
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Spring 5-7-2011

Diversified Ensemble Classifiers for Highly
Imbalanced Data Learning and their Application in
Bioinformatics
Zejin Ding
Computer Science Department, Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Ding, Zejin, "Diversified Ensemble Classifiers for Highly Imbalanced Data Learning and their Application in Bioinformatics."
Dissertation, Georgia State University, 2011.
https://scholarworks.gsu.edu/cs_diss/60

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

DIVERSIFIED ENSEMBLE CLASSIFIERS FOR HIGHLY IMBALANCED DATA LEARNING AND THEIR APPLICA-

TION IN BIOINFORMATICS

by

ZEJIN DING

Under the Direction of YANQING ZHANG

ABSTRACT

In this dissertation, the problem of learning from highly imbalanced data is studied. Imbalance

data learning is of great importance and challenge in many real applications. Dealing with a minority

class normally needs new concepts, observations and solutions in order to fully understand the underly-

ing complicated models. We try to systematically review and solve this special learning task in this dis-

sertation.

We propose a new ensemble learning framework—Diversified Ensemble Classifiers for Imbal-

anced Data Learning (DECIDL), based on the advantages of existing ensemble imbalanced learning strat-

egies. Our framework combines three learning techniques: a) ensemble learning, b) artificial example

generation, and c) diversity construction by reversely data re-labeling. As a meta-learner, DECIDL utilizes

general supervised learning algorithms as base learners to build an ensemble committee.

We create a standard benchmark data pool, which contains 30 highly skewed sets with diverse

characteristics from different domains, in order to facilitate future research on imbalance data learning.

We use this benchmark pool to evaluate and compare our DECIDL framework with several ensemble

learning methods, namely under-bagging, over-bagging, SMOTE-bagging, and AdaBoost. Extensive ex-

periments suggest that our DECIDL framework is comparable with other methods. The data sets, exper-

iments and results provide a valuable knowledge base for future research on imbalance learning.

 We develop a simple but effective artificial example generation method for data balancing. Two

new methods DBEG-ensemble and DECIDL-DBEG are then designed to improve the power of imbalance

learning. Experiments show that these two methods are comparable to the state-of-the-art methods,

e.g., GSVM-RU and SMOTE-bagging.

Furthermore, we investigate learning on imbalanced data from a new angle—active learning. By

combining active learning with the DECIDL framework, we show that the newly designed Active-DECIDL

method is very effective for imbalance learning, suggesting the DECIDL framework is very robust and

flexible.

Lastly, we apply the proposed learning methods to a real-world bioinformatics problem—

protein methylation prediction. Extensive computational results show that the DECIDL method does per-

form very well for the imbalanced data mining task. Importantly, the experimental results have con-

firmed our new contributions on this particular data learning problem.

INDEX WORDS: Machine learning, Classification, Imbalanced data learning, Diversified ensemble, Active
learning, Artificial data generation, Bioinformatics, Protein methylation

DIVERSIFIED ENSEMBLE CLASSIFIERS FOR HIGHLY IMBALANCED DATA LEARNING AND THEIR APPLICA-

TION IN BIOINFORMATICS

by

ZEJIN DING

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2011

Copyright by
Zejin Ding

2011

DIVERSIFIED ENSEMBLE CLASSIFIERS FOR HIGHLY IMBALANCED DATA LEARNING AND THEIR APPLICA-

TION IN BIOINFORMATICS

by

ZEJIN DING

 Committee Chair: Yanqing Zhang

Committee: Yi Pan

Rajshekhar Sunderraman

 Yichuan Zhao

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2011

iv

DEDICATION

To my parents,

To my grandfather, who cherished me since a kid,

To my grandmother, who loved me the most, but I don’t know her name,

To my love.

v

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Dr. Yanqing Zhang, for being my oracle, master, and

best friend. This dissertation and related research works would not have been possible without his

help. His support, guidance, and encouragement create an excellent research environment for my re-

search and his invaluable ideas always lead me to explore new directions of research territory. We have

numerous times of long discussions on different research topics which are turning into valuable treasure

to me. I have been very glad to work with Dr. Yanqing Zhang.

I would like to thank Dr. Yi Pan for his great help during my Ph.D. study and valuable insights in

my research topic. He can always quickly point out the key component of a new research problem and

give great suggestions for improvement. He always encourages graduate students to do better and bet-

ter. I am also very grateful to have worked with Dr. Yi Pan during the past years.

Special thanks go to Dr. Raj Sunderraman. He has helped me so many times in many different

ways throughout my Ph.D. study. Also, many thanks to Dr. Yichuan Zhao for his significant suggestions to

improve the research work in this dissertation. His guidance and comments are invaluable and beyond

this dissertation. Special thanks to Dr. Yujun George Zheng for providing data and great collaborations in

last several years.

Thanks to the continuous supports from the Computer Science Department and the Molecular

Basis of Disease (MBD) program at Georgia State University.

Many thanks to former students and friends in the department, Yuchun Tang, Na’El Abu-

Halaweh, Qiong Cheng, Yan Chen, Jeff Chen, Amit Sabnis, Irina Astrovskaya, Hailong Hou, etc.

Special thanks to Mrs. Tammie for helping me a lot with all my academic issues, and Shaochieh

for his technical support which allows me to conduct experiments without any extra concerns.

vi

Finally, I would like to appreciate my family members for their unlimited support and love.

Thanks my parents for supporting my pursuit of Ph.D. degree without any reservations and waiting pa-

tiently. Thanks to my younger brother for being my continuous concern for many years, until recently I

have realized that he has grown up because I have been in school for so many years. This dissertation is

also dedicated to my grandfather, who passed away when I was in a junior school and put his last hope

on me to leave my home village and live a better life, to my grandmother, who loved me the most

among other grandchildren and passed away during my Ph.D. study abroad, while I did not know her

name. Lastly, I thank my girlfriend for her full support and understanding in finishing this dissertation

day and night.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. v

LIST OF TABLES .. xi

LIST OF FIGURES ...xiii

LIST OF ABBREVIATIONS .. xv

Chapter 1: INTRODUCTION ... 1

1.1 Problem Definition .. 3

1.2 Challenges ... 5

1.3 Organizations .. 7

Chapter 2: LITERATURE REVIEW ... 9

2.1 Standard Classification Algorithms ... 9

2.2 Ensemble Classification ... 9

2.3 Imbalanced Classification Algorithms ... 13

2.3.1 Sampling methods for imbalance learning .. 14

2.3.2 Bagging methods for imbalance learning .. 17

2.3.3 Boosting methods for imbalance learning ... 18

2.3.4 Cost-sensitive learning on imbalanced data .. 19

2.3.5 Kernel-based learning on imbalanced data ... 20

2.4 Performance Evaluation .. 21

2.4.1 Classic Evaluation Metrics .. 22

viii

2.4.2 F-measure, G-Means, and MCC ... 23

2.4.3 AUC-ROC, AUC-PR .. 24

Chapter 3: THE DECIDL FRAMEWORK ... 26

3.1 Motivation ... 26

3.2 The proposed DECIDL Framework .. 28

3.3 Techniques for Implementing DECIDL .. 31

Chapter 4: EXPERIMENTAL STUDIES ON DECIDL .. 36

4.1 Base-learner and algorithm selection ... 36

4.2 Dataset Selection .. 37

4.3 Experimental Setup ... 40

4.4 Experimental Results... 43

4.4.1 Overall Comparisons with Different Ensemble Frameworks 43

4.4.2 Influence of Size of Artificial Set to Performance .. 52

4.4.3 Importance of Rejection Criterion to Performance ... 54

4.4.4 Influence of Ensemble Size to Performance .. 55

4.5 Discussion .. 57

Chapter 5: MORE EFFECTIVE ARTIFICIAL EXAMPLE GENERATION FOR DATA BALANCING 59

5.1 Introduction .. 59

5.2 Related works on artificial example synthesis .. 60

5.3 Distribution-based artificial example generation (DBEG) ... 63

ix

5.4 DBEG-Ensemble and DECIDL-DBEG ... 67

5.5 Other methods for comparison .. 69

5.6 Experimental setup and results .. 71

5.7 Discussion and Conclusion .. 73

Chapter 6: ACTIVE EXAMPLE SELECTION FOR DECIDL .. 75

6.1 Background and Related Works in Active Learning .. 75

6.1.1 Active Learning for imbalanced data ... 81

6.2 Active-DECIDL .. 83

6.3 Experimental Settings and Results .. 86

6.4 Result Discussion and Conclusion ... 90

Chapter 7: PROTEIN METHYLATION PREDICTION ... 92

7.1 Introduction .. 92

7.2 Background ... 93

7.2.1 Protein Structure ... 93

7.2.2 Protein Methylation ... 94

7.3 Related Works in Protein Methylation Prediction .. 96

7.4 Our Proposed Algorithms.. 98

7.4.1 Representation of Protein Sequence ... 98

7.4.2 Feature Extraction from Protein Sequences .. 101

7.4.3 DECIDL on Methylation Data ... 103

x

7.5 Methylated Protein Sequence Collection ... 104

7.6 Computational and Laboratorial Results .. 104

7.6.1 Computational Results ... 105

7.6.2 Laboratorial Results ... 108

7.7 Conclusion ... 110

Chapter 8: CONCLUSION AND FUTURE WORKS ... 111

8.1 Conclusion ... 111

8.2 Future Works .. 113

APPENDICES ... 115

Appendix A: PUBLICATIONS RELATED TO THIS RESEARCH .. 115

REFERENCES ... 117

xi

LIST OF TABLES

Table 1.1: AdaBoost Algorithm [FS96] .. 12

Table 3.1: The DEDICL Algorithm .. 31

Table 4.1: Benchmark Data Characteristics .. 40

Table 4.2: Classification Performance (F-Measure and G-Means) of DECIDL on 30 Data Sets 45

Table 4.3: Classification Performance (MCC and AUC-ROC) of DECIDL on 30 Data Sets 46

Table 4.4: Overall Average Classification Performance of the 22 Algorithms on 30 Data Sets 47

Table 4.5: Overall Performance Lead and Ranking of 5 Ensemble Strategies over 4 Base Learners.... 52

Table 4.6: Influence of Size of Artificial Set to Classification Performance on Ecoli Data 53

Table 4.7: Influence of Size of Artificial Set to Performance on Sick-Euthyroid Data 53

Table 4.8: Effect of Rejection Strategy to Performance on Ecoli and Sick-Euthyroid Data 55

Table 4.9: Effect of Ensemble Sizes to Classification Performance on Ecoli Data 56

Table 4.10: Effect of Ensemble Sizes to Classification Performance on Ecoli Data 57

Table 5.1: Distribution-based example generation (DBEG) .. 66

Table 5.2: The DBEG-Ensemble algorithm .. 68

Table 5.3: The DECIDL-DBEG algorithm .. 69

Table 5.4: Performance Comparison among three meta- learning algorithms (based on optimized

SVM) and GSVM-RU on benchmark data pool (averaged on 5 runs of 5-folds cross-validation).......... 72

Table 6.1: The Active-DECIDL algorithm ... 86

Table 6.2: Classification performance and data query ratio of Active-DECIDL on benchmark data 88

Table 6.3: Performance Comparison among Active-DECIDL, DECIDL, under-bagging and over-bagging

 ... 89

Table 7.1: Features of the Four Current Prediction Web Servers... 98

Table 7.2: 20 Amino Acids and their Abbreviations .. 99

xii

Table 7.3: Orthogonal representation of 20 amino acids and a short sequence 101

Table 7.4: Classification Performance on Arginine Methylation Data Set .. 107

Table 7.5: Under-sampling Classification Performance on Three PRMT Data Sets 109

Table 7.6: Probability Predictions on Two Unknown Protein Substrates ... 109

xiii

LIST OF FIGURES

Figure 2.1: Confusion Matrix for Binary Classification ... 22

Figure 2.2: AUC-ROC .. 24

Figure 4.1: Global Experimental Comparison Framework ... 42

Figure 4.2: The workflow of DECIDL procedure and parameter settings .. 42

Figure 4.3: F-Measure Comparison of Average Performance on 22 Algorithms on 30 Data Sets 48

Figure 4.4: G-means Comparison of Average Performance on 22 Algorithms on 30 Data Sets 48

Figure 4.5: MCC Comparison of Average Performance on 22 Algorithms on 30 Data Sets................... 49

Figure 4.6: AUC-ROC Comparison of Average Performance on 22 Algorithms on 30 Data Sets 49

Figure 4.7: AUC-PR Comparison of Average Performance on 22 Algorithms on 30 Data Sets 50

Figure 4.8: Plot for Influence of Size of Artificial Set to Classification Performance on Ecoli Data 53

Figure 4.9: Influence of Size of Artificial Set to Performance on Sick-Euthyroid Data 54

Figure 4.10: Effect of Rejection Strategy to Performance on Ecoli and Sick-Euthyroid Data 55

Figure 4.11: Plot for Effect of Ensemble Sizes to Classification Performance on Ecoli Data 56

Figure 4.12: Effect of Ensemble Sizes to Classification Performance on Sick-Euthyroid Data 57

Figure 5.1: New example generation based on SMOTE and DECIDL ... 61

Figure 5.2: Distribution comparison among original data, SMOTE-synthesized data, and DBEG-

Synthesized Data .. 66

Figure 5.3: Average Performance Comparison of the four methods on benchmark data pool 73

Figure 6.1: Pool-based Active Learning Cycle [Set09] and Classification Step 76

Figure 6.2: Data query ratio of majority class for the 30 benchmark data .. 90

Figure 6.3: Average Performance Comparison of the four methods on benchmark data pool 90

Figure 7.1: Protein arginine methylation catalyzed by PRMTs .. 95

Figure 7.2: Protein (PDB ID: 3OXC [KWT+07]) Structure and Sequence .. 99

xiv

Figure 7.3: The physico-chemical relationship of the 20 amino acids [Tay86] 102

Figure 7.4: Data flow of imbalanced data learning on Methylated Protein Sequences 103

Figure 7.5: F-Measure Performance Comparison with Different Window Sizes 105

Figure 7.6: G-means Performance Comparison with Different Window Sizes 105

Figure 7.7: MCC Performance Comparison with Different Window Sizes ... 106

Figure 7.8: AUC-ROC Performance Comparison with Different Window Sizes 106

Figure 7.9: Enzymatic assay of potential methylation substrates of PRMT1. 110

xv

 LIST OF ABBREVIATIONS

AUC-PR: Area Under the Curve – Precision and Recall Curve

AUC-ROC: Area Under the Curve - Receiver Operating Characteristic Curve

CV: Cross Validation

DECIDL: Diversified Ensemble Classifiers for Imbalanced Data Learning

DT: Decision Trees

GA: Genetic Algorithm

KNN: K-nearest Neighbor

LDA: Linear Discriminant Analysis

MCC: Matthews correlation coefficient

NBC: Naïve Bayes Classifier

NN/ANN: Artificial Neural Networks

SMOTE: Synthetic Minority Over-sampling Technique

SVM: Support Vector Machines

PRMT: Protein Arginine Methyltransferases

1

Chapter 1: INTRODUCTION

In recent decades, data mining and machine learning have been broadly studied and applied in

various domains in order to solve many complicated and important real-world problems, such as bio-

medical informatics, pattern recognition, fraud detection, nature language processing, medical diagno-

sis, and so on. Several advantages of such research include that data mining algorithms can help people

efficiently analyze raw data, extract hidden patterns, make right decisions, and discover new knowledge.

People learn knowledge from past experiences, and then apply them to solve future problems.

Similarly, data mining methods can discover knowledge from known empirical data, and finally use

learned knowledge to make decisions based on future unknown data. Thus, many learning algorithms

combine the behavior of nature evolving and that of human thinking to mimic the natural learning,

leading to very useful predictive systems. The knowledge learned by such algorithms have different for-

mations, such as meaningful rules, applicable mathematical expressions, hidden models, representative

instances, interactive networks, etc.

Formally speaking, data information in data mining domains are normally represented by the at-

tribute–value system, or called the information table [PS81][ZS96][YYZ05]. The data contains many in-

stances (or objects, examples), and every instance is described by several common meaningful features

(or factors, attributes), where each feature is represented by a valid nominal or numerical value.

Knowledge is implicitly denoted by the features and instances of data, thus learning algorithms need to

disclose that knowledge in an understandable and applicable way. Two particular forms of knowledge

are generally studied in research communities. The first form is the predictive cause-effect relation: one

particular feature of interest (called dependent class), is believed to be dependent with other independ-

ent features. Hence, a learning model tries to reconstruct the relations between other independent fea-

tures (as inputs) and this dependent target class (as outputs). The second from is the inherent structural

2

relation: certain structural or similar characteristics may exist among partial data instances and features;

thus a learning method needs to discover the relationship among those instances, e.g., some instances

may form a compact cluster.

Accordingly, there are mainly two types of machine learning directions based on the availability

of the dependent class. The first type is called supervised learning, where the dependent class is known

in advance; the main task for learning is to discover the relation between other features and this target

class. On the other hand, the second type is called unsupervised learning: the data does not provide a

dependent target class and a learning method needs to discover certain relations among data instances

and features. Furthermore, supervised learning also contains two categories of tasks based on the prop-

erty of target class to be learned. If the class is with discrete values or descriptive labels, then this learn-

ing task is called classification, meaning classifying the instances into right classes; otherwise, if the tar-

get class is with numerical continuous values, then it is a regression task, where the learner need to out-

put a predicting value for each instance to match the real target value.

The classification task has been the main direction of machine learning and data mining research

for many decades due to its extreme importance in real applications. In this dissertation, we focus on

the classification problem. In particular, the binary classification problem, where the target class is with

two discrete labels, is our special interest.

In fact, numerous classification methods have been be proposed by scientists. To name a few

here, K-nearest neighbor method (KNN), Naïve Bayes classifier (NBC), linear discriminant analysis (LDA),

artificial neural network (NN), decision tree (DT), support vector machines (SVM), boosting, bagging are

among the famous and popular ones [Mit97][DHS01]. Many of these advanced learning algorithms and

their variations can lead to very high classification accuracies on empirical training data and new testing

data. For example, lots of hybrid learning procedures using SVMs are able to classify gene microarray

data with accuracies as high as 90 percent or even 100 percent [GWB+02][TZH07]. Newly published ma-

3

chine learning methods keep boosting the learning performance into new high records. Given this high

accuracy trend from new algorithms, it’s substantially hard for researchers to design any better classifi-

cation methods. Besides, the impression of high prediction accuracy gives us a feeling that machine

learning methods can correctly solve almost any classification tasks, once given the data information;

hence there will be no unsolvable classification problems for the machine learning community.

However, this impression is far from the reality. It is broadly known that there still exist lots of

tough problems requiring extraordinary efforts to find effective solutions, such as efficiently learning

from enormous data, or data with noises and missing values, and others. One of most challenging prob-

lems that are still in wide pursuit by numerous researchers is the imbalanced data learning problem.

Imbalanced data means the target classes of the data is skew in distributions; that is, there is at least

one class of instances which significantly outnumbers other classes. Traditional classification methods,

seeking to minimize the overall error rate of the whole training set, do not perform well on imbalanced

data, since they generally assume a relatively balanced class distribution, and put too much strength on

the majority class. In this dissertation, we are particularly interested in the imbalanced binary classifica-

tion problem and try to propose effective methods to solve this problem.

1.1 Problem Definition

We first give a relatively formal definition for general binary classification problem, and then in-

troduce the imbalanced binary classification problem.

Binary classification problem. Given an information table in data matrix , which contains

i.i.d. instances: , where each is a vector

with feature values , is the dependant target class, , and

 , assume all data instances are mutually different and the class label for each

 is unique, then a binary classification problem is to find a classifier that explicitly or implicitly repre-

sents a decision function such that , where is a vector of unknown parameters.

4

The performance of a classifier needs to be properly measured in order to select a meaningful

and useful one for practical use. A classic performance metric is the accuracy or error rate, which com-

putes the difference between outputs of learned decision function and the real class label . In

general, high accuracy (or low error rate) means better classification models, although other perfor-

mances are also important, such as the time and space complexities of the learning and predicting pro-

cess. The performance needs to be evaluated on a separated label-unseen data set to avoid

“cheating”. Normally, the original known data for learning a classifier is called the training data, while

the separated data for evaluating the classifier is called the testing data. There exist several other

popular metrics for measuring the general classification performance, such as sensitivity, specifically, F-

measure, etc. Details will be given later.

Very similar to the general classification problem, the imbalanced binary classification problem

has only one extra special requirement on the data class distribution: one of the two classes (majority

class) has many more instances that the other class (minority class). For convenience, we interchangea-

bly use majority class or negative class, minority class or positive class in this dissertation. Although

there is no clear threshold to define how imbalanced of the data is being called “imbalanced”, it is gen-

erally acknowledged in research community that when studying the imbalanced learning problem, the

number of negative instances should be significantly larger than that of positive ones.

Thus, we first try to give a formal definition for imbalanced binary classification problem by set-

ting up a relatively standard threshold on imbalance ratio from statistics point of view. First, we define a

standard term to measure the imbalance degree in binary classification data. Assume is number of

minority instances, and is for majority ones.

Imbalance ratio is defined as the ratio between the size of majority class and minority class:

Obviously, is always bigger than 1. The bigger it is, the more skewed are the data.

5

Imbalanced binary classification problem. Given a general binary classification problem, if the

imbalanced ratio is no less than 19:1, i.e., if the size of minority class is only 5% of entire data size, we

call this learning problem the significantly imbalanced binary classification problem, or simply, imbal-

ance learning in this dissertation.

To our best knowledge, this is the first time in literature that a clear threshold is given to define

the imbalance learning problem. Note that: 1) this threshold can be easily extended to imbalanced mul-

tiple classification problems; 2) we borrow this “5%” from the significance level in statistical testing; 3)

this threshold only limits the scopes of theoretical study on imbalance learning, but experimental stud-

ies can still be conducted in less significantly or moderately imbalanced data. To compare different algo-

rithms for imbalance learning, we use less imbalanced data in our experiments as well.

Due to significant data imbalance, the traditional evaluation metrics (accuracy or error rate) for

classification performance are not suitable for measuring imbalanced learning results. For example, giv-

en a data set with 19:1 imbalance ratio, a learning method can still reach 95% accuracy by simply classi-

fying everything into the majority class. Obviously, such method would be useless in a practical situa-

tion. Thus, assuming equally misclassification cost for evaluation is not suitable for imbalanced data

classification. New effective performance metrics considering the accuracy on both minority and majori-

ty classes are needed for imbalanced data learning. Fortunately, such metrics have already been pro-

posed in literature, such as the F-measure, G-means, AUROC, etc., and we will discuss them in more de-

tails in later chapters.

1.2 Challenges

There are several challenges for studying imbalanced classification problem, from both theoretic

and experimental point of view.

Challenge 1: the nature of data imbalance is often unclear or different case by case. On one

hand, categories in the known data set could be naturally skewed, due to the formation of the problem.

6

For example, fraud detection, network intrusion or oil-spill detection is naturally forming two imbal-

anced classes, while the minority class is always of higher interest. However, in other cases, the imbal-

ance may be caused by data collection procedure. The original data distribution of an interested prob-

lem may be balanced, but due to practical issues, like time, or storage, or cost, the collected data set is

imbalanced. Together, the “intrinsic” and “extrinsic” imbalance needs different learning strategies to

build accurate classifiers for future events.

 Challenge 2: the data concept of the rare class can be of extreme complexity. Many situations

of data complexity can hamper learning on the minority class [HG09]. 1) Between-class imbalance or

within-class imbalance. The within-class imbalance occurs when there are several variously sized sub-

clusters or sub-concepts within a single class. Such internal imbalance brings another level of complica-

tion for general classifiers to learn inner concepts. Together, the concepts formed within- or between-

classes will significantly hinder the generalization ability of any learning algorithms. 2) Data or concept

overlapping. The knowledge represented in majority and minority class may have some overlapping,

thus the resulting data also contains overlapped instances in the data space, which makes the learning

to separate them extremely hard. Even a significantly tuned boundary can be drawn between them,

such classifiers will be over-fitted and their generalization ability will be jeopardized on future data.

Challenge 3: various data characteristics may bring severe obstacles for learning. 1) High dimen-

sionality. Data sets with high dimensions and small sizes are already very challenging for general classifi-

cation; with additional imbalance property, it is much more difficult to develop effective learning meth-

ods. 2) Data inadequateness (or rare cases). The interested data may be insufficient or extremely imbal-

anced such that the minority class has only a few instances, which are not enough to represent the mi-

nority concept. Consequently, the learned concepts from classifiers may be far from the truth. 3) Noise

or missing values. Data noises and missing values have substantial negative impacts for imbalance learn-

ing, especially for the minority class. Identifying real knowledge from those rare cases is more difficult.

7

Challenge 4: no uniform datasets and evaluation metrics have ever been set up widely to meas-

ure the performance of imbalance learning classifiers. Broad attentions on imbalanced data classifica-

tion have only started for about 10 years, yet standard criteria to formalize the questions and evaluate

the solutions have not been well established. Current research has been focused on how to develop new

algorithms on imbalanced data, while forgetting basic studies on providing fundamental facilities for

future research, such as building standard and comprehensive benchmark datasets, or setting up uni-

form metrics for performance evaluation, etc. Although various preliminary studies have been initialized

in recent years, without a clear standard data evaluation platform, the development of imbalance learn-

ing will be inefficient.

1.3 Organizations

The rest of this dissertation is organized as follows.

Chapter 2: Literature review. We provide an extensive literature review on imbalance data

learning and introduce many popular methods to solve this problem, including randomly under-

sampling, synthetic over-sampling, bagging, boosting, cost-sensitive learning and kernel-based learning.

Several effective metrics for evaluating classification performance on imbalanced data are also reviewed.

Chapter 3: The DECIDL framework. We present the DECIDL framework in details and discuss

several related techniques for implementing the algorithms.

Chapter 4: Experimental studies on DECIDL. A comprehensive public benchmark data pool is

created to include 30 highly imbalanced data sets from various domains. We set up the environment

and experiment to examine the performance of our DECIDL method, and several other ensemble meth-

ods, including under-sampling, over-sampling, SMOTE-bagging and AdaBoost. Comprehensive results

are reported and discussed.

Chapter 5: More effective artificial example generation for data balancing. We develop a new

distribution-based artificial example generation method and embed it into DECIDL to enhance the classi-

8

fication performance. Additional experiments have been conducted and results have confirmed the ef-

fectiveness of this new approach.

 Chapter 6: Active example selection for DECIDL. We use active learning to solve the imbal-

anced data scenarios, and combine it with DECIDL. As active learning is effective in selecting useful ex-

amples in training data, it can reduce the examples needed from majority class. The performances of

Active-DECIDL on the benchmark data pool have shown a great success in learning on imbalanced data.

Chapter 7: Protein methylation prediction. We apply our DECIDL to solve a real-world learning

problem—protein methylation prediction. We introduce the basic knowledge about this problem and

discuss several approaches of data representations for protein sequences. Computational results and

laboratorial results are presented to confirm our contributions on this topic.

Chapter 8: Conclusions and future work. Lastly, we review the contributions of this dissertation

and discuss several future research directions on imbalance learning with DECIDL.

9

Chapter 2: LITERATURE REVIEW

In this chapter, we briefly review several standard and ensemble classification algorithms that

are well developed and popularly used in real applications. Next, we systematically review many existing

learning approaches on imbalanced data. Those methods fall into three categories based on their strat-

egies in manipulating the data and conducting the induction. Finally, several typical performance evalua-

tion metrics on skewly distributed data are introduced.

2.1 Standard Classification Algorithms

As we mentioned earlier, machine learning and classification have been studied for several dec-

ades, and thousands of learning algorithms were proposed for binary and multiple data classification.

Many basic algorithms have been comprehensively and theoretically studied, and become standard and

classic machine learning topics, attracting enormous variations and successful applications. Popular

standard classification methods include KNN (K-nearest neighbors’ algorithm) [CH67], NBC (Naïve Bayes

classifier), ANN (Artificial neural network), SVM (Support Vector Machine) [Vap95][Bur98], DT (Decision

Tree) [Qui86] [Qui93], LDA (Linear discriminant analysis) [McL04], and more. More theoretical and em-

pirical studies can also be found in [Mit97], [DHS01], [CN06].

2.2 Ensemble Classification

The ensemble method for machine learning is a methodological level of learning strategy. The

basic idea of ensemble classification is to combine the strengths of several individual classifiers to

achieve higher performance. There are several approaches to choose and create the classifier members,

as well as combine them; therefore, many directions can be explored to gain more benefits from en-

semble classification. The advantages of classification ensemble can also be explained in statistics with

the concept of bias and variance [Die00a] [NIH97] [OM99]. Generally speaking, combining several classi-

fiers together will reduce their variance and improve their generalization ability.

10

The success of classification ensemble lies in the diversity of ensemble members. If all the com-

ponent classifiers contain the same learned knowledge, then such integration will shrink to a single clas-

sifier without improvement. On the other hand, ensemble with severe diversified classifiers may not

produce good performance either; since the true label of each instance is fixed, too many disagreements

on it will lead to no agreement, or easily to the wrong one. Therefore, accurately building every individ-

ual classifier and then diversely choosing from them is considered as a good strategy for developing en-

semble classification methods in practice. While accuracy in individual learner can be easily manipulated

in standard classification algorithms, the main direction for ensemble learning is to introduce better di-

versification.

Several straightforward strategies have been developed for diversification, including: 1) using

different subsets of training data (instance subsets or feature subsets) with a single uniform algorithm;

2) using different parameters of a single method on the same training data set; 3) using different learn-

ing methods. From the implementation point of view, the construction of classifier committee can be: 1)

parallel, where each classifier is independently created; 2) hierarchical or cascade, where constructing

new classifiers need information from previous ones, e.g., the training accuracy of current classifier is

used to weight the learning focus of next classifier. Three ensemble strategies are frequently studied in

literature are bagging, boosting, and random forest [OM99] [Die00a] [Pol06].

Bagging. Bagging, also referred as bootstrap aggregating, creates base learners on many data

subsets that are uniformly sampled from the original data, and then uses a linear combination to aggre-

gate them [Bre96]. The combination strategy can be equal-weighted (majority voting) or weighted

based on the training performance. Standard bagging uses a “with replacement” method for sampling

and on average each sampled subset only contains 63.2% non-duplicated instances of the original data.

Obviously, bagging maintains the diversity by generating different sampling subsets, and uses a uniform

learner algorithm for all subsets.

11

Bagging method improves the generalization error by reducing the variance of base classifiers.

However, researches have shown that bagging method prefers unstable base learners than stable ones,

in order to improve classification performance [Dom97][Dav04][TSK06]. Unstable learners refer those

algorithms that have noticeable changes in the learned models even a small perturbation in the training

data happens. Thus, bagging is effective when the base classifier is sensitive to data, such as decision

trees, or neural networks, etc.

Boosting. Boosting involves incrementally building ensemble members by training each new

classifier to emphasize the incorrect learned instances in previous training iterations. Initially, each in-

stance gets equal weight in the learning model. The instances that are not correctly learned will receive

more weights of learning in the next round. The classifier will spend more efforts on training those high

weighted instances. Iteratively, several base classifiers are sequentially built and a weighted vote is used

to combine them for future predictions, where the weight of each base model is proportional to its ac-

curacy on the training set. Boosting method assigns different meaningful weights to instances so as to

create diversified learning models. Meanwhile, boosting requires the learning method can handle in-

stances with different weights; if the learner cannot handle, an alternative solution is to use the weights

as a selection distribution to randomly draw a new training set from original training data for the base

learner.

Boosting methods are able to significantly improve classification performance in many applica-

tions, since they can both reduce variations and biases for modeling effectively. One of the most popular

boosting methods is the AdaBoost introduced by Freund and Schapire in 1996[FS96]. Given a data set

 and a base learner , the pseudo code of AdaBoost can be described in Table 1.1.

12

Table 1.1: AdaBoost Algorithm [FS96]

Algorithm 1: The AdaBoost.M1 Algorithm

Input:
 – Base weak learner (e.g., C4.5, NBC, Decision Stump)
 – 〈 〉, Training set, examples , is n-dim vector, and
 – Maximum number of iterations for boosting

Steps:

1. Initialize the distribution of weights for all examples as ()

2. For
3. Train a base learner with current distribution,
4. Calculate the error rate of , ∑ ()

5. If , then set and abort this loop

6. Set

 ⁄

7. Update weights: {
 ()

8. Normalize weights,
 ()

∑ ()

Output:
The final ensemble classifier: ∑

Using decision trees as base learner in AdaBoost have been practically successful, as seen in

[FM99] [Qui96] [Die00b]. However, there are also some drawbacks for boosting methods: boosting

method can fail to perform well if there is no sufficient data [Sch99] or the training data contain too

much noise [Die00b], which is consistent with boosting theory.

Random Forest. Random forest is a specific ensemble classifier that combines bagging and deci-

sion tree learning [Bre01]. A random forest contains many decision tree classifiers where each tree is

trained on a randomly sampled feature subset from original data. Suppose there are instances with

features in the original data set , and a maximal iteration number . In each iteration , randomly

select features out of to create a new data set , then use to build a decision tree t ,

where each node in the tree is randomly selected from one of the features. The tree is fully grown

without any pruning and the final prediction is the combined result from all trees using a majority vot-

13

ing. To increase more diversity and internal verification, bagging can be used to generate bootstrapped

training subsets and validating subsets.

Random forest has shown comparable performance with AdaBoost [Die02] and is robust under

noisy data. However, random forests are prone to be overfitting for some data sets, since tree members

are fully grown. Besides, it does not perform well when handling large number of irrelevant features

since feature subset is randomly chosen for each tree. Nevertheless, random forest is still empirically

shown to be a highly accurate classifier in many applications [Ho98][DA06].

2.3 Imbalanced Classification Algorithms

Imbalance data learning have increasingly attracted many researchers for more than a decade.

Several special workshops, conferences and issues have been organized successfully drawing grand

prosperity of this area. Related important workshops include the Association for the Advancement of

Artificial Intelligence) workshop on Learning from Imbalanced Data Sets (AAAI-00) [Jap00], the Interna-

tional Conference on Machine Learning workshop on Learning from Imbalanced Data Sets (ICML-03)

[CJK03], and the Association for Computing Machinery Special Interest Group on Knowledge Discovery

and Data Mining Explorations (ACM SIGKDD Explorations-04) [CJK04]. Numerous methods have been

developed to handle the imbalanced binary and multiple classification problems in literature. To give a

comprehensive review on imbalanced classification algorithms, we categorize them into two main clas-

ses based on their strengths of handling imbalance. The first kind is the external or data-level methods,

where imbalance is handled on the data level by re-balancing or re-weighting the data distribution, such

as sampling, boosting, and bagging. The second kind is the internal or algorithm-level methods, where

the focus is on the induction or learning phase inside the basic learner (as in the algorithm level), and

this category includes cost-sensitive learning [FSZ+99], kernel-based algorithms [TZC+09], recognition-

based algorithms [ZD06], etc. Other existing review and categorization on imbalanced data learning can

also be found in [JS02] [BPM04] [KKP06] [HG09] [NBP09].

14

2.3.1 Sampling methods for imbalance learning

Sampling methods are one of the main approaches for imbalance data learning, which try to re-

balance the data distribution by adding new instances (over-sampling) or removing existing instances

(under-sampling), or their combinations. These methods directly modify the prior distributions of major-

ity class and minority class in the training data set such that traditional classification algorithms can still

work well on them. Instances can be added or removed randomly, or intentionally based on certain data

characteristics. Three sub-classes of sampling methods exist, including random over- or under-sampling,

informed under-sampling, and synthetic over-sampling.

2.3.1.1 Random over-sampling or under-sampling

Random sampling uses the simple randomness to create desired distributions between two clas-

ses. Random oversampling will randomly replicate the instances from minority class and add them back

to the training set. A replication percentage can be used to control the amount of duplicated instanc-

es; for example, means additional number of replications will be performed resulting in

 instances for minority class. Therefore, the overall imbalance ratio can

be adjusted by accordingly to become a balanced value. On the other hand, random under-sampling

randomly selects a subset of instances from majority class and then combines them with the minority

class to form a new training data set , which is then applied with standard classification algorithms.

Assume only percent of majority instances are selected, the new imbalance ratio is .

Obviously, choosing appropriate sampling ratio can also lead to balanced data sets.

One important issue for over-sampling is the duplication of minority examples. Since some

learning algorithms cannot handle duplicated or weighted instances, over-sampling methods have to be

limited to certain weight-awareness learners [KCA03]. Furthermore, a critical observation for random

over- or under-sampling is the instability of sampled data sets and subsequent classification models.

Therefore, the classification performance on the instable subsets will fluctuate significantly if the learner

15

is sensitive to data. As a result, a practical strategy is to perform several rounds of sampling to create

many balanced subsets and classification models, and then use the majority voting to combine them—

this procedure is actually the bagging method. Because averaging different classifiers can reduce the

variances, the random sampling plus bagging procedure are often used together to solve the imbalance

learning in real applications [LWZ06] [PD07].

2.3.1.2 Informed under-sampling

Several advanced strategies have been proposed to help reduce the information loss brought by

random under-sampling; examples of these strategies include the ensemble-based under-sampling and

clustering-based under-sampling.

Ensemble-based under-sampling: Zhou et al. propose two simple and effective informed under-

sampling using ensemble methods: the EasyEnsemble and the BalancedCascade [LWZ06] [LWZ09]. Both

methods use the AdaBoost ensemble as the basic learner. The EasyEnsemble is actually using a bagging

based under-sampling strategy to create many balanced data subsets and then use ensemble learning

models on each subsets; finally it ensemble the entire learned ensemble models together. Obviously,

the EasyEnsemble tries to avoid information loss by performing many rounds of samplings. On the other

hand, BalancedCascade creates basic learners sequentially, as new learners are built on instances that

are filtered by previous learners. Initially, this method builds the first learner on a sampled subset

containing partial majority class and the whole minority class; then a new sampled subset from majority

class is filtered by such that the correct instances are removed and only incorrect ones are kept; with

this refined majority subset and the minority set, a new ensemble learner is built. Iteratively, more

learners are created on filtered sampling data set, and finally all learners are combined together. The

BalancedCascade assumes the instances that have been correctly modeled are no longer useful on sub-

sequent classifier construction.

16

 The cluster-based sampling utilizes the benefits of data representations with cluster centers

[JJ04] [YL09]. First, a simple clustering method, such as k-means algorithm, or fuzzy k-means, is per-

formed on the majority class and cluster centers are collected. Then, classification methods are ap-

plied to the new data sets containing majority class centers and minority instances. Directly set

will lead to an even balanced distribution (may not be optimal though). However, centers should be

closely representing the concepts of majority class to lead to better classification modeling. Hence, se-

lecting suitable is challenging in this method. Clustering algorithms are also used for over-sampling as

in the cluster-based over-sampling (CBO) method [JJ04]. CBO first performs k-means clustering on both

classes with equal number of centers . When clustering is finished, CBO finds the size of maximum clus-

ter in the majority class, and over-sample every other cluster within the majority class such that they all

has the same size. Then, the minority class will also be over-sampled such that new minority class and

new majority class has the same cardinality.

2.3.1.3 Synthetic over-sampling

Unlike the random over-sampling that simply replicates minority instances, the synthetic over-

sampling methods try to create artificial instances by analyzing the data space of existing minority ex-

amples. Ideally, new minority examples should also represent the same minority concepts. One famous

synthetic method is the SMOTE method [CHB+02] —synthetic minority oversampling technique, which

uses the interpolation technique to create new examples. Specifically, SMOTE uses the following way to

generate artificial samples: first, for one in the positive class, find the nearest neighbors within mi-

nority class based on distance; next randomly choose one neighbor and a float random

number in range [0, 1], then the new synthetic example belonging to minority class is:

 (2.1)

Intuitionally, the new example is a point on the line segment joining and one of its randomly

selected -nearest neighbor . By iteratively creating new samples one by one, SMOTE can control the

17

balance ratio of synthetic data and then use general classification methods to build learning models.

SMOTE has been shown as one of the most effective over-sampling strategies in several applications

[CHB+02]. However, SMOTE also has its own drawbacks, such as over generalization and more computa-

tion burden. Several variations of SMOTE have been designed to overcome its side problems, such as

the Borderline-SMOTE [HWM05], Adaptive Synthetic Sampling (ADA-SYN)[HBG+08], Kernel-based

SMOTE (KSMOTE)[ZG09], and the combination of SMOTE and Tomek link [BPM04].

2.3.2 Bagging methods for imbalance learning

As we discussed in previous sections, bagging has to be involved in random sampling methods to

avoid the instability of sampled data sets, especially in the under-sampling situations where lots of ma-

jority instances are randomly removed. Obviously, the bagging strategy used in under-sampling for im-

balance learning is asymmetric, since only the majority class will be bagged while keeping the minority

class untouched. Hence, researchers call it Asymmetric Bagging (AsBagging) in many situations; Li et al.

[LML+08] have applied it in the bioinformatics domain with a great success.

To fix the limitations of simple bagging, several variations of bagging have also been developed

in literature. For example, Li proposed a Bagging Ensemble Variation (BEV) for classifying imbalanced

data [Li07]; BEV creates bagging subsets of majority class by equally splitting them into same-size

chunks, where each subset has the same number of majority instances with the total number of minori-

ty instances. For example, given minority instances and majority ones, BEV will randomly split

 subsets
 , where

 , and

 . Thus, BEV will not produce

duplicated majority examples and will not miss any majority instances when building classifiers.

Another variation of bagging is proposed by [HKT09], called Roughly Balanced Bagging (RB Bag-

ging). In this method, binomial distribution with parameter is used to draw a sample from mi-

nority or majority class. More specifically, in each iteration, either the majority or the minority class is

chosen with equal chance, and then one example is uniformly drawn within the chosen class. Using such

18

a strategy could lead to slightly different number of chosen majority instances, but probably all the mi-

nority instances due to its small size. The resulting individual bagging sets may have different sizes, but

the overall of them are still balanced.

2.3.3 Boosting methods for imbalance learning

Using boosting strategy for imbalance learning has also attracted lots of interest [SKW+07]

[Sun07], because the traditional boosting (e.g., AdaBoost) for general classification tasks are very suc-

cessful. Similar in general classification, the biggest difference between bagging and boosting in imbal-

ance learning is that boosting sequentially builds improved classifiers one previous ones other than in-

dependently. Several popular boosting based strategies for imbalance learning include SMOTE-Boost

[CLH+03], RUSBoost [SKH+10], and DataBoost-IM [GV04].

SMOTE-Boost. SMOTE-Boost combines the over-sampling method SMOTE and boosting togeth-

er [CLH+03]. More specifically, A SMOTE over-sampling procedure is performed first in every round of

boosting, and then the traditional AdaBoost method is used to update the weight distributions of all ex-

amples accordingly. Simply put, adding SMOTE in the boosting procedure forces the algorithm to focus

more on difficult examples in the minority class than in the majority class. Chawla et al. [CLH+03] show

that SMOTE-Boost works better than SMOTE and AdaBoost in term of classification performance.

RUSBoost. Opposite to SMOTE-Boost, the RUSBoost combines the random under-sampling with

boosting strategy. As claimed by Seiffert et al. [SKH+10], SMOTE-Boost is more complex and time-

consuming, especially when the imbalance ratio is huge. Therefore, they proposed to use under-

sampling to reduce the training time and use boosting to avoid losing information. In each boosting

loop, a random under-sampling is performed to select a small portion of majority class, in order to com-

bine with minority class to form a new training set; then a weak learner is trained and weights are up-

dated according to the learning accuracy. Seiffert et al. [SKH+10] conducted a comprehensive investiga-

19

tion with RUSBoost, SMOTE-Boost, AdaBoost, and SMOTE, and they shows that RUSBoost typically per-

forms as well as or better than SMOTEBoost, besides its less modeling time and easy implementation.

DataBoost-IM. DataBoost-IM is also a hybrid method combining synthetic over-sampling and

boosting [GV04]. Compare to SMOTE-Boost, DataBoost-IM synthesize new examples for both majority

and minority classes, but much more examples for the minority class. Briefly, DataBoost-IM chooses the

hard-to-learn examples as templates for synthesiszation. Initially, each example is assigned with an

equal weight. In every iteration, the method first identifies the hard-to-learn examples based on

their weights; then it generates synthetic data based on the set and also the class distributions;

more minority synthetic examples are produced than majority ones such that new training sets are bal-

anced after combing original data and synthetic data; next, the weak learner is applied to this new train-

ing set, and error rate and weight distribution are re-calculated accordingly. Guo and Viktor show that

DataBoost-IM is quite effective in dealing with learning from imbalanced data [GV04].

2.3.4 Cost-sensitive learning on imbalanced data

From this section, we now study the internal algorithm-level approaches. The first main catego-

ry is the cost-sensitive learning framework for imbalance data [Elk01]. Cost-sensitive classification as-

sumes different costs (or penalties) when examples are misclassified from one class to another. A cost

matrix can be constructed with values representing penalties between every pair of classes. Let

 represent the cost of predicting an instance in class as class . With this notation,

is the cost of predicting a positive (minority) instance as the negative (majority) instance and

is the cost of the opposite case. In imbalance learning problem, recognizing positive instances is more

important than recognizing negative ones. Hence, the cost of misclassifying a positive instance should be

much higher than that of misclassifying a negative one, that is, . Meanwhile,

correctly classifying a positive or negative instance costs nothing, i.e., .

Consequently, the objective of cost-sensitive learning is to develop a classifier that can minimize the

20

overall costs on the training set. In many cases, the misclassification penalty for examples in class is

equal for all other classes (in multiple classification situations), thus can be simply written as

 , i.e., and for binary classification.

Many different approaches have been developed to use cost-sensitive information for imbal-

ance learning [KK98] [Mal03] [MZW05] [LZ06] [ZL06] [HG09]. Those cost-sensitive methods are falling

into three classes, as suggested in [HG09]. The first category applies the cost matrix to weight the data

space accordingly. In other words, the distribution of the training set will be modified using bootstrap

sampling based on the misclassification costs. The modified data distributions are biased towards the

minority class due to its higher costs. The second category combines the cost-minimizing techniques

with the ensemble schemes. Ensemble methods such as the AdaBoost are incorporated with cost coeffi-

cients to develop new cost-sensitive meta-classifiers. Both the first and second categories have been

justified by rich theoretical foundations, such as the translation theorem and Metacost framework

[Dom99]. Meanwhile, the data space weighting and adaptive boosting are often studied together under

the Metacost framework by scientists in order to achieve strong classifiers. For example, Sun et al.

[SKW+07] [Sun07] proposed three cost-sensitive AdaBoost algorithms, namely the AdaC1, AdaC2, and

AdaC3, where the cost vectors are incorporated in different places of the weight-updating formula in

traditional AdaBoost. The third category is the direct cost-sensitive learning, where the cost penalties

can be embedded in the algorithm design. Such methods are very specific to particular machine learning

algorithms (such as DT or SVM or NN), and thus their strategy of utilizing cost matrix is not able to gen-

eralize. Examples of this category include cost-sensitive decision trees [Mal03], cost-sensitive neural

networks [KK98] [ZL06], and cost-sensitive SVM (SVM-Weight) [CL01].

2.3.5 Kernel-based learning on imbalanced data

We have mentioned the kernel-based learning method—SVMs using as a cost-sensitive ap-

proach (SVM-Weight [CL01]) to solve imbalance learning. Here, we continue to explore several other

21

directions of using kernel-based methods for imbalance classification. In imbalanced data set, the hy-

perplane learned by SVMs can be pushed far away from the ideal separation plane towards the minority

class; therefore, solutions to this issue mainly focus on finding “balanced” hyperplanes and support vec-

tors [RK04] [WC04] [TZ06].

Directly modifying the kernel matrix or kernel function to favor minority class is a direct but

challenging method. For example, one famous algorithm in this category is the class-boundary alignment

(CBA) method proposed by Wu and Chang [WC04].

The granular support vector machines—repetitive under-sampling (GSVM-RU) is a particular in-

teresting methodology for imbalanced data learning [TZ06] [TZC+09]. Simply speaking, GSVM-RU ex-

tracts the support vectors from trained SVM models and uses them as the sampled data subsets. Initial-

ly, the first SVM is modeled on the original data set; then the SVs for the majority class are collected to

form a new “informative” subset in combination with all minority instances; next, those collected SVs

are removed from original data set and a new SVM classifier is modeled. Obviously, iteratively removing

those majority SVs and creating new SVM models, GSVM-RU creates many subsets containing informa-

tive instances. Finally all subsets are used to form an ensemble classifier or the best round of informa-

tive subset is used only to build the best individual classifier. Tang et al. [TZC+09] have shown that

GSVM-RU performed very well on many highly imbalanced data sets from different domains.

2.4 Performance Evaluation

Comprehensively evaluating the performance of any learning methods is not only important but

also necessary. How to fairly compare the classification performance of different learning methods is a

nontrivial task. First, a standard dataset covering a variety of domains and containing significantly differ-

ent data characteristics (such as sample size, feature size, feature values, etc.) should be considered for

testing.

22

Second, since most learning methods require certain known data sets for training the models,

the performance must be blindly tested and compared on independent unknown data sets. A cross-

validation (CV) methodology is often used when independent testing data are not available. Given a

training data set, equally split the set into folds and then iteratively choose one fold for testing, and

the others for training, until all folds have been used exactly once for testing. can be pre-specified by

user, and is normally chosen to be 5, 7, 10 in literature. When equals to the total number of examples

in the data set, it is also called leave-one-out cross validation (LOOCV).

Thirdly, the metrics for classification performance comparison are very critical for fairness. Spe-

cially, imbalance data requires different metrics to standard balance data due to the fact that minority

class is often significantly ignored in standard learning methods. We now review several standard as-

sessment metrics used in balanced data learning, and then introduce some advanced metrics used for

imbalance learning.

2.4.1 Classic Evaluation Metrics

Traditionally, the most frequently used metrics are accuracy and error rate. But accuracy is not

enough when considering the accuracy of positive predictions. Considering a basic two-class classifica-

tion problem, the difference between real labels and predicted labels of positive and negative classes

can be represented in a two by two confusing matrix, as in Figure 2.1.

TP

(True Positives)

FP

(False Positives)

FN

(False Negatives)

TN

(True Negatives)

True class

P N

Y

N

P
re

d
ic

ti
o

n

Column sum: Pc Nc

Pr

Nr

Row sum:

Confusion Matrix for Binary Classification

Figure 2.1: Confusion Matrix for Binary Classification

23

Based on this confusion matrix, several measures can be derived for general classification performance.

 (2.2)

 (2.3)

 (2.4)

 (2.5)

 (2.6)

Clearly, except the accuracy, all the above metrics mainly consider the performance either on

one true class of data or on one predicted class of data, leaving the other part of data ignored. Thus, for

imbalanced data learning, new metrics are needed to consider the accuracies on both classes, especially

on the minority class.

2.4.2 F-measure, G-Means, and MCC

To fix the “one-side” measurement, several new metrics that combines two or more basic met-

rics are proposed. For example, the F-measure [van79] metric considers both the True Positive Rate

(TPR) and the Positive Predictive Value (PPV), which specially focus the learning accuracy on positive

class from completeness aspect and efficiency aspect, respectively. The F-measure is written as:

 (2.7)

In other word, F-measure is a harmonic mean between recall and precision.

The G-Means criterion considers the performance on both positive class and negative class, and

uses the geometric mean to combine them. A high G-Means value [KM97] can only be achieved with

high prediction accuracy on both positive class and negative class.

 √ (2.8)

Lastly, the Matthews correlation coefficient (MCC) [Mat75] is a strong metric that considers

both accuracies and error rates on both classes, since all the four values in the confusion matrix are in-

24

volved in this formula. A high MCC value means the learner should have high accuracies on positive and

negative classes, and also have less misclassification on the two classes. Therefore, MCC can be consid-

ered as the best singular assessment metric so far.

√
 (2.9)

2.4.3 AUC-ROC, AUC-PR

So far, all the metrics discussed are based on fixed values of TP, TN, FP, FN, where such values

can be easily collected when the class labels and predicted values are both discrete. However, in some

other cases, such as the Bayesian network, or some neural network, or some ensemble classifiers, the

prediction on testing data are continuous values, and a threshold have to be chosen to discretize them.

Shifting the threshold within certain range can produce different groups of TP, TN, FP, FN values. By link-

ing these TP and FP values jointly and plotting them on a 2-D axis, a Receiver Operating Characteristics

(ROC) graph [Raw03] [Raw06] is constructed, as in Figure 2.2.

A C

BD

L2

L1

E

(0.2, 0.9)

0 1

1

F
(0.7, 0.7)

G (0.3, 0.6)

FP Rate

T
P

 R
at

e

Figure 2.2: AUC-ROC

The idea model should produce a point in Position A—the top left corner, where TPR is 1 and

FPR is 0; and the worst model should be the point B at the bottom right corner. Hence, a good classifica-

tion model should be as close to the top left corner as possible. Meanwhile, a model making random

guess will be located on the diagonal, where the TPR and FPR are equal to each other. Note that the

point D on the bottom left corner means the classifier predicts every examples as negative, and point C

25

on the top right means all the predictions are positive. The ROC curve is created by connecting all groups

of TPR and FPR values and point D and C together. Generally speaking, the ROC graph represents rela-

tive trade-offs between gains (true positives) and costs (false positives) over a range of thresholds on a

specific classification model.

The closer the ROC curve approaches to the top-left corner, the better the classification perfor-

mance is. However, directly comparing two or more ROC curves are challenging and impractical, e.g.,

two curves may be interleaved together and it is hard to claim the better one. Thus, a single numerical

value to represent effectiveness of the ROC curve is necessary, which brings the Area under the ROC

curves (AUC-ROC). Clearly, the AUC-ROC is ranged from 0 to 1, and the higher it is, the better the classi-

fier.

Although the ROC curve provides a straight visualization for performance evaluation, it also has

a particular limitation when it is applied to the highly imbalanced data set. In such cases, the AUC-ROC

value may over-estimate the performance of the classifier. For example, if the number of negative ex-

amples significantly exceed the number of positive ones , then the FPR rate will not have a notice-

able change even the FP values changes drastically, because the denominator () is very large. Hence, a

similar curve using the Precision/Recall values is proposed, the PR-curve. Since both precision and recall

are focusing on the classification performance over positive examples, the area under the curve on PR

curve (AUC-PR) [DG06] should be more effective on evaluating classification performance on highly im-

balanced data.

In this dissertation, we will use several metrics, i.e., F-measure, G-Means, MCC, AUC-ROC and

AUC-PR, as performance evaluation measurements.

26

Chapter 3: THE DECIDL FRAMEWORK

In this chapter, we propose a new meta-learner called Diversified Ensemble Classifiers for Im-

balanced Data Learning—the DECIDL ensemble framework. First, we explain the motivation of designing

new imbalance learning methods; that is, why we want to start from a new direction—oppositional ex-

ample synthesis. Since diversity is the key of building successful ensemble classifiers, we then start to

design our DECIDL algorithm to build diverse ensemble committees by reversely re-label synthetic data.

Pseudo codes are given to show how we approach to the solutions to imbalance learning. Since our

method is a meta-learner which is more methodology-oriented than implement-oriented, several close-

ly related concepts and techniques will be discussed to guide the real implementation.

3.1 Motivation

As discussed earlier, the key to develop a successful ensemble method is to build diverse classi-

fiers. In general, two popular directions for diversification are the bagging and boosting methods. In

bagging methods, diversification is maintained by creating individual classifiers on different subsets of

the training data. While in the boosting algorithms, example distributions are updated iteratively by giv-

ing more weights for those previously misclassified examples, and thus diversity means building classifi-

ers on training data with progressively updated distributions. Together, in these two methods, diversity

is manipulated by weighting or sampling data distributions on the known training data.

To provide extra diversification to the ensemble construction except from data aspect, the first

motivation of our study on imbalance learning is based on the synthetic (or artificial) example generat-

ing [CHB+02]. Creating synthetic minority examples has shown to be very successful in imbalanced data

learning, such as in the SMOTE [CHB+02] and the DataBoost [GV04]. The benefits for synthesizing new

examples are at least two-folds, which both are superior to over-sampling existing examples. First, more

diversities can be created by synthesizing new examples than duplicating existing examples, thus better

27

generalization can be achieved potentially. Second, many base learners are unable to process duplicated

or weighted examples, such as SVM, or LDA; using over-sampling or boosting methods may limit the ap-

plicable scope. However, the challenging point for data synthesis is that new examples may fall into the

opposite classes in reality, and deteriorate the generalization performance of learned classifiers.

As a result, we need to evaluate the usefulness of synthesized instances based on existing classi-

fiers. If the new instances can be correctly recognized by current classifiers, then the inclusion of these

instances to the original data brings minor or no advantages. In other words, training these instances

again will not enlarge the learning power of current models. On the other hand, if the synthetic instanc-

es are opposite to predictions of current models, then adding these instances to the original data may

help to increase the learning ability of subsequent classifiers. This should be the desired effect for creat-

ing synthetic examples. Besides, adding the reversed examples to current classifiers is an explicit action

of inducing diversity, as a byproduct effect. However, as discussed above, adding artificial examples (no

matter opposite to current models or not) could potentially degrade the generalization power on future

data. Furthermore, how to efficiently find the synthetic instances that exactly oppose to predictions of

current models seems to be a tough task.

Hence, our second motivation is inspired by the “oppositional re-labeling” technique for general

classification tasks in the DECORATE algorithm proposed by Melville [MM04] [Mel05]. In short, the DEC-

ORATE creates artificial unlabeled examples and labels them to opposite classes countering to the pre-

dictions of existing classifiers; once a new classifier is created on the artificial data and original data, it

will be included in the ensemble only if its training accuracy increases. Intuitionally, diversity and accu-

racy are both maintained in DECORATE.

However, in imbalanced data learning, DECORATE is no longer suitable for three reasons. First,

the diversity measure defined in DECORATE for balanced data is no more effective. Clearly, a disagree-

ment on a majority example is much less interesting than that on a minority one, since misclassification

28

on minority examples has higher cost. Second, using the accuracy or error rate as the rejection criterion

is not able to distinguish the importance of minority class, and the learned classifiers will be biased to-

wards to the majority class. Third, adding oppositely labeled synthetic examples to majority class may

further exaggerate the imbalanced data to more imbalanced. Thus, adding more synthetic instances to

majority class is not appropriate.

Hence, based on above motivations, we propose the new DECIDL method for imbalance learn-

ing.

3.2 The proposed DECIDL Framework

We propose the Diversified Ensemble Classifier for Imbalanced Data Learning (DECIDL) algo-

rithm, based on the aforementioned motivations on synthetic data generating and reversely example re-

labeling. The DECIDL algorithm aims to develop an efficient and diverse ensemble committee for imbal-

anced data in a simple and straightforward manner, as described in Algorithm 2. At first, the ensemble is

initialized with a single classifier created by using a base learner on the original data. For imbalance

learning, the base learner can be either a general learning algorithm, such as SVM, NN and DT, or a cost-

sensitive algorithm, such as SVM-Weight, Cost-NN, and Cost-DT. The training performance is evaluated

with a cost-sensitive measurement and noted as . Then, artificial unlabeled examples are syn-

thesized one by one based on the feature distributions of original data. More specifically, we first pick

an minority example
 and then find its nearest neighbors

 in the majority class; next ran-

domly pick one neighbors
 and a float number between 0 and 1, then the new synthetic example

is:

 . In other words, the artificial examples between majority class and mi-

nority class are generated. The number of artificial examples is predefined by giving a ratio to the

size of original training set, i.e., and denotes the set of artificial examples. Next, all

these examples will be labeled with inverse probabilities to their predictions of current ensemble. For

29

example, for an artificial example , assume its class probabilities predicted by ensemble is

 , then the probability of being assigned as label is:

 ̂ (|)
 (|)⁄

∑ ⁄
 (3.1)

For the binary case, where , the probability of being assigned to positive and

negative classes are:

 ̂

 (|)

 (|)

 (|)

 ̂

 (|)

 (|)

 (|)

 (3.2)

Notice that if ∑ , then ̂ and ̂

 . That is, the re-assigned labels are exactly opposite to the predictions of current ensemble.

Let assume the set of new labeled artificial examples is ̂. Next, we remove examples from ̂ that are

marked as majority to get a set of minority artificial set ̂ Then, we combine this set ̂ with the

original training set together, and use the base learner to build a new classifier . Again, the classi-

fication performance of is evaluated on the original data . If is no more than , then this

classifier is permitted to join the ensemble; otherwise, if the performance decrease, then is

rejected. Now, this iteration round is over and a new iteration begins.

In short, every round includes the following important steps: 1) creating artificial unlabeled ex-

amples based on training data; 2) predicting their label probabilities with current ensemble; 3) re-

assigning new labels to them with inversed predicted probabilities; 4) removing majority-labeled exam-

ples and combining the rest with original training data; 5) build a new classifier; 6) and evaluating new

classifier for acceptance. This process is repeated until some conditions are reached, such as the com-

mittee size or the number of iteration exceeds certain prefixed numbers.

Once the training process finishes, a classifier ensemble is returned. During the testing pro-

cess, class with majority votes or maximum probability is applied to classify the unlabeled testing exam-

30

ple. For example, assume there are finally classifiers in the ensemble , then the probability of

unseen example belonging to class is:

 (|)
∑ (|)

 (3.3)

and the final class prediction of is:

 (|) (|) (3.4)

31

Table 3.1: The DEDICL Algorithm

Algorithm 2: The DECIDL algorithm

Inputs:
 – Base learning algorithm (e.g., C4.5, SVM, NN, cost-C4.5, SVM-weight)
 –〈 〉, Training set, examples , is n-dim vector, and
 – A vector, misclassification cost for each class (default:)
 – Maximum number of member classifiers in the targeted ensemble
 – Maximum number of iterations to build an ensemble
 – Evaluation metric for ensemble performance (e.g., Total Cost, or 1-MCC)
 – Percentage (ratio to size of training data D) of synthetic examples to create

Steps:
Initialization:
1. ,
2.
3. Initialize ensemble,
4. Computer ensemble performance:

Loop:
5. While and
6. Artificially generate data set with new training examples that randomly lie be-

tween majority class and minority class
7. Use current ensemble to make probability predictions on , to get
8. Label examples in with probability of class labels inversely to
9. Remove the examples in labeled as majority class to get S’
10.
11.
12.
13. Computer new ensemble performance:
14. If (i.e., performance is better)
15.
16. Else:
17.
18.

Outputs:
Ensemble classifier

Since the DECIDL is a general ensemble framework so far, there are several important imple-

menting techniques needing further discussions for its real deployments.

3.3 Techniques for Implementing DECIDL

Internal Evaluation Metric. The first task for implementation is to choose a fast evaluation met-

ric that is used inside of this algorithm. The metric should return a single value indicating the perfor-

32

mance of ensemble results against the training set , since the main reason of using such

metric is to reject or accept a new classifier. As an internal measurement, efficiency and cost sensitivity

is required. Thus, we propose the following two simple metrics for DECIDL implementation. The first one

requires cost vector for different classes, while the second one is for situations with no cost information

available.

Internal Evaluation Metrics 1 (with costs available):

 ∑ ()

 (3.5)

Internal Evaluation Metrics 2 (without cost information):

√
 (3.6)

Obviously, both metrics can be efficiently calculated when all the parameters are available.

Based on the value of internal evaluation metric, a new classifier is accepted if a lower value appears.

 Artificial Example Generation. New artificial examples are generated based on the feature val-

ues between minority examples and majority examples of the original training data. Examples and fea-

tures within an ensemble are both considered independently. It is possible that certain features may

correlate together and using joint probability distribution may produce more accurate examples. How-

ever, such analysis requires more computation costs and large amount of data to estimate relations

among features, which are not practical in reality. A similar strategy used in SMOTE is adapted for artifi-

cial example generation. However, our assumption is that the data spaces between minority class and

majority class are worthy of more investigation and clarification to build a separating model, which is

different with the interpolation strategy within minority class used in SMOTE. To generate a new feature

value, we first randomly select an minority example
 , and find its nearest neighbors in the majority

class
 . Then, we perform the interpolation between this example

 and one of its majority

neighbor
 , that is the new example is

 where is uniformly drawn form

33

range [0, 1]. If the feature is continuous (numeric), this formula can be directly used. However, if the

feature is a nominal or discrete value, the new value will be randomly chosen between the two values.

Meanwhile, to allow other discrete values of this feature also have certain chances of being chosen, the

feature value distributions on the whole training data set and Laplace smoothing technique [Elk01] are

used together to guarantee every value still has a non-zero probability to be selected.

Size of Artificial Set in each iteration round. How many artificial examples should be generated

in every round is an interesting question. Before giving an exact percentage over the original size, we

need to figure out how many artificial examples are truly used in building the individual classifier after

removing some of them. In fact, both questions are hard to answer, since it depends on the actual data

set and the base learning classifier. Different data may have underlying unknown distributions which

make the artificial examples prone to a special class; on the other hand, different base learners also

have different tolerance levels of imbalance, thus the exact ratio of new artificial examples varies ac-

cordingly.

Interestingly, the size of artificial set can still be retained as a fix number, by keeping generating

new samples and removing them if falling in majority class. Thus, an even more interesting question is:

does it make any performance difference when maintaining the number of artificial examples before

removing majority-labeled ones and after? Hypothetically, such differences should exist, since artificial

examples are totally determined by the ensemble, thus more hypothesis hidden inside the classifiers are

imposed in the data distributions if maintaining the size of artificial set after removing majority ones.

Reversely Re-labeling Strategy. Our purpose to reversely re-labeling the artificial examples is to

bring the maximum diversity to the ensemble. As described in the DECIDL algorithm, an example will be

re-labeled based on a distribution opposite to the predictions of current ensemble; for example, there is

a high chance of assigning an artificial instance to the least probable class. In contrast, there is a hard

way to implement this procedure: 100% of chance to choose the least probable class to label this in-

34

stance, without a distribution involved. The “soft” relabeling (with inverse probability) will allow the la-

bels of some examples unchanged or to be assigned to other classes, while the “hard” relabeling always

label the example to its least likely class predicted by the ensemble. The impacts of the two strategies

are: “soft” relabeling permits certain degree of freedom of data randomization, but the “hard” relabel-

ing extensively relies on the classifier judgment. Experiments will be designed to find out which way is

better in real applications, and to discover the potential biases of related base classifiers.

Example Removing Strategy. As described in the standard DECIDL algorithm in Algorithm 2, the

synthetic examples that are re-labeled with majority class will be removed before building new expand-

ed training sets and classifiers, due to the already outnumbered majority examples. However, we can

still keep them in the new training sets and then build learning models, to find if there are different ef-

fects between removing and non-removing.

Classifier Rejection. The standard DECIDL method will reject new classifier member if its per-

formance is decreased based on the two internal evaluation metrics. However, rejecting new member

means less diversity for the ensemble. On the other hand, if we continue to include new classifiers with-

out any rejection criteria, the diversity of the ensemble may be increased, while the individual perfor-

mance of new members may drop. How to balance between diversity and performance is hard to an-

swer. Therefore, we will use both rejection strategies—rejection and non-rejection in our experiments

to see any effect changes.

Final Performance Metrics. We have previously discussed several metrics for measuring the

overall classification performance of learning methods on imbalanced data. Although all these metrics

are highly correlated, each metric still has its own strengths and weakness. Choosing an appropriate

metric for particular data may depends on the both the data complexity and the actual learning algo-

rithms. To facilitate metric selections for future research and applications, we will use all the five popu-

lar metrics, i.e., F-measure, G-means, MCC, AUC-ROC, AUC-PR, to evaluate the classification results of

35

five ensemble learning strategies (including ours, under-bagging, SMOTE-bagging, over-bagging boost-

ing, etc) in our experimental study.

Diversity and Performance Improvement. The relation between the diversity and performance

of ensemble classifiers on balanced data sets have been previously studied in several works, such as

[KW03] [BWT05]. However, only from very recently, the studies for diversity and performance of en-

semble methods on imbalanced data have just started [BWH+05] [CS07] [WY09a] [WCY10]. As we all

know, diversity is not the only reason for high classification performance; for example, the base learner

has much more impacts on producing high accuracy. Thus, studying the performance improvement from

diversity construction should attract more research investigation for imbalance learning, yet such efforts

have not started.

36

Chapter 4: EXPERIMENTAL STUDIES ON DECIDL

In this chapter, we will verify the performance of our proposed method—the DECIDL frame-

work—on various highly skewed representative data sets. Comparisons will be made among several

popular imbalance learning strategies, ranging from sampling methods, ensemble methods, and kernel-

based methods. More specifically, the under-bagging (undersampling + bagging), over-bagging (over-

sampling + bagging), SMOTE, AdaBoost, SVM-weight, and Random Forest will be used for experiments

and comparisons. For these ensemble methods, we choose several commonly used base learners to

build effective ensembles separately in the experiments. Results have shown that our proposed DECIDL

framework are comparable and superior to most advanced imbalanced learning methods on averaged

results on 30 data sets.

4.1 Base-learner and algorithm selection

Our first interest of experiment design is to choose an appropriate base learner for ensemble. As

we all know, ensemble methods, especially the AdaBoost algorithm, normally work better if the base

learner is weak, e.g., the accuracy of an individual model only needs to be better than random guessing.

Frequently used base learners in literature include the decision stump (single-feature split) [IL92], naïve

Bayes classifier, decision tree C4.5, CART, and even NN. However, recent studies have also started to

incorporate strong learning algorithms such as kernel methods [KPJ+02] [YLJ+03] [Zhu08] and even Ada-

Boost (two layers of ensemble) [LWZ09] into ensemble systems, with certain tuning strategies to avoid

over-fitting. Thus, in this study, we also try to use diverse levels of learning models as base learners; par-

ticularly, the four base learners, decision stump, C4.5, SVM, and NN, are considered in the experiments.

Furthermore, five diverse ensemble frameworks, namely, under-bagging, over-bagging, SMOTE,

AdaBoost, and our DECIDL will be used for experimental comparisons. Notice that each ensemble meth-

od has its special strategy to build the ensemble committee. Therefore, the total number of ensemble

37

learning algorithms is 5*4=20. Besides, two individual approaches, the random forest and SVM-weight,

are also considered for experiments. Thus, together we will at least compare 22 different algorithms,

without mentioning various parameters used in each algorithm. An overview of experimental compari-

son framework is shown in later section, as in Figure 4.1 and Figure 4.2.

4.2 Dataset Selection

Our focus is the binary classification task, thus all the data sets in this benchmark pool are re-

quired to meaningfully represent practical classification problems, plus satisfying the imbalanced data

distributions. More specifically, all the related problems are predictive tasks with multivariate hidden

relations between independent features and dependent labels; the data sets naturally (or at least pre-

sumably) form multivariate data types which can extensively and meaningfully represent the targeted

problems. Regression problems, or clustering problems, or other problems with sequential or time-

series data properties, are not within the scope of this dissertation. However, special problems from

bioinformatics (such as the protein structure prediction) are still within the consideration, since those

problems are generally considered as classification tasks after proper data transformation (e.g., protein

structures are believed to be determined only by their neighboring amino acids). With algorithms being

selected for experiments, we now propose several criteria to select a standard and comprehensive

benchmark dataset from public machine learning repositories for testing imbalance learning algorithms.

The first criterion to consider is the imbalance ratio β. Although we have defined that for (signif-

icantly) imbalanced data, the ratio should be no less than 19:1, in the actual experimental settings, some

non-significant imbalanced data should also be tested, in order to find how the learning algorithms be-

have under variety of imbalance degrees. Thus, we suggest the benchmark data sets contain different

imbalance levels, i.e., the imbalance ratio from 10:1 to 1000:1 or more. More specifically, we recom-

mend the following imbalance ratios included in the benchmark data pool, β =10:1, 20:1, 50:1, 100:1, as

38

considered in our selection. Note that this special criterion is exclusive in differentiating general data

learning benchmark set and our imbalanced data learning benchmark set.

The dimensions of data are also very important for learning, as considered as the second criteri-

on. Number of instances and features should vary dramatically from few of them to plenty of them.

Generally, the fewer instances the data contain, the easier the learning algorithm gets over-fitting; while

the more the data, the longer it takes to train a learning model. From feature aspect, fewer features

mean less data complexities, thus easier to train a model; while more features mean more data com-

plexities, and harder to reveal the true knowledge behind the data. Thus, with various sizes of instances

and features, the learning ability and classification performance of different algorithms will be exten-

sively challenged. Considering the data acquisition cost and problem complexity in many real applica-

tions, we recommend that the total number of instances in the benchmark datasets changes from hun-

dreds to hundreds of thousands, and the feature quality varies from less than ten to thousands, which

are both very realistic in practical problems.

Feature value properties. The format of feature values also has strong impacts in building classi-

fication models. Two main formats are generally used in the representation of information data: one is

the numeric continuous value, and the other is nominal categorical value. Numeric values are mutually

computable, while nominal values normally represent descriptive information, thus mathematics com-

putation on them is meaningless. From algorithm aspect, general classification algorithms are either in

favor of continuous data or discrete data. Therefore, data pre-processing procedure, such as discretiza-

tion or binarization, is frequently involved in preparing data for particular learning algorithms. Conse-

quently, to broadly test general imbalanced learning techniques, we suggest the features of benchmark

set contains only continuous values, only nominal values, and mixed values of the two kinds.

Data domains. Data and problems from various domains will naturally bring different levels of

data complexities and difficulties for learning. The relations between independent features and the tar-

39

get class vary dramatically from one domain to another domain. For example, a linear relation may exist

between the education level and salary level for general people, while the pathogenesis of cancer may

depends on the statuses of thousands of genes. Meanwhile, testing classification performance on vari-

ous kinds of data resources is beneficial for future researchers to select appropriate learning algorithms

for problems in their own domains. For example, SVM is frequently used for classifying microarray data

only since 1999 [BGL+99] while it was invented around 1995 in [Vap95]. Hence, we suggest that the

benchmark data should contain classification problems from diverse application domains, such as busi-

ness, medical diagnosis, biological analysis, pattern recognition area, natural life, environment, etc.

Notice that all the above criteria are trying to bring different configurations of internal data

complexities, in order to differentiate the learning ability of various algorithms. No doubtfully, there are

other advanced measurements to introduce extra data complexities, such as analyzing the statistical

relations among features or discovering cluster relations among examples. However, those extra criteria

require much more computations, and sometimes are hard to hierarchically list their relations, as com-

pare to above criteria.

We search the publicly available machine learning repositories (the UCI, and KDD), and data fre-

quently mentioned in publications at IEEE, ACM, SpringLink, and Science Direct. Finally, 30 representa-

tive data sets are chosen to construct the standard benchmark pool for imbalance learning. In summary,

the benchmark data are from 9 different domains of our society, example size varies from few hundreds

to hundreds of thousands, feature size changes from less than ten to tens of hundreds, and imbalance

ratio changes from about 9:1 to 130:1. The characteristics of those datasets are carefully summarized in

Table 4.1.

40

Table 4.1: Benchmark Data Characteristics

(Feature types: N: nominal, C: continuous, B: binary.)

Name Description & Reference
Imb. Ra-

tio
#Examples #Features

Feature
Types

Others

Ecoli UCI, target:=imU 8.6:1 336 7 7C Life

Optical Digits UCI, target: class=8 9.1:1 5,620 64 64C Computer

SatImage UCI, satellite, target:=4 9.3:1 6,435 36 36C Physical

Pen Digits UCI, target: class=5 9.4:1 10,992 16 16C Computer

Abalone_7 UCI, target: Ring=7 9.7:1 4,177 8 7C, 1N Life

Sick Euthyroid UCI, target: sick euthyroid 9.8:1 3,163 25 7C, 18N Life

Spectrometer UCI, target: LRS class>=44 11:1 531 93 93C Physical

Balance UCI, target:=balance 12:1 625 4 4N Social

Car_Eval_34 UCI, target:=good, v good 12:1 1,728 6 6N Business

ISOLET
UCI, spoken letters, target: let-
ter=A|B

12:1 7,797 617 617C Computer

US Crime UCI, crimes, target: freq>0.65 12:1 1,994 122 122C Social

Yeast_ML8 LIBSVM, multiple labels, target 8 13:1 2,417 103 103C Life

Scene LIBSVM, target > one label 13:1 2,407 294 294C Nature

Libras Move UCI, target: class=1 14:1 360 90 90C Physical

Thyroid Sick UCI, target: class=sick 15:1 3,772 28 7C, 21N Life

Coil_2000 KDD, CoIL, target: minority 16:1 9,822 85 85C Social

Arrhythmia UCI, target: class=06 17:1 452 279
206C,
73N

Biology

Solar Flare M0 UCI, target: M-class>0 19:1 1,389 10 10N Nature

OIL UCI, target: minority 22:1 937 49 49C Environment

Car_Eval_4 UCI, target: class=vgood 26:1 1,728 6 6N Business

Wine Quality UCI, wine, target: score<=4 26:1 4,898 11 11C Business

Letter Img UCI, target: class=Z 26:1 20,000 16 16C Computer

Yeast _ME2 UCI, target: class=ME2 28:1 1,484 8 8C Life

Webpage LIBSVM, w7a, target: minority 33:1 49,749 300 300B Web

Ozone Level UCI, ozone, data 34:1 2,536 72 72C Environment

Mammography UCI, target: minority 42:1 11,183 6 6C Life

Reuters-21578 KDD, text, target: ship 52:1 7,674 17387 17387B Web

Forest Cover_5 KDD, target class: Aspen 60:1 581,012 54 10C, 44N Nature

Protein homo. KDD CUP 2004, minority 111:1 145,751 74 74C Biology

Abalone_19 UCI, target: Ring=19 130:1 4,177 8 7C, 1N Life

4.3 Experimental Setup

We develop a simple straightforward comparison framework to perform various algorithms on

the proposed diversified benchmark data set, as shown in Figure 4.1. First, five different ensemble meta

41

frameworks for imbalanced data learning are included in the experiments, namely, the under-bagging,

over-bagging, SMOTE-bagging, AdaBoost, and DECIDL. Next, four different base classifiers, decision

stump, C4.5, SVM, and NN are used as internal weak learners for the meta-ensembles. Note that to save

the computational burden, single layer perceptron NNs and linear SVMs are used in real experiments.

For ensemble algorithms, different sizes of ensemble committees will be used to find potential influ-

ences. Furthermore, we also try two popular direct imbalance learning algorithms, the cost-sensitive

SVM (SVM-weight) and the random forest, to show more comparisons. After applying these 22 algo-

rithms on 30 sets to the benchmark data, we compare their imbalance-oriented evaluation metrics, such

as the F-measure, G-means, MCC, AUC-ROC, and AUC-PR. Note that each learner has its own parame-

ters; for example, the SVM can select different kernel functions costs. Therefore, trying all combinations

of these parameters and algorithms can be computationally lengthy and infeasible, and the default or

best recommended values for these parameters are used in the actual experiments.

42

Learning

Framework

Base

Learner

SVM-Weight

Benchmark

25 Data sets

Data Characteristics

1. Example Number (small, median, large)

2. Feature Number (small, median, large)

3. Feature Value (Nominal, Number, Mixed)

4. Imbalance Ratio (1:10, 1:20, 1:50, 1:100)

Evaluation

Metrics

Under-bagging

Over-bagging

SMOTE

AdaCost

DECIDL

Stump

C4.5

Linear SVM

NN

MCC

G-mean

AUC-ROC

AUC-PR

Ensemble

Size

20, 40, 80

Random Forest

Figure 4.1: Global Experimental Comparison Framework

Experimental Setups for DECIDE

Base

Learner

Stump

C4.5

SVM

NN
Learning

Framework

DECIDL

Size of

Artificial Set

10%

20%

...

100%

Oppositional Re-

label Strategy

Soft: probability

Hard: Absolutely

opposite

Removing

Strategy

Keep All

Remove

majority-labeled

examples

Classifier

Rejection

Criterion

No rejection

Rejected by

MCC, Cost sum

Final Ensemble

Strategy

Soft Ensemble

Hard Ensemble

Size of

Ensemble

Members

10

20

40

80

Figure 4.2: The workflow of DECIDL procedure and parameter settings

In addition, to comprehensively test our DECIDL ensemble system, we will extensively test vari-

ous settings for several important internal steps of the procedure. An expanded experimental setup for

the DECIDL method is depicted in Figure 4.2. DECIDL consists of several steps of creating new ensemble

43

classifiers, thus each step requires different parameters to adjust the properties of artificial data set and

new classifiers. As can be seen in Figure 4.2, there are 7 basic steps to finish a DECIDL ensemble con-

struction, and every step has its own special tuning strategies. The potential choices for every step are

listed in the figure clearly. Hence, the combinations of the whole procedure are quite large, and all indi-

vidual learning models are extraordinarily diversified. To save computational cost, we only run several

critical steps under different parameter settings on partial benchmark data sets to show the trends. Fur-

thermore, when comparing with other ensemble methods, the original default settings of DECIDL will be

used for experiments and result comparisons. Default settings for DECIDL are: using uniform distribution

for artificial sample generating, 50% size of original data set for artificial set, hard reversely re-labeling

strategy, removing majority-labeled examples, rejection by MCC criterion, 15 as the maximum ensemble

size and a final hard ensemble.

The performance of each learning algorithm was evaluated using 10 complete runs of 5-fold

cross-validation. In each 5-fold cross-validation, each data set is randomly split into 5 equal-size seg-

ments and results are averaged over 10 full trials. For each trial, one segment is set aside for testing,

while the remaining data is available for training.

4.4 Experimental Results

4.4.1 Overall Comparisons with Different Ensemble Frameworks

First, Table 4.2 and 4.3 show the detailed classification performance of DECIDL on the 30 data

sets. We can easily see that DECIDL produce some good performance on several data sets, such as Sick

Euthyroid, Spectrometer, Arrhythmia, and Reuters-21578, but also it gives bad predictions on other data

sets, such as Balance, Yeast_ML8, Coil_2000, Webpage, and Forest Cover_5. This trend is similar for oth-

er ensemble frameworks; for the concision of the dissertation, we do not list all performance of other

ensemble frameworks here. This phenomenon strongly suggests the data sets we used are very diverse

and complicated. It is hardly possible to design an algorithm that works well for all kinds of problems.

44

Table 4.4 shows average performance of all 22 algorithms on all 30 data sets with all five evalua-

tion metrics. Each value in the table represents the mean metric values over 30 data sets with 10 times

of 5-fold cross validations. As previously mentioned, the parameters used for our DECIDL framework in

this comparison are default settings: artificial example generating—Gaussian distribution, size of artifi-

cial set—50% of original data set, oppositional re-label strategy—hard, removing strategy—removing

majority, classifier rejection—rejected by MCC, ensemble size—15, ensemble strategy—hard. For other

four ensemble frameworks, parameters comparable to those in DECIDL are used to show fair final com-

parisons; for example, the ensemble size is also set as 15, and the oversampling or under-sampling ratio

is also set as 0.5.

Figure 4.3-4.7 compared the results under different evaluations metrics. We group the algo-

rithms by the base learner types so that comparisons between different ensemble methods can be easi-

ly made. A first observation on these results is that there is no best ensemble and base learner combina-

tion in terms of different imbalance classification performance. Every kind of ensemble and base learner

only outperforms others on some of five metrics and no uniformly better ones. This implication is con-

sistent with general opinions in research on supervised classification. However, all the five ensemble

strategies have significantly improved the classification performance from the base learners on all the

five evaluation metrics. This result suggests that ensemble strategies are much more effective than indi-

vidual learning methods on imbalanced data learning, which is also a generally accepted conclusion in

machine learning communities.

45

Table 4.2: Classification Performance (F-Measure and G-Means) of DECIDL on 30 Data Sets

(DS: decision stump; DT: decision tree; L-SVM: Linear SVM; PNN: perceptron NN)

DECIDL

F-Measure G-Means

DS DT L-SVM PNN DS DT L-SVM PNN

Ecoli 0.448 0.581 0.649 0.539 0.831 0.841 0.887 0.817

Optical Digits 0.440 0.910 0.745 0.571 0.664 0.949 0.923 0.858

SatImage 0.424 0.622 0.203 0.208 0.735 0.794 0.707 0.572

Pen Digits 0.475 0.964 0.717 0.541 0.699 0.980 0.895 0.819

Abalone_7 0.309 0.367 0.308 0.284 0.698 0.578 0.696 0.738

Sick Euthyroid 0.630 0.856 0.456 0.570 0.911 0.935 0.906 0.909

Spectrometer 0.496 0.801 0.839 0.496 0.632 0.929 0.942 0.680

Balance 0.000 0.000 0.000 0.011 0.202 0.565 0.670 0.032

Car_Eval_34 0.303 0.930 0.733 0.844 0.692 0.984 0.965 0.911

ISOLET 0.223 0.781 0.627 0.619 0.890 0.928 0.836 0.657

US Crime 0.476 0.509 0.547 0.468 0.698 0.800 0.789 0.836

Yeast_ML8 0.021 0.087 0.000 0.113 0.406 0.543 0.504 0.338

Scene 0.207 0.201 0.268 0.233 0.500 0.441 0.649 0.505

Libras Move 0.405 0.819 0.827 0.628 0.707 0.918 0.892 0.894

Thyroid Sick 0.428 0.837 0.320 0.290 0.882 0.920 0.805 0.759

Coil_2000 0.049 0.115 0.070 0.194 0.612 0.628 0.678 0.470

Arrhythmia 0.668 0.656 0.334 0.223 0.950 0.848 0.647 0.481

Solar Flare M0 0.242 0.070 0.206 0.229 0.646 0.644 0.611 0.595

OIL 0.454 0.583 0.479 0.035 0.789 0.692 0.773 0.404

Car_Eval_4 0.204 0.925 0.677 0.783 0.760 0.991 0.974 0.925

Wine Quality 0.187 0.225 0.110 0.022 0.649 0.407 0.666 0.069

Letter Img 0.472 0.808 0.658 0.514 0.816 0.939 0.839 0.863

Yeast _ME2 0.392 0.337 0.197 0.248 0.785 0.537 0.847 0.692

Webpage 0.077 0.546 0.629 0.520 0.550 0.723 0.837 0.861

Ozone Level 0.208 0.180 0.267 0.151 0.589 0.475 0.819 0.701

Mammography 0.211 0.516 0.369 0.341 0.768 0.767 0.816 0.826

Reuters-21578 0.696 0.759 0.682 0.657 0.857 0.938 0.960 0.976

Forest Cover_5 0.074 0.277 0.112 0.203 0.702 0.414 0.835 0.659

Protein homo. 0.527 0.576 0.574 0.154 0.762 0.793 0.884 0.817

Abalone_19 0.019 0.004 0.018 0.020 0.701 0.645 0.701 0.505

Average 0.325 0.528 0.421 0.357 0.703 0.752 0.798 0.672

46

Table 4.3: Classification Performance (MCC and AUC-ROC) of DECIDL on 30 Data Sets

(DS: decision stump; DT: decision tree; L-SVM: Linear SVM; PNN: perceptron NN)

DECIDL
MCC AUC-ROC

DS DT L-SVM PNN DS DT L-SVM PNN

Ecoli 0.445 0.550 0.626 0.515 0.913 0.942 0.924 0.913

Optical Digits 0.294 0.900 0.726 0.646 0.786 0.991 0.961 0.956

SatImage 0.295 0.580 0.264 0.148 0.766 0.920 0.730 0.690

Pen Digits 0.305 0.961 0.694 0.513 0.750 0.997 0.939 0.905

Abalone_7 0.249 0.308 0.247 0.304 0.760 0.769 0.792 0.775

Sick Euthyroid 0.622 0.843 0.427 0.626 0.920 0.955 0.862 0.712

Spectrometer 0.471 0.789 0.828 0.492 0.761 0.974 0.970 0.856

Balance 0.000 0.000 0.000 -0.026 0.497 0.450 0.500 0.390

Car_Eval_34 0.254 0.926 0.736 0.854 0.708 0.996 0.992 0.988

ISOLET 0.052 0.763 0.631 0.622 0.790 0.976 0.977 0.949

US Crime 0.449 0.472 0.516 0.497 0.889 0.887 0.882 0.903

Yeast_ML8 0.012 0.034 0.075 0.057 0.512 0.567 0.500 0.591

Scene 0.149 0.134 0.203 0.186 0.669 0.666 0.686 0.738

Libras Move 0.392 0.814 0.826 0.624 0.853 0.974 0.940 0.944

Thyroid Sick 0.607 0.828 0.337 0.311 0.940 0.965 0.869 0.881

Coil_2000 0.035 0.082 0.067 0.143 0.649 0.629 0.649 0.647

Arrhythmia 0.681 0.648 0.303 0.179 0.966 0.961 0.849 0.659

Solar Flare M0 0.216 0.089 0.175 0.206 0.659 0.683 0.754 0.755

OIL 0.449 0.593 0.468 0.005 0.895 0.929 0.884 0.623

Car_Eval_4 0.000 0.925 0.700 0.808 0.846 0.999 0.995 0.992

Wine Quality 0.197 0.210 0.143 0.018 0.741 0.776 0.701 0.563

Letter Img 0.473 0.806 0.654 0.533 0.870 0.991 0.960 0.962

Yeast _ME2 0.401 0.327 0.207 0.266 0.894 0.899 0.849 0.872

Webpage 0.105 0.536 0.624 0.536 0.728 0.914 0.939 0.947

Ozone Level 0.200 0.156 0.317 0.109 0.785 0.785 0.865 0.793

Mammography 0.253 0.512 0.399 0.359 0.831 0.896 0.854 0.820

Reuters-21578 0.695 0.764 0.704 0.688 0.910 0.988 0.988 0.994

Forest Cover_5 0.065 0.305 0.124 0.155 0.801 0.756 0.783 0.795

Protein homo. 0.540 0.582 0.600 0.226 0.868 0.940 0.912 0.923

Abalone_19 0.016 0.002 0.020 0.029 0.656 0.695 0.743 0.695

Average 0.297 0.515 0.421 0.354 0.787 0.862 0.842 0.808

47

Table 4.4: Overall Average Classification Performance of the 22 Algorithms on 30 Data Sets

Metric Values

Ensemble Base Learner F-mea. G-means MCC AUCROC AUC-PR

DECIDL Stump 0.325 0.703 0.297 0.787 0.292

UnderBagging Stump 0.294 0.749 0.292 0.802 0.260

OverBagging Stump 0.301 0.730 0.294 0.760 0.199

SMOTE Stump 0.294 0.716 0.294 0.751 0.180

AdaBoost Stump 0.378 0.472 0.383 0.861 0.447

Stump 0.181 0.265 0.190 0.575 0.157

DECIDL DT 0.528 0.752 0.515 0.862 0.534

UnderBagging DT 0.396 0.828 0.409 0.885 0.465

OverBagging DT 0.520 0.688 0.498 0.819 0.477

SMOTE DT 0.519 0.713 0.507 0.779 0.369

AdaBoost DT 0.523 0.616 0.515 0.843 0.528

DT 0.468 0.562 0.462 0.722 0.394

DECIDL Linear SVM 0.421 0.798 0.421 0.842 0.437

UnderBagging Linear SVM 0.368 0.800 0.373 0.845 0.350

OverBagging Linear SVM 0.388 0.795 0.431 0.816 0.324

SMOTE Linear SVM 0.424 0.799 0.423 0.866 0.453

AdaBoost Linear SVM 0.366 0.463 0.355 0.817 0.399

Linear SVM 0.278 0.320 0.281 0.155 0.029

DECIDL Perceptron NN 0.357 0.672 0.354 0.808 0.370

UnderBagging Perceptron NN 0.341 0.695 0.335 0.823 0.356

OverBagging Perceptron NN 0.383 0.675 0.374 0.803 0.350

SMOTE Perceptron NN 0.360 0.651 0.355 0.686 0.215

AdaBoost Perceptron NN 0.325 0.374 0.323 0.790 0.365

Perceptron NN 0.167 0.209 0.184 0.654 0.267

Linear SVM-Weight 0.367 0.429 0.374 0.870 0.475

Random Forest 0.487 0.567 0.493 0.826 0.521

48

Figure 4.3: F-Measure Comparison of Average Performance on 22 Algorithms on 30 Data Sets

Figure 4.4: G-means Comparison of Average Performance on 22 Algorithms on 30 Data Sets

49

Figure 4.5: MCC Comparison of Average Performance on 22 Algorithms on 30 Data Sets

Figure 4.6: AUC-ROC Comparison of Average Performance on 22 Algorithms on 30 Data Sets

50

Figure 4.7: AUC-PR Comparison of Average Performance on 22 Algorithms on 30 Data Sets

From Figure 4.3-4.7, a close observation on the averaged results of different base learners

shows that the DEICDL ensemble produce more stable and comparable performance over the five eval-

uation metrics. More specifically, the DECIDL ranks the first in the averaged F-measure comparison in

Figure 4.3; it is the second best among six in averaged G-means comparison in Figure 4.4; it also stays in

the second positions when comparing the averaged MCC and AUC-PR performance in Figure 4.5 and 4.7;

finally, the DECIDL only drop to the third positions when coming to the mean AUC-ROC values based on

Figure 4.6. In total, the average rankings of DECIDL will still be in the leading position among the five en-

semble strategies, as will be shown later.

Moreover, we notice that the five evaluation metrics are not consistent in measuring classifica-

tion performance even on the same algorithm. This suggests that each individual metric has its own

strength and weakness, as also can be explained directly from their definitions. For example, the F-

Measure emphasizes the rate of true positive predictions and the accuracy of positive predictions; while

the G-means combines the rate of true positive and true negative predictions. Therefore, choosing an

appropriate evaluation metric depends on the practical imbalanced learning task, data set and intention.

51

If the precision and recall are the main concerns of learning results, then the F-measure or AUC-PR

might be better choices; if the accuracies on positive and negative classes are both important, then G-

means and AUC-ROC are top considerations. Besides, if no specific desire on the accuracy of positive or

negative class, then MCC will give a generally balanced classification result on the overall performance.

Based on these results, the DECIDL seems to be slightly better and more stable from an overall view. A

deep investigation is needed to compare these five ensemble methods. Therefore, to further compare

the performance of five ensemble strategies, we rank these metric values within the same group of met-

ric and base learner, i.e., from 1 to 6 for Decision Stump and related ensemble methods with the F-

measure metric. Then, the average ranks of different ensemble strategies over the four base learners

are summarized separately with respect to the 5 evaluation metrics, as shown in Table 4.3. Clearly, we

found that on average our proposed DECIDL method ranks the first among the 5 ensemble systems. This

result has strongly proven that our artificial example generation and the oppositional re-labeling strate-

gy are quite effective on the imbalanced data learning tasks. Meanwhile, this also suggests that the di-

versified ensemble construction with reversely re-labeling does improve the imbalanced classification

performance dramatically for ensemble learning. Interestingly, the second and third best ensemble

strategies are the under-bagging and over-bagging. The possible reason for such result might be that

both under-bagging and over-bagging are directly manipulating the class distribution of the data. How-

ever, the under-bagging performance is more fluctuated across the five evaluation metrics than that of

over-bagging; this is also explainable since under-bagging randomly drops examples in different bags

while the over-bagging always keeps all examples, except duplicating certain examples. The AdaBoost is

slightly lower than over-bagging ensemble in the average ranking; however, AdaBoost has consistent

better performances over four evaluation metrics except the G-means. Astonishingly, the SMOTE meth-

od ranks at the last position, which means this ensemble strategy are not effective enough on highly

52

imbalanced data, comparing to other methods. However, all these ensemble methods have substantially

higher rankings than the individual learning algorithms.

Table 4.5: Overall Performance Lead and Ranking of 5 Ensemble Strategies over 4 Base Learners

Ranking F-measure G-means MCC AUROC AUC-PR Average

DECIDL 2 3 2.5 2.5 1.5 2.3

UnderBagging 4.5 1 4.75 1.5 3.5 3.05

OverBagging 2.5 3 2.5 4 4 3.2

SMOTE 3 3 2.5 4 4.5 3.4

AdaBoost 3.25 5 3 3 2 3.25

NONE 5.75 6 5.75 6 5.5 5.8

4.4.2 Influence of Size of Artificial Set to Performance

To evaluate the influence of size of artificial example set to the performance of our DECIDL en-

semble classification, we set different size ratios for experiments. This ratio is a ratio value between the

size of artificial set and the training set; for example, a default ratio 0.5 (50%) means that, if the size of

training set is 100, 50 artificially synthesized instances will be generated and added back to the original

training data set for building new ensemble members. The ratios are set with 0.1, 0.3, 0.5, 0.7 and 0.9.

Other parameters are set with default values in our DECIDL. Table 4.10-4.11 and Figure 4.8-4.9 show the

influence of size of artificial set with respect to the five imbalanced evaluation metrics, averaged from 4

base learners on the Ecoli and Sick-Euthyroid data. From these results, we notice that a small size or a

large size for artificial set are both not the best, ratios between 0.3 and 0.7 seem to be a better range for

all the five evaluation metrics. This underlying reason might be that a small artificial set is not enough to

re-balance the data distribution so that learner will focus more on the minority class; on the other hand,

a large artificial set may also hamper improving the performance due to two reasons: first, learning on

large artificial set may be hard to generalize the knowledge to the original set, thus the performance will

not be improved in the later iterations of ensemble building; second, too large extra set may also force

53

the learner to be over-tuned for the extra knowledge, instead of the original data set. Therefore, a mod-

erate size of artificial set may be the best choice for our DECIDL ensemble framework.

Table 4.6: Influence of Size of Artificial Set to Classification Performance on Ecoli Data

 Ecoli Data Size Ratio

 0.1 0.3 0.5 0.7 0.9

F-measure 0.429 0.504 0.481 0.456 0.443

G-Means 0.599 0.671 0.648 0.624 0.611

MCC 0.412 0.466 0.440 0.417 0.402

AUC-ROC 0.774 0.791 0.797 0.776 0.766

AUC-PR 0.415 0.419 0.418 0.380 0.355

Figure 4.8: Plot for Influence of Size of Artificial Set to Classification Performance on Ecoli Data

Table 4.7: Influence of Size of Artificial Set to Performance on Sick-Euthyroid Data

Sick_Euthyroid Size Ratio

 0.1 0.3 0.5 0.7 0.9

F-measure 0.430 0.462 0.468 0.493 0.451

G-Means 0.551 0.593 0.597 0.686 0.662

MCC 0.405 0.426 0.432 0.448 0.407

AUC-ROC 0.810 0.801 0.853 0.845 0.845

AUC-PR 0.475 0.470 0.516 0.497 0.485

54

Figure 4.9: Influence of Size of Artificial Set to Performance on Sick-Euthyroid Data

4.4.3 Importance of Rejection Criterion to Performance

In our DECIDL framework, a new classifier member will be rejected if its internal performance on

the training data set is not improved. However, this rejection criterion can be ignored to simply add new

member no matter whether the performance improves or not. The effects of the two strategies are: re-

jecting new member will bring less diversity, but stronger classifiers; without rejection can introduce

more diversified members, but may also allow low accurate classifiers to join the committee. Therefore,

both strategies have their own advantages and disadvantages. Here, we conduct experiments with the

two choices in our DECIDL framework on two data sets. Table 4.12 and Figure 4.10 show their averaged

performance on the 4 base learners. From these results, we notice the two strategies almost have rela-

tively similar performance on the two data sets. However, the AUC-ROC and AUC-PR are always higher

for no rejection situation. This means that including more diversified classifiers do have positive influ-

ence for the probability prediction of ensemble. On the other hand, F-Measure, G-means and MCC per-

formances fluctuated from one data to another. This further suggests that building and evaluating en-

semble classifiers on imbalanced data are very complicated.

55

Table 4.8: Effect of Rejection Strategy to Performance on Ecoli and Sick-Euthyroid Data

Data Strategy F-Measure G-means MCC AUC-ROC AUC-PR

Ecoli No-Reject 0.480 0.705 0.435 0.879 0.537
Ecoli Reject 0.487 0.640 0.451 0.784 0.399
Sick-Euthyroid No-Reject 0.476 0.608 0.439 0.831 0.491
Sick-Euthyroid Reject 0.542 0.652 0.509 0.780 0.455

Figure 4.10: Effect of Rejection Strategy to Performance on Ecoli and Sick-Euthyroid Data

4.4.4 Influence of Ensemble Size to Performance

The size of ensemble committee is also believed to be well associated with performance of en-

semble learning. Therefore, we test our DECIDL method under different sizes of ensemble. Since a rejec-

tion step may change the real size of final ensemble, we use the no-reject option to make sure that the

original setting of ensemble size is the final size of ensemble prediction. A range of ensemble size is cho-

sen between 3 and 100, which is very reasonable in most current ensemble studies. Other options are

still kept as the default values of DECIDL framework when conducting this experiment. The 4 base learn-

ers are again used separately and their averaged evaluation performance are reported. Table 4.13 and

Figure 4.11 show the actual average results with above settings on the Ecoli and Sick-Euthyroid data.

Clearly, these results show that the five evaluation metrics are very stable one the ensemble size be-

comes relatively sufficient, more than 10. However, if the size is under 10, the performance could fluc-

56

tuate significantly. This effect has been broadly found in existing ensemble learning methods. Moreover,

the result means that the default setting for ensemble size (as 15) in our DECIDL method is enough.

Table 4.9: Effect of Ensemble Sizes to Classification Performance on Ecoli Data

Ecoli Data

EM Size F-measure G-means MCC AUC-ROC AUC-PR

3 0.544 0.770 0.518 0.890 0.558

6 0.497 0.829 0.480 0.917 0.616

10 0.538 0.847 0.521 0.930 0.638

20 0.559 0.852 0.541 0.933 0.655

30 0.563 0.853 0.546 0.935 0.658

40 0.566 0.853 0.550 0.934 0.660

50 0.566 0.846 0.549 0.936 0.654

60 0.558 0.847 0.541 0.938 0.663

70 0.558 0.844 0.542 0.936 0.653

80 0.569 0.851 0.552 0.937 0.662

Figure 4.11: Plot for Effect of Ensemble Sizes to Classification Performance on Ecoli Data

57

Table 4.10: Effect of Ensemble Sizes to Classification Performance on Ecoli Data

Sick-Euthyroid

EM Size F-measure G-means MCC AUC-ROC AUC-PR

3 0.656 0.914 0.645 0.919 0.491

6 0.626 0.910 0.618 0.924 0.542

10 0.623 0.912 0.617 0.922 0.510

20 0.617 0.913 0.613 0.929 0.514

30 0.629 0.906 0.619 0.917 0.520

40 0.623 0.913 0.617 0.927 0.517

50 0.625 0.909 0.616 0.925 0.527

60 0.629 0.912 0.621 0.922 0.522

70 0.625 0.909 0.616 0.920 0.526

80 0.632 0.908 0.622 0.919 0.512

Figure 4.12: Effect of Ensemble Sizes to Classification Performance on Sick-Euthyroid Data

4.5 Discussion

In this chapter, extensive experiments have been conducted to 1) compare imbalanced classifi-

cation performance between various ensemble strategies, 2) verify the effectiveness of our proposed

DECIDL ensemble framework under different internal conditions.

Based on the above results and discussions, we can draw the following general conclusions and

summaries:

58

--There is no single best ensemble imbalanced learning algorithm for variety of data domains, in

terms of classification performance. Although the average rank of our DECIDL ensemble is on the top

among the five ensemble frameworks, for each individual imbalanced learning data set, every algorithm

shows very different classification performance.

--The five imbalanced evaluation metrics, namely, F-measure, G-means, MCC, AUC-ROC, AUC-

PR, are not consistent in evaluating the performance of a classifier. Thus, it is hard to say which evalua-

tion metric is the best in real applications. Choosing a suitable metric for a particular imbalanced learn-

ing task may depend on the target of interest when deploying such prediction system.

--The proposed DECIDL framework has shown relatively superior ability in learning on imbal-

anced data, compared with other four ensemble systems; however, several steps of parameter settings

are still required to be investigated before applying to real-world problems, in order to fully discover the

performance of DECIDL learning.

59

Chapter 5: MORE EFFECTIVE ARTIFICIAL EXAMPLE GENERATION FOR DATA BALANCING

In this chapter, we focus on a particular step in our DECIDL framework—the artificial example

generation process, as this is an interesting research topic and several practical strategies have been

proposed. We develop another new effective data synthesizing strategy, called distribution-based ex-

ample generation (DBEG), in order to improve our DECIDL performance. To measure the effectiveness of

the DBEG method and the DBEG embedded DECIDL method, we compare them with two popular and

start-of-art imbalanced learning strategies—SMOTE [CHB+02] and GSVM-RU [TZC+09], and show their

detailed learning performances on our benchmark data pool.

5.1 Introduction

We have reported extensive classification results from experiments performed on a large

benchmark data pool with several popular ensemble imbalanced learning strategies in previous chapters.

A brief conclusion on these results is that DECIDL framework is comparable to other ensemble learning

methods on highly imbalanced data. Meanwhile, as there are several strategy-choosing and parameter-

tuning steps involved in a concrete DECIDL procedure, it provides lots of flexibility and potentials to

learn on various kinds of imbalanced data from different domains.

Hence, in this chapter, we want to examine the potentials of DECIDL framework by specially fo-

cusing on the artificial example generation step. The default data synthesis strategy is to create new ex-

amples among two existing data points, where one of them is from negative class and the other is from

positive class. Detailed description can be found in Section 3.2. The idea behind this strategy is that the

examples in the intersection of positive and negative data spaces are more interesting, as discriminating

data objects there could help separating two classes in space.

Here, we consider this data generation problem from a different angle. After studying several

existing synthesis methods in literature, such as SMOTE [CHB+02], Borderline-SMOTE [HWM05], we also

60

propose a simple and more effective method to generate artificial examples—called the distribution-

based example generation (DBEG). To test this strategy in real learning tasks, we develop a new ensem-

ble learning algorithm based on this data synthesis strategy—the distribution-based example generation

for ensemble learning (DBEG-Ensemble). We also incorporate this strategy inside our DECIDL frame-

work—the DECIDL-DBEG. We then apply these two methods on the benchmark data pool to verify their

performance.

More importantly, the two newly developed methods are compared with two popular and start-

of-art imbalanced learning methods, the SMOTE-Bagging, and GSVM-RU. GSVM-RU is the most effective

classification algorithms that even proposed in literature for highly imbalanced data [TZC+09]. Compre-

hensive experimental results will be listed to compare their performance together, and conclusions will

be drawn to describe the effectiveness of DBEG in imbalanced learning tasks.

5.2 Related works on artificial example synthesis

As described in section 2.3.1.3, the first and one of most popular example synthesizing strate-

gies is the SMOTE method, which inspires the creation of DECIDL framework in this dissertation. SMOTE

creates new minority examples by interpolating new data points between an existing positive data point

 and one of its Euclidian positive-class neighbors. A simple figure to show the result of SMTOE data

synthesis and DECIDL synthesis is depicted in Figure 5.1. Here, we continue to introduce several other

existing example generation strategies. One of the drawbacks of SMOTE is that it creates same number

of synthetic examples for every original minority example, hence increasing the occurrence of overlap-

ping between classes in dense data spaces. To remove such drawbacks, some improved methods are

proposed based on SMOTE, such as ADASYN (Adaptive Synthetic Sample) [HBG+08], Borderline-SMOTE

[HWM05] and DataBoost-IM [GV04].

61

-
-

-

--

-

-

-

-
-

-

-

-

-

-

-

-

-
-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

-

+
-

-

-

--

-

-

-

-
-

-

-

-

-

-

-

-

-
-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

-

+

Synthesized example by SMOTE Synthesized example by DECIDL

Figure 5.1: New example generation based on SMOTE and DECIDL

ADASYN [HBG+08]: the idea of ADASYN is to adaptively decide the number of synthetic exam-

ples to be generated for each minority example by using a density distribution function. The density dis-

tribution measures the percentage of majority-class nearest neighbors for each minority example

 , given a pre-defined neighbor number :

 (5.1)

where is the number of majority-class neighbors of within its nearest neighbors, and is normal-

ization term such that is a distribution function (∑). Then the exact number of synthesized

examples for each is:

 (5.2)

where is a parameter to specify the desired balance level after the synthesizing process. Obviously,

each will not have equal number of artificial examples
 , as it depends on their neighbored example

distribution. The more surrounded by majority-class data a minority example is, the more synthetic ex-

amples it needs to be generated. Oppositely, if a minority example is mixed within the same-class

neighboring points, no synthetic examples are needed for itself.

62

 Borderline-SMOTE [HWM05]: Borderline-SMOTE selects minority examples that have more ma-

jority-class neighbors than minority-class neighbors as seed points to synthesize new examples. To be

more specific, let is an original example from minority class , and first determine the set of near-

est K neighbors
 for each , and then choose those has more than half neighbors in the majority

class, which means that satisfy:

 |
 | , (5.3)

to create new artificial data points with the standard SMOTE procedure, i.e., interpolating between two

examples. And the set of these minority examples is called “Danger” set, as they represent the bor-

derline minority examples which are highly likely to be misclassified later. Hence, Borderline-SMOTE is

able to create new artificial minority examples in the neighboring areas of border. Notice that if the

neighbors of a minority example all belong to majority class, such will not be chosen as seed, as

Borderline-SMOTE consider it as noisy minority data.

In summary, Borderline-SMOTE only chooses those minority examples “closer” to the border of

two classes to generate synthetic instances.

DataBoost-IM [GV04]: this method also introduces a simple data synthesis strategy, in combina-

tion with algorithm (AdaBoost.M1) to achieve high prediction accuracy on imbalanced data. First, Data-

Boost-IM uses the weighted distributions in boosting procedure to represent the difficulty of learning

for each example in the whole data set . Rank all in decreasing order the current classifier and

only top examples (set) are selected as seeds for data synthesis. Set consist of two

subsets: and , representing examples in minority and majority classes, respectively. Then the

augmenting ratio of new synthesized examples is related to the size of these two subsets. More con-

cretely, the ratio for generating new majority examples is

 , and the ratio for

new minority examples is

 .Next, the numbers of synthesized majority

63

and minority examples are
 and | |

 , respectively, where

 and represent two synthesized example sets.

All the above computing steps are only used to determine how many artificial examples need to

be generated. Finally, DataBoost-IM uses the value distributions of features to actually create new ex-

amples for two classes. For nominal feature, a new synthetic value is chosen to reflect the value distri-

bution contained in the original training data set, with respect to the particular class. In other words, the

occurrences of different feature values are used as weights to synthesize a value. For continuous feature,

the range and standard deviation of feature value in the original training data set is collected, and then

new synthesized feature values will have same mean values and standard deviations. Obviously, the

Gaussian distribution is assumed for such features.

5.3 Distribution-based artificial example generation (DBEG)

From the summary on artificial example synthesis in previous section, we notice that the exist-

ing synthesis strategies only contain two kinds: either using interpolating between two examples or as-

suming even or normal distributions on feature values to create new data examples. Besides, most

methods require lots of computations to focus on choosing appropriate minority examples as seeds,

instead of designing more effective methods to create the actual values for new synthesized examples.

Due to the drawbacks of above methods, here we propose a simple and fast distribution-based

example generation strategy. First, we assume that each example in the original training data set is i.i.d.

distributed, which is a standard assumption for data in many algorithm design. The occurrences of fea-

ture values are naturally representing the underlying distribution of a particular feature for a specific

class. Obviously, such distributions are not necessarily either uniform, or Gaussian, and may be very

complicated. Hence, making further assumptions on them are not appropriate to create synthesized

values for new examples. In other words, the originality of the distribution of those feature values

should be preserved, instead of assumed and simulated, within the new synthesized example set. As

64

only minority class need extra synthesized examples, so only the feature distributions in minority class

are investigated.

Naturally, the distribution of feature value occurrences can be used as guidance to synthesize

new examples. To maintain the same distribution of every feature among artificial data set, we can ran-

domly draw new feature values based on such distribution. High frequent values should have high

chances of to be drawn, and vice versa. To make the computational process simple, we also assume that

features are independent to each other, and hence a sequential process can be used to generate one

feature after another. This assumption is also very standard during many machine learning algorithms.

Obviously, collecting the occurrences of values in nominal features is easy and making more

sense. But for continuous features, purely counting these numerical values to synthesize new examples

could make the combined data set so specific and hence leads to poor generalization ability. We use an

alternative way to represent the distribution of numeric values and introduce extra variances at the

same time. This idea is to duplicate all the values of this feature in minority class for times and add

additional Gaussian noise on them. Then, whenever a new feature value is needed to synthesize new

example, simply equally pick one from them. Through this way, the distributions of numeric feature val-

ues are still maintained and certain degree of variations are included.

We propose the following steps to create the feature values

 of a new artificial

example to be added to minority class:

1) If feature is nominal, then collect all the unique values of this feature in the minority

training set and their percentages of occurrences. The feature of

 is then randomly

chosen to reflect these percentages. For example, let assume in a rare disease data set,

there are 55 patients including 35 males and 20 females and other 769 healthy people. Ob-

viously the gender feature is one interesting attribute and has two distinct values: “Male” or

65

“Female”. Then, a new gender value is randomly drawn with 35/55=63.6% of being male

and 20/55=36.4% of being female.

2) If feature is continuous, and assume

 is the feature vector of the minority training set

 , then duplicate this vector for times to get (

)

 . Next

add additional Gaussian distributed noise value with standard deviation to each fea-

ture value in (

). In need of synthesizing this feature for a new example, just uni-

formly choose on value in this feature vector (

).

In fact, the method of synthesizing new examples for continuous features is also applicable for

nominal features, if ignoring the noise addition part; hence in the real implementation, we simply use

the step 2 for all features, but do not add noises for nominal features and their values.

One may argue that the above strategy (Step 2) is not identical to creating new values based on

feature distribution directly, but simply an approximate method: choosing new values from a distribu-

tion-based feature value pool without replacement. However, this procedure is simple and requires

much lower computation cost and space. Besides, this approximate method can also provide good artifi-

cial data and enhances classification performance. Figure 5.2 shows the original data distribution of a

particular numeric feature, distribution of SMOTE-synthesized data, and distribution of DBEG-

synthesized data. Clearly, we can see that DBEG is more accurate to draw similar distributions of original

data set.

How to choose the duplicate factor is an interesting problem. Obviously, the larger it is, the

more similar this approximate procedure is to pure distribution-based creation. However, a large also

requires more space and computational burden. In our experiments, we use a range for T: .

66

Figure 5.2: Distribution comparison among original data, SMOTE-synthesized data, and DBEG-

Synthesized Data

Table 5.1: Distribution-based example generation (DBEG)

Algorithm 5.1: The DBEG Algorithm

Input:
 – 〈 〉, training set with is the minority class and is the majority class;
 , duplication factor, default 40;
 , desired balance ratio after synthesis;

 , standard deviation for noise level, default 0.1.

Steps:
1. Let , , and the number of examples to be synthesized is:

2. Initialize an empty matrix
 with size

 , where

3. For feature

4. Duplicate the vector

 of for times to get (

)

5. If

is a continuous feature:

6. Add additional Gaussian noises (0,) to (

)

7. Uniformly pick
 values from (

) without replacement

8. Put the vector of selected values into column of

Output:

67

In order to determine the total number of synthesized examples, we again introduce a balance

ratio as the stopping criterion for synthesis process. will be the targeted ratio between the

size of minority class and majority class, hence it is same as parameter in our DECIDL framework.

The total number of minority examples is:

 . (5.4)

In summary, the distribution-based example generation procedure is proposed in Table 5.1.

5.4 DBEG-Ensemble and DECIDL-DBEG

In this section, we will utilize the DBEG procedure to develop new imbalance learning algorithms.

As a data generation step, DBEG has to be used with general learning methods together to show it effec-

tiveness. Furthermore, DBEG involves a stochastic procedure to create new values for artificial examples,

thus the resulting synthesized minority set might be unstable. Hence, an ensemble step is needed to a

classification committee on several data sets after several rounds of using DBEG data balancing algo-

rithm. Under the ensemble strategy, a fundamental and general machine learning algorithm, or called

base learner, will be used to build each concrete classifier. To be more specific, we will use support vec-

tor machines (SVMs) as the base learner, instead of using several different ones as in previous chapters.

Hence, we can specifically concentrate on the data generation steps.

Our first DBEG based ensemble algorithm for imbalanced learning, called DBEG-Ensemble, is

proposed as follows. Given an imbalanced data set with binary classes and an ensemble committee

size , we will employ the DBEG procedure to create an synthesized data and union it to to

have a balanced training data Then a regular base learner is used to build a classifier

 on it. Iteratively execute this procedure times to have classifiers as a committee. Then the

final ensemble classifier is achieved by using majority voting on this committee. To be more precise,

the following pseudo code describes the DBEG-Ensemble methods.

68

Table 5.2: The DBEG-Ensemble algorithm

Algorithm 5.2: The DBEG-Ensemble algorithm

Inputs:
 – Base learning algorithm (e.g., C4.5, SVM, NN)
 –〈 〉, Training set, examples , is n-dim vector, and
 – Maximum number of member classifiers in the targeted ensemble
 – Desired balance ratio after synthesis

Steps:
Initialization:
1.
2. While
3. Apply DBEG algorithm(5.1) to generate set with and ; use default and

4. Append the synthesized data on original data to get

5. Use on the overall training data to create classifier
6.

Outputs:
Ensemble classifier

Similarly, we can embed the DBEG procedure into our proposed DECIDL method to have anoth-

er version of DECIDL, the DECIDL-DBEG. However, in the DECIDL framework, the data synthesis is not for

a particular class, i.e., either for minority class or majority class. It requires creating extra data from

overall data sets and then using classifiers to predict their labels, and then further refining them with

performance improvement if they are included. Therefore, the DBEG for DECIDL framework will use the

whole training data set as input data for feature distribution collection, instead of only the minority class

examples. Meanwhile, the number of synthesizing examples is pre-determined in the parameter of DE-

CIDL, . Other than this, the similar procedure is applied into DECIDL. The detailed pseudo code pro-

cedure is described in Table 5.3.

As two imbalanced learning algorithms have been properly developed to use the DBEG data

generation step, we now proceed to introduce other two start-of-art and popular imbalanced learning

algorithms in order to compare their performance later.

69

Table 5.3: The DECIDL-DBEG algorithm

Algorithm 5.3: The DECIDL-DBEG algorithm

Inputs:
 – Base learning algorithm (e.g., C4.5, SVM, NN, cost-C4.5, SVM-weight)
 –〈 〉, Training set, examples , is n-dim vector, and
 – A vector, misclassification cost for each class (default:)
 – Maximum number of member classifiers in the targeted ensemble
 – Maximum number of iterations to build an ensemble
 – Evaluation metric for ensemble performance (e.g., Total Cost, or 1-MCC)
 – Percentage (ratio to size of training data D) of synthetic examples to create

Steps:
Initialization:
1. ,
2.
3. Initialize ensemble,
4. Computer ensemble performance:

Loop:
5. While and
6. Use DBEG algorithm to generate artificial data set :

 , note that is replaced with exact synthesizing number

7. Use current ensemble to make probability predictions on , to get
8. Label examples in with probability of class labels inversely to
9. Remove the examples in labeled as majority class to get S’
10.
11.
12.
13. Computer new ensemble performance:
14. If (i.e., performance is better)
15.
16. Else:
17.
18.

Outputs:
Ensemble classifier

5.5 Other methods for comparison

In this section, we will briefly re-introduce a start-of-art learning algorithm for highly imbalanced

data, the GSVM-RU (Granular Support Vector Machine-Repetitive Under-sampling) [TZC+09], and an-

other most popular imbalanced learning strategy, the SMOTE, because later we will compare the classi-

70

fication performance of these two methods with our DBEG-Ensemble method and the DECIDL-DBEG

method on the benchmark data pool.

As simply described in Section 2.3.5, GSVM-RU is a kernel-based learning strategy [TZC+09].

Simply speaking, GSVM-RU examines the support vectors from trained SVM models and removes these

negative support vectors recursively from the training data sets. Hence, the classification boundary will

be moved towards the majority class, hence leaving more feature spaces for minority class, in order to

easily catching more minority examples in future testing datasets. This repetitive model building and SV

removing process will continue until the classification performance on a valid data set decreases. Finally

all the removed negative vectors in conjunction with positive examples are used to train the final classi-

fier. An alternative way is to use the model built in the final round of removing step as the best individu-

al classifier. Tang et al. [TZC+09] have shown that GSVM-RU performed very well on many highly imbal-

anced data sets from different domains.

On the other hand, SMOTE is simply a data generating algorithm, providing over-sampling strat-

egy to balance data. It can be followed with any general machine learning algorithms to build the final

classifier. As described in section 2.3.1.3, SMOTE tries to create interpolating points between one minor-

ity example and one of its nearest same-class neighbors, in order to enlarge the minority class. Each mi-

nority example is chosen once and its nearest K positive neighbors are identified. Then, an interpolation

is performed between this example and one randomly-picked neighbor; the coefficient of interpolation

is a random number that is evenly distributed in range [0,1]. Obviously, SMOTE also involves stochastic

values in its synthesis step, and the resulting data set and classification models will not be stable. A bag-

ging ensemble procedure can be used to provide stability and remove variance. The SMOTE-Bagging

method used in previous chapter is iteratively using SMOTE to create balanced training data sets and

build several classifiers to form an ensemble committee for classification. As SMOTE is a very popular

71

data synthesis algorithm, we select SMOTE-Bagging as one method to compare the performance with

our proposed method: the DBEG-Ensemble and the DECIDL-DBEG.

All together, we will compare the following four imbalanced algorithms on the benchmark data

pool: the DBEG-Ensemble, DECIDL-DBEG, GSVM-RU, and SMOTE-Bagging.

5.6 Experimental setup and results

Out of the above four methods, three of them are meta-learners, thus a base learner has to be

provided to implement the real algorithms; the other one GSVM-RU uses SVM as classification learner.

Therefore, we will also use SVM as base learner for other three methods, in order to produce more fair

performance comparisons.

The 30 imbalanced data sets in the proposed benchmark data pool are again used to test their

binary classification performance. As to the performance evaluation metrics, we will use two informa-

tive metrics: F-measure and MCC.

For the internal parameters used in each method, we will use the default or suggested values

and perform certain amount of optimization to achieve high classification accuracy. For example, the

balanced ratio after data synthesizing is about 50%; the ensemble size of classification committee is 15.

Meanwhile, the kernel type and parameters of base SVM learner are set same for all four methods for

each individual benchmark data set. Through this way, the resulting performances are fair enough to

compare.

We use a 5-fold cross-validation on each data set to the performance of four methods. Mean-

while, 5 individual runs are performed to have an averaged final classification metric value. The detailed

classification performances of the four methods on all 30 benchmark data sets are listed in Table 5.4.

72

Table 5.4: Performance Comparison among three meta- learning algorithms (based on optimized

SVM) and GSVM-RU on benchmark data pool (averaged on 5 runs of 5-folds cross-validation)

 F-Measure MCC

Data Set
DECIDL
-DBEG

DBEG SMOTE GSVM
DECIDL
-DBEG

DBEG SMOTE GSVM

Ecoli 0.609 0.596 0.608 0.606 0.576 0.581 0.593 0.585

Optical_Digits 0.822 0.741 0.699 0.715 0.805 0.722 0.686 0.692

SatImage 0.358 0.409 0.424 0.400 0.358 0.411 0.423 0.390

Pen_Digits 0.775 0.819 0.816 0.769 0.763 0.807 0.805 0.764

Abalone_7 0.310 0.356 0.346 0.323 0.239 0.320 0.311 0.313

Sick_Euthyroid 0.751 0.647 0.667 0.543 0.727 0.634 0.651 0.538

Spectrometer 0.750 0.803 0.770 0.819 0.738 0.793 0.760 0.809

Balance 0.067 0.077 0.058 0.048 0.004 -0.009 -0.123 -0.027

Car_Eval_34 0.784 0.749 0.722 0.825 0.784 0.752 0.727 0.825

ISOLET 0.776 0.784 0.758 0.823 0.757 0.767 0.739 0.815

US_Crime 0.449 0.453 0.455 0.481 0.448 0.457 0.458 0.478

Yeast_ML8 0.160 0.027 0.028 0.158 0.091 0.041 0.024 0.090

Scene 0.210 0.249 0.251 0.230 0.138 0.192 0.191 0.199

Libras_Move 0.832 0.721 0.688 0.760 0.834 0.716 0.676 0.753

Thyroid_Sick 0.635 0.547 0.549 0.560 0.618 0.557 0.556 0.562

Coil_2000 0.117 0.069 0.064 0.151 0.029 0.048 0.046 0.112

Arrhythmia 0.206 0.234 0.284 0.439 0.170 0.191 0.243 0.418

Solar_Flare_M0 0.146 0.176 0.193 0.134 0.130 0.162 0.184 0.101

OIL 0.301 0.315 0.356 0.435 0.333 0.286 0.329 0.415

Car_Eval_4 0.936 0.979 0.969 0.822 0.934 0.979 0.968 0.826

Wine_Quality_4 0.269 0.073 0.077 0.127 0.242 0.023 0.040 0.126

Letter_Img 0.844 0.905 0.895 0.858 0.849 0.902 0.894 0.856

Yeast_UCI_ME2 0.137 0.312 0.281 0.226 0.156 0.352 0.324 0.272

Web_page 0.582 0.462 0.507 0.396 0.594 0.452 0.505 0.393

Ozone_Level 0.111 0.240 0.233 0.290 0.102 0.281 0.290 0.322

Mammography 0.530 0.368 0.392 0.303 0.554 0.420 0.437 0.395

Reuters-21578 0.647 0.758 0.804 0.701 0.655 0.763 0.806 0.704

Forest_Cover_5 0.285 0.165 0.252 0.284 0.278 0.193 0.249 0.277

Protein_homo 0.675 0.410 0.384 0.696 0.679 0.444 0.433 0.713

Abalone_19 0.082 0.039 0.053 0.036 0.151 0.087 0.118 0.054

Average 0.472 0.449 0.453 0.465 0.458 0.444 0.445 0.459

Win/Loss
to GSVM-RU

15 15 15

13 14 12

73

Figure 5.3: Average Performance Comparison of the four methods on benchmark data pool

5.7 Discussion and Conclusion

Table 5.4 shows the detailed F-measure and MCC performance of all four learning methods over

each of the 30 benchmark data sets, and Figure 5.3 shows their averaged performance. First, in Table

5.4, it is noted that all four methods are relatively performing equally well on the whole benchmark data.

On some data sets, the F-measure and MCC are quite high, e.g., Optical_Digits, Car_Eval_4, Libras_Move,

Letter_Img, suggesting these classification problems are easy to solve and the four learning models are

fitting the underlying class distributions. However, on some other data sets, e.g., Balance, Coil_2000,

Yeast_ML8, Ozone_Level, the performance are quite low for all four learning methods. Such results sug-

gest that the underlying models for distinguishing two classes are difficult to learn or to generalize; and

all the four learning methods do not fit such models very well.

Table 5.4 also shows that our DECIDL-DBEG learning method has the highest averaged F-

measure performance across the whole data pool, surpassing the SMOTE-Bagging and GSVM-RU meth-

ods. This result proves that using DBEG synthesis procedure does help our DECIDL framework achieve

high classification performance. For the MCC performance, our DECIDL-DBEG method ranks the second

and is close to the top one GSVM-RU method. Meanwhile, as GSVM-RU is currently the best developed

74

method in literature, we can conclude that DECIDL framework is also one of most effective ensemble

models for imbalanced learning in our study.

We have also noticed that both DECIDL-DBEG and GSVM-RU are relatively better than SMOTE-

Bagging and DBEG-Ensemble, which suggests that basic ensemble strategies on balanced synthesized

data are not superior to other refined ensemble methods.

The most interesting founding from the above result comparisons is that the average perfor-

mance of our new developed DBEG-Ensemble is only slightly lower than that of all other sophisticated

methods. This great discovery means that a simple effective data synthesizing strategy could also lead to

high classification performance for imbalanced data. Using complicated learning strategies may not sig-

nificantly enhance the learning power on a particular imbalance problem.

Hence, our conclusion on this example generation topic is that DBEG can be used as a fast and

effective data balancing algorithm in the initial stage of solving an imbalance classification problem. To

further study the potentials of DBEG synthesis, we propose the following directions in future study. First,

as features are examined as independent to each other in sequentially generating feature values, we

may consider certain interactions between two close-related attributes by calculating their correlations.

A pair of values can be generated together if two features have high correlations. Second, as DBEG is

able to generate new examples, we can apply the same process to output few examples by using the

majority examples and a reversed balance ratio as input parameters (i.e., DBEG-Undersampling). In oth-

er words, under-sampling is used in each individual feature to generate new majority examples to re-

place original majority class. Last but not least, we can combine the original DBEG and DBEG-Under-

sampling together to balance data sets, and then use regular machine learning methods to test their

classification performance.

75

Chapter 6: ACTIVE EXAMPLE SELECTION FOR DECIDL

In this chapter, we continue to solve the imbalance data learning problem, by investigating a

new direction—active learning. Active learning is one subfield of supervised machine learning in which

the learning algorithm can dynamically select interested unlabeled data examples and query their labels

from domain experts or users, in order to incrementally build classification models. Active learning al-

lows algorithm to choose what data it will learn from, and hence such algorithms will perform equally or

better but with less training data. Active learning is originally trying to solve the problem that acquiring

labeled data examples are costly or time-consuming in some contexts, such as speech recognition anno-

tation, document categorization, etc. It has attracted special focuses from many researchers and be-

come a particular research topic in recent years. Meanwhile, its related learning algorithms have also

been developed and applied in several real-world applications, such as speech recognition, document

classification, and mutant identification for protein functions, etc.

As active learning is able to choose appropriate data examples to learn from, we will use this ad-

vantage to select informative data examples to form a balanced training data set, and then build effec-

tive ensemble learning committee. This chapter describes the background of active learning and related

works, and a new Active-DECIDL method is then proposed to combine the strength of active learning

and DECIDL to tackle the problem of highly imbalanced data learning. Extensive experiments are con-

ducted to examine the performance of this new Active-DECIDL method; comparative results are report-

ed to draw a positive conclusion on this method.

6.1 Background and Related Works in Active Learning

Active learning is also referred to “query learning” or “optimal experimental design” in the sta-

tistics context [Set09]. The main focus of active learning in supervised or semi-supervised learning is its

ability to select certain interested unlabeled data points for further learning. Supposedly there exists an

76

oracle that is able to tag any data examples, such as a human annotator, or domain expert. Active learn-

ing will collect some interested unlabeled examples based on its selecting strategy and sent them to the

oracle for querying their class labels. Once these data are labeled, the learning algorithm can build an

improved prediction model and, at the same time, active learning will select another round of unlabeled

data for labeling. This process is a typical pool-based earning cycle which is the main category of active

learning [LG94]. The unlabeled example selecting and labeling step is a query process, and hence active

learning is also called query learning.

Labeled

training data
Unlabeled data

Active learning

model

Oracle

(e.g., human judge)

Testing Data Prediction Results
Classifcation

model

Figure 6.1: Pool-based Active Learning Cycle [Set09] and Classification Step

Obviously, active learning is quite different to traditional passive supervised learning. In tradi-

tional learning models, data examples are all having pre-determined class labels and no further re-

labeling process is involved during the training step. In other words, no further additional data infor-

mation or knowledge is needed once the learning algorithm proceeds. In contrary, active learning re-

quires continuous interactions between the learning procedure and the “oracle” for data selection and

labeling. It can start from a small size of training data, and then it dynamically seeks promising and use-

ful examples for continuously learning. Although its querying process needs interactive efforts from the

77

oracle, the initial learning cost is cheap and prompt. This advantage is significantly important in many

contexts where data acquisition or data labeling is prohibited or expensive. For example, in speech

recognition problem, labeling record audio files at the word level takes 10 times longer than the actual

length of audio; hence it is not likely to prepare large size of training data for audio categorization.

Not only does active learning have the benefits of requiring less training data in the initial stage

of a learning process, but also it could improve the classification performance after choosing appropri-

ate training examples to learn. For example, randomly selecting a subset of data examples is a popular

way to build classification models if acquiring more examples is costly; however, the consequence of this

strategy is that the resulting prediction model will be very unstable. On the other hand, using active

learning to identify critical examples residing in the margin area of different classes will be much useful

to build predicting models. This is another important reason that many researchers trying to achieve:

using less or at most equal number of training examples to create better classification models.

Many researches on active learning have been done in recent years and lots of related works

have been published in literature [Ton01] [EHB+07] [Ols08] [Set08]. To give a general overview of those

works, we divide the process of active learning into two steps and discuss them in detail in the next two

paragraphs.

The first step is how to find or create the unlabeled data examples. As active learning needs to

query unlabeled data for annotating, the first task is to generate such data points. There are mainly

three ways of identifying unlabeled data [Set09]: membership query synthesis, stream-based selective

sampling, and pool-based sampling. Membership query synthesis assumes the learner can query the

labels of any unlabeled instances in the input space; these instances may be artificially generated, rather

than coming from some underlying natural distributions. The benefit of query synthesis is obvious: it can

query any desired point in the input space; hence, it is very flexible. However, such arbitrarily synthe-

sized examples may be not following the underlying data distribution, and are unreasonable for annota-

78

tion in real applications. For example, Lang and Baum [LB92] use active learning for recognizing images

of hand-written characters, but the queries generated by the learning algorithms are invalid symbols.

The second way–stream-based selective sampling—considers the actual distributions of existing training

data. This approach first performs sampling an unlabeled instance from the data distributions, and ap-

plies the learning algorithm to determine whether or not to query its label. As each unlabeled instance is

sequentially sampled and queried or discarded, it is also called sequential active learning. This method is

guaranteed that queries are reasonable, as they are sampled from the real underlying distribution. The

strategy of whether or not query the chosen instance’s label will be further discussed next. Several pub-

lications have used this approach to solve real-world problems [Kir02] [Yu05]. The third way of active

learning is the pool-based active learning, as shown in Figure 7.2. The rationale of such approach is that

in most scenarios, the unlabeled data are abundant while only labeled data are limited. Hence, the ac-

tive learning strategy is trying to estimate the usefulness of every unlabeled instance based on the in-

formation on labeled set. The unlabeled data pool is static or non-changing (although this is not neces-

sary), and queries can be chosen from such pool based on certain evaluating metrics. This approach is

largely studied in literature as many real-world problems match this scenario; examples can be found in

text classification [TK00], image classification and retrieval [TC01], video classification [YYH03], cancer

diagnosis [Liu04].

The second step is how to judge and select the most appropriate or useful unlabeled examples

for “oracle” labeling. In other words, what will be the ideal metrics to evaluate the usefulness of an un-

labeled example, such that the performance of predicting model will be largely improved once this un-

labeled example is annotated? Many frameworks have been proposed to develop an effective query

selecting strategy and we will briefly name them a few here.

Uncertainty reduction. The simplest method of choosing an unlabeled instance for querying is

to choose the most uncertain instance determined by current learning algorithm on some labeled data.

79

This approach is particularly convenient for probabilistic learning models, as their predictions can be

directly used to compute uncertainty. Assume for an unlabeled data point and its prediction probabil-

ities by current learner are , where represents total different classes, then

the chosen unlabeled instance is the one with least predicting confident: ̂ ,

where ̂ , and represents the chosen unlabeled example. Obviously, this strate-

gy chooses the least confident instance with respect to its most probable class. Hence, it ignores the

uncertainties of unlabeled instances on other remaining classes. To correct this bias, an improved select-

ing criterion is proposed to use the uncertain margins between the two most probable classes:

 ̂ ̂ , where ̂ and ̂ are the first and second most probable class la-

bels predicted by the current learner. A more general selection for uncertainty reduction is to use the

entropy as the uncertain measure [Set09]. The most uncertain data example is the same as the most

informative example based on information theory. The selection criterion of entropy-based approach is

 ∑ (|) (|) . In summary, the uncertainty reduction method tries

to identify the most ambiguous unlabeled instances for annotation in order to reduce the uncertainty of

training data for future learning.

Query by committee [SOS92]. This method involves using a committee of learning models to

vote the labels of unlabeled data and identifies the one with most disagreement as the most useful que-

rying example. The fundamental idea is to minimize the version space, which is the set of models or hy-

pothesis that are consistent with current labeled training data [Set09]. The goal of active learning is to

minimize the number of instances while maximize the precision of version space. Two issues need to be

resolved to implement the QBC algorithm: a) how to build a committee of different models that repre-

sent different sub-spaces of the version space, and b) how to measure the degree of disagreement

among committee members. This first issue can be solved with ensemble methods, such as boosting or

bagging algorithms. Constructing learning models on subsets of training data or applying different learn-

80

ing algorithms and parameters on these data are the most popular ways to create classification commit-

tees. Notice that the DECORATE [Mel05] and our DECIDL are also ensemble-based committee forming

methods with explicitly encouraging diversity among model members. The second issue is how to meas-

ure the degree of disagreement within the committee. Several effective metrics have been proposed in

literature to address this issue, such as the vote entropy, Kullback-Leibler (KL) divergence, and Jensen-

Shannon divergence, etc [Mel05]. The vote entropy uses information theory to evaluate the disagree-

ment:

 ∑

 ()

 ()

 (6.1)

where () denotes the number of members which assign unlabeled instance to label and is

the total number of classes. Hence, this metric tries to find the instance with most disagreements, e.g., if

each member disagrees with each other on , then the vote entropy is maximum; on the contrary, it

reaches 0 if every member reach a consensus. KL divergence is also an information-theoretic metric

which measures the difference between two probability distributions. On the other hand, JS divergence

is an extension of KL divergence, working on multiple distributions. JL divergence is the averaged KL di-

vergence of each distribution with respect to the mean distribution of the whole set.

Expected error reduction. Expected error reduction tries to find the unlabeled data which can

be able to maximally reduce the future generalization error if its label is known. The procedure of this

approach is like the following: first a loss function is defined to estimate the expected generalization er-

ror, e.g., 0/1-loss or log-loss; then select one instance in the unlabeled data set and label it; next in-

clude this single labeled instance in the original labeled set and build a new learning model ; test the

classification performance of on an separate validating data sets to have an error rate . Iteratively

select every unlabeled instance and repeat the process to get all of the error rates. The best query is the

unlabeled example which has the lowest error rate. Obviously, to get all the error rates, the label of eve-

ry unlabeled example needs to be known during the computational procedure, although the final output

81

of the result only requires the labels of those chosen unlabeled data. In theory, the error rate may not

be the only metric to evaluate the improvement of classification performance; other generic measure-

ment such as precision, recall, F-measure, or AUC-ROC can also be used here for particular interest. This

approach has been successfully used with various machine learning models, including naive Bayes

[RM01], nearest neighbor [LMR04], logistic regression [GG07], and support vector machines [EHB+07].

An obvious effect of expected error reduction is that its computational cost is very expensive, as it builds

the same number of models as the number of unlabeled examples in order to select only one optimal

instance. For some machine learning algorithms will have already required lots of computations (e.g.,

SVM), this approach is extremely inefficient. Hence, this framework and its similar extension—expected

model change framework [SCR08]—only consider simple and fast learning models.

 Other frameworks such as variance reduction, density-weighted QBC methods for query selec-

tion have also been studied in literature; interested readers may refer them to [Coh94] [Set08] [Set09].

6.1.1 Active Learning for imbalanced data

The earliest works on active learning to address imbalance data learning problems started only a

few years ago, around 2007. Zhu and Hovy applied active learning for word sense disambiguation (WSD)

with approaches to solve the class imbalance problem [ZH07]. They claimed they are the first work of

studying active learning with data resampling (over- and under-sampling) to add imbalance issue on

WSD. Their contributions in this paper are three-folds. The first developed an over-sampling strategy,

called BootOS, to create extra minority examples. For a given minority instance , a new bootstrap ex-

ample is the averaged summation of and its all nearest neighbors on all dimensions, e.g.,

∑

 . As each example’s nearest neighbors are unchanged, so each example can only

create a single additional new instance. They developed an active-learning-with-resampling algorithm by

embedding the aforementioned resampling strategy into a standard active learning framework. The

resampling step is performed after new labeled examples are added to training data set. This algorithm

82

is their second main work of the paper. Their last contribution introduces a combined stopping criterion

to stop active learning procedure. Two conditions are used to form this stopping criterion: a) max-

confidence, which limits the predicted uncertainty (entropy) of each selected unlabeled example to a

very small number and b) min-error, which measures the accuracy of predicted labels comparing to the

real labels annotated by the “oracle” on the selected unlabeled examples. Their experiments on 38 ran-

dom chosen ambiguous nouns show that their developed methods are better than random sampling,

uncertain sampling, under- and over-sampling based on accuracy and recall comparisons.

Another very earlier work on active learning especially for class imbalance problem is studied by

Seyda et al. [EHB+07] in 2007. They propose an effective unlabeled example selection strategy to ad-

dress the class imbalance in text categorization. They use SVM to create learning models and use the

separating hyper-plane as the evaluation criterion to estimate the usefulness of unlabeled examples.

More precisely, they believe that the data points within the margin area are less imbalanced than the

entire data distributions; hence unlabeled instances that are closer to the SVM hyper-plane are more

informative than others. The distance of a data point between each unlabeled example to the hyper-

plane built on existing training data set is used as selection criterion. Although similar works have been

done before this paper in [AKJ04], the main contribution here is the “59 trick” proposed by Seyda et al.

[EHB+07]. They proved that “the active learner will pick one instance (with 95% probability) that is

among the top 5% closest instances to the hyperplane, by randomly sampling only 59 instances regard-

less of the training set size”. In other words, their method do not need to check the entire unlabeled

data set, but only a small pool of 59 examples, and it is guaranteed at 95% confidence that the closest

example to the hyperplane in this pool will also be in the top 5% closet examples to that hyperplane for

all unlabeled data set [EHB+07]. Without looking over the whole unlabeled set, their method yields to a

very efficient learning system which can work on very large datasets, such text categorization. They use

an online SVM and an early stopping criterion to perform experiments on several real-world data sets,

83

including data sets from Reuters-21578 text categorization data, CiteSeer, and UCI. They show that their

method ranked the first on the average PRBEP performance on 18 data sets, comparing to under-

sampling, SMOTE, and simple cost-sensitive learning.

The most recent work of applying active learning for imbalanced data classification is done by

Oh. et al. [LOZ09] [OLZ11]. Their initial study is to develop an active example selection (AES) method by

using the expected error reduction framework [LOZ09]. They first formulize a measure of usefulness for

data examples with a posterior likelihood and information theory analysis, and define the usefulness of

an example to be the sum of squared errors between desired output and actual output of the trained

classifier. The class imbalance is resolved through selecting procedure of useful examples [LOZ09]. An

incremental naive Bayes classifier is used as the base learner for this iteratively AES learning, and their

initial results have proved the effectiveness. However, as AES starts to build initial classifier from a por-

tion of randomly sampled training data set, slight changes may lead to the instability of output model.

They then propose an ensemble AES (EASE) method to improve the generalized classification perfor-

mance[LOZ09]. More precisely, the original training data set are split into equal size of sub-components.

For each component, an AES procedure is performed to create a learning model. As each resulting mod-

el is built from different portion of the original data, Oh et al. claim that this method are better and

more efficient than traditional bagging [OLZ11]. The final decision of these models is made by a

weighted voting policy: the weighted summation of prediction probabilities from all models and weight

derived from each model’s training performance. After using an incremental naive Bayes method as the

base learner again, Oh et al. show that this new EASE method also perform very well on several less im-

balanced biomedical data sets, with less training data used [OLZ11].

6.2 Active-DECIDL

In this section, we will incorporate the active learning strategy to the DECIDL framework in order

to solve the class imbalance problem. As active learning can start with a small data set to build classifiers

84

initially and select useful examples in the later iterations, this property is naturally beneficial for tackling

imbalanced data set. Although the data sets in our study are highly imbalanced, the useful examples

among them may be balanced or less imbalanced. Naturally, applying active learning to identify the use-

ful examples is possible to create balanced training subsets. However, in our imbalanced classification

problem, there are no unlabeled data instances as all the examples are labeled. One way of fixing this

issue is to consider partial data as unlabeled, and retrieve their labels when necessary. Therefore, we

have to slightly change the standard active learning procedure to adapt it for imbalanced data.

The adapted active learning procedure is as follows. First, perform under-sampling the majority

class to get a subset
 and add it to minority class to form a balanced initial training data set

 , and then build an initial classifier with a chosen base learner

 . Next, apply an ef-

fectiveness measure on the rest of majority examples

 and identify the most useful

examples
 . Then add these useful examples back to to have another round of data set

 and build a new classifier

 , and at the same time remove
 from

 . These steps repeat

several iterations until certain conditions are reached. As all data examples are labeled, no “oracle” is

needed for annotation. That is, there is no additional cost to query all the real labels for all the unselect-

ed majority examples. Hence, we can use the difference between the predicted and its real label as the

criteria for evaluating the effectiveness of an instance. In other words, the majority examples that

can be accurately predicted by current model are considered no useful, while those incorrectly predict-

ed examples are much more useful. Note that as the initial under-sampling on the majority class may

introduce certain instability for the final output, a bagging or boosting has to be involved to generalize

the classification performance of the described procedure, meaning an ensemble adaptive active learn-

ing procedure (EAAL).

Clearly, this ensemble adaptive active learning procedure also encourages the diversity of classi-

fication models in two aspects. First, it incrementally includes new training examples to build different

85

learning models. Second, the new examples are those most contradicted examples to current classifier,

and hence the new classifier built on the combined data set will produce certain variations to previous

classifiers.

To combine the strengths and advantages of above active learning strategy and our DECIDL

framework, we now embed this EAAL procedure into our DECIDL framework to develop a new meta-

learning strategy: Active-DECIDL. As EAAL uses under-sampling to shrink the large majority class and DE-

CIDL creates artificial examples to enlarge the minority class, the two methods compensate each other

to become a perfect combination for solving imbalance learning problem.

Note that the active learning steps are embedded in our DECIDL procedure, thus the stopping

criterion is shared with DECIDL, when the committee members reach to a maximum pre-settings. Also

note that in the above algorithm, each time we select top

 majority ex-

amples to form the active set
 , instead of selecting one or two instances in a traditional way. The

reason is that after adding this active set to the current training set, the total number of positive exam-

ples
 is equal to total number of negative examples|

 | . Hence, in each iteration

the total learning data set is balanced.

86

Table 6.1: The Active-DECIDL algorithm

Algorithm 6.1: The Active-DECIDL algorithm

Inputs:
 – Base learning algorithm (e.g., C4.5, SVM, NN, cost-C4.5, SVM-weight)
 –〈 〉, Training set, examples , is n-dim vector, and
 – A vector, misclassification cost for each class (default:)
 – Maximum number of member classifiers in the targeted ensemble
 – Maximum number of iterations to build an ensemble
 – Evaluation metric for ensemble performance (e.g., Total Cost, or 1-MCC)
 – Percentage (ratio to size of training data D) of synthetic examples to create

Steps:
Initialization:
1. ,

2. Under-sample the majority class to create a subset
 , and remaining set

3. Build a classifier model , where

4. Initialize ensemble,
5. Computer ensemble performance:

Loop:
6. While and

7. Reset current training data set:

8. Artificially generate data set with new training examples

9. Use current ensemble to make predictions on , to get ()

10. Label examples in with probability of class labels inversely to

11. Remove the majority-labeled examples in get

12. Use current ensemble to make predictions on
 , to get (

)

13. Calculate effectiveness
 | (

) (
)|

for each majority instance

 in
 ,

and choose top

 examples to form active set

14. Update current negative set

 ; update remaining negative set

15. Updated current total training data set to be:

16. ,
17. Computer new ensemble performance:
18. If (i.e., performance is better)
19.
20. Else:
21.
22.

Outputs:
Ensemble classifier

6.3 Experimental Settings and Results

To evaluate the performance of Active-DECIDL, we run the experiments on the 30 data sets in

the benchmark pool. We compare the classification performance of Active-DECIDL with DECIDL, ran-

87

domly under-bagging and randomly over- bagging; similar to previous experiments, the F-measure and

MCC are reported for comparisons. Meanwhile, the percentages of queried majority data instances are

also reported to show the effectiveness of active learning; we defined such percentage as the data que-

ry ratio. SVM is used as the base learner and all three methods have equal number of committee mem-

ber. Therefore, the active learning procedure stops at the same time when the size of committee mem-

ber reaches to a predefined number.

The parameter settings of Active-DECIDL are set to be the same as DECIDL, in order to have a

fair comparison. More precisely, the size of artificial set, the number of committee members, and the

evaluation metric are all same for Active-DECIDL and DECIDL. The parameters inside the base learner

(SVM) are optimized internally by an internal training-testing step. The final reported performance of

each method was averaged over ten runs of 5-fold cross-validation.

88

Table 6.2: Classification performance and data query ratio of Active-DECIDL on benchmark data

Data F-mea. G-means MCC AUROC AUCPR
Data Query

Ratio

Ecoli 0.633 0.858 0.605 0.942 0.610 12.3%

Optical_Digits 0.921 0.968 0.913 0.996 0.971 8.2%

SatImage 0.558 0.821 0.518 0.923 0.582 27.5%

Pen_Digits 0.909 0.965 0.900 0.997 0.970 15.5%

Abalone_7 0.381 0.741 0.342 0.850 0.319 57.4%

Sick_Euthyroid 0.715 0.906 0.695 0.950 0.747 18.6%

Spectrometer 0.840 0.933 0.831 0.954 0.831 25.8%

Balance 0.063 0.222 -0.017 0.416 0.072 53.7%

Car_Eval_34 0.927 0.987 0.923 0.999 0.964 24.2%

ISOLET 0.838 0.955 0.829 0.990 0.923 16.5%

US_Crime 0.540 0.804 0.510 0.922 0.566 42.4%

Yeast_ML8 0.126 0.467 0.019 0.531 0.090 84.5%

Scene 0.252 0.534 0.207 0.771 0.228 79.5%

Libras_Move 0.717 0.902 0.717 0.979 0.804 29.3%

Thyroid_Sick 0.662 0.904 0.656 0.946 0.642 38.6%

Coil_2000 0.163 0.472 0.116 0.671 0.130 90.1%

Arrhythmia 0.204 0.682 0.197 0.752 0.181 46.2%

Solar_Flare_M0 0.197 0.480 0.160 0.738 0.167 80.9%

OIL 0.354 0.773 0.360 0.917 0.385 50.8%

Car_Eval_4 0.868 0.992 0.873 0.999 0.933 44.7%

Wine_Quality_4 0.151 0.704 0.170 0.778 0.216 19.6%

Letter_Img 0.777 0.825 0.781 0.992 0.866 67.8%

Yeast_UCI_ME2 0.372 0.773 0.383 0.888 0.311 83.0%

Web_page 0.452 0.784 0.457 0.925 0.464 55.1%

Ozone_Level 0.192 0.487 0.188 0.772 0.180 91.3%

Mammography 0.490 0.837 0.504 0.921 0.540 83.1%

Reuters-21578 0.582 0.887 0.600 0.984 0.619 54.9%

Forest_Cover_5 0.093 0.743 0.150 0.831 0.079 80.0%

Protein_homo. 0.137 0.745 0.199 0.787 0.307 90.7%

Abalone_19 0.035 0.484 0.041 0.666 0.022 90.4%

Average 0.472 0.755 0.461 0.860 0.491 52.1%

89

Table 6.3: Performance Comparison among Active-DECIDL, DECIDL, under-bagging and over-

bagging

Performance F-measure MCC

Data Set
Active-
DECIDL

DECIDL
Over-
bagg.

Under-
bagg.

Active-
DECIDL

DECIDL
Over-
bagg.

Under-
bagg.

Ecoli 0.633 0.609 0.567 0.517 0.605 0.576 0.552 0.515

Optical_Digits 0.921 0.822 0.735 0.696 0.913 0.805 0.734 0.682

SatImage 0.558 0.358 0.000 0.276 0.518 0.358 0.272 0.256

Pen_Digits 0.909 0.775 0.000 0.629 0.900 0.763 0.702 0.616

Abalone_7 0.381 0.310 0.000 0.334 0.342 0.239 0.337 0.309

Sick_Euthyroid 0.715 0.751 0.605 0.584 0.695 0.727 0.607 0.581

Spectrometer 0.840 0.750 0.811 0.636 0.831 0.738 0.796 0.637

Balance 0.063 0.000 0.059 0.088 -0.017 0.000 -0.184 -0.159

Car_Eval_34 0.927 0.784 0.913 0.706 0.923 0.784 0.907 0.713

ISOLET 0.838 0.776 0.769 0.671 0.829 0.757 0.771 0.675

US_Crime 0.540 0.449 0.465 0.445 0.510 0.448 0.446 0.451

Yeast_ML8 0.126 0.157 0.159 0.173 0.019 0.060 0.074 0.098

Scene 0.252 0.210 0.236 0.241 0.207 0.138 0.180 0.208

Libras_Move 0.717 0.832 0.678 0.674 0.717 0.834 0.685 0.676

Thyroid_Sick 0.662 0.635 0.515 0.481 0.656 0.618 0.528 0.504

Coil_2000 0.163 0.117 0.189 0.177 0.116 0.029 0.153 0.140

Arrhythmia 0.204 0.206 0.261 0.154 0.197 0.170 0.214 0.125

Solar_Flare_M0 0.197 0.146 0.170 0.190 0.160 0.130 0.158 0.199

OIL 0.354 0.301 0.378 0.292 0.360 0.333 0.412 0.333

Car_Eval_4 0.868 0.936 0.812 0.752 0.873 0.934 0.823 0.768

Wine_Quality_4 0.151 0.269 0.171 0.177 0.170 0.242 0.198 0.175

Letter_Img 0.777 0.844 0.541 0.486 0.781 0.849 0.548 0.534

Yeast_UCI_ME2 0.372 0.137 0.284 0.294 0.383 0.156 0.334 0.341

Web_page 0.452 0.582 0.501 0.306 0.457 0.594 0.485 0.370

Ozone_Level 0.192 0.111 0.237 0.173 0.188 0.102 0.281 0.235

Mammography 0.490 0.530 0.264 0.217 0.504 0.554 0.347 0.285

Reuters-21578 0.582 0.647 0.749 0.433 0.600 0.655 0.802 0.491

Forest_Cover_5 0.093 0.285 0.102 0.091 0.150 0.276 0.199 0.154

Protein_homo. 0.137 0.675 0.420 0.126 0.199 0.679 0.470 0.223

Abalone_19 0.035 0.082 0.049 0.024 0.041 0.151 0.105 0.056

Average 0.472 0.469 0.388 0.368 0.461 0.457 0.431 0.373

Win/Loss
to Under-bagg.

26 22 21 21 21 24

90

Figure 6.2: Data query ratio of majority class for the 30 benchmark data

Figure 6.3: Average Performance Comparison of the four methods on benchmark data pool

6.4 Result Discussion and Conclusion

Table 6.2 shows the detailed F-measure, MCC, G-means, AUCROC, AUCPR and data query ratio

of Active-DECIDL on the 30 benchmark data. In general, the Active-DECIDL works well on most of the

data sets, although some of them are still difficult to tackle, e.g., Balance, Yeast_ML8, Coil_2000,

Wine_Quality_4, Forest_Cover_5, Abalone_19. The possible reason is that underlying distributions of

minority class may be very complicated, and selecting informative majority instances do not alleviate

the difficulty of creating effective classification models.

91

However, it is worth to notice that the data query ratios on these data sets are generally low,

ranging from less than 8% to 90%, which means in most cases, the active learning could significantly re-

duce the number of examples needed to build efficient classification models. This result successfully

proves that active learning is very effective in reducing labeled examples in machine learning process,

while still keeping the similar prediction performance.

Result in Table 6.3 and Figure 6.3 compare the classification performance between Active-

DECIDL, DECIDL, under-sampling and over-sampling. Clearly, from those results, we can see that Active-

DECIDL is generally superior to other three methods in terms of performance both on F-measure and

MCC. The phenomenon that Active-DECIDL is slightly better than DECIDL strongly suggests that active

learning is able to help a learning algorithm to reach the same level of classification performance while

using much less data examples for training. This effect completes our original idea of using active learn-

ing to help solving class imbalance problem. The developed Active-DECIDL method has confirmed our

initial hypothesis: the combination of active learning and DECIDL are fitting to each other for handling

imbalance data learning problem.

92

Chapter 7: PROTEIN METHYLATION PREDICTION

In this chapter, we will study the problem of protein methylation prediction and apply the DE-

CIDL framework to solve it. A brief introduction will outline the methylation prediction problem and its

current research statuses and challenges. The biological knowledge about protein methylation is pre-

sented to provide further detailed information about the target problem—a real-world imbalanced data

learning in bioinformatics. Many researchers have already provided their own classification methods

and servers to predict methylated positions in protein sequence. Here, we apply our DECIDL framework

that is specially designed for imbalanced learning to solve this problem more effectively.

7.1 Introduction

As we all know, cell is the fundamental functional unit of all kinds of lives in our world, and pro-

tein is an essential component of all kinds of cells. Proteins are playing many critical roles in defining

particular functions and structures of cells. They can also help cells communicating with outside envi-

ronment and transport useful substances for cells to survive, grow and reproduce.

Protein methylation is one important type of post-translational modifications of proteins. It was

discovered more than 40 years ago [PK67], and offers greatly functional diversity to the protein se-

quence. It typically happens on arginine or lysine amino acid in a protein sequence [Wal05] [BR05]. The

η-nitrogens of an arginine residue in a protein can be monomethylated or dimethylated, with either

both methyl groups on single terminal nitrogen (asymmetric dimethylated arginine) or on either nitro-

gens (symmetric dimethylated arginine) by protein arginine methyltransferases (PRMTs) [BR05]. The ε-

amino group of lysine can be methylated in mono-, di-, and tri-methylated states by protein lysine me-

thyltransferases. Currently, protein methylation has been intensely studied in the histones—the main

protein components of chromatin because of its important role in epigenetic regulation of gene func-

tions.

93

Although protein methylation is an important modification in biology and chemistry, the molec-

ular mechanism underlying the methylation is still poorly understood. In particular, the information of

the substrate specificity of different PRMT members is largely incomplete. A genome-wide of searching

of methylated substrates is highly needed to unravel many unknown functions of PRMTs in biological

processes and cellar components. Therefore, accurately predicting these methylation sites will greatly

help researchers setting smart experiments to find more interesting sites in unknown sequences. Cur-

rently, there exist some algorithms published in literature to handle this methylation prediction problem

[CXH+06] [SLC+09] [SXT+09]. Many of them used the SVM method to train classifiers on known protein

sequences and then made predictions on unknown sequences. If there are enough identified methyla-

tion sites for SVM training, then it’s easy to build reliable and robust classifiers for further prediction.

However, in most cases, the number of methylated sites is far less than un-methylated ones, and thus

the dataset for SVM training is highly imbalanced. Directly using SVM to build classifiers will result in

highly skewed hyperplanes, which give the same prediction for any other sequences without truly dif-

ferentiating them. Therefore, it’s important to design algorithms to solve the problems in imbalanced

and small datasets.

7.2 Background

7.2.1 Protein Structure

Proteins are normally made of one or more polypeptides and fold to particular 3D structures

based on the amino acid sequence in those polypeptides. A polypeptide is a linear polymer chain that is

consisting of many amino acids and bonded by the peptide bonds between the carboxyl and amino

groups of neighboring amino acid. The amino acid, or called residue in a sequence, is encoded by gene

code, and there are on 20 kinds of them in total. However, a sequence of these amino acids can produce

countless number of combinations, and thus there are more than millions of meaningful and functional

proteins. A typical protein contains hundreds or thousands of amino acid residues. In essence, it is the

94

primary amino acid sequence that determines the 3D structure and functionality of a protein. Proteins

have four levels of structures in general. The first level is its primary structure, which is the sequence of

20 kinds of amino acids. The second level is protein secondary structure, which has 3 main forms of

shapes called helix, strand, and coil. Each shape is formed by dozens or hundreds of amino acids. The

third level is the tertiary structure, which is also the 3D folding structure of protein. It is mainly the spa-

tial assembly of helices (helix), sheets (strand) and the pattern of connections between them (coil). The

fourth level is for those proteins with more than one polypeptide chain. The combinations of those ter-

tiary structures make up the quaternary structure. More detailed knowledge for protein structure can

be found in [PR04].

7.2.2 Protein Methylation

The genetic material present in the nucleus of eukaryotic cells is tightly packaged into chroma-

tin, which functions as a structural and dynamic scaffold in the regulation of various nuclear processes,

including transcription, DNA replication and repair, mitosis and apoptosis [HM05] [Tch05]. From the past

decade of work, epigenetics has been established as a critical topic of research in current biology dealing

with heritable changes in a gene function that does not entail changes in the nucleotide sequence of the

gene [Hol87][Bir02] [WM01] [CL05]. Epigenetic factors, in particular DNA methylation and histone modi-

fications, significantly contribute to chromatin remodeling and function [RJ00]. This rapidly evolving field

offers exciting new opportunities for investigating the molecular and cellular mechanisms underlying

various poorly understood biological phenomena such as dosage compensation [BBK+05] and genomic

imprinting [KS05], as well as providing new approaches to the diagnosis and treatment of complex clini-

cal disorders such as cancer and cardiovascular diseases [YJ06].

Among different chromatin modifications, the histone arginine methylation is catalyzed by pro-

tein arginine methyltransferases (PRMTs) that transfer the methyl group from S-adenosyl-L-methionine

95

(AdoMet, SAM) to the guanidino group of arginines in histone or non-histone protein substrates, result-

ing in mono and di-methylarginine residues in substrate proteins (Figure 7.1).

PRMT

SAM SAH

asymmetricsymmetric

SAM SAH

N
H

O

NH

H

NH2
H2N

N
H

O

NH

H

NH
H2N

CH3

N
H

O

NH

H

NH
HN

CH3

N
H

O

NH

H

N
H2N

CH3H3C

CH3

PRMT

Figure 7.1: Protein arginine methylation catalyzed by PRMTs

Eleven PRMT family members have been identified at the protein and genomic levels in human

tissues or cells and categorized into two major types, type I and type II, according to substrate and

product specificity [BR05] [LTS+05].Type I enzymes (PRMT1, 3, 4, 6 and 8) catalyze the transfer of the

methyl group from S-adenosyl-L-methionine (SAM, AdoMet) to the guanidino nitrogen atoms of arginine

residue to produce ω-NG monomethylarginines (MMA, L-NMMA) and ω-NG,NG-asymmetric dime-

thylarginines (ADMA) (for a review, see a ref [BR05]). Type II enzymes (PRMT 5, 7 and 9) catalyze the

formation of MMA and ω-NG,N’G-symmetric dimethylarginines (SDMA). Of note, the enzymatic activity

of PRMT2, 10 and 11 remains uncharacterized. PRMT-catalyzed arginine methylation has been shown to

be involved in many biological processes including signal transduction, gene transcriptional regulation,

RNA transport, RNA splicing, and embryonic development [BR05].

Arginine methylation has a clear impact on the ability of the PRMT substrates to perform their

biological functions. Although it does not alter the overall charge on an arginine residue, the addition of

methyl groups increases steric hindrance and removes amino hydrogens that might be involved in hy-

drogen bonding. Therefore, methylation could serve to modulate intra- or intermolecular interactions of

target proteins. This may be suggestive of the role of protein arginine methylation as a mark of signaling

transduction in cells. However, a challenging problem in the study of protein arginine methylation is un-

derstanding and exploration of the substrate specificity of PRMTs. Thus far, only limited numbers of sub-

96

strates of PRMTs (~50-70 confirmed reports in total for all the PRMT members) have been identified and

experimentally verified. In particular, no apparent methylation consensus sequence has been deter-

mined. PRMT1 (like PRMT3) mediates methylation typically within the archetypal Arg–Gly- or Arg–Gly–

Gly sequences [BSA06]. This overly simplified rule cannot account for all the existing PRMT substrates.

Recent studies have shown that the substrate specificity of PRMT1 goes far broader than the typical

RGG paradigm and suggest that many of the cellular functions of PRMT1 may not yet have been ex-

plored [WZZ+08]. A better computer-aided analysis of the existing PRMT substrates will yield new in-

sight into the diversity of PRMT substrates, and identify new PRMT targets and related biological path-

ways.

7.3 Related Works in Protein Methylation Prediction

Four current protein methylation prediction servers are (1) the Memo [CXH+06], (2) the Auto-

Motif [PTW+05], the MASA [SLC+09], and the BPB-PPMS [SXT+09].

Memo: In [CXH+06], Chen et al. collected verified methylation sites from annotations in SWISS-

PROT database. They also searched the PubMed with keyword “Methylation Arginine” and then manual-

ly collected confirmed methylations. After combining data from two resources together, BlastClust is

used to remove homologous proteins. Finally, 250 methylated arginines were used as the positive sam-

ples for SVM modeling, and all other non-methylated arginines from the same proteins were used as

negative samples. RBF kernel function was used and the average cross-validation accuracy is 86.70% for

Arginine prediction. However, the collected data in Memo didn’t differentiate protein substrates meth-

ylated by different PRMTs. Therefore, even it makes predictions on unknown protein sequences, but it

provides little information about which PRMT family causes this methylation. Such information is critical

for users to verify the prediction. Meanwhile, mixing methylations by different protein families together

for training SVM will also potentially overestimate the number of methylated Arginines when predicting.

97

AutoMotif Server[PTW+05]: Positive instances which are 9-amino acid long sequence fragments

have been confirmed with one type of post-translational modifications (PTMs) from SWISS-PROT data-

base [PTW+05]. The negative instances are constructed randomly by choosing fragments without any

type of PTMs. They collected all type of PTMs, and each type of PTM has been trained and modeled sep-

arately. Thus, user can choose one specific modification to predict. However, similar to the Memo, this

server doesn’t provide further information about which PRMT is responsible for the methylation. No-

ticeably, their Leave-one-out precision and recall performance for Omega-N-methylated arginine are

both 0, due to highly imbalanced data (62 positives, and 2044 negatives). In fact, we have tried several

known sequences, such as Histone 2 & 3, but it produces either incomplete predictions or nothing.

MSAS Server: Most recently, Shien et al. [SLC+09] combines more structural information of the

sequences to identify methylation sites. They first collect methylated lysine, arginine and other residues

from Memo and newest SWISS-PROT database. Then each methylated fragment was encoded with their

amino acid characteristics, predicted secondary structures (with PSIPRED), and predicted area accessible

ability (with RVP-Net). They also use SVM as the learning classifiers. Since more methylated residues

have been collected and more information has been used for representation, their method produces the

highest prediction accuracy compared with other existing methods. The sensitivity they got is 82.1% and

the specificity is 87.4%. Similar to previous methods, their server also only provide a general methylation

prediction, and the related PRMTs are not identified. After balancing the positives and negatives with

ratio 1:1 (246 samples), they report the average cross validation with 82.1% for sensitivity and 87.4% for

specificity. However, the MSAS server only provides the general methylation prediction without identify-

ing related PRMTs.

BPB-PPMS Server: Most recently, Shao et al. [SXT+09] also develop a new computational model

for methylation identification. They too collect methylated residues from the SWISS-PROT database

(version 56) by search keywords. Then they compute the posterior probability of each amino acid in pos-

98

itive dataset and negative dataset, respectively, which is called position-specific bi-profile. Through

Bayes formula, bi-profile is used to predict the methylation status given any future unknown sequences.

The final dataset for cross validation is balanced with ratio 1:3 between positives and negatives; the final

classification performance on arginine prediction is 74.71% for sensitivity and 94.32% for specificity. Ob-

viously, their method only uses the basic residue frequency information for learning, which underesti-

mates the importance of other features, such as evolutionary profile, structure information, etc.

Summaries of features of the four Web servers are listed in Table 7.1.

Table 7.1: Features of the Four Current Prediction Web Servers

Features Memo AutoMotif MASA BPB-PPMS

Model for Classification SVM SVM SVM SVM

Sequence Representation Bin (Binary)
Bin, Blosum,
Frequency

Bin, 2D Structure,
Solvent Acc.

Frequency

Data Under-sampling /
Ratio (negative vs. positive)

Yes
1:1

No
46:1

Yes
5:1

Yes
3:1

Learning and Predicting on
different PRMT families

NO NO NO NO

7.4 Our Proposed Algorithms

7.4.1 Representation of Protein Sequence

As described before, protein methylation is one kind of modifications after proteins are trans-

lated from gene codes to their primary amino acid sequences. Hence, the main information we can use

to predict such methylation are their polypeptides, i.e., their amino acid sequences. Table 7.2 lists all the

20 kinds of amino acids and their properties and Figure 7.2 shows a typical protein sequence and its

structures [KWT+07].

99

Table 7.2: 20 Amino Acids and their Abbreviations

Amino Acid 3-L Abbr. 1-L Abbr. Polarity Amino Acid 3-L Abbr. 1-L Abbr. Polarity

Alanine Ala A nonpolar Leucine Leu L nonpolar

Arginine Arg R polar Lysine Lys K polar

Asparagine Asn N polar Methionine Met M nonpolar

Aspartic acid Asp D polar Phenylalanine Phe F nonpolar

Cysteine Cys C nonpolar Proline Pro P nonpolar

Glutamic acid Glu E polar Serine Ser S polar

Glutamine Gln Q polar Threonine Thr T polar

Glycine Gly G nonpolar Tryptophan Trp W nonpolar

Histidine His H polar Tyrosine Tyr Y polar

Isoleucine Ile I nonpolar Valine Val V nonpolar

Figure 7.2: Protein (PDB ID: 3OXC [KWT+07]) Structure and Sequence

Clearly, the protein sequences are consisting of long string combinations of 20 kinds of amino

acids, and they cannot be directly used as numbers for the computations in our learning algorithms.

Therefore, the first step is to convert these sequence information into integers or float numbers in a

reasonable manner, and then identify the independent features and dependent target class. After this

step, we can fit these values into learning algorithms for classification.

Before introducing any advanced sequence representation techniques, let first describe a simple

idea of converting these amino acids into integers. As there is limited number of amino acids, it is similar

to a nominal feature for each position in a protein sequence. Hence, a traditional way for amino acid is

100

using a 20-bits binary value to represent each amino acid. First, we rank all amino acids based on their 1-

letter name alphabetically (as shown in Table 7.1). For example, Alanine is the first; Arginine is the se-

cond, and so on. Then, the 20-bits representation will have a 1 in its position where is its ranking

number. All other positions will have zeros. Hence, the 20-bits value for each amino acid has only 1 one

and 19 zeros. We call this representation method—orthogonal code. A more concrete example is de-

scribed in Table 7.3.

Obviously, these binary representations can be considered as the independent features for fur-

ther classification, because the primary sequences are the fundamental information for any advanced

protein structures and functions. The next step is to choose a predicting target property. Depending on

the interested question, it is generally a sophisticated protein characteristic of the sequence. For exam-

ple, secondary structure, tertiary structure, surface solvent ability, and a post-translational modification

are the most popular properties to be predicted based on amino acid sequences. It is generally assumed

that an individual residue and its flanking amino acids are the main causes to determine the interested

property on this residue; hence a subsequence around a center residue is used to represent the inde-

pendent features for the target prediction of this residue. Assume that there are residues on the left

and on the right, then there are total residues together in determining the property of

the residue in the center. Normally, is chosen based on a particular problem, ranging from 7 to 21.

The status of the centering residue is represented with +1 or -1, in order to fit to classification algo-

rithms. By sequentially sliding the representation range to the next subsequence, we can collect more

and more predicting examples and their features, resulting in a training data set. Such sliding technique

is usually called sliding window.

101

Table 7.3: Orthogonal representation of 20 amino acids and a short sequence

Amino Acid Rank 1-L Abbr. Representation Example

Alanine 1 A ⏟

 Sequence : PQIT R LWKR
Converted to:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Arginine 2 R ⏟

Asparagine 3 N ⏟

… … … …

Tyrosine 19 Y ⏟

Valine 20 V ⏟

7.4.2 Feature Extraction from Protein Sequences

Similar to other methods, we also assume that methylated Arginines are largely determined by

its neighboring residues in primary sequence structures. That is, the characteristics of residues centered

with an Arginine will be explored as deep and diversified as possible to find the potential relations. Each

status of an Arginine (being methylated or non-methylated) is represented by a vector of features ex-

tracted from its primary neighboring residues. These features include physicochemical properties

(PhCh), the multiple sequence alignment profiles (the PSSM), secondary structure (SS), and solvent ac-

cessible area (SAS). Thus, our first step is to extract these features for each Arginine in the PRMTs.

To better understand the underlying mechanism of protein Arginine methylation, enough in-

formation has to be collected for further machine learning task. So far, most studies of identifying meth-

ylation sites only use the primary structure information: the properties of amino acids and the evolu-

tionary profiles. However, it is well known that the protein secondary and tertiary structures have signif-

icant impact on many PTMs. Therefore, structure information should also be used to differentiate the

methylation status. In this paper, the secondary structure and solvent accessible area information are

extracted along with physicochemical properties and PSSM to represent the characteristics of neighbor-

102

ing residues. We believe it’s the first time that such comprehensive information has been explored for

protein methylation identification.

The physicochemical (PhCh) properties of each amino acid include the status of being polar,

charged, aromatic, small, tiny, hydrophilic/hydrophobic, and aliphatic [Tay86]. Each property is repre-

sented with a binary bit, so 8 bits are used for PhCh feature.

Figure 7.3: The physico-chemical relationship of the 20 amino acids [Tay86]

The evolutionary profiles of each protein sequence are generated by PSI-BLAST [AMS+97]

against the NCBI non-redundant database with three iterations and a cutoff E-value 10-3. The position

specific scoring matrix (PSSM) produced by PSI-BLAST is used as the evolutionary information; its value

will be scaled in the range [0, 1].

Not all PRMT sequences have been discovered with 3D structures so far, thus the predicted

structure information is used for feature extraction. For secondary structures of each sequence, the PSI-

PRED server [BMM+05] can provide reliable three-status (helix, coil, and strand) prediction for each res-

idue of a query sequence. The real values of three kinds of secondary structures are directly incorpo-

rated in the feature list.

For solvent accessible area, we also use the predicted information, which is obtained from RVP-

net [AGS03]. The RVP-net can output real-valued predictions of accessible surface area for each amino

103

acid; hence, it should bring more information for further classification than binary or discrete predic-

tions.

Methylation Classification and Performance Evaluation

Parameter

Optimization

Testing

(MCC, SN, SP)

Whole positive

set and

negative set

1 fold (10 runs)

Evaluation

(4-fold cross-validation)

4 folds (10 runs)

Final Model

Final Average Performance

 (on 10 runs)

Methylate

d FASTA

Seq.

Feature Extraction

Physicochemical

Properties (w*8)

Solvent Access.

Area (w*1)

RVP-Net

Secondary

Structure (w*3)

PSIPRED

PSSM (w*20)

PSI-BLAST

Total Features: w*32

(w is the sliding window size)

DECIDL Learning

Figure 7.4: Data flow of imbalanced data learning on Methylated Protein Sequences

Hence, for each Arginine, the feature number is , where is the total sliding window size.

 is set with odd number between 7 and 21 in or computational experiments.

7.4.3 DECIDL on Methylation Data

As arginine methylation is a rare modification among all arginine in protein sequences, the re-

sulting methylation data set is quite imbalanced. From the data sets used in the four methylation predic-

tion server, we know that such imbalance ratio can reach to as high as 10:1, i.e., 216 methylated (posi-

tive) arginines and 1980 non-methylated (negative) arginines are collected in BPB-PPMS server[SXT+09].

Hence, this arginine methylation prediction problem is a perfect real-application test for our DECIDL

framework and its variations. We will directly apply our DECIDL algorithm on the methylation data set.

The detailed data collection step for methylated protein sequences will be discussed in next section.

Notice that, as summarized in section 7.3, most current methods used under-sampling to bal-

ance the data set and then apply SVM for model building. Meanwhile, their reported classification per-

formances are totally based on the under-sampled balanced data set, not on the original data set.

104

7.5 Methylated Protein Sequence Collection

The methylated protein sequences for arginine in our following experiment are collected from

MeMo server [CXH+06]. MeMo generated such data set in the following way: they first examined the

methylation residues from the SWISS-PROT database (ver. 48) [BBA+03] and only selected those exper-

imentally verified methylated arginine sites. In other words, potential methylated residues with key-

words “By similarity”, “Potential” or “Probable” are not considered. They also manually search PubMed

for keywords “methylation arginine” and found more than 1700 articles. The methylation information

found by these two methods are combined together to produce 273 methylated arginine positions. To

remove the effect of homologous proteins, they use BLASTCLUST with a 30% identity threshold to clus-

ter similar protein sequences and then remove one of the cases if two sequences have methylated ar-

ginines at same positions after alignment. They finally collected 250 positive methylated arginines from

91 proteins. All the non-methylated arginines in these 91 proteins are considered as negative cases, re-

sulting in 2700 negative examples. Hence, the data set in our experiment has 250 positive examples, and

2700 negative examples, meaning the imbalance ratio is about 11:1.

7.6 Computational and Laboratorial Results

In this section, we will show the computational and laboratorial results on this methylation data

set with several imbalanced learning strategies. Four ensemble methods used in previous chapters are

selected for comparisons: DECIDL, GSVM-RU, SMOTE-bagging, and DBEG-ensemble. We use two levels

of 5-folds cross validation to report their averaged performance metrics over 10 independent runs. The

two levels of cross validation are conducted as follows: the original methylated data set (250 positives

and 2700 negatives) are randomly divided into 5 equal folds, then one fold is used as independent test-

ing set and the rest 4 folds are used as training set. Within these 4 folds, 3 of them are used for building

prediction models, and the left 1 fold is set to validate the performance. After each of the 4 folds is

treated as validation fold, their averaged performance is used to select the best modeling parameters

105

and a final prediction model is built on all 4 folds data with the best parameters. The process of cross

validation, parameter optimization, and evaluations is described in figure 7.5.

7.6.1 Computational Results

Table 7.4 and Figure 7.5 to 7.10 show the F-Measure, G-means, and MCC performance of the

four imbalanced learning methods with window size ranging from 7 to 21.

From these results, we can see that our DECIDL method can produce high and stable perfor-

mance with different sizes of window. All the classification metrics, i.e., F-measure, G-means, MCC, and

AUC-ROC, decrease very dramatically for all other three learning methods (GSVM-RU, SMOTE-bagging,

DBEG-ensemble), except our DECIDL method.

Figure 7.5: F-Measure Performance Comparison with Different Window Sizes

Figure 7.6: G-means Performance Comparison with Different Window Sizes

106

Figure 7.7: MCC Performance Comparison with Different Window Sizes

Figure 7.8: AUC-ROC Performance Comparison with Different Window Sizes

107

Table 7.4: Classification Performance on Arginine Methylation Data Set

Window Size Metric F-Mea. G-means MCC AUROC AUCPR Sen. Spec.

size=07

DECIDL 0.421 0.736 0.382 0.814 0.382 0.642 0.864

GSVM-RU 0.359 0.715 0.310 0.776 0.319 0.631 0.819

SMOTE-Bagging 0.495 0.723 0.446 0.822 0.401 0.563 0.933

DBEG-Ensemble 0.487 0.740 0.440 0.808 0.390 0.598 0.920

size=09

DECIDL 0.464 0.727 0.420 0.819 0.407 0.595 0.903

GSVM-RU 0.336 0.704 0.283 0.759 0.287 0.628 0.796

SMOTE-Bagging 0.497 0.702 0.449 0.812 0.406 0.524 0.944

DBEG-Ensemble 0.480 0.702 0.430 0.822 0.420 0.530 0.936

size=11

DECIDL 0.472 0.743 0.432 0.827 0.404 0.622 0.906

GSVM-RU 0.326 0.694 0.271 0.752 0.280 0.620 0.789

SMOTE-Bagging 0.429 0.616 0.382 0.794 0.387 0.402 0.955

DBEG-Ensemble 0.452 0.652 0.401 0.802 0.395 0.454 0.948

size=13

DECIDL 0.477 0.766 0.433 0.817 0.377 0.659 0.894

GSVM-RU 0.323 0.692 0.269 0.756 0.283 0.616 0.790

SMOTE-Bagging 0.401 0.569 0.367 0.794 0.387 0.341 0.967

DBEG-Ensemble 0.437 0.612 0.396 0.800 0.409 0.391 0.962

size=15

DECIDL 0.463 0.741 0.416 0.811 0.381 0.611 0.906

GSVM-RU 0.332 0.682 0.274 0.759 0.283 0.578 0.818

SMOTE-Bagging 0.363 0.520 0.341 0.790 0.400 0.285 0.975

DBEG-Ensemble 0.343 0.518 0.309 0.789 0.370 0.282 0.968

size=17

DECIDL 0.488 0.741 0.439 0.820 0.418 0.603 0.916

GSVM-RU 0.327 0.683 0.271 0.764 0.292 0.588 0.811

SMOTE-Bagging 0.288 0.430 0.290 0.782 0.362 0.203 0.984

DBEG-Ensemble 0.367 0.527 0.342 0.787 0.390 0.289 0.973

size=19

DECIDL 0.466 0.723 0.416 0.812 0.382 0.574 0.917

GSVM-RU 0.329 0.693 0.273 0.761 0.289 0.608 0.799

SMOTE-Bagging 0.267 0.413 0.284 0.770 0.362 0.176 0.987

DBEG-Ensemble 0.313 0.465 0.308 0.770 0.363 0.225 0.980

size=21

DECIDL 0.469 0.705 0.416 0.814 0.411 0.540 0.927

GSVM-RU 0.336 0.687 0.279 0.752 0.305 0.584 0.819

SMOTE-Bagging 0.249 0.390 0.286 0.775 0.380 0.158 0.991

DBEG-Ensemble 0.313 0.456 0.323 0.771 0.381 0.215 0.986

108

7.6.2 Laboratorial Results

We have applied the under-sampling ensemble methods on three particular sub-classes of

PRMT families and made predictions on several unknown protein sequences, and then submitted the

predictions for a chemistry laboratory in our university for actual verification. Detailed experiments and

results can be found in [DZZ09][DFZ+10]. Here, will briefly describe the whole process and laboratorial

results.

We were interested in predicting the methylated arginines catalyzed by special types of PRMTs

(PRMT1, PRMT4, and PRMT5), due to the special interests in the chemistry lab in our university. Thus,

we manually examine the publications on PubMed and collect different groups of substrates based on

their PRMT types. As a result, 28 confirmed methylated arginines and 523 non-methylated ones are

found within 18 methylated PRMT1, PRMT4 and PRMT5 substrates. Obviously, the two groups are highly

imbalanced. Then, we encode the 28 methylated fragments into vectors as positive examples, and the

523 fragments as negative examples. Each amino acid is represented with BLOSUM62 and PhCh proper-

ties, total in 28 bits. Thus, the total number of features for each fragment is 28 * length of the fragment

size. Different fragment sizes are used to generate different datasets and our algorithms are executed

on each of them, to find the best fragment size.

We applied the granular computing ideas into the simple imbalanced learning process and de-

veloped an ensemble under-sampling algorithm to build predicting committee for the three kinds of

PRMTs. SVM is used as the base learner. The result of this under-sampling strategies with a leave-one-

out cross-validation are shown in Table 7.5.

109

Table 7.5: Under-sampling Classification Performance on Three PRMT Data Sets

Datasets
(pos : neg)

Sen. Spec. Accu. G-means AUC-ROC

PRMT1
(15:209)

0.733 0.852 0.793 0.790 0.818

PRMT4
(8:196)

0.625 0.842 0.733 0.725 0.735

PRMT5
(5:118)

0.800 0.924 0.862 0.860 0.903

PRMT 1, 4, 5
(28:523)

0.714 0.861 0.788 0.784 0.833

After optimizing parameters for the SVM learner, we then trained classification models on the

whole datasets, and make predictions on further unknown sequences, e.g. Tip60 and HIV-1 Tat, as show

in Table 7.9.

Table 7.6: Probability Predictions on Two Unknown Protein Substrates

Substrate PRMT1 PRMT4 PRMT5

tip60 379R 29.8%
186R 5.5%
239R 5.5%

220R 0.9%
186R 0.2%

 hiv1_tat
 78R 31.7%

57R 11.4%

49R 9.1%
57R 1.8%

We then sent these predictions for real biological experiments. Based on the prediction in Table

II, it is quite likely that PRMT1 is able to methylate Tip60 at R379 position and HIV-1 Tat at R57 and R78

positions. To validate the prediction and to investigate potential functions of PRMT1 in virus infection,

we expressed the Tip60 recombinant protein using a pET15b vector and tested the methylation by

PRMT1 using radioisotope-labeled assay. Clearly, Tip60 is methylated by PRMT1 (in Figure 2). Further,

we synthesized two peptides derived from HIV-1 Tat protein that contain the two predicted methyl ar-

ginines. They are 41-60 (KALGISYGRKKRRQRRRAHQ) and 61-86 (NSQTH-QASLSKQPTSQPRGDPTGPKE).

Phosphor-imaging analysis showed clearly that both of the two peptides were methylated by PRMT1.

110

These experimental results strongly substantiate the efficiency of our granular decision fusion model,

and also uncovered a new function of PRMT1 in the pathway of HIV infection.

(a) Tip60 methylated by PRMT1 (b) HIV-1 Tat methylated by PRMT1

Figure 7.9: Enzymatic assay of potential methylation substrates of PRMT1.

In Figure 7.9, the left graph clearly shows that Tip60 is methylated by PRMT1. Lane 1 is

PRMT1/Tip60; lane 2 is negative control; and lane 3 is 14C-BSA standard. The right graph shows the

methylation of Tat by PRMT1. The peptide H4-20 is used as a positive substrate control.

7.7 Conclusion

We have successfully applied a simple imbalanced learning strategy on the methylation dataset.

The biological experiments have shown that our predictions do match certain methylation residues;

hence the process and costs of identifying methylated arginines can be significantly reduced with our

prediction algorithms.

Out next step is to apply our DECIDL algorithms on these three PRMT families to further en-

hance the prediction accuracies and submit another round of predictions on several new proteins that

are currently interested in the chemistry lab. At the same time, we will also plan to build a predication

sever that provide predictions for user-input sequences for 11 kinds of PRMTs.

1 2 3 BSA

H4-20

(positive control)
TAT 61-86 TAT 41-60

111

Chapter 8: CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this dissertation, we tried to solve the imbalance data learning problem by providing an effec-

tive ensemble framework and a series of related methods from different problem-solving angles.

We started from giving a formal definition to highly imbalanced binary classification problem

and discussing several challenging aspects on this topic. A clear threshold for imbalance ratio is given

based on statistical analysis to separate imbalanced learning problems and general learning problems.

We believe that the new definition will be broadly accepted by researchers in machine learning and data

mining communities for further study of imbalanced data classification. Meanwhile, we have also pro-

vided a comprehensive literature review on imbalance learning.

This dissertation introduced the DECIDL ensemble system, which is a robust and effective meth-

od that directly utilizes diversity to guide the construction of ensemble classification for highly imbal-

anced data learning. The fundamental idea of DECIDL is to synthesize artificial examples among the data

spaces of different classes and reversely re-label these examples oppositely to current ensemble predic-

tions. Due to the natural characteristics of imbalance data, several detailed strategies have involved and

over-tuned to build a diversified ensemble committee, which overall distinguish our works with current

imbalanced learning algorithms. Our method can be considered as the ideal combination of two general

classification methods—SMOTE and DECORATE—for imbalance learning, but more powerful and gener-

alized, due to the various tuning steps in the method procedure. As a meta learner, our DECIDL algo-

rithm can be broadly used in any imbalance learning tasks to build high accurate prediction classifiers.

Extensive experiments have preliminary shown that DECIDL system is comparable with many ensemble

methods, such as under-bagging, over-bagging, SMOTE-bagging, etc.

We created a comprehensive standard imbalanced data benchmark pool to facilitate any future

research on imbalance data learning, as well as test the performance of our DECIDL framework. Data

112

sets in this benchmark are from various application domains, consisting of a large range of example sizes

and feature sizes, with diverse feature forms, and a variety of imbalance ratios. Meanwhile, we system-

atically developed extensive experiments to globally reveal the learning performance of several popular

imbalanced classification algorithms, such as under-sampling, over-sampling, SMOTE-bagging, AdaBoost

and our DECIDL. To the best of our knowledge, such extensive experiment comparisons with many en-

semble methods have never been conducted on highly imbalanced data sets before. Therefore, the ex-

periments and results in this dissertation can also be used as a useful reference for future research on

highly imbalanced data classification problems.

We further analyzed the artificial data synthesis step and developed a new strategy for data bal-

ancing, after studying the advantages and weakness of existing data synthesizing methods. The new

method—DBEG—is able to create new minority examples based on the original data distributions in a

very efficient way. With new minority generated by DBEG, we conducted experiments to show that

DBEG-Ensemble and DECIDL-DBEG are both very effective, in comparison with the state-of-the-art im-

balanced learning techniques, SMOTE-Bagging and GSVM-RU.

We have utilized active learning to help solving imbalanced learning problem. Active learning is

able to identify useful unlabeled examples and incrementally build classification models. With active

learning selecting only useful majority class instances, and DECIDL creating additional synthesized mi-

nority examples, the combination of the two methods produce great data manipulation power and also

learning ability to classify highly imbalanced data. Extensive examples have proven that the joint per-

formance is very promising on benchmark data sets.

Our final work is applying our proposed methods on a real-world application—protein arginine

methylation prediction, which is a very hot research topic in bioinformatics. After conducting initial ex-

periments in both computational and laboratorial directions, we found that the methods developed for

imbalance learning do have great advantages in solving real-world problems.

113

8.2 Future Work

Although we have conducted studies on DECIDL in both experiment and application aspect, we

still have several other directions to explore the scopes and potentials of DECIDL. Some close related

directions, but not limited to, are listed here.

More experiments on DECIDL-DBEG and Active-DECIDL. In Chapter 5, we compared DECIDL-

DBEG with DECIDL, SMOTE-Bagging, GSVM-RU; however, our main interest is to compare DBEG and

other data synthesizing methods, e.g., ADASYN, Borderline-SMOTE, and DataBoost-IM. Hence, more ex-

periments need to be performed to compare their effectiveness. Similar to Active-DECIDL, we also need

to conduct more experiments to verify the efficiency of example query, e.g., measuring the classification

performance when fixing the data query ratio.

Cost-sensitive base learner. In our current experiments with DECIDL learning, the four tradi-

tional base learners are Decision Stump, Decision Trees, Linear SVM, and Perceptron NN, which are not

cost-sensitive learners. Therefore, to further evaluate effectiveness of DECIDL framework, we will use

several cost-sensitive learners (such as the SVM-weight, cost-sensitive DTs, and cost-sensitive NNs) to

build the ensemble committee. The following experiments will be conducted:

1) Running DECIDL based on cost-sensitive learners under different parameters;

2) Comparing the performance of individual cost-sensitive learners and the combination of cost-

sensitive learner based DECIDL;

3) Showing the difference between DECIDL with cost-sensitive learners and traditional learners.

Boosting Classifiers inside DECIDL. Inside of our DECIDL procedure, every classifier member is

individually created and a final hard or soft strategy is used to ensemble all members. Apparently, there

is no boosting strategy involved, and all the examples are equally weighted. However, the previous ex-

periments (Figure 4.3-4.7) showed that the AdaBoost could also produce very good performance on im-

balanced data when a weak base learner is used. Hence, an immediate new idea will be to boosting

114

methods (i.e., AdaBoost method) into our DECIDL framework. Since the boosting methods can utilize the

pure base learners (AdaBoost) and cost-sensitive learners (AdaCost), we can have at least two alterna-

tives to boost the DECIDL procedure. Potential future works with Boosted DECIDL would be:

1) Combining the AdaBoost strategy with our DECIDL framework and checking performance

changes;

2) Combining the AdaCost boosting strategy to the DECIDL framework to find potential perfor-

mance improvements;

3) Comparing the standard DECIDL, Boosted DECIDL (with AdaBoost), Cost-sensitive Boosted DE-

CIDL (with AdaCost).

Imperfect data. The data used in our experiments are almost complete and perfect. However, in

many practical applications, the collected data have plenty of missing values, or significantly noises

among features and examples, or strongly correlated examples, etc. Therefore, using imperfect data

sets to test the DECIDL ensemble framework is very important for real data mining applications. More

specifically, we plan to test it with the following conditions:

1) Add extra normal distributed noises to original data values with various levels, e.g., 5%-30%;

2) Remove some features from some data examples at different percentages;

3) Add additional noisy features and/or noisy examples to original data sets.

We hope after giving further investigation on these directions, our DECIDL framework can be

survived with strong performance on both experimental data real applications. More and more effective

significantly imbalanced data learning algorithms can be developed based on DECIDL framework.

115

APPENDICES

Appendix A: PUBLICATIONS RELATED TO THIS RESEARCH

JOURNALS

• Z. J. Ding, Y. Feng, Y. G. Zheng, and Y.-Q. Zhang, Protein Methylation Prediction Using Granular

Decision Fusion Methods, International Journal of Soft Computing and Bioinformatics, vol. 1, no. 1, pp.

19-27, 2010.

• Z. J. Ding, and Y.-Q. Zhang, Data Shuffling and Statistical Analysis on Microarray Data for Gene

Selection-A Comparative Study on Filtering Methods, International Journal of Functional Informatics and

Personalised Medicine (IJFIPM), vol. 3, no. 3, pp. 183-203, 2011.

CONFERENCE PAPERS

• Z. J. Ding and Y.-Q. Zhang, An Effective Filtering Gene Selection Method for Microarray Data

via Shuffling and Statistical Analysis. ACM International Conference on Bioinformatics and Computation-

al Biology (ACM-BCB 2010), Niagara Falls, Aug. 2-4, 2010. (Travel Grant Award)

• Z. J. Ding and Y.-Q. Zhang, Additive Noise Analysis on Microarray Data via SVM Classification.

2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, May

2-5, 2010 Montreal, Canada.

• Z. J. Ding, Y.-Q. Zhang and Y. G. Zheng, Feature Selection and Granular SVM Classification for

Protein Arginine Methylation Identification, Proc. of IEEE -SMC2009, San Antonio, Oct. 11-14, 2009.

• Z. J. Ding, Y.-Q. Zhang, Nan Xie and Y. G. Zheng, Identifying New Methylation Arginine via

Granular Decision Fusion with SVM Modeling, Proc. of 2009 International Joint Conference on Bioinfor-

matics, Systems Biology and Intelligent Computing, pp. 237-241, Shanghai, Aug. 3-5, 2009.

116

• Z. J. Ding, Y. Feng, Y. G. Zheng and Y.-Q. Zhang, Granular Decision Fusion Systems for Effective

Protein Methylation Predication, Proc. of IEEE CIBCB 2008, Sept. 15-17, Sun Valley, Idaho. (Travel Grant

Award)

• Z. Ding, J. Yu, Y-Q. Zhang, A New Improved K-means Algorithm with Penalized Term. The 2007

IEEE Int'l Conf. on Granular Computing: Silicon Valley, CA, Nov. 2-4, 2007.

117

REFERENCES

[AGS03] S. Ahmad, M. M. Gromiha, and A. Sarai, “RVP-net: online prediction of real valued accessible

surface area of proteins from single sequences,” Bioinformatics, vol. 19, no. 14, pp. 1849-1851, 2003.

[AKJ04] R. Akbani, S. Kwek, and N. Japkowicz, “Applying support vector machines to imbalanced da-

tasets,” Proc. 15th Euro. Conf. Machine Learning, Pisa, Italy, 2004, pp.39-50.

[AMS+97] S. F. Altschul, T. L. Madden, A. A. Schäffer, et al., “Gapped BLAST and PSI-BLAST: a new gener-

ation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389-3402,

1997.

[BBA+03] B. Boeckmann, A. Bairoch, and R. Apweiler, et al., “The SWISS-PROT protein knowledgebase

and its supplement TrEMBL in 2003”, Nucleic Acids Research, vol. 31, pp. 365-370, 2003.

[BBK+05] M. P. Bhadra, U. Bhadra, J. Kundu, et al., “Gene expression analysis of the function of the

male-specific lethal complex in Drosophila,” Genetics, vol. 169, no.4, pp. 2061-2074, 2005.

[BGL+99] M. Brown, W. Grundy, D. Lin, et al., “Support vector machine classification of microarray gene

expression data,” Dept. of Computer Science, Univ. of California, Santa Cruz, CA, Rep. UCSC-CRL-99-

09, June 12, 1999.

[Bir02] A. Bird, “DNA methylation patterns and epigenetic memory,” Genes and Development, vol. 16,

no. 1, pp. 6-21, 2002.

[BMM+05] K. Bryson, L. J. McGuffin, and R. L. Marsden, “Protein structure prediction servers at Universi-

ty College London,” Nucleic Acids Research, vol. 33, pp. W36-38, 2005.

[BPM04] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several methods for

balancing machine learning training data,” SIGKDD Explorations Special Issue on Learning from Im-

balanced Datasets, vol. 5, no. 1, pp. 20-29, 2004.

118

[BR05] M. T. Bedford and S. Richard, “Arginine methylation: An emerging regulator of protein function,”

Molecular Cell, vol. 18, pp. 263-272, 2005.

[Bre01] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

[Bre96] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.

[BSA06] F. Blanchet, B. T. Schurter, and O. Acuto, “Protein arginine methylation in lymphocyte signaling,”

Current Opinion in Immunology, no. 18, pp. 321-328, 2006.

[Bur98] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and

Knowledge Discovery, vol. 2, no. 2, 121-167, 1998.

[BWH+05] G. Brown, J. Wyatt, R. Harris, et al., “Diversity creation methods: a survey and categorization,”

Information Fusion, vol. 6, no. 1, pp. 5-20, 2005.

[BWT05] G. Brown, J. L. Wyatt, and P. Tiňo, “Managing diversity in regression ensembles,” J. Machine

Learning Research, vol. 6, pp. 1621-1650, 2005.

[CC08] D. A. Cieslak and N. V. Chawla, “Learning decision trees for unbalanced data,” Proc. 19th Euro.

Conf. Machine Learning (ECML-2008), Antwerp, Belgium, 2008, pp. 241-256.

[CH67] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory, vol.

13, no. 1, pp. 21-27, Jan. 1967.

[CHB+02] N. V. Chawla, L. O. Hall, K. W. Bowyer et al., “SMOTE: synthetic minority oversampling tech-

nique,” J. Artificial Intell. Research, vol. 16, pp. 321-357, 2002.

[CJK03] N. V. Chawla, N. Japkowicz, and A. Kolcz, Proc. 20th Int. Conf. Machine Learning Workshop learn-

ing from imbalanced data sets II, 2003.

[CJK04] N.V. Chawla, N. Japkowicz, and A. Kolcz, “Editorial: special issue on learning from imbalanced

data sets,” ACM SIGKDD Explorations Newslett., vol. 6, no. 1, pp. 1-6, 2004.

119

[CL01] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, 2001. Availa-

ble at http://www.csie.ntu.edu.tw/~cjlin/libsvm

[CL05] P. Cheung and P. Lau, “Epigenetic regulation by histone methylation and histone variants,” Mo-

lecular Endocrinology, vol. 19, no. 3, pp. 563-573, 2005.

[CLH+03] N. V. Chawla, A. Lazarevic, L. O. Hall, et al., “SMOTEBoost: improving prediction of the minority

class in boosting,” Proc. 7th Euro. Conf. Principles and Practice of Knowledge Discovery in Databases,

Cavtat-Dubrovnik, Croatia, 2003, pp. 107-119.

[CN06] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised learning algorithms,”

Proc. 23rd Int. Conf. Machine Learning, Pittsburgh, PA, 2006, vol. 148, 161-168.

[Coh94] D. Cohn, “Neural network exploration using optimal experiment design,” Advances in Neural

Information Processing Systems (NIPS), vol. 6, pp. 679-686, 1994.

[CS07] N. V. Chawla and J. Sylvester, “Exploiting diversity in ensembles: improving performance on un-

balanced datasets,” Proc. 7th Int. Workshop Multiple Classifier Systems (MCS), Prague, Czech Repub-

lic, 2007, pp. 397-406.

[CXH+06] H. Chen, Y. Xue, N. Huang, et al., “MeMo: a web tool for prediction of protein methylation

modifications,” Nucleic Acids Research, vol. 34, pp. 249-253, 2006.

[DA06] R. Díaz-Uriarte and S. A. de Andrés, “Gene selection and classification of microarray data using

random forest,” BMC Bioinformatics, vol. 7, no. 3, Jan. 2006. doi: 10.1186/1471-2105-7-3.

[Dav04] Ian Davidson, “An ensemble technique for stable learners with performance bounds,” Proc.

19th Nat. Conf. Artificial Intell. (AAAI-2004), San Jose, CA, 2004, pp. 330-335.

[DFZ+08] Z. J. Ding, Y. Feng, Y. G. Zheng, et al., “Granular decision fusion systems for effective protein

methylation predication,” Proc. 2008 IEEE Symp. Computational Intelligence in Bioinformatics and

Computational Biology, Sun Valley, ID, 2008, pp. 214-218.

120

[DFZ+10] Z. J. Ding, Y. Feng, Y. G. Zheng, et al., “Protein methylation prediction using granular decision

fusion methods,” Int. J. Soft Computing and Bioinformatics, vol. 1, no.1, pp. 19-27, 2010.

[DG06] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,” Proc. 23rd

Int. Conf. Machine learning, Pittsburgh, PA, 2006, pp. 233-240.

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Ed.). New York: Wiley, 2001.

 [Die00a] T. Dietterich, “An experimental comparison of three methods for constructing ensembles of

decision trees: bagging, boosting, and randomization,” Machine Learning, vol. 40, no. 2, pp. 139-157,

2000.

[Die00b] T. G. Dietterich, “Ensemble methods in machine learning,” Proc. 1st. Int. Workshop Multiple

Classifier Systems (Springer LNCS-1857), Cagliari, Italy, 2000, pp. 1-15.

[Die02] T. G. Dietterich, “Ensemble learning,” in The Handbook of Brain Theory and Neural Networks,

M.A. Arbib, Ed. (2nd ed.), Cambridge, MA: The MIT Press, 2002, pp. 405-408.

[Dom97] P. Domingos, “Why does bagging work? A Bayesian account and its implications,” Proc. 3rd Int.

Conf. Knowledge Discovery and Data Mining, Newport Beach, CA, 1997, pp. 155-158.

[Dom99] P. Domingos, “MetaCost: A general method for making classifiers cost-sensitive,” Proc. Int.

Conf. Knowledge Discovery and Data Mining, San Diego, CA, 1999, pp. 155-164.

[DZW+07] S. A. Danziger, J. Zeng, Y. Wang, et al., “Choosing where to look next in a mutation sequence

space: Active Learning of informative p53 cancer rescue mutants,” Bioinformatics, vol. 23, no. 13, pp.

104-114, 2007.

[DZX+09] Z. Ding, Y.-Q. Zhang, Nan Xie, et al. “Identifying new methylation arginine via granular decision

fusion with SVM modeling,” Proc. 2009 Int. Joint Conf. Bioinformatics, Systems Biology and Intelli-

gent Computing, Shanghai, China, 2009, pp. 237-241.

121

[DZZ09] Z. Ding, Y.-Q. Zhang and Y. G. Zheng, “Feature selection and granular SVM classification for pro-

tein arginine methylation identification,” Proc. 2009 IEEE Int. Conf. Syst., Man, and Cybern., San An-

tonio, TX, 2009, pp. 2979-2983.

[EHB+07] S. Ertekin, J. Huang, L. Bottou, et al., “Learning on the border: Active learning in imbalanced

data classification,” Proc. ACM 16th Conf. Information and Knowledge Management (CIKM 2007),

Lisboa, Portugal, 2007, pp. 127-136.

[EHG07] S. Ertekin, J. Huang, and C. L. Giles, “Active learning for class imbalance problem,” Proc. 30th

Int. Conf. Research and Development in Information Retrieval (ACM SIGIR 2007), Amsterdam, Neth-

erland, 2007, pp. 823-824.

[EHG07] S. Ertekin, J. Huang, and C. L. Giles, “Active learning for class imbalance problem,” Proc. 30th Int.

Conf. Research and Development in Information Retrieval (ACM SIGIR 2007), Amsterdam, Nether-

lands, 2007, pp. 823-824.

[Elk01] C. Elkan, “The foundations of cost-sensitive learning,” Proc. 17th Int. Joint Conf. Artificial Intelli-

gence, Seattle, WA, 2001, pp. 973-978.

[FM99] Y. Freund and L. Mason, “The alternating decision tree algorithm,” Proc. 16th Int. Conf. Machine

Learning, Bled, Slovenia, 1999, pp. 124-133.

[FS96] Y. Freund and R.E. Schapire, “Experiments with a new boosting algorithm,” Proc. 13th Int. Conf.

Machine Learning, Bari, Italy, 1996, pp. 148-156.

[FSZ+99] W. Fan, S. J. Stolfo, J. Zhang, et al., “AdaCost: misclassification cost-sensitive boosting,” Proc.

Int. Conf. Machine Learning, Bled, Slovenia, June, 1999, pp. 97-105.

[GG07] Y. Guo and R. Greiner, “Optimistic active learning using mutual information,” Proc. Int. Joint Conf.

on Artificial Intelligence (IJ-CAI), Hyderabad, India, 2007, pp. 823-829.

122

[GV04] H. Guo and H.L. Viktor, “Learning from imbalanced data sets with boosting and data generation:

The DataBoost-IM approach,” ACM SIGKDD Explorations Newslett., vol. 6, no. 1, pp. 30-39, 2004.

[GWB+02] I. Guyon, J. Weston, S. Barnhill, et al., “Gene selection for cancer classification using support

vector machines,” Machine Learning, vol. 46, no. 1-3, pp. 389-422, 2002.

[HBG+08] H. He, Y. Bai, E.A. Garcia, et al., “ADASYN: adaptive synthetic sampling approach for imbal-

anced learning,” Proc. Int. J. Conf. Neural Networks, Hong Kong, China, 2008, pp. 1322-1328.

[HG09] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. Knowl. Data Eng., vol. 21,

no. pp. 91263-1284, Sep., 2009.

[HKT09] S. Hido, H. Kashima, and Y. Takahashi, “Roughly balanced bagging for imbalanced data,” Statis-

tical Analysis and Data Mining, vol. 2, no. 5-6, pp. 412-426, 2009.

[HM05] M. A. Holbert and R. Marmorstein, “Structure and activity of enzymes that remove histone mod-

ifications,” Current Opinion in Structural Biology, vol. 15, no. 6, pp. 673-680, 2005.

[Ho98] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug., 1998.

[Hol87] R. Holliday, “The inheritance of epigenetic defects,” Science, vol. 238, no. 4824, pp. 163-170,

1987.

[HWM05] H. Han, W.Y. Wang, and B. H. Mao, “Borderline-SMOTE: A new over-sampling method in im-

balanced data sets learning,” Proc. Int. Conf. Intelligent Computing, Hefei, China, 2005, pp. 878-887.

[IL92] W. Iba and P. Langley, “Induction of one-level decision trees,” Proc. 9th Int. Conf. Machine Learn-

ing, Scotland, UK, 1992, pp. 233-240.

[Jap00] N. Japkowicz, Proc. Association for the Advancement of Artificial Intelligence (AAAI) 2000 work-

shop on learning from imbalanced data sets. AAAI Tech. Report WS-00-05, 2000.

123

[JJ04] T. Jo and N. Japkowicz, “Class imbalances versus small disjuncts,” ACM SIGKDD Explorations News-

lett., vol. 6, no. 1, pp. 40-49, 2004.

[JS02] N. Japkowicz and S. Stephen, “The class imbalance problem: A systematic study,” J. Intelligent Da-

ta Analysis, vol. 6, no.5, pp. 429-450, Nov., 2002.

[KCA03] A. Kolez, A. Chowdhury, and J. Alspector, “Data duplication: An imbalance problem?,” Proc.

20th Int. Conf. Machine Learning Workshop on Learning from Imbalanced Datasets, Washington DC,

2003.

[KK98] M.Z. Kukar and I. Kononenko, “Cost-sensitive learning with neural networks,” Proc. Euro. Conf.

Artificial Intelligence, Brighton, UK, 1998, pp. 445-449.

[KKP06] S. Kotsiantis, D. Kanellopoulos, P. Pintelas, “Handling imbalanced datasets: A review,” GESTS Int.

Trans. Comput. Sci. and Eng., vol. 30, no. 1, pp. 25-36, 2006.

[KM97] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training sets: One-sided selection,”

Proc. 14th Int. Conf. Machine Learning, Nashville, TN, 1997, pp. 179-186.

[KPJ+02] H.-C. Kim, S. Pang, H.-M. Je, et al., “Pattern classification using support vector machine ensem-

ble,” Proc. IEEE 16th Int. Conf. Pattern Recognition (ICPR-2002), Quebec, Canada, 2002, vol. 2, pp.

160-163.

[Kri02] V. Krishnamurthy, “Algorithms for optimal scheduling and management of hidden Markov model

sensors,” IEEE Trans. Signal Process., vol. 50, no. 6, pp. 1382-1397, 2002.

[KS05] Y. Kato and H. Sasaki, “Imprinting and looping: epigenetic marks control interactions between

regulatory elements,” Bioessays., vol. 27, no. 1, pp. 1-4, 2005.

[KW03] L. Kuncheva and C. Whitaker, “Measures of diversity in classifier ensembles and their relation-

ship with the ensemble accuracy,” Machine Learning, vol. 51, pp. 181-207, 2003.

124

[KWT+07] A.Y. Kovalevsky, Y.-F. Wang, Y. Tie, et al., “Atomic resolution crystal structures of HIV-1 prote-

ase and mutants V82A and I84V with saquinavir,” Proteins, vol. 67, pp. 232-242, 2007.

[LB92] K. Lang and E. Baum, “Query learning can work poorly when a human oracle is used,” Proc. IEEE

Int. Joint Conf. Neural Networks, 1992, pp. 335-340.

[LG94] D. Lewis and W. Gale, “A sequential algorithm for training text classifiers,” Proc. 17th Annual Int.

ACM Conf. Research and Development in Information Retrieval (ACM-SIGIR), Dublin, Ireland, 1994,

pp. 3-12.

[Li07] C. Li, “Classifying imbalanced data using a bagging ensemble variation (BEV),” Proc. 45th Annu.

ACM Southeast Regional Conf., Winston-Salem, NC, 2007, pp. 203-208.

[Liu04] Y. Liu, “Learning with support vector machine applied to gene expression data for cancer

classification,” J. Chemical Information and Computer Sciences, vol. 44, pp.1936-1941, 2004.

[LML+08] G.-Z. Li, H.-H. Meng, W.-C. Lu, et al., “Asymmetric bagging and feature selection for activities

prediction of drug molecules,” BMC Bioinformatics, vol. 9(Suppl. 6), S7, 2008. doi:10.1186/1471-

2105-9-S6-S7.

[LMR04] M. Lindenbaum, S. Markovitch, and D. Rusakov, “Selective sampling for nearest neighbor clas-

sifiers,” Machine Learning, vol. 54, no.2, pp. 125-152, 2004.

[LOZ09] M. S. Lee, S. Oh, and B.-T. Zhang, “Ensemble learning based on active example selection for solv-

ing imbalanced data problem in biomedical data,” Proc. 2009 IEEE Int. Conf. Bioinformatics and Bio-

medicine (BIBM 2009), Washington, DC, 2009, pp. 350-355.

[LTS+05] D. Y. Lee, C. Teyssier, B D. Strahl, et al., “Role of protein methylation in regulation of transcrip-

tion,” Endocrine Reviews, vol. 26, no.2, pp. 147-170, 2005.

[LWZ06] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory under-sampling for class-imbalance learning,” Proc.

IEEE 6th Int. Conf. Data Mining, Hong Kong, China, 2006, pp. 965 -969.

125

[LWZ09] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory under-sampling for class-imbalance learning,” IEEE

Trans. Syst., Man, And Cybern.-Part(B): Cybern., vol. 39, no. 2, pp. 539-550, Apr., 2009.

[LZ06] X.-Y. Liu and Z.-H. Zhou, “The influence of class imbalance on cost-sensitive learning: An empirical

study,” Proc. IEEE 6th Int. Conf. Data Mining, Hong Kong, China, 2006, pp. 970-974.

[Mal03] M. A. Maloof, “Learning when data sets are imbalanced and when costs are unequal and un-

known,” Proc. Int. Conf. Machine Learning (ICML) 2003 Workshop on Learning from Imbalanced Da-

tasets, Washington, DC, 2003.

[Mat75] B. W. Matthews, “Comparison of the predicted and observed secondary structure of T4 phage

lysozyme,” Biochimica et Biophysica Acta, vol. 405, pp. 442-451, 1975.

[McL04] G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Hoboken, NJ: Wiley

Interscience, 2004.

[Mel05] P. Melville, “Creating diverse ensemble classifiers to reduce supervision,” Ph.D. Thesis, Dept.

Comput. Sci., Univ. Texas, Austin, TX, Nov. 2005.

[Mit97] T. Mitchell. Machine Learning, New York: McGraw Hill, 1997.

[MM04] P. Melville and R. J. Mooney, “Creating diversity in ensembles using artificial data,” J. Infor-

mation Fusion (Special Issue on Diversity in Multiple Classifier Systems), vol. 6, no. 1, pp. 99-111,

2004.

[MZW05] K. McCarthy, B. Zabar, and G.M. Weiss, “Does cost-sensitive learning beat sampling for classi-

fying rare classes,” Proc. 1st Int. Workshop Utility-Based Data Mining, Chicago, IL, 2005, pp. 69-77.

[NBP09] G. H. Nguyen, A. Bouzerdoum and S. L. Phung, “Learning pattern classification tasks with imbal-

anced data sets,” in Pattern Recognition, P.-Y. Yin Ed. Rijeka, Croatia: InTech, 2009, pp. 193-208.

[NIH97] U. Naftaly, N. Intrator, and D. Horn, “Optimal ensemble averaging of neural networks,” Net-

work: Computation in Neural Systems, vol. 8, no. 3, pp. 283-296, 1997.

126

[Ols08] F. Olsson, “Bootstrapping named entity annotation by means of active machine learning,” Ph.D.

dissertation, Dept. Swedish Language, Univ. Gothenburg, Kista, Sweden, 2008.

[OLZ11] S. Oh, M. S. Lee, and B.-T. Zhang, “Ensemble learning with active example selection for imbal-

anced biomedical data classification,” IEEE/ACM Trans. Computational Biology and Bioinformatics,

vol. 8, no. 2, pp. 316-325, 2011.

[OM99] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical study,” J. Artificial Intell. Re-

search, vol. 11, pp. 169-198, 1999.

[PD07] P. Panov and S. Džeroski, “Combining bagging and random subspaces to create better ensem-

bles,” Advances in Intelligent Data Analysis VII (Springer, LNCS 4723), pp. 118-129, 2007.

[PK67] W. K. Paik and S. Kim, “Enzymatic methylation of protein pabp1 identified as an arginine fractions

from calf thymus nuclei,” Biochemical and Biophysical Research Commun., vol. 29, pp. 14-20, 1967.

[Pol06] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits and Syst. Mag., vol. 6, pp.

21–45, 2006.

[PR04] G. A. Petsko, D. Ringe. Protein structure and function (Primers in Biology), Sunderland, MA: New

Science Press, 2004.

 [PS81] Z. Pawlak and N. Shan, “Information systems: Theoretical foundations,” Information Systems, vol.

6, no. 3, pp. 205-218, 1981.

[PTW+05] D. Plewczynski, A. Tkacz., L. Wyrwicz, et al., “AutoMotif server: prediction of single residue

post-translational modifications in proteins,” Bioinformatics, vol. 21, no. 10, pp. 2525-2527, 2005.

[Qui86] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81-106, 1986.

[Qui93] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann Publish-

ers, 1993.

127

[Qui96] J. R. Quinlan, “Bagging, boosting, and C4.5,” Proc. 13th Nat. Conf. Artificial Intelligence, Portland,

OR, 1996, pp. 725-730.

[RJ00] K. D. Robertson and P. A. Jones, “DNA methylation: past, present and future directions,” Carcino-

genesis, vol. 21, no. 3, pp. 461-467, 2000.

[RK04] B. Raskutti and A. Kowalczyk, “Extreme re-balancing for SVMs: A case study,” ACM SIGKDD Explo-

rations Newslett., vol. 6, no. 1, pp. 60-69, 2004.

[RM01] N. Roy and A. McCallum, “Toward optimal active learning through sampling estimation of error

reduction,” Proc. 18th Int. Conf. Machine Learning, Williamstown, MA, 2001, pp. 441-448.

[Sch99] R. E. Schapire, “A brief introduction to boosting,” Proc. 16th Int. Joint Conf. Artificial Intell., Or-

lando, FL, 1999, vol. 2, pp. 1401-1406.

[SCR08] B. Settles, M. Craven, and S. Ray, “Multiple-instance active learning,” Advances in Neural Infor-

mation Processing Systems (NIPS), vol. 20, pp. 1289-1296, 2008.

[Set08] B. Settles, “Curious machines: Active learning with structured instances,” Ph.D. dissertation,

Dept. Comput. Sci., Univ. of Wisconsin–Madison, Madison, Wisconsin, 2008.

[Set09] B. Settles, “Active learning literature survey,” Comput. Sci. Dept., Univ. of Wisconsin–Madison,

Madison, Comput. Sci. Tech. Rep. 1648, 2009.

[SH07] C. T. Su and Y. H. Hsiao, “An Evaluation of the robustness of MTS for imbalanced data,” IEEE

Trans. Knowl. Data Eng., vol. 19, no. 10, pp. 1321-1332, Oct., 2007.

[SKH+10] C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, et al., “RUSBoost: A hybrid approach to alleviating

class imbalance,” IEEE Transactions Syst., Man, And Cybern. -Part A: Syst. and Humans, vol. 40, no. 1,

pp. 185-197, Jan., 2010.

[SKW+07] Y. Sun, M.S. Kamel, A.K.C. Wong, et al., “Cost-sensitive boosting for classification of imbal-

anced data,” Pattern Recognition, vol. 40, no. 12, pp. 3358-3378, 2007.

128

[SLC+09] D. M. Shien, T. Y. Lee, W. C. Chang, et al., “Incorporating structural characteristics for identifica-

tion of protein methylation sites,” J. Computational Chemistry, vol. 30, no. 9, pp. 1532-1543, 2009.

[SOS92] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” Proc. ACM 5th Annu. Work-

shop on Computational Learning Theory, Pittsburgh, PA, 1992, pp. 287-294.

[Sun07] Y. Sun, “Cost-sensitive boosting for classification of imbalanced data,” Ph.D. Dissertation, Dept.

Electrical and Comput. Eng., Univ. of Waterloo, Ontario, Canada, 2007.

[SXT+09] J. Shao, D. Xu, S.-N. Tsai, et al., “Computational identification of protein methylation sites

through bi-profile bayes feature extraction,” PLoS ONE, vol. 4, no. 3, pp. e4920, 2009.

doi:10.1371/journal.pone.0004920

[Tay86] W. R. Taylor, “The Classification of amino acid conservation,” J. Theoretical Biology, vol. 119, pp.

205-218, 1986.

[TC01] S. Tong and E. Chang, “Support vector machine active learning for image retrieval,” Proc. 9th

ACM Int. Conf. Multimedia, Ontario, Canada, 2001, pp. 107-118.

[Tch05] N. A. Tchurikov, “Molecular mechanisms of epigenetics,” Biochemistry, vol. 70, no. 4, pp. 406-

423, 2005.

[TK00] S. Tong and D. Koller, “Support vector machine active learning with applications to text

classification,” Proc. 17th Int. Conf. Machine Learning, Stanford, CA, 2000, pp. 999-1006.

[Ton01] S. Tong, “Active learning: Theory and applications,” Ph.D. dissertation, Dept. of Comput. Sci.,

Stanford Univ., Stanford, CA, 2001.

[TSK06] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Boston, MA: Pearson Addison

Wesley, 2006.

[TZ06] Y. Tang and Y.Q. Zhang, “Granular SVM with repetitive undersampling for highly imbalanced pro-

tein homology prediction,” Proc. 2006 IEEE Int. Conf. Granular Computing, Atlanta, GA, 2006, pp.

457-460.

129

[TZC+09] Y.C. Tang, Y.-Q. Zhang, N. V. Chawla, et al., “SVMs modeling for highly imbalanced classifica-

tion,” IEEE Trans. Syst., Man, and Cybern. - Part B, vol. 39, no. 1, pp. 281 - 288, Feb. 2009.

[TZH07] Y. Tang, Y.-Q. Zhang, and Z. Huang, “Development of two-stage SVM-RFE gene selection strate-

gy for microarray expression data analysis,” IEEE/ACM Trans. Computational Biology and Bioinfor-

matics, vol. 4, no. 3, pp. 365-381, July, 2007.

[van79] C. J. van Rijsbergen, Information Retrieval (2nd ed.). Newton, MA: Butterworth-Heinemann,

1979.

[Vap95] V. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.

[Wal05] C. Walsh, Posttranslational modification of proteins: expanding nature’s inventory. Greenwood

Village, CO: Roberts & Company Publishers, 2005.

[WC04] G. Wu and E. Y. Chang, “Aligning boundary in kernel space for learning imbalanced data set,”

Proc. 4th IEEE Int. Conf. Data Mining, Brighton, UK, 2004, pp. 265-272.

[WCY10] S. Wang, H. Chen, and X. Yao, “Negative correlation learning for classification ensembles,” 2010

Int. Joint Conf. Neural Networks, Barcelona, Spain, 2010, pp. 1-8.

[Web00] G. Webb, “Multiboosting: A technique for combining boosting and wagging,” Machine Learn-

ing, vol. 40, no.2, pp. 159-196, 2000.

[WM01] C. Wu and J. R. Morris, “Genes, genetics, and epigenetics: a correspondence,” Science, vol. 293,

no. 5532, pp. 1103-1105, 2001.

[WY09a] S. Wang and X. Yao, “Diversity analysis on imbalanced data sets by using ensemble models,”

Proc. IEEE Symp. Comput. Intell. and Data Mining (CIDM-2009), Nashville, TN, 2009, pp. 324-331.

[WZZ+08] W. L. Wooderchak, T. Zang, Z. S. Zhou, et al., “Substrate profiling of PRMT1 reveals amino acid

sequences that extend beyond the ‘RGG’ paradigm,” Biochemistry, vol. 47, pp. 9456-9466, 2008.

130

[YJ06] C. B. Yoo and P. A. Jones, “Epigenetic therapy of cancer: past, present and future,” Nature Re-

views Drug Discovery, vol. 5, no. 1, pp. 37-50, 2006.

[YL09] S.-J. Yen and Y.-S. Lee, “Cluster-based under-sampling approaches for imbalanced data distribu-

tions,” An Int. J. Expert Systems with Applications, vol. 36, no. 3, pp. 5718-5727, 2009.

[YLJ+03] R. Yan, Y. Liu, R. Jin, et al., “On Predicting rare classes with SVM ensembles in scene classifica-

tion,” Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP 2003), Hong Kong, China, 2003, pp.

21-24.

[Yu05] H. Yu, “SVM selective sampling for ranking with application to data retrieval,” Proc. 11th ACM Int.

Conf. Knowledge Discovery and Data Mining (ACM-SIGKDD), Chicago, IL, 2005, pp. 354-363.

[YYH03] R. Yan, J. Yang, and A. Hauptmann, “Automatically labeling video data using multi-class active

learning,” Proc. 9th IEEE Int. Conf. Computer Vision (ICCV 2003), Nice, France, 2003, pp. 516-523.

[YYZ05] J.T. Yao, Y.Y. Yao, and Y. Zhao, “Foundations of classification”, in T. Y. Lin, S. Ohsuga, C. J. Liau, et

al. (Eds.), Foundations and Novel Approaches in Data Mining, Berlin: Springer, 2005, pp. 75-97.

[ZD06] L. Zhuang and H. Dai, “Parameter estimation of one-class SVM on imbalance text classification,”

Lecture Notes in Artificial Intelligence (LNAI-4013), vol. 4013, pp. 538-549, 2006.

[ZG09] Z.-Q. Zeng and J. Gao, “Improving SVM classification with imbalance data set,” Proc. 16th Int.

Conf. Neural Information Processing (ICoNIP 2009), Bangkok, Thailand, 2009, pp. 389-398.

[ZH07] J. Zhu and E. H. Hovy, “Active learning for word sense disambiguation with methods for address-

ing the class imbalance problem,” Proc. 2007 Joint Conf. Empirical Methods in Natural Language

Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007), Prague, Czech Re-

public, 2007, pp. 783-790.

[Zhu08] M. Zhu, “Kernels and ensembles,” American Statistician, vol. 62, no.2, pp. 97-109, 2008.

131

[ZL06] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with methods addressing the

class imbalance problem,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 1, pp. 63 – 77, 2006.

[ZS96] W. Ziarko and N. Shan, “A method for computing all maximally general rules in attribute-value

systems,” Computational Intell., vol. 12, no. 2, pp. 223-234, 1996.

	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 5-7-2011

	Diversified Ensemble Classifiers for Highly Imbalanced Data Learning and their Application in Bioinformatics
	Zejin Ding
	Recommended Citation

	DIVERSIFIED ENSEMBLE CLASSIFIERS FOR HIGHLY IMBALANCED DATA LEARNING AND THEIR APPLICATION IN BIOINFORMATICS

