14,069 research outputs found

    Domain-specific textual meta-modelling languages for model driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-31491-9_20Proceedings of 8th European Conference, ECMFA 2012, Kgs. Lyngby, Denmark, July 2-5, 2012Domain-specific modelling languages are normally defined through general-purpose meta-modelling languages like the MOF. While this is satisfactory for many Model-Driven Engineering (MDE) projects, several researchers have identified the need for domain-specific meta-modelling (DSMM) languages providing customised meta-modelling primitives aimed at the definition of modelling languages in a specific domain, as well as the construction of meta-model families. In this paper, we discuss the potential of multi-level meta-modelling for the systematic engineering of DSMM architectures. For this purpose, we present: (i) several primitives and techniques to control the meta-modelling facilities offered to the users of the DSMM languages, (ii) a flexible approach to define textual concrete syntaxes for DSMM languages, (iii) extensions to model management languages enabling the practical use of DSMM in MDE, and (iv) an implementation of these ideas in the metaDepth tool.This work was funded by the Spanish Ministry of Economy and Competitivity (project “Go Lite” TIN2011-24139) and the R&D programme of the Madrid Region (project “e-Madrid” S2009/TIC-1650

    Example-driven meta-model development

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-013-0392-yThe intensive use of models in model-driven engineering (MDE) raises the need to develop meta-models with different aims, such as the construction of textual and visual modelling languages and the specification of source and target ends of model-to-model transformations. While domain experts have the knowledge about the concepts of the domain, they usually lack the skills to build meta-models. Moreover, meta-models typically need to be tailored according to their future usage and specific implementation platform, which demands knowledge available only to engineers with great expertise in specific MDE platforms. These issues hinder a wider adoption of MDE both by domain experts and software engineers. In order to alleviate this situation, we propose an interactive, iterative approach to meta-model construction, enabling the specification of example model fragments by domain experts, with the possibility of using informal drawing tools like Dia or yED. These fragments can be annotated with hints about the intention or needs for certain elements. A meta-model is then automatically induced, which can be refactored in an interactive way, and then compiled into an implementation meta-model using profiles and patterns for different platforms and purposes. Our approach includes the use of a virtual assistant, which provides suggestions for improving the meta-model based on well-known refactorings, and a validation mode, enabling the validation of the meta-model by means of examples.This work has been funded by the Spanish Ministry of Economy and Competitivity with project “Go Lite” (TIN2011-24139), and by the R&D programme of Madrid Region with project “eMadrid” (S2009/TIC-1650)

    Bottom-up meta-modelling: An interactive approach

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-33666-9_2Proceedings of 15th International Conference, MODELS 2012, Innsbruck, Austria, September 30–October 5, 2012The intensive use of models in Model-Driven Engineering (MDE) raises the need to develop meta-models with different aims, like the construction of textual and visual modelling languages and the specification of source and target ends of model-to-model transformations. While domain experts have the knowledge about the concepts of the domain, they usually lack the skills to build meta-models. These should be tailored according to their future usage and specific implementation platform, which demands knowledge available only to engineers with great expertise in MDE platforms. These issues hinder a wider adoption of MDE both by domain experts and software engineers. In order to alleviate this situation we propose an interactive, iterative approach to meta-model construction enabling the specification of model fragments by domain experts, with the possibility of using informal drawing tools like Dia. These fragments can be annotated with hints about the intention or needs for certain elements. A meta-model is automatically induced, which can be refactored in an interactive way, and then compiled into an implementation meta-model using profiles and patterns for different platforms and purposes.This work was funded by the Spanish Ministry of Economy and Competitivity (project “Go Lite” TIN2011-24139) and the R&D programme of the Madrid Region (project “e-Madrid” S2009/TIC-1650

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services
    corecore