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Abstract
There is an increasing demand to enhance infrastructure asset management within the drinking water sector. A key factor for 
achieving this is improving the accuracy of pipe failure prediction models. Machine learning-based models have emerged as 
a powerful tool in enhancing the predictive capabilities of water distribution network models. Extensive research has been 
conducted to explore the role of explanatory variables in optimizing model outputs. However, the underlying mechanisms 
of incorporating explanatory variable data into the models still need to be better understood. This review aims to expand our 
understanding of explanatory variables and their relationship with existing models through a comprehensive investigation of 
the explanatory variables employed in models over the past 15 years. The review underscores the importance of obtaining a 
substantial and reliable dataset directly from Water Utilities databases. Only with a sizeable dataset containing high-quality 
data can we better understand how all the variables interact, a crucial prerequisite before assessing the performance of pipe 
failure rate prediction models.

Keywords Water distribution · Water network · Water pipeline failure · Infrastructure asset management · Pipe burst rate 
prediction · Pipe renewal

Introduction

Asset management and its relationship with water 
infrastructure modelling

Significant investments are necessary for the construction, 
management, and maintenance of water supply and distri-
bution network (WSDN) infrastructure to ensure access to 
drinking water that meets the required standards in terms of 
quality and quantity for the population. These investments 
introduce an additional layer of complexity, encompass-
ing various technical, economic, social, and environmental 
aspects within the system (Sitzenfrei et al. 2020; Kerwin 
and Adey 2021; Meijer et al. 2021). The foreseen deadlines 
for the components' end-of-life in WSDNs underscore the 
imperative for enhanced planning and efficient resource 
allocation to mitigate service level deterioration and infra-
structure conditions. These concerns carry significant global 
implications, threatening the overall quality of provided ser-
vices (Zamenian et al. 2017; Bello et al. 2019; Curt et al. 
2019; Vieira et al. 2020).
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The repercussions of WSDN deterioration processes, 
including pipe breaks, water losses, substandard service 
delivery, compromised water supply quality, and escalating 
operational and maintenance expenses, are well-documented 
(Bello et al. 2019). Water distribution pipes play a crucial 
role in water supply and distribution systems, and their fail-
ures have significant financial, social, and environmental 
ramifications (Fan et al. 2021). The pipe replacement rate 
by drinking water companies ranges from 0.5 to 4.8% per 
year, exemplified by the average annual renewal of 0.67% of 
the network length in the case of France (Office Français de 
la Biodiversité 2022). In comparison, the USA exhibits an 
average rate ranging from 1 to 4.8%, representing a one-time 
renewal rate. Consequently, it would take approximately 
20 to 200 years to renew the current water infrastructures 
worldwide fully. Table 1 summarizes the infrastructure and 
renewal rates, water losses, leakage, and non-revenue water 
in various countries' WSDNs. The deterioration of pipelines 
significantly impacts WSDNs globally, evident in metrics 
such as water losses and the associated costs, insufficient 
network renewal results in deteriorating pipeline conditions 
and increased system failures.

The challenges posed by water infrastructure necessitate 
a resilient and interdisciplinary approach to implementing 
an asset management system. Such a system encompasses a 
cohesive network of elements within an organization, defin-
ing the asset management policy, establishing asset manage-
ment objectives, and formulating the necessary processes to 
achieve these objectives (ISO/TC 251 2014).

Asset management systems are intricately linked to water 
infrastructure management, operating within the framework 
of Infrastructure Asset Management (IAM). IAM encom-
passes essential activities geared towards optimizing service 
delivery, including inventorying, monitoring, maintenance, 
and renovation. This holistic approach seamlessly integrates 
engineering and management sciences, aligning technical 
aspects with usage, perception, and value considerations. 
Such integration enhances informed decision-making and 
facilitates the development of efficient management strate-
gies. By intertwining engineering sciences with management 
disciplines, IAM is pivotal for Water Utilities in ensuring 
the long-term maintenance and adaptability of water infra-
structure, effectively addressing ageing and potential obso-
lescence (Le Gat et al. 2023).

Modelling and optimization in the operation of structures, 
coupled with probabilistic modelling of structural deteriora-
tion (performance failure), represent significant and forward-
looking trends as underscored by Le Gat et al. (2023), shap-
ing the strategic objectives of Water Infrastructure Asset 
Management (WIAM). These trends align with the findings 
of other prominent authors who have extensively researched 
IAM. Notable researchers in recent years include Ugarelli 
and Sægrov (2022), Okwori et al. (2021), Pathirana et al. 
(2021), El-Diraby (2021), Mazumder et al. (2021), Beuken 
et al. (2020), Curt et al. (2019), and Carriço et al. (2020), 
among others in recent years. These researchers note the 
adaptation of WIAM frameworks to embrace digitization 
and the implementation of modelling in diverse domains, 

Table 1  Status of WSDNs at the national level in terms of infrastructure and renewal rates, water losses and leakage, and non-revenue water

Year Country Status of WSDN Source

2021 USA By 2019, Water utilities replaced between 1 and 4.8% of their pipelines per 
year on average, a replacement rate that matches water pipes’ lifecycle

ASCE (2022)

2021 Portugal 28.7% of the total water in the distribution system is non-revenue water, with 
actual water losses of 174 million  m3 of water/year

ERSAR (2021)

2020 Spain The overall network renewal rate is 0.43%, and over 27% of the pipeline is 
more than 40 years old

AEAS (2021)

2020 The UK Almost 1095 million  m3 of water (20% of the total water supply) are lost daily 
due to leaks

National Audit Office (2020)

2020 USA, Canada, and Mexico In North America, the total cost of water losses due to pipe breaks is estimated 
at USD 3.8 billion per year

Snider and McBean (2020)

2020 Canada There are over 6000 km of water pipelines in Toronto, 13% are between 80 
and 100 years old, and 11% are over 100 years old

El-Diraby (2021)

2019 China According to the National Bureau of Statistics of China, in 2019, some cities 
had water leakage rates higher than 40%

Liu et al. (2022)

2019 Canada 17,788 km (9.6%) of the pipelines were in poor/deplorable condition, and 
32,641 km (17.7%) were in fair condition

CIRC (2019)

2019 USA Drinking water systems currently lose 7.95 ×  103 million  m3 of non-revenue 
water loss annually, losing an estimated USD 7.6 billion of treated water in 
2019 due to leaks, with more than 240,000 pipeline breaks

ASCE (2022)

2018 The USA and Canada Between 2012 and 2018, overall water pipelines break rates increased by 27%, 
from 11.0 to 14.0 breaks/161 km/year

Folkman (2018)
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as expounded in detail by Okwori et al. (2021) and Kerwin 
and Adey (2021). As a result, WIAM is evolving and pav-
ing the way for sustainable water infrastructure practices by 
incorporating asset modelling.

Modelling in water infrastructure asset 
management: significance and diverse outputs 
at various levels

Models play a crucial role in WIAM as they enable a sys-
tematic approach to understanding and optimizing the opera-
tion of water infrastructure systems. They provide valuable 
insights into the complex dynamics of these systems, helping 
to enhance decision-making processes and improve overall 
performance (Garzón et al. 2022).

Modelling is vital in comprehending the complex dynam-
ics of water distribution systems, involving the intricate 
interplay between water, the environment, and the ageing 
infrastructure of WSDN. Employing data-driven models 
facilitates the extraction of meaningful insights from data 
patterns, capturing variable relationships without predeter-
mined mechanisms or interactions. In the context of WIAM-
focused WSDN modelling, historical datasets of leaks and 
pipe failures serve as the foundation to explore factors 
influencing pipe lifespan. These influential factors, termed 
explanatory variables, constitute this paper's primary focus 
of investigation.

WIAM relies on models that perform several critical 
roles, such as prediction; models can estimate the perfor-
mance of water infrastructure assets over time. For instance, 
the modelling approach in this study considers age, mate-
rial, environmental and social conditions, among other fac-
tors, to predict the likelihood of asset failures, enabling the 
implementation of proactive maintenance and replacement 
strategies and mitigating potential issues. Optimization, 
using models, can enhance the operation and maintenance 
of water infrastructure assets (Ulusoy et al. 2021). Models 
can identify the most efficient asset management strategies 
by assessing cost, resource availability, sustainability met-
rics, and system performance.

Risk Assessment, through modelling, allows for evaluat-
ing potential risks related to various asset management deci-
sions. These models can measure the potential outcomes of 
asset failures and pinpoint areas of significant vulnerability, 
thereby directing efforts towards mitigating risk (Ugarelli 
and Sægrov 2022). Models facilitate scenario analysis, 
allowing decision-makers to explore different “what-if” 
scenarios and their potential impacts, helping to evaluate 
the effectiveness of different strategies and identify the best 
course of action (Rulleau et al. 2020).

Regarding the types of output provided by models at dif-
ferent levels, it depends on the scope and complexity of the 
model and the level of the water infrastructure system being 

analysed. At the network level, models may yield outputs 
related to the overall system performance, such as predicting 
the failure rate, estimating water loss, and assessing energy 
consumption; also offering valuable insights into network-
wide asset conditions and identifying critical assets require 
immediate attention (Fan et al. 2023).

At the asset level, models can provide predictions specific 
to individual components, such as pipelines or pumps, which 
may include the probability of failure for each asset, esti-
mations of remaining useful life, and optimal maintenance 
schedules. At the strategic level, models can offer outputs 
that guide long-term planning and investment decisions, 
identifying areas requiring infrastructure upgrades, assessing 
the impact of various investment scenarios, and optimizing 
capital allocation (Mohammadi and Amador Jimenez 2022).

Models also contribute outputs at the tactical level, 
facilitating day-to-day decision-making, influencing the 
prioritization of maintenance activities, optimizing inspec-
tion schedules, and identifying short-term risk mitigation 
measures (Alegre et al. 2013). Thus, models play a crucial 
role in WIAM by predicting asset performance, optimiz-
ing operations, assessing risks, and enabling informed deci-
sion-making (Le Gat et al. 2023). The nature of the outputs 
they provide varies depending on the level of analysis and 
the specific objectives of the asset management process. 
Notably, in the context of this study, the models estimating 
Drinking Water Pipe Failure (DWPF) outputs for WSDN 
systems offer outcomes that address all identified levels.

Bridging the divide: identifying gaps 
and addressing the necessity of a review 
on explanatory variables in drinking water pipe 
failure models

Numerous review articles have comprehensively summa-
rized and synthesized various facets of water pipe failure 
modelling. Notably, Rostum (2000) provides an overview 
of developments up to 2000, including the seminal thesis 
by Eisenbeis (1994). The works of Pelletier (2000; Mailhot 
et al. 2000), Mailhot et al. (2003), among others, have made 
significant contributions to this line of research, which was 
initially initiated by Shamir and Howard (1979) and further 
expanded upon by Kettler and Goulter (1985) and Andreou 
et al. (1987) with a primary focus on developing method-
ologies for enhancing the maintenance of long-established 
WSDNs. To provide a comprehensive understanding of the 
broader aspects of water pipe failure modelling, Table 2 pre-
sents notable publications that aim to encapsulate the field 
without explicitly delving into the definition and analysis of 
explanatory variables in failure processes.

Three distinct publications have examined the factors 
influencing failure prediction models within water infra-
structure. One study explicitly investigates water quality 
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factors (Monfared et al. 2021), while another focuses on 
the statistical dependence of such models on explanatory 
variables (Gómez-Martínez et al. 2017). Additionally, a 
comprehensive examination of general-level factors affect-
ing pipe failure in drinking water networks is presented in 
a separate publication (Barton et al. 2019).

In their research, Monfared et al. (2021) identified nine 
key factors or explanatory variables related to water qual-
ity data, including pH, chlorine (including free residual 
chlorine, chlorine decay, and chlorine concentration), tem-
perature, turbidity, hardness, colour, water age, alkalin-
ity, and conductivity. The study revealed a notable gap in 
understanding the precise influence of these variables on 
failure prediction models, highlighting the need for further 
investigation and analysis in this area.

Gómez-Martínez et  al. (2017) examined thirteen 
explanatory variables' impact on their models. These vari-
ables encompassed physical characteristics such as diam-
eter, year of installation, pipe material, and environmental 
factors like terrain type, land use, and depth of installation. 
Additionally, the study included hydraulic-related vari-
ables, namely pressures, velocities, and transients, which 
they referred to as internal variables. The research find-
ings indicated that incorporating various explanatory vari-
ables did not yield significant advantages. On the contrary, 
simplifying the models by reducing the number of vari-
ables enhanced their reliability and facilitated interpreting 
results from a service-oriented perspective, particularly for 
water utility applications.

Although Barton et al. (2019) did not directly focus on 
failure prediction models, their research extensively exam-
ines the impact of physical, hydraulic, and environmental 
factors on the likelihood of failures, explicitly about drinking 
water pipes. The study is particularly notable for its compre-
hensive analysis of how these factors influence pipes, con-
sidering variations in materials and their distinct mechanical 
and chemical properties, which react differently to these var-
iables. Moreover, the research underscores the significance 
of obtaining precise and comprehensive operational data 
and pipeline asset inventories to enhance the development 
of more accurate predictive models for pipeline failures and 
performance.

Despite the apparent contradiction between the latter two 
publications regarding the data required to train a model of 
this nature effectively, they refer to two different situations. 
The first study emphasizes that many variables can lead to 
overfitting, a situation where the model appears to fit well 
with the current data but fails to validate with future data-
sets due to the inclusion of noise variables (Belkin et al. 
2019). On the other hand, the second publication stresses 
the importance of having a substantial and precise volume of 
inventory data for use in the models. These perspectives do 
not conflict, as a balanced number of explanatory variables Ta
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should be selected based on the specific conditions of each 
system under analysis and the chosen model.

The significance of Barton's insightful research (Bar-
ton et al. 2022a) is apparent as it showcases the evolution 
of statistical modelling by categorizing these models into 
three distinct types: deterministic, probabilistic, and machine 
learning. This research emphasizes the necessity for addi-
tional research to ensure the appropriate consideration of 
variables and other crucial factors in the accurate selection 
and execution of these models.

The current literature lacks a comprehensive understand-
ing of how explanatory variables influence water pipe fail-
ure modelling within (WIAM). While previous research 
efforts have identified and analysed explanatory variables 
to some extent, there is a limited exploration of their impact 
on DWPF modelling processes. This review is based on the 
identified knowledge gaps, which include the absence of 
clear definitions of explanatory variables tailored to local 
conditions and specific modelling needs in DWPF models. 
Additionally, researchers need criteria to define these vari-
ables, and their influence on model selection and perfor-
mance remains to be seen. Addressing these gaps is crucial 
for guiding future research.

To bridge these disparities, this research investigates 
methodologies from various studies, uncovering poten-
tial biases and limitations related to choosing and utiliz-
ing explanatory variables according to their model local 
conditions. By meticulously examining the literature, this 
research seeks to enhance the understanding of how differ-
ent researchers attribute importance to explanatory variables 
and their effects on model performance. By shedding light 
on these aspects, the review will contribute to improving 
water infrastructure management and the performance of 
pipe failure prediction models.

Motivation and aim of this review

There are significant motivations to explore this field 
beyond the identified gap. Firstly, a transparent intercon-
nection exists between water, energy, and food, with growing 
demands for these resources over time. Water plays a crucial 
role in all human processes as a fundamental element, under-
scoring the necessity to develop sustainable strategies for its 
utilisation (Carmona-Moreno et al. 2021). Leaks and failures 
in distribution systems are closely linked to pipe deteriora-
tion. Apart from the direct economic costs of repairing pipe 
failures, information on global Water Utilities' energy con-
sumption often needs to be updated or updated. Additionally, 
other factors, such as the impact of failures and leaks on 
water quality, pose challenges in quantification (Chen and 
Guikema 2020).

As reference data, it is estimated that non-revenue water 
(NRW) losses accounted for 9.1 ×  109  m3 of water volume 

and 3100 GWh of energy loss in WSDNs in the USA in 
2018 (Chini and Stillwell 2018). A comparison with the 
estimated energy consumption of 5600 GWh in the water 
distribution systems in the USA for the year 2005 (Mostafavi 
et al. 2018) indicates an approximate 44% reduction in the 
energy consumption required for WSDN operations. This 
reduction demonstrates the evident efforts made by Water 
Utilities to improve energy efficiency, despite the increase 
in drinking water consumption due to population growth. 
Implementing better strategies for hydraulic sectorization, 
optimizing pumping systems, advancements in pipe failure 
and leakage management processes, and other exogenous 
factors like per capita water use reduction have contributed 
positively to this trend.

The NRW index is a standard criterion for evaluating 
water distribution system performance, particularly concern-
ing water leakage management. This index represents the 
difference between the volume of water supplied to the dis-
tribution system and the volume billed to consumers (Alegre 
et al. 2016). When the distribution network undergoes higher 
maintenance levels and exhibits improved integrity, the rate 
of annual pipe failures decreases, consequently leading to 
a reduction in NRW (Güngör-Demirci et al. 2018; Ananda 
2019). Roigé et al. (2020) introduced the concept of water 
and energy losses as critical environmental criteria, high-
lighting the interconnectedness of service pressure, water 
leakage, and subsequent energy wastage. Figure 1 provides 
a graphical representation of the global status of pipe fail-
ures in distribution systems, showing a direct proportionality 
between higher rates of pipe failures and more significant 
NRW indices across various countries (Almheiri et al. 2021).

The environmental ramifications of pipe failures encom-
pass greenhouse gas emissions resulting from non-optimized 
energy consumption in various water distribution processes 
affected by these failures and the water losses associated 
with such occurrences (Nair et al. 2014). In-depth studies, 
like those conducted by Herstein et al. (2009), outlined the 
economic, environmental, and social consequences of pipe 
production, installation, repair/renovation, and ultimate dis-
posal. Additionally, these studies explore the implications 
of pumping processes, network pressure management, and 
hydraulic optimization in WSDN. While the current research 
may not cover the complete life cycle of the distribution 
system's diverse components (Herstein and Filion 2011), it 
facilitates a priori assessment of potential excess emissions 
attributed to network pipe failures.

Roigé et al. (2020) introduced several essential concepts 
related to water infrastructure, including the organoleptic 
perception of water, the risks associated with potential 
events and interruptions in drinking water service, as well 
as disruptions in pedestrian and motorized traffic. These 
parameters have a measurable impact on the prioritization 
of water pipeline renewal.
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Although many authors have recognized water leakage in 
WSDN to cause significant social impacts (Gupta and Kulat 
2018), the social aspects of the effects resulting from pipe 
failures, leaks, and water losses in WSDN remain relatively 
understudied, with limited research conducted on this sub-
ject beyond the work of Roigé et al. (2020).

Mazumder et al. (2021) evaluated economic, operational, 
environmental, and social consequences arising from the 
failure of integrated water and road segments, taking into 
account factors such as financial aspects (rehabilitation/reno-
vation costs of pipes), operational indicators (service per-
formance, hydraulic efficiency, road closures, and potential 
asset damage), as well as environmental and social impacts 
(effects on critical infrastructure, traffic, and population 
density).

Lee and Kim (2020) provided a summary of studies link-
ing water leakages and other distribution network charac-
teristics to sustainable development practices for WSDNs, 
encompassing economic, social, and environmental consid-
erations. However, understanding the social implications of 
water leakages in WSDNs requires further investigation and 
exploration in the literature.

These studies consistently provide compelling evidence 
regarding the economic impacts of water pipeline failures. 
A substantial portion of a Water Utility's assets comprises 

pipelines, prompting numerous investigations focused on 
assessing the effects of water pipe failures from various 
angles: traffic congestion (Cunningham et al. 2021), pipe-
line characteristics (Mazumder et al. 2021), investment-
based leakage reduction measures (Ahopelto and Vahala 
2020), rehabilitation or replacement of failed water pipe-
lines (Kleiner et al. 2010; Rahman et al. 2014), pipe replace-
ment periods (Park 2011), and average network pressure 
(AL-Washali et al. 2020), among others. All the methods 
employed to estimate the economic impacts are based on 
functions and models that enable the analysis of potential 
benefits under various parameters and assumptions related 
to the technical management of the network.

Pipe failure modelling is a fundamental aspect of asset 
management models in WSDNs (Ugarelli and Sægrov 
2022). It involves classifying pipe sections based on their 
likelihood of failure, which informs decision-making pro-
cesses regarding renewal policies, maintenance strategies, 
and the identification of network sectors requiring further 
investigation for leak detection (Barton et al. 2021).

As mentioned in the preceding section, within the context 
of explanatory variables associated with water pipe failure 
modelling, a comprehensive literature review is required 
to synthesize previous studies, identify research gaps, and 
propose new directions for the field. To date, no study has 

Fig. 1  Non-revenue water by country (%). Green tones indicate a 
lower NRW index; red tones indicate a higher NRW index. Data 
updated to the year 2021 (FP2E/BIPE 2019; OECD 2020; AEAS 

2021; Go Associados 2021; Istituto Nazionale di Statistica 2021; 
Water and Sanitation Program 2021)
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summarized pipe failure prediction models and their rela-
tionship with explanatory variables, underscoring the neces-
sity to gain insights into the diverse perceptions of explana-
tory variables that may impact these models.

Outline of the work

This review aims to comprehensively present the various 
models employed in water pipe failure prediction, focusing 
on the explanatory variables utilized in models developed 
over the past 15 years. The primary novelty of this review 
lies in its exploration of how researchers attribute signifi-
cance to different explanatory variables within their failure 
models. By examining the relationships between variables 
and the characteristics of the models, potential biases in the 
selection or utilization of explanatory variables can be iden-
tified. Moreover, we propose the inclusion of pertinent vari-
ables essential for the accurate execution of failure models 
in drinking water pipelines.

This paper is structured into five primary sections. The 
introduction provides an overview of Asset Management, 
linking it to water infrastructure, and emphasizes its rel-
evance to water utilities. It underscores the significance of 
modelling water pipe failures to enhance the efficiency of 
water supply systems' operation and planning. Moreover, 
the introduction identifies a knowledge gap in these models, 
highlighting the necessity to improve the design and analysis 
of their explanatory variables.

“Review methodology and research questions” section 
outlines the review methodology and research questions, 
encompassing search terms, databases used, and exclu-
sion criteria. “Models for prediction of drinking water pipe 
failure” section introduces the main categories of DWPF 
models under study. “Explanatory variables used for mod-
elling drinking water pipe failures” section examines the 
critical explanatory variables that support the DWPF mod-
elling, specifying the type of explanatory variable used, the 
employed model type, the model's output, and the time hori-
zon of the model outcomes per publication. “Conclusions 
and future research directions” section concisely synthesizes 
the findings, providing valuable contributions to the topic, 
and outlines potential avenues for future research before con-
cluding the review.

Review methodology and research 
questions

Review methodology

This review adopts a mixed approach, incorporating the pos-
tulates of Kitchenham and Charters (2007), Snyder (2019) 
and the PRISMA Guidelines (Moher et  al. 2009). The 

review includes conference proceedings, journal articles, 
government documents, doctoral theses, and dissertations 
from 2007 to 2023, sourced from five academic databases: 
JSTOR, EBSCO, ProQuest, Scopus, and Web of Science. 
Initially, a search with the phrase “Drinking water pipe fail-
ure modelling” yielded 2914 results, further refined using 
specific search strings and assessed against the exclusion 
and inclusion criteria outlined in Table 3. Following this 
process, the research narrowed to 103 relevant manuscripts, 
as depicted in Fig. 2.

The definition of failure, as employed by Le Gat (2015), 
plays a crucial role in delineating the scope of this research. 
The water infrastructure under consideration is structured as 
a network of interconnected pipelines and failures, encom-
passing leakage or breakage, typically manifest clustered, 
affecting specific network segments.

Research questions

This paper aims to conduct a meticulous literature review on 
water pipe failure models, primarily focusing on the foun-
dational explanatory variables underpinning their analyses 
and outcomes. The study's objectives are framed by eight 
research questions (RQ), as outlined in Table 4. These 
questions define the study's scope and provide a roadmap 
for gathering and analysing relevant information, enabling 
the exploration of challenges and potential advancements 
in this domain. The Introduction section addresses the first 
three questions, setting the main trajectory of the review and 
justifying its necessity while establishing its link to asset 
management.

Models for prediction of drinking water pipe 
failure

A brief overview of modelling for the prediction 
of drinking water pipe failure (DWPF)

Employing a water pipe failure prediction model enables 
estimating future break/failure events based on historical 
observations, determining an appropriate renewal rate, and 
supporting decision-making processes related to key indi-
cators, renewal scenarios, and selecting pipes for replace-
ment. In recent decades, water pipe failure modelling has 
become a valuable tool for analysing failure data collected 
from WSDNs, serving as a standard planning approach to 
investigate potential causes of pipeline failures. Initially, 
Water Utilities relied on expert judgement to character-
ize failure events, considering factors such as pipe age and 
applied pressure. However, the evolution of this approach 
has aimed to enhance the information captured regarding 
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network failures and improve analysis through various sta-
tistical techniques.

The progress in failure event studies has facilitated the 
identification of specific scenarios and requirements, lead-
ing to more effective proposals for network renovation or 
reinforcement. By improving the quantity and quality of 
collected information, new indicators can be generated, and 
existing ones refined, thus impacting failures. Water Utilities 
are increasingly focused on predicting pipe failures or defi-
ciencies before they happen, evident in the analysis of fail-
ure rates per pipe. This involves considering factors related 
to existing defects, such as previous failures, leakages, and 
ageing, as well as potential improvements, to prioritize and 
select pipes for renewal based on their probability of fail-
ure. However, a significant challenge in implementing this 
approach lies in the availability of comprehensive historical 
data regarding WSDNs, which includes factors such as pipe 
material, location, age, and failure history.

The emergence of machine learning techniques has sig-
nificantly enhanced statistical models focused on studying 
pipe failure phenomena. This development proves benefi-
cial in addressing the limited availability of historical data 
faced by Water Utilities when investigating trends and prob-
abilities associated with pipe failures. Using sophisticated 
algorithms, machine learning techniques can effectively 
estimate missing data by leveraging the stochastic nature of 
the missing values within the WSDN information dataset. 
Nonetheless, applying these techniques demands a high level 
of reliability in the historical information of the WSDN to 
ensure it adequately represents the entire data universe.

While this paper exclusively focuses on water pipe fail-
ure models for WSDN and their associated explanatory 
variables, it is crucial to acknowledge the progress made 
in pipe-related research for other purposes. This includes 
investigations into the mechanical or rheological properties 
of piping materials. Although such studies fall outside the 
scope of this paper, it is worth noting that the models pre-
sented herein draw upon the knowledge generated in these 
areas to enhance the predictive capabilities of failure models 
within the context of multi-criteria analysis conducted by 
each analysed model.

Classifications of models applied 
to the investigation of pipe failures in drinking 
water systems

In recent decades, considerable interest has been in predict-
ing DWPF as WSDN gradually deteriorate. Building upon 
the methodologies employed in previous reviews (Dawood 
et al. 2020b; Karimian et al. 2021), this study updates the 
list of recent research on DWPF models in Table 5 The table 
systematically categorizes and provides a concise summary 
of all the models employed by researchers in the last fifteen Ta
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years, directly addressing research question  (RQ4) (Table 6). 
The information presented in this table has been extracted 
from all the sources listed in Table 7.

The main classifications are derived from the significant 
differences observed in the approaches commonly used in 
the analysed research. Statistical-based models seek to estab-
lish relationships between variables through mathematical 
equations (Fahrmeir and Tutz 2001). In contrast, Machine 
Learning-based models take a different approach, utilizing 
algorithms to learn from the data and establish these rela-
tionships (ICAMLDA 2010). Other proposed classifications 

deviate from these definitions, exploring alternative paths 
for failure estimation.

Comments on the limitations of current models

The necessity of utilizing historical pipeline inventories 
and failure data gives rise to a well-recognized issue of 
left-truncation in executing statistical-based survival mod-
els, owing to the nature of event-related data over time. 
This phenomenon, along with right-censoring, has been 
extensively examined by Le Gat (2015) and other authors 

Fig. 2  The review process, 
PRISMA flow diagram

Table 4  Research questions

ID Research question Description

1 What is the current application of asset management in WSDN? The importance of water infrastructure in society's well-being under-
scores the need for effective Asset Management, making it crucial 
to investigate their relationship. The initial two research questions 
are addressed in the Introduction

2 Why are models crucial in WIAM, and what types of output do they 
provide, at different levels?

Models are indispensable in WIAM, and their outputs exhibit 
significant heterogeneity, warranting thorough investigation and 
explanation

3 What are the current gaps in the literature concerning the linkage 
to explanatory variables, and what specific requirements does this 
review aim to fulfil?

While there are existing studies on failure prediction models, there 
needs to be more synthesis and analysis that focuses explicitly on 
the role of explanatory variables in these models

4 What models predict WSDN pipe failures? This research aims to comprehensively examine models used in 
predicting water pipe failures within Water Utilities

5 What are the evolving trends in the field of DWPF modelling? By examining model usage trends and their associated explana-
tory variables over time, this study aims to analyse the underlying 
reasons driving these developments

6 What explanatory variables serve as the foundational information for 
modelling DWPF in WSDN?

This study seeks to compile and present the frequency of usage of 
explanatory variables that support the models under consideration

7 What criteria influence the decision to incorporate explanatory vari-
ables into the processes?

This study aims to enhance researchers' understanding of the critical 
role played by identifying and defining explanatory variables in the 
modelling process, with specific consideration of the unique condi-
tions present in each Water Utility

8 What potential future research directions exist considering DWPF 
modelling?

This research seeks to offer valuable insights and improvement 
opportunities to researchers, developers, and Water Utility profes-
sionals involved in developing accurate failure prediction models 
for drinking water pipes
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(Robles-Velasco et al. 2021; Barton et al. 2022b), under-
scoring the significance of mitigating potential interfer-
ences in predictions and time estimations to determine the 
first failure (Xu and Sinha 2021). As aptly pointed out 
by Scheidegger et al. (2015), left-truncation and survival 
selection are prevalent features in the available data con-
cerning urban water services. Nonetheless, a comprehen-
sive analysis of the impact of these features on modelling 
processes is lacking in most reviewed studies, and their 
direct consideration remains limited to date.

Machine learning models offer several advantages over 
statistical models, including their improved response to 
outliers and capacity to establish meaningful relation-
ships between explanatory variables and pipe failures, thus 
defining the significance of each variable in the model-
ling process. Despite the growing popularity of machine 
learning-based models, it is crucial to acknowledge that 
they may need help incorporating right-censored informa-
tion, potentially leading to overestimating pipeline faults 
beyond their actual occurrences (Snider and McBean 
2021).

There are other disadvantages associated with machine-
learning-based methods. One of the main drawbacks is that 
these methods, by nature, lack physical constraints. Unless 
they are explicitly imposed with specific conditions, they 
do not inherently consider the limitations of the physical 
environment. As a result, it becomes necessary to critically 
assess the results of such models, given the challenge of 
internally verifying their implementation.

Another intricate issue with such models is their inter-
pretability (Barton et al. 2022a). These models can become 
effective with interpretability, as human interpretation 
involves considerations beyond the technical proficiency 
of the modelling process. Commonly used techniques, like 
SHAP or LIME, are employed in other fields to explain pre-
dictions made by such models; nevertheless, in this field, few 
studies utilize these methods (Fan et al. 2021). The outcomes 
of these analyses sometimes align with expected or observed 
results in the field, and they rely on an in-depth understand-
ing of the variables' components and effects specific to each 
environment and network.

Using standard metrics such as RMSE and MCC may not 
inherently reflect the practical value of projections made by 
a machine-learning-based model concerning service needs. 
An example of this occurs when a model achieves high 
standard metrics, but its performance may need to be more 
optimal when the Lorenz Curve analysis is applied (Le Gat 
2015), which significantly illustrates the impact of the mod-
els on renewal needs.

Among the advantages and disadvantages outlined 
by Barton et al. (2022a) and Almheiri et al. (2020a), the 
necessity for hyperparameter tuning in certain cases ren-
ders the implementation of such models highly demanding. 

Furthermore, it is essential to consider the computational 
power requirements highlighted by Gupta and Segal (2022), 
as the choice of model type depends on both the service 
needs, the scope of the DWPF modelling projects, and the 
utility of their outputs for stakeholders.

In addition to variable types, time and spatial frameworks, 
the type of response and level of inference, as detailed by 
Barton et al. (2022a), the focus of the model application 
may also influence the models’ implementation conditions. 
For instance, a model aimed at long-term planning would 
include distinct modelling capabilities, with survival analy-
sis models being commonly selected in such cases.

The nature of data related to pipeline failure events is 
inherently unbalanced, as in most cases, only 0.1% of the 
data universe contains one or more failures (Barton et al. 
2022b). This significant imbalance underscores the require-
ment for comprehensive records of failures over an extended 
period to ensure that the limited data can offer sufficient 
representativeness for unbiased analysis. An insufficient 
number of periods considered may lead to underfitting in 
machine-learning-based models, where the model needs 
more information due to either high bias or excessive vari-
ance. This limitation is also evident when there is an inad-
equate amount of data for each feature in the analysis, as it 
is essential to have sufficient training instances to adjust the 
models effectively.

A prospective area for future research entails addressing 
the limitations related to data acquisition within Water Utili-
ties, aiming to ascertain the appropriate proportions and data 
volumes required to implement a failure model effectively. 
Investigating this direction would encompass various fac-
tors, such as the network's characteristics, the availability 
of inventories or changes within the system, and the users' 
specific requirements.

Data imbalance constitutes one of the most significant 
challenges faced by various service operators, as collecting 
this information was only integrated into Water Utilities' 
procedures relatively recently. Addressing the issue of data 
imbalance can be achieved through the utilization of syn-
thetic samples (Robles-Velasco et al. 2023). This approach 
proves beneficial when faced with limited information, thus 
mitigating the challenges posed by significant imbalances 
in the data. Caution must be exercised to avoid generating 
excessive synthetic samples, which may lead to suboptimal 
model performance.

The optimization of calibration thresholds plays a cru-
cial role in mitigating the impact of utilizing imbalanced 
data by striking a balance between sensitivity and specific-
ity (Esposito et al. 2021; Barton et al. 2022b). Additionally, 
sampling methods, such as stratified sampling, can address 
this imbalance and ensure adequate representation of materi-
als in both the training and test datasets (Winkler et al. 2018; 
Barton et al. 2022a).
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Table 5  Models applied to analyse and predict pipe failures in drinking water systems, compilation to date

Primary classification Secondary classification Technical foundation of the modelling method—Selected 
source

Model WSDN length 
under study (km)

Statistical-based 
models

Stochastic Modelling and 
Survival Analysis

Proportional hazards models—Bayesian Weibull -WPHM 
(Snider and McBean 2021)

M1 4387

Proportional hazards models—Cox -CHM- (Almheiri et al. 
2021)

M2 1195

Bayesian Belief Network—BBN (Giraldo-González and 
Rodríguez 2020)

M3 1819

Weibull distribution—WD- (Weeraddana et al. 2020) M4 1888
Linear Extension of the Yule Process with selective sur-

vival—LEYP2s (Le Gat 2015)
M5 721

Linear Extension of the Yule Process—LEYP- (Renaud et al. 
2012)

M6 550

Non-Parametric Estimation/Kaplan–Meier estimator (Le Gat 
2015)

M7 721

Vector autoregression—VAR- and vector autoregression with 
exogenous variables -VARX- (Almheiri et al. 2020a)

M8 –

Hierarchical Beta Process—HBP (Chik et al. 2017) M9 376
Markov model/Markov Chain Monte Carlo—MCMC- 

(Osman and Bainbridge 2011)
M10 1593

Monte-Carlo Simulations—MCS (Davis et al. 2007) M11 –
Hybrid estimate using Herz distribution (Le Gat et al. 2013) M12 –

Regression analysis Multiple Regression Model—MRM (Wang et al. 2009) M13 432
Poisson Regression Model -PRM (Asnaashari et al. 2009) M14 56
Non-homogeneous Poisson process -NHPP- (Chen and 

Guikema 2020)
M15 681

Gaussian Process Regression -GPR- (Weeraddana et al. 
2020)

M16 1888

Generalized linear/non-Linear model -GLM-, -GNLM- 
(Chen and Guikema 2020)

M17 681

Generalized additive model -GAM- (Chen and Guikema 
2020)

M18 681

Linear mixed-effects model -LMEM- (Chen and Guikema 
2020)

M19 681

Multivariate Adaptive Regression Splines -MARS- (Aslani 
et al. 2021)

M20 3476

Time Linear Model -TLM- (Konstantinou and Stoianov 
2020)

M21 374

Time Exponential Model -TEM- (Konstantinou and Stoianov 
2020)

M22 374

Multi-objective Genetic Algorithm and Evolutionary Polyno-
mial Regression -EPR- (Karimian et al. 2021)

M23 5045

Bayesian linear regression -BLR- (Gómez-Martínez et al. 
2017)

M24 17,473

Ridge Regression -L2 Regularization Method- (Almheiri 
et al. 2020b)

M25 432

Probabilistic Survival analysis – Parametric (Christodoulou et al. 2010) M26 795
Survival analysis – Nonparametric (Christodoulou et al. 

2010)
M27 795

Naïve Bayes algorithm -NB- (Konstantinou and Stoianov 
2020)

M28 374

Bayesian network/Bayesian simple model -BSM- (Tang et al. 
2019)

M29 342,850

Linear discriminant analysis -LDA- (Konstantinou and 
Stoianov 2020)

M30 374
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Despite the assertion that machine-learning-based mod-
els do not effectively address the issue of data imbalance, 

leading to lower accuracy in failure prediction (Robles-
Velasco et al. 2021), it is worth exploring the solutions 

Table 5  (continued)

Primary classification Secondary classification Technical foundation of the modelling method—Selected 
source

Model WSDN length 
under study (km)

ML- and AI-based 
models

Artificial neural networks Advanced Meta-Learning -AdvaML- (Almheiri et al. 2021) M31 1195

Multilayer Back-propagation Neural Network -BPNN-/Multi-
layer Perceptron -MLP- (Kerwin et al. 2020)

M32 411

Extreme Learning Machine -ELM- (Sattar et al. 2019) M33 971

General Feed Forward Neural Network -FFNN- (Aslani et al. 
2021)

M34 3476

Radial-Based Function Neural Network -RBFNN- (Jafari 
et al. 2021)

M35 80

Generalized Regression Neural Network -GRNN- (Aydogdu 
and Firat 2015)

M36 440

Supervised learning Least Squares Support Vector Machine -LS-SVM- (Aydogdu 
and Firat 2015)

M37 440

Support Vector Machine/Regression/Classification -SVM- 
(Almheiri et al. 2021)

M38 1195

Random Forest -RF- (Snider and McBean 2021) M39 4387

Survival Random Forest -SRF- (Almheiri et al. 2021) M40 1195

Boosted Decision/Regression Trees -BRT- (Aslani et al. 
2021)

M41 3476

Gradient-Boosted Trees, Networks and Frameworks -Gradi-
ent boosting- (Chen and Guikema 2020)

M42 681

Ensembles, Decision Tree -EDT-, Bagging, Boosting (Alm-
heiri et al. 2020b)

M43 432

Bayesian Model Averaging -BMA- (Demissie et al. 2019) M44 1480

Clustering Classification: K-means/K-nearest neighbours -KNN- 
(Giraldo-González and Rodríguez 2020)

M45 1819

Cluster-weighted modelling -CWM- (Chen and Guikema 
2020)

M46 681

Fuzzy logic-based 
models

Fuzzy system Hierarchical Fuzzy inference system -HFIS- (Ward et al. 
2017)

M47 –

Adaptive Neuro-Fuzzy Inference Systems -ANFIS- (Tabesh 
et al. 2009)

M48 579

Mamdani method (Fares and Zayed 2010) M49 153
Lifecycle analysis 

models
Lifecycle cost Life Cycle Cost Analysis -LCCA- (Francisque et al. 2017) M50 216

Evolutionary compu-
tation models

Evolutionary algorithm Gene Expression Programming -GEP- (Sattar et al. 2016) M51 1021

Geospatial Data Ana-
lytics models

Satellite observations Pixel-based approach—Soil deformation analysis -SDA- 
(Arsénio et al. 2015)

M52 4309

Decision-making 
models

Multiple criteria Analytic Hierarchy Process -AHP- (Al-Barqawi and Zayed 
2008)

M53 –

Risk analysis models Probability-consequence 
model

Weighted risk analysis -WRA- (Barton et al. 2022b) M54 38,424
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proposed by Kaur et al. (2020). Chen et al. (2019) suggested 
increasing the spatial resolution of the data, resulting in a 
loss of accuracy in predicting non-failure events but an 
improvement in failure predictions.

An essential aspect of model generation lies in the neces-
sity for expert knowledge to define model parameters and 
conduct data preparation processes. This expertise allows for 
assessing the models' predictions concerning real-world field 
conditions. Moreover, expert knowledge facilitates the inclu-
sion of external factors that may be challenging to quantify 
and integrate into the models, leading to manual parameter 
adjustments (Barton et al. 2022b) to align the results with 
the specific context of the Water Utility concerning budget 
and strategy.

Given the diverse characteristics of each WSDN inven-
tory, direct comparisons of model performance metrics 
across different networks become problematic because these 
metrics heavily depend on the quality and size of the inven-
tory on which the models are based (Robles-Velasco et al. 
2021). While these inventory differences hinder the ability to 
compare metrics directly, it is possible to compare different 
network models under specific conditions where data avail-
ability limitations can be overcome.

In cases where complete and reliable inventories are 
available as the base data for the models, it becomes feasi-
ble to compare different network models. To achieve this, 
algorithms purely based on this comprehensive data are uti-
lized. Additionally, in the case of machine-learning-based 
models, comparisons are possible when the same algorithm, 
configured with the same parameters and hyperparameters, 
is applied. Through such rigorous comparative approaches, 
the metrics of these models can be effectively compared.

Expert criteria are paramount in model development, 
particularly in aiding the selection of the appropriate model 
type to align with the specific needs of the WSDN system. 
Understanding the stakeholders' requirements necessitates 
collaboration between system operators and model devel-
opers, mainly when they belong to different domains. For 
machine-learning-based models, selecting hyperparameters 
presents a complex task, and their variability can signifi-
cantly impact the model's outcomes. This selection process 
is computationally expensive, as the effects of hyperpa-
rameters become evident only after executing all model 
processes. Therefore, validation and feedback from system 
experts are crucial.

While specific tools exist to optimize hyperparameters 
and enhance model performance automatically, they have 
yet to deliver optimal results in environments with highly 
unbalanced data (Czako et al. 2021), which is characteristic 
of our particular case study.

By defining the weights of each criterion, these experts 
can tailor the model to the specific requirements of each 
WSDN (Assad and Bouferguene 2022). The absence of Ta
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expert judgement may include irrelevant explanatory vari-
ables that do not influence pipeline failure processes, leading 
to suboptimal selection of a reference model or misinterpre-
tation of model outcomes. Such misinterpretations can lead 
to misguided investments directed towards infrastructure 
within their amortisation period (Almheiri et al. 2021).

Robles-Velasco et al. (2021) assert that machine-learning-
based models with more precise pipeline failure predictions 
tend to exhibit reduced non-failure forecasts. Barton et al. 
(2022b) explain how this challenge can be addressed through 
appropriate threshold optimization—a critical decision-mak-
ing step unique to each Water Utility, necessitating expert 
judgement.

An inherent challenge in model generation and optimi-
zation is the selection of suitable explanatory variables. 
One approach to tackle this is by analysing small groups of 
variables to assess their significance (Robles-Velasco et al. 
2021). In the case of medium-sized WSDNs, reducing the 
number of explanatory variables helps mitigate the risk of 
model overfitting (Jenkins et al. 2015).

Establishing the number of explanatory variables is a pri-
ority process (Fan et al. 2014), and it can be distilled into 
three constraints: the relevance and redundancy of the vari-
able, the availability of computational resources and time 
for model execution, and the interpretability of the model 
outcomes enabling the understanding of complex relation-
ships between the variables involved. The evident necessity 
for a comprehensive study encompassing the explanatory 
variables used in the models further reinforces the rationale 
behind this research.

Table 6 summarizes critical features from selected studies 
on the subject. It outlines their outputs' scope, objectives, 
and nature and presents meaningful insights specific to each 
case study.

Evolving trends in modelling for predicting DWPFs

The subsequent three figures and their corresponding con-
cepts are based on developments derived from the open-
source “bibliometrix” R-package (Aria and Cuccurullo 
2017). Figure 3 depicts the conceptual structure of the 
research topic, highlighting the interconnections between 
the concepts used in the titles and abstracts of the relevant 
manuscripts. The size of the circle and the text in the figure 
represent the current importance of each concept, as deter-
mined by applying the Fruchterman–Reingold algorithm 
(Aria and Cuccurullo 2017).

The figure reveals a lack of uniformity in the use of 
terms such as “water main,” “pipe,” and “pipelines,” as 
well as “breaks” and “failure”. The analysis suggests 
that five key concepts unify the research into distinct 
clusters, namely the analysis of pipeline failures and 

infrastructure asset management through machine learn-
ing and modelling.

Figure 4 highlights the most frequently used keywords in 
the studied manuscripts over the past 15 years, illustrating 
their evolution. Notably, the term “corrosion,” which was 
once considered a crucial explanatory variable, has seen a 
decline in usage, while “replacement” and “patterns” have 
also diminished in popularity. Conversely, terms associated 
with applying artificial intelligence and machine learning 
methods are gaining prominence.

The significance of critical concepts is depicted in Fig. 5 
using the Sankey diagram (Aria and Cuccurullo 2017). The 
diagram illustrates these concepts' evolution, with the rec-
tangles' size representing their relevance during the speci-
fied period. Notably, the “Statistical analysis” concept has 
not seen new developments in the last two years. On the 
other hand, “Asset management” and “Pipe Failure” con-
cepts have paved the way for “Machine learning” and “Data 
Mining.” Additionally, the diagram indicates that Bayesian 
model averaging has yet to experience recent advancements. 
This chapter confirms the paramount importance of machine 
learning techniques in the research topic, effectively address-
ing  RQ5.

The term “Data mining” does not signify a new trend 
but rather its repeated mention in articles involving machine 
learning techniques. The interpretation of Fig. 5 reveals that 
the focus of applied research has shifted from using com-
plex statistical models to harnessing sufficient computational 
power for implementing and testing various machine learn-
ing techniques. This trend is corroborated by the work of 
Barton et al. (Barton et al. 2022a), which outlines the evo-
lution of DWPF models from statistical applications to the 
adoption of machine-learning-based models, as illustrated 
in Fig. 6.

This trend overlooks the significant potential that statisti-
cal models hold. As previously noted, statistical-based mod-
els directly incorporate external knowledge into the model, a 
crucial difference from machine learning-based models that 
require adjustment parameters governing the incorporation 
of superficial knowledge (Binder 2014). Such models need 
more extensive development, which might not be replicable 
in other systems without a similar adjustment phase.

It is essential to acknowledge that the concepts depicted 
in Fig. 5 do not solely dictate the current and future trends 
in model evolution. With advancements in modelling tech-
niques, there is a greater capacity to analyse uncertainties 
and sensitivities associated with the employed variables.

Most studies that address modelling failure for drinking 
water pipes and uncertainties are predominantly based on 
Monte Carlo simulations (Beh et al. 2017; Jafari et al. 2021; 
Fan et al. 2023) and Poisson distributions (Xu et al. 2018). 
However, these methodologies have also been extensively 
employed in various related disciplines, such as hydraulic 
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modelling (Braun 2019), optimization in water infrastructure 
planning (Beh et al. 2017) and flood damage assessments 
(de Brito et al. 2019; Morita and Tung 2019) among numer-
ous other applications, which illustrates the importance of 
analysing uncertainties in modelling processes.

These concepts continuously evolve and provide fertile 
ground for extensive research and exploration. Research pre-
dicting or forecasting events based on highly unbalanced 
data, such as in our case, emphasizes the utmost importance 

of data quality. Hence, mitigating the influence of uncer-
tainty throughout all stages of the modelling process will not 
only enhance the reliability of the models but also minimize 
potential biases inherent in the analysis (Fan et al. 2023).

Fig. 3  The conceptual structure 
of the modelling of DWPF for 
the last 15 years

Fig. 4  The presence of research keywords from 2007 to 2023. The 
blue line's length represents the years in which the publications men-
tion the keywords. The position of the blue ball indicates the year 

with the highest frequency of mentions for each keyword, and the size 
of the ball reflects the frequency of mentions in that particular year
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Explanatory variables used for modelling 
drinking water pipe failures

Table 7 in Appendix 1 summarizes the explanatory variables 
extracted from the publications from 2007 to early 2023. 
This table establishes a link between the model typology 
proposed in Table 5 and the models implemented in each 
study, enabling an analysis of the selected model trends. 
Additionally, it outlines the optimal performance exhibited 

by each model in the respective studied network. The table 
also indicates the type of output generated by each study, 
encompassing failure probabilities, estimated failure times, 
failure prediction focus, and the creation of performance or 
failure-related risk indexes and curves.

Table 7 also presents a detailed account of the primary 
explanatory variables employed in the modelling process. It 
delineates the type of explanatory variable utilized, the cor-
responding model output, and the time horizon for the model 
outcomes in each publication. Through this comprehensive 

Fig. 5  Evolution of critical concepts researched for the periods 2007–2015 -left-, 2016–2019 -centre- and 2020 to 2022 -right-

Fig. 6  Comparison of trends in DWPF model types between 2007 
and 2022. The graph illustrates a substantial increase in the utiliza-
tion of Machine Learning-based models in the last four years (on the 
left). Among these machine learning models, those employing super-

vised learning techniques have experienced a remarkable peak (on the 
right), surpassing models based on statistics, particularly those with 
regression analysis
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analysis of 103 studies, the list of covariates or explanatory 
variables reveals the key factors influencing drinking water 
pipe failures, effectively addressing  RQ6. It is important to 
note that research in this field remains limited, primarily due 
to the intricacies posed by the unique local conditions of 
each WSDN. Consequently, there is a demand for in-depth 
investigations at the WSDN level to discern the impact and 
interrelationships among variables.

Among the noteworthy studies, Konstantinou and Stoi-
anov (2020) stand out for their meticulous examination of 
explanatory variables beyond the fundamental analysis typi-
cally observed in most publications. Additionally, Robles-
Velasco et al. (2020) have provided valuable insights, lead-
ing to the proposed organizational framework of variables 
based on different factors, as outlined in Table 7. These ref-
erence studies have significantly contributed to advancing 
understanding in this domain.

Kerwin et al. (2020) investigated the relationship between 
variables in sixteen studies, with only one study (Amaitik 
and Amaitik 2008) employing “time between failures” as 
an explanatory variable. The insights gathered from these 
diverse studies unequivocally demonstrate that pipes previ-
ously afflicted by failures exhibit a heightened vulnerability 
to subsequent failures. “Time between failures,” also known 
as “inter-failure times”, emerges as a central variable with 
a profound impact on the probability of failure (García-
Mora et al. 2015; Le Gat 2015), attributable to its stochastic 
nature within the process. Thus, the inclusion of this variable 
becomes indispensable in forthcoming research endeavours.

The implementation of process variables varies across 
different studies; some opt to segregate variables based on 
their time dependence (Konstantinou and Stoianov 2020), 
while others apply all variables in one scenario and prior-
itize variables based on their linearity in another (Chen et al. 
2019), exemplifying the importance of judiciously select-
ing and incorporating variables in failure modelling. It also 
underscores the uniqueness of failure models, necessitating 
bespoke approaches to suit the sensitivities of each WSDN. 
Such meticulous customization ensures that failure mod-
els align precisely with the complexities of the individual 
WSDN.

Before the advent of studies predicting the failure of 
drinking water pipes, the age of the pipe held paramount 
significance when defining renewal requirements. Counter-
intuitively, the wear of materials due to age does not always 
emerge as the most critical variable in failure processes; 
instead, factors such as pipe length and material composition 
often prove more crucial (Almheiri et al. 2020b). Several 
sensitivity analyses elucidate the importance of variables 
and their interactions within specific contexts, prompting 
the grouping of variables based on their relevant application 
environment. This categorization provides valuable insights 

into the criteria influencing the decision to incorporate each 
variable, addressing  RQ7.

Limited research has been conducted to explore the sig-
nificance or impact of the identified variables on pipe failure 
processes, which would facilitate the correlation of these 
variables with risk factors associated with either inherent 
system functioning or external conditions. In a noteworthy 
study, Barton et al. (2022b) conducted a compelling analysis 
by estimating variable influences, confirming that the num-
ber of previous failures holds the most dominant influence, 
followed by pipe length and soil moisture deficit, according 
to the particular conditions of their study. With a different 
approach, Fan et al. (2021) found that time interval—related 
to the number of previous failures—and the ambient tem-
perature were the most critical factors. The incidence of cold 
days, pipe length, and hot days as significant contributors to 
the pipe failure process followed this.

Prevalent explanatory variables

A fundamental objective of studies in this domain is to dis-
cern the critical explanatory variables that potentially drive 
variations in the frequency of failures in both the short and 
long terms. Furthermore, it is essential to determine how 
these variables can elucidate past observations and enable 
accurate predictions. The identified variables generally fall 
into three categories of paramount importance. Firstly, there 
are those frequently mentioned in most studies, such as the 
physical characteristics of the pipes, which encompass mate-
rial composition, age, length, and diameter. These variables 
benefit from an abundance of data records provided by Water 
Utilities. Examining the prevalence of physical factors and 
their ubiquitous inclusion in nearly all studies can be readily 
justified by the traceability of historical and contemporary 
data associated with this category. Incorporating pipelines as 
assets within geographic information systems coupled with 
hydraulic models for efficient network management renders 
this information essential to handle for service-providing 
companies.

Most studies consistently highlight the substantial 
influence exerted by this group of variables on pipe fail-
ures (Robles-Velasco et al. 2021). The extensive impact of 
these variables on the modelling processes can introduce 
significant biases in algorithms and hinder the interpreta-
tion of results. For instance, a pertinent example is when 
a model indicates that a more extended pipe section corre-
lates with a higher probability of failure (Jafari et al. 2021), 
linking this probability to factors such as traffic and opera-
tional stress (Mesalie et al. 2021). Numerous investigations 
affirm that length and the number of previous failures stand 
out as the most significant variables (Barton et al. 2019, 
2022b; Robles-Velasco et al. 2023). It is worth contemplat-
ing the normalization of explanatory variables, including 
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length, during the data pre-processing stage and consider-
ing whether the normalized data adheres to a normal distri-
bution. If not, alternative statistical distributions should be 
employed for standardization processes.

The number of documented previous failures serves as 
an operational parameter derived from the influential work 
of Le Gat and Eisenbeis (2000) and has demonstrated its 
significance in various model applications. Lastly, research-
ers often select additional variables tailored to the specific 
conditions of the studied networks. For instance, seismic 
activity is relevant for networks in regions susceptible to 
seismic events.

Physical conditions

Pipe materials constitute one of the most crucial variables 
influencing failures in drinking water pipes. Different mate-
rials exhibit distinct responses to changes in soil conditions 
and corrosion effects, necessitating the segregation of pipe 
material groups in failure models (Kabir et al. 2015b). As 
Barton et al. (2022b) stated, whether to separate or group 
various material types in the model inputs have been associ-
ated with differences in failure mechanisms based on mate-
rial type. Nevertheless, it has been proposed that considering 
the influence of variables on all materials, the seasonal vari-
ation in failure rate by material, and the lower failure rate 
of certain materials, leading to convergence failures in the 
models, a more realistic approach would be to implement a 
global model. A global model refers to one that incorporates 
all materials together in the analysis. Robles-Velasco et al. 
(2020) indicate that a global pipeline model performs effec-
tively, surpassing many models that segment their imple-
mentations based on material.

According to Nugroho et al. (2022) and Dawood et al. 
(2020b), introducing relatively new materials, such as vari-
ous densities of polyvinyl chloride, and the limited availabil-
ity of historical data pose challenges in the implementation 
of modelling compared to using data from older pipelines 
with different materials. These assertions stem from a sur-
vey that analysed failures in various materials for 1992 and 
1993. Regardless, there may need to be more historical data 
for these years for plastic materials, raising questions about 
such claims' validity.

The mechanisms leading to pipe failures, which vary 
based on the material, are well-documented and can be 
attributed to factors such as poorly manufactured pipes, 
improper installation, excessive operating conditions, or 
third-party damage (Mohammadi and Amador Jimenez 
2022; Nugroho et  al. 2022). These failure mechanisms 
may also include susceptibility to corrosion, degradation, 
and structural weaknesses. Nonetheless, it is essential to 
acknowledge that each network's specific operational, main-
tenance and environmental conditions introduce variability, 

preventing the generalization of observed behaviour for each 
material. Furthermore, the diversity in installation processes 
worldwide further impedes the standardization of failure 
causes.

An illustrative example of the variability in failure behav-
iour based on materials is evident when comparing results 
from different studies involving diverse networks and mate-
rials. For instance, Robles-Velasco et al.’s (2021) study 
reveals that asbestos-cement and cast-iron materials exhibit 
inferior performance. Conversely, Martínez García et al.’s 
(2021) study indicates that in comparison with asbestos-
cement pipes, ductile-iron and PVC pipes exhibit higher 
failure rates. These findings indicate that the failure rates of 
specific materials can vary significantly depending on the 
characteristics of the case in consideration.

Several authors indicate that older pipes are expected to 
have significantly higher failure rates, with studies suggest-
ing that pipe age has the most substantial influence on failure 
risk (Dawood et al. 2022). Regardless, in relatively young 
networks, age only emerges as a significant factor (Liu et al. 
2022). In other cases, age is an important explanatory vari-
able but not the most decisive in failure processes (Jafari 
et al. 2021; Assad and Bouferguene 2022).

According to Nugroho (2022), the precise factors influ-
encing the relationship between pipe age and failure rate 
have yet to be discovered. Variations might be attributed 
to differences in the quality and strength of the materials 
used. Some studies differentiate between the age of the pipe 
sections and the age of the connections and fittings. This dif-
ference may be significant at an operational level since the 
connections may have a different age than the sections and 
present distinct failure patterns, such as installation errors, 
compared to the pipe sections, which are more influenced 
by other failure processes.

Only one identifies length as one of the least critical vari-
ables among the studies analysed (Almheiri et al. 2021). 
Most studies agree that pipe length is either the most cru-
cial or one of the most significant variables. However, this 
assertion necessitates careful examination, as it is subject 
to essential conditioning factors. While longer pipelines 
are more exposed to physical risks such as loads from 
busy roads, varying soil and geological conditions, and an 
increased number of accessories due to their length, the 
probability of failure increases with the length, but it does 
not necessarily mean that length is the most decisive vari-
able. Therefore, standardizing variables becomes a funda-
mental process to avoid biases in the modelling process. 
Nevertheless, it is essential to recognize that length remains 
a fundamental factor.

The relationship between pipe length and failures is 
significant, influenced by various physical–chemical phe-
nomena affecting the pipe, such as the Soil Moisture Deficit 
(Barton et al. 2022b). These effects become more prominent 
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in long sections, including new installations and derivations, 
considering that longer pipe lengths often entail more acces-
sories, thereby increasing the likelihood of failure (Moham-
med et al. 2022). Additionally, terrain variability, factors 
like roads along the pipe route and pressure variations, can 
further influence failure probabilities over an extended pipe 
length.

In certain studies, researchers opted to omit pipe sections 
shorter than 0.5 m during data pre-processing to stream-
line the cleaning process of raw data (Robles-Velasco et al. 
2023). Other methodologies focus on identifying short pipe-
line segments for specific repair and replacement, avoiding 
substituting simultaneously entire kilometres of pipelines 
(Barton et al. 2022b). However, in the dataset of some stud-
ies (Almheiri et al. 2021; Barton et al. 2022b), pipes with a 
minimum length of 2 m are considered, and the concept of 
cleaning the raw data for these shorter pipe sections is also 
utilized.

Environmental conditions

As previously mentioned, soil's corrosiveness is a signifi-
cant environmental variable influencing water pipe integrity, 
particularly affecting susceptible pipe materials like steel 
(Kimutai et al. 2015). Soil movements and shrink–sink 
phenomena are considered less critical variables (Barton 
et al. 2022b). Regardless, these phenomena still need to be 
explored at the entire network level or for a more extensive 
pipeline dataset. Their long-term impacts under varying 
conditions may surpass their current understanding from 
laboratory-based studies. Further investigation is war-
ranted to assess their implications in real-world scenarios 
comprehensively.

A notable characteristic of each WDN originates from 
researchers' diverse interpretations of climatic variations 
(Laucelli et al. 2014). A prime example is the influence of 
winter conditions in regions experiencing ground freezing. 
In such cases, it becomes essential to distinguish failure 
events between warm and cold seasons to avoid introduc-
ing biases (Harvey et al. 2014). Nevertheless, a comprehen-
sive examination of the relationship between mean severity, 
installation, operation, maintenance conditions, and pipe 
failures is still needed to adequately cater to specific local 
requirements and address these local complexities. Fur-
ther research should be directed towards addressing these 
aspects.

Operational and management conditions

A variable that profoundly influences pipe failure processes 
yet is often overlooked in most studies is the time interval 
between failures (Robles-Velasco et al. 2023). Whether the 

time between failures or since the last failure is short or 
long, it has various impacts. This variable is associated with 
discovering failure events shortly after installation or repair 
(Fan et al. 2021), underscoring the critical importance of 
Water Utilities' installation, maintenance, and pipe repair 
processes.

The number of previous failures also exerts a significant 
impact on model performance. One reason is that Water 
Utilities can feasibly build a failure database, providing a 
valuable source of case histories with sufficient traceability 
to rely on for data. Nevertheless, other operational factors, 
such as hydraulic network configuration, population density 
(Fan et al. 2021), pressure changes, transient phenomena, 
water velocity, and temperature, present complexities in the 
assessment and calibration phases (Robles-Velasco et al. 
2020). Consequently, further research is necessary to evalu-
ate their relationship with pipe failure processes.

A dedicated study focusing on evaluating water physico-
chemical variables has revealed that residual chlorine and 
the number of road lanes influence the failure models' out-
comes (Almheiri et al. 2021). Another significant factor is 
the type of soil cover surrounding the pipes, which critically 
impacts failure probabilities, primarily when the pipes are 
situated under roads with heavy traffic.

Analysis of the different model outputs

As outlined in Table 8, the outputs of the different models 
can be grouped according to the specific interests of each 
group of researchers. Nevertheless, the criteria for these 
groupings often need to be clarified or reported. The risk 
estimation approaches (Rof and CRS), widely utilized in 
flooding studies and climate change resilience, have yet to be 
utilized in this field, with only 3% of the analysed publica-
tions employing these approaches.

Conversely, the Likelihood of Failure (LoF) approach has 
been more widely adopted, with 35% of the studies utiliz-
ing it. As defined by Le Gat (2014), the statistical approach 
used for estimating failure is based on the developments 
proposed by Rostum (2000), which suggested the use of 
the non-homogeneous Poisson process (NHPP). The NHPP 
approach has gained acceptance within the research commu-
nity due to its reliable results and solid mathematical founda-
tion. Moreover, derivations of Rostum's processes establish a 
formula for calculating the probability of a model parameter 
given observed failure times within a specific time interval.

Failure rate (FR) is a widely used output measure, reach-
ing 27% of use within this compendium. Statistical mod-
els have been widely used for estimating failure rates. In 
addition to these, as noted by Jafari et al. (2021), models 
such as artificial neural networks (ANNs), genetic algo-
rithms (GAs), and fuzzy inference systems (FISs) have also 
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emerged as popular alternatives for modelling and predicting 
pipe failure rates. The successful implementation of these 
models in recent decades stems from their ability to capture 
explanatory variables' behaviour, including past failures, and 
the data collection improvements that enable such models' 
implementation.

A significant category in the model outputs reported in 
the literature is the number of breaks/failures (NoB), which 
accounts for 27% of the output variability. Use of this out-
put had decreased over time, after reaching a peak between 
2008 and 2015, when many studies employed accessible 
regression models to implement and interpret with commer-
cial-available statistical software. Nonetheless, this output 
relies on assumptions of linear or exponential relationships 
between the future number of failures and some explana-
tory variables, such as pipe age (Karimian et al. 2021). This 
assumption has been challenged by several authors (Le Gat 
2014), who have shown that pipe age is not a relevant predic-
tor for some pipe materials, such as cement and plastic pipes 
(Robles-Velasco et al. 2020), while others have acknowl-
edged the role of age in affecting the structural condition of 
the pipes (Kabir et al. 2015a), but within specific contexts 
and limitations.

An alternative approach to interpreting the model results 
involves assessing pipes estimated remaining service life 
from an economic standpoint. This can be achieved by 
comparing the equivalent annual cost of installing a new 
pipe with the annual cost of maintaining the existing pipe 
in service (Snider and McBean 2021). Additionally, dete-
rioration curves are employed to estimate the service life, 
considering the concept of life cycle cost (Francisque et al. 
2017). However, this output's selection criteria and analysis 
often need to be clarified or available in some studies (Zan-
genehmadar and Moselhi 2016). Previously, this output was 
commonly associated with a linear or exponential vulner-
ability increase or failure risk (Fahmy and Moselhi 2009). 
Nevertheless, recent advancements have shifted away from 
linearization by adopting alternative algorithms (Snider and 
McBean 2021).

Outputs, such as those based on survival probability 
and mean time to first/subsequent failure, are also relevant 
because they account for the effect of left-truncated break 
records (Xu and Sinha 2021). Some of these studies empha-
size the number of previous failures as a key explanatory 
variable, showing how the selection of the modelling method 
influences the type of output and the explanatory variables 
used in the model.

Another approach to analysing the utilized outputs 
involves examining the relationships between the model 
types and their associated outcomes, as depicted in Fig. 7 
for the most frequently used results. Notably, models based 
on supervised learning predominantly select the “Likelihood 
of Failure” as their output, neglecting the use of “Number 

of Breaks/Failures.” This choice is logical, given that these 
algorithms' learning process involves computing probabili-
ties for predefined categories (Jo 2021), making them ideally 
suited for determining likelihoods.

On the other hand, models based on regression analysis 
are primarily associated with the “Number of Breaks/Fail-
ures” output, as these statistical techniques aim to predict 
variable values based on system variables, with the number 
of failures being of particular interest for projection. Proba-
bilistic models, however, do not yield a “Failure rate” output, 
as their focus is not on projecting future failures but on iden-
tifying failure rates concerning a risk element.

Conclusions and future research directions

This article delves into the essential field of Asset Manage-
ment concerning Water Infrastructure. Managing assets is 
vital in addressing water infrastructure challenges, encom-
passing economic, health, social, and environmental aspects. 
Effective Infrastructure Asset Management ensures water 
infrastructure's long-term maintenance and adaptability, 
mitigating ageing effects and potential obsolescence.

Various models are utilized to predict WSDN pipe 
failures. These models encompass a range of approaches, 
including statistical models and machine learning tech-
niques. They use historical data from Water Utilities and 
related explanatory variables to estimate the likelihood of 
future pipe failures. Some standard models used for this 
purpose include survival analysis models, regression mod-
els, neural networks, decision trees, and support vector 
machines, among others. These models play a critical role 
in enhancing the understanding of pipe failure dynamics and 
assisting Water Utilities in making informed decisions for 
effective asset management and infrastructure maintenance.

What criteria influence the decision to incorporate 
explanatory variables into the processes?

Incorporating explanatory variables in DWPF modelling 
processes significantly impacts these procedures. Explana-
tory variables provide the information that models utilize 
to formulate their predictions. By considering the influ-
ence of variables on predictive model accuracy and reli-
ability, the model's robustness increases, resulting in more 
precise predictions. It is crucial to ensure that these data 
accurately represent the behaviour of the analysed system's 
inventories, including failure data, within a suitable time-
frame that aligns with the models' algorithmic require-
ments and the needs defined by the service and stakehold-
ers, subject to the existence of such data inventories.
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The appropriate selection of explanatory variables is 
essential for reducing potential interferences in under-
standing causal relationships and their impact on the 
results obtained. The use of machine learning models, 
which is increasingly prevalent, can complicate interpret-
ability due to their inherent nature, making it challenging 
to analyse the influence of each variable on the outcome. 
Consequently, this hinders identifying possible improve-
ment actions in the planning and operation/maintenance 
stages of Water Utilities. In complex systems like those 
analysed, some variables may be interrelated. For instance, 
some models employ the variable “time between failures” 
instead of “age,” a technically suitable decision as it 
assigns more significance to data related to failure events 
in an unbalanced context. Furthermore, if the variables 
used in the models are overestimated, the quantification 
of uncertainty will also be affected.

Identifying the most relevant variables is critical for 
constructing parsimonious models and preventing overfit-
ting, reducing computational requirements and complexi-
ties in model implementation. This consideration gains 
particular significance when considering the resource limi-
tations in the context of current and future optimization 
efforts. The generalizability of the models for application 
in various scenarios and systems also relies on the choice 
of explanatory variables. An appropriate selection of these 
variables will positively influence the models' capacity to 
be trained and implemented on diverse datasets within the 
same system or for a new group with updated time ranges 
for the Water Utilities' inventories.

What potential future research directions exist 
considering DWPF modelling and explanatory 
variables?

Further research is required to gain a deeper understanding 
of the sensitivity levels of variables in the most representa-
tive models and how environmental conditions impact vari-
able selection, enhancing our comprehension of the com-
plex interaction between these variables. Addressing this 

issue necessitates executing large, controlled trials with test 
networks to provide more information and enhance future 
model accuracy.

To the best of our knowledge, no existing research has 
focused on exploring techniques to ensure the necessary rep-
resentativeness of a selected test network. Understanding the 
complexity of selecting the most appropriate network for 
testing is crucial to improve the study of variables in pipe 
failure models. Assessing the impact of these variables on 
large distribution networks incurs high computational costs. 
However, by ensuring a suitable selection of a test network, 
these computational expenses can be significantly reduced, 
streamlining the optimization processes in the models.

A future approach involves identifying how the network's 
complexity interacts with variables and assessing whether 
a model suits specific network or sub-network typologies. 
A study's potential source of bias is the researcher's influ-
ence on the network selection, whether a section, such as a 
hydraulic sector, or an entire distribution network. Despite 
this limitation, a methodology is yet to be identified and 
applied to define test networks in a controlled environment 
to establish the proper conditions for evaluating model per-
formance and variables.

The evidence from this study suggests that further work 
with a broader range of networks exhibiting more signifi-
cant variability and physical location could provide deeper 
insights into identifying patterns or dynamics of variables 
and network behaviour under defined patterns of operation 
and maintenance. Additional research is required to examine 
the long-term efficacy and safety of pipe installation, opera-
tion, and maintenance procedures, as they profoundly impact 
the probability of failure.

An arguable weakness of the current research lies in the 
inability to directly apply specific models designed for one 
network to another without modifying the studied vari-
ables and parameters affecting each stage of the modelling 
process, as the methods may not be readily transferable or 
comparable. A standardized performance metric is crucial 
to interpret model results confidently. Addressing this issue 
requires creating and validating a methodology that allows 

Fig. 7  Number of selected 
outputs concerning the utilized 
model types: a graph relating 
the four most frequent output 
types
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the evaluation of model performance, not only between dif-
ferent models for the same network but also between mod-
els used in different networks. This standardization require-
ment is vital when specifying the measurement conditions of 
explanatory variables, considering both their spatiotemporal 
variability and the range of data collection.

What limitations can be identified in the current 
analysed studies?

Several limitations are identified in the reviewed studies. 
One area for improvement is the focus on specific datasets 
or water supply systems, which restricts the generalizability 
of their findings to broader applications. Comparing results 
between different systems becomes challenging due to vari-
ations in data quality and time availability. Therefore, under-
standing how the heterogeneity of local conditions, such as 
material distribution, times between failures, lengths, and 
other essential variables, impacts the results and model fit-
ting processes requires careful consideration.

The prevailing focus of existing studies has been on 
applying failure prediction models rather than conducting 
a comprehensive examination and understanding of the 
explanatory variables associated with failure processes. 
Most of the analysed studies do not provide a criterion to 
identify the most significant variables. The recent utiliza-
tion of machine learning techniques has further complicated 
the determination of explanatory variable importance in the 
modelling process. Consequently, limitations in model appli-
cability often arise due to the necessity for in-depth analysis 
of the variables integrated within the models.

While the current literature on DWPF primarily addresses 
the availability of data provided by Water Utility operators, 
it is crucial to emphasize the active involvement of service 
operators throughout the entire process, extending well 
beyond the mere provision of data for pre-processing pur-
poses by researchers. The practical knowledge of operators 
enables modellers to comprehend the impact of variables on 
the models and facilitates the functional definition of hyper-
parameters governing the behaviour of machine learning-
based models.

Ensuring adequate systems, services, and support for 
managing historical data, which forms the basis of the mod-
els, should be a top priority for researchers. Relying solely 
on blind data management at a statistical level, without con-
sidering the substantial variability inherent in local distribu-
tion networks, raises concerns about the viability of such 
research strategies. Expertise in modelling processes cannot 
replace enhancing the quality of underlying data collection 
processes in system administrations.

The generalizability of model outputs faces limita-
tions that could compromise their validity. Replicating 
these outputs becomes challenging due to various factors, 

primarily when models heavily depend on Water Utility 
data, potentially overlooking valuable historical infor-
mation. A more comprehensive approach would involve 
examining a large, carefully selected sample of data 
directly from the Water Utilities database, thereby reveal-
ing how variables interact before comparing the perfor-
mance of statistical or machine-learning-based failure 
models.

Limited research addresses the types or groupings of 
characteristics significantly influencing model outcomes. 
Many studies solely focus on identifying the best model 
without thoroughly analysing local conditions and their 
relationship to the importance of variables or even iden-
tifying critical variables. A detailed investigation of how 
specific variables influence the system, or its components 
is necessary to determine the best model comprehensively. 
Therefore, exploring these variables' contextual relevance 
and contribution is vital to gain a deeper understanding of 
their impact on the system.

One aspect that has yet to be analysed in the various 
studies is the impact of introducing a new dataset, such 
as a new inventory period, into the model. Examining the 
results of incorporating a new dataset can help prevent 
overfitting, where models perform well with training data 
but poorly with unseen data. Additionally, bias in data col-
lection may affect the model's ability to generalize to new 
scenarios. Considering these limitations can enhance the 
validity and applicability of future research in water pipe 
failure modelling and their explanatory variables.

Another crucial area for improvement is the necessity 
to analyse the entire universe of data a system could pro-
vide. Some studies only examine a sample that may or may 
not be statistically representative; however, no criteria are 
presented to demonstrate how this sample represents the 
system. By not analysing the entire system, the obtained 
results do not consider the system's overall impact on the 
model, introducing a methodological limitation. This 
exclusion of external behavioural factors inherent in 
the overall system dynamics oversimplifies the analysis, 
affecting the robustness of the model's results.

This study has yet to explore the time constraints of 
each investigation. The time horizon column of Table 7 
in Appendix 1 is particularly valuable as it indicates that 
most of the analysed studies “predict” failures but do not 
specify the specific time frames of these predictions. It 
does not even highlight cases where the models' limita-
tions prevent defining how many years or periods ahead 
the results are applicable. Making predictions for extended 
periods requires a sufficiently representative inventory 
database with a time frame like the one being predicted. 
Notably, in some cases, the considered base data's time 
for the study's execution needs to be mentioned. The age 
and quality of system failure inventories constrain the 
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development of solutions in this area. Regardless, when 
creating and implementing models that involve predic-
tions, it is essential to consider the time constraints to ana-
lyse the model's implementation and the results obtained 
thoroughly.

What are limitations of this study?

The findings of this study offer valuable insights for 
researchers and water supply network planners to iden-
tify relevant variables for their pipeline failure prediction 
models. Yet, the scope of this document is limited to the 
identification of variables. It serves as a guide for the selec-
tion process, encompassing data acquisition, management, 
treatment, and interpretation. The unique conditions of each 
network and service demand a thorough examination.

The quality of the data used stands as a crucial criterion 
in variable selection. It has been established that the use of 
incomplete or low-quality data negatively impacts the pre-
dictive capabilities of the model (Fan et al. 2021). Determin-
ing data quality depends on the nature of the data and local 
conditions. For example, a distribution system characterized 
by significant pressure fluctuations, in combination with pip-
ing materials sensitive to such changes and transient events, 
necessitates representative temporal and spatial pressure 
data to incorporate pressure behaviour as an explanatory 
variable for failure processes.

Among the most significant limitations of this study, it 
was not feasible to analyse the data sample sizes, which 
could affect the generalizability of the conclusions to a 
broader population. Conducting such an analysis could 
suggest sample size parameters based on the type of model 
and variables considered. From a research perspective, we 
needed access to the base data of each study, preventing 
us from verifying the accuracy and reliability of both the 
base data and the results. Not knowing the characteristics 
of the networks being analysed further contributed to this 
limitation.

The examination of variable effects on the modelling 
processes was limited, as it relied solely on published stud-
ies, which impacted the comprehensiveness of the analysis. 
Additionally, not all variables could be thoroughly analysed 
due to space constraints, leading to selecting the most rep-
resentative ones for detailed examination. The conclusions 
of the studies might have been influenced by external factors 
or unaccounted variables that were not considered in the 
analysis. The analysis of explanatory variables may have 
been more intricate, but the studies may have yet to reflect 
this complexity in their findings fully.

Appendix 1

See Tables 7, 8 and 9.
Factor ID descriptions are as follows:
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