588 research outputs found

    Transformation Based Ensembles for Time Series Classification

    Get PDF
    Until recently, the vast majority of data mining time series classification (TSC) research has focused on alternative distance measures for 1-Nearest Neighbour (1-NN) classifiers based on either the raw data, or on compressions or smoothing of the raw data. Despite the extensive evidence in favour of 1-NN classifiers with Euclidean or Dynamic Time Warping distance, there has also been a flurry of recent research publications proposing classification algorithms for TSC. Generally, these classifiers describe different ways of incorporating summary measures in the time domain into more complex classifiers. Our hypothesis is that the easiest way to gain improvement on TSC problems is simply to transform into an alternative data space where the discriminatory features are more easily detected. To test our hypothesis, we perform a range of benchmarking experiments in the time domain, before evaluating nearest neighbour classifiers on data transformed into the power spectrum, the autocorrelation function, and the principal component space. We demonstrate that on some problems there is dramatic improvement in the accuracy of classifiers built on the transformed data over classifiers built in the time domain, but that there is also a wide variance in accuracy for a particular classifier built on different data transforms. To overcome this variability, we propose a simple transformation based ensemble, then demonstrate that it improves performance and reduces the variability of classifiers built in the time domain only. Our advice to a practitioner with a real world TSC problem is to try transforms before developing a complex classifier; it is the easiest way to get a potentially large increase in accuracy, and may provide further insights into the underlying relationships that characterise the problem

    Diversified Ensemble Classifiers for Highly Imbalanced Data Learning and their Application in Bioinformatics

    Get PDF
    In this dissertation, the problem of learning from highly imbalanced data is studied. Imbalance data learning is of great importance and challenge in many real applications. Dealing with a minority class normally needs new concepts, observations and solutions in order to fully understand the underlying complicated models. We try to systematically review and solve this special learning task in this dissertation.We propose a new ensemble learning framework—Diversified Ensemble Classifiers for Imbal-anced Data Learning (DECIDL), based on the advantages of existing ensemble imbalanced learning strategies. Our framework combines three learning techniques: a) ensemble learning, b) artificial example generation, and c) diversity construction by reversely data re-labeling. As a meta-learner, DECIDL utilizes general supervised learning algorithms as base learners to build an ensemble committee. We create a standard benchmark data pool, which contains 30 highly skewed sets with diverse characteristics from different domains, in order to facilitate future research on imbalance data learning. We use this benchmark pool to evaluate and compare our DECIDL framework with several ensemble learning methods, namely under-bagging, over-bagging, SMOTE-bagging, and AdaBoost. Extensive experiments suggest that our DECIDL framework is comparable with other methods. The data sets, experiments and results provide a valuable knowledge base for future research on imbalance learning. We develop a simple but effective artificial example generation method for data balancing. Two new methods DBEG-ensemble and DECIDL-DBEG are then designed to improve the power of imbalance learning. Experiments show that these two methods are comparable to the state-of-the-art methods, e.g., GSVM-RU and SMOTE-bagging. Furthermore, we investigate learning on imbalanced data from a new angle—active learning. By combining active learning with the DECIDL framework, we show that the newly designed Active-DECIDL method is very effective for imbalance learning, suggesting the DECIDL framework is very robust and flexible.Lastly, we apply the proposed learning methods to a real-world bioinformatics problem—protein methylation prediction. Extensive computational results show that the DECIDL method does perform very well for the imbalanced data mining task. Importantly, the experimental results have confirmed our new contributions on this particular data learning problem

    Ensemble feature selection for high-dimensional data: a stability analysis across multiple domains

    Get PDF
    Selecting a subset of relevant features is crucial to the analysis of high-dimensional datasets coming from a number of application domains, such as biomedical data, document and image analysis. Since no single selection algorithm seems to be capable of ensuring optimal results in terms of both predictive performance and stability (i.e. robustness to changes in the input data), researchers have increasingly explored the effectiveness of "ensemble" approaches involving the combination of different selectors. While interesting proposals have been reported in the literature, most of them have been so far evaluated in a limited number of settings (e.g. with data from a single domain and in conjunction with specific selection approaches), leaving unanswered important questions about the large-scale applicability and utility of ensemble feature selection. To give a contribution to the field, this work presents an empirical study which encompasses different kinds of selection algorithms (filters and embedded methods, univariate and multivariate techniques) and different application domains. Specifically, we consider 18 classification tasks with heterogeneous characteristics (in terms of number of classes and instances-to-features ratio) and experimentally evaluate, for feature subsets of different cardinalities, the extent to which an ensemble approach turns out to be more robust than a single selector, thus providing useful insight for both researchers and practitioners

    Efficient Diverse Ensemble for Discriminative Co-Tracking

    Full text link
    Ensemble discriminative tracking utilizes a committee of classifiers, to label data samples, which are in turn, used for retraining the tracker to localize the target using the collective knowledge of the committee. Committee members could vary in their features, memory update schemes, or training data, however, it is inevitable to have committee members that excessively agree because of large overlaps in their version space. To remove this redundancy and have an effective ensemble learning, it is critical for the committee to include consistent hypotheses that differ from one-another, covering the version space with minimum overlaps. In this study, we propose an online ensemble tracker that directly generates a diverse committee by generating an efficient set of artificial training. The artificial data is sampled from the empirical distribution of the samples taken from both target and background, whereas the process is governed by query-by-committee to shrink the overlap between classifiers. The experimental results demonstrate that the proposed scheme outperforms conventional ensemble trackers on public benchmarks.Comment: CVPR 2018 Submissio

    On the class overlap problem in imbalanced data classification.

    Get PDF
    Class imbalance is an active research area in the machine learning community. However, existing and recent literature showed that class overlap had a higher negative impact on the performance of learning algorithms. This paper provides detailed critical discussion and objective evaluation of class overlap in the context of imbalanced data and its impact on classification accuracy. First, we present a thorough experimental comparison of class overlap and class imbalance. Unlike previous work, our experiment was carried out on the full scale of class overlap and an extreme range of class imbalance degrees. Second, we provide an in-depth critical technical review of existing approaches to handle imbalanced datasets. Existing solutions from selective literature are critically reviewed and categorised as class distribution-based and class overlap-based methods. Emerging techniques and the latest development in this area are also discussed in detail. Experimental results in this paper are consistent with existing literature and show clearly that the performance of the learning algorithm deteriorates across varying degrees of class overlap whereas class imbalance does not always have an effect. The review emphasises the need for further research towards handling class overlap in imbalanced datasets to effectively improve learning algorithms’ performance

    Comprehensive ensemble in QSAR prediction for drug discovery

    Get PDF
    Background Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical compounds and biological activities. QSAR modeling is essential for drug discovery, but it has many constraints. Ensemble-based machine learning approaches have been used to overcome constraints and obtain reliable predictions. Ensemble learning builds a set of diversified models and combines them. However, the most prevalent approach random forest and other ensemble approaches in QSAR prediction limit their model diversity to a single subject. Results The proposed ensemble method consistently outperformed thirteen individual models on 19 bioassay datasets and demonstrated superiority over other ensemble approaches that are limited to a single subject. The comprehensive ensemble method is publicly available at http://data.snu.ac.kr/QSAR/ Conclusions We propose a comprehensive ensemble method that builds multi-subject diversified models and combines them through second-level meta-learning. In addition, we propose an end-to-end neural network-based individual classifier that can automatically extract sequential features from a simplified molecular-input line-entry system (SMILES). The proposed individual models did not show impressive results as a single model, but it was considered the most important predictor when combined, according to the interpretation of the meta-learning.Publication costs were funded by Seoul National University. This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) [2014M3C9A3063541, 2018R1A2B3001628], the Brain Korea 21 Plus Project in 2018, and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea [HI15C3224]. The funding bodies did not play any roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript
    corecore