382 research outputs found

    Order acceptance and scheduling in a single-machine environment: exact and heuristic algorithms.

    Get PDF
    In this paper, we develop exact and heuristic algorithms for the order acceptance and scheduling problem in a single-machine environment. We consider the case where a pool consisting of firm planned orders as well as potential orders is available from which an over-demanded company can select. The capacity available for processing the accepted orders is limited and orders are characterized by known processing times, delivery dates, revenues and the weight representing a penalty per unit-time delay beyond the delivery date promised to the customer. We prove the non-approximability of the problem and give two linear formulations that we solve with CPLEX. We devise two exact branch-and-bound procedures able to solve problem instances of practical dimensions. For the solution of large instances, we propose six heuristics. We provide a comparison and comments on the efficiency and quality of the results obtained using both the exact and heuristic algorithms, including the solution of the linear formulations using CPLEX.Order acceptance; Scheduling; Single machine; Branch-and-bound; Heuristics; Firm planned orders;

    The energy scheduling problem: Industrial case-study and constraint propagation techniques

    Get PDF
    This paper deals with production scheduling involving energy constraints, typically electrical energy. We start by an industrial case-study for which we propose a two-step integer/constraint programming method. From the industrial problem we derive a generic problem,the Energy Scheduling Problem (EnSP). We propose an extension of specific resource constraint propagation techniques to efficiently prune the search space for EnSP solving. We also present a branching scheme to solve the problem via tree search.Finally,computational results are provided

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Order Acceptance and Scheduling: A Taxonomy and Review

    Get PDF
    Over the past 20 years, the topic of order acceptance has attracted considerable attention from those who study scheduling and those who practice it. In a firm that strives to align its functions so that profit is maximized, the coordination of capacity with demand may require that business sometimes be turned away. In particular, there is a trade-off between the revenue brought in by a particular order, and all of its associated costs of processing. The present study focuses on the body of research that approaches this trade-off by considering two decisions: which orders to accept for processing, and how to schedule them. This paper presents a taxonomy and a review of this literature, catalogs its contributions and suggests opportunities for future research in this area

    A global constraint for total weighted completion time

    Get PDF

    A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines

    Get PDF
    Research on due date oriented objectives in the parallel machine environment is at best scarce compared to objectives such as minimizing the makespan or the completion time related performance measures. Moreover, almost all existing work in this area is focused on the identical parallel machine environment. In this study, we leverage on our previous work on the single machine total weighted tardiness (TWT) and total weighted earliness/tardiness (TWET) problems and develop a new preemptive relaxation for the TWT and TWET problems on a bank of unrelated parallel machines. The key contribution of this paper is devising a computationally effective Benders decomposition algorithm for solving the preemptive relaxation formulated as a mixed integer linear program. The optimal solution of the preemptive relaxation provides a tight lower bound. Moreover, it offers a near-optimal partition of the jobs to the machines, and then we exploit recent advances in solving the non-preemptive single machine TWT and TWET problems for constructing non-preemptive solutions of high quality to the original problem. We demonstrate the effectiveness of our approach with instances up to 5 machines and 200 jobs

    Multi-Period Cell Loading and Job Sequencing in a Cellular Manufacturing System

    Get PDF
    In this paper, a multi-period cell loading problem is addressed, where the objectives are to minimise the number of tardy jobs (nT) in a multi-period planning horizon and optimise the scheduling of tardy jobs. Three cell loading and job scheduling strategies are proposed and tested with two newly developed mixed integer programming models. Additionally, three types of due dates (tight, medium and loose) and three different demand levels were considered. Finally, two tardy job assignment methods were proposed to observe the impact on nT. Case problems were solved based on minimising nT, Tmax and total tardiness (TT) objectives and cost sensitivity analysis was performed. Results indicated that, the first strategy, (early start allowance and tardy job assignment after each period) performed better in terms of nT. For the secondary objectives, tradeoffs were observed among different strategies depending on the type of due date, demand level and tardy job assignment method
    corecore