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Nowadays, influenza has become a global public health concern because it is responsible for 
significant morbidity and mortality due to annual epidemics and unpredictable pandemics. There are 
only limited options to control this respiratory disease. Vaccine treatment is useless for controlling this 
disease because of the occurrence of mutation in the influenza virus. Influenza virus is also resistant to 
some antiviral drugs like oseltamivir and zanamivir, which inhibit neuraminidase. Another solution for 
controlling this virus is to find new design for antiviral drugs. Cyclic peptides can be used to make new 
antiviral drug design especially to inhibit neuraminidase activity by using ’structure-based design’ 
method. Based on molecular docking, new antiviral drug designs have been found. They are DNY, NNY, 
DDY, DYY, RRR, RPR, RRP and LRL. These cyclic peptides showed better activity and affinity than 
standard ligand to inhibit neuraminidase activity. From drug scan, DNY, NNY and LRL ligands have low 
toxicity and were predicted to have at least 59% possibility that it could be synthesized in wet 
laboratory experiment. 
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INTRODUCTION  
 
Influenza is a contagious disease caused by viruses that 
infect humans and animals. In general, influenza is a 
virus that spreads among certain species. It means, when 
the virus infects one species, it rarely infects other 
species. General symptoms of the disease include fever, 
headache, sore throat and cough. Several serious cases 
of influenza could lead to pneumonia and end with 
mortality (Kamps et al., 2006). Influenza virus is part of 
the order mononegavirales and family of orthomyxo-
viridae, which has a genome with single segment. On the 
basis of its genus, there are three types of influenza 
viruses: type A, B and C. Influenza A and B viruses have 
8 ribonucleic acid (RNA) segments, while type C has 
seven RNA segments. Nucleic acid of influenza virus was 
translated to about 10 proteins, haemaglutinin (HA), 
neuraminidase (NA), matrix protein (M1 and M2), non-
structural proteins (NS1 and NS2), nucleocapsid protein 
(NP), polymerase basic (PB1 and PB2), and poly-
meraseacidic (PA) (De Jong et al., 2005).  
 
 
 
*Corresponding author. E-mail: usman@ui.ac.id.  

Based on its antigenic properties, influenza virus has two 
surface functional glycoproteins. They are HA, NA and 
the M2 proton channel. H1N1 subtype is a virus that 
belongs to the influenza virus type A. This type of virus is 
composed of 16 HA (H1-H16) and 9 NA (N1-N9). 
Theoretically, there are 16 × 9 subtypes, and until now 
105 subtypes of influenza A viruses have been found. 
They are all endemic in birds. However, several subtypes 
have been found in chickens and mammals (Michaelis et 
al., 2009). The long-sought 3D structures of the M2 
proton channels for influenza A (Schnell et al., 2008) and 
B (Wang et al., 2009) viruses were successfully deter-
mined by the high-resolution nuclear magnetic resonance 
(NMR) spectroscopy. Pielak and Chou (2010) have 
emphasized, that histidine protonation and opening of the 
channel gate are synchronized events. Pielak et al. 
(2009) underlined that drug-resistant mutants impair drug 
binding by destabilizing M2 helix-helix assembly. Du et al. 
(2009) argued that energetics, the channel-gating 
dynamic process, the pK(a) shift, its impact on the 
channel and the consistency with the previous functional 
studies, among others, are in favour of the allosteric 
mechanism  revealed  by  the  M2 NMR  structure. Those  



   

 
 
 
 
findings may stimulate and encourage new strategies for 
developing effective drugs against influenza A, 
particularly in dealing with the drug-resistant problems. 
Moreover, Du et al. (2010) also underlined that the newly 
designed adamantane-based inhibitors based on the 
modeled structure of H1N1-M2 proton channel have two 
pharmacophore groups, which act like a ‘barrel hoop’ 
holding two adjacent helices of the H1N1-M2 tetramer 
through the two pharmacophore groups outside the 
channel.  

Huang et al. (2008) have performed in-depth analysis 
for M2 functional studies, particularly for the mutations 
D44N, D44A and N44D on position 44, and the mutations 
on positions 27 to 38. Wang and Chou (2010) have 
proved that the molecular dynamic simulated structures 
of M2 that the mutant channel could still open even if 
binding with rimantadine, but the wild type channel could 
not. Wang et al. (2009) have found that amantadine and 
rimantadine binding affinity to the H1N1-M2 channel is 
significantly lower than that of the H5N1-M2 channel. This 
is fully consistent with the recent report that the H1N1 
swine virus was resistant to the two drugs. Wei et al. 
(2009) have found that a benchmark data set has been 
constructed containing 34 newly-developed adamantane-
based M2 inhibitors and covers considerable structural 
diversities and wide range of bioactivities. Such milestone 
works provides a solid structural basis for in-depth 
understanding of the action mechanism of the M2 
channel and rationally design effective drugs against 
influenza viruses. During the 20

th
 century, influenza virus 

type A was a scary pandemic disease. Three occurrences 
of pandemic influenza have caused millions of deaths. 
Occurred pandemic (Spanish flu) in 1918 to 1919 was 
caused by the H1N1 subtype, and caused 50 million 
deaths. The second pandemic (Asian flu) in 1957 to 1958 
was caused by the H2N2 subtype and caused one million 
deaths. The third pandemic (Hong Kong flu) in 1967 to 
1968 was caused by the H3N2 subtype and caused one 
million deaths (Kamps et al., 2006). In the year 2009, a 
new strain of H1N1 has been discovered. It is known as 
the Mexican influenza (swine flu) (Michaelis et al., 2009). 
The virus is a combination of gene segments of influenza 
viruses from pigs, birds and humans (Rungrotmongkol et 
al., 2009).  

One of the prevention of H1N1 virus infection is by 
vaccination, although, present vaccines are considered to 
have fewer efficacies in protecting the body when the 
influenza virus infects it (Tomassini et al., 1994). This is 
caused by a mutation of the virus (antigenic drift) or 
antigenic shift that can occur when a cell is infected with 
two types of viruses that are still in one family (Kamps et 
al., 2006). At this time, drugs have been developed as an 
antiviral instead of vaccines. One of antiviral commercial 
products, which can inhibit the development of the H1N1 
virus, is the NA inhibitor, oseltamivir and zanamivir. Both 
of these antiviral medications were recommended by the 
Centers of Disease  Control  and  Prevention  (CDC)  and  
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World Health Organization (WHO) (Rungrotmongkol et 
al., 2009). It is considered effective in treating influenza 
virus infection that occurs in humans (Lew et al., 2000). 
In addition, there are adamantine antiviral, amantadine 
and rimantadine which can inhibit M2 ion-channel (De 
Clercq, 2006).  

However, the virus resistance to these drugs had 
occurred because of mutations (Beigel et al., 2005; De 
Jong et al., 2005). Research groups in the world have 
been trying to discover the most effective drugs against 
H1N1. Li et al. (2011), searching for zinc fragment 
database, found that Neo6 compound is a good lead 
compound. Qu-shi et al. (2009) try to elucidate drug-
protein structural features of NA and M2 protein and 
annotate its residual mutation. Wang et al. (2009) 
investigated the drug-resistance tendency of oseltamivir 
towards H5N1 and generated valuable data for designing 
H1N1 drugs. Du et al. (2007) proposed six analog 
inhibitors as candidates for developing inhibitors against 
H5N1 virus. Gong et al. (2009) found that the compound 
AG7088 has better binding energy than zanamivir and 
oseltamivir and nine analogs of AG7088 were singled out 
through a series of docking studies. Guo et al. (2008) 
found that some mutations of H5N1 H5 cleavage 
sequence fitted less well into furin and would reduce high 
pathogenicity of the virus. These findings hint that we 
should focus on the sub-sites P (1), P (4), and P (6) for 
developing drugs against H5N1 viruses. Wang et al. 
(2007), while trying to find the possible drug-resistant 
H5N1 virus by conducting similar analysis using the 
BAE46950 sequence (homology model of H5N1-NA) as 
the benchmark template, 21 sequences were found from 
the database of the 108 H5N1 NAs that had over 95% 
sequence similarity with BAE46950.  

Wei et al. (2006) found subtle mutated variations that 
not only destroy the original lipophilic environment of the 
H5N1-NA and 2,3-didehydro-2-deoxy-N-acetylneuraminic 
acid (DANA), but also change its complement interaction. 
Therefore, such findings might provide insights into the 
secret why some of H5N1 strains bear high resistance 
against existing NA inhibitors. Wang et al. (2010) found 
three lead compound derivatives that formed stronger 
inhibition power than oseltamivir; hence, they may 
become excellent candidates for developing new and 
more powerful drugs for treating influenza. Du et al. 
(2011) argued that structure-based drug design is the 
inventive process for finding new drugs based on the 
structural knowledge of the biological target. Many 
studies have indicated that computational approaches, 
such as predicting drug-target interaction networks (He et 
al., 2010), predicting human immune virus (HIV) cleavage 
sites in proteins (Chou, 1993, 1996), prediction of body 
fluids (Hu et al., 2011), predicting protein metabolic 
stability (Huang et al., 2010), predicting signal peptides 
(Chou and Shen, 2007), predicting the network of 
substrate-enzyme-product triads (Chen et al., 2010), 
predicting protein subcellular locations (Chou  and  Shen,  
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2008; Chou et al., 2011), predicting proteases and their 
types (Chou and Shen, 2008), predicting antimicrobial 
peptides (Wang et al., 2011), predicting membrane 
proteins and their types (Chou, 2001; Chou and Shen, 
2007), predicting G protein coupled receptors (GPCRs) 
and their types (Xiao et al., 2011), identifying nuclear 
receptor subfamilies (Wang et al., 2011), predicting 
biological functions of compounds based on chemical-
chemical interactions (Hu et al., 2011), and predicting 
transcriptional activity of multiple site p53 mutants (Huang 
et al., 2011) can provide many useful insights and data 
which would be time-consuming and costly to obtain by 
experiments alone.  

Actually, these data, combined with the information 
derived from the structural bioinformatics tools (Chou, 
2004; Chou et al, 2003), can timely provide very useful 
insights into both basic research and drug development. 
In view of this, the present study is an attempt to use 
computational approaches for finding novel inhibitors 
against influenza. We hope that our findings may be 
useful for drug development. Computational docking 
operation is a useful vehicle for investigating the 
interaction of a protein receptor with its ligand and 
revealing their binding mechanism as demonstrated by a 
series of studies (Chou et al., 2003, Huang et al., 2008; 
Wang et al., 2009; Du et al., 2009; Wei et al., 2009; Du et 
al., 2010; Wang et al., 2009), The research results of 
previous groups are our main motivation to study H1N1 
drug design. The objective of our research is to discover 
novel drugs for H1N1, by using cyclic peptide 
neuraminidase inhibitor. 
 
 

MATERIALS AND METHODS 
 

Sequence alignment and homology modeling  
 

H1N1 influenza sequences used in this study were downloaded 
from the NCBI database and from 2009 to 2010 infection. Multiple 
sequence alignment method was done, using ClustalW2 program 
and progressive pair wise alignment algorithm (Thompson et al., 
1994). 3ckzA was used as a template to build the NA structure 
using Swiss-model software online workspace (Swiss Institute of 

Bioinformatics and the Biozentrum University of Basel) by inserting 
the downloaded FASTA files.  
 
 
Determination of neuraminidase active site  
 

After obtaining the tertiary structure of the NA protein of influenza 
virus subtype H1N1, then analysis was performed to determine the 
active site or binding group of proteins. The coordinates of the 
active site were determined using Q-site finder online software that 
can be accessed by http://bmbpcu36.leeds.ac.uk/qsitefinder/ 
address. Input data for this program were obtained, using the 
protein data bank (PDB) format by entering the PDB code or PDB 
file.  
 
 
Amino acid sequence determination of peptide inhibitors 

 
Determination of amino acid sequences was used to construct  
Cyclic peptide based  on  the  analysis  result.  Disulfide  bond  was 

 
 
 
 
achieved by joining cysteine residue and these ligands were 
compared to natural substrate of sialic acid and standard NA 
inhibitors, oseltamivir and zanamivir, which are widely used. 
 
 
Dimensional structures design of cyclic peptide ligand  

 
Cyclic peptide was designed and modeled into three-dimensional 
(3D) structure using ACDlabs software. Cyclic peptide was made in 
zwitter ion form. Cyclic peptides from three dimensional designs 
were stored in MicroStation Development Language (MDL) 
format. It would be converted into cyclic peptide VegaZZ PDB 
format, and then converted into Pdbqt autodock using software 

tools. 
 
 
Determination of grid box  

 
Grid box is a necessary parameter in the process of ligand docking 
with the target enzyme. Grid box consists of a grid box center and 
its sizes are determined by looking at the coordinates of the target 
enzyme active site, using the aid of software tools autodock. 

 
 
Preparation of file docking 

 
Preparation was conducted by converting the file docking ligands 
into Pdbqt file format and targeting the enzyme before it was 
converted. First, the polar hydrogen is added by using software 
tools autodock. 

 
 
Processes with target enzyme ligand docking  
 
Docking process is performed using software Autodock vina 1.0 by 
applying the appropriate parameters. 

 
 
Analysis of docking results 

 
Analysis of docking results was done by using software MOE 
2008.10 and PyMol by looking at certain parameters such as 
binding affinity, inhibition constant/dissociation (Ki) and corres-
ponding interaction. 

 
 
Drug scan 

 
Drug scan was performed on the best ligand that has low ΔG

°
 

binding and good interaction with the target enzyme. Analysis of 
drug scans was performed by considering the rules of good 
medicine (Lipinski's rule of five) and the oral bioavailability of these 
ligands. 

 
 
Visualization of enzyme-ligand complex interactions  

 
Visualization of enzyme-ligand: the enzyme-ligand complexes 
formation was performed using PyMol software for 3D visualization 
and MOE 2008.10 software for visualization in two-dimensional 
form.  

 
 
Toxicological properties  

 
Toxicological properties of best ligand were performed using Lazar 
ToxTree software and toxicological properties.  



   

 
 
 
 
Synthetic accessibility prediction 
 
Ligands that show good affinity toward target enzyme do not have a 
practical value if they could not be synthesized by wet 
lab. Therefore, to predict whether a designed molecules/ligands can 
be synthesized, parameter called synthetic accessibility (SA) was 
utilized. It was provided by online software that helps to determine 
SA, computer assisted estimation of synthetic accessibility 
(CAESA). CAESA is developed by Symbiosis Inc. and supported by 
Keymodule Ltd, Leeds, UK and Pfizer. 
 
 
RESULTS AND DISCUSSION 
 
Determination of NA sequence 
 
NA sequence that will serve as a target enzyme was 
determined by using influenza database contained in the 
NCBI database. Used parameters among other things are 
NA protein sequences between the years, 2009 to 2010 
in all countries, the human host, strain/subtype H1N1. We 
obtained 241 NA protein sequences from various 
countries. Multiple alignments between sequences were 
performed to find sequences that represent existing NA 
protein from 2009 to 2010. Online clustalW2 software 
from the official entry blockers (EB) site was used to find 
the similarity score of each sequence comparison with 
the highest score being 100. The chosen NA protein 
sequences are the ones that have the highest similarity 
value (100). NA protein sequence from Auckland in 2009, 
NA [A/Auckland/1/2009 (H1N1)] with code ACR08499.1 
GenBank was the result. 
 
 
Preparation of NA 3D structure 
 
Previously determined NA protein sequence with the 
FASTA file format was downloaded and used as input for 
Swiss-model software online (Swiss Institute of 
Bioinformatics and the Biozentrum University of Basel) to 
get NA protein model. The result is the 3D structure file 
formats PDB, which is a result of comparison with a 
template (structural benchmark) from the official site 
database PDB. One condition that must be considered 
from the obtained results is that the percentage of identity 
(% identity) must be at least 60% of the structures made 
with the compared template. In this case the NA protein 
3D structure is 91.123% identical with the template used. 
 
 
Determination of the NA active side (active 
site/catalytic site)  
 
Information of NA active site residues was obtained from 
NCBI. It was performed by searching Gen bank flat file 
(GBFF) for the utilized sequences by entering codes from 
the ACR08499.1 GenBank sequence. From the infor-
mation, seven amino acid residues in the active site are 
Arg118, Asp151,  Glu278,  Arg 293,  Arg368,  Tyr402  and  
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Glu245. These seven amino acid residues are targets for 
docking process. After detecting amino acid residues on 
the NA active side, then the determination of the 
coordinates of the active site was performed. This is 
shown by the position coordinates X, Y, and Z which will 
be used in the docking process. This determination is 
performed using online software Q-sitefinder (http:// 
bmbpcu36.leeds.ac.uk/qsitefinder/) by uploading files to 
the format of the PDB 3D structure, which has been 
obtained from the 3D structure of NA-making stage. This 
determination is done by looking at the location of amino 
acid residues of the NA that we get and the software will 
display the minimum and maximum coordinates of the 
areas that have amino acid residues that have been 
selected. The results of this determination of the 
minimum (-38, -66 and 3) and maximum (-21, -51 and 19) 
coordinates from the active site of the coordinates used 
are the coordinates of the average of the minimum and 
maximum coordinates of X = -29.5, Y = -58 and Z = 10.5. 
 
 

Cyclic peptide amino acid sequence determination 
as inhibitors 
 

The determination of amino acid sequences of peptides 
as inhibitors in this study is based on the analysis 
conducted on the structure of the natural substrate of 
the NA of sialic acid and the antiviral drug that has 
been used as oseltamivir. From studies conducted by 
Kubinyi (1998), determination of inhibitor design through 
this approach is called ‘structure-based design’ or the 
determination of the new-inhibitors design with similar 
structures. This case is seen within the structure of the 
natural substrate of sialic acid and NA oseltamivir antiviral 
drug as one that has been used. In this analysis, the 
determination was made by examining groups that have 
been shown to have interaction with amino acid residues 
on the active side of the NA. It is based on studies 
conducted by Zhang et al. (2009). 

From Table 1, the first group on the natural substrate of 
NA (sialic acid) is the same as oseltamivir's asetamide, 
while on the design of new inhibitors asetamine is used, 
which is the side chain of the amino acid asparagine 
(Asn/N). Asetamine is expected to have better interaction 
than asetamide because amines have more donated 
electrons compared to amides. The second group of 
sialic acid is the carboxyl, while on oseltamivir; it has 
been modified to be etoxycarbonile on the design of new 
inhibitor with sialic acid, which is the carboxyl side chain 
of amino acids aspartic acid (Asp/D). The third group of 
sialic acid is a triplet, whereas oseltamivir is utilizing 
pentiloxy group. The results of the analysis are according 
to Zhang et al. (2008). This group has the interaction of 
NA hydrophobic region, on the basis that the design of 
new inhibitors of the phenolic group was chosen because 
the structure of benzene is expected to fill the hydro-
phobic region. It will be further analyzed whether it has 
effect on its interaction  with  NA  or  otherwise  adversely  
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Table 1. Similarity between the group structure of the natural substrate (sialic acid), existing antiviral drugs 
(oseltamivir) and a new inhibitor. 
 

Sialic acid Oseltamivir New-inhibitor 

  
 

   

 
 

 

   

   

   

  

 
 
 
 
affects its interaction with the NA. Amino acids used for 
this third group is tyrosine (Tyr/Y) which has a phenol 
side chain. The last or fourth group of sialic acid is 
hydroxyl, while for oseltamivir and designs of new 
inhibitors are amines which have more polarity than 
hydroxyl, which is expected to have better interaction with 
the NA. The selected amino acid is lysine (Lys/K) which 
has the amine group with a four-carbon chain, while on 
oseltamivir it is not. In studies conducted by Zhang et al. 
(2009) and Rungrotmongkol et al. (2009), amine group in 
oseltamivir cannot interact well with acids in the NA active 
side because it is quite far from NA active side amino 
acid residues. The expected amine group on lysine, 
which has four carbon chains, could reduce the 
interaction distance with the amino acid residues of the 
active side, causing NA interaction well placed than the 
amine group of oseltamivir.  

Basis for determining the amino acid peptide that would 
serve as the design of new inhibitor is the one that has 
been studied by Jones et al. (2006), called entry blockers 
(EB). It is proven by in vivo means that it could act as an 
inhibitor to reduce the spread of influenza virus infection 
in testing animals’ cell. Although it has been known that 
influenza virus protein on the surface that serves to bind 
to host cells is not the HA or NA enzyme targeted in this 
study, the natural substrate of HA and NA are the sialic 
acid. Thus, the hypothesis is that the EB amino acid 
residues have the potential to be an inhibitor of NA and 
HA. Amino acid composition residue of the EB consists of 
six amino acids- arginine-lysine-alanine-valine-leucine-
proline (RKAVLP). 

Design of three-dimensional structure of cyclic 
peptides ligands 
 
New inhibitors that will be determined in this study will be 
called ligands. The design of this ligand was done 
using amino acid residues that had been pre-determined 
at the determination stage of the peptides amino 
acid sequences as inhibitors. Amino acid residues are: 
 
1. Based on the similarity properties of clusters (structure 
based design): asparagine-lysine-tyrosine- aspartic acid 
(NKDY). 
2. Based on the entry blocker (entry blocker-based 
design): Arginine-lysine-alanine-valine-leucine-proline (R-
KAVLP). 

Both amino acid residues will be designed to be cyclic 
peptides with two disulfide bonds using cysteine residues 
at the ends. Preparation of cyclic peptide was aimed to 
avoid cutting peptide bonds by proteases that exist in the 
human body. This is because they recognize only linear 
form peptide whereas the cyclic peptides cannot be 
recognized by them. Cyclization is not done by forming a 
peptide bond at the end of the C and N terminals 
because cyclization by disulfide bonds provides better 
stability. Cyclization by disulfide bond can enhance the 
interaction of hydrophobic peptides and reduce hydrogen 
interactions with other solvent (water), thus increasing the 
total entropy and the stability of the peptide.  

Designed cyclic peptides are a combination of three 
amino acid residues with two cysteines (C) end. As 
shown  in  Figure  1,  cyclic  peptide  is  designed  in   the  



   

 
 
 
 

 

 C-D-N-K-C    C-R-K-A-C 

 

 

 
 

Figure 1. Example of cyclic peptide designs, C is 

a cysteine. 
 

 
 

pentacyclic form because it is more stable than tricyclic or 
butacyclic. If they are designed to be the circumference of 
six or hexacyclic (although formed cyclically stable), then 
it would be having large molecular mass that would affect 
the results of drug or drug likeness scan. Binghe et al. 
(2005) stated that there is enzymatic activity of luminal 
fluid in the stomach and duodenum, whereas the straight 
peptide of the large size will experience proteolysis. The 
design of cyclic peptides as ligands was done by using 
offline chem sketch software (ACD Labs). The results of 
this design are obtained from the combination of ligand 
functional groups based on similarity of as many as 64 
combinations of ligand and based on a combination of 
180 entry-blocker ligands. The subsequent discussion of 
the design of new ligands is displayed by three con-
stituent amino acid codes (example: DNY). 
 
 
Determination of grid box  
 

Grid box is the location where the ligands interact with 
the residue on the target enzyme and is described in the 
form of a cube. The determination of the grid box is done 
by using offline autodock software tools with respect to 
the first two parameters which are the size of the grid box 
and the second is the initial location of ligand docking 
called the center. Ligands used for the initial position 
coordinates of the active side of the NA that had been 
predetermined at the stage of determining the active side 
of the NA include the coordinates of X = -29.5, Y = -58; Z 
= 10.5. As for the size or the size of the grid box, it can be 
determined manually according to the active side of the 
majority of the NA. In this case, the measures used are X 
= 26; Y = 26; Z = 26 with a spacing of 1 Å. 
 
 
Docking  
 

Conducted docking process in this study was the semi-
oriented process by using flexible ligands. It uses the 
default number of rotatable bond or bonds that can rotate 
on the ligand set automatically by using software tools 
autodock. While, the target enzymes that are used for the 
docking process are made rigid. If both are made flexible, 
the processes required for the calculation of one-time 
docking can take a long time. Software used for the 
docking process is free software autodock vina 1.0, 
published by the Scripps research institute.  Some  things  
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should be prepared prior to docking, which include:  
 
1. Ligand with a Pdbqt format file.  
2. Enzyme with a Pdbqt format file.  
3. Grid box (centers and size). 
 
Docking process here can only be run through command 
prompt by using the configuration set by the software. In 
addition the enzyme and ligand file should be stored in 
same folder on a computer while the grid box entered 
manually as the configuration of the docking process to 
be performed. The time needed for the docking process 
depends on the size and number of degrees of torsional 
ligands used in the docking process. The greater the 
numbers of degrees of torsional to a ligand docking is, 
the longer the process and vice versa. In this study the 
time required for one-time docking is about 10 to 15 min.  
 
 
Determination of enzyme-ligand complex 
conformation docking results  
 
Determination of conformation of the enzyme-ligand 
complex docking results is done by selecting a ligand 
conformation with the best binding affinity ΔG

o
 value 

(kcal/mol) or the smallest one (best mode). The results of 
docking software autodock vina 1.0 are the best 
conformation of nine enzyme-ligand complexes. They are 
selected with the Pdbqt file format. Those overall 
conformations of the enzyme-ligand complexes that can 
happen are based on the degree of torsional 
ligand. While the results of calculations ΔG

o
 binding 

affinity (kcal/mol) can be seen in the log file that can be 
opened by using text editor. 
 
 
The standard ligand docking  
 
Strength inclination of the bond can be referred to as the 
affinity of the ligand to a receptor or enzyme. It can be 
determined by looking at the ΔG

o 
binding affinity (kcal / 

mol) value generated during the formation of enzyme-
ligand complexes. High affinity of a ligand to an enzyme 
is produced from a large intermolecular force between 
the ligand with the enzyme, whereas the low affinity of a 
ligand to an enzyme is produced from a small 
intermolecular force between them. If the affinity of a 
ligand to the enzyme is higher then the value ΔG

o 
binding 

affinity (kcal / mol) will be lower. On the contrary, if affinity 
gets smaller then the value ΔG

o
 binding affinity (kcal / 

mol) increases. This also affects the residence time of 
ligand binding with the enzyme. If the affinity of a ligand 
to an enzyme is better then residence time of ligand 
binding to the enzyme is also getting better. The 
followings are the results of binding energy and the 
contact residues of the used ligand. From the results 
shown in Table 2, it can be seen that oseltamivir  has  the  
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Table 2. Energy bonds and the contact residues of the standard ligand. 
 

No. Standard ∆G
o
 binding affinity (kcal/mol) Contact residuer 

1 Oseltamivir -6.5 TYR 402, ARG 293 

 

2 

 

Zanamivir 

 

-7.4 

 

ASP 151, ASP 151, TRP 179, GLU 278, TYR 402, 
ARG 368, TYR 402, TYR 402 

 

3 

 

Sialic acid 

 

-7.1 

 

GLU 277, GLU 278, TYR 402, ARG 225, ARG 293, 
ARG 293, ARG 293, TYR 402 

 

4 

 

DANA 

 

-6.7 

 

ASP 151, GLU 277, GLU 278, GLU 278, TYR 402, 
ARG 293, TYR 402, TYR 402 

 

5 

 

RWJ-270201 

 

-6.8 

 

ASP 151, TRP 179, GLU 278, ARG 156 
 

Bold print is the targeted residue. 

 
 
 
concluded that the NA would be more likely to bind sialic 
acid in comparison with oseltamivir whereas zanamivir 
has the smallest ΔG

o
 binding affinity value of -7.4 

Kcal/mole. In other words, the affinity of zanamivir against 
NA is the highest compared with other standards or even 
with sialic acid as NA natural substrate.  

Theoretically, NA would be more likely to bind with 
zanamivir than sialic acid. DANA is an inhibitor that is 
used to inhibit NA before zanamivir was found. It has ΔG

o 

binding affinity value of -6.7 Kcal/mole; the value is 
greater than zanamivir and sialic acid. The mean affinity 
of NA-DANA is lower compared to zanamivir and sialic 
acid. That is similar with RWJ-270 201, which was 
computed previously (Young et al., 2001). RWJ-270 201 
has a better activity than oseltamivir. However, the result 
of the ΔG

o
 docking binding affinity, despite its value being 

smaller than oseltamivir, is still larger when compared 
with the sialic acid. RWJ-270 201 has a lower affinity than 
the sialic acid, and theoretically sialic acid would be more 
likely to bind to NA. The occurring contact residues 
showed that interaction of NA with oseltamivir is not good 
enough because only two contact residues occurred. It is 
possible to occur because of amino acid residues 
mutations at the NA or influenza virus strain used is as a 
result of reassortment or merging of two different 
influenza virus strains. Another antiviral drug zanamivir is 
shown to have better interaction than oseltamivir even 
compared to sialic acid.  

Zanamivir interacts with seven amino acid residues of 
the NA whereas oseltamivir only interacts with two amino 
acid residues of the NA. This is possible because the 
structure of zanamivir is more similar to the sialic acid 
compared to oseltamivir. Interaction of DANA with NA is 
also quite good but due to its lower affinity compared with 
the sialic acid, DANA is considered not being able to 
compete with it. The interaction of RWJ-270 201 is not 
good enough because it interacts with only four amino 
acid residues of the NA. 

Ligand screening based on energy association and 
contact residues 
 
The results of ligand docking are 244 new designs. 
Screening would be done based on binding energy and 
the contact residues. The bond energy and the contact 
residues were compared with the bond energy results 
and the contact residues resulting from the standard 
docking. Thus, the ligand is considered to have better 
bond energy and contact residues than the standards 
which adhere to the following criteria: 
 
1. Value of ΔG

o 
(binding affinity) should be ≤ -7.4 

Kcal/mol. 
2. Occurred contact residues have at least four hydrogen 
bonds with three interactions with amino acid residues on 
the NA active side. 
 
The ligands that pass screening based on binding energy 
and the contact residues are shown in Tables 3 and 4. It 
can be seen that out of 224 created designs, it was 
obtained that eight ligands have better affinity than the 
standard, four designs from the design based on 
structure and the four ligands from the entry blockers 
ligand based design. Further discussion will be 
conducted between the eight ligands comparisons with 
the standard ligand. 
 
 
Energy association and inhibition constants (Ki) 
 
As previously described the bond energy (ΔG

o
) shows 

affinity of ligands that bind to the enzyme to form 
complexes. Examining the value of the bond energy, we 
comprehend that the stability of ligand-enzyme complex 
is formed. Bond energy is also directly related to the 
inhibition constants or dissociation constants (Ki) which 
also could give an idea about the affinity  between  ligand  
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Table 3. The results of ligand screening (structure based design). 
 

No. Ligand ∆G
o
 binding affinity (kcal/mol) Contact residue 

1 DNY -8.4 
SER 247, GLU 278, GLU 278, TYR 402, ARG 293, 
ARG 293 

 

2 

 

NNY 

 

-8.7 

 

GLU 278, TYR 402, SER 247, ARG 293, ARG 293, 
TYR 402 

 

3 

 

DYY 

 

-7.6 

 

SER 247, SER 247, ARG 293, ARG 368, TYR 402 

 

4 

 

DDY 

 

-8.4 

 

ASP 151, GLU 278, TYR 402, SER 247, ARG 293, 
ARG 293, TYR 402, TYR 402 

 

Values in bold print are the targeted residue.  
 
 
 

Table 4. The results of ligand screening (entry blocker). 
 

No. Ligand ∆G
o
 binding affinity (kcal/mol)  Contact residue 

1 RRR -8.0 
GLU 278, GLU 278, GLU 278, TYR 402, TYR 402, SER 247, 
ARG 368, ARG 368 

    

2 RRP -8.0 
GLU 278, TYR 402, TYR 402, ARG 152, ARG 152, SER 247, 
ARG 293 

    

3 RPR -8.5 SER 247, GLU 278,TYR 402, ARG 293, ARG 368, ARG 368 

4 LRL -7.9 ILE 149, GLU 278, TYR 402, ARG 152, SER 247, ARG 293 
 

Values in bold print are the targeted residue. 

 
 
  

E + L                EL                               Ki = [E] [L] 

    [EL]  

 
  

E + L                EL                               Ki = [E] [L] 

    [EL]  
 

 
and enzyme. Ki formulated as follows: 
Where, E is an enzyme, L is the ligand and the EL is an 
enzyme-ligand complexes. The smaller the value of Ki is, 
the more the equilibrium reaction will tend to lead to the 
formation of the complex. Enzyme-ligand complex is said 
to have a good affinity bond if it has a Ki value in the 
micro molar scale. Here is a comparison of bond energy 
values, and inhibition constants between ligand and 
standards that passed the previous screening. 

It can be seen from Table 5 that all the ligands have an 
estimated value of Ki in the micromolar scale. pKi means 
the mean value of logarithmic Ki value. The greater the 
value of the pKi is, the smaller the value of Ki. From the 
data shown in Table 5, the ligands that have better value 
than standard pKi are DNY,  RRR,  RRP,  RPR  and  LRL. 

From Table 5, it can also be known that the relationship 
between the value of the bond energy (ΔG

o
) with Ki is 

likely directly proportional and inversely when compared 
with the value of pKi. It follows the formulated thermo-
dynamic equation as follows: 
 

∆Go  = -RT ln Ki 
 

 
 

Contact residues 
 

The interaction between the ligand and the enzyme 
became one of the necessary parameters to determine 
the activity of a ligand to the enzyme. The target of the 
ligand interactions of the NA enzyme in this regard is the 
amino acid residues found on the NA active side. This is 
necessary because the ligand is expected to be created 
as NA inhibitors that have enzymatic functions. From the 
previous determination, it has been known that there are 
seven amino acid residues at the NA active side. They 
are Arg118, Asp151, Glu278, Arg293, Arg368, Tyr402 and 
Glu245. The more interaction, the greater the score of 
ligand interaction with amino acid residues of NA active 
site is. It is expected that inhibition of ligand function 
would be better. Ligand interactions that occur between 
the NA and inhibitor are hydrogen bond interaction with  a  
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Table 5. Energy bonds and inhibition constants. 
 

Ligand ∆G
o
 binding affinity(kcal/mol) Pki 

Oseltamivir -6.5 12.122 

Zanamivir -7.4 11.628 

DANA -6.7 9.695 

RWJ-270201 -6.8 11.275 

DNY -8.4 12.648 

NNY -8.7 8.048 

DYY -7.6 9.564 

DDY -8.4 9.780 

RRR -8.0 16.698 

RRP -8.0 18.789 

RPR -8.5 13.779 

LRL -7.9 13.468 
 

 
 

Table 6. Residues and interaction contacts with the standard score of amino acid residues in the active side. 

 

No. Standard 
Interaction score with catalytic site residue (%) 

Arg 118 Asp 151 Glu 278 Arg 293 Arg 368 Tyr 402 Glu 425 

1. Sialic acid - - 32.8 38.7, 55.2, 49.1 - 10.6, 10.6 - 

2. DANA - 14.1 22.6, 31.2 14.7 - 13.4, 44.0, 44.0 - 

3. Zanamivir - 17.9, 34.4 14.2 - 25.1 61.0, 61.0, 89.0 - 

4. Oseltamivir - - - 89.3 - 28.1 - 

5. RWJ-270201 - 20.0 31.6 - - - - 
 
 
 

Table 7. Contact residues and ligand interaction scores with the active side of the amino acid residues. 
 

No. Ligand 
Interaction score with catalityc site residue (%) 

Arg 118 Asp 151 Glu 278 Arg 293 Arg 368 Tyr 402 Glu 425 

1 DNY - - 72.8 42.3, 21.1 - 32.2 - 

2 NNY - - 14.8 53.5, 20.2 - 52.0, 21.4 - 

3 DYY - - - 29.5 25.8 28.1 - 

4 DDY - 11.5 14.1 53.4, 22.9 - 70.6, 21.5, 70.6 - 

5 RRR - - 23.3, 22.9, 13.3 - 37.4, 33.2 11.4, 10.7 - 

6 RRP - - 16.9 28.2 - 37.2, 37.2 - 

7 RPR - - 11.0 39.7 13.0, 12.9 20.6 - 

8 LRL - - 17.7 22.5 - 62.5 - 
 

 
 

bond distance of at least 2.5 to 3.5 Å.  
Table 6 shows contact residues and ligand interaction 

scores of the standard. From the standard ligand contact 
residue with the amino acid residues of the NA active 
site, oseltamivir and RWJ-270 201 only interact with two 
of the seven amino acid residues in the NA active site. 
Although score (89.3%) from the NA interaction with 
Arg293 is large enough, it is not enough to prove that 
oseltamivir still has good activity as an antiviral drug for 
influenza virus, because the affinity of oseltamivir against 
NA that has been previously known was very low. It is 
even lower than the sialic acid  which  theoretically  would 

tend to cause NA to bind to sialic acid compared to 
oseltamivir. Other standard ligands have seven inter-
actions with amino acid residues on the active side of the 
interaction of NA with a good score. Table 7 shows 
contact residues and interaction score with amino acid 
residues at the NA active site. Eight ligands from Table 7 
passed the previous screening. It can be seen that each 
ligand has at least three interactions with amino acid 
residues on the active side of the interaction of NA with a 
pretty good score. Although the standard, DANA, 
zanamivir and contact residues results have a better 
interaction score compared to others, it is  seen  from  the  
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Table 8. The results of screening a ligand based drug likeness (drug scan). 
 

No. Ligand 
Molecular weight 

(dalton) 
H-bond donor H-bond acceptor LogP 

Molar refractivity 
(optional) 

1 *Oseltamivir 312,00 3 5 1,309 84,245 

2 *Zanamivir 332,00 9 9 -6,657 75,831 

3 *DANA 291,00 6 7 -7,814 62,861 

4 *RWJ-270201 314,00 7 6 -2,588 80,929 

5 DNY 598,00 10 9 -2,678 156,365 

6 NNY 597,00 11 9 -1,97 146,536 

7 DYY 647,00 9 10 -1,212 162,286 

8 DDY 599,00 9 11 -3,148 142,352 

9 RRR 674,00 18 15 -4,601 175,187 

10 RRP 615,00 13 12 -3,358 158,839 

11 RPR 615,00 13 12 -3,007 157,898 

12 LRL 588,00 10 9 -1,042 155,793 
 

*Standard; bold, did not pass screening. 

 
 
 
determination results of the ligand affinity, that the pre-
vious eight have a better affinity than all the standards. It 
is an indication that residence time of the bond between 
the ligand and NA is better. It will also affect the use of 
concentration in the wet lab test later, that a ligand that 
has a better residence time requires less concentration of 
the ligand to inhibit an enzyme such as NA. 
 
 
Screening ligand based drug likeness (drug scan) 
 
The selected eight ligands are based on docking analysis 
(affinity and interaction). Out of them, there would be 
selected several ligands that have properties in common 
with an existing drug (drug likeness) using Lipinski's rules 
(Lipinski's rule of five) (Lipinski et al., 2001). Lipinski's 
rule of five is helpful to distinguish between molecules of 
drug-like and non drug like by taking into account the 
extent of absorption or permeability of lipid bilayer 
present in the human body. These rules predict the 
probability of determining drug-likeness of a molecule 
that has two or more criteria as follows: 
 
1. The molecular weight of less than 500 mg/mol 
2. Has a high lipophilicity (logp less than 5) 
3. Hydrogen bond donors less than 5 
4. Hydrogen bond acceptor is less than 10 
5. Refractory molar between 40-130 (optional) (SCFBIO-
IITD) 
 
The result of ligand screening based on the drug likeness 
by using online software Lipinski's filter (SCFBIO-IITD) is 
shown in Table 8. From the data shown in Table 8, 
oseltamivir, which was used as a standard as well as 
antiviral drug commercially, had a graduation rate of four 
out of the  five  criteria  based  on  Lipinski's  rule  of  five, 

which is the highest. While, zanamivir is also an antiviral 
drug that has been used commercially, having met three 
out of five Lipinski's rules criteria. The standard inhibitor 
DANA and RWJ-270 201 have the same criteria as 
zanamivir; three of the five criteria of Lipinski's rules are 
met. It means that they are having a sufficient level of 
drug likeness. Out of the screened eight ligands (docking 
analysis), only three ligands met two out of the Lipinski's 
five rules. They are DNY, NNY and LRL. It is because, 
the rules of Lipinski itself state that a molecule which has 
a good drug likeness should have at least two of the five 
criteria. The three ligands (DNY, NNY, and LRL) have 
quite good drug likeness levels and further analysis will 
be conducted on them. 

The performed screening is still associated with the 
bioavailability level of oral drug likeness. High oral 
bioavailability is often an important consideration for 
developing bioactive molecules as therapeutic agent 
(Veber et al., 2002; Tambunan and Wulandari, 2010c). 
Oral bioavailability is the extent to which a drug or other 
substances will be available to the target tissue after 
administration of drugs or substance (Tambunan and 
Wulandari, 2010c). Screening levels of ligand oral 
bioavailability is based on two rules, namely Veber's rules 
(Veber et al., 2002) and Egan's rules (Egan et al., 2000). 
Veber's rules stated that oral bioavailability of drugs is 
good if it meets the following criteria: 
 
1. Rotatable bonds is less than or equal to 10. 
2. Topological polar surface area (tPSA) is less or equal 
with 140 Å. 
3. Total H- bonds and H- acceptor of less than or equal to 
12. 
 
Egan's rules of a molecule stipulated that the oral 
bioavailability of drugs is  good  if  it  meets  the  following  
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Table 9. The results of oral bioavailability standard and ligand screening (Veber's Rules).  
 

No. Ligand 
H-bond donor + H-bond 

acceptor (optional) 
tPSA (Å) Rotatable bond 

1 *Oseltamivir 8 90,660 8 

2 *Zanamivir 18 198,217 7 

3 *DANA 13 156,543 5 

4 *RWJ-270201 13 148,527 7 

5 DNY 19 260,107 7 

6 NNY 20 265,902 7 

7 DYY 19 237,241 7 

8 DDY 20 254,312 7 

9 RRR 33 345,192 16 

10 RRP 25 274,501 11 

11 RPR 25 274,501 11 

12 LRL 19 221,388 10 
 

*Standard; bold, did not pass screening. 

 
 
 
criteria: 
 
1. 0 ≥ tPSA ≤ 132 Å. 
2. -1 ≥ LogP ≤ 6. 
 
Screening is done by determining the ligand properties, 
using the online software molinspirations 
(molinspirations.com) to examine some properties of 
ligands such as tPSA, logP and number of rotatable 
bonds (nortb). The results of oral bioavailability of 
standard screening and ligand are seen in Tables 9 and 
10. Oral bioavailability screening results showed that only 
oseltamivir meets all the criteria based on Veber's and 
Egan's rules. For zanamivir, which is one of the antiviral 
drugs, it did not meet criteria based on the oral 
bioavailability of Veber's and Egan's rules, as well as two 
standard inhibitors (DANA and RWJ-270201). Most of the 
ligand designs also have the same criteria with zanamivir, 
on the grounds that oral bioavailability is not a guarantee 
to distinguish drug-like and non drug-like molecules. 
Based on the screening results (Lipinski's rule of five and 
oral bioavailability screening), the ligands designs that 
have the best drugs likeness are DNY, NNY and LRL. 
 
 
Visualization of enzyme-ligand complex interactions 
 
The interaction between the ligand with the enzyme was 
visualized using two different offline softwares. They are 
PyMol and MOE2008.10. PyMol can display 3D high 
resolution images and can be designed according to 
desired needs, while MOE 2008.10 interaction picture 
was displayed in the form of 2D image with bonding 
parameters that have been determined automatically. 
From Figures 2, 3 and 4, it can be seen that the 
visualization of complex enzyme-ligand interactions of the 

three new ligand designs are DNY, NNY and LRL using 
PyMol software. From the image A, it can be seen that 
the interaction between the ligand with NA, red lines 
indicate hydrogen bonding that occurs between the 
ligand with NA; whereas for image B, it can be seen with 
the surface of the ligand cavity or pocket of the catalytic 
site (active side) of NA. In the images, it could be seen 
whether the structure of the ligand is appropriate or 
sufficient to form a pocket in the NA active site.  

The ligand structure of NNY and DNY are quite fit to the 
shape of the NA active site side pocket and it is visible; 
also both ligand aromatic groups occupy a crevice that is 
quite appropriate, so the aromatic group is still large 
enough to enter the active side of the NA. Whereas, 
ligand LRL has a structure larger than DNY and NNY, so 
it does not quite match the shape of the NA active side 
pocket. It can be seen that there are enough side chains 
of arginine (R) so that the ligand slightly pushes out of the 
pocket side of the NA active site. Here is a visualization 
of the enzyme-ligand interactions using the software 
MOE 2008. 10;  
 
1. DNY ligand interaction with NA in Tables 8 and 9 show 
some interactions between amino acid residues at the NA 
active site with the ligand through hydrogen bonding, 
which occurred with the Tyr 402, Arg293, Glu278 side 
chains of asparagines (N) and aspartic acid (D) that is, 
asetamine and carboxyl. However, it can be seen that the 
interaction of the amino acids Arg368 to the center or 
core of the aromatic groups exists on the ligand (Figure 
5). 
2. NNY ligand interactions with NA are similar to DNY 
ligand interactions with NA, but there are differences in 
amino acid residues that interact with the aromatic core 
of the group. While on NNY, it is Arg225, and on DNY, it is 
Arg368.  This  is  due  to   different   ligand   conformation  
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Table 10. The results of oral bioavailability standard and ligand screening (Egan's Rules). 
 

No. Ligand LogP PSA (Å) 

1 *Oseltamivir 1.309 90.660 

2 *Zanamivir -6,657 198,217 

3 *DANA -7,814 156,543 

4 *RWJ-270201 -2,588 148,527 

5 DNY -2,678 260,107 

6 NNY -1,970 265,902 

7 DYY -1,212 237,241 

8 DDY -3,148 254,312 

9 RRR -4,601 345,192 

10 RRP -3,358 274,501 

11 RPR -3,007 274,501 

12 LRL -1,042 221,388 
 

*Standard; bold, did not pass screening. 
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Figure 2. 3D Interaction of Ligand DNY with NA.  
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Figure 3. 3D Interactions of Ligand NNYwith NA. 
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Figure 4. 3D Interaction of Ligand LRL with NA.  

 
 

 

 
 

Figure 5. 2D DNY ligand interactions with NA. 
 

 
 

between DNY and NNY; the interaction through hydrogen 
bonding mostly happens with the side chain of 
asparagine (N) amino acid residue. It is the asetamine 

group (Figure 6). 
3. LRL ligand interactions with NA have more evenly 
distributed hydrogen bonds with amino acid residues at  

A 
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Figure 6. 2D NNY ligand interactions with NA. 

 
 

 

the NA active site than NNY and DNY. Both of them are 
more focused on the carboxyl group and asetamine. 
Visible side chain of arginine is also large enough to have 
a pretty good interaction with Tyr402 and Glu278; despite 
the previous 3D visualization of the arginine side chain 
causing the ligand to be slightly pushed out of the pocket 
side of the NA active site (Figure 7).  
 
 
Toxicological properties  
 
A determination method for the molecules toxicological 
properties in the development of drug design is getting 
more important. It is necessary to predict drugs adverse 
effects on living being. This development involves several 
aspects and methods that can be adopted from various 
existing types of research. One method that can be used 
in this toxicology study is quantitative structure-activity 
relationship (QSAR). Animals testing data are the basis of 
QSAR which cannot guarantee the completeness of the 
data required for the toxicology studies. Studies using 
animals have some limitations such as funding, the long 
required time, the unavailability of adequate laboratory, 
inability to generate insufficient data, and a problem of 
ethics in the use of animals as test material. These 
problems could be overcome by developing several tools 
that can perform toxicology studies or determination of 
the toxicological properties of a molecule quickly and 
cost-effective. Some software has been developed to 
assist investigators in determining the toxicological 

properties of a molecule, for examples:  
 
1. Toxtree (Ideaconsult Ltd., Bulgaria). 
2. Lazar (http://lazar.in-silico.de/).  
 
Both the software above was utilized in determining the 
toxicological properties of all three ligands from the 
screening results; they are DNY, NNY and LRL.  

Determination of the toxicological properties of the 
three ligands are focused on the carcinogenicity and 
mutagenicity which serve as an important concern in 
human health and deal directly with the ligand which is a 
cardinal goal of drug design. The difference between the 
softwares is the basis for determining the toxicological 
properties of a molecule. Toxtree is based on the rules of 
Benigni/Bossa for mutagenicity and carcinogenicity 
(Benigni and Bossa, 2008) (from the Instituto Superiore 
Sanita, Rome, Italy, and approved by the European 
Chemical Bureau, Institute for Health and Consumers 
Protection, European Commission-Joint Research Centre 
(JRC) in 2008). Some points to consider in determining 
the toxicological properties using ToxTree for instance are 
the presence or absence of a structural alert (SAS) that is 
genotoxic and nongenotoxic and determination of the 
QSAR.  

Lazar online software is based upon the structural 
equation fragment of the observed molecule. The nature 
of the structural fragment that exists in toxicology 
databases for known carcinogenicity and mutagenicity 
was based on the test results using laboratory animals 
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Figure 7. 2D ligand interactions LRL with neuraminidase.  

 
 

 
Table 11. Toxtree toxicity prediction results. 

 

Toxtree toxicity prediction DNY NNY LRL 

Structural alert for genotoxic carcinogenicity No No No 

Structural alert for nongenotoxic carcinogenicity No No No 

Potential carcinogen based on QSAR No No No 

Potential S. typhimurium TA100 mutagen based on QSAR No No No 

Negative for genotoxic carcinogenicity Yes Yes Yes 

Negative for nongenotoxic carcinogenicity Yes Yes Yes 
 
 

 

and microbial (Ames test). The result of the determination 
of toxicological properties by using both softwares is seen 
in Tables 11 and 12. From the results of toxicological 
prediction using software Toxtree, those three ligands 
have no structural alerts (SAS) that are genotoxic and 
nongenotoxic, and also with the QSAR approach was 
detected as not mutagenic and carcinogen. While the 
results are predictable, Lazar software detected 
mutagenic properties of the three ligands on Salmonella 
typhimurium by two methods. They are CPDB and 
Kazius/Bursi, and apparently only the active or positive 
LRL is predicted to be mutagenic in S. typhimurium 
(Kazius/Bursi). The carcinogens are predicted using test 
animals of the rodent, rat, murine and hamsters with 
regard to the gender; it is only the LRL that is predicted to 

be active or positive carcinogens on hamsters. Some 
parameters in the software Lazar do not show the results 
(not available) of the three ligands which are caused by 
the data that have structural similarities with fragment. It 
has less supported entry, and it is not enough to predict 
the outcome of those parameters such as LC50 and the 
daily dose.  
 
 
Synthetic accessibility (SA) 
 
Ligands shown to have a good affinity to target enzyme 
do not have a practical value, if the design could not be 
synthesized by wet lab. Therefore, to help predict 
whether a designed molecules/ligands could be synthe-
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Table 12. Lazar toxicity prediction results. 
 

Lazar toxicity prediction 
Predicted activity 

DNY NNY LRL 

96 h LC50 Not available Not available Not available 

Human liver toxicity - Composite activity Not available Not available Not available 

Human liver toxicity - GGT increase Not available Not available Not available 

Human liver toxicity - LDH increase Not available Not available Not available 

Human liver toxicity - SGOT increase Not available Not available Not available 

Human liver toxicity - SGPT increase Not available Not available Not available 

Mutagenicity - Salmonella typhimurium (CPDB) Inactive Inactive Inactive 

Mutagenicity - Salmonella typhimurium (Kazius/Bursi) Inactive inactive Active 

Rodent carcinogenicity (multiple sex/species/sites) Inactive Inactive Inactive 

Rodent carcinogenicity (single sex/species/site) Inactive Inactive Inactive 

Rat carcinogenicity (both sexes) Inactive inactive Inactive 

Rat carcinogenicity (male) Inactive inactive Inactive 

Rat carcinogenicity (female) Inactive inactive Inactive 

Mouse carcinogenicity (both sexes) Inactive inactive Inactive 

Mouse carcinogenicity (male) Inactive inactive Inactive 

Mouse carcinogenicity (female) Inactive inactive Inactive 

Hamster carcinogenicity (both sexes) Inactive inactive Active 

Hamster carcinogenicity (male) Inactive inactive Inactive 

Hamster carcinogenicity (female) Inactive Inactive Active 

IRIS upper-bound excess lifetime cancer risk Not available Not available Not Available 

FDA maximum recommended daily dose (FDAMDD) Not available Not available Not Available 
 
 

 
Table 13. The results of the SA prediction. 

 

Ligand Structural complexity (%) Starting materials (%) Synthetic accessibility (%) 

*Oseltamivir 32 49 62 

*Zanamivir 10 92 89 

DNY 41 76 58 

NNY 41 76 58 

LRL 39 77 60 
 

Description*: Ligand standard (antiviral drug). 
 
 

 

sized by wet-lab or not, parameter called synthetic 
accessibility (SA) should be applied. It has provided 
online software that helps to determine the SA. The name 
is CAESA, which was developed by Symbiosis Inc. and 
supported by Keymodule Ltd, Leeds, UK and Pfizer. The 
basis of the SA determination is using the structural 
complexity CAESA of these molecules and the availability 
of starting materials to synthesize such molecules as 
seen from the databases Across, Aldrich and Lancaster. 
Prediction of the three synthetic ligands accessibility of 
DNY, NNY and LRL and oseltamivir and zanamivir are 
merupkan antiviral drug that has been used commercially 
as a comparison (Table 13).  

Zanamivir, as a commercial antiviral drug, has a high 
SA score of 89% because its structure is not too complex 
(10%) and has adequate availability of  starting  materials 

(92%), while the SA score for oseltamivir is 62% because 
its availability of starting materials is only 49%. It can be 
quite low because oseltamivir is been used commercially 
as zanamivir. For all three ligands, DNY and NNY have 
the same structural complexity, which is 41 and 76% 
availability of the starting materials, so that the SA score 
for the second ligand is about 58%. It is because the 
structure is similar to NNY and DNY, distinguished only 
by one amino acid residue D (aspartic acid) and N 
(asparagine); while, the LRL has structural complexity 
lower than DNY and NNY at 39% with the availability of 
starting materials of 77%. SA score of LRL is greater than 
NNY and DNY (60%), when compared with predicted 
results for synthetic ligands accessibility of the three 
ligands. DNY, NNY and LRL are likely to be able to be 
synthesized in the wet lab  because  the  SA  score  does 
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not have much difference from oseltamivir, which has 
been synthesized on a large scale for commercial needs. 
Although all three structures in terms of ligand are more 
complex than oseltamivir, the availability of starting 
materials of them can be said to be more numerous and 
easier than oseltamivir.  
 
 

Conclusion 
 

Oseltamivir, as one of the antiviral drug for influenza virus 
subtype H1N1 NA, loses its activity due to mutations of 
the NA itself, while zanamivir is still having good activity in 
the enzymatic function of NA inhibition. From the results 
of docking, Oseltamivir, DANA and RWJ-270 201 ΔG

o
 

values were greater than the NA natural substrate of 
sialic acid. Henceforth, we can conclude that the NA 
theoretically would be more likely to bind to sialic acid for 
enzyme-ligand complexes formation. It will be more 
stable. From the results of molecular docking and drug 
scan based on Lipinski's rule of five and oral 
bioavailability rules (Egan's and Veber's rules), the best 
of the three candidates ligand DNY, NNY and LRL was 
elucidated. 

Toxicological properties of NNY and DNY ligands were 
predicted as non-carcinogens and non-mutagens. Only 
ligand LRL is predicted to be mutagens with the use of S. 
typhimurium (Kazius/Bursi) and carcinogens in female 
test animals. Ligand DNY and NNY have SA score of 
58%, while LRL, 60%. Those ligands designs are likely to 
be synthesized by wet lab. Molecular dynamic simulation 
needs to be done to determine the effect of temperature 
and solvent on the interaction of ligands with NA and 
there is need to carryout absorption, distribution, meta-
bolism and excretion (ADME) analysis and bioactivity of 
the ligand that has been designed to determine the 
treatment of the human body against the ligand system 
that has been made. 
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