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The energy scheduling problem: industrial case study

and constraint propagation techniques

Abstract

This paper deals with production scheduling involving energy constraints, typi-

cally electrical energy. We start by an industrial case-study for which we propose a

two-step integer/constraint programming method. From the industrial problem we

derive a generic problem, the Energy Scheduling Problem (EnSP). We propose an

extension of specific resource constraint propagation techniques to efficiently prune

the search space for EnSP solving. We also present a branching scheme to solve the

problem via tree search. Finally, computational results are provided.

Keywords: Production scheduling, energy constraints, constraint propagation, ener-

getic reasoning

1 Introduction

Context of the study Since the last two decades, hard combinatorial problems, mainly

in scheduling, have been the target of many approaches combining Operations Research

and Artificial Intelligence techniques [13]. These approaches are generally focused on

constraint satisfaction as a general paradigm for representing and solving efficiently such

problems [23]. At the heart of these approaches, a panel of consistency enforcing tech-

niques is used to dramatically prune the search space. Therefore, propagation techniques

dedicated to resource and time constrained scheduling problems, viewed as special in-

stances of Constraint Satisfaction Problems (CSPs), have been developed to speed up the
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search for a feasible schedule or to detect early an inconsistency. For instance the ener-

getic reasoning [8], the cornerstone of the present study, has enabled the joint integration

of both resource and time constraints in order to prevent the combinatorics of solving

conflicts between activities in competition for limited resources.

Furthermore, it is still of interest to search for propagating novel types of constraints

according to real-world problems. The new environmental constraints, but also the in-

crease of the energy cost, should prompt us to consider as a crucial and promising issue to

look into the problems of emissions, wastes, and power consumption optimization in pro-

duction scheduling [24]. Real-time (processor) scheduling theory has often addressed en-

ergy constraints. Indeed, energy consumption management is a critical issue in computer

systems, networks and embedded systems where many (on-line) algorithmic problems are

raised and well studied [14]. However, complexity is a major difficulty for the integration

of energy constraints to production scheduling and the literature on the subject is rather

sparse. For example, production scheduling for steel manufacturing has been studied, but

few papers focus on energy cost [17]. This generally leads to the development of heuris-

tics. For example, [4] propose a hierarchical approach for scheduling a steel plant subject

to a global limitation on the power supplied to the furnaces. [12] use a decomposition

approach to solve a steel manufacturing scheduling problem with multiple products. Fi-

nally, to the best of our knowledge, particular studies focused on constraint propagation

techniques for energy considerations have been unexplored.

Problem statement As we will see later, the production problem under study is de-

fined as a new problem called the energy scheduling problem (EnSP). The EnSP is a

generalization of the cumulative scheduling problem (CuSP) itself an extension of the

parallel machine sheduling problem (PMSP). In a PMSP, a task j has to be processed on

one machine among a set of m machines. The CuSP is an extension of the PMSP where

each task needs a subset k < m (k 6= 1) of machines. Furthermore, the industrial prob-

lem we study in this paper involves furnaces that can be modeled by parallel machines.

Parallel machine scheduling has been widely studied [6], especially because it appears as

a relaxation of more complex shop or project scheduling problems, like the hybrid flow

shop scheduling problem or the resource-constrained project scheduling problem. Several

methods have been proposed to solve this problem. In [5], a column generation strategy is

proposed. [18] propose a linear program and an efficient heuristic for large-size instances

for the resolution of priority constraints and family setup times problem. [22] solve the

problem with a tree search method. [16] compare two different branching sschemes and

several tree search strategies for the problem with heads and tails for makespan mini-
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mization. In [1], a constraint programming-based approach is proposed to minimize the

weighted number of late jobs. In [21], a hybrid Integer/Constraint Programming approach

is proposed to solve a minimum-cost assignment problem. Among the variants presented

in the latter, the most effective strategy is to combine a tight and compact, but approx-

imate, mixed integer linear programming (MILP) formulation with a global constraint

testing single machine feasibility. Many variants or extensions of the CuSP have been

considered, for which feasibility tests and adjustment rules have been issued, based for

example on the energetic reasoning [8].

Paper objectives & organization The objective of this paper is twofold. First, we

present in Section 2 an industrial case-study involving energy constraints and objectives

linked to electric power consumption, and a two-step constraint programming and mixed-

integer linear programming framework to solve it, as well as a first set of computational

experiments. Second, in Section 3, we focus on the energy part of the industrial problem,

issueing a generic problem, the Energy Scheduling Problem (EnSP). To enhance the pre-

vious approach, we propose a formal description for the propagation of energy constraints

based on an extension of the energetic reasoning. In Section 4, we present dominance

rules and practical assumptions in order to reduce the search space, a branching scheme

to solve the problem via tree search, as well as computational results. Section 5 highlights

the conclusions of the paper and proposes some future research directions.

2 A two-step approach for the industrial problem

In this section, we present an industrial case-study where energy constraints have a great

importance in scheduling. A two-step approach was developped to solve the problem.

2.1 Industrial case-study

The addressed problem comes from a pipe-manufacturing plant. The plant is divided in

three main departments: foundry, drawing mill, and pipe-tubing. In these departments,

melting and heating processes use a huge quantity of energy: electricity, natural gas, and

steam. Electricity expenses account for more than half the annual energy costs for the

plant. The electricity bill is based on the cost of the energy consumed and on penalties

for power overrun, in reference to a subscribed maximal power.

The study focuses on the foundry where metal is melted in induction furnaces and then
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cast in individual billets. Non-regular power consumption peaks occur and cause high

electricity bills. To cope with this problem, equipments such as power cutters and relays

can be installed at small cost to avoid peaks, but they cause production shutdowns that are

not desired. Consequently, production scheduling needs to consider energy consumption

as a central element in order to maintain the production at the current level.

The foundry has five similar lines of production to perform the melting jobs. From a

scheduling view-point, this facility can easily be recognized as a parallel machine problem.

However, a particularity of the problem is that melting jobs have variable durations that

depend on the power given to the furnace, constrained in a range [Pmin, Pmax] by physical

and operational considerations. Melting of job i ends when an amount Ei of energy has

been supplied. Production scheduling determines the assignment and sequencing of the

jobs on the furnaces, and the starting/finishing dates of these jobs that allow to supply

the required energy while respecting the power limits and the time windows. The goal is

to minimize the energy bill, with energy and overrun costs evaluated periodically, every

fifteen minutes.

We proposed a two-step Constraint Programming / Mixed Integer Linear Program-

ming approach to solve this problem, considering additional constraints that may influ-

ence the energy consumption, as human resource availability for loading and unloading

the furnaces. This approach is described in the following. Further details can be found

in [11].

2.2 Overview of the solving method

As mentioned in Section 2.1, we want to schedule melting jobs whose duration depends

on the power given to the furnace. Actually, a job is composed of three sequential parts:

loading, heating, and unloading (see Fig. 1). The durations of loading and unloading are

known (dl and du), but heating duration depends on the following conditions:

• melting duration depends on the power given to the furnace, in a range [Pmin, Pmax];

• when melting is complete, the temperature must be hold in the furnace until an

operator is ready to unload it.

Figure 1: Job description and corresponding operator’s tasks.
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The goal is to minimize the cost of the schedule, depending on the energy consumed

and on penalties when the overall power in the foundry exceeds a given subscribed value.

Various mixed integer linear models have been developed for this problem. First, a

discrete time model has been proposed [25], but the huge number of binary variables made

it impossible to hold realistic problems. A continuous time model allowed the reduction

of the number of binary variables [9], but the resolution was still very long. Finally, a

decomposition of the problem led to much more acceptable computation times [11]. The

main principle of the two-step approach is shown in Fig. 2.

Assignment
Sequencing

CP Model

Scheduling
Energy

MILP Model
assign(i, f)

seq(i1, i2)

duration(i)

init

1

Figure 2: Two-step approach.

During the first step, sequencing of jobs on the furnaces is performed with fixed job

durations, i.e., we consider that the power given to the furnace is known for each job.

Since it may happen that no feasible solution exists considering the time windows, due

date violation is admitted and the objective is to minimize the maximum tardiness. Hence

the problem resorts to a parallel machine problem with machine availability, release dates,

and tardiness criterion. The result of this step is the assignment and sequencing of job i

on furnace f .

During the second step, the jobs are scheduled, i.e., operation starting and finishing

dates are fixed, while the power setting of each furnace during each interval determines

the duration of each job. Job assignement and sequencing are inherited from Step 1 so

assign(i, f) and seq(i1, i2) are considered as data at Step 2. The objective function is

the energy and overrun cost minimization with an additional term to penalize due date

violations.

Then we close the loop by using at Step 1 the new job durations given by Step 2. The

process is interrupted if the objective function of Step 2 is not better than the one of the

previous iteration, and if the tardiness is not improved. Although this two-step approach

may not give the optimal solution, experimentation gives very good results with a highly

reduced processing time.

5



2.3 Scheduling model

Step 1 corresponds to solving an almost standard parallel machine scheduling problem.

We propose a constraint programming approach to tackle this problem. A commercial

constraint programming modeling language and solver (IBM ILOG OPL 6.3/CP Opti-

mizer 2.3) is used. The OPL language provides high level primitives to model scheduling

components.

Job loading, melting and unloading, and operators unavailabilities are defined as tasks

(type interval in OPL) specifying for each of them the time windows and the duration.

Furthermore, optional tasks are associated to each loading, melting, and unloading tasks

to model the furnace assignment problem, so that there exists an optional task per load-

ing, melting, and unloading operation and candidate furnace. For the first iteration, we

consider that the furnace power is set to Pmax to fix the initial melting durations to their

minimal values.

Once written in OPL, the parallel machine problem can be solved by the IBM ILOG

CP Optimizer, a commercial constraint programming solver embedding precedence and

resource constraint propagation techniques and an efficient self-adapting large neighbor-

hood search method dedicated to scheduling problems [15]. A time limit is set and the

best solution found within the time limit is returned.

2.4 Energy model

In the second stage of the proposed heuristic, an MILP model is used to set precise job

position and power supply while keeping the job sequences found in the first stage. Job

positions are given by melting starting and finishing times, represented as continuous

variables. The scheduling constraints of this continuous model are:

sti − dli ≥ reli (1)

fti ≥ sti + Ei/Pmax (2)

fti ≤ sti + Ei/Pmin (3)

sti2 − dli2 ≥ fti1 + dui1 −M(1−seq(i1, i2)) (4)

where (1) locates the loading start time after the release date, (2) and (3) set the bounds

of melting duration, and job sequencing is given by (4) according to the binary values seq

from Step 1.

The time horizon is divided into intervals of uniform duration D = 15 min. These

intervals are used to determine the overall energy consumption and power requirement
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on each interval. Binary variables are used to identify the intervals in which energy is

supplied to the furnace for a given job. During the melting of job i, an amount of energy

emi,u is supplied at an interval u. It is the integration of the power given to the furnace

over the melting duration dmi,u in this interval. Our model uses energy and duration

as variables, but it is not necessary to represent explicitly the power, considered as a

constant over the melting duration for each interval (see Fig. 3).

t
Furnace heating

Melting Holding

t
Power

Pmin
e
m

i,
1

emi,2

e
m

i,
3

1 2 3 4 5

Pmax

Phold

t
Intervals

1 2 3 4 5

d
m

i,
1

dmi,2 d
m

i,
3

d
h

i,
3

d
h

i,
4

1

Figure 3: Energy supply by interval: melting and holding.

Melting duration dmi,u, for intervals u where melting occurs, is between 0 and D.

Melting is performed without interruption and the sum of the melting durations of a job

is equal to fti− sti, the duration of the melting operation. For each interval, the amount

of energy provided to a job (5) depends on the melting duration and the supplied power

in [Pmin, Pmax]. The melting ends when the required energy quantity Ei is reached (6).

Pmin.dmi,u ≤ emi,u ≤ Pmax.dmi,u (5)
∑

u

emi,u = Ei (6)

Constraints to define the holding energy, accounting for operators unavailability, are

defined in a similar way. For a given interval, the energy consumption is the sum of

melting and holding energy on every job. The mean power is equal to this energy divided

by interval duration D. It is compared to the subscribed power P to detect power overruns.

The objective function is the sum of the energy and power overrun costs for all the

instances. The due dates can be violated but tardiness is highly penalized in order to seek
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for a feasible final solution. Hence the heuristic does not stop if, for a given iteration, the

MILP problem has no solution that satisfies the due dates.

2.5 Experimental results

2.5.1 Solution steps on an illustrative instance

Table 1 shows the solution steps for an illustrative problem instance of 36 jobs on 6

furnaces (further details are given in [11]). Full MILP approach (continuous-time model)

and two-step approach results are compared. All the tests have been performed on a

SUN Sunfire server with four Quad-Core AMD Opteron(tm) 2.5 GHz processors. Parallel

CPLEX 12.1 is used to solve the MILP problems. A 30 s time limit is set for Step 1 of

the approach.

The tables give the maximum tardiness (Tmax), the sum of power overruns (Over.)

and of holding durations (Hold), and the computation time.

Table 1: Illustrative instance solved with MILP and two-step approaches.

Tmax Over. Hold Time

MILP 0 0 53.8 1206.8

Two-step Tmax Over. Hold Time

Step 1 30 - - 0.11

Step 2 30 0 25.7 15.48

Step 1 30 - - 0.11

Step 2 0 0 53.8 6.44

Step 1 0 - - 0.09

Step 2 0 0 53.8 5.22

The MILP model is solved to optimality in more than 20 minutes. Compared to this

solving time, the two-step approach is very fast. At the first step, the method gives a

solution with tardiness, due to the initial values. The assignment and sequencing variables

are sent to Step 2, and a first solution is given. The objective value is high because of

the huge penalty given to tardiness. At the second iteration, a solution with tardiness

is found again by the CP solver at Step 1, but Step 2 then gives a solution with only a

holding duration greater than 0. Note that it is the optimal solution. A third iteration is
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performed. As nothing is improved, the process ends. The overall solving duration is less

than 30 seconds, and no iteration time limit has been reached.

2.5.2 Results on randomly generated problem instances

A set of 100 problem instances with 36 jobs and 6 furnaces were generated, inspired by

the industrial case-study. Among these, 47 were found feasible by solving to optimality

the full MILP continuous-time model. Table 2 summarizes the results of full MILP and

two-step approaches for the 47 feasible instances. MILP solving time stays high so that

using this model would be difficult in a situation with hundreds of jobs. Some instances

have overrun or holding durations in their optimal solution.

Table 2: Comparison of the approaches: mean values on 47 feasible instances.

Tmax Over. Hold Time Iter. Optim.

MILP 0 38.2 4.0 5397 - 100%

Two-step 0.13 38.2 4.6 8.7 1.1 97.8%

The two-step approach is very fast, with a mean solving time less than 10 seconds.

Only one instance among 47 has not been solved to optimality. Most of the instances

have been solved in one iteration.

2.5.3 Improvements

The OPL modeling language gives the opportunity to define a job duration as a range.

Thus, the melting interval variables can be defined as a range [Ej/Pmax, Ej/Pmin],

letting the solver determine the adequate duration. To this aim, the objective function of

Step 1 is modified in order to penalize melting operations with a duration close to their

minimum value, because it means that the furnace is set to a high power and it could

lead to an overrun. Experimentations showed that the modified objective function is not

representative enough of the problem to give the right assignment and sequencing results.

This claims for a real energy handling in the constraint programming step. Therefore, we

present in the next section an extension for the Energy Scheduling Problem (EnSP) of

the energetic reasoning, an approach to solve the CuSP in constraint programming.
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3 Energetic reasoning

3.1 The scheduling problem under energy constraints

In the following, we introduce the energy scheduling problem (EnSP). We first present the

related cumulative scheduling problem (CuSP). Then we present the EnSP. Finally we

show how we can model our industrial application scheduling problem as an association

of an EnSP and a CuSP.

3.1.1 The cumulative scheduling problem

The CuSP is an extension of the classical parallel machine problem, also called the multi-

processor task problem and denoted by P |reli, duei; sizei|− in the well-known three field

scheduling notation [7]. An instance of the CuSP can be defined as follows: a set of n

activities A = {1, 2, . . . , n} is to be processed without interruption on a given resource

of capacity P . To each activity i are associated its resource requirement (size) pi, its

release date reli, its deadline duei, and its duration di (note that capacity and resource

requirements are assumed to be constant over the planning horizon). A standard parallel

machine problem can be modeled as a CuSP where activities require only one resource

unit.

The CuSP can be stated as follows. Activity i start time (sti) and finish time (fti =

sti + di) have to belong to the time window [reli, duei]. Activities can be simultaneously

processed according to the satisfaction of the cumulative constraint:
∑

i∈A pit ≤ P , for

every time point t, where pit = pi if sti ≤ t < fti and pit = 0 otherwise.

3.1.2 The energy scheduling problem

The energy scheduling problem (EnSP) takes as input a set of n activities A = {1, 2, . . . , n}

having to be processed without interruption using an energy resource of capacity (i.e.,

available power) P . Instead of being defined through its duration di and resource demand

pi, each activity is defined through its required energy Ei and its minimum and maximum

resource requirements Pmin
i and Pmax

i such that the allocated resource units (provided

power) has to remain between these two values. Note here that for practical motivations,

we consider that changes in the power allocated to an activity only occur at discrete time

periods of duration δ.

The EnSP consists in finding a start time sti ≥ reli, a completion time fti ≤ duei and a

10



power allocation pit such that Pmin
i ≤ pit ≤ Pmax

i for t ∈ [sti, f ti−1] and pit = 0 otherwise.

The global power limitation constraint is written
∑

i∈A pit ≤ P for any time period t. We

consider both pit and di = fti − sti as discrete variables. Last, an energy requirement

constraint Ei ≤ δ.
∑fti−1

t=sti
pit holds for each activity i, i.e., the energy brought to i must be

at least Ei. We remark that enforcing equality would yield to possibly infeasible solutions

in the case where the remaining energy to be brought to an activity at a given time period

is strictly lower than Pmin
i . Consequently, in accordance with practical cases, we consider

the energy brought to an activity can be larger than the required one.

Consider a problem instance of 3 activities with P = 5 and δ = 1. Other data are

given in Table 3.

Table 3: Example data

i Ei Pmin
i Pmax

i reli duei

1 12 1 5 0 6

2 12 2 5 2 6

3 6 2 2 2 5

Fig. 4 displays a feasible solution for the problem. One can observe that there is no

solution for which all the activities have a rectangular shape.

rel1 rel3

1
2

3

t

due3 due1

P = 5

due2rel2

Figure 4: Solution of an EnSP.

3.1.3 Discussion / Related works

Clearly the CuSP cannot be used to model the EnSP since activities are not necessarily

of rectangular shape (see Section 3). In fact, the EnSP can be defined as a relaxation of

the (continuous) CuSP. Indeed, we obtain the CuSP by setting Pmin
i = Pmax

i = pi.
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However in [2], other relaxations of the CuSP are considered. The fully elastic relax-

ation corresponds to a particular EnSP where Pmin
i = 0 and Pmax

i = P . Hence although

the feasibility tests and adjustment rules proposed for the fully elastic CuSP hold for the

EnSP, they may not capture all the structure of the EnSP since the fully elastic CuSP is

itself a relaxation of the EnSP.

The partially elastic relaxation restricts elasticity by enforcing regularity constraints

of the changes involving nominal pi. Namely, we have Pmin
i = 0 and Pmax

i = P as for the

fully elastic case, but for any interval [reli, t] the relation
∑t

τ=reli
piτ ≤ pi.(t− reli) must

hold. We do not have such regularity constraints in the EnSP, hence the partially elastic

CuSP and the EnSP are not comparable in terms of complexity.

Another related extension of the CuSP has been proposed in [19], aiming at considering

an activity as a sequence of consecutive subtasks such that the resource consumption of

each subtask is given by a function of the subtask duration. In our case the consumption

of an activity at a time period t is a decision variable.

Finally, in the discrete time-resource trade-off model [20], the duration of each activity

is not predetermined, but changes as a discrete non-increasing function of the amount of

renewable resources assigned to it. This is very similar to the concept of malleable task

frequently encountered in parallel processor systems. A malleable task may be executed

by several processors simultaneously and the processing speed of a task is a nonlinear

function of the number of processors allocated to it [3]. However, in these cases the

activities still have a rectangular shape.

3.2 Classical energetic reasoning for the CuSP

In the energetic reasoning for scheduling, the idea is to propose a smart way for simulta-

neously considering time and resource constraints in a unique reasoning. In that context,

the energy is generically defined as the product of a time duration by a resource quantity.

As an illustration, we can say that the problem of scheduling n activities of duration

di, i=1..n in an amount pi, i=1..n using a given resource available in a constant amount P

over a time horizon of duration ∆ is isomorphic to the placement problem of n rectangles

of surface area pi.di, i = 1, . . . , n, in a rectangle of surface area P.∆.

To present the energetic reasoning, one must consider a working time interval, an

available energy and a total consumed energy over this interval.

Let [t1, t2] be a reference time interval. Bounds of the interval are arbitrarily chosen

but they also can be fixed to particular times. Over [t1, t2] and for a resource of capacity
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Figure 5: Consumption of five activities.

P , the available energy is defined as P.(t2 − t1).

We denote by w(i, t1, t2) the consumption of activity i (i.e., how long i uses the re-

source) over [t1, t2]. Two cases must be distinguished:

1. [sti, f ti] ∩ [t1, t2] = ∅ ⇒ w(i, t1, t2) = 0;

2. [sti, f ti] ∩ [t1, t2] 6= ∅ ⇒ w(i, t1, t2) = pi. (min(fti, t2)−max(sti, t1)).

In Fig. 5, striped areas represent the consumption of each activity from 1 to 5 between

t1 and t2.

One is usually especially interested in computing the lower and upper bounds of the

consumption: for the consumption of activity i over interval [t1, t2], we might derive from

above equations the minimum and the maximum consumptions. The relevant notion for

our purpose is obviously the minimum consumption, also called the mandatory consump-

tion: when trying to check whether i before j is feasible, we intend to take into account

that another activity k will necessarily consume the resource, between sti and ftj , for at

least some time T . Therefore we will not consider anymore the maximum consumption

in the remainder of the paper.

The mandatory consumption of an activity i is denoted by w(i, t1, t2). To compute it,

the activity has to be shifted to its left and right utmost positions on its time window

[reli, duei], retaining the minimum value of all intersections between such positions and

the reference interval. One then gets:

• the left-shifted consumption:

wL(i, t1, t2) = pi.max{0,min(di, t2 − t1, reli + di − t1)}
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Figure 6: Mandatory consumption of five activities.

• the right-shifted consumption:

wR(i, t1, t2) = pi.max{0,min(di, t2 − t1, t2 − duei + di)}.

The mandatory consumption of activity i is then:

w(i, t1, t2) = min{wL(i, t1, t2), wR(i, t1, t2)}

= pi.max {0,min(di, t2 − t1, reli + di − t1, t2 − duei + di)} .

On the same basis as example (Fig. 5), Fig. 6 shows the mandory consumption

(stripped areas) of the 5 tasks where a time window is now associated with each of them.

From this definition, it yields a satisfiability test (global inconsistency rule) which

includes total mandatory consumption over the set of activities A:

Property 1 CuSP feasibility test.

If ∃ [t1, t2] s.t.
∑

i∈Aw(i, t1, t2) > P.(t2 − t1), then no feasible solution exists for the

CuSP.

In [2], the set of relevant intervals [t1, t2] is characterized and an O(n2) algorithm is

provided to perform the feasibility tests over all these intervals.

From this satisfiability test, we can now propose local consistency rules to derive time

windows adjustments for a specified task. Let SL(i, t1, t2) = P.(t2−t1)−
∑

j∈A\{i}w(j, t1, t2)

be the maximum available energy (i.e., the slack) for processing i over [t1, t2].

Property 2 CuSP time-bound adjustments.

Release date adjustment. If an activity i verifies: ∃ [t1, t2] s.t. wL(i, t1, t2) > SL(i, t1, t2),

then a valid lower bound of the completion time of i can be deduced and then impacts its

release date as follows:

reli ← max{reli, ⌈t2 − SL(i, t1, t2)/pi⌉}.

Deadline adjustment. Symmetrically, if an activity i verifies: ∃ [t1, t2] s.t. wR(i, t1, t2) >

SL(i, t1, t2), then a valid upper bound of the start time of i can be deduced and then im-

pacts its deadline as follows:

duei ← min{duei, ⌊t1 + SL(i, t1, t2)/pi⌋}.

In [2], an O(n3) algorithm is provided to perform all the time-bound adjustments over

the relevant intervals.
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3.3 Energetic reasoning for the EnSP

A first basic feasibility rule is to check whether there is enough time in each activity

time window to bring the energy it requires when the maximum power is allocated to the

activity.

Namely, this basic feasibility test can be written as follows:

Property 3 EnSP basic feasibility test.

If, for an activity i, Pmax
i .(duei − reli) < Ei, the EnSP is infeasible.

In what follows we consider this condition is fulfilled for each activity. To extend the

energetic reasoning, the basic question to answer is: “Given an interval [t1, t2], what is the

mandatory consumption e(i, t1, t2) of each activity i? ”

Obviously if reli ≥ t2 or duei ≤ t1, e(i, t1, t2) = 0. Let us consider now that reli < t2

and duei > t1. As for the standard energetic reasoning, the mandatory consumption of

each activity i in [t1, t2] is attained either when the activity starts at its release date or

when it ends by its due date. When reli < t2, the relevant cases are displayed in Fig. 7.

To compute e(i, t1, t2) we need to compute the maximum energy e−(i, t1) consumed

by i before t1, as well as the maximum energy e+(i, t2) consumed by i after t2. We have:

e−(i, t1) = min {Ei,max (0, Pmax

i .(t1 − reli))}

e+(i, t2) = min {Ei,max (0, Pmax

i .(duei − t2))} .

It follows that the minimal energy consumption of i inside [t1, t2] verifies e(i, t1, t2) ≥ v

where:

v = min{Ei − e−i (i, t1), Ei − e+i (i, t2), P
min

i .(t2 − t1)}

or equivalently:

v = min{Ei −min(Ei, P
max

i .max(0, t1 − reli, duei − t2)), P
min

i .(t2 − t1)}.

Because of the minimal resource requirement Pmin
i , we cannot have e(i, t1, t2) < Pmin

i

if e(i, t1, t2) > 0. Furthermore the required work Ei has to be performed inside the time

window [reli, duei]. Thus, in the case where it is necessary to consume Pmin
i .(t2 − t1)

inside the interval, we have to check whether consuming the maximal energy outside the

interval is sufficient to bring the required energy Ei. The case where Pmin
i .(t2 − t1) is
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not a sufficient energy amount because of time window tightness is displayed at the right

bottom of Fig. 7. Hence we set:

e(i, t1, t2) = 0 if v = 0, and

e(i, t1, t2) = max(Pmin
i , v, Ei − e−i (i, t1)− e+i (i, t2)) otherwise.

This yields the following feasibility test:

Property 4 EnSP feasibility test.

If ∃ [t1, t2] s.t.
∑

i∈A e(i, t1, t2) > P.(t2 − t1), then no feasible solution exists for the

EnSP.

As for the CuSP, let SL(i, t1, t2) = P.(t2−t1)−
∑

j∈A\{i} e(j, t1, t2) denote the maximum

available energy (i.e., the slack) for processing i over [t1, t2]. We obtain time-bound

adjustments considering the two extreme cases for an activity i.

Consider eL(i, t1, t2) the minimal energy consumption of i in [t1, t2] when i is left

shifted (i.e., sti = reli). We have eL(i, t1, t2) ≥ x where:

x = min{Ei − e−i (i, t1), P
min

i .(t2 − t1)}

or equivalently:

x = min{Ei −min(Ei, P
max

i .max(0, t1 − reli)), P
min

i .(t2 − t1)}

and, we have:

eL(i, t1, t2) = 0 if x = 0, and

eL(i, t1, t2) = max(Pmin
i , x, Ei − e−i (i, t1)− e+i (i, t2)) otherwise.

Symmetrically, consider eR(i, t1, t2) the minimal energy consumption of i in [t1, t2]

when i is right shifted (i.e., fti = duei). We have eL(i, t1, t2) ≥ y where:

y = min{Ei − e+i (i, t2), P
min

i .(t2 − t1)}

or equivalently:

y = min{Ei −min(Ei, P
max

i .max(0, duei − t2)), P
min

i .(t2 − t1)}

and, we have:

eR(i, t1, t2) = 0 if y = 0, and
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eR(i, t1, t2) = max(Pmin
i , y, Ei − e−i (i, t1)− e+i (i, t2)) otherwise.

We obtain the following time-bound adjustments:

Property 5 EnSP time-bound adjustments.

Release date adjustment. If an activity i verifies: ∃ [t1, t2] s.t. eL(i, t1, t2) > SL(i, t1, t2),

then the release date can be updated as follows:

reli ← max{reli, ⌈t2 − SL(i, t1, t2)/P
min

i ⌉}.

Deadline adjustment. Symmetrically, if an activity i verifies: ∃ [t1, t2] s.t. eR(i, t1, t2) >

SL(i, t1, t2), then the deadline can be updated as follows:

duei ← min{duei, ⌊t1 + SL(i, t1, t2)/P
min

i ⌋}.

As the EnSP admits the CuSP as special case, it is a priori difficult to enumerate the

intervals to be considered. Indeed, from [2], we know that a part of the relevant intervals

for the CuSP is such that t1 = reli + di and/or t2 = duei − di for some activity i. For

the EnSP, except when Pmin
i = Pmax

i (which corresponds to the CuSP case), we have not

a fixed activity duration but a set of possible durations from ⌈Ei/P
max
i ⌉ to ⌈Ei/P

min
i ⌉.

For the sake of simplicity we restrict the considered intervals to the Cartesian product

O1 × O2, where O1 = {reli|i ∈ A} and O2 = {duei|i ∈ A}.

We can illustrate the adjustments performed in Fig. 4 example. Consider interval

[t1, t2] = [2, 5]. We have e(1, t1, t2) = eL(1, t1, t2) = 2, e(2, t1, t2) = eR(2, t1, t2) = 7 and

e(3, t1, t2) = eL(3, t1, t2) = eR(3, t1, t2) = 6. Note the configuration displayed in Fig. 4

actually corresponds to the minimal consumption of the three activities in [t1, t2] = [2, 5].

Consider the case where activity 1 is right shifted. We have eR(1, t1, t2) = 7 (same

configuration as the one displayed for activity 2). Since e(3, t1, t2) + e(2, t1, t2) = 13

the slack for activity 1 in [t1, t2] is SL(1, t1, t2) = 15 − 13 = 2. Since eR(1, t1, t2) >

SL(1, t1, t2), the deadline of activity 1 can be updated according to Property 5 by setting

due1 ← 2 + 2/1 = 4.

4 Solving the EnSP

4.1 Dominance rules and practical assumptions for the EnSP

The following properties are considered.

Property 6 (Dominance Rule) Active schedules.
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Active schedules are dominant for the EnSP.

Consider a solution S to the EnSP such that there is an activity i starting at time sti

and a time period t < sti such that there is a feasible solution S ′ setting sti = t without

changing the schedule of other activities. The search space can be obviously reduced to

the set of solutions for which no such property holds.

Property 7 (Practical assumption) Power change.

The search is restricted to schedules for which, for any activity i, changes in the

allocated power only occur on activity release dates, or completion times.

Although we did not prove this assumption is dominant, it makes sense in practice to

restrict the dates where the power allocated to a task is changed only when something

happens, i.e. when a new task is ready for being processed or when a task completes

4.2 Branching scheme

A simple branching scheme based on time incrementation can be derived from the dom-

inance rules and practical assumptions presented in Section 4.1. Each node corresponds

to a decision time point initially set to t = mini∈A reli. For each activity the required

energy Ei is progressively decreased and all activities are scheduled when Ei = 0 for all

activities. At each node, associated with a decision time t, activities are partioned into

the following subsets. The started activities are such that the decision to start the activity

has been taken at some ancestor node (at a time point t′ < t) but no decision has been

taken yet for the current decision point and Ei > 0. The completed activities are such

that fti ≤ t and Ei = 0. The available activities are such that reli ≤ t but no start

decision has been taken yet for these activities. The processed activities are such that the

decision to process the activity at time t with some resource amount p has already been

taken and Ei > 0. The unavailable activities verify reli > t and Ei > 0. The postponed

activities are those selected for being scheduled later (see branching scheme below).

At each node an activity either started or available is selected for being included in the

processed set (or in the postponed set for the available activities). The activity i∗ with the

smallest due date is selected first and, in case of ties, the activity with the most remaining

energy (Ei∗) is selected. Let Q and R denote the set of started and processed activities,

respectively. If i∗ ∈ Q, pi∗ = P −
∑

j∈Q\{i∗} P
min
j −

∑
j∈R pjt denotes the available power

for i at time t. If i∗ 6∈ Q, the available power for i∗ is pi∗ = P −
∑

j∈Q Pmin
j −

∑
j∈R pjt.
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If pi∗ > Pmin
i∗ , a part of i can be scheduled at time t. A child node is generated for

p ∈ [Pmin
i∗ ,min(pi∗ , P

max
i∗ )] corresponding to an allocation of power pi∗t = p to i∗ at time t.

An additional child node, only for available activities, corresponds to postponing activity

i∗ to a decision point t′ > t such that t′ is either equal to the minimum between the

smallest possible completion time of an activity of R and the smallest release date of

unavailable activities, strictly greater than t. This time point is unknown at this step

since set R is under construction, therefore the activities are just marked as postponed

without any other update.

If no activity can be selected for being scheduled at t, we have different reasons. If

all activities are in the completed set, the search succeeds. If all activities are either

processed, postponed, unavailable or available but without enough resource capacity, the

search must continue from the next decision time point set to the smallest release date or

completion time of processed activities greater than t. At this time we check whether the

new decision point is still compatible with the due date of the available activities. We also

check whether there remains unpostponed activities. Otherwise, the schedule is clearly

not semi-active.

If one due date cannot be satisfied or if the schedule is no more semi-active, a failure

occurs and the node is pruned. Otherwise, decision time point is updated. The processed

activities are transferred either to the completed set or to the started set. The postponed

activities are moved to the available set. The unavailable activities such that reli ≤ t are

moved to the available set. The activity selection process starts again and the process is

iterated until an activity is selected for being processed, or a failure occurs.

We illustrate the branching process on the Fig. 4 problem instance. The developped

nodes are displayed in Fig. 8. For the root node where t = 0, activity 1 is in the available

set while activities 2 and 3 are in the unavailable set. We branch to the second node

(Fig. 8.a) by selecting activity 1 for being scheduled at maximal power. Activity 1 is

included in the processed set. At time t = 0 no other activity is available. Time t is set

of the next decision point t = 2. Activities 2 and 3 are included in the available set and

activity 1 is transferred into the started set. The third node (Fig. 8.b) selects activity

3 with power p = 2 as the activity with the smallest due date for being inserted in the

processed set. Activities 1 and 2 can both be processed at time 2 and have the same due

date but activity 2 has the most remaining work. So the fourth node (Fig. 8.c) selects

2 for being processed at time t = 2 with the maximal available power taking account of

processed and started activities p = 2. For the fifth node (Fig. 8.d), activity 1 can now be

processed at time t = 2 with its minimal power p = 1. No activity is available anymore at
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time t = 2, so we proceed to the next time point corresponding with the completion time

of activity 1 at time t = 4 and activities 2 and 3 are now both in the started set while 1 is

put into the completed set. For the sixth node (Fig. 8.e), activity 3 is still selected with

power p = 2 as it has the smallest due date. Then, the seventh node (Fig. 8.f) selects

activity 2 with the maximal available power p = 3. Since all activities are in the processed

set, the time point is increased to the completion time t = 5 of activity 3 and activity 2

is included in the started set. For the eigth node (Fig. 8.g), activity 2 is selected with the

maximal power p = 5 and completed at time t = 6. For this example no backtracking has

been necessary.

4.3 Computational experiments

In this section, we illustrate on randomly generated problem instances the interest of the

proposed energetic reasoning techniques.

Using the same branching scheme, we compare the energetic reqsoning feasibility con-

ditions and adjustments with the fully elastic ones [2].

Recall that the fully elastic relaxation of the EnSP (or the CuSP) considers that, at

any time, tasks can be alloted any resource amount beteen 0 and P , provided the total

resource amount is equal to Ei. Baptiste [2] proved that this relaxation is equivalent to

the well-known preemptive one machine problem with release dates and due dates, and

proposed feasibility conditions and adjustments based on this property. Clearly, the fully

elastic technique yields weaker relaxations but, given a limited CPU time, the question is

to known whether the stronger adjustments brought by energetic reasoning compensate

or not the additional computation requirements. We have coded the algorithms in C++

and the results have been obtained on an Intel Code 2 Duo processor.

Instances have been generated according to the following framework. The resource

availability is set to P = 10. For each task, the required energy Ei has been generated

in U [1, 2.5 ∗ P ]. The minimum power Pmin
i is randomly generated in U [0, 0.25 ∗Ei] while

the maximum power Pmax
i follows distribution U [Pmin

i , 2 ∗ Pmin
i ]. Release dates reli are

generated in U [0, O.5∗n], due dates are generated in U [reli+⌈Ei/P
max
i ⌉, reli+⌈Ei/P

min
i ⌉+

n].

We present the results on a first set of 20 instances with 20 tasks each. Then, to test

how methods scale, we give the results on 9 instances with 25 tasks and 10 instances with

30 tasks.

In Table 4, we provide the results of two tree search methods on the 20 task instances,
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the first one with energetic reasoning feasibility tests and time-bound adjustments ap-

plied at each node, and the second one with fully leastic feasibility tests and time-bound

adjustments applied at each node. The obtained result (Solution found, No solution or

Time out), the CPU time in seconds, and the number of nodes in the search tree are

provided for each pair instance / method. CPU time has been limited to 400s.

Table 4: Compared results on EnSP instances with 20 tasks

Energetic reasoning Fully elastic

Instance Solution Time (s) #Nodes Solution Time (s) #Nodes

EnSP20_1 Solution Found 35 0.012 Solution Found 35 0.005

EnSP20_2 Solution Found 43 0.008 Solution Found 43 0.004

EnSP20_3 Solution Found 46 0.015 Solution Found 46 0.003

EnSP20_4 Solution Found 113 0.012 Solution Found 113 0.004

EnSP20_5 Solution Found 10153 0.194 Solution Found 394297 5.199

ENSP20_6 Solution Found 47 0.008 Solution Found 47 0.003

ENSP20_7 Time out - - Time out - -

ENSP20_8 Solution Found 32718 0.527 Solution Found 97015 1.347

ENSP20_9 Time out - - Time out - -

ENSP20_10 Time out - - Time out - -

ENSP20_11 No solution 1 0.001 No solution 1 0.002

ENSP20_12 No solution 1 0.003 Time out - -

ENSP20_13 Time out - - Time out - -

ENSP20_14 Time out - - Time out - -

ENSP20_15 Time out - - Time out - -

ENSP20_16 Solution Found 47 0.006 Solution Found 47 0.003

ENSP20_17 Solution Found 701031 15.053 Solution Found 9952721 124.689

ENSP20_18 Time out - - Time out - -

ENSP20_19 No solution 1 0.002 No solution 1 0.001

ENSP20_20 Time out - - Time out - -

The result show that the energetic reasoning-based method solves (finds a solution or

proves infeasibility) 12 instances out of 20 while the fully elastic-based method solves 11

instances. The fact that only a little more than half of the instances are solved underlines

the difficulty of the problem. On one instance (ENSP20_12) the enegetic reasoning was

able to prove infeasibility a the root node, while the fully-elastic method reaches the

time limit. On the easy instances (less than 115 nodes) the fully-elastic and the energy

23



reasoning-based methods obtain the same number of nodes but the fully elastic method is

faster (although these instances are solved by both methods in much less than one second).

However on the hard instances (more than 10000 nodes), the energetic reasoning-based

method obtains significantly smaller CP times (almost ten times faster for ENSP20_17).

Table 5 presents the results on the 25 and 30 task instances. These results corroborate

the ones obtained for the 20 task instances, except that a larger number of unsolved

instances is obtained. There is also an instance (ENSP25_4) proved infeasible at the root

node by energetic reasoning while the fully elastic rules deduces nothing. The required

CPU time for finding a solution is higly reduced by using energy reasoning on instance

ENSP25_7.

Table 5: Compared results on EnSP instances with 25 and 30 tasks

Energetic reasoning Fully elastic

Instance Solution Time (s) #Nodes Solution Time (s) #Nodes

EnSP25_1 Time out - - Time out - -

EnSP25_2 Time out - - Time out - -

EnSP25_3 Time out - - Time out - -

EnSP25_4 No solution 1 0.002 Time out - -

EnSP25_5 Solution Found 42 0.011 Solution Found 42 0.003

ENSP25_6 Solution Found 43 0.013 Solution Found 43 0.003

ENSP25_7 Solution Found 606928 13.907 Solution Found 3573285 58.076

ENSP25_8 Time out - - Time out - -

ENSP25_9 Time out - - Time out - -

ENSP30_1 Time out - - Time out - -

ENSP30_2 No solution 1 0.003 Time out - -

ENSP30_3 Time out - - Time out - -

ENSP30_4 Time out - - Time out - -

ENSP30_5 Time out - - Time out - -

ENSP30_6 Solution Found 36 0.014 Solution Found 47 0.005

ENSP30_7 Time out - - Time out - -

ENSP30_8 Time out - - Time out - -

ENSP30_9 Time out - - Time out - -

ENSP30_10 Solution Found 41 0.022 Solution Found 41 0.005

In conclusion, despite the problem difficulty, the results show generally the superiority
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of the approach incorporating energetic reasoning, both for the number of nodes and the

CPU time.

5 Conclusion – Future work

We presented the energy scheduling problem (EnSP), an extension of the cumulative

scheduling problem to represent energy requirements of activities. We showed this model

is well-adapted to a parallel machine scheduling industrial context with electric power

limitations. We proposed a two-step Integer/Constraint programming approach to solve

the industrial problem. This approach exhibited the need for a further refinement in

considering specifically the energy constraints. We proposed an extension of the standard

energetic reasoning scheme for the EnSP that was not covered by previous works on this

subject. Finally we draw the scheme of a tree search method based on dominance rules

and practical assumptions. Computational experiments illustrate the interest of energetic

reasoning.

Further work will consist in extending the computational experience in order to con-

solidate the way to parameterize the application of energetic reasoning in a solving pro-

cedure. One of our objectives would then be to integrate the proposed energy constraint

propagation reasoning in the industrial problem solving method.
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