals and events. The components are also connected to

a synchronizing signal and a signal edge, these synchronize said com-

ponents.

4.2 – Execution Semantics

Since multiple clocks are present, the execution step will inevitably be dif-

ferent. In this subchapter, first will be presented the current execution semantics

(Figure 4.1), which is implemented in the IOPT-Flow simulator (in JavaScript)

and in hardware (in VHDL), and finally, it is proposed an execution semantic

that addresses a GALS system.

Figure 4.1 - Current execution semantics.

57

4.1.1 – JavaScript Implementation

The IOPT-Flow framework is capable of generating JavaScript code, this

code is used in the framework’s simulator. First, Petri net places and variables

are initialized, according to their initial values. Then, signals (both internal and

output) that are connected to Petri net places are updated. Next, accordingly to

their sequence in the model, operations are calculated, and transitions are ana-

lysed, updating their connected signals and events. To clarify, it is often the case

that operations and transitions depend on each other, all these need to be up-

dated during the same execution step since they correspond to combinational

logic rather than a state of the system, however, since they have dependencies

they will be addressed in a determined sequence starting with the operations

and/or transitions that do not depend on other operations and/or transitions. It

is for this reason that cyclic behaviour is not allowed. Lastly, the step concludes

with both shift registers and Petri net places being updated.

4.1.2 – Hardware Implementation

For a hardware implementation of the VHDL code generated by the IOPT-

Flow framework, two moments may be identified, the first moment is the rising

edge of the clock, during which every synchronized element will be updated,

these include shift register, Petri net places and any synchronized signal or event.

Then, the moment between two rising edges of the clock signal, combinational

logic will take place, and these include calculating operations, analysing transi-

tions and any unsynchronized signals.

Having the hardware’s behaviour into account it is possible to view its ex-

ecution step similarly to how the JavaScript code operates. To start, the input

signals are updated accordingly to the currently available state, during the clock

signal’s rising edge. Then, all combinational logic takes place, calculating opera-

tions, analysing transitions and updating any unsynchronized signals. Lastly,

during the following rising edge, shift registers and Petri net places are updated,

accordingly to the calculations that take place during the combinational logic. It’s

of note that the next execution step starts simultaneously with the end of the cur-

rent one. Updating synchronized signals is considered at the start of the step

since its values are used during combinational logic, on the other hand, updating

58

shift registers and Petri net places are considered at the end of the step since they

are altered by the combinational logic.

To clarify, signals that depend of Petri net places are only updated on the

following, regardless of whether they are synchronized or not, this is true for

both hardware and the JavaScript code since the places themselves are only up-

dated at the end of a step. Additionally, if a signal does not depend of a place it

is updated during combinational logic, if it is not synchronized, or during the

following rising edge, if it is synchronized.

4.1.3 – Proposal for GALS

In order to adapt the current tools to accommodate a GALS system, few

changes need to take place. Figure 4.2, through an UML state diagram, displays

the proposed execution semantics for a GALS system in the DS-Pnet formalism.

It is immediately evident that it uses the current execution semantics as a foun-

dation, the only needed change is the possibility to have the multiple synchro-

nous blocks independent from each other.

Figure 4.2 - Proposed execution semantics for GALS.

59

4.3 – IOPT-Flow Tools

In this subchapter, are proposed some adjustments to the IOPT-Flow frame-

work's tools, namely, the editor, the simulator and the VHDL code generator.

4.3.1 - Editor

For future work, it would be advantageous if it was possible to assign mul-

tiple clock signals to different elements without much additional effort for the

designer. As a suggestion, this can be achieved by selecting both a synchronous

signal and a synchronizing edge within special tags that can be assigned to each

component, thus, having components act as synchronous blocks.

Howbeit, as it was mentioned before the set of tools provided by the IOPT-

Flow framework has the goal of accelerating the development of cyber-physical

systems, and, for this reason, the possibility of designing GALS systems should

not hinder the design of synchronous systems.

Accordingly, the most appropriate option would be to present the clock sig-

nal tag in the properties bar where it could be easily accessed but does not clutter

the view for those that do not intend to use it. This could be implemented with

either a dedicated drop box which would allow for the user to select the desired

synchronous signal or add a new one, additionally, a different approach would

be for the user to type a command in the comment section, or another akin sec-

tion, in the properties window that would assign that element or component the

desired clock signal, hiding the GALS feature in plain sight, so that someone that

does not intend to use said function could easily avoid it. Another necessary ex-

tension would be the possibility to choose either the falling or the rising edge of

the clock, since access to a specific edge might be required in order to interact

with some components, one such example is the DDR sDRAM present in some

FPGA boards, which employ interfaces that require a specific synchronizing

edge.

60

4.3.2 - Simulator

The first issue that needs addressing is the lack of multiple synchronizing

signals since, by definition, these are required for a GALS system. There are, how-

ever, some workarounds that involve creating events, these are regular input

events that are attached to the system’s elements, grouping said elements by the

clock event they are attached to.

Each transition belonging to a certain synchronous block should be re-

strained by the same clock event. Additionally, each operation that has memory,

this is, has a delay in one of its inputs, belonging to that same synchronous block

is required to have a new input to accommodate this new clock event, and, its

conditions should guarantee that its output should only change in case the clock

event is high. However, some issues arise when the operation has a delay bigger

than one. If the delay is one then the previous value is held so the new previous

value is the same, yet, when the delay is bigger than one, the states are shifted,

meaning that, the state in “–n” will be the state in “-(n+1)”.

In order to circumvent this issue, multiple operations should be utilized,

the amount of operations required is dictated by the size of the delay, since each

operation will have a maximum memory of one. The implication is that for a “-

n” delay “n” operations are required.

These are, nevertheless, band aid solutions that don’t address the inherent

problem and are, therefore, messy, which contradicts the desired goal for this set

of tools. Additionally, these workarounds are mainly for testing on the IOPT-

Flow simulator, and so, the resulting generated code will not be completely cor-

rect and will require some supplementary adjustments.

For the IOPT-Flow simulator, there should be an execution step function for

each synchronizing signal. A cycle in the simulator should start with all the input

values being read, as it is currently implemented, afterwards the execution step

functions, whose clock signal is active, should be called. The order in which these

functions are called are irrelevant since their inputs are read at the start and re-

main in unaltered until the next step.

Figure 4.3 depicts, through an UML state diagram, the aforementioned ex-

ecution semantics for a JavaScript simulation.

61

Figure 4.3 - Proposed execution semantics for JavaScript simulation.

4.3.3 - VHDL Code Generator

 Upon generating VHDL code, each component should be synchronized to

the signal and edge previously specified in the model. Additionally, each com-

ponent should have its own execution process in the main file in order to assign

signals.

Lastly, currently, once VHDL code is generated within the tool, both input

and output signals are synchronized to the clock by default. This is a good meas-

ure to avoid metastability; however, it would be beneficial to have the option to

not synchronize them. This option would allow for a designer to create a model

within the IOPT-Flow framework and implement it into a larger synchronized

model without having an unnecessary delay.

62

63

Chapter Five - Validation

5.1 - Asynchronous Components

In order to validate the components presented in chapter three, communi-

cation between each pair of components was simulated in both the IOPT-Flow

simulator and in the Xilinx ISE Simulator (ISim).

First, the simulations were performed on the IOPT-Flow framework, since

it offers real time response of the system during stimuli thus making it easier to

obtain the desired order of events. Then, a new Xilinx project was created using

the automatically generated VHDL code from the IOPT-Flow framework; how-

ever, by default the generated code synchronizes internal and output signals.

While these synchronizations do not impact how the components behave, they

introduce delays, which make comparing both simulations more difficult, and

so, for each input and output signal, the synchronization was removed. Addi-

tionally, when creating a test bench some signals may be generated as

"std_logic_vectors", even though they are "integer range" signals in the VHDL

file under simulation. This means that these "std_logic_vector" signals should be

changed to "integer range". Then, after creating the test bench, the input signals

were introduced to match those of the IOPT-Flow simulation, lastly, the simula-

tion on the ISim was performed. The results for each interface are shown below.

Both waveforms have roughly the same signals represented in the same or-

der, though, on the IOPT-Flow framework an overwhelming amount of signals

would be shown and so, to simplify, the image has been edited to only display

relevant information. As for ISim, by default only the input and output signals

5

64

are displayed, this includes both clock and control signals, however, any internal

signal may be added to the Wave Window, in this case both the acknowledge

and request signals. These images have also been edited in order to take better

advantage of the space, without any signals being added, removed or altered in

any way. Furthermore, all signals are synchronized with the rising edge of the

clock.

5.1.1 - Simple

5.1.1.1 - 4-Phase

For the first simulation, only the bare minimum stimuli were employed, in

order to transmit a single event, at the earliest point, apart from the Release signal

that was only active after communication had concluded, although it could have

risen as soon as NewData rose, in order to better differentiate its impact from the

other signals.

Figure 5.1 - Simulation of the Simple 4-Phase interface on the IOPT-Flow framework.

Figure 5.2 - Simulation of the Simple 4- Phase interface on the Xilinx ISE.

65

Initially, the available signal is the only signal to be high, informing that the

transmitter is ready for communication. And so, in order to start transmission,

the load signal becomes high (at step 2 in figure 5.1 and at 10ns in figure 5.2) for

a single clock cycle, corresponding to the duration of an input event, causing the

available signal to lower and the request signal to rise. Then, for the next four

clock cycles, both communication delay signals will intersperse between one an-

other, becoming high for a single clock cycle each. Acknowledge and Request

signals will lower and rise interspersed according to the delay signals, following

the 4-phase protocol. The NewData signal will rise (at step 4 in figure 5.1 and at

25ns in figure 5.2) once the request is first received, additionally, once the low-

ered acknowledge is received the Available signal will rise, allowing for new in-

formation to be loaded. Lastly, the Release signal indicates that the event has

been retrieved by the synchronous block releasing the receiver and enabling a

new communication cycle.

5.1.1.2 - 2-Phase

As for the 2-phase protocol of the Simple interface, a simple simulation was

performed, only the minimum input signals were introduced for the transmis-

sion of two events. Because the 2-phase protocol reads transitions instead of val-

ues, the delay restriction will always consume an extra clock cycle, as for an ac-

tual implementation, as stated before, this delay restriction would be removed

and so this extra clock cycle would not need to be expended.

Figure 5.3 - Simulation of the Simple 2-Phase interface on the IOPT-Flow framework.

66

Figure 5.4 - Simulation of the Simple 2-Phase interface on the Xilinx ISE.

This set of simulations is, naturally, akin to its 4-phase counterpart, how-

ever, two communication cycles are represented instead of one. The Release sig-

nal occurs at the end of each communication cycle (for example, at step 8 in figure

5.3 and at 70ns in figure 5.4), in order to be easily distinguished. Some correla-

tions may be noted between the input and output signals. The Load signal once

risen will lower the available signal and shift the request signal (for example, at

step 2 in figure 5.3 and at 10ns in figure 5.4). The delay signals will enable the

communication signals to reach the opposite component, rising and lowering the

communication signals and rising the NewData signal. The Release signal indi-

cates that the new information has been retrieved and so the NewData signal will

lower.

5.1.2 - SimpleBuffer

5.1.2.1 - 4-Phase

For this set of simulations, three events will be communicated, these are

quickly loaded onto the transmitter before a new communication is established,

then, one at a time, the transmitter’s buffer will empty and the receiver’s buffer

will fill, once communication reaches a conclusion the three events are retrieved

by the synchronous block. Additionally, two new signals are visible, a buffer for

both the transmitter and the receiver.

67

Figure 5.5 - Simulation of the SimpleBuffer 4-Phase interface on the IOPT-Flow framework.

Figure 5.6 - Simulation of the SimpleBuffer 4-Phase interface on the Xilinx ISE.

The Load signal (at step 2 in figure 5.5 and at 10ns in figure 5.6) is held for

three clock signals in order to load three events onto the buffer, afterwards, the

buffer will only have two events, this happens because one of the events is con-

sumed, raising the request signal. Only a single event may be consumed from the

buffer in order to initiate communication, if communication is already taking

place then no more events will be consumed since only one event may be com-

municated at a time. A similar effect may be visible on the receiver’s buffer, the

first event to reach the buffer will be held for a single clock cycle before being

consumed, raising the NewData Signal (at step 7 in figure 5.5 and at 55ns in figure

5.6). Furthermore, while NewData is high no events will be consumed from the

receiver’s buffer since only one event may be retrieved at a time. While for the

Simple interface the request signal rises immediately with the load signal, the

SimpleBuffer interface takes an extra clock cycle since the events have to first pass

through the buffer.

68

5.1.2.2 - 2-Phase

For this set of simulations, three events are transmitted. The behaviour is

alike that of its 4-phase counterpart, except for the communication protocol that

is, again, alike the Simple 2-phase.

Figure 5.7 – Simulation of the SimpleBuffer 2-Phase interface on the IOPT-Flow frame-

work.

Figure 5.8 - Simulation of the SimpleBuffer 2-Phase interface on the Xilinx ISE.

When the receiver’s delay signal is risen communication is allowed to pro-

ceed causing the receiver’s buffer to be incremented by one (at step 5 in figure 5.7

and at 45ns in figure 5.8). The clock cycle that follows the receiver’s buffer incre-

ment will decrement said buffer in order to rise the NewData signal, again, this

does not happen during the following increments as there is already one event

being communicated. The effect of the transmitter’s delay will take a clock cycle

69

to decrement the transmitter’s buffer and switch the request signal’s value, again,

due to the existence of a buffer.

5.1.3 - BurstBuffer

5.1.3.1 - 4-Phase

For this set of simulations, 4 events are first loaded onto the transmitter,

then two communication cycles take place, the first communicating a single event

and the next communicating the remaining three. These events are retrieved one

at a time after the second communication cycle. Since data is being transmitted,

a new signal is introduced in order to transmit said data, the DataWire signal for

the IOPT-Flow simulation and, the equivalent signal, indata, for the Xilinx ISE.

Figure 5.9 - Simulation of the BurstBuffer 4-Phase interface on the IOPT-Flow framework.

Figure 5.10 - Simulation of the BurstBuffer 4-Phase interface on the Xilinx ISE.

70

The Load signal (at step 2 in figure 5.9 and at 10ns in figure 5.10) is high for

four clock cycles, resulting in a value of one in the DataWire signal and a value

of three in the transmitter’s buffer. The component does not know how many

multiple events will be transmitted, and so, as soon as one is loaded it immedi-

ately starts communication, thus, a single event is transmitted. After the first

communication cycle, an event is received by the receiver and is added to the

buffer, since NewData is low, this event is immediately consumed, rising New-

Data (at step 9 in figure 5.9 and at 75ns in figure 5.10). When the second commu-

nication cycle begins, the three events are removed from the transmitter’s buffer

and transmitted on the DataWire (at step 10 in figure 5.9 and at 85ns in figure

5.10). It's relevant to note how since a late scheme is employed only after the low-

ered request is received, is the data from the DataWire added to the receiver’s

buffer. Again, the events are retrieved one at a time after communication has fin-

ished.

5.1.3.2 - 2-Phase

As for the 2-phase protocol set of simulations, four events are also transmit-

ted through two communication cycles, and then retrieved by the receiving syn-

chronous block. Again, the first cycle transmits a single event and the second

transmits the remaining.

Figure 5.11 - Simulation of the BurstBuffer 2-Phase interface on the IOPT-Flow frame-

work.

71

Figure 5.12 - Simulation of the BurstBuffer 2-Phase interface on the Xilinx ISE.

For the 2-phase protocol, a single pair of request-acknowledge signals is ex-

changed during one communication cycle, and so, data is received at the first

delay signal, when the request signal is received (at step 6 in figure 5.11 and at

50ns in figure 5.12). Upon receiving the first event, the receiver’s buffer is incre-

mented, but since the NewData signal is lowered, the buffer will be decremented

immediately on the following clock cycle, raising the NewData signal. The sec-

ond delay in the communication cycle will enable the following communication

cycle to start, and the DataWire signal's value will hold a value correspondent to

the events stored in the transmitter’s buffer.

5.1.4 - Data

5.1.4.1 - 4-Phase

The remaining interfaces transmit data instead of events. The data interface

is the most straightforward after the Simple interface. For this set of simulations,

a single data value, 5, is being transmitted. The DataWire signal in the IOPT-Flow

waveform corresponds to the second indata signal, s_c073_indata, in the Xilinx

ISE.

72

Figure 5.13 - Simulation of the Data 4-Phase interface on the IOPT-Flow framework.

Figure 5.14 - Simulation of the Data 4-Phase interface on the Xilinx ISE.

First, the desired value is set in InData, for these simulations the chosen

value was 5. This value is first set one cycle before the Load signal rises (at step 3

in figure 5.13 and at 20ns in figure 5.14); however, it would have an equivalent

result were they to be set simultaneously. Upon receiving the Load signal, the

value to transmit is read and mimicked by the DataWire signal (at step 3 in figure

5.13 and at 20ns in figure 5.14). The communication cycle behaves as the previous

interfaces; however, the incoming data value is only read when the receiver re-

ceives the lowered request, due to a late data-valid scheme. Once the DataWire

is read, the OutData signal will reflect its value (at step 6 in figure 5.13 and at

45ns in figure 5.14). On the following cycle the NewData signal will rise. Lastly,

the Release signal behaves as before.

73

5.1.4.2 - 2-Phase

For the 2-phase data interface set of simulations, a single value, 5, is being

transmitted.

Figure 5.15 - Simulation of the Data 2-Phase interface on the IOPT-Flow framework.

Figure 5.16 - Simulation of the Data 2-Phase interface on the Xilinx ISE.

The desired value is first set, then, the Load signal is risen for a single clock

cycle (at step 3 in figure 5.15 and at 20ns in figure 5.16). The DataWire signal

value is set, mimicking that of the InData signal . On the first delay signal, when

the shift in the request signal is received, the data value is read and set on the

OutData signal in order for it to be retrieved by the receiver’s synchronous block.

The second delay signal will release (at step 8 in figure 5.15 and at 70ns in figure

5.16) the transmitter allowing for a new communication cycle to begin.

74

5.1.5 - DataBuffer

5.1.5.1 - 4-Phase

This last interface is capable of holding multiple data values at a time. And

so, in this set of simulations, three data values are transmitted, in order, 5, 10 and

15, three communication cycles are required. The values are then retrieved one

at a time.

Figure 5.17 - Simulation of the DataBuffer 4-Phase interface on the IOPT-Flow frame-

work.

Figure 5.18 - Simulation of the DataBuffer 4-Phase interface on the Xilinx ISE.

The simulation starts with a Load signal that is high for three clock cycles

accompanied by multiple values in the InData signal, these values are 5, 10 and

15 (at step 2 in figure 5.17 and at 10ns in figure 5.18). As the data values are loaded

the buffer is incremented, after the third and last data value is loaded, into the

transmitter, the buffer reaches its maximum capacity causing the Available signal

to lower (at step 5 in figure 5.17 and at 35ns in figure 5.18). A clock cycle after the

75

first data value is loaded, the communication cycle starts with the rise of the Re-

quest signal, and however, it will stay halted until the first delay signal rises.

Communication proceeds dependent on the delay signals, similar to the previous

interfaces. The data value from the transmitter is read by the receiver on the third

delay signal, of each communication cycle, the first data value read will also rise

the NewData signal. Since three data values are being transmitted, three commu-

nication cycles are required in order to transmit them all. Lastly, these values are

retrieved by the receiver’s synchronous block one at a time.

5.1.5.2 - 2-Phase

For the last simulation set, three data signals will be transmitted. These are

quickly loaded before the first delay signal rises. The following communication

cycles transmit the data values one at a time. And lastly, these values are re-

trieved from the receiver’s synchronous block.

Figure 5.19 - Simulation of the DataBuffer 2-Phase interface on the IOPT-Flow framework.

Figure 5.20 - Simulation of the DataBuffer 2-Phase interface on the Xilinx ISE.

76

Three values are loaded in quick succession before communication starts,

these values are 5, 10 and 15 (at step 2 in figure 5.19 and at 10ns in figure 5.20).

Afterwards, the delay signals will intersperse allowing for the Request and

Acknowledge signals to be read, thus, transmitting the stored data values one at

a time from the transmitter to the receiver. Lastly, the values will be retrieved by

the receiver’s synchronous block.

5.2 - Implementing Several Tests on an FPGA Board

After testing the asynchronous components in the IOPT-Flow simulator

and the Xilinx ISE simulator, some more complex tests were employed. These

were performed on a Nexys 4 DDR board (Figure 5.21), although the Nexys

board possesses a single 100MHz crystal oscillator, the input clock can drive

MMCMs or PLLs to generate several clock signals at various frequencies, and

thus is capable of simulating GALS circuits. Furthermore, for all of the following

tests the delay events were removed from the asynchronous components, as it

was explained these were merely present to facilitate testing and debugging dur-

ing development. Moreover, every single input coming from the other synchro-

nous block should have a simple synchronizer in order to avoid metastability.

The models were created in the IOPT-Flow framework and then exported as

VHDL code with the function "Generate Modular VHDL Code", next a new pro-

ject was created in the Xilinx ISE to which the generated VHDL source files were

added. It is important to use the modular option in order to differentiate the mul-

tiple synchronous blocks to be able to later attribute to each a different clock sig-

nal.

77

Figure 5.21 - Nexys 4 DDR board from Xilinx.1

Within the Xilinx ISE, first, the multiple clock signals must be created, the

simpler approach to do so is to add a new "IP (CORE Generator & Architecture

Wizard)" source file, then, under Clocking, select Clocking Wizard. Once the

Clocking wizard window opens the desired clock signals should be chosen, upon

conclusion the source file will be automatically generated. Lastly, the instantia-

tion template should be added to the main VHDL module source file.

Since DS-Pnets and IOPT-Flow are not yet ready for a GALS system, some

additional adjustments need to be made to the generated code. Enable signals are

generated; however, because they are not used, they (PF_Enb and sPF_Enb)

should be either commented or deleted, and set to '1' in each component's port

map. Furthermore, any input or output that is initialized as an "integer range"

should instead be initialized instead as a "std_logic_vector", this is done in order

to be able to access the IO pins (LEDs, buttons, switches…).

Each value that was initialized as a "std_logic_vector" instead of an "integer

range" will have some mismatch when atributions are made with internal signals.

And so, there is a need for the library "IEEE.numeric_std.all" to convert signals

from integer range to std_logic_vector the signal should be first converted to

unsigned using the function "to_unsigned()" and then converted to

std_logic_vector using the function "std_logic_vector()", to do the inverse

conversion simply use the function "conv_integer()".

1 https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/refer-

ence-manual [37]

78

After the clocking source has been created and the instantiation template

added to the main source file: the clocking port map should be adjusted; for the

CLK_IN signal should be atributed PF_CLK; for the RESET should be attributed

'0' or a different signal from the one that resets the synchronous blocks; and any

other signal should have its own dedicaded internal signal. These signals will

then be applied in the component's port maps. Additionally, a new reset signal

should be created for each clock signal and synchronized to it, this will then be

the new reset signals in the component's port maps. Furthermore, each input

signal should be synchronized to the respective clock signal. Lastly, an execution

process exists, in the main source, for all components and should instead be split

accordingly to each synchronous block.

5.2.1 - Counting Events Transmitted with a Simple 4-phase Interface

The first test to be implemented onto the FPGA was a simple one. Two syn-

chronous blocks are present, a transmitter and a receiver. The transmitter, will

always load a new event if available, this is done by having a transition connected

to both the available signal and the load event, additionally, there is an operation

that counts the amount of times the Ack signal was lowered in order to count the

amount of transmitted events, the result from this operation will be connected to

an output signal named count_ack. As for the receiver, it merely responds to the

transmitter, it will immediately release any new data, in a similar fashion, this is

done through the use of a transition connected to both the NewData signal and

the Release event.

There will be two clock signals, one will be the board's clock with a fre-

quency of 100MHz and another with a frequency of 50MHz generated with the

board's MMCMs and PPLs.

 In terms of inputs and outputs, the pair of request/acknowledge signals

is present as well as count_ack on the transmitter, this count_ack has a size of 26

bits and the 16 most significant ones will be displayed on the board's LEDs, since

the first 10 bits will more too fast to be observable in real time.

Three models are created on the IOPT-Flow, the main, the receiver and the

transmitter, the main model is simply the two others encapsulated and con-

nected, the other two are represented in figures 5.22 and 5.23, respectively.

79

Figure 5.22 - Synchronous block transmitter, test one.

Figure 5.23 - Synchronous block receiver, test one.

 In figure 5.24, is represented a snippet of the simulation performed in the

ISim. It is visible that the count_ack increases once an ack is received, at the end

of 1,217µs 1024 transmissions have succeeded, with a transmission from the mo-

ment the request rises until the next one does so takes seven clock cycles, or 0.7us.

Figure 5.24 - Xilinx ISE wave graph, simulation one.

80

5.2.2 - Transmitting Events with a BurstBuffer 4-phase Interface

The second test is somewhat more complex than the previous one. Again,

two synchronous blocks are present, the transmitter and the receiver. Here, the

transmitter will possess a BurstBuffer 4-phase transmitter that will send events

as long as the Available signal is up, similarly to the previous test, and the re-

ceiver will possess a BurstBuffer 4-phase receiver that will release the events,

likewise, as soon as they are received. However, the transmitter will send a total

of 256 events for a total of one byte and then stop, upon receiving exactly 256

events, if more are received an LED will be risen and the system is halted, an

event will be sent through a Simple 4-phase interface. Upon receiving this event

the system will restart, meaning that the transmitter will transmit new 256 events

and the receiver will clear its total and receive the new 256 events, always restart-

ing upon their retrieval.

There will be two clock signals, one will be the board's clock with a fre-

quency of 100MHz and another with a frequency of 10MHz generated with the

board's MMCMs and PPLs. The frequency was lowered for future tests in order

for the results to be more easily visualized in real time.

 In terms of inputs and outputs, there will be two pairs of re-

quest/acknowledge signals, as well as a data signal from the transmitter to the

receiver. Lastly, the receiver will have an additional error signal, for when more

events are transmitted that they were supposed to, and the total signal that will

display the events that have been retrieved by the receiver. During test on the

board, the error signal LED will not ever light up and the total signal, that will

be displayed as eight LEDS, will appear to have them all turned on permanently,

this happens because they signal moves faster than the eyes can observe due to

the high frequency. Nonetheless, if there were an error the total signal would halt

at a value different than 255 and the error led would light up.

Again, three models are created on the IOPT-Flow, the main, the receiver

and the transmitter, the main model is simply the two others encapsulated and

connected, the other two are represented in figures 5.25 and 5.26, respectively.

81

Figure 5.25 - Synchronous block transmitter, test two.

Figure 5.26 - Synchronous block receiver, test two.

In figure 5.27, is represented a snippet of the simulation performed in the

Xilinx ISE. This particular section represents the interval in which the old cycle

concludes and a new one begins. The first pair of communication signals corre-

spond to the transmission that resets the system, consequently, the second pair

of communication signals and their correspondent data signal begin to send

events in form of data.

82

Figure 5.27 - Xilinx ISE wave graph, simulation two.

5.2.3 - Data Transmission

5.2.3.1 - With a Data 4-Phase Interface

The third test focusses on data transmission, more specifically, the Data 4-

phase interface. Two synchronous blocks are present, a data value with a size of

8 bits will be loaded onto the transmitter block that will then transmit this value

to the receiver block, causing it to, consequently, display the received data value.

Contrary to the previous tests, the load and release of data is manual, meaning,

they have dedicated buttons on the board.

The clock signals will remain from the previous interface and be maintained

until stated otherwise.

In terms of inputs and outputs, the pair of request/acknowledge signals

and the data signal are the only ones that connect the two synchronous blocks.

The transmitter will have a load input signal, which is connected to a button on

the board, and the indata input signal, which, in its place, is connected to eigth

switches, one for every bit. On the other hand, the receiver will have the release

input signal, connected to a button, and the outdata output signal connected to

eight LEDs, again, one for every bit. To clarify, the indata input signal is the data

value loaded onto the transmitter, the data signal is the one that connects the

transmitter to the receiver and outdata signal is the data value that is retrieved

from the receiver.

Once more, three models are created on the IOPT-Flow, the main, the re-

ceiver and the transmitter, the main model is simply the two others encapsulated

and connected, the other two are represented in figures 5.28 and 5.29, respec-

tively.

83

Figure 5.28 - Synchronous block transmitter, test three.

Figure 5.29 - Synchronous block receiver, test three.

In figure 5.30, is represented a snippet of the simulation performed in the Xilinx

ISE. Here, the NewData signal is set at 200ns, the load signal is high from 300ns

and 400ns. It's important to clarify that the clock signals take some time to be

generated, and for this reason, the Load signal is only recognized much later than

would be expected. Despite this, communication ensues and moments later the

OutData signal reflects the data values introduced earlier.

Figure 5.30 - Xilinx ISE wave graph, simulation three.

84

5.2.3.2 - With a DataBuffer 4-Phase Interface

This test close resembles the previous one. There are two differences, the

first and most obvious is that a different interface is being used. As it was men-

tioned before in chapter 3, the Databuffer interface not only transmits data but

also is capable of holding up to three values in its buffer. Due to the presence of

this buffer extra care has to be had with the load input, and so the second differ-

ence from the previous interface is the presence of an operation that is only high

if the load input signal is currently high but was not during the previous cycle.

This operation was employed in order to avoid loading multiple events with a

single press due to the clock signal frequency being so high. An identical opera-

tion was employed for the release input signal for the same reasons.

One more time, three models are created on the IOPT-Flow, the main, the

receiver and the transmitter, the main model is simply the two others encapsu-

lated and connected, the other two are represented in figures 5.31 and 5.32, re-

spectively.

Figure 5.31 - Synchronous block transmitter, test four.

Figure 5.32 - Synchronous block receiver, test four.

85

5.2.4 - 2-Phase Implementations of Previous Tests

In order to validate the interfaces that employ a 2-phase protocol instead of

a 4-phase protocol, three additional tests were executed. These are adaptations

from previous tests, more specifically, counting events transmitted with a Simple

4-phase interface, transmitting events with a BurstBuffer 4-phase interface and

data transmission with a Databuffer 4-phase interface, respectively, from sub-

chapters 5.2.1, 5.2.2 e 5.2.3.2. The single small adjustment, besides the switch of

interfaces, was that for all implementations, the clock signals were 100MHz and

10MHz.

From figure 5.33 to figure 5.38 are represented the synchronous blocks for

the 2-phase implementations in the order they were presented in, for each pair of

figures, first is displayed the transmitter and then the receiver.

Figure 5.33 - Synchronous block transmitter, test four.

Figure 5.34 - Synchronous block receiver, test five.

86

Figure 5.35 - Synchronous block transmitter, test six.

Figure 5.36 - Synchronous block receiver, test six.

Figure 5.37 - Synchronous block transmitter, test seven.

87

Figure 5.38 - Synchronous block receiver, test seven.

In figure 3.9, is represented a snippet of the simulation performed in the Xilinx

ISE. Again, this is a 2-phase implementation of the first simulation and for that

reason it is very similar to it. It is, however, important to note that one of the clock

signal's frequency is much lower, and yet the count_ack signal reaches the same

value shortly after.

Figure 5.39 - Xilinx ISE wave graph, simulation seven.

5.2.5 - Comparing Clock Edges to Event Transmission

5.2.5.1- With a Simple 4-Phase Interface

This test is similar to the first one, it merely transmits events uninterrupted.

However, clock edges are counted, and events loaded are counted, each through

the means of an operation. Furthermore, both of these can be stopped through

the press of a button, in order for it to be possible to register the values of the

counters on the FPGA board.

The counters will hold values with a maximum of 31 bits, since integers in

VHDL has a maximum restriction of 32 unsigned bits. The FPGA board used has

a total of sixteen LEDs, consequently, switched are used to access the desired bits

of each counter. Two switches were used, the first determines what half of the

88

integer is displayed, the first sixteen bits or the latter sixteen bits, and the second

switch determines which counter is displayed.

Two models were created in the IOPT-Flow framework, the main and the

transmitter models, for the receiver model was used the one from the first test.

The transmission model is represented in figure 3.40.

Figure 5.40 - Synchronous block transmitter, test eight.

In figure 3.41, is represented a snippet of the simulation performed in the Xilinx

ISE. The switch inputs were not utilized since both counters are visible during

simulation on the computer. It can be noted that it takes the 695 clock edges to

reach 100 event loads, since it takes seven clock edges to transmit an event, as-

suming the transmitter clock frequency is lower.

Figure 5.41 - Xilinx ISE wave graph, simulation eight.

89

5.2.5.1- With a BurstBuffer 4-Phase Interface

 This test is similar to the previous one, though it instead employs a Burst-

Buffer interface. Here, three actions are counted, the clock edge, the event loads

and the burst transmissions. Once again, these counters may be halted by press-

ing a button. Moreover, there will be an additional switch in order to access the

three counters, the first switch will still be responsible for which half of the coun-

ter it is visible, and the other two switches will determine which counter is visi-

ble.

Again, three models are created on the IOPT-Flow, the main, the receiver

and the transmitter, the main model is simply the two others encapsulated and

connected, the other two are represented in figures 5.42 and 5.43, respectively.

Figure 5.42 - Synchronous block transmitter, test nine.

90

Figure 5.43 - Synchronous block receiver, test nine.

In figure 5.44, is represented a snippet of the simulation performed in the Xilinx

ISE. Here, the load counter will accompany the clock edge counter while the

transmitter's buffer is not full, however once it does become full the load counter

will stop and the clock edge counter will continue. During this simulation, due

to the receiver's clock signal having a lower frequency it will struggle to retrieve

all the events stalling communications. After some time, the transmitter's buffer

will fill between each communication cycle, since, again, the receiver is much

slower and it will take longer to retrieve all the events than the transmitter takes

to load completely load the buffer.

Figure 5.44 - Xilinx ISE wave graph, simulation nine.

91

5.2.6 - Data verification

 For the last test, data is sent from one asynchronous block to the other and

then returned, if it matches, the value is incremented by one and the process re-

peats. The default maximum size for data transmission is one byte, which will

make it difficult to observe the values changing in real time, nonetheless, on the

board's LEDs will be displayed both the data value sent and the data value re-

ceives, this is done simultaneously using eight LEDs to represent one value and

the remaining eight to represent the other.

One of the clock signal's frequency has been lowered, now one clock signal

will have a frequency of 5MHz and the other a clock frequency of 10MHz. It

would be desirable to have an even lower frequency in order to easily observe

the values being changed on the board, but such is not possible.

One more time, three models are created on the IOPT-Flow, the main, the

receiver and the transmitter, the main model is simply the two others encapsu-

lated and connected, the other two are represented in figures 5.45 and 5.46, re-

spectively.

Figure 5.45 - Synchronous block transmitter, test ten.

92

Figure 5.46 - Synchronous block receiver, test ten.

In figure 5.47, is represented a snippet of the simulation performed in the Xilinx

ISE. The first pair of communication signals corresponds to the transmitter send-

ing data to the receiver, and the second pair corresponds to the opposite. As it

would be expected, the data sent during the first transmission corresponds to

that of the second transmission.

Figure 5.47 - Xilinx ISE wave graph, simulation ten.

5.3 - GALS Simulation in the IOPT-Flow Framework

 Some adjustments were carried out to realize a GALS simulation in the

IOPT-Flow Framework, in the interest of validating the execution semantics pro-

posed in chapter four. On a copy of the tool, in order to avoid altering the current

framework as these changed might hinder it, a specialized simulation mode was

93

implemented that would not run the generated JavaScript code and would in-

stead run JavaScript code that was loaded from a fixed directory. Additionally,

an input signal should be added for each desired clock signal. The JavaScript

code that is run during this specialized simulation mode should take root in the

one that is generated by the tool but is altered to implement the execution seman-

tics proposed for GALS in chapter four.

 Multiple simulations were employed in the modified IOPT-Flow frame-

work, and in this document two are presented, the first simulation from the pre-

vious subchapter that employs a Simple 4-phase interface to transmit events un-

interrupted and the fourth simulation from the previous subchapter that em-

ploys a DataBuffer 4-phase interface to transmit data from one synchronous

block to the other. Figures 5.48 and 5.49 illustrate, respectively, the results of said

simulations.

Figure 5.48 - IOPT-Flow wave graph with proposed execution semantics, simulation one.

94

Figure 5.49 - IOPT-Flow wave graph with proposed execution semantics, simulation two.

5.4 - Results Analysis

Some results, related to execution time, may be extracted from the previous

simulations, these results are presented in the following tables and the values are

expressed in number of steps/clocks.

Table 1 presents information regarding the transmitter components that

transmit events, four circumstances are measured, in number of steps, between:

 Load to Req - The number of steps between the Load event and a shift in
the Request signal.

 Ack to Req - A shift in the Acknowledge signal and a shift in the Request
signal, this circumstance doesn't occur in components that employ the 2-
phase protocol.

 Ack to next Req - A shift in the Acknowledge signal and the shift in the
Request signal that initiates a new communication cycle, this is only
applicable when there is information to be read in the buffer.

 Ack to Available - A shift in the Acknowledge signal and the rise of the
Available signal.

95

Transmitter Load to

Req

Ack to Req Ack to

next Req

Ack to

Available

4-Phase Simple 1 1 - 1

SimpleBuffer 2 1 2 2

BurstBuffer 2 1 2 2

2-Phase Simple 1 - - 1

SimpleBuffer 2 - 2 2

BurstBuffer 2 - 2 2

Table 5.1 - Transmitter components, event transmission.

 It is immediately noticeable that the Simple interface saves a step when

compared to the other interfaces, since these spend a step, traversing the buffer.

Additionally, the SimpleBuffer and the BurstBuffer interfaces require the same

amount of steps; however, the latter may transmit all its events at once due to its

additional data signal. Finally, the 2-phase components require less events to

complete a full communication cycle at the expense of additional elements.

Table 2 presents information regarding the transmitter components that

transmit data, five circumstances are measured, in number of steps, between:

 Load to Req - The Load event and a shift in the Request signal.

 Ack to Req - A shift in the Acknowledge signal and a shift in the
Request signal, this circumstance doesn't occur in components that
employ the 2-phase protocol.

 Ack to next Req - A shift in the Acknowledge signal and the shift in the
Request signal that initiates a new communication cycle, this is only
applicable when there is information to be read in the buffer.

 Ack to Available - A shift in the Acknowledge signal and the rise of the
Available signal.

 Load to DataWire - A Load event and a value being set in the DataWire
signal, some components measure 0 steps because the output signal is
not synchronized and it is only dependent of combinational logic which
takes less that one step to update.

96

Transmitter Load

to Req

Ack to

Req

Ack to

next Req

Ack to

Available

Load to

DataWire

 4-Phase Data 1 1 - 1 0

DataBuffer 2 1 2 1 1

2-Phase Data 1 - - 1 0

DataBuffer 2 - 2 1 1

Table 5.2 - Transmitter components, data transmission.

For these components, the major difference is in the presence of the buffer.

For the Data interface, data is loaded immediately, between steps, since it is held

by operations, this is, combinational logic.

Table 3 presents information regarding the receiver components that re-

ceive events, three circumstances are measured, in number of steps, between:

 Req to Ack - A shift in the Request signal and a shift in the
Acknowledge signal.

 Req to NewData - A shift in the Request signal and the rise of the
NewData signal, it is considered that NewData is empty.
Additionally, some components have an arrow, this represents
whether the information is received in either the rising or falling
edge of the Request signal.

 Release to NewData - The Release event and the rise of the
NewData signal, this is only applicable to components that employ
a buffer and said buffer has more information to be retrieved.

97

Receiver Req to Ack Req to

NewData

Release to

NewData

 4-Phase Simple 1 1 (↑) -

SimpleBuffer 1 2 (↑) 2

BurstBuffer 1 1 (↓) 2

2-Phase Simple 2 2 -

SimpleBuffer 2 3 2

BurstBuffer 3 3 2

Table 5.3 - Receiver components, event transmission.

Regarding the Receiver components, there is a bigger disparity between

amount of steps required for the 4-phase and the 2-phase components. This dis-

parity is due to the method by which transitions in signals are read. The 4-phase

BurstBuffer component seems to have a quicker response to the Request signal,

yet NewData reacts to the signal's falling edge, contrary to the other interfaces

that react to the signal's rising edge.

Table 4 presents information regarding the receiver components that re-

ceive data, four circumstances are measured, in number of steps, between:

 Req to Ack - A shift in the Request signal and a shift in the
Acknowledge signal

 Req to NewData - A shift in the Request signal and the rise of the
NewData signal, it is considered that NewData is empty.

 Release to NewData - The Release event and the rise of NewData
signal this is only applicable to components that employ a buffer
and said buffer has more information to be retrieved.

 Req to OutData - A shift in the Request signal and a value being set
in OutData, some components measure 0 steps because the output
signal is not synchronized and it is only dependent of
combinational logic which takes less that one step to update.

98

Receiver Req to Ack Req to

NewData

Release to

NewData

Req to

OutData

4-Phase Data 1 1 - 0

DataBuffer 1 2 2 1

2-Phase Data 3 2 - 1

DataBuffer 3 3 2 2

Table 5.4 - Receiver components, data transmission.

Once again, the amount of steps required for the 4-phase and 2-phase protocol

varies, again, due to the method by which signal transitions are read.

99

Chapter Six - Conclusion and Future Work

During this work, an analysis of the current state of Globally-Asynchronous

Locally-Synchronous (GALS) systems was made. A GALS system is composed

of several synchronous blocks that can interact with one another through an

asynchronous environment, as a result, the design is modular with the possibility

to fine tune each block to achieve higher power efficiency and lower electromag-

netic frequencies. Additionally, a modular design also implies that the synchro-

nous blocks might be easily reused or replaced. However, this modular design

comes at the expense of some latency, as a consequence of asynchronous com-

munication.

In terms of architectures for GALS systems there are two that stand out,

first, the asynchronous wrapper that encases the synchronous block, which re-

solves any synchronization issues with neighbour blocks. And, secondly, the

FIFO-based scheme where communication is done indirectly through a FIFO

buffer, which resolves any synchronization issue.

The DS-Pnet modelling language and its tool framework, IOPT-Flow,

emerge to accelerate the development of cyber-physical systems. They bring the

advantages of model-based development to bolster a tool chain that encompasses

a graphical editor, a simulator/debugger and automatic code generators.

This work proposes a set of asynchronous wrappers that in this work are

referred to as asynchronous components. A library of these asynchronous com-

ponents was developed using DS-Pnets and the IOPT-Flow framework and is

6

100

available at http://gres.uninova.pt/iopt-flow/. These components form inter-

faces that support asynchronous interaction between synchronous blocks in a

GALS environment.

Five categories of asynchronous interfaces may be distinguished: the Sim-

ple interface is the most plain and it is merely capable of transmitting events; the

SimpleBuffer interface introduces a buffer, that is capable of holding a number

of events that may, at a later moment, be either transmitted or retrieved; the

BurstBuffer interface is similar to the SimpleBuffer interface, but instead of trans-

mitting one event at a time, it transmits events through a data channel; the Data

interface is similar to the Simple interface, but allows for the transmission of data

instead of events; the Databuffer interface introduces a buffer of size three to the

Data interface. Additionally, for each interface two communication protocols

were implemented, the 2-phase and the 4-phase communication protocols.

Each asynchronous interface was modelled in the IOPT-Flow framework

and then, it was generated the VHDL code, which was used in Xilinx ISE project.

Each component is simulated in both the IOPT-Flow and the Xilinx ISE and a

comparison is presented. Then, other ten example models, utilizing the compo-

nents, were implemented on a Nexys 4 DDR board, were a different synchroniz-

ing signals were assigned to each of the components. These synchronizing signals

were generated with MMCMs and PLLs present in the FPGA, through the Clock-

ing Wizard IP.

Although DS-Pnets support the development of synchronous components,

they do not completely support GALS systems. In this work DS-Pnets were ex-

tended to support these systems. It is proposed a definition for a GALS-DS-Pnet

model. This is a top-level model that is created on top of the current DS-Pnet

model, enabling a GALS design. Then, the current execution semantics from the

DS-Pnets formalism and its implementation in both the simulator (JavaScript)

and hardware code (VHDL) are discussed. Next, suggestions are made for the

IOPT-Flow's tools namely, its editor, simulator and VHDL code generator. After-

wards, two models containing the asynchronous components proposed, in chap-

ter three, were simulated in a test version of the IOPT-Flow framework which

employed the proposed execution semantics.

101

 From the simulations and tests, it was possible to conclude that 2-phase

components will generally be faster, since they require half the communication

signals; however, 4-phase components will generally be more compact since

reading signals is easier than reading transitions of said signals. When comparing

the different interfaces, it can be concluded that the Simple interface is the most

compact, adding a buffer provides flexibility to the system at the cost of space

and communicating the buffered events through a data signal will rise the effi-

ciency at the cost of said extra signal.

The proposed execution semantics were successfully implemented in the

IOPT-Flow simulator, and were capable of fully simulating GALS systems. Ad-

ditionally, multiple GALS systems were successfully implemented in an FPGA

board.

From this work resulted two papers. They were submitted and accepted,

respectively for YEF-ECE 2019 - 3rd International Young Engineers Forum on

Electrical and Computer Engineering, titled "A survey of IOPT-Flow for GALS

systems development", which has already been presented and published, and for

IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society,

titled "Asynchronous interfaces for IOPT-Flow to support GALS systems", which

is scheduled to be presented in October. Both papers had the following list of

authors, "João Almeida, Filipe Moutinho and Rogerio Campos-Rebelo".

Lastly, in terms of future work, the proposed extensions should be imple-

mented, that is to say, that it should be possible to associate both synchronizing

clocks and synchronizing edges to components in the graphical editor, automat-

ically generate JavaScript code that supports GALS and automatically generating

VHDL code with the assigned synchronizing clocks and synchronizing edges.

102

103

Bibliography

[1] Jain, R. C., Dinesh Padole, Madhuri B. Kulkarni, Abhijeet and Amit

Singhal. “Design of Globally Asynchronous Locally Synchronous (GALS) Sys-

tem using FPGA.”, International Journal Of Enhanced Research In Science Tech-

nology & Engineering, (2014).

[2] A. Iyer and D. Marculescu, "Power and performance evaluation of glob-

ally asynchronous locally synchronous processors," Proceedings 29th Annual In-

ternational Symposium on Computer Architecture, Anchorage, AK, USA, 2002,

pp. 158-168.

[3] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber and W. Fichtner, "Glob-

ally-asynchronous locally-synchronous architectures to simplify the design of

on-chip systems," Twelfth Annual IEEE International ASIC/SOC Conference

(Cat. No.99TH8454), Washington, DC, USA, 1999, pp. 317-321.

[4] Gürkaynak, Frank K., Stephan Oetiker, Norbert Felber, Hubert Kaeslin,

and Wolfgang Fichtner. "Is there hope for GALS in the future?." In 4th ACiD

Workshop of the European commission’s fifth framework programme. 2004.

[5] M. Kishinevsky, S. K. Shukla and K. S. Stevens, "Guest Editors' Introduc-

tion: GALS Design and Validation," in IEEE Design & Test of Computers, vol. 24,

no. 5, pp. 414-416, Sept.-Oct. 2007.

104

[6] P. Teehan, M. Greenstreet and G. Lemieux, "A Survey and Taxonomy of

GALS Design Styles," in IEEE Design & Test of Computers, vol. 24, no. 5, pp. 418-

428, Sept.-Oct. 2007.

[7] Syed Suhaib, Deepak Mathaikutty, Sandeep Shukla, "Dataflow Architec-

tures for GALS", Electronic Notes in Theoretical Computer Science, Volume 200,

Issue 1, 2008, Pages 33-50.

[8] Ramesh S., Sonalkar S., D’silva V., Chandra R. N., Vijayalakshmi B.

(2004) A Toolset for Modelling and Verification of GALS Systems. In: Alur R.,

Peled D.A. (eds) Computer Aided Verification. CAV 2004. Lecture Notes in Com-

puter Science, vol 3114. Springer, Berlin, Heidelberg

[9] Pereira, F.J.G. (2017) "The DS-Pnet modeling formalism for cyber-phy-

sical system development", Faculdade de Ciências e Tecnologia, Universidade

Nova de Lisboa, http://hdl.handle.net/10362/27876.

[10] Pereira, F. and Gomes, L. (2016) " Combining Data-Flows and Petri Nets

for Cyber-Physical Systems Specification", in: Camarinha-Matos L.M., Falcão

A.J., Vafaei N., Najdi S. (eds) Technological Innovation for Cyber-Physical Sys-

tems. DoCEIS 2016. IFIP Advances in Information and Communication Technol-

ogy, vol 470. Springer, Cham.

[11] F. Pereira and L. Gomes, "The IOPT-Flow framework pairing Petri nets

and data-flows for embedded controller development," IECON 2016 - 42nd An-

nual Conference of the IEEE Industrial Electronics Society, Florence, 2016, pp.

4832-4837.

[12] Cuesta García, Luís Miguel ; Gil Padilla, António J. ; Remiro Domin-

guez, Fernando ; Ruivo, Tomás ; Jerónimo, Alberto - Electrónica digital : álgebra

de Boole : circuitos combinacionais e sequenciais : automatismos : memórias. Lis-

boa...[et al.] : Mcgraw-Hill, cop.1994. VII, [2], 44l p.

[13] C. H. Van Berkel, M. B. Josephs and S. M. Nowick, "Applications of

asynchronous circuits," in Proceedings of the IEEE, vol. 87, no. 2, pp. 223-233,

Feb. 1999.

[14] Spars, Jens, and Steve Furber. Principles asynchronous circuit design.

Kluwer Academic Publishers, 2002.

105

[15] S. Dasgupta and A. Yakovlev, "Modeling And Performance Analysis of

GALS architectures," 2006 International Symposium on System-on-Chip, Tam-

pere, 2006, pp. 1-4.

[16] K. Y. Yun and R. P. Donohue, "Pausible clocking: a first step toward

heterogeneous systems," Proceedings International Conference on Computer De-

sign. VLSI in Computers and Processors, Austin, TX, USA, 1996, pp. 118-123.

[17] Junbok You, Yang Xu, Hosuk Han, Kenneth S. Stevens, "Performance

Evaluation of Elastic GALS Interfaces and Network Fabric", Electronic Notes in

Theoretical Computer Science, Volume 200, Issue 1, 2008, Pages 17-32.

[18] Messerschmitt, David. (1990). Synchronization in digital system design.

Selected Areas in Communications, IEEE Journal on. 8. 1404 - 1419.

10.1109/49.62819.

[19] J. Ax, N. Kucza, M. Vohrmann, T. Jungeblut, M. Porrmann and U. Rück-

ert, "Comparing Synchronous, Mesochronous and Asynchronous NoCs for

GALS Based MPSoCs," 2017 IEEE 11th International Symposium on Embedded

Multicore/Many-core Systems-on-Chip (MCSoC), Seoul, 2017, pp. 45-51.

[20] M. Fattah, A. Manian, A. Rahimi and S. Mohammadi, "A High

Throughput Low Power FIFO Used for GALS NoC Buffers," 2010 IEEE Computer

Society Annual Symposium on VLSI, Lixouri, Kefalonia, 2010, pp. 333-338.

[21] S. Suhaib, B. A. Jose, S. K. Shukla and D. A. Mathaikutty, "Formal trans-

formation of a KPN specification to a GALS implementation," 2008 Forum on

Specification, Verification and Design Languages, Stuttgart, 2008, pp. 84-89.

[22] O. K. Chinedu, E. C. Genevera and O. O. Akinyele, "Hardware descrip-

tion language (HDL): An efficient approach to device independent designs for

VLSI market segments," 3rd IEEE International Conference on Adaptive Science

and Technology (ICAST 2011), Abuja, 2011, pp. 262-267.

[23] Taylor, Adam, " 10 Ways To Program Your FPGA", EETimes (Internet

article), November's 6th, 2016, https://www.eetimes.com/docu-

ment.asp?doc_id=%201329857&page_number=1.

106

[24] R. Nane et al., "A Survey and Evaluation of FPGA High-Level Synthesis

Tools," in IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 35, no. 10, pp. 1591-1604, Oct. 2016.

[25] Meeus, W., Van Beeck, K., Goedemé, T. et al. Des Autom Embed Syst,

Design Automation for Embedded Systems (2012) 16: 31.

https://doi.org/10.1007/s10617-012-9096-8

[26] Bailey, Donald. (2015). The advantages and limitations of high level

synthesis for FPGA based image processing. Proceedings of the 9th International

Conference on Distributed Smart Cameras, 134-139. 10.1145/2789116.2789145.

 [27] Avinash Malik, Zoran Salcic, Partha S. Roop, Alain Girault, SystemJ: A

GALS language for system level design, Computer Languages, Systems & Struc-

tures, Volume 36, Issue 4, 2010, Pages 317-344.

[28] A. Malik, A. Girault and Z. Salcic, "A GALS Language for Dynamic

Distributed and Reactive Programs," 2011 Eleventh International Conference on

Application of Concurrency to System Design, Newcastle Upon Tyne, 2011, pp.

173-182.

[29] A. Gamatie and T. Gautier, "The Signal Synchronous Multiclock Ap-

proach to the Design of Distributed Embedded Systems," in IEEE Transactions

on Parallel and Distributed Systems, vol. 21, no. 5, pp. 641-657, May 2010.

[30] L. Gomes, F. Moutinho, F. Pereira, J. Ribeiro, A. Costa and J. Barros,

"Extending input-output place-transition Petri nets for distributed controller sys-

tems development," 2014 International Conference on Mechatronics and Control

(ICMC), Jinzhou, 2014, pp. 1099-1104.

[31] L. Gomes, F. Moutinho and F. Pereira, "IOPT-tools — A Web based tool

framework for embedded systems controller development using Petri nets," 2013

23rd International Conference on Field Programmable Logic and Applications,

Porto, 2013, pp. 1-1.

[32] F. Moutinho and L. Gomes, "Asynchronous-Channels Within Petri Net-

Based GALS Distributed Embedded Systems Modeling," in IEEE Transactions on

Industrial Informatics, vol. 10, no. 4, pp. 2024-2033, Nov. 2014.

107

[33] F. Moutinho, L. Gomes, A. Costa and J. Pimenta, "Asynchronous wrap-

pers configuration within GALS systems specified by Petri nets," 2012 IEEE In-

ternational Symposium on Industrial Electronics, Hangzhou, 2012, pp. 1357-1362.

[34] R. Jipa, "Dedicated solution for local clock programing in GALS de-

signs," 2008 International Semiconductor Conference, Sinaia, 2008, pp. 393-396.

[35] R. Gagne, J. Belzile and C. Thibeault, "Asynchronous component im-

plementation methodology for GALS design in FPGAs," 2009 Joint IEEE North-

East Workshop on Circuits and Systems and TAISA Conference, Toulouse, 2009,

pp. 1-4.

[36] A. Peeters and K. van Berkel, "Single-rail handshake circuits," Proceed-

ings Second Working Conference on Asynchronous Design Methodologies, Lon-

don, UK, 1995, pp. 53-62.

[37] Digilent, Nexys 4 DDR Referemce Manual, reference.digi-

lentinc.com/reference/programmable-logic/nexys-4-ddr/reference-manual,

accessed 18/12/2019.

