6,995 research outputs found

    District heating network maintenance planning optimization

    Get PDF
    To ensure the correct functioning of district heating networks and minimize critical failures, utilities allocate every year a significant part of their budget to maintenance operations. In the present work we describe a risk-based approach implemented to tackle the problem of designing optimal multi-year maintenance campaigns, applied to the Italian city of Brescia, showing how data-driven techniques can help decision makers assess the long terms impacts of budget allocations

    Ensemble decision tree models using RUSBoost for estimating risk of iron failure in drinking water distribution systems

    Get PDF
    Safe, trusted drinking water is fundamental to society. Discolouration is a key aesthetic indicator visible to customers. Investigations to understand discolouration and iron failures in water supply systems require assessment of large quantities of disparate, inconsistent, multidimensional data from multiple corporate systems. A comprehensive data matrix was assembled for a seven year period across the whole of a UK water company (serving three million people). From this a novel data driven tool for assessment of iron risk was developed based on a yearly update and ranking procedure, for a subset of the best quality data. To avoid a ‘black box’ output, and provide an element of explanatory (human readable) interpretation, classification decision trees were utilised. Due to the very limited number of iron failures, results from many weak learners were melded into one high-quality ensemble predictor using the RUSBoost algorithm which is designed for class imbalance. Results, exploring simplicity vs predictive power, indicate enough discrimination between variable relationships in the matrix to produce ensemble decision tree classification models with good accuracy for iron failure estimation at District Management Area (DMA) scale. Two model variants were explored: ‘Nowcast’ (situation at end of calendar year) and ‘Futurecast’ (predict end of next year situation from this year’s data). The Nowcast 2014 model achieved 100% True Positive Rate (TPR) and 95.3% True Negative Rate (TNR), with 3.3% of DMAs classified High Risk for un-sampled instances. The Futurecast 2014 achieved 60.5% TPR and 75.9% TNR, with 25.7% of DMAs classified High Risk for un-sampled instances. The output can be used to focus preventive measures to improve iron compliance

    AI Knowledge Transfer from the University to Society

    Get PDF
    AI Knowledge Transfer from the University to Society: Applications in High-Impact Sectors brings together examples from the "Innovative Ecosystem with Artificial Intelligence for Andalusia 2025" project at the University of Seville, a series of sub-projects composed of research groups and different institutions or companies that explore the use of Artificial Intelligence in a variety of high-impact sectors to lead innovation and assist in decision-making. Key Features Includes chapters on health and social welfare, transportation, digital economy, energy efficiency and sustainability, agro-industry, and tourism Great diversity of authors, expert in varied sectors, belonging to powerful research groups from the University of Seville with proven experience in the transfer of knowledge to the productive sector and agents attached to the Andalucía TECH Campu

    Models and explanatory variables in modelling failure for drinking water pipes to support asset management: a mixed literature review

    Get PDF
    There is an increasing demand to enhance infrastructure asset management within the drinking water sector. A key factor for achieving this is improving the accuracy of pipe failure prediction models. Machine learning-based models have emerged as a powerful tool in enhancing the predictive capabilities of water distribution network models. Extensive research has been conducted to explore the role of explanatory variables in optimizing model outputs. However, the underlying mechanisms of incorporating explanatory variable data into the models still need to be better understood. This review aims to expand our understanding of explanatory variables and their relationship with existing models through a comprehensive investigation of the explanatory variables employed in models over the past 15 years. The review underscores the importance of obtaining a substantial and reliable dataset directly from Water Utilities databases. Only with a sizeable dataset containing high-quality data can we better understand how all the variables interact, a crucial prerequisite before assessing the performance of pipe failure rate prediction models.EF-O acknowledges the financial support provided by the “Agencia de Gestió d’Ajust Universitaris I de Recerca” (https:// agaur. gencat. cat/ en/) through the Industrial Doctorate Plan of the Secretariat for Universities and Research of the Department of Business and Knowledge of the Government of Catalonia, under the Grant DI 093-2021. Additionally, EF-O appreciates the economic support received from the Water Utility Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua.Peer ReviewedPostprint (published version

    Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system

    Get PDF
    The reliability of the water distribution system is critical to maintaining a secure supply for the population, industry and agriculture, so there is a need for proactive maintenance to help reduce water loss and down times. Bayesian networks are one approach to modelling the complexity of water mains, to assist water utility companies in planning maintenance. This paper compares and analyses how accurately the Bayesian network structure can be derived given a large and highly variable dataset. Method one involved using automated learning algorithms to build the Bayesian network, while method two involved a guided method using a combination of historic failure data, prior knowledge and pre-modelling data exploration of the water mains. By understanding common failure types (circumferential, longitudinal, pinhole and joint), the guided learning Bayesian Network was able to capture the interactions of the surrounding soil environment with the physical properties of pipes. The Bayesian network built using data exploration and literature was able to achieve an overall accuracy of 81.2% when predicting the specific type of water mains failure compared to the 84.4% for the automated method. The slightly greater accuracy from the automated method was traded for a sparser Bayes net where the interpretation of the interactions between the variables was clearer and more meaningful
    corecore