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(nT) in a multi-period planning horizon and optimize the scheduling of tardy jobs. Three cell 

loading and job scheduling strategies are proposed to determine the optimal cell loads and job 

sequences. To do so, two mixed integer programming-based mathematical models were developed 

and utilized in the experimentation. Additionally, three types of due dates (tight, medium and 

loose) were used to study the impact of tightness of due times. To study the impact of capacity 

requirements, three different demand levels were considered. Finally, two tardy job assignment 

methods were proposed to observe the impact on the performance measure, nT. Case problems 

were solved based on the primary performance measure (nT) and secondary performance measures 

(maximum tardiness, Tmax and total tardiness, TT). Finally, a cost sensitivity analysis was also 

performed to observe the performance of the proposed cell loading and job scheduling strategies. 

Results indicated that, the first strategy, (early start allowance and tardy job assignment after each 

period) performed better in terms of nT. For the secondary objectives, tradeoffs were observed 

among different strategies depending on the type of due date, demand level and tardy job 

assignment method.  

Key words: Cellular manufacturing, number of tardy jobs, multi-period, cell loading, scheduling 

tardy jobs. 
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1. Introduction 

Group Technology and Cellular Manufacturing have been important paradigms in the last quarter 

century of manufacturing design, planning and operation efforts worldwide.  Group Technology 

(GT) is an approach used to identify products or parts with either similar design characteristics or 

similar manufacturing process routes and group them into product (part) families so as to increase 

the overall process similarity in manufacturing cells (Egilmez et al., 2011; Egilmez and Süer, 

2013). In this regard, cellular manufacturing (CM) has been developed as a new manufacturing 

philosophy to deal with higher product variety and mid to low demand volume and successfully 

implemented worldwide as an application of GT philosophy to produce high variety of products 

more efficiently based on single unit flow rule.  

Cellular manufacturing systems require two major decision making phases, namely: design (cell 

formation) and control (cell loading and scheduling) phases. Design phase deals with formation of 

product families and manufacturing cells, equipment and operator assignment problems (Egilmez 

and Süer, 2014). While design phase is completed as a result of more strategic and long term 

decision activity, control phase is more dynamic which requires short to mid-term operational and 

tactical level decisions. In addition to the strategic decisions associate with design phase, as a 

manufacturing control approach, cell loading and job scheduling has also been an integral part of 

CM in both industry and literature. Cell loading is the assignment of jobs to corresponding cells 

and job scheduling is the determining the sequence of jobs. While controlling a cellular 

manufacturing system where cell loading and job scheduling decisions are being made, several 

performance measures can be utilized depending on various factors such as assignment strategy, 

customer characteristics, due date, capacity requirements (Egilmez and Süer, 2013; Egilmez et al. 

2012).  

From internal manufacturing performance and external customer satisfaction performance, 

timelines in completing jobs is very critical in today’s world. And, scheduling has an integral 

impact on the implementation of tactical and operational decision within a manufacturing system. 

Depending on the performance measurement focus area, several metrics have been used in 

scheduling literature including minimizing the number of tardy or late jobs, total tardiness, the 

maximum tardiness and earliness, etc. Among them, minimizing the number of tardy jobs has been 

a topic of interests in both academia and industry applications, since individual customer 
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satisfaction is directly related with the number of customers and their corresponding orders’ 

delivery performance. In this regard, minimizing number of tardy jobs (nT) is one of the widely 

used performance measures in machine scheduling and cellular manufacturing system control. A 

job is classified as “tardy” when its completion time (ci) is greater than the due date (di); i.e. 

(ci>di). Since the customer expectations and delivery performance are strongly correlated in 

today’s highly competitive industrial world, companies have to satisfy their customers in terms of 

quality, cost and timeliness. In doing so, minimizing the number of tardy jobs is a significant 

performance measure for customer satisfaction (Egilmez and Suer, 2014). 

The majority of scheduling literature dealt with scheduling problems for a certain period of time 

where multiple jobs are optimally ordered to be processed on resource(s). However, multi-period 

environment is indeed a critical aspect of the scheduling problem since each period that is 

considered for the scheduling problem can have a delaying effect on the jobs’ schedule in the 

consecutive period. Therefore, in this study, the researchers addressed a cell loading and job 

scheduling problem is addressed in a multi-period environment. The primary objective is to 

minimize the number of tardy jobs in a cellular manufacturing system. Other performance 

measures, total tardiness and the maximum tardiness are also considered in the scope of study. The 

rest of paper is structured as follows. The related literature is provided in section 2. Section 3 

introduces the problem statement. The methodology is described in section 4. Experimental setup 

is explained in section 5. Results are discussed in section 6. Conclusion and future remarks are 

given in section 7. 

2. Literature Review 

A job can be assigned to one of the available cells unless job splitting is allowed. In this regard, 

cell loading is similar to the classic parallel machine scheduling problem (Süer, 1997). Therefore, 

literature review section is grouped into two as parallel machine scheduling and cell loading and 

job scheduling. 

2.1 Parallel Machine Scheduling: 

Parallel machine scheduling literature is abundant with works where various performance 

measures are considered including minimizing nT. Süer et al. (1993) developed an integer 

programming model and experimented with three heuristic procedures for minimizing nT 
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objective. In another work, Ho and Chang (1995) proposed two heuristic methods for minimizing 

nT objective in a parallel machine scheduling problem. Süer, Pico, and Santiago (1997) developed 

four mathematical models for the identical parallel machine scheduling problem to minimize nT 

when job splitting is allowed. Gupta, Ruiz-Torres, and Webster, (2003) studied hierarchical criteria 

identical parallel machine problem where nT is considered as the primary objective and minimum 

flow time is utilized as the secondary objective. As alternative approach, M’Hallah and Bulfin 

(2005) developed a branch and bound algorithm to minimize the weighted number of tardy jobs 

on identical and non-identical parallel machine systems. Several mathematical optimization-based 

and heuristic approaches have been proposed in the parallel machine scheduling literature. Some 

examples of the recent optimization approaches include uniform, unrelated and identical parallel 

machine systems with various objectives such as minimizing makespan, tardy jobs and additional 

parameters such as learning effect (e.g. Lee et al., (2012), Kaplan et al. (2013) Hsu et al. (2011), 

Chang et al. (2011), Vallada and Ruiz (2011), Lin et al. (2011), and Biskup (2008). 

2.2 Cell Loading & Job Sequencing: 

In spite of the similarity between cell loading and parallel machine scheduling, cell loading is 

different due to the involvement of part families with different processing requirements which 

makes cell loading task challenging due to the potential existence of cells that are not capable of 

processing all of the parts. Additionally, while processing times are used directly to build the 

schedules in parallel machine systems; in cell loading, first production rates are determined based 

on the routes and processing times information then cell loading and job sequencing tasks are 

performed (Süer, 1997). Greene and Sadowski (1983) argued pros and cons of utilizing cellular 

manufacturing systems. Süer (1997) developed two mixed integer mathematical models to 

minimize the number of tardy jobs in a multi-period environment. In another work, Süer and Bera 

(1998) developed an approach which simultaneously performs the cell loading and cell size 

determination in a labor intensive manufacturing system. Süer et al. (1999) presented 

manufacturing cell loading rules for multi-independent cells. Even though the cell loading and 

scheduling literature is not as abundant as it is in parallel machine scheduling, there are a few 

works published in recent years. For instance, Süer et al. (2013) proposed mathematical 

optimization and Genetic Algorithms to minimize the total tardiness in labor intensive 

manufacturing cells. In another work, Egilmez et al. (2014) focused on simultaneous manpower 
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allocation and cell loading. Additionally, integrated cellular design and control problem has also 

been recently addressed in the presence of probabilistic processing times and product demand 

(Egilmez and Süer, 2013). The most recent work addressed a stochastic mathematical optimization 

model for a set of cell loading and job scheduling problems in a single period environment 

(Egilmez and Süer, 2014). Even though, recent literature addressed interesting problems related to 

cellular design and control, multi-period environment has not been studied. Therefore, in this 

paper, minimizing the number of tardy jobs in a multi-period cellular manufacturing environment 

is studied and two mixed integer programming-based mathematical models are equipped with 

three cell loading and job scheduling strategies. 

3. Problem Definition 

A thermo-siphon body manufacturing system is taken as the case study for the problem. The 

manufacturing process consists of forming, welding and leak test. There are two identical and self-

sufficient cells equipped to perform all operations for all jobs. A four-period horizon has been 

considered for experimentation where each planning period consists of one week with 40 hours of 

capacity, thus having a total production capacity of 80 hours per week. Each job is considered to 

have its own due date. There are seven products with varying unit processing times exist in 

manufacturing system.  

4. Methodology 

In an earlier work, Süer (1997) developed two mathematical models to minimize the number of 

tardy jobs in a multi-period time horizon. This study introduces, three heuristic cell loading and 

job sequencing strategies to optimize the job sequences in cells and assignment of tardy jobs. The 

first mathematical model minimizes nT for all periods by allowing early start of jobs. On the other 

hand, the second mathematical model is used to minimize nT when early start is not allowed. In 

this case, early start allows utilizing available capacity of previous period. In fact, the two 

mathematical models can be useful in different production planning systems. For example, in a 

manufacturing system where equipment and people utilization is very critical and due dates are 

very tight, it would be desirable to process the jobs earlier than needed if resources are available. 

On the other hand, in a Just in Time (JIT) environment, the timeliness of the production is more 

critical and inventory carrying is not desired. 
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4.1. Basic Information about the Proposed Models 

Both mathematical models are mixed integer programming models. Prior to experimentation, all 

jobs are sorted by Earliest Due Date (EDD) thus obtaining d[1] ≤ d[2] ≤ d[3] ≤ ……≤ d[n]. The 

notation and formulation of models are given as follows. 

Notation 

n number of jobs 

m number of cells 

d[i] due date of the job in the ith order 

P[i]t  processing time of the job in the ith order in period t 

X[i]j 1 if the job in the ith order is assigned to cell j  

 0 otherwise 

CA Capacity available per cell per period 

T The number of periods 

 
Indices 

i Job index 

j Cell index 

t Period index 

 
The following assumptions are made in both mathematical models: 

 
i) A job can be assigned to only one cell. 

ii) Each job is equally important. 

iii) Cells are identical and independent. 

iv) Each cell is capable of producing all jobs. 

v) Overtime is not allowed. 

vi) Customers accept late delivery (no lost sales) 

 

4.2. Mathematical Model 1: Early Start is Allowed 

The objective of this mathematical model is to maximize the number of early jobs which is 

equivalent to minimizing the number of tardy jobs. The objective function is shown in Equation 

(1). The first constraint forces early jobs to be completed by their due date as shown in Equation 



8 
 

(2). The second constraint (Equation 3) limits the assignment of a job to at most one cell. The 

decision variable takes only binary values as 0 or 1 which reflects the assignment of a job to a cell. 

Objective function:  
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X[i]jt ∈  (0, 1) for all i, j and t.  
 
4.3. Mathematical Model 2: Early Start is not Allowed 

In this model, jobs are not allowed to start early, which means every job is scheduled to the period 

they are due. The objective function is the same as in mathematical model 1, minimizing the 

number of tardy jobs. The first constraint in the previous mathematical model is modified to fit to 

this problem (Equation 4). A parameter, CA, is defined to denote the capacity available in a period 

which actually blocks the early start of jobs. All other constraints and assumptions are kept the 

same as in the previous mathematical model. 

Subject to: 

∑∑
= =

≤+−
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t
tkjti
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i
ti dXICA t

1
][][

1
][ }{)1(   k = 1, 2, 3,…, n     (4) 
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4.4. Tardy Job Assignment Strategies  

Minimizing the number of tardy jobs in a cellular manufacturing system is vital from the customer 

satisfaction and manufacturing system control performance perspectives. However, assignment of 

tardy jobs is another crucial task and is rarely addressed in scheduling and cellular control 
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literatures. Once the early jobs are scheduled to their corresponding cells, the next task is the 

assignment of tardy jobs. Three strategies are proposed to deal with this phase of the problem. 

Strategy A: Early start is allowed and tardy jobs are added at the end of the period they were due. 

In this strategy, cells are loaded and job sequence is obtained based on “early start allowed” 

strategy. Early start allows processing a job in an earlier period. The tardy jobs are assigned after 

the last early job in the same period they were due.  

Strategy B: Early start is allowed and tardy jobs are added at the end of planning horizon. In this 

strategy, early start approach is kept as the same as the previous strategy. However, the assignment 

of tardy jobs is different. Tardy jobs are added after the entire planning horizon, which is the 4th 

period in this study. 

Strategy C: Early start is not allowed and tardy jobs are added at the end of the period they were 

due. In this strategy, early start is not allowed and mathematical model 2 is used to minimize the 

number of tardy jobs. The assignment of tardy jobs is performed using Strategy A. 

Allowing of early start means that as long as capacity is available (current load is less than 40 

hours for one cell), following periods’ jobs can be processed in advance. On the other hand, if 

early start is not allowed, a job can only be processed in the period it is due. Mathematical model 

1 is used along with Strategy A and Strategy B. Mathematical model 2 is used for Strategy C. 

These strategies are illustrated Figure 1. Two rules are used to include the tardy jobs in the 

schedule, namely Earliest Due Date (EDD) and Shortest Processing Time (SPT).  

4.5. A Numerical Example for the Strategies A, B and C 

A 9-job numerical example is used to illustrate the methodology. The batch production times and 

due dates of the jobs in periods P1, P2, P3 and P4 are shown in Table 1. 
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Table 1: Example problem 

Job Due Date Batch Production Time 
Period  

1 
Period  

2 
Period  

3 
Period  

4 
Period  

1 
Period  

2 
Period  

3 
Period  

4 
1 12 14 13 12 12 14 13 12 
2 6 8 10 8 3 4 5 4 
3 14 14 12 12 7 7 6 6 
4 10 6 6 8 5 3 3 4 
5 12 18 15 12 4 6 5 4 
6 6 4 6 8 3 2 3 4 
7 8 10 8 9 8 10 8 9 
8 10 10 10 10 5 5 5 5 
9 20 24 20 24 5 6 5 6 

 

Figure 1. The illustration of three strategies 

    

 

    

Period 1 Period 2 Period 3 Period 4 

Period 1 Period 2 Period 3 Period 4 

    

 

Period 1 Period 2 Period 3 Period 4 

STRATEGY - A 

STRATEGY - B 

STRATEGY - C 

Tardy jobs 

Early jobs 
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Solution with Strategy A: In this strategy, mathematical model 1 is used to solve the problem and 

the results are summarized in Table 2. Tardy jobs were added to the schedule after the period they 

were due. Tardy jobs are identified; Tmax and TT values are also computed.  

Table 2: Results of Strategy A for the Example Problem 

Period Period 1 Period 2 Period 3 Period 4 

CELL1 4 8 9 2 1 9 
   

4 6 2 8 3 1 5 9 
 

2 4 6 7 8 1 3 5 9 
CELL2 2 6 3 6 4 7 8 3 5 7 

     
 

           

TARDY 1 5 7 
            

 
           

nT 3 0  0 0 

∑nT 3 
            

 
          

Tmax 25 
            

 
          

TT 63 
            

 
          

 

Solution with Strategy B: In this strategy, mathematical model 1 was used to optimize the number 

of tardy jobs. The tardy jobs are added at the end of planning horizon and the results are shown in 

Table 3. 

Table 3: Results of Strategy B for the Example Problem 

Periods Period 1 Period 2 Period 3 Period 4 

Cell 1- 
Early Jobs 

4 8 9 1 2 9       1 2 3 4 5 6 8 9 1 2 3 4 5 6 7 8 9 

Cell 2- 
Early 
Jobs 

2 3 6 3 4 5 6 7 8                                   

Tardy 
Jobs 

1 5 7 `                                              

nT 3  0 0 0 
∑nT 3 

                       

Tmax 66 
                       

TT 182 
                       

Solution with Strategy C: Mathematical model 2 is used since early start is not allowed in this 

strategy. The results are shown in Table 4. 
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Table 4: Results of Strategy C for the Example Problem 

Period 
 

Period 1 Period 2 Period 3 Period 4 
Cell 1- Early jobs 

 
3 8     4 5 8 9 3 4 6 9 2 3     

Cell 2- Early jobs 
 

2 4 5 9 2 3 6   2 5 8   4 5 9   
Tardy jobs 

 
1 6 7   1 7     1 7     1 6 7 8 

nT 
 

3 2 2 4 
∑nT 11 

               

Tmax 20 
               

Total Tardiness 144 
               

 

5. Experimentation 

The experimentation includes two sections as the initial data generation and the experimentation. 

It is carried out on a computer with 2-Gb memory and 1.7- Ghz dual core processor. 

5.1. Data Generation 

The processing times and due dates of jobs are generated randomly. Customer orders are generated 

for each period. Lot size (order quantities) for each job is generated from uniform distributions as 

shown in Table 5. Each product has a unit processing time as given in Table 6. According to table 

1, products 1,2,3,4 and 5 used in 60 %, products 3,4,5 and 6 used in 80 % and products 4,5,6 and 

7 used in 100 % capacity requirement level data generation. Capacity requirements for 25 jobs are 

generated from multiplying products’ unit processing times and lot sizes. Capacity requirements 

are used as throughput times in cell loading and job sequencing. Job processing times are 

calculated by multiplying lot sizes and unit process times. Additionally, due dates are generated 

from uniform distributions as shown in Table 7. 

Table 5: Statistical distributions used in data generation 

Capacity  
Requirement  

Lot sizes for each job 
ordered 

Unit Process Times (Hrs) Products Used In 
Generation 

60% Uniform Dist. (10, 30) Uniform Dist. (0.07, 0.1) Products 1,2,3,4,5 
80% Uniform Dist. (15, 35) Uniform Dist. (0.09, 0.11) Products 3,4,5,6 
100% Uniform Dist. (25, 35) Uniform Dist. (0.1, 0.12) Products 4,5,6,7 
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Table 6: Unit processing times 

Product Unit Process Time (Hrs) 
1 0.07 
2 0.08 
3 0.09 
4 0.1 
5 0.1 
6 0.11 
7 0.12 

 

Table 7: Distribution parameters used in due date generation 

Due Date Type Distribution Used (Hrs) 
Tight Uniform(0, 17) 

Medium Uniform(10, 27) 
Loose Uniform(20, 37) 

5.2. Experimentation 

Twenty seven cases are experimented with that includes three strategies (Strategies A, B and C), 

three types of due dates (tight, medium and loose) and three capacity requirement levels (60%, 

80% and 100% of the system capacity) are experimented. Mathematical models are solved by 

using ILOG-OPL CPLEX optimization software. Earliest Due Date (EDD) and Shortest 

Processing Time (SPT) rules are used to schedule tardy jobs.  

6. Results 

The consolidated results are shown in Table 8. The results are grouped in four sections; comparison 

of strategies, comparison of due dates, comparison of demand levels, and comparison of 

scheduling rules for tardy jobs.   

6.1. Analysis of results based on the selected performance measures: nT, TT, Tmax 

In this section, the results are discussed considering the selected performance measures 

individually. The comparative discussions are made based on the proposed three cell loading and 

job sequencing strategies, the impacts of due dates, demand levels and tardy job assignment 

strategies as follows. 
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Table 8: Results of the Experimentation 
 

Strateg
y 
A Strategy 

Due 
Date 
Type 

Periods 
Tota

l EDD SPT EDD SPT 
1 2 3 4 nT Tmax TT 

60% 

ES IS 
ALLOWE

D 

TIGHT 6 0 0 0 6 40.95 44.45 235.83 234.46 
MEDIU
M 0 0 0 0 0 0 0 0 0 
LOOSE 0 0 0 0 0 0 0 0 0 

80% 

ES IS 
ALLOWE

D 

TIGHT 9 0 0 0 9 
112.7

8 
122.9

7 958.02 953.19 
MEDIU
M 1 0 0 0 1 97.58 97.58 97.58 97.58 
LOOSE 0 0 0 0 0 0 0 0 0 

100% 

ES IS 
ALLOWE

D 

TIGHT 
1
3 0 0 0 13 141.6 

147.8
6 963.92 949.49 

MEDIU
M 5 0 0 0 5 136.3 

141.5
1 667.47 667.1 

LOOSE 6 0 0 0 6 
122.4

6 
126.9

2 722.48 722.16 
   
Strateg

y 
B Strategy 

Due 
Date 
Type 

Periods 
Tota

l EDD SPT EDD SPT 
1 2 3 4 nT Tmax TT 

60% 

ES IS 
ALLOWE

D 

TIGHT 6 0 0 0 6 15.67 18.23 79.2 78.37 
MEDIU
M 0 0 0 0 0 0 0 0 0 
LOOSE 0 0 0 0 0 0 0 0 0 

80% 

ES IS 
ALLOWE

D 

TIGHT 9 8 5 3 22 17.54 26.56 227.97 231.57 
MEDIU
M 1 0 0 0 1 19.4 19.4 19.4 19.4 
LOOSE 0 0 0 0 0 0 0 0 0 

100% 

ES IS 
ALLOWE

D 

TIGHT 
1
3 

2
2 

2
2 

2
1 57 

102.4
9 

102.5
6 

1056.0
3 

1051.1
4 

MEDIU
M 5 9 

1
1 

1
0 25 17.29 24.8 213 212.53 

LOOSE 6 6 5 1 17 11.02 11.04 90.45 93.39 
   
Strateg

y 
C Strategy 

Due 
Date 
Type 

Periods 
Tota

l EDD SPT EDD SPT 
1 2 3 4 nT Tmax TT 

60% 

ES IS NOT 
ALLOWE

D 

TIGHT 6 6 7 6 25 17.15 19.96 349.12 344.78 
MEDIU
M 0 0 0 0 0 0 0 0 0 
LOOSE 0 0 0 0 0 0 0 0 0 

80% TIGHT 9 7 
1
1 9 36 22.97 28.26 623.23 610.97 
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ES IS NOT 
ALLOWE

D 

MEDIU
M 1 3 4 1 9 32.6 32.6 144.59 143.65 
LOOSE 0 0 0 0 0 0 0 0 0 

100% 

ES IS NOT 
ALLOWE

D 

TIGHT 
1
2 

1
1 

1
2 

1
3 48 28.07 34.05 970.58 981.85 

MEDIU
M 4 5 5 4 18 17.22 20.42 235.27 222.68 
LOOSE 5 1 2 2 10 14.1 14.1 47.08 42.3 

 

6.1.1. Comparison of the proposed three cell loading and job sequencing strategies 

Based on the objective of minimizing nT, strategy A provided the best solution for all demand 

levels and types of due dates. In terms of Tmax, strategy B provided the best solutions for all due 

dates and for 60 % and 80 % demand levels. In the case of 100 % demand level, there is a tradeoff 

observed between strategy A and B in terms of the type of due date. Additionally, EDD strategy 

worked slightly better than SPT in all cases. In terms of TT, there is no dominant strategy observed. 

Tradeoff occurs among strategies depending on the type of due date, demand level and tardy job 

assignment strategy. For example, strategy B is dominating others in 60 % demand level for the 

tight due date. On the other hand, strategy A is dominating others in 100 % demand level and tight 

due date. 

6.1.2. Due date-based comparison 

Results based on the type of due date revealed interesting conclusions about the performance of 

the proposed strategies. For instance, when due dates are tight, strategy A is the dominant in terms 

of nT (equivalency with strategy B is occurred in 60 % demand level). On the other hand, strategy 

B is observed as the dominant in terms of Tmax for 60 % and 80 % demand levels for the tight 

due dates. Strategy C is observed as the best strategy only for the 100 % demand level case. 

In terms of medium due dates, strategy A is found to be the dominant strategy for minimizing nT 

objective (equivalency with strategy B is occurred in 60 % and 80 % demand levels). Besides, 

both of the strategies B and C worked better than A in terms of Tmax and there is no dominant 

strategy observed in this case. For the TT objective, strategy B is dominating other strategies for 

all demand levels and assignment strategies.In loose due date category, positive number of tardy 

jobs observed only in 100 % demand levels. In terms of nT, strategy A is dominating other 
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strategies. For the Tmax, strategy B is dominating other strategies and in terms of TT, strategy C 

is found as the dominant strategy compared to other strategies. 

6.1.3. Demand level based comparison 

Demand level has significant impact on system performance in terms of capacity requirements. 

Results indicated that when demand level is 60 % and 80 %; both of the strategies A and B are 

dominating C in terms of minimizing nT. For the same demand levels, strategy B is dominating 

others in terms of Tmax and TT. When demand level is 100 %, strategy A is dominating others in 

terms of nT and both strategies B and C are dominating A in terms of Tmax. However, there is no 

dominant strategy among B and C. All in all, there is no dominant strategy observed in terms of 

TT. In terms of the impact of due date, strategy A worked slightly better with tight due dates. On 

the other hand, strategy B worked slightly better with medium due dates and strategy C worked 

slightly better with loose due dates. 

6.1.4. Tardy job assignment strategy-based comparison 

In terms of tardy job assignment strategy, the impacts are evaluated based on the secondary 

performance measures (Tmax and TT). In terms of Tmax, EDD performed slightly better than SPT 

for all strategies. On the other hand, for the TT objective, SPT performed slightly better than EDD 

for strategy A. No dominance is observed for the strategies B and C. 

6.2. Cost-based Result Analysis 

In this section a cost-based result analysis approach is utilized to compare the cell loading 

strategies performance as cost sensitivity graphs. The total cost function was defined as the 

combination of total earliness and total tardiness costs. Since there is a tradeoff between total 

earliness and total tardiness costs, the results are compared via cost sensitivity analysis. Cost 

sensitivity analysis is made based on a cost scale as shown in Table 9. Cost sensitivity of tardiness 

and earliness made with keeping each other’s cost as constant value of $20. The results of cost-

based comparison are shown in Figure 8. The vertical axis show the total cost based on the 

combination of the earliness and the tardiness costs shown in horizontal axis in the graphs, in 

Figure 2.  

Table 9: Cost Sensitivity Scale 
 

  Earliness  Tardiness 
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Cost Scale  1 2 3 4 5 
 

1 2 3 4 5 
Earliness Cost  $    1 $    5 $  10 $  20 $  50 $  20 $  20 $  20 $  20 $  20 
Tardiness Cost  $  20 $  20 $  20 $  20 $  20 $    1 $    5 $  10 $  20 $  50 

 
According to Figure 2, both strategies B and C are less sensitive than strategy A to varying 

earliness and tardiness cost in all capacity levels and due dates in terms of total cost. In all due 

dates, strategy C is less sensitive than strategy B in lower capacity levels. However, in 100 % 

capacity level, strategy B is the least sensitive to varying cost. Strategy A provided the greatest 

total cost values in all capacity level and due date combinations. The total cost increases for all 

strategies as capacity level increases. In conclusion, strategy A, in other words, planning with 

allowing early start and assigning tardy jobs after the entire period is a good strategy when capacity 

levels are higher than 80 %. On the other hand, strategy C, planning without allowing  
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early start and assigning tardy jobs after the related period is a good strategy when capacity levels 

are lower than 80 %. 

7. Conclusions and Future Remarks 

A multi-period cell loading problem on a thermo siphon manufacturing company is studied. Two 

mathematical models (proposed by Suer et al. 1996) are used to minimize the number of tardy jobs 

in a multi-cell and multi-period environment. The first mathematical model is used to minimize 

nT for all periods by allowing early start of jobs and the second mathematical model is used to 

minimize nT when early start is not allowed. After the optimal cell loads and job sequences are 

obtained, two different assignment strategies were used to schedule tardy jobs in multi-period 

environment.  

Three different strategies (A, B and C) were proposed to deal with scheduling of tardy jobs. In the 

first strategy, the number of tardy jobs was minimized for all periods, in other words early start of 

a job is allowed and tardy jobs were assigned after the entire period (the 4th period). In the second 

strategy, the number of tardy jobs was minimized for each and every period separately, early start 

of a job was not allowed and tardy jobs were added after the related period. In the third strategy, 

tardy jobs were minimized for each and every period separately, early start of a job was not allowed 

and tardy jobs were added after the entire planning horizon (the 4th period). 

The three strategies were experimented with mathematical models and the Gantt charts are drawn 

with respect to the results. Based on the obtained optimal schedules, Tmax and TT values are 

calculated. According to the results of the experimentation, strategy A provided best solution for 

nT in all cases. However, there is no dominant strategy observed for the objectives Tmax and TT. 

In other words, depending on the type of due date and demand level, the best strategy is varied. 

EDD is seemed as slightly better tardy job assignment strategy than SPT based on the objective of 

Tmax, tradeoff is occurred with TT. In terms of cost-based comparison, strategy A is found to be 

the most sensitive strategy to a change in tardiness cost. Allowance of early start is less costly for 

80% or higher capacity utilization levels. For the remaining capacity levels, strategy C provided 

the least cost.  

In conclusion, there is no unique strategy found which works best in all situations. Based on the 

planning strategy, whether it’s forward or backward planning, early start allowance can be applied. 
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If a forward planning strategy is in use, early start should be allowed in planning as long as the 

BOM of the corresponding product does not prevent an early start or a there is a supplier restriction. 

Moreover, smaller number of tardy jobs with higher maximum tardiness and total tardiness values 

were obtained from strategy A. In the other strategies, greater number of tardy jobs with lower 

maximum tardiness and total tardiness were obtained with strategy B and C. Therefore, the 

comparison of results is strongly dependent on the scheduler’s viewpoint whether less backorder 

with higher tardiness or more backorders with lower tardiness is preferred. In this case, it is 

strongly believed that customer profiles might have a crucial impact on the planning which is not 

studied in this paper. The problem studied can be extended with customer profiles which have 

different preference among the number of tardy jobs, maximum tardiness and total tardiness as a 

future work. 
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