3,123 research outputs found

    Q-Dock\u3csup\u3eLHM\u3c/sup\u3e: Low-resolution refinement for ligand comparative modeling

    Get PDF
    The success of ligand docking calculations typically depends on the quality of the receptor structure. Given improvements in protein structure prediction approaches, approximate protein models now can be routinely obtained for the majority of gene products in a given proteome. Structure-based virtual screening of large combinatorial libraries of lead candidates against theoretically modeled receptor structures requires fast and reliable docking techniques capable of dealing with structural inaccuracies in protein models. Here, we present Q-DockLHM, a method for low-resolution refinement of binding poses provided by FINDSITELHM, a ligand homology modeling approach. We compare its performance to that of classical ligand docking approaches in ligand docking against a representative set of experimental (both nolo and apo) as well as theoretically modeled receptor structures. Docking benchmarks reveal that unlike all-atom docking, Q-DockLHM exhibits the desired tolerance to the receptor\u27s structure deformation. Our results suggest that the use of an evolution-based approach to ligand homology modeling followed by fast low-resolution refinement is capable of achieving satisfactory performance in ligand-binding pose prediction with promising applicability to proteome-scale applications. © 2009 Wiley Periodicals, Inc

    BSP‐SLIM: A blind low‐resolution ligand‐protein docking approach using predicted protein structures

    Full text link
    We developed BSP‐SLIM, a new method for ligand–protein blind docking using low‐resolution protein structures. For a given sequence, protein structures are first predicted by I‐TASSER; putative ligand binding sites are transferred from holo‐template structures which are analogous to the I‐TASSER models; ligand–protein docking conformations are then constructed by shape and chemical match of ligand with the negative image of binding pockets. BSP‐SLIM was tested on 71 ligand–protein complexes from the Astex diverse set where the protein structures were predicted by I‐TASSER with an average RMSD 2.92 Å on the binding residues. Using I‐TASSER models, the median ligand RMSD of BSP‐SLIM docking is 3.99 Å which is 5.94 Å lower than that by AutoDock; the median binding‐site error by BSP‐SLIM is 1.77 Å which is 6.23 Å lower than that by AutoDock and 3.43 Å lower than that by LIGSITE CSC . Compared to the models using crystal protein structures, the median ligand RMSD by BSP‐SLIM using I‐TASSER models increases by 0.87 Å, while that by AutoDock increases by 8.41 Å; the median binding‐site error by BSP‐SLIM increase by 0.69Å while that by AutoDock and LIGSITE CSC increases by 7.31 Å and 1.41 Å, respectively. As case studies, BSP‐SLIM was used in virtual screening for six target proteins, which prioritized actives of 25% and 50% in the top 9.2% and 17% of the library on average, respectively. These results demonstrate the usefulness of the template‐based coarse‐grained algorithms in the low‐resolution ligand–protein docking and drug‐screening. An on‐line BSP‐SLIM server is freely available at http://zhanglab.ccmb.med.umich.edu/BSP‐SLIM . Proteins 2012. © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89455/1/23165_ftp.pd

    Q-dock: Low-resolution flexible ligand docking with pocket-specific threading restraints

    Get PDF
    The rapidly growing number of theoretically predicted protein structures requires robust methods that can utilize low-quality receptor structures as targets for ligand docking. Typically, docking accuracy falls off dramatically when apo or modeled receptors are used in docking experiments. Low-resolution ligand docking techniques have been developed to deal with structural inaccuracies in predicted receptor models. In this spirit, we describe the development and optimization of a knowledge-based potential implemented in Q-Dock, a low-resolution flexible ligand docking approach. Self-docking experiments using crystal structures reveals satisfactory accuracy, comparable with all-atom docking. All-atom models reconstructed from Q-Dock\u27s low-resolution models can be further refined by even a simple all-atom energy minimization. In decoy-docking against distorted receptor models with a rootmean-square deviation, RMSD, from native of ∼3 Å, Q-Dock recovers on average 15-20% more specific contacts and 25-35% more binding residues than all-atom methods. To further improve docking accuracy against low-quality protein models, we propose a pocket-specific protein-ligand interaction potential derived from weakly homologous threading holo-templates. The success rate of Q-Dock employing a pocket-specific potential is 6.3 times higher than that previously reported for the Dolores method, another low-resolution docking approach. © 2008 Wiley Periodicals, Inc

    Comprehensive structural and functional characterization of the human kinome by protein structure modeling and ligand virtual screening

    Get PDF
    The growing interest in the identification of kinase inhibitors, promising therapeutics in the treatment of many diseases, has created a demand for the structural characterization of the entire human kinome. At the outset of the drug development process, the lead-finding stage, approaches that enrich the screening library with bioactive compounds are needed. Here, protein structure based methods can play an important role, but despite structural genomics efforts, it is unlikely that the three-dimensional structures of the entire kinome will be available soon. Therefore, at the proteome level, structure-based approaches must rely on predicted models, with a key issue being their utility in virtual ligand screening. In this study, we employ the recently developed FINDSITE/Q-Dock ligand homology modeling approach, which is well-suited for proteome-scale applications using predicted structures, to provide extensive structural and functional characterization of the human kinome. Specifically, we construct structure models for the human kinome; these are subsequently subject to virtual screening against a library of more than 2 million compounds. To rank the compounds, we employ a hierarchical approach that combines ligand- and structure-based filters. Modeling accuracy is carefully validated using available experimental data with particularly encouraging results found for the ability to identify, without prior knowledge, specific kinase inhibitors. More generally, the modeling procedure results in a large number of predicted molecular interactions between kinases and small ligands that should be of practical use in the development of novel inhibitors. The data set is freely available to the academic community via a user-friendly Web interface at http://cssb.biology.gatech.edu/kinomelhm/ as well as at the ZINC Web site (http://zinc.docking.org/applications/2010Apr/Brylinski-2010.tar.gz). © 2010 American Chemical Society

    Theoretical-experimental study on protein-ligand interactions based on thermodynamics methods, molecular docking and perturbation models

    Get PDF
    The current doctoral thesis focuses on understanding the thermodynamic events of protein-ligand interactions which have been of paramount importance from traditional Medicinal Chemistry to Nanobiotechnology. Particular attention has been made on the application of state-of-the-art methodologies to address thermodynamic studies of the protein-ligand interactions by integrating structure-based molecular docking techniques, classical fractal approaches to solve protein-ligand complementarity problems, perturbation models to study allosteric signal propagation, predictive nano-quantitative structure-toxicity relationship models coupled with powerful experimental validation techniques. The contributions provided by this work could open an unlimited horizon to the fields of Drug-Discovery, Materials Sciences, Molecular Diagnosis, and Environmental Health Sciences

    The utility of geometrical and chemical restraint information extracted from predicted ligand-binding sites in protein structure refinement

    Get PDF
    Exhaustive exploration of molecular interactions at the level of complete proteomes requires efficient and reliable computational approaches to protein function inference. Ligand docking and ranking techniques show considerable promise in their ability to quantify the interactions between proteins and small molecules. Despite the advances in the development of docking approaches and scoring functions, the genome-wide application of many ligand docking/screening algorithms is limited by the quality of the binding sites in theoretical receptor models constructed by protein structure prediction. In this study, we describe a new template-based method for the local refinement of ligand-binding regions in protein models using remotely related templates identified by threading. We designed a Support Vector Regression (SVR) model that selects correct binding site geometries in a large ensemble of multiple receptor conformations. The SVR model employs several scoring functions that impose geometrical restraints on the Cα positions, account for the specific chemical environment within a binding site and optimize the interactions with putative ligands. The SVR score is well correlated with the RMSD from the native structure; in 47% (70%) of the cases, the Pearson\u27s correlation coefficient is \u3e0.5 (\u3e0.3). When applied to weakly homologous models, the average heavy atom, local RMSD from the native structure of the top-ranked (best of top five) binding site geometries is 3.1. Å (2.9. Å) for roughly half of the targets; this represents a 0.1 (0.3). Å average improvement over the original predicted structure. Focusing on the subset of strongly conserved residues, the average heavy atom RMSD is 2.6. Å (2.3. Å). Furthermore, we estimate the upper bound of template-based binding site refinement using only weakly related proteins to be ∼2.6. Å RMSD. This value also corresponds to the plasticity of the ligand-binding regions in distant homologues. The Binding Site Refinement (BSR) approach is available to the scientific community as a web server that can be accessed at http://cssb.biology.gatech.edu/bsr/. © 2010 Elsevier Inc

    In silico design of cyclic peptides as influenza virus, a subtype H1N1 neuraminidase inhibitor

    Get PDF
    Nowadays, influenza has become a global public health concern because it is responsible for significant morbidity and mortality due to annual epidemics and unpredictable pandemics. There are only limited options to control this respiratory disease. Vaccine treatment is useless for controlling this disease because of the occurrence of mutation in the influenza virus. Influenza virus is also resistant to some antiviral drugs like oseltamivir and zanamivir, which inhibit neuraminidase. Another solution for controlling this virus is to find new design for antiviral drugs. Cyclic peptides can be used to make new antiviral drug design especially to inhibit neuraminidase activity by using ’structure-based design’ method. Based on molecular docking, new antiviral drug designs have been found. They are DNY, NNY, DDY, DYY, RRR, RPR, RRP and LRL. These cyclic peptides showed better activity and affinity than standard ligand to inhibit neuraminidase activity. From drug scan, DNY, NNY and LRL ligands have low toxicity and were predicted to have at least 59% possibility that it could be synthesized in wet laboratory experiment.Key words: Influenza virus A, neuraminidase, cyclic peptide, structure based design, molecular docking
    corecore