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A B S T R A C T

The reliability of the water distribution system is critical to maintaining a secure supply for the population,
industry and agriculture, so there is a need for proactive maintenance to help reduce water loss and down times.
Bayesian networks are one approach to modelling the complexity of water mains, to assist water utility com-
panies in planning maintenance. This paper compares and analyses how accurately the Bayesian network
structure can be derived given a large and highly variable dataset. Method one involved using automated
learning algorithms to build the Bayesian network, while method two involved a guided method using a com-
bination of historic failure data, prior knowledge and pre-modelling data exploration of the water mains. By
understanding common failure types (circumferential, longitudinal, pinhole and joint), the guided learning
Bayesian Network was able to capture the interactions of the surrounding soil environment with the physical
properties of pipes. The Bayesian network built using data exploration and literature was able to achieve an
overall accuracy of 81.2% when predicting the specific type of water mains failure compared to the 84.4% for
the automated method. The slightly greater accuracy from the automated method was traded for a sparser Bayes
net where the interpretation of the interactions between the variables was clearer and more meaningful.

1. Introduction

The robustness, reliability and resiliency of networked infra-
structure are vital to the economy, security and wellbeing of a country.
The water distribution system is a networked infrastructure, where the
pipes constitute the arteries of the network that helps supply water for
multiple purposes. In England and Wales in 2017–18 the average
number of bursts across all supply companies was about 150 per
1000 km of mains [1], creating a substantial maintenance workload and
cost for the companies. Investing substantial amounts of money into
repairing and rehabilitating aging underground water supply assets is
an ongoing process; however, this does not immediately solve or miti-
gate disruptions from unplanned maintenance [2]. Down times from
unplanned maintenance can severely inconvenience consumers, while
unrepaired leaks cause substantial losses, adding to the volume and cost
of water that must be abstracted and treated. Thus there are both fi-
nancial and social motivations to improve the reliability of the dis-
tribution system. In the UK, the industry regulator (Ofwat) sets stan-
dards for leakage, with the power to impose penalties for non-
compliance.

A solution would be for water companies to undertake a more
proactive form of maintenance, which would not only include the

monitoring of underground assets, but also correction of failure root
causes rather than the immediate symptoms [3]. Proactive maintenance
would allow the water distribution system to be more robust when
faced with different hazards and extreme weather [4]; however,
proactive maintenance requires a sound and extensive risk and relia-
bility assessment. This is because to find root causes in failures there is a
need to not only identify the risk factors in the water distribution
system, but also understand the dependencies between them [5].

The complexity of the water distribution system calls for advanced
methods to model it. There has been previous research on using
Bayesian networks to model the water distribution network [6–9], but
these have not considered newer materials, such as plastic pipes. The
aim of this research was to compare two approaches to building
Bayesian networks to model the likelihood of failures for a wide range
of pipe materials: an automated data-driven method and a guided
method using prior knowledge and conventional data exploration. To
be useful and trusted in practice, the model should give a structure that
is comprehensible to the users and give results that agree with the data.

2. Water distribution system

In this study, pipe failures were modelled as circumferential,
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longitudinal, pinhole and joint failures. By representing how these
common pipe failures occurred, the Bayesian network should able to
link the surrounding soil environment interactions with the different
physical properties of pipe.

Metallic pipe failures from crack formations can occur circumfer-
entially or longitudinally and can be instigated by corrosion. Corrosion
such as graphitisation is a form of selective corrosion/leaching of the
pipe material that can occur internally and externally, with a common
occurrence seen in cast iron and ductile iron pipes [10]. A longitudinal
split or blowout hole on metallic water pipe (Fig. 1) is mainly due to the
combination of reduction in wall thickness from corrosion and internal
water pressure, where the weakened pipe section can no longer with-
stand the forces from the water pressure [11].

Circumferential fracture of the pipe involves the movement of the
surrounding soil near the failure area; common associations with this
failure are poor bedding and frost penetration of the soil (Fig. 2). There
is increasing evidence of corrosion occurring in pipes that have failed
due to circumferential fracture [12]. The occurrence of corrosion could
have been due to leaks created by cracks developed on the pipe. Water
leaking into the surrounding environment could gradually erode the
soil supporting the pipe, resulting in a circumferential fracture.

Different materials have different mechanical properties (common
properties considered are strength, ductility, hardness, impact re-
sistance, and fracture toughness), which directly affects the structural
integrity of the pipe. Specific materials are used for large diameter pipes
(e.g. transmission pipes) and small diameter pipes (e.g. water supply
pipes) as the water volume, water pressure, water velocity, and me-
chanical loading differs greatly for different purposes. For example,
since 1982 ductile iron has replaced grey cast iron as the material of
choice for transmission pipes, as the material exhibits the same desired
mechanical properties such as strength, which can manage efficiently
the rigors of internal and external loadings (e.g. high water pressure
and harsh terrains) and an expected long service life, but is more ductile
and less prone to graphitisation [11].

Even though there are more effective protective layers now avail-
able for metallic pipes, the ease of installation and the corrosion re-
sistance of plastic pipes have resulted in increased use of medium and
high density polyethylene and polyvinyl chloride (MDPE, HDPE and
PVC) for new pipes [10]. PVC pipes were first produced in the 1950s
and gained popularity as material for water supply pipes in 1960 [13].
However, before installation PVC pipes used in the water distribution
system should be handled with care, as performance can be severely
reduced if they are exposed to direct sunlight before installation. PVC is
a better choice for small diameter pipes compared to metallic pipes as

the mechanical characteristics allow for a smaller wall thickness whilst
under the same nominal water pressure [14]. PVC also has a more fa-
vourable modulus of elasticity (ability for material to return to its initial
state after deformation); therefore, PVC pipes have a lower risk of
bursting compared to metallic pipes when under similar bending mo-
tion. From 1980 to 2017 PE pipe had an 11-fold increase from 8498 km
to 101,053 km and PVC pipe from 41,862 km to 68,594 km (see Fig. 3,
based on the UK Water Industry Research database described in
Section 4).

3. Bayesian networks

Bayesian networks are part of a branch of statistical tools called
advanced graphical models that can describe probabilistic relationships
between variables [15]. A Bayesian network consists of two parts: a
qualitative part in the form of a directed graph, and a quantitative part,
in the form of conditional probability tables [16]. A directed graph
consists of directed edges and nodes, where the variables in the model
are represented by the nodes and the directed edges between the nodes
indicate informational or causal dependencies among the variables
[17]. Within this description, it will be assumed that all the variables
have a finite number of possible values, although generalisations to
continuous variables are possible. In a Bayesian network an important
restriction is that the directed graph must be acyclic, that is the edges
must not create loops or cycles within the network [18].

It is often assumed that the directed edges in Bayesian network
represent causal relationships; however, probability theory is not in-
trinsically able to express causality, so edge directions are not ne-
cessarily indicative of causal effects [19]. However, it can also be ar-
gued that there is a case for the usage of the term ‘causal’ for edges in
manually constructed Bayesian networks, as they are usually designed
to represent the prior understanding of the causal structure. These
manually constructed Bayesian networks are usually fairly sparse and
their interpretation is clear and meaningful: “It seems that if conditional
independence judgements are by products of stored causal relation-
ships, then tapping and representing those relationships directly would
be a more natural and reliable way of expressing what we know believe
about this world. This indeed is the philosophy behind causal Bayesian
networks” [20].

When two nodes are connected by a directed edge, the node at the
tail is called the ‘parent’ and the node at the head is called the ‘child’, so
the arrow points from the parent to the child (in Fig. 4, A and B are
parents of C). If a node does not have any parents (nodes A and B in
Fig. 4), the node will contain a marginal probability table that gives the
probability of each of the possible states. Each node with parents con-
tains a conditional probability table, giving the conditional probability
of each of its states for every combination of states of its parent(s).

Fig. 1. Longitudinal split and blowout hold of pipe (from [11]).

Fig. 2. Circumferential fracture of pipes (from [11]).

Fig. 3. PE and PVC total pipe length installed in UK in 1980 and 2017.
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These tables then allow the joint probability distribution of all the
nodes to be calculated. Bayesian networks are attractive for probabil-
istic reasoning because their structure allows them to be decomposed
for efficient calculation of the joint distribution in typically sparse
networks in practice [21], although it is NP-hard in general [22].
Bayesian inference can be used during the construction of the model to
‘learn’ the conditional probabilities by entering evidence into multiple
nodes, or when the model is being used to update the distributions of
other nodes when evidence is entered at one or more nodes.

The flexible nature of Bayesian networks, due to their non-para-
metric nature and ability to deal with relationships between variables,
may be especially well suited for environmental applications and risk
assessments such as pipe failure in water distribution systems. Bayesian
networks can also carry out probabilistic inference easily and efficiently
for each specific failure outcome by considering the variables involved,
rather than updating the whole model [21]. Another significant benefit
of Bayesian networks is that they allow for the conditional de-
pendencies or causal interactions between variables to be visualised.
This provides an intuitive way of observing the relationships allowing
stakeholders to make informed decisions in response to different hazard
scenarios.

Identifying the structure of the Bayesian network is an extremely
important first step in this method, comparable to model selection in a
conventional statistical model. The second step, estimation of the
probability tables, is equivalent to parameter estimation in statistical
model. The initial structure learning process can be performed by using
structure-learning algorithms that use optimisation methods to attempt
to identify the relationships from the data to maximise likelihood or
minimise measures such as the Bayesian Information Criterion, or can
be guided manually using domain knowledge. The estimation of the
probability tables is usually performed by statistical inference and op-
timisation, although conditional probabilities are sometimes estimated
directly from data when the network is being constructed manually.

4. Methods

The water distribution system in the United Kingdom was selected
as a case study for modelling in the Bayesian network. The pipe failure
data and national pipe database were kindly provided by UK Water
Industry Research (UKWIR) and the soil corrosivity and shrinkage da-
tabase by Cranfield University's Land Information System (LandIS). The
UKWIR pipe database includes the following pipe properties: whether a
pipe was lined, pipe material, pipe age, pipe length and pipe diameter.
Two methods were tested to derive the Bayesian network structure with
the given data: an automated learning method and a guided method
utilising literature and expert knowledge.

4.1. Data preparation

The UKWIR pipe failure and national pipe databases were cleaned
before they were used in the Bayesian network learning process using
statistical software R [23]. Data cleaning ranged from searching for
non-coherent data such as failure dates occurring before installation
dates to identifying non-unique pipe IDs and entries with missing data

(e.g. missing pipe diameters, missing pipe materials etc.). The co-
ordinates of the pipe failures found in the failure data were analysed
against their start and end coordinates in the national pipe data to
ensure that the data matched. There was an effort to keep as much of
the data as possible, as excessive data removal of data would lead to a
loss of information. Proxies for the missing data were used in some
cases and where possible were provided by UKWIR. For example, if the
installation date for grey spun cast iron pipe was missing, the year 1950
was used, as that was the year when this type of manufacturing tech-
nique was last used in a water mains capacity. When grouping in-
formation on whether pipes were lined or not, slip lining and close fit
methods were reclassified as new pipes in the UKWIR data with a new
installation year, so they were removed from the general pipe lining
population.

Although some of the variables, such as pipe diameter, length and
age were theoretically continuous, their distributions could not be de-
scribed by standard parametric distributions, and the parameter
learning algorithm required discrete distributions, so the values were
grouped into discrete intervals. Water pipes with similar functions tend
to share characteristics. For example, communication pipes, which
deliver water to houses from water mains, are generally short and small
in diameter, whereas, trunk mains are generally long and large in
diameter. As a result, many of the values fell naturally into groups re-
lated to the functions of the pipes, within which the variability in the
data was small and often localised around one value. Pipe diameter
(mm) took discrete values, but these were too numerous to use and
contained clusters of similar values (for example older pipes converted
from British customary units and newer ones in metric units) for
functionally equivalent pipes, which were grouped into [0–50),
[50–200), [200–400), [400–600) and [600+]. Pipe length (m) was
grouped into [0–25), [25–100), [100–200), [200–500) and [500+].

Pipe age (years) was also divided into discrete ranges of [0], [1–20),
[20–40), [40–60), [60–80) and [80+). These not only reflected the
periods when different materials were introduced, but also acted as a
performance measure proxy similar to Kabir et al. [7], where each in-
creasing discretised level represented a higher level of potential failure
(from very low probability to very high probability) in relation to the
aging of the material. The pipe materials were grouped into asbestos
cement, ductile iron, grey cast iron, steel, glass reinforced plastic,
polyethylene, and polyvinyl chloride. Decommissioned pipe data with
no prior failures was combined with failure data to see how well the
Bayesian network would perform after preventive maintenance actions.

The final dataset was then partitioned into three sets: training
(60%), testing (20%) and validation (20%). More failure data was
placed into the training set, as it was expected that the model would
learn better about the pipe failure characteristics. Each set was then
used in specific phases of the Bayesian network building, this process
was done to test for generalisation error in supervised machine
learning. The data was partitioned using the function
createDataPartition located in the R package caret [24]. The soil data
was mapped onto the UKWIR failure and national pipe database with
Geographic Information System (GIS) program ArcMap [25] using a
spatial join.

4.2. Automated structure learning of Bayesian network

The automated learning method used a hill-climbing algorithm from
the bnlearn [19,26] R package. The hill-climbing method is a score-
based technique that starts with an empty network structure of all
variables, then proceeds by adding, removing and reversing edges be-
tween nodes to maximise the goodness of fit of the model. The score for
the goodness of fit in bnlearn utilised the log-likelihood loss, which is the
negated expected log likelihood; hence, the lower the score the better
the fit [27,28]. The structure of the Bayesian network was final when
the score could no longer be improved.

Fig. 4. Directed acyclic graph of events A, B and C.
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4.3. Data and knowledge guided structure learning of Bayesian network

4.3.1. Literature review
An extensive literature review was conducted to understand not

only the risk factors involved with underground water distribution
system asset failure, but also to identify the dependencies between
them. The database from LandIS allows for surrounding soil char-
acteristics to be taken into account in the form of corrosivity and shrink
swell, thus along with the failure pipe data a Bayesian network can be
used to model the different pipe failure types.

4.3.2. Data exploration
In the guided method, the data collected and knowledge used to

build the structure of the Bayesian network worked in parallel. An
approach similar to the one introduced by Babovic [29] was utilised to
incorporate domain knowledge, where the Bayesian Network was
constrained before combining with raw data. The domain knowledge
consisted of information from experts and prior information available
from historical data. The data exploration and pipe failure knowledge
allowed for a more intuitively reasonable conceptual Bayesian network
to be developed, by constraining the interactions between variables and
imposing well-researched and known causal interactions that lead to
pipe failures.

The statistical analysis of the data explored the relationships be-
tween the variables and the causal links found from the literature. The
focus of the data and knowledge combination method was to obtain a
structure of the Bayesian network that held true from an engineering
point of view (literature knowledge) and real-life failure occurrences
(data collected).

The exploration stage was carried out with visualisation of the data
using boxplots and traditional multiple variable comparative statistical
techniques. One-way analysis of variance (ANOVA) was used to test
whether potential causal variables had significant effects on the pipe
age at failure. If so, Tukey's honest significant difference test was used

to identify which pairs of values of the variables were associated with
significant differences. While it is uncommon to combine traditional
statistical analysis with Bayesian network modelling, in this exploratory
phase the decision was made to use the familiar classical approach
rather than a Bayesian alternative.

4.4. Parameter learning

The structure of the Bayesian network was imported into GeNie, a
general purpose Bayesian network commercial software [30] for the
parameter learning stage. Likelihood maximisation with randomized
initial values for the parameters was used, so that the process could be
repeated from different starting points to avoid local minima. The
process was completed when the expectation maximisation algorithm
converted; that is, when the negative log likelihood had been mini-
mised.

4.5. Validation

After learning the parameter values, the goodness-of-fit of the
Bayesian network was validated using the receiver operating char-
acteristic curve and the confusion matrix against the validation dataset.
The receiver operating characteristic curve was used to express the
quality and accuracy of the Bayesian network independent of the
classification decision. It was created by plotting the true positive rate
against the false positive rate for all threshold settings between 0 and 1.
The true-positive rate is also known as sensitivity and the false-positive
rate is also known as the false alarm rate and is the converse of the
specificity [31]. The area under a receiver operating characteristic curve
quantifies the overall ability of the test to discriminate between cases
where a failure has occurred or not. Values close to 1 represent good
performance, while 0.5 is no better than random.

Fig. 5. Bayesian network constructed using Hill-climbing algorithm from R bnlearn package.
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5. Results

5.1. Automated structure learning of Bayesian network

The Bayesian network built using the hill-climbing algorithm
(Fig. 5) had a complex structure with a large number of connections
between the nodes. These included edges directed from the failure
consequence nodes to risk influencing nodes (e.g. from circumferential
failure to soil shrink swell), contrary to the naïve causal interpretation.
There were also edges between design variables (e.g. pipe length
linking diameter), between environmental variables (soil corrosivity
and shrink swell), between consequence variables (e.g. from long-
itudinal failure to circumferential failure) and between variables that
would be expected to be independent (e.g. lined pipe and soil shrink
swell). These apparently unrealistic relationships arising from unguided
fitting of a model to a large set of highly variable data, meant that the
model would not be credible to industry practictioners.

5.2. Data and knowledge guided structure learning of Bayesian network

5.2.1. Literature review
A summary of contributing factors to water distribution system

failure reported in different studies is presented in Table 1
[6,7,13,32–48]. From the literature, corrosion along with material
variability were found to heavily influence failure rates [49–51]. The
weather is also an important influencing factor on soil shrinkage as it
affects the moisture in the soil, when there is wet weather the soil will
expand and shrink when there is dry weather. Under soil expansion,
vertical loads, typically crushing loads, are exerted onto the pipe, while
soil shrinkage induces shear stress [52]. Therefore, there was a need to
combine soil corrosivity and shrink swell data with the pipe failure data
in the Bayesian network.

Due to their absence in the data, certain important variables iden-
tified in the literature were not able to be included in the Bayesian
network; hence, during the analysis proxies were used in their place.

The pipe diameter was used as surrogate for the wall thickness, as there
was a positive correlation between pipe diameter and wall thickness.
Short pipe lengths could indicate possible fittings or junctions in roads.

The lining inside the pipe plays a role in reducing or mitigating
internal corrosion, where common lining methods included cement
mortar, epoxy and rapid cure, slip lining and close fit. Therefore a
variable stating whether a pipe was lined was included in the Bayesian
network.

5.2.2. Data exploration
All of the variables identified from the literature review as poten-

tially important that were available in the data (directly or via proxies)
were explored. The effects of the variables on the pipe age at failure
were firstly visualised in boxplot diagrams; observations from the
boxplots ranged from obvious differences between states (Fig. 6) on
mean pipe age at failure to more subtle differences (Fig. 7). Fig. 6 shows
that each material probably had a different mean pipe age at failure,
where it is most apparently shown between grey cast iron and glass
reinforced plastic pipes. On the other hand, some variables exhibit
boxplots where states have similar median, interquartile range and data
range (e.g. Fig. 7 between the states 100 m–200m and 200 m–500m).

The one-way ANOVA (Table 2) found low p values (p < 0.0001) for
all the variables considered, indicating that they all had significant
effects, even when boxplots showed small effects, such as Fig. 7.
However, the residual sum of squares was still large for all variables.
This is commonly found in large, highly variable data sets, where small
differences may be statistically significant, but not practically im-
portant.

For each variable, a Tukey honest significant difference test was
used to test whether the difference in response between each pair of
values of the variable was significant. For the pipe materials (Table 3),
which had the lowest residual sum of squares, the results indicated that
the difference in mean pipe age at failure was both large (typically
greater than 10 years) and highly significant between every pair of
materials, as the adjusted p-value was zero or close to zero, apart from

Fig. 6. Boxplot of pipe age at failure against pipe material.
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between polyethylene and glass reinforced plastic (p=0.88). The pipe
failure data contained only a very small number of records for glass
reinforced plastic pipes, so there is more uncertainty associated with
results. For pipe length (Table 4), the differences were generally smaller
(less than 4 years), but most were significant. It is unclear whether this
difference is of practical importance, but pipe length was being used as
a proxy for the number of junctions, so it was retained in the model.

Based on the analysis, there was no reason to exclude any of the
variables considered from the model. The final model structure is
shown in Fig. 8 and Fig. 9.

5.3. Parameter learning of Bayesian network

The goodness-of-fit of both Bayesian networks was tested by the
receiver operating characteristic curve and calculating the proportion
of correct responses (accuracy) when comparing fitted results with the
validation dataset using the Bayesian network against actual results.
The guided Bayesian network obtained an overall model accuracy of
81.4% on validation data and the automated Bayesian network ob-
tained a slightly higher accuracy of 84.4% (Table 5). The greatest dif-
ference in prediction accuracy between the two methods was for pipes
decommissioned without failures with the guided Bayesian network
having a comparatively lower accuracy of 65.9% compared to the au-
tomated Bayesian network of 79.1%. This was not unexpected, as the
network from the automated method contained more interconnections
between nodes, and hence more fitted parameters, than the guided
method. Although the guided learning Bayesian network was much
sparser, it was only less accurate by 3%.

The area under the receiver operating characteristic curve also
shows that the performance of the two methods was either similar
(longitudinal and circumferential failures) or the automated method
performed better (Table 6). Figs. 10 and 11 show an example for the
longitudinal pipe failures: the area under the curve was 0.72 and 0.75

for the guided and automatic methods respectively, which indicated
that both Bayesian networks were “good” at separating cases where
longitudinal breaks had or had not occurred.

From the training dataset used in parameter learning of the
Bayesian network, grey cast iron contained the majority of failures
(67%). Grey cast iron has been installed in the UK water distribution
system for the longest period and it is the most abundant pipe material
with 173,203 km (as of June 2017 from UKWIR national mains data), so
this may not be a surprising result. It also supports the finding that the
majority of failures are circumferential breaks and pinhole failures, as
they are both common failures in grey cast iron. It was found that a
majority of failures occurred in low shrink swell and low corrosivity
soils; this is probably due to a high proportion of water pipes being

Fig. 7. Boxplot of pipe age at failure against pipe length.

Table 2
One-way ANOVA test between all variables and pipe age at failure.

Degree of
freedom

Sum of squares Mean
square error

F value Pr(>F)

Shrink swell 5 651,519 130,304 134 <2.2e-16
Residuals 98,756 95,912,626 971
Corrosion 8 580,708 72,588 75 <2.2e-16
Residuals 98,753 95,983,437 972
Pipe diameter 4 336,163 84,041 86 <2.2e-16
Residuals 98,757 96,227,982 974
Pipe length 4 86,224 21,556 22 <2.2e-16
Residuals 98,757 96,477,921 977
Lining 1 317,570 317,570 326 <2.2e-16
Residuals 98,760 96,246,575 975
Failure type 3 2,648,085 882,695 928 <2.2e-16
Residuals 98,758 93,916,060 951
Pipe material 6 29,638,802 4,939,800 7289 <2.2e-16
Residuals 98,755 66,925,343 678
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installed in these soils, because they have the most suitable conditions
for underground pipes.

Further analysis with the Bayesian network found that there was a
higher probability of early life pinhole and joint failures for plastic
pipes than grey cast iron pipes (Table 7). For PE pipes 35% and for PVC
pipes 29% of these types of failures occurred in the initial installation
year, compared to 10% for grey cast iron pipes. The total rate of PVC
pipe failures consistently fell over time, whereas the failure rate of PE
pipes remained relatively static from initial installation to year 20,
before a fall of 8% from year 20 to year 40. On the other hand, grey cast
iron failure rates were relatively low from initial installation to year 20,
but increased rapidly from year 20 to year 40.

6. Discussion

6.1. Automated structure learning of Bayesian network

The data was cleaned thoroughly before modelling, but the auto-
mated algorithm is not immune to errors in the data regardless of how
well the data is cleaned. Hence, it was possible that relationships could
be wrongly determined or omitted due to unrepresentative or noisy
data. The basic hill-climbing algorithm that was used requires the joint

variables in the underlying network to follow a multinomial distribu-
tion, but in reality the data may not support this and with high-di-
mensional datasets this adds another layer of complexity for the auto-
mated learning.

This method resulted in a network that was complicated by re-
lationships that existed in the data, but were not relevant to the aim of
predicting failures from environmental and design variables. For ex-
ample, there were relationships between design variables such as pipe
lining and diameter (because small pipes are unlikely to be lined), and
between soil characteristics (corrosivity and shrink-swell). Including
these relationships will increase the complexity of the calculations
during probabilistic inference.

6.2. Data and knowledge guided structure learning of Bayesian network

ANOVA makes assumptions of normality, homoscedasticity and
absence of multi-collinearity, but the data did not meet all of require-
ments. For example, the distribution of age at failure was skewed and
‘long-tailed’ rather than normal, which is typical of failure time dis-
tributions, and the variance depended on the pipe material. The
ANOVA had high residuals but low p-values, as is often the case with
very large, highly variable datasets [53]. As a classical statistical
method, its assumptions differ from those of Bayesian probability
theory. However, the ANOVA results were used for only indicative
purposes to examine relationships between variables identified from
literature, these limitations were not critical.

The proposed Bayesian network model is imperfect, but could be a
useful basis for utilities to build upon and to guide the collection of
appropriate data for analysis in future. Bayesian networks are also
‘portable’ in the sense that, if the model was built correctly it is easy to
provide prior distributions and include knowledge specific to another
water distribution system without losing the historic information. The
flexibility of Bayesian networks for both prognostic (forward) and di-
agnostic (backward) reasoning means that they can be integrated with
cost models to aid decision making and also be extended onto multi-
hazard frameworks when looking at external factors such as earth-
quakes, landslides and climate change etc.

6.3. Comparison of automated and manual network construction

In many industries comprehensive data collection has still not been
achieved, which also applies to the water industry. The Bayesian net-
work obtained using the hill-climbing algorithm (Fig. 5) had many
flaws, and did not model the problem as it would be understood by the
industry, but it did achieve higher failure prediction accuracy due to the
vast number of connected nodes. Using the data and knowledge guided
method the user has more control compared to automated learning
algorithms. To obtain an accurate structure of the Bayesian network
with either score-based or constraint-based algorithms, would need
more comprehensive data about the water system or methods that
could prevent inference of relationships between environmental or
design variables. Without these there is a possibility of overfitting of the
model when using maximum likelihood score-based methods and pro-
blems with the structure of the Bayesian network from the constraint-
based approach due to errors arising early on in the search [54]. Ap-
plying the data and knowledge-guided method to learn the structure of
Bayesian networks with this type of data will allow water utility com-
panies to have a skeleton of a Bayesian network that will allow for more
additional variables once the data collection becomes available.

6.4. Parameter learning of Bayesian network

From the fitted Bayesian network PE and PVC pipes were identified
as having lower failure rates compared to their metallic counterparts
[55] and although this was true with the overall model, there was a
surprising finding with regards to the failures found in plastic pipes

Table 3
Tukey HSD test between states in pipe material with respect to pipe age at
failure.

Paired states Difference Lower Upper P value adjusted

GRP-GCI −57.38 −70.18 −44.59 0.00
PE-GCI −52.02 −53.03 −51.01 0.00
GRP-AC −40.81 −53.62 −28.00 0.00
PE-AC −35.44 −36.62 −34.27 0.00
PVC-GCI −34.62 −35.37 −33.88 0.00
DI-AC −27.03 −28.49 −25.58 0.00
PVC-AC −18.05 −19.01 −17.08 0.00
STL-GCI −11.72 −15.48 −7.95 0.00
PE-DI −8.41 −10.01 −6.80 0.00
STL-AC 4.86 1.05 8.68 0.00
PVC-DI 8.99 7.53 10.44 0.00
GCI-AC 16.58 15.83 17.32 0.00
PVC-PE 17.39 16.21 18.57 0.00
PVC-GRP 22.76 9.95 35.57 0.00
STL-PVC 22.91 19.09 26.72 0.00
STL-DI 31.90 27.93 35.86 0.00
STL-PE 40.30 36.43 44.18 0.00
GCI-DI 43.61 42.29 44.93 0.00
STL-GRP 45.67 32.34 59.00 0.00
GRP-DI −13.77 −26.63 −0.92 0.03
PE-GRP 5.37 −7.46 18.19 0.88

Key: AC=asbestos cement; DI= ductile iron; GCI= grey cast iron;
GRP=glass reinforced plastic; PE=polyethylene; PVC=polyvinylchloride;
STL= steel.

Table 4
Tukey HSD's test between states in pipe length (m) with respect to pipe age at
failure.

Paired states Difference Lower Upper p value adjusted

[500,18,000]–[0,25] −3.47 −4.66 −2.28 0.00
[500,18,000] – [25,100] −2.47 −3.44 −1.50 0.00
[500,18,000] – [100,200] −3.24 −4.25 −2.23 0.00
[500,18,000] – [200,500] −2.42 −3.47 −1.36 0.00
[100,200] – [25,100] 0.78 0.07 1.49 0.02
[25,100] – 0,25] −1.00 −1.95 −0.06 0.03
[200,500] – [0,25] −1.05 −2.08 −0.02 0.04
[200,500] – [100,200] −0.83 −1.65 −0.01 0.05
[100,200] – [0,25] −0.22 −1.21 0.76 0.97
[200,500] – [25,100] −0.05 −0.82 0.72 1.00
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presented in Table 7. PVC pipes in the UK were first used in the 1970s;
however, there have been a steady decline in the use of PVC with utility
companies favouring PE pipes. The data showed that there have been a
higher than expected frequency of early life pinhole and joint failures of
the plastic pipes with the probability of failure within the first year for

PE pipes being 35% and PVC pipes 25%. Although theoretically there
should not be any pinhole failures in plastic pipes (as this was a
common trait for metallic pipes that has been under corrosion) this
recorded failure could have been caused during installation or handling
of the pipes before installation. Currently from the UKWIR failure data,

Fig. 8. Data and knowledge driven built Bayesian network.

Fig. 9. Bayesian network initial states learned using expectation-maximisation algorithm.
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installation failure and handling error leading to failure cannot be
proven; however, with increasingly strict industry standards for the
installation [56–59] and handling of plastic pipes, the probability of
early life failure should significantly decrease. Hence, as more data is
trained onto the Bayesian network the probability of early life plastic
pipe failures found by the model should decrease.

6.5. Limitations

In the validation results, longitudinal failure and circumferential
failure had relatively high accuracy and “good” area under the receiver
operating characteristic curve for the guided Bayesian network

structure learning method. However, although the Bayesian network
was able to achieve 95.6% accuracy in predicting joint failure, the area
under the curve indicated the model was very “poor” at discriminating
whether joint failures had occurred or not, which was supported by a
sensitivity of 99.9% and specificity of 0.05%. This apparent contra-
diction was due to the very small proportion of positives (joint failures)
in the data, which meant that a small error in the accuracy of predicting
true negatives (non-failures) resulted in a large number of false posi-
tives relative to true positives. On the other hand, the automated
method obtained not only the same high prediction accuracy for joint
failure, but was also “good” at differentiating whether a joint failure has
occurred or not, with a sensitivity of 99.9% and specificity of 3.56%.
Although there was no difference in the sensitivity between the auto-
mated and guided method the specificity improved by over 700% under
the automated method. With a dataset that consists of many non-fail-
ures and our interest lying in pipes that failed it can be argued that the
specificity is more important than the sensitivity. It is possible to pro-
duce more coherent Bayes nets under the automated Bayesian network
learning method by setting causality restrictions between variables, but
whether this will improve accuracy requires further exploration.

With the Bayesian network built, probabilistic inference can be ef-
ficiently and easily carried out to find the posterior probability of either
one of the failure types happening. However, the model does not in-
clude temporal information, which reduces the usefulness. Complex
infrastructure systems, such as the water distribution system, are
strongly affected by time-varying operating environments, such as the
weather and water temperature. For example, underground water dis-
tribution pipes are subject to different shrink swells and levels of cor-
rosivity in the soil depending on the weather over a period of time.
Hence to overcome this limitation dynamic Bayesian networks can be
adopted, which are Bayesian networks that can model temporal de-
pendencies or time series structures. Therefore the Bayesian network
built here can be further developed to include temporal nodes.

7. Conclusions

Bayesian network models of pipe failure in water distribution sys-
tems were constructed by automated learning and a manual method
based on a literature review and exploratory data analysis. The

Table 5
Accuracy of the Bayesian network achieved during validation stage for both
guided and automated learning.

Accuracy
Failure type Guided Automated

Joint 95.6% 95.6%
Longitudinal 88.9% 89.3%
Circumferential 79.3% 78.7%
Pinhole 76.6% 79.3%
Decommissioned 65.7% 79.1%

Overall 81.2% 84.4%

Table 6
Area under the curve for each failure type for both guided and automated
learning.

Area under curve
Failure type Guided Automated

Joint 0.61 0.77
Longitudinal 0.72 0.75
Circumferential 0.79 0.78
Pinhole 0.71 0.79
Decommissioned 0.68 0.84

Fig. 10. Guided learning receiver operating characteristic curve for longitudinal pipe failures.
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automated method resulted in an excessively complex network, with
counter-intuitive relationships between many of the variables.
Therefore, for this type of problem, involving extensive but highly
variable data, collected over an extended period in a geographically
distributed system, the manual approach is preferable. By utilising a
detailed literature review along with a data exploration stage to verify
the relationships, the analyst has full control of the building process and
the knowledge the model encodes, as well as assessing the whether the
quality of the data is compatible with the literature knowledge.

The automated Bayesian network learning method was able to ob-
tain better accuracy than the guided Bayesian network learning method
due to more having interconnections between nodes compared to the
sparser network from the guided method. However, the improvement in
the overall accuracy was only 3%

The Bayesian network found that a higher than anticipated pro-
portion of failures occurred in the early life of plastic pipes, which
suggests there may have been areas of concern when the novel material
was first introduced. However, with better technology introduced for
manufacturing and standards for handling and installation the volume
of these early life failures should be reduced. Nevertheless, the early life
failures provide an interesting area for investigation, especially the
comparison between PE and PVC due to their differing failure trend
over time.
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