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ABSTRACT 

In this dissertation, the problem of learning from highly imbalanced data is studied. Imbalance 

data learning is of great importance and challenge in many real applications. Dealing with a minority 

class normally needs new concepts, observations and solutions in order to fully understand the underly-

ing complicated models. We try to systematically review and solve this special learning task in this dis-

sertation. 

We propose a new ensemble learning framework—Diversified Ensemble Classifiers for Imbal-

anced Data Learning (DECIDL), based on the advantages of existing ensemble imbalanced learning strat-

egies. Our framework combines three learning techniques: a) ensemble learning, b) artificial example 

generation, and c) diversity construction by reversely data re-labeling. As a meta-learner, DECIDL utilizes 

general supervised learning algorithms as base learners to build an ensemble committee.  



We create a standard benchmark data pool, which contains 30 highly skewed sets with diverse 

characteristics from different domains, in order to facilitate future research on imbalance data learning. 

We use this benchmark pool to evaluate and compare our DECIDL framework with several ensemble 

learning methods, namely under-bagging, over-bagging, SMOTE-bagging, and AdaBoost. Extensive ex-

periments suggest that our DECIDL framework is comparable with other methods. The data sets, exper-

iments and results provide a valuable knowledge base for future research on imbalance learning.  

 We develop a simple but effective artificial example generation method for data balancing. Two 

new methods DBEG-ensemble and DECIDL-DBEG are then designed to improve the power of imbalance 

learning. Experiments show that these two methods are comparable to the state-of-the-art methods, 

e.g., GSVM-RU and SMOTE-bagging.  

Furthermore, we investigate learning on imbalanced data from a new angle—active learning. By 

combining active learning with the DECIDL framework, we show that the newly designed Active-DECIDL 

method is very effective for imbalance learning, suggesting the DECIDL framework is very robust and 

flexible. 

Lastly, we apply the proposed learning methods to a real-world bioinformatics problem—

protein methylation prediction. Extensive computational results show that the DECIDL method does per-

form very well for the imbalanced data mining task. Importantly, the experimental results have con-

firmed our new contributions on this particular data learning problem.  

 

INDEX WORDS: Machine learning, Classification, Imbalanced data learning, Diversified ensemble, Active 
learning, Artificial data generation, Bioinformatics, Protein methylation 
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Chapter 1: INTRODUCTION 

In recent decades, data mining and machine learning have been broadly studied and applied in 

various domains in order to solve many complicated and important real-world problems, such as bio-

medical informatics, pattern recognition, fraud detection, nature language processing, medical diagno-

sis, and so on. Several advantages of such research include that data mining algorithms can help people 

efficiently analyze raw data, extract hidden patterns, make right decisions, and discover new knowledge. 

People learn knowledge from past experiences, and then apply them to solve future problems. 

Similarly, data mining methods can discover knowledge from known empirical data, and finally use 

learned knowledge to make decisions based on future unknown data. Thus, many learning algorithms 

combine the behavior of nature evolving and that of  human thinking to mimic the natural learning, 

leading to very useful predictive systems. The knowledge learned by such algorithms have different for-

mations, such as meaningful rules, applicable mathematical expressions, hidden models, representative 

instances, interactive networks, etc.  

Formally speaking, data information in data mining domains are normally represented by the at-

tribute–value system, or called the information table [PS81][ZS96][YYZ05]. The data contains many in-

stances (or objects, examples), and every instance is described by several common meaningful features 

(or factors, attributes), where each feature is represented by a valid nominal or numerical value. 

Knowledge is implicitly denoted by the features and instances of data, thus learning algorithms need to 

disclose that knowledge in an understandable and applicable way. Two particular forms of knowledge 

are generally studied in research communities. The first form is the predictive cause-effect relation: one 

particular feature of interest (called dependent class), is believed to be dependent with other independ-

ent features. Hence, a learning model tries to reconstruct the relations between other independent fea-

tures (as inputs) and this dependent target class (as outputs). The second from is the inherent structural 
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relation: certain structural or similar characteristics may exist among partial data instances and features; 

thus a learning method needs to discover the relationship among those instances, e.g., some instances 

may form a compact cluster.  

Accordingly, there are mainly two types of machine learning directions based on the availability 

of the dependent class. The first type is called supervised learning, where the dependent class is known 

in advance; the main task for learning is to discover the relation between other features and this target 

class. On the other hand, the second type is called unsupervised learning: the data does not provide a 

dependent target class and a learning method needs to discover certain relations among data instances 

and features. Furthermore, supervised learning also contains two categories of tasks based on the prop-

erty of target class to be learned. If the class is with discrete values or descriptive labels, then this learn-

ing task is called classification, meaning classifying the instances into right classes; otherwise, if the tar-

get class is with numerical continuous values, then it is a regression task, where the learner need to out-

put a predicting value for each instance to match the real target value.  

The classification task has been the main direction of machine learning and data mining research 

for many decades due to its extreme importance in real applications. In this dissertation, we focus on 

the classification problem. In particular, the binary classification problem, where the target class is with 

two discrete labels, is our special interest. 

In fact, numerous classification methods have been be proposed by scientists. To name a few 

here, K-nearest neighbor method (KNN), Naïve Bayes classifier (NBC), linear discriminant analysis (LDA), 

artificial neural network (NN), decision tree (DT), support vector machines (SVM), boosting, bagging are 

among the famous and popular ones [Mit97][DHS01].  Many of these advanced learning algorithms and 

their variations can lead to very high classification accuracies on empirical training data and new testing 

data. For example, lots of hybrid learning procedures using SVMs are able to classify gene microarray 

data with accuracies as high as 90 percent or even 100 percent [GWB+02][TZH07]. Newly published ma-
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chine learning methods keep boosting the learning performance into new high records. Given this high 

accuracy trend from new algorithms, it’s substantially hard for researchers to design any better classifi-

cation methods. Besides, the impression of high prediction accuracy gives us a feeling that machine 

learning methods can correctly solve almost any classification tasks, once given the data information; 

hence there will be no unsolvable classification problems for the machine learning community.  

However, this impression is far from the reality. It is broadly known that there still exist lots of 

tough problems requiring extraordinary efforts to find effective solutions, such as efficiently learning 

from enormous data, or data with noises and missing values, and others.  One of most challenging prob-

lems that are still in wide pursuit by numerous researchers is the imbalanced data learning problem. 

Imbalanced data means the target classes of the data is skew in distributions; that is, there is at least 

one class of instances which significantly outnumbers other classes. Traditional classification methods, 

seeking to minimize the overall error rate of the whole training set, do not perform well on imbalanced 

data, since they generally assume a relatively balanced class distribution, and put too much strength on 

the majority class. In this dissertation, we are particularly interested in the imbalanced binary classifica-

tion problem and try to propose effective methods to solve this problem. 

1.1 Problem Definition 

We first give a relatively formal definition for general binary classification problem, and then in-

troduce the imbalanced binary classification problem.  

Binary classification problem. Given an information table in data matrix  , which contains   

i.i.d. instances:                                 , where each                 is a vector 

with   feature values ,           is the dependant target class,                   , and 

                 , assume all data instances    are mutually different and the class label    for each 

   is unique, then a binary classification problem is to find a classifier that explicitly or implicitly repre-

sents a decision function        such that          , where   is a vector of unknown parameters.  
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The performance of a classifier needs to be properly measured in order to select a meaningful 

and useful one for practical use. A classic performance metric is the accuracy or error rate, which com-

putes the difference between outputs of learned decision function        and the real class label  . In 

general, high accuracy (or low error rate) means better classification models, although other perfor-

mances are also important, such as the time and space complexities of the learning and predicting pro-

cess. The performance needs to be evaluated on a separated label-unseen data set            to avoid 

“cheating”. Normally, the original known data   for learning a classifier is called the training data, while 

the separated data    for evaluating the classifier is called the testing data. There exist several other 

popular metrics for measuring the general classification performance, such as sensitivity, specifically, F-

measure, etc. Details will be given later. 

Very similar to the general classification problem, the imbalanced binary classification problem 

has only one extra special requirement on the data class distribution:  one of the two classes (majority 

class) has many more instances that the other class (minority class). For convenience, we interchangea-

bly use majority class or negative class, minority class or positive class in this dissertation.  Although 

there is no clear threshold to define how imbalanced of the data is being called “imbalanced”, it is gen-

erally acknowledged in research community that when studying the imbalanced learning problem, the 

number of negative instances should be significantly larger than that of positive ones.  

Thus, we first try to give a formal definition for imbalanced binary classification problem by set-

ting up a relatively standard threshold on imbalance ratio from statistics point of view. First, we define a 

standard term to measure the imbalance degree in binary classification data. Assume    is number of 

minority instances, and    is for majority ones. 

Imbalance ratio is defined as the ratio between the size of majority class and minority class: 

            

Obviously,   is always bigger than 1. The bigger it is, the more skewed are the data. 
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Imbalanced binary classification problem. Given a general binary classification problem, if the 

imbalanced ratio is no less than 19:1, i.e., if the size of minority class is only 5% of entire data size, we 

call this learning problem the significantly imbalanced binary classification problem, or simply, imbal-

ance learning in this dissertation.  

To our best knowledge, this is the first time in literature that a clear threshold is given to define 

the imbalance learning problem. Note that: 1) this threshold can be easily extended to imbalanced mul-

tiple classification problems; 2) we borrow this “5%” from the significance level in statistical testing; 3) 

this threshold only limits the scopes of theoretical study on imbalance learning, but experimental stud-

ies can still be conducted in less significantly or moderately imbalanced data. To compare different algo-

rithms for imbalance learning, we use less imbalanced data in our experiments as well.  

Due to significant data imbalance, the traditional evaluation metrics (accuracy or error rate) for 

classification performance are not suitable for measuring imbalanced learning results.  For example, giv-

en a data set with 19:1 imbalance ratio, a learning method can still reach 95% accuracy by simply classi-

fying everything into the majority class. Obviously, such method would be useless in a practical situa-

tion. Thus, assuming equally misclassification cost for evaluation is not suitable for imbalanced data 

classification. New effective performance metrics considering the accuracy on both minority and majori-

ty classes are needed for imbalanced data learning. Fortunately, such metrics have already been pro-

posed in literature, such as the F-measure, G-means, AUROC, etc., and we will discuss them in more de-

tails in later chapters. 

1.2 Challenges  

There are several challenges for studying imbalanced classification problem, from both theoretic 

and experimental point of view.  

Challenge 1: the nature of data imbalance is often unclear or different case by case. On one 

hand, categories in the known data set could be naturally skewed, due to the formation of the problem. 
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For example, fraud detection, network intrusion or oil-spill detection is naturally forming two imbal-

anced classes, while the minority class is always of higher interest. However, in other cases, the imbal-

ance may be caused by data collection procedure. The original data distribution of an interested prob-

lem may be balanced, but due to practical issues, like time, or storage, or cost, the collected data set is 

imbalanced. Together, the “intrinsic” and “extrinsic” imbalance needs different learning strategies to 

build accurate classifiers for future events. 

 Challenge 2: the data concept of the rare class can be of extreme complexity. Many situations 

of data complexity can hamper learning on the minority class [HG09]. 1) Between-class imbalance or 

within-class imbalance. The within-class imbalance occurs when there are several variously sized sub-

clusters or sub-concepts within a single class. Such internal imbalance brings another level of complica-

tion for general classifiers to learn inner concepts. Together, the concepts formed within- or between-

classes will significantly hinder the generalization ability of any learning algorithms. 2) Data or concept 

overlapping. The knowledge represented in majority and minority class may have some overlapping, 

thus the resulting data also contains overlapped instances in the data space, which makes the learning 

to separate them extremely hard. Even a significantly tuned boundary can be drawn between them, 

such classifiers will be over-fitted and their generalization ability will be jeopardized on future data.   

Challenge 3: various data characteristics may bring severe obstacles for learning. 1) High dimen-

sionality. Data sets with high dimensions and small sizes are already very challenging for general classifi-

cation; with additional imbalance property, it is much more difficult to develop effective learning meth-

ods. 2) Data inadequateness (or rare cases). The interested data may be insufficient or extremely imbal-

anced such that the minority class has only a few instances, which are not enough to represent the mi-

nority concept. Consequently, the learned concepts from classifiers may be far from the truth. 3) Noise 

or missing values. Data noises and missing values have substantial negative impacts for imbalance learn-

ing, especially for the minority class. Identifying real knowledge from those rare cases is more difficult.  



7 

Challenge 4: no uniform datasets and evaluation metrics have ever been set up widely to meas-

ure the performance of imbalance learning classifiers. Broad attentions on imbalanced data classifica-

tion have only started for about 10 years, yet standard criteria to formalize the questions and evaluate 

the solutions have not been well established. Current research has been focused on how to develop new 

algorithms on imbalanced data, while forgetting basic studies on providing fundamental facilities for 

future research, such as building standard and comprehensive benchmark datasets, or setting up uni-

form metrics for performance evaluation, etc. Although various preliminary studies have been initialized 

in recent years, without a clear standard data evaluation platform, the development of imbalance learn-

ing will be inefficient. 

1.3 Organizations  

The rest of this dissertation is organized as follows.  

Chapter 2: Literature review. We provide an extensive literature review on imbalance data 

learning and introduce many popular methods to solve this problem, including randomly under-

sampling, synthetic over-sampling, bagging, boosting, cost-sensitive learning and kernel-based learning. 

Several effective metrics for evaluating classification performance on imbalanced data are also reviewed. 

Chapter 3:  The DECIDL framework. We present the DECIDL framework in details and discuss 

several related techniques for implementing the algorithms. 

Chapter 4: Experimental studies on DECIDL. A comprehensive public benchmark data pool is 

created to include 30 highly imbalanced data sets from various domains. We set up the environment 

and experiment to examine the performance of our DECIDL method, and several other ensemble meth-

ods, including under-sampling, over-sampling, SMOTE-bagging and AdaBoost. Comprehensive results 

are reported and discussed.  

Chapter 5: More effective artificial example generation for data balancing. We develop a new 

distribution-based artificial example generation method and embed it into DECIDL to enhance the classi-
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fication performance. Additional experiments have been conducted and results have confirmed the ef-

fectiveness of this new approach. 

 Chapter 6: Active example selection for DECIDL. We use active learning to solve the imbal-

anced data scenarios, and combine it with DECIDL. As active learning is effective in selecting useful ex-

amples in training data, it can reduce the examples needed from majority class. The performances of 

Active-DECIDL on the benchmark data pool have shown a great success in learning on imbalanced data.  

Chapter 7: Protein methylation prediction. We apply our DECIDL to solve a real-world learning 

problem—protein methylation prediction. We introduce the basic knowledge about this problem and 

discuss several approaches of data representations for protein sequences. Computational results and 

laboratorial results are presented to confirm our contributions on this topic.   

Chapter 8: Conclusions and future work. Lastly, we review the contributions of this dissertation 

and discuss several future research directions on imbalance learning with DECIDL.  
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Chapter 2: LITERATURE REVIEW 

In this chapter, we briefly review several standard and ensemble classification algorithms that 

are well developed and popularly used in real applications. Next, we systematically review many existing 

learning approaches on imbalanced data. Those methods fall into three categories based on their strat-

egies in manipulating the data and conducting the induction. Finally, several typical performance evalua-

tion metrics on skewly distributed data are introduced. 

2.1 Standard Classification Algorithms 

As we mentioned earlier, machine learning and classification have been studied for several dec-

ades, and thousands of learning algorithms were proposed for binary and multiple data classification. 

Many basic algorithms have been comprehensively and theoretically studied, and become standard and 

classic machine learning topics, attracting enormous variations and successful applications. Popular 

standard classification methods include KNN (K-nearest neighbors’ algorithm) [CH67], NBC (Naïve Bayes 

classifier), ANN (Artificial neural network), SVM (Support Vector Machine) [Vap95][Bur98], DT (Decision 

Tree) [Qui86] [Qui93], LDA (Linear discriminant analysis) [McL04], and more.  More theoretical and em-

pirical studies can also be found in [Mit97], [DHS01], [CN06].  

2.2 Ensemble Classification  

The ensemble method for machine learning is a methodological level of learning strategy. The 

basic idea of ensemble classification is to combine the strengths of several individual classifiers to 

achieve higher performance. There are several approaches to choose and create the classifier members, 

as well as combine them; therefore, many directions can be explored to gain more benefits from en-

semble classification. The advantages of classification ensemble can also be explained in statistics with 

the concept of bias and variance [Die00a] [NIH97] [OM99]. Generally speaking, combining several classi-

fiers together will reduce their variance and improve their generalization ability. 
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The success of classification ensemble lies in the diversity of ensemble members. If all the com-

ponent classifiers contain the same learned knowledge, then such integration will shrink to a single clas-

sifier without improvement. On the other hand, ensemble with severe diversified classifiers may not 

produce good performance either; since the true label of each instance is fixed, too many disagreements 

on it will lead to no agreement, or easily to the wrong one. Therefore, accurately building every individ-

ual classifier and then diversely choosing from them is considered as a good strategy for developing en-

semble classification methods in practice. While accuracy in individual learner can be easily manipulated 

in standard classification algorithms, the main direction for ensemble learning is to introduce better di-

versification.  

Several straightforward strategies have been developed for diversification, including: 1) using 

different subsets of training data (instance subsets or feature subsets) with a single uniform algorithm; 

2) using different parameters of a single method on the same training data set; 3) using different learn-

ing methods. From the implementation point of view, the construction of classifier committee can be: 1) 

parallel, where each classifier is independently created; 2) hierarchical or cascade, where constructing 

new classifiers need information from previous ones, e.g., the training accuracy of current classifier is 

used to weight the learning focus of next classifier. Three ensemble strategies are frequently studied in 

literature are bagging, boosting, and random forest [OM99] [Die00a] [Pol06]. 

Bagging. Bagging, also referred as bootstrap aggregating, creates base learners on many data 

subsets that are uniformly sampled from the original data, and then uses a linear combination to aggre-

gate them [Bre96].  The combination strategy can be equal-weighted (majority voting) or weighted 

based on the training performance. Standard bagging uses a “with replacement” method for sampling 

and on average each sampled subset only contains 63.2% non-duplicated instances of the original data. 

Obviously, bagging maintains the diversity by generating different sampling subsets, and uses a uniform 

learner algorithm for all subsets.  
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Bagging method improves the generalization error by reducing the variance of base classifiers. 

However, researches have shown that bagging method prefers unstable base learners than stable ones, 

in order to improve classification performance [Dom97][Dav04][TSK06]. Unstable learners refer those 

algorithms that have noticeable changes in the learned models even a small perturbation in the training 

data happens. Thus, bagging is effective when the base classifier is sensitive to data, such as decision 

trees, or neural networks, etc.  

Boosting. Boosting involves incrementally building ensemble members by training each new 

classifier to emphasize the incorrect learned instances in previous training iterations. Initially, each in-

stance gets equal weight in the learning model. The instances that are not correctly learned will receive 

more weights of learning in the next round. The classifier will spend more efforts on training those high 

weighted instances. Iteratively, several base classifiers are sequentially built and a weighted vote is used 

to combine them for future predictions, where the weight of each base model is proportional to its ac-

curacy on the training set. Boosting method assigns different meaningful weights to instances so as to 

create diversified learning models. Meanwhile, boosting requires the learning method can handle in-

stances with different weights; if the learner cannot handle, an alternative solution is to use the weights 

as a selection distribution to randomly draw a new training set from original training data for the base 

learner.  

Boosting methods are able to significantly improve classification performance in many applica-

tions, since they can both reduce variations and biases for modeling effectively. One of the most popular 

boosting methods is the AdaBoost introduced by Freund and Schapire in 1996[FS96]. Given a data set 

      and a base learner   , the pseudo code of AdaBoost can be described in Table 1.1. 
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Table 1.1: AdaBoost Algorithm [FS96] 

Algorithm 1: The AdaBoost.M1 Algorithm 

Input: 
  – Base weak learner (e.g., C4.5, NBC, Decision Stump) 
  – 〈   〉, Training set,   examples        ,    is n-dim vector, and                 
         – Maximum number of iterations for boosting  

Steps: 

1. Initialize the distribution of weights for all examples as   (  )  
 

 
          

2. For                 
3. Train a base learner with current distribution,            
4. Calculate the error rate of   ,    ∑         (  )   

 

5. If       , then set             and abort this loop 

6. Set    
 

 
          ⁄   

7. Update weights:                 {
               (  )    

                                 
 

8. Normalize weights,          
    (  )

∑     (  )    
 

Output: 
The final ensemble classifier:                ∑              

 

Using decision trees as base learner in AdaBoost have been practically successful, as seen in 

[FM99] [Qui96] [Die00b]. However, there are also some drawbacks for boosting methods: boosting 

method can fail to perform well if there is no sufficient data [Sch99] or the training data contain too 

much noise [Die00b], which is consistent with boosting theory.   

Random Forest. Random forest is a specific ensemble classifier that combines bagging and deci-

sion tree learning [Bre01]. A random forest contains many decision tree classifiers where each tree is 

trained on a randomly sampled feature subset from original data. Suppose there are   instances with   

features in the original data set  , and a maximal iteration number     . In each iteration  , randomly 

select        features out of   to create a new data set   , then use    to build a decision tree t    , 

where each node in the tree is randomly selected from one of the   features. The tree is fully grown 

without any pruning and the final prediction is the combined result from all trees using a majority vot-
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ing. To increase more diversity and internal verification, bagging can be used to generate bootstrapped 

training subsets and validating subsets.  

Random forest has shown comparable performance with AdaBoost [Die02] and is robust under 

noisy data. However, random forests are prone to be overfitting for some data sets, since tree members 

are fully grown. Besides, it does not perform well when handling large number of irrelevant features 

since feature subset is randomly chosen for each tree. Nevertheless, random forest is still empirically 

shown to be a highly accurate classifier in many applications [Ho98][DA06]. 

2.3 Imbalanced Classification Algorithms 

Imbalance data learning have increasingly attracted many researchers for more than a decade. 

Several special workshops, conferences and issues have been organized successfully drawing grand 

prosperity of this area. Related important workshops include the Association for the Advancement of 

Artificial Intelligence) workshop on Learning from Imbalanced Data Sets (AAAI-00) [Jap00], the Interna-

tional Conference on Machine Learning workshop on Learning from Imbalanced Data Sets (ICML-03) 

[CJK03], and the Association for Computing Machinery Special Interest Group on Knowledge Discovery 

and Data Mining Explorations (ACM SIGKDD Explorations-04) [CJK04]. Numerous methods have been 

developed to handle the imbalanced binary and multiple classification problems in literature. To give a 

comprehensive review on imbalanced classification algorithms, we categorize them into two main clas-

ses based on their strengths of handling imbalance. The first kind is the external or data-level methods, 

where imbalance is handled on the data level by re-balancing or re-weighting the data distribution, such 

as sampling, boosting, and bagging. The second kind is the internal or algorithm-level methods, where 

the focus is on the induction or learning phase inside the basic learner (as in the algorithm level), and 

this category includes cost-sensitive learning [FSZ+99], kernel-based algorithms [TZC+09], recognition-

based algorithms [ZD06], etc. Other existing review and categorization on imbalanced data learning can 

also be found in [JS02] [BPM04] [KKP06] [HG09] [NBP09]. 
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2.3.1 Sampling methods for imbalance learning 

Sampling methods are one of the main approaches for imbalance data learning, which try to re-

balance the data distribution by adding new instances (over-sampling) or removing existing instances 

(under-sampling), or their combinations. These methods directly modify the prior distributions of major-

ity class and minority class in the training data set such that traditional classification algorithms can still 

work well on them. Instances can be added or removed randomly, or intentionally based on certain data 

characteristics.  Three sub-classes of sampling methods exist, including random over- or under-sampling, 

informed under-sampling, and synthetic over-sampling. 

2.3.1.1 Random over-sampling or under-sampling 

Random sampling uses the simple randomness to create desired distributions between two clas-

ses. Random oversampling will randomly replicate the instances from minority class and add them back 

to the training set. A replication percentage   can be used to control the amount of duplicated instanc-

es; for example,        means additional    number of replications will be performed resulting in 

     instances for minority class. Therefore, the overall imbalance ratio                 can 

be adjusted by   accordingly to become a balanced value. On the other hand, random under-sampling 

randomly selects a subset of instances from majority class and then combines them with the minority 

class to form a new training data set   , which is then applied with standard classification algorithms. 

Assume only   percent of majority instances are selected, the new imbalance ratio is           . 

Obviously, choosing appropriate sampling ratio   can also lead to balanced data sets.   

One important issue for over-sampling is the duplication of minority examples. Since some 

learning algorithms cannot handle duplicated or weighted instances, over-sampling methods have to be 

limited to certain weight-awareness learners [KCA03].  Furthermore, a critical observation for random 

over- or under-sampling is the instability of sampled data sets and subsequent classification models. 

Therefore, the classification performance on the instable subsets will fluctuate significantly if the learner 
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is sensitive to data. As a result, a practical strategy is to perform several rounds of sampling to create 

many balanced subsets and classification models, and then use the majority voting to combine them—

this procedure is actually the bagging method. Because averaging different classifiers can reduce the 

variances, the random sampling plus bagging procedure are often used together to solve the imbalance 

learning in real applications [LWZ06] [PD07]. 

2.3.1.2 Informed under-sampling  

Several advanced strategies have been proposed to help reduce the information loss brought by 

random under-sampling; examples of these strategies include the ensemble-based under-sampling and 

clustering-based under-sampling. 

Ensemble-based under-sampling: Zhou et al. propose two simple and effective informed under-

sampling using ensemble methods: the EasyEnsemble and the BalancedCascade [LWZ06] [LWZ09]. Both 

methods use the AdaBoost ensemble as the basic learner. The EasyEnsemble is actually using a bagging 

based under-sampling strategy to create many balanced data subsets and then use ensemble learning 

models on each subsets; finally it ensemble the entire learned ensemble models together. Obviously, 

the EasyEnsemble tries to avoid information loss by performing many rounds of samplings. On the other 

hand, BalancedCascade creates basic learners sequentially, as new learners are built on instances that 

are filtered by previous learners. Initially, this method builds the first learner    on a sampled subset 

containing partial majority class and the whole minority class; then a new sampled subset from majority 

class is filtered by    such that the correct instances are removed and only incorrect ones are kept; with 

this refined majority subset and the minority set, a new ensemble learner      is built. Iteratively, more 

learners are created on filtered sampling data set, and finally all learners are combined together. The 

BalancedCascade assumes the instances that have been correctly modeled are no longer useful on sub-

sequent classifier construction.  
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 The cluster-based sampling utilizes the benefits of data representations with cluster centers 

[JJ04] [YL09]. First, a simple clustering method, such as k-means algorithm, or fuzzy k-means, is per-

formed on the majority class and   cluster centers are collected. Then, classification methods are ap-

plied to the new data sets containing majority class centers and minority instances. Directly set      

will lead to an even balanced distribution (may not be optimal though). However,   centers should be 

closely representing the concepts of majority class to lead to better classification modeling. Hence, se-

lecting suitable   is challenging in this method.  Clustering algorithms are also used for over-sampling as 

in the cluster-based over-sampling (CBO) method [JJ04]. CBO first performs k-means clustering on both 

classes with equal number of centers  . When clustering is finished, CBO finds the size of maximum clus-

ter in the majority class, and over-sample every other cluster within the majority class such that they all 

has the same size. Then, the minority class will also be over-sampled such that new minority class and 

new majority class has the same cardinality. 

2.3.1.3 Synthetic over-sampling  

Unlike the random over-sampling that simply replicates minority instances, the synthetic over-

sampling methods try to create artificial instances by analyzing the data space of existing minority ex-

amples. Ideally, new minority examples should also represent the same minority concepts.  One famous 

synthetic method is the SMOTE method [CHB+02] —synthetic minority oversampling technique, which 

uses the interpolation technique to create new examples. Specifically, SMOTE uses the following way to 

generate artificial samples: first, for one    in the positive class, find the   nearest neighbors within mi-

nority class based on           distance; next randomly choose one neighbor    and a float random 

number   in range [0, 1], then the new synthetic example belonging to minority class is:  

                            (2.1) 

Intuitionally, the new example is a point on the line segment joining    and one of its randomly 

selected  -nearest neighbor   . By iteratively creating new samples one by one, SMOTE can control the 
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balance ratio of synthetic data and then use general classification methods to build learning models. 

SMOTE has been shown as one of the most effective over-sampling strategies in several applications 

[CHB+02]. However, SMOTE also has its own drawbacks, such as over generalization and more computa-

tion burden. Several variations of SMOTE have been designed to overcome its side problems, such as 

the Borderline-SMOTE [HWM05], Adaptive Synthetic Sampling (ADA-SYN)[HBG+08], Kernel-based 

SMOTE (KSMOTE)[ZG09], and the combination of SMOTE and Tomek link [BPM04]. 

2.3.2 Bagging methods for imbalance learning  

As we discussed in previous sections, bagging has to be involved in random sampling methods to 

avoid the instability of sampled data sets, especially in the under-sampling situations where lots of ma-

jority instances are randomly removed. Obviously, the bagging strategy used in under-sampling for im-

balance learning is asymmetric, since only the majority class will be bagged while keeping the minority 

class untouched. Hence, researchers call it Asymmetric Bagging (AsBagging) in many situations; Li et al. 

[LML+08] have applied it in the bioinformatics domain with a great success. 

To fix the limitations of simple bagging, several variations of bagging have also been developed 

in literature. For example, Li proposed a Bagging Ensemble Variation (BEV) for classifying imbalanced 

data [Li07]; BEV creates bagging subsets of majority class by equally splitting them into same-size 

chunks, where each subset has the same number of majority instances with the total number of minori-

ty instances. For example, given    minority instances and    majority ones, BEV will randomly split 

          subsets    
  , where     

       , and     
      

 
  . Thus, BEV will not produce 

duplicated majority examples and will not miss any majority instances when building classifiers.  

Another variation of bagging is proposed by [HKT09], called Roughly Balanced Bagging (RB Bag-

ging). In this method, binomial distribution with parameter       is used to draw a sample from mi-

nority or majority class. More specifically, in each iteration, either the majority or the minority class is 

chosen with equal chance, and then one example is uniformly drawn within the chosen class. Using such 
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a strategy could lead to slightly different number of chosen majority instances, but probably all the mi-

nority instances due to its small size. The resulting individual bagging sets may have different sizes, but 

the overall of them are still balanced. 

2.3.3 Boosting methods for imbalance learning 

Using boosting strategy for imbalance learning has also attracted lots of interest [SKW+07] 

[Sun07], because the traditional boosting (e.g., AdaBoost) for general classification tasks are very suc-

cessful. Similar in general classification, the biggest difference between bagging and boosting in imbal-

ance learning is that boosting sequentially builds improved classifiers one previous ones other than in-

dependently. Several popular boosting based strategies for imbalance learning include SMOTE-Boost 

[CLH+03], RUSBoost [SKH+10], and DataBoost-IM [GV04].  

SMOTE-Boost. SMOTE-Boost combines the over-sampling method SMOTE and boosting togeth-

er [CLH+03]. More specifically, A SMOTE over-sampling procedure is performed first in every round of 

boosting, and then the traditional AdaBoost method is used to update the weight distributions of all ex-

amples accordingly. Simply put, adding SMOTE in the boosting procedure forces the algorithm to focus 

more on difficult examples in the minority class than in the majority class. Chawla et al. [CLH+03] show 

that SMOTE-Boost works better than SMOTE and AdaBoost in term of classification performance.  

RUSBoost. Opposite to SMOTE-Boost, the RUSBoost combines the random under-sampling with 

boosting strategy. As claimed by Seiffert et al. [SKH+10], SMOTE-Boost is more complex and time-

consuming, especially when the imbalance ratio is huge. Therefore, they proposed to use under-

sampling to reduce the training time and use boosting to avoid losing information. In each boosting 

loop, a random under-sampling is performed to select a small portion of majority class, in order to com-

bine with minority class to form a new training set; then a weak learner is trained and weights are up-

dated according to the learning accuracy. Seiffert et al. [SKH+10] conducted a comprehensive investiga-
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tion with RUSBoost, SMOTE-Boost, AdaBoost, and SMOTE, and they shows that RUSBoost typically per-

forms as well as or better than SMOTEBoost, besides its less modeling time and easy implementation.  

DataBoost-IM. DataBoost-IM is also a hybrid method combining synthetic over-sampling and 

boosting [GV04]. Compare to SMOTE-Boost, DataBoost-IM synthesize new examples for both majority 

and minority classes, but much more examples for the minority class. Briefly, DataBoost-IM chooses the 

hard-to-learn examples as templates for synthesiszation. Initially, each example is assigned with an 

equal weight. In every iteration, the method first identifies the hard-to-learn examples        based on 

their weights; then it generates synthetic data based on the        set and also the class distributions; 

more minority synthetic examples are produced than majority ones such that new training sets are bal-

anced after combing original data and synthetic data; next, the weak learner is applied to this new train-

ing set, and error rate and weight distribution are re-calculated accordingly. Guo and Viktor show that 

DataBoost-IM is quite effective in dealing with learning from imbalanced data [GV04]. 

2.3.4 Cost-sensitive learning on imbalanced data 

From this section, we now study the internal algorithm-level approaches. The first main catego-

ry is the cost-sensitive learning framework for imbalance data [Elk01]. Cost-sensitive classification as-

sumes different costs (or penalties) when examples are misclassified from one class to another. A cost 

matrix can be constructed with values representing penalties between every pair of classes. Let 

          represent the cost of predicting an instance in class   as class  . With this notation,           

is the cost of predicting a positive (minority) instance as the negative (majority) instance and           

is the cost of the opposite case. In imbalance learning problem, recognizing positive instances is more 

important than recognizing negative ones. Hence, the cost of misclassifying a positive instance should be 

much higher than that of misclassifying a negative one, that is,                    . Meanwhile, 

correctly classifying a positive or negative instance costs nothing, i.e.,                      . 

Consequently, the objective of cost-sensitive learning is to develop a classifier that can minimize the 
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overall costs on the training set. In many cases, the misclassification penalty for examples in class   is 

equal for all other classes (in multiple classification situations), thus           can be simply written as 

       , i.e.,       and       for binary classification. 

Many different approaches have been developed to use cost-sensitive information for imbal-

ance learning [KK98] [Mal03] [MZW05] [LZ06] [ZL06] [HG09]. Those cost-sensitive methods are falling 

into three classes, as suggested in [HG09]. The first category applies the cost matrix to weight the data 

space accordingly. In other words, the distribution of the training set will be modified using bootstrap 

sampling based on the misclassification costs. The modified data distributions are biased towards the 

minority class due to its higher costs. The second category combines the cost-minimizing techniques 

with the ensemble schemes. Ensemble methods such as the AdaBoost are incorporated with cost coeffi-

cients to develop new cost-sensitive meta-classifiers. Both the first and second categories have been 

justified by rich theoretical foundations, such as the translation theorem and Metacost framework 

[Dom99]. Meanwhile, the data space weighting and adaptive boosting are often studied together under 

the Metacost framework by scientists in order to achieve strong classifiers. For example, Sun et al. 

[SKW+07] [Sun07] proposed three cost-sensitive AdaBoost algorithms, namely the AdaC1, AdaC2, and 

AdaC3, where the cost vectors are incorporated in different places of the weight-updating formula in 

traditional AdaBoost. The third category is the direct cost-sensitive learning, where the cost penalties 

can be embedded in the algorithm design. Such methods are very specific to particular machine learning 

algorithms (such as DT or SVM or NN), and thus their strategy of utilizing cost matrix is not able to gen-

eralize. Examples of this category include cost-sensitive decision trees [Mal03], cost-sensitive neural 

networks [KK98] [ZL06], and cost-sensitive SVM (SVM-Weight) [CL01]. 

2.3.5 Kernel-based learning on imbalanced data 

We have mentioned the kernel-based learning method—SVMs using as a cost-sensitive ap-

proach (SVM-Weight [CL01]) to solve imbalance learning. Here, we continue to explore several other 
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directions of using kernel-based methods for imbalance classification. In imbalanced data set, the hy-

perplane learned by SVMs can be pushed far away from the ideal separation plane towards the minority 

class; therefore, solutions to this issue mainly focus on finding “balanced” hyperplanes and support vec-

tors [RK04] [WC04] [TZ06].   

Directly modifying the kernel matrix or kernel function to favor minority class is a direct but 

challenging method. For example, one famous algorithm in this category is the class-boundary alignment 

(CBA) method proposed by Wu and Chang [WC04]. 

The granular support vector machines—repetitive under-sampling (GSVM-RU) is a particular in-

teresting methodology for imbalanced data learning [TZ06] [TZC+09]. Simply speaking, GSVM-RU ex-

tracts the support vectors from trained SVM models and uses them as the sampled data subsets. Initial-

ly, the first SVM is modeled on the original data set; then the SVs for the majority class are collected to 

form a new “informative” subset in combination with all minority instances; next, those collected SVs 

are removed from original data set and a new SVM classifier is modeled. Obviously, iteratively removing 

those majority SVs and creating new SVM models, GSVM-RU creates many subsets containing informa-

tive instances. Finally all subsets are used to form an ensemble classifier or the best round of informa-

tive subset is used only to build the best individual classifier. Tang et al. [TZC+09] have shown that 

GSVM-RU performed very well on many highly imbalanced data sets from different domains. 

2.4 Performance Evaluation 

Comprehensively evaluating the performance of any learning methods is not only important but 

also necessary. How to fairly compare the classification performance of different learning methods is a 

nontrivial task. First, a standard dataset covering a variety of domains and containing significantly differ-

ent data characteristics (such as sample size, feature size, feature values, etc.) should be considered for 

testing.  
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Second, since most learning methods require certain known data sets for training the models, 

the performance must be blindly tested and compared on independent unknown data sets. A cross-

validation (CV) methodology is often used when independent testing data are not available. Given a 

training data set, equally split the set into   folds and then iteratively choose one fold for testing, and 

the others for training, until all   folds have been used exactly once for testing.   can be pre-specified by 

user, and is normally chosen to be 5, 7, 10 in literature. When   equals to the total number of examples 

in the data set, it is also called leave-one-out cross validation (LOOCV).  

Thirdly, the metrics for classification performance comparison are very critical for fairness. Spe-

cially, imbalance data requires different metrics to standard balance data due to the fact that minority 

class is often significantly ignored in standard learning methods. We now review several standard as-

sessment metrics used in balanced data learning, and then introduce some advanced metrics used for 

imbalance learning. 

2.4.1 Classic Evaluation Metrics 

Traditionally, the most frequently used metrics are accuracy and error rate. But accuracy is not 

enough when considering the accuracy of positive predictions. Considering a basic two-class classifica-

tion problem, the difference between real labels and predicted labels of positive and negative classes 

can be represented in a two by two confusing matrix, as in Figure 2.1. 
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Figure 2.1: Confusion Matrix for Binary Classification 
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Based on this confusion matrix, several measures can be derived for general classification performance. 
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Clearly, except the accuracy, all the above metrics mainly consider the performance either on 

one true class of data or on one predicted class of data, leaving the other part of data ignored. Thus, for 

imbalanced data learning, new metrics are needed to consider the accuracies on both classes, especially 

on the minority class. 

2.4.2 F-measure, G-Means, and MCC 

To fix the “one-side” measurement, several new metrics that combines two or more basic met-

rics are proposed. For example, the F-measure [van79] metric considers both the True Positive Rate 

(TPR) and the Positive Predictive Value (PPV), which specially focus the learning accuracy on positive 

class from completeness aspect and efficiency aspect, respectively. The F-measure is written as: 

          
         

       
 

 
 

   
 

 

   

      (2.7) 

In other word, F-measure is a harmonic mean between recall and precision. 

The G-Means criterion considers the performance on both positive class and negative class, and 

uses the geometric mean to combine them. A high G-Means value [KM97] can only be achieved with 

high prediction accuracy on both positive class and negative class. 

        √              (2.8) 

Lastly, the Matthews correlation coefficient (MCC) [Mat75] is a strong metric that considers 

both accuracies and error rates on both classes, since all the four values in the confusion matrix are in-
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volved in this formula. A high MCC value means the learner should have high accuracies on positive and 

negative classes, and also have less misclassification on the two classes. Therefore, MCC can be consid-

ered as the best singular assessment metric so far. 

    
           

√           
        (2.9) 

2.4.3 AUC-ROC, AUC-PR 

So far, all the metrics discussed are based on fixed values of TP, TN, FP, FN, where such values 

can be easily collected when the class labels and predicted values are both discrete. However, in some 

other cases, such as the Bayesian network, or some neural network, or some ensemble classifiers, the 

prediction on testing data are continuous values, and a threshold have to be chosen to discretize them. 

Shifting the threshold within certain range can produce different groups of TP, TN, FP, FN values. By link-

ing these TP and FP values jointly and plotting them on a 2-D axis, a Receiver Operating Characteristics 

(ROC) graph [Raw03] [Raw06] is constructed, as in Figure 2.2. 
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Figure 2.2: AUC-ROC 

The idea model should produce a point in Position A—the top left corner, where TPR is 1 and 

FPR is 0; and the worst model should be the point B at the bottom right corner. Hence, a good classifica-

tion model should be as close to the top left corner as possible. Meanwhile, a model making random 

guess will be located on the diagonal, where the TPR and FPR are equal to each other. Note that the 

point D on the bottom left corner means the classifier predicts every examples as negative, and point C 
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on the top right means all the predictions are positive. The ROC curve is created by connecting all groups 

of TPR and FPR values and point D and C together. Generally speaking, the ROC graph represents rela-

tive trade-offs between gains (true positives) and costs (false positives) over a range of thresholds on a 

specific classification model.  

The closer the ROC curve approaches to the top-left corner, the better the classification perfor-

mance is. However, directly comparing two or more ROC curves are challenging and impractical, e.g., 

two curves may be interleaved together and it is hard to claim the better one. Thus, a single numerical 

value to represent effectiveness of the ROC curve is necessary, which brings the Area under the ROC 

curves (AUC-ROC). Clearly, the AUC-ROC is ranged from 0 to 1, and the higher it is, the better the classi-

fier.  

Although the ROC curve provides a straight visualization for performance evaluation, it also has 

a particular limitation when it is applied to the highly imbalanced data set. In such cases, the AUC-ROC 

value may over-estimate the performance of the classifier. For example, if the number of negative ex-

amples    significantly exceed the number of positive ones   , then the FPR rate will not have a notice-

able change even the FP values changes drastically, because the denominator (  ) is very large. Hence, a 

similar curve using the Precision/Recall values is proposed, the PR-curve. Since both precision and recall 

are focusing on the classification performance over positive examples, the area under the curve on PR 

curve (AUC-PR) [DG06] should be more effective on evaluating classification performance on highly im-

balanced data.  

In this dissertation, we will use several metrics, i.e., F-measure, G-Means, MCC, AUC-ROC and 

AUC-PR, as performance evaluation measurements.  
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Chapter 3: THE DECIDL FRAMEWORK 

In this chapter, we propose a new meta-learner called Diversified Ensemble Classifiers for Im-

balanced Data Learning—the DECIDL ensemble framework. First, we explain the motivation of designing 

new imbalance learning methods; that is, why we want to start from a new direction—oppositional ex-

ample synthesis. Since diversity is the key of building successful ensemble classifiers, we then start to 

design our DECIDL algorithm to build diverse ensemble committees by reversely re-label synthetic data. 

Pseudo codes are given to show how we approach to the solutions to imbalance learning. Since our 

method is a meta-learner which is more methodology-oriented than implement-oriented, several close-

ly related concepts and techniques will be discussed to guide the real implementation. 

3.1 Motivation 

As discussed earlier, the key to develop a successful ensemble method is to build diverse classi-

fiers. In general, two popular directions for diversification are the bagging and boosting methods. In 

bagging methods, diversification is maintained by creating individual classifiers on different subsets of 

the training data. While in the boosting algorithms, example distributions are updated iteratively by giv-

ing more weights for those previously misclassified examples, and thus diversity means building classifi-

ers on training data with progressively updated distributions. Together, in these two methods, diversity 

is manipulated by weighting or sampling data distributions on the known training data.   

To provide extra diversification to the ensemble construction except from data aspect, the first 

motivation of our study on imbalance learning is based on the synthetic (or artificial) example generat-

ing [CHB+02]. Creating synthetic minority examples has shown to be very successful in imbalanced data 

learning, such as in the SMOTE [CHB+02] and the DataBoost [GV04]. The benefits for synthesizing new 

examples are at least two-folds, which both are superior to over-sampling existing examples. First, more 

diversities can be created by synthesizing new examples than duplicating existing examples, thus better 
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generalization can be achieved potentially. Second, many base learners are unable to process duplicated 

or weighted examples, such as SVM, or LDA; using over-sampling or boosting methods may limit the ap-

plicable scope. However, the challenging point for data synthesis is that new examples may fall into the 

opposite classes in reality, and deteriorate the generalization performance of learned classifiers.  

As a result, we need to evaluate the usefulness of synthesized instances based on existing classi-

fiers. If the new instances can be correctly recognized by current classifiers, then the inclusion of these 

instances to the original data brings minor or no advantages. In other words, training these instances 

again will not enlarge the learning power of current models. On the other hand, if the synthetic instanc-

es are opposite to predictions of current models, then adding these instances to the original data may 

help to increase the learning ability of subsequent classifiers. This should be the desired effect for creat-

ing synthetic examples. Besides, adding the reversed examples to current classifiers is an explicit action 

of inducing diversity, as a byproduct effect. However, as discussed above, adding artificial examples (no 

matter opposite to current models or not) could potentially degrade the generalization power on future 

data. Furthermore, how to efficiently find the synthetic instances that exactly oppose to predictions of 

current models seems to be a tough task.  

Hence, our second motivation is inspired by the “oppositional re-labeling” technique for general 

classification tasks in the DECORATE algorithm proposed by Melville [MM04] [Mel05]. In short, the DEC-

ORATE creates artificial unlabeled examples and labels them to opposite classes countering to the pre-

dictions of existing classifiers; once a new classifier is created on the artificial data and original data, it 

will be included in the ensemble only if its training accuracy increases. Intuitionally, diversity and accu-

racy are both maintained in DECORATE.  

However, in imbalanced data learning, DECORATE is no longer suitable for three reasons. First, 

the diversity measure defined in DECORATE for balanced data is no more effective. Clearly, a disagree-

ment on a majority example is much less interesting than that on a minority one, since misclassification 
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on minority examples has higher cost. Second, using the accuracy or error rate as the rejection criterion 

is not able to distinguish the importance of minority class, and the learned classifiers will be biased to-

wards to the majority class. Third, adding oppositely labeled synthetic examples to majority class may 

further exaggerate the imbalanced data to more imbalanced. Thus, adding more synthetic instances to 

majority class is not appropriate.  

Hence, based on above motivations, we propose the new DECIDL method for imbalance learn-

ing. 

3.2 The proposed DECIDL Framework 

We propose the Diversified Ensemble Classifier for Imbalanced Data Learning (DECIDL) algo-

rithm, based on the aforementioned motivations on synthetic data generating and reversely example re-

labeling. The DECIDL algorithm aims to develop an efficient and diverse ensemble committee for imbal-

anced data in a simple and straightforward manner, as described in Algorithm 2. At first, the ensemble is 

initialized with a single classifier created by using a base learner on the original data. For imbalance 

learning, the base learner can be either a general learning algorithm, such as SVM, NN and DT, or a cost-

sensitive algorithm, such as SVM-Weight, Cost-NN, and Cost-DT. The training performance is evaluated 

with a cost-sensitive measurement      and noted as      . Then, artificial unlabeled examples are syn-

thesized one by one based on the feature distributions of original data. More specifically, we first pick 

an minority example   
  and then find its   nearest neighbors          

  in the majority class; next ran-

domly pick one neighbors   
   and a float number   between 0 and 1, then the new synthetic example 

is:        
       

    
  . In other words, the artificial examples between majority class and mi-

nority class are generated. The number of artificial examples is predefined by giving a ratio     to the 

size of original training set, i.e.,             and   denotes the set of artificial examples. Next, all 

these examples will be labeled with inverse probabilities to their predictions of current ensemble. For 
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example, for an artificial example   , assume its class probabilities predicted by ensemble    is 

         , then the probability of   being assigned as label    is: 

 ̂  (  |  )  
    (  |  )⁄

∑           ⁄          
      (3.1) 

For the binary case, where          , the probability of    being assigned to positive and 

negative classes are:  

 ̂         
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    (3.2) 

Notice that if ∑                      , then  ̂                   and  ̂         

         . That is, the re-assigned labels are exactly opposite to the predictions of current ensemble. 

Let assume the set of new labeled artificial examples is  ̂. Next, we remove examples from  ̂ that are 

marked as majority to get a set of minority artificial set  ̂      Then, we combine this set  ̂     with the 

original training set   together, and use the base learner to build a new classifier     . Again, the classi-

fication performance    of      is evaluated on the original data  . If    is no more than      , then this 

classifier      is permitted to join the ensemble; otherwise, if the performance decrease, then      is 

rejected. Now, this iteration round is over and a new iteration begins.  

In short, every round includes the following important steps: 1) creating artificial unlabeled ex-

amples based on training data; 2) predicting their label probabilities with current ensemble; 3) re-

assigning new labels to them with inversed predicted probabilities; 4) removing majority-labeled exam-

ples and combining the rest with original training data; 5) build a new classifier; 6) and evaluating new 

classifier for acceptance. This process is repeated until some conditions are reached, such as the com-

mittee size     or the number of iteration      exceeds certain prefixed numbers.  

Once the training process finishes, a classifier ensemble    is returned. During the testing pro-

cess, class with majority votes or maximum probability is applied to classify the unlabeled testing exam-
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ple. For example, assume there are finally     classifiers in the ensemble   , then the probability of 

unseen example   belonging to class    is: 

   (  | )  
∑    (  | )    

 

   
       (3.3) 

and the final class prediction of   is: 

                             (  | )                     (  | )   (3.4) 
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Table 3.1: The DEDICL Algorithm 

Algorithm 2: The DECIDL algorithm 

Inputs: 
         – Base learning algorithm (e.g., C4.5, SVM, NN, cost-C4.5, SVM-weight) 
   –〈   〉, Training set,   examples       ,    is n-dim vector, and               
      – A        vector, misclassification cost for each class (default:            ) 
        – Maximum number of member classifiers in the targeted ensemble 
          – Maximum number of iterations to build an ensemble 
      – Evaluation metric for ensemble performance (e.g., Total Cost, or 1-MCC) 
     – Percentage (ratio to size of training data D) of synthetic examples to create 

Steps: 
Initialization: 
1.        ,       
2.                       
3. Initialize ensemble,          
4. Computer ensemble performance:                             

Loop:  
5. While             and              
6. Artificially generate data set   with         new training examples that randomly lie be-

tween majority class and minority class   
7. Use current ensemble    to make probability predictions on  , to get      
8. Label examples in   with probability of class labels inversely to      
9. Remove the examples in   labeled as majority class to get  S’ 
10.               
11.                          
12.                 
13. Computer new ensemble performance:                          
14. If          (i.e., performance is better) 
15.                      
16. Else: 
17.                 
18.           

Outputs: 
Ensemble classifier    

 

Since the DECIDL is a general ensemble framework so far, there are several important imple-

menting techniques needing further discussions for its real deployments. 

3.3 Techniques for Implementing DECIDL 

Internal Evaluation Metric. The first task for implementation is to choose a fast evaluation met-

ric that is used inside of this algorithm. The metric should return a single value indicating the perfor-
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mance of ensemble results       against the training set      , since the main reason of using such 

metric is to reject or accept a new classifier. As an internal measurement, efficiency and cost sensitivity 

is required. Thus, we propose the following two simple metrics for DECIDL implementation. The first one 

requires cost vector for different classes, while the second one is for situations with no cost information 

available.  

Internal Evaluation Metrics 1 (with costs available): 

                                                           

 ∑     (   )
       
         

                            (3.5) 

Internal Evaluation Metrics 2 (without cost information): 

                                      
           

√           
   (3.6) 

Obviously, both metrics can be efficiently calculated when all the parameters are available. 

Based on the value of internal evaluation metric, a new classifier is accepted if a lower value appears. 

 Artificial Example Generation. New artificial examples are generated based on the feature val-

ues between minority examples and majority examples of the original training data. Examples and fea-

tures within an ensemble are both considered independently. It is possible that certain features may 

correlate together and using joint probability distribution may produce more accurate examples. How-

ever, such analysis requires more computation costs and large amount of data to estimate relations 

among features, which are not practical in reality. A similar strategy used in SMOTE is adapted for artifi-

cial example generation. However, our assumption is that the data spaces between minority class and 

majority class are worthy of more investigation and clarification to build a separating model, which is 

different with the interpolation strategy within minority class used in SMOTE. To generate a new feature 

value, we first randomly select an minority example   
 , and find its   nearest neighbors in the majority 

class          
 . Then, we perform the interpolation between this example   

  and one of its majority 

neighbor   
 , that is the new example is        

       
    

   where   is uniformly drawn form 
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range [0, 1]. If the feature is continuous (numeric), this formula can be directly used. However, if the 

feature is a nominal or discrete value, the new value will be randomly chosen between the two values. 

Meanwhile, to allow other discrete values of this feature also have certain chances of being chosen, the 

feature value distributions on the whole training data set and Laplace smoothing technique [Elk01] are 

used together to guarantee every value still has a non-zero probability to be selected.   

Size of Artificial Set in each iteration round. How many artificial examples should be generated 

in every round is an interesting question. Before giving an exact percentage over the original size, we 

need to figure out how many artificial examples are truly used in building the individual classifier after 

removing some of them. In fact, both questions are hard to answer, since it depends on the actual data 

set and the base learning classifier. Different data may have underlying unknown distributions which 

make the artificial examples prone to a special class; on the other hand, different base learners also 

have different tolerance levels of imbalance, thus the exact ratio of new artificial examples varies ac-

cordingly.  

Interestingly, the size of artificial set can still be retained as a fix number, by keeping generating 

new samples and removing them if falling in majority class. Thus, an even more interesting question is: 

does it make any performance difference when maintaining the number of artificial examples before 

removing majority-labeled ones and after? Hypothetically, such differences should exist, since artificial 

examples are totally determined by the ensemble, thus more hypothesis hidden inside the classifiers are 

imposed in the data distributions if maintaining the size of artificial set after removing majority ones.  

Reversely Re-labeling Strategy. Our purpose to reversely re-labeling the artificial examples is to 

bring the maximum diversity to the ensemble. As described in the DECIDL algorithm, an example will be 

re-labeled based on a distribution opposite to the predictions of current ensemble; for example, there is 

a high chance of assigning an artificial instance to the least probable class. In contrast, there is a hard 

way to implement this procedure: 100% of chance to choose the least probable class to label this in-
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stance, without a distribution involved. The “soft” relabeling (with inverse probability) will allow the la-

bels of some examples unchanged or to be assigned to other classes, while the “hard” relabeling always 

label the example to its least likely class predicted by the ensemble. The impacts of the two strategies 

are: “soft” relabeling permits certain degree of freedom of data randomization, but the “hard” relabel-

ing extensively relies on the classifier judgment. Experiments will be designed to find out which way is 

better in real applications, and to discover the potential biases of related base classifiers. 

Example Removing Strategy. As described in the standard DECIDL algorithm in Algorithm 2, the 

synthetic examples that are re-labeled with majority class will be removed before building new expand-

ed training sets and classifiers, due to the already outnumbered majority examples. However, we can 

still keep them in the new training sets and then build learning models, to find if there are different ef-

fects between removing and non-removing.  

Classifier Rejection. The standard DECIDL method will reject new classifier member if its per-

formance is decreased based on the two internal evaluation metrics. However, rejecting new member 

means less diversity for the ensemble. On the other hand, if we continue to include new classifiers with-

out any rejection criteria, the diversity of the ensemble may be increased, while the individual perfor-

mance of new members may drop. How to balance between diversity and performance is hard to an-

swer. Therefore, we will use both rejection strategies—rejection and non-rejection in our experiments 

to see any effect changes.  

Final Performance Metrics. We have previously discussed several metrics for measuring the 

overall classification performance of learning methods on imbalanced data. Although all these metrics 

are highly correlated, each metric still has its own strengths and weakness. Choosing an appropriate 

metric for particular data may depends on the both the data complexity and the actual learning algo-

rithms. To facilitate metric selections for future research and applications, we will use all the five popu-

lar metrics, i.e., F-measure, G-means, MCC, AUC-ROC, AUC-PR, to evaluate the classification results of 
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five ensemble learning strategies (including ours, under-bagging, SMOTE-bagging, over-bagging boost-

ing, etc) in our experimental study.  

Diversity and Performance Improvement. The relation between the diversity and performance 

of ensemble classifiers on balanced data sets have been previously studied in several works, such as 

[KW03] [BWT05]. However, only from very recently, the studies for diversity and performance of en-

semble methods on imbalanced data have just started [BWH+05] [CS07] [WY09a] [WCY10]. As we all 

know, diversity is not the only reason for high classification performance; for example, the base learner 

has much more impacts on producing high accuracy. Thus, studying the performance improvement from 

diversity construction should attract more research investigation for imbalance learning, yet such efforts 

have not started. 
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Chapter 4: EXPERIMENTAL STUDIES ON DECIDL 

In this chapter, we will verify the performance of our proposed method—the DECIDL frame-

work—on various highly skewed representative data sets. Comparisons will be made among several 

popular imbalance learning strategies, ranging from sampling methods, ensemble methods, and kernel-

based methods. More specifically, the under-bagging (undersampling + bagging), over-bagging (over-

sampling + bagging), SMOTE, AdaBoost, SVM-weight, and Random Forest will be used for experiments 

and comparisons. For these ensemble methods, we choose several commonly used base learners to 

build effective ensembles separately in the experiments. Results have shown that our proposed DECIDL 

framework are comparable and superior to most advanced imbalanced learning methods on averaged 

results on 30 data sets. 

4.1 Base-learner and algorithm selection 

Our first interest of experiment design is to choose an appropriate base learner for ensemble. As 

we all know, ensemble methods, especially the AdaBoost algorithm, normally work better if the base 

learner is weak, e.g., the accuracy of an individual model only needs to be better than random guessing. 

Frequently used base learners in literature include the decision stump (single-feature split) [IL92], naïve 

Bayes classifier, decision tree C4.5, CART, and even NN. However, recent studies have also started to 

incorporate strong learning algorithms such as kernel methods [KPJ+02] [YLJ+03] [Zhu08] and even Ada-

Boost (two layers of ensemble) [LWZ09] into ensemble systems, with certain tuning strategies to avoid 

over-fitting. Thus, in this study, we also try to use diverse levels of learning models as base learners; par-

ticularly, the four base learners, decision stump, C4.5, SVM, and NN, are considered in the experiments.  

Furthermore, five diverse ensemble frameworks, namely, under-bagging, over-bagging, SMOTE, 

AdaBoost, and our DECIDL will be used for experimental comparisons. Notice that each ensemble meth-

od has its special strategy to build the ensemble committee. Therefore, the total number of ensemble 
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learning algorithms is 5*4=20. Besides, two individual approaches, the random forest and SVM-weight, 

are also considered for experiments. Thus, together we will at least compare 22 different algorithms, 

without mentioning various parameters used in each algorithm.  An overview of experimental compari-

son framework is shown in later section, as in Figure 4.1 and Figure 4.2. 

4.2 Dataset Selection 

Our focus is the binary classification task, thus all the data sets in this benchmark pool are re-

quired to meaningfully represent practical classification problems, plus satisfying the imbalanced data 

distributions. More specifically, all the related problems are predictive tasks with multivariate hidden 

relations between independent features and dependent labels; the data sets naturally (or at least pre-

sumably) form multivariate data types which can extensively and meaningfully represent the targeted 

problems. Regression problems, or clustering problems, or other problems with sequential or time-

series data properties, are not within the scope of this dissertation. However, special problems from 

bioinformatics (such as the protein structure prediction) are still within the consideration, since those 

problems are generally considered as classification tasks after proper data transformation (e.g., protein 

structures are believed to be determined only by their neighboring amino acids). With algorithms being 

selected for experiments, we now propose several criteria to select a standard and comprehensive 

benchmark dataset from public machine learning repositories for testing imbalance learning algorithms. 

The first criterion to consider is the imbalance ratio β. Although we have defined that for (signif-

icantly) imbalanced data, the ratio should be no less than 19:1, in the actual experimental settings, some 

non-significant imbalanced data should also be tested, in order to find how the learning algorithms be-

have under variety of imbalance degrees. Thus, we suggest the benchmark data sets contain different 

imbalance levels, i.e., the imbalance ratio from 10:1 to 1000:1 or more. More specifically, we recom-

mend the following imbalance ratios included in the benchmark data pool, β =10:1, 20:1, 50:1, 100:1, as 
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considered in our selection. Note that this special criterion is exclusive in differentiating general data 

learning benchmark set and our imbalanced data learning benchmark set.  

The dimensions of data are also very important for learning, as considered as the second criteri-

on. Number of instances and features should vary dramatically from few of them to plenty of them. 

Generally, the fewer instances the data contain, the easier the learning algorithm gets over-fitting; while 

the more the data, the longer it takes to train a learning model. From feature aspect, fewer features 

mean less data complexities, thus easier to train a model; while more features mean more data com-

plexities, and harder to reveal the true knowledge behind the data. Thus, with various sizes of instances 

and features, the learning ability and classification performance of different algorithms will be exten-

sively challenged. Considering the data acquisition cost and problem complexity in many real applica-

tions, we recommend that the total number of instances in the benchmark datasets changes from hun-

dreds to hundreds of thousands, and the feature quality varies from less than ten to thousands, which 

are both very realistic in practical problems.  

Feature value properties. The format of feature values also has strong impacts in building classi-

fication models. Two main formats are generally used in the representation of information data: one is 

the numeric continuous value, and the other is nominal categorical value.  Numeric values are mutually 

computable, while nominal values normally represent descriptive information, thus mathematics com-

putation on them is meaningless. From algorithm aspect, general classification algorithms are either in 

favor of continuous data or discrete data. Therefore, data pre-processing procedure, such as discretiza-

tion or binarization, is frequently involved in preparing data for particular learning algorithms. Conse-

quently, to broadly test general imbalanced learning techniques, we suggest the features of benchmark 

set contains only continuous values, only nominal values, and mixed values of the two kinds. 

Data domains. Data and problems from various domains will naturally bring different levels of 

data complexities and difficulties for learning. The relations between independent features and the tar-
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get class vary dramatically from one domain to another domain. For example, a linear relation may exist 

between the education level and salary level for general people, while the pathogenesis of cancer may 

depends on the statuses of thousands of genes.  Meanwhile, testing classification performance on vari-

ous kinds of data resources is beneficial for future researchers to select appropriate learning algorithms 

for problems in their own domains. For example, SVM is frequently used for classifying microarray data 

only since 1999 [BGL+99] while it was invented around 1995 in [Vap95]. Hence, we suggest that the 

benchmark data should contain classification problems from diverse application domains, such as busi-

ness, medical diagnosis, biological analysis, pattern recognition area, natural life, environment, etc.  

Notice that all the above criteria are trying to bring different configurations of internal data 

complexities, in order to differentiate the learning ability of various algorithms. No doubtfully, there are 

other advanced measurements to introduce extra data complexities, such as analyzing the statistical 

relations among features or discovering cluster relations among examples. However, those extra criteria 

require much more computations, and sometimes are hard to hierarchically list their relations, as com-

pare to above criteria. 

We search the publicly available machine learning repositories (the UCI, and KDD), and data fre-

quently mentioned in publications at IEEE, ACM, SpringLink, and Science Direct. Finally, 30 representa-

tive data sets are chosen to construct the standard benchmark pool for imbalance learning. In summary, 

the benchmark data are from 9 different domains of our society, example size varies from few hundreds 

to hundreds of thousands, feature size changes from less than ten to tens of hundreds, and imbalance 

ratio changes from about 9:1 to 130:1. The characteristics of those datasets are carefully summarized in 

Table 4.1. 
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Table 4.1: Benchmark Data Characteristics 

(Feature types: N: nominal, C: continuous, B: binary.) 

Name Description & Reference 
Imb. Ra-

tio 
#Examples #Features 

Feature  
Types 

Others 

Ecoli UCI, target:=imU 8.6:1 336 7 7C Life 

Optical Digits UCI, target: class=8 9.1:1 5,620 64 64C Computer 

SatImage UCI, satellite, target:=4 9.3:1 6,435 36 36C Physical 

Pen Digits UCI, target: class=5 9.4:1 10,992 16 16C Computer 

Abalone_7 UCI, target: Ring=7 9.7:1 4,177 8 7C, 1N Life 

Sick Euthyroid UCI, target: sick euthyroid 9.8:1 3,163 25 7C, 18N Life 

Spectrometer UCI, target: LRS class>=44 11:1 531 93 93C Physical 

Balance UCI, target:=balance 12:1 625 4 4N Social 

Car_Eval_34 UCI, target:=good, v good 12:1 1,728 6 6N Business 

ISOLET 
UCI, spoken letters, target: let-
ter=A|B  

12:1 7,797 617 617C Computer 

US Crime UCI, crimes, target: freq>0.65 12:1 1,994 122 122C Social 

Yeast_ML8 LIBSVM, multiple labels, target 8 13:1 2,417 103 103C Life 

Scene LIBSVM, target > one label 13:1 2,407 294 294C Nature 

Libras Move UCI, target: class=1 14:1 360 90 90C Physical 

Thyroid Sick UCI, target: class=sick 15:1 3,772 28 7C, 21N Life 

Coil_2000 KDD, CoIL, target: minority 16:1 9,822 85 85C Social 

Arrhythmia UCI, target: class=06 17:1 452 279 
206C, 
73N 

Biology 

Solar Flare M0 UCI, target: M-class>0 19:1 1,389 10 10N Nature 

OIL UCI, target: minority 22:1 937 49 49C Environment 

Car_Eval_4 UCI, target: class=vgood 26:1 1,728 6 6N Business 

Wine Quality  UCI, wine, target: score<=4 26:1 4,898 11 11C Business 

Letter Img UCI, target: class=Z 26:1 20,000 16 16C Computer 

Yeast _ME2 UCI, target: class=ME2 28:1 1,484 8 8C Life 

Webpage LIBSVM, w7a, target: minority  33:1 49,749 300 300B Web 

Ozone Level UCI, ozone, data 34:1 2,536 72 72C Environment 

Mammography UCI, target: minority 42:1 11,183 6 6C Life 

Reuters-21578 KDD, text, target: ship 52:1 7,674 17387 17387B Web 

Forest Cover_5 KDD, target class: Aspen 60:1 581,012 54 10C, 44N Nature 

Protein homo. KDD CUP 2004, minority 111:1 145,751 74 74C Biology 

Abalone_19 UCI, target: Ring=19 130:1 4,177 8 7C, 1N Life 

 

 

 

4.3 Experimental Setup 

We develop a simple straightforward comparison framework to perform various algorithms on 

the proposed diversified benchmark data set, as shown in Figure 4.1. First, five different ensemble meta 
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frameworks for imbalanced data learning are included in the experiments, namely, the under-bagging, 

over-bagging, SMOTE-bagging, AdaBoost, and DECIDL. Next, four different base classifiers, decision 

stump, C4.5, SVM, and NN are used as internal weak learners for the meta-ensembles. Note that to save 

the computational burden, single layer perceptron NNs and linear SVMs are used in real experiments. 

For ensemble algorithms, different sizes of ensemble committees will be used to find potential influ-

ences. Furthermore, we also try two popular direct imbalance learning algorithms, the cost-sensitive 

SVM (SVM-weight) and the random forest, to show more comparisons. After applying these 22 algo-

rithms on 30 sets to the benchmark data, we compare their imbalance-oriented evaluation metrics, such 

as the F-measure, G-means, MCC, AUC-ROC, and AUC-PR. Note that each learner has its own parame-

ters; for example, the SVM can select different kernel functions costs. Therefore, trying all combinations 

of these parameters and algorithms can be computationally lengthy and infeasible, and the default or 

best recommended values for these parameters are used in the actual experiments. 
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Figure 4.1: Global Experimental Comparison Framework 
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Figure 4.2: The workflow of DECIDL procedure and parameter settings 

In addition, to comprehensively test our DECIDL ensemble system, we will extensively test vari-

ous settings for several important internal steps of the procedure. An expanded experimental setup for 

the DECIDL method is depicted in Figure 4.2. DECIDL consists of several steps of creating new ensemble 
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classifiers, thus each step requires different parameters to adjust the properties of artificial data set and 

new classifiers. As can be seen in Figure 4.2, there are 7 basic steps to finish a DECIDL ensemble con-

struction, and every step has its own special tuning strategies. The potential choices for every step are 

listed in the figure clearly. Hence, the combinations of the whole procedure are quite large, and all indi-

vidual learning models are extraordinarily diversified. To save computational cost, we only run several 

critical steps under different parameter settings on partial benchmark data sets to show the trends. Fur-

thermore, when comparing with other ensemble methods, the original default settings of DECIDL will be 

used for experiments and result comparisons. Default settings for DECIDL are: using uniform distribution 

for artificial sample generating, 50% size of original data set for artificial set, hard reversely re-labeling 

strategy, removing majority-labeled examples, rejection by MCC criterion, 15 as the maximum ensemble 

size and a final hard ensemble. 

The performance of each learning algorithm was evaluated using 10 complete runs of 5-fold 

cross-validation. In each 5-fold cross-validation, each data set is randomly split into 5 equal-size seg-

ments and results are averaged over 10 full trials. For each trial, one segment is set aside for testing, 

while the remaining data is available for training. 

4.4 Experimental Results 

4.4.1 Overall Comparisons with Different Ensemble Frameworks 

First, Table 4.2 and 4.3 show the detailed classification performance of DECIDL on the 30 data 

sets. We can easily see that DECIDL produce some good performance on several data sets, such as Sick 

Euthyroid, Spectrometer, Arrhythmia, and Reuters-21578, but also it gives bad predictions on other data 

sets, such as Balance, Yeast_ML8, Coil_2000, Webpage, and Forest Cover_5. This trend is similar for oth-

er ensemble frameworks; for the concision of the dissertation, we do not list all performance of other 

ensemble frameworks here. This phenomenon strongly suggests the data sets we used are very diverse 

and complicated. It is hardly possible to design an algorithm that works well for all kinds of problems. 
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Table 4.4 shows average performance of all 22 algorithms on all 30 data sets with all five evalua-

tion metrics. Each value in the table represents the mean metric values over 30 data sets with 10 times 

of 5-fold cross validations. As previously mentioned, the parameters used for our DECIDL framework in 

this comparison are default settings: artificial example generating—Gaussian distribution, size of artifi-

cial set—50% of original data set, oppositional re-label strategy—hard, removing strategy—removing 

majority, classifier rejection—rejected by MCC, ensemble size—15, ensemble strategy—hard. For other 

four ensemble frameworks, parameters comparable to those in DECIDL are used to show fair final com-

parisons; for example, the ensemble size is also set as 15, and the oversampling or under-sampling ratio 

is also set as 0.5.  

Figure 4.3-4.7 compared the results under different evaluations metrics. We group the algo-

rithms by the base learner types so that comparisons between different ensemble methods can be easi-

ly made. A first observation on these results is that there is no best ensemble and base learner combina-

tion in terms of different imbalance classification performance. Every kind of ensemble and base learner 

only outperforms others on some of five metrics and no uniformly better ones. This implication is con-

sistent with general opinions in research on supervised classification. However, all the five ensemble 

strategies have significantly improved the classification performance from the base learners on all the 

five evaluation metrics. This result suggests that ensemble strategies are much more effective than indi-

vidual learning methods on imbalanced data learning, which is also a generally accepted conclusion in 

machine learning communities. 
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Table 4.2: Classification Performance (F-Measure and G-Means) of DECIDL on 30 Data Sets  

(DS: decision stump; DT: decision tree; L-SVM: Linear SVM; PNN: perceptron NN) 

DECIDL 

F-Measure G-Means 

DS DT L-SVM PNN DS DT L-SVM PNN 

Ecoli 0.448 0.581 0.649 0.539 0.831 0.841 0.887 0.817 

Optical Digits 0.440 0.910 0.745 0.571 0.664 0.949 0.923 0.858 

SatImage 0.424 0.622 0.203 0.208 0.735 0.794 0.707 0.572 

Pen Digits 0.475 0.964 0.717 0.541 0.699 0.980 0.895 0.819 

Abalone_7 0.309 0.367 0.308 0.284 0.698 0.578 0.696 0.738 

Sick Euthyroid 0.630 0.856 0.456 0.570 0.911 0.935 0.906 0.909 

Spectrometer 0.496 0.801 0.839 0.496 0.632 0.929 0.942 0.680 

Balance 0.000 0.000 0.000 0.011 0.202 0.565 0.670 0.032 

Car_Eval_34 0.303 0.930 0.733 0.844 0.692 0.984 0.965 0.911 

ISOLET 0.223 0.781 0.627 0.619 0.890 0.928 0.836 0.657 

US Crime 0.476 0.509 0.547 0.468 0.698 0.800 0.789 0.836 

Yeast_ML8 0.021 0.087 0.000 0.113 0.406 0.543 0.504 0.338 

Scene 0.207 0.201 0.268 0.233 0.500 0.441 0.649 0.505 

Libras Move 0.405 0.819 0.827 0.628 0.707 0.918 0.892 0.894 

Thyroid Sick 0.428 0.837 0.320 0.290 0.882 0.920 0.805 0.759 

Coil_2000 0.049 0.115 0.070 0.194 0.612 0.628 0.678 0.470 

Arrhythmia 0.668 0.656 0.334 0.223 0.950 0.848 0.647 0.481 

Solar Flare M0 0.242 0.070 0.206 0.229 0.646 0.644 0.611 0.595 

OIL 0.454 0.583 0.479 0.035 0.789 0.692 0.773 0.404 

Car_Eval_4 0.204 0.925 0.677 0.783 0.760 0.991 0.974 0.925 

Wine Quality  0.187 0.225 0.110 0.022 0.649 0.407 0.666 0.069 

Letter Img 0.472 0.808 0.658 0.514 0.816 0.939 0.839 0.863 

Yeast _ME2 0.392 0.337 0.197 0.248 0.785 0.537 0.847 0.692 

Webpage 0.077 0.546 0.629 0.520 0.550 0.723 0.837 0.861 

Ozone Level 0.208 0.180 0.267 0.151 0.589 0.475 0.819 0.701 

Mammography 0.211 0.516 0.369 0.341 0.768 0.767 0.816 0.826 

Reuters-21578 0.696 0.759 0.682 0.657 0.857 0.938 0.960 0.976 

Forest Cover_5 0.074 0.277 0.112 0.203 0.702 0.414 0.835 0.659 

Protein homo. 0.527 0.576 0.574 0.154 0.762 0.793 0.884 0.817 

Abalone_19 0.019 0.004 0.018 0.020 0.701 0.645 0.701 0.505 

Average 0.325 0.528 0.421 0.357 0.703 0.752 0.798 0.672 
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Table 4.3: Classification Performance (MCC and AUC-ROC) of DECIDL on 30 Data Sets  

(DS: decision stump; DT: decision tree; L-SVM: Linear SVM; PNN: perceptron NN) 

DECIDL 
MCC AUC-ROC 

DS DT L-SVM PNN DS DT L-SVM PNN 

Ecoli 0.445 0.550 0.626 0.515 0.913 0.942 0.924 0.913 

Optical Digits 0.294 0.900 0.726 0.646 0.786 0.991 0.961 0.956 

SatImage 0.295 0.580 0.264 0.148 0.766 0.920 0.730 0.690 

Pen Digits 0.305 0.961 0.694 0.513 0.750 0.997 0.939 0.905 

Abalone_7 0.249 0.308 0.247 0.304 0.760 0.769 0.792 0.775 

Sick Euthyroid 0.622 0.843 0.427 0.626 0.920 0.955 0.862 0.712 

Spectrometer 0.471 0.789 0.828 0.492 0.761 0.974 0.970 0.856 

Balance 0.000 0.000 0.000 -0.026 0.497 0.450 0.500 0.390 

Car_Eval_34 0.254 0.926 0.736 0.854 0.708 0.996 0.992 0.988 

ISOLET 0.052 0.763 0.631 0.622 0.790 0.976 0.977 0.949 

US Crime 0.449 0.472 0.516 0.497 0.889 0.887 0.882 0.903 

Yeast_ML8 0.012 0.034 0.075 0.057 0.512 0.567 0.500 0.591 

Scene 0.149 0.134 0.203 0.186 0.669 0.666 0.686 0.738 

Libras Move 0.392 0.814 0.826 0.624 0.853 0.974 0.940 0.944 

Thyroid Sick 0.607 0.828 0.337 0.311 0.940 0.965 0.869 0.881 

Coil_2000 0.035 0.082 0.067 0.143 0.649 0.629 0.649 0.647 

Arrhythmia 0.681 0.648 0.303 0.179 0.966 0.961 0.849 0.659 

Solar Flare M0 0.216 0.089 0.175 0.206 0.659 0.683 0.754 0.755 

OIL 0.449 0.593 0.468 0.005 0.895 0.929 0.884 0.623 

Car_Eval_4 0.000 0.925 0.700 0.808 0.846 0.999 0.995 0.992 

Wine Quality  0.197 0.210 0.143 0.018 0.741 0.776 0.701 0.563 

Letter Img 0.473 0.806 0.654 0.533 0.870 0.991 0.960 0.962 

Yeast _ME2 0.401 0.327 0.207 0.266 0.894 0.899 0.849 0.872 

Webpage 0.105 0.536 0.624 0.536 0.728 0.914 0.939 0.947 

Ozone Level 0.200 0.156 0.317 0.109 0.785 0.785 0.865 0.793 

Mammography 0.253 0.512 0.399 0.359 0.831 0.896 0.854 0.820 

Reuters-21578 0.695 0.764 0.704 0.688 0.910 0.988 0.988 0.994 

Forest Cover_5 0.065 0.305 0.124 0.155 0.801 0.756 0.783 0.795 

Protein homo. 0.540 0.582 0.600 0.226 0.868 0.940 0.912 0.923 

Abalone_19 0.016 0.002 0.020 0.029 0.656 0.695 0.743 0.695 

Average 0.297 0.515 0.421 0.354 0.787 0.862 0.842 0.808 
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Table 4.4:  Overall Average Classification Performance of the 22 Algorithms on 30 Data Sets  

  
Metric Values 

Ensemble Base Learner F-mea. G-means MCC AUCROC AUC-PR 

DECIDL Stump 0.325 0.703 0.297 0.787 0.292 

UnderBagging Stump 0.294 0.749 0.292 0.802 0.260 

OverBagging Stump 0.301 0.730 0.294 0.760 0.199 

SMOTE Stump 0.294 0.716 0.294 0.751 0.180 

AdaBoost Stump 0.378 0.472 0.383 0.861 0.447 

Stump   0.181 0.265 0.190 0.575 0.157 

DECIDL DT 0.528 0.752 0.515 0.862 0.534 

UnderBagging DT 0.396 0.828 0.409 0.885 0.465 

OverBagging DT 0.520 0.688 0.498 0.819 0.477 

SMOTE DT 0.519 0.713 0.507 0.779 0.369 

AdaBoost DT 0.523 0.616 0.515 0.843 0.528 

DT   0.468 0.562 0.462 0.722 0.394 

DECIDL Linear SVM 0.421 0.798 0.421 0.842 0.437 

UnderBagging Linear SVM 0.368 0.800 0.373 0.845 0.350 

OverBagging Linear SVM 0.388 0.795 0.431 0.816 0.324 

SMOTE Linear SVM 0.424 0.799 0.423 0.866 0.453 

AdaBoost Linear SVM 0.366 0.463 0.355 0.817 0.399 

Linear SVM   0.278 0.320 0.281 0.155 0.029 

DECIDL Perceptron NN 0.357 0.672 0.354 0.808 0.370 

UnderBagging Perceptron NN 0.341 0.695 0.335 0.823 0.356 

OverBagging Perceptron NN 0.383 0.675 0.374 0.803 0.350 

SMOTE Perceptron NN 0.360 0.651 0.355 0.686 0.215 

AdaBoost Perceptron NN 0.325 0.374 0.323 0.790 0.365 

Perceptron NN   0.167 0.209 0.184 0.654 0.267 

Linear SVM-Weight   0.367 0.429 0.374 0.870 0.475 

Random Forest   0.487 0.567 0.493 0.826 0.521 
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Figure 4.3: F-Measure Comparison of Average Performance on 22 Algorithms on 30 Data Sets 

 

 

Figure 4.4: G-means Comparison of Average Performance on 22 Algorithms on 30 Data Sets 
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Figure 4.5: MCC Comparison of Average Performance on 22 Algorithms on 30 Data Sets 

 

Figure 4.6: AUC-ROC Comparison of Average Performance on 22 Algorithms on 30 Data Sets 
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Figure 4.7: AUC-PR Comparison of Average Performance on 22 Algorithms on 30 Data Sets 

 

From Figure 4.3-4.7, a close observation on the averaged results of different base learners 

shows that the DEICDL ensemble produce more stable and comparable performance over the five eval-

uation metrics. More specifically, the DECIDL ranks the first in the averaged F-measure comparison in 

Figure 4.3; it is the second best among six in averaged G-means comparison in Figure 4.4; it also stays in 

the second positions when comparing the averaged MCC and AUC-PR performance in Figure 4.5 and 4.7; 

finally, the DECIDL only drop to the third positions when coming to the mean AUC-ROC values based on 

Figure 4.6. In total, the average rankings of DECIDL will still be in the leading position among the five en-

semble strategies, as will be shown later.  

Moreover, we notice that the five evaluation metrics are not consistent in measuring classifica-

tion performance even on the same algorithm. This suggests that each individual metric has its own 

strength and weakness, as also can be explained directly from their definitions. For example, the F-

Measure emphasizes the rate of true positive predictions and the accuracy of positive predictions; while 

the G-means combines the rate of true positive and true negative predictions. Therefore, choosing an 

appropriate evaluation metric depends on the practical imbalanced learning task, data set and intention. 
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If the precision and recall are the main concerns of learning results, then the F-measure or AUC-PR 

might be better choices; if the accuracies on positive and negative classes are both important, then G-

means and AUC-ROC are top considerations. Besides, if no specific desire on the accuracy of positive or 

negative class, then MCC will give a generally balanced classification result on the overall performance.  

Based on these results, the DECIDL seems to be slightly better and more stable from an overall view. A 

deep investigation is needed to compare these five ensemble methods. Therefore, to further compare 

the performance of five ensemble strategies, we rank these metric values within the same group of met-

ric and base learner, i.e., from 1 to 6 for Decision Stump and related ensemble methods with the F-

measure metric. Then, the average ranks of different ensemble strategies over the four base learners 

are summarized separately with respect to the 5 evaluation metrics, as shown in Table 4.3. Clearly, we 

found that on average our proposed DECIDL method ranks the first among the 5 ensemble systems. This 

result has strongly proven that our artificial example generation and the oppositional re-labeling strate-

gy are quite effective on the imbalanced data learning tasks. Meanwhile, this also suggests that the di-

versified ensemble construction with reversely re-labeling does improve the imbalanced classification 

performance dramatically for ensemble learning. Interestingly, the second and third best ensemble 

strategies are the under-bagging and over-bagging. The possible reason for such result might be that 

both under-bagging and over-bagging are directly manipulating the class distribution of the data. How-

ever, the under-bagging performance is more fluctuated across the five evaluation metrics than that of 

over-bagging; this is also explainable since under-bagging randomly drops examples in different bags 

while the over-bagging always keeps all examples, except duplicating certain examples. The AdaBoost is 

slightly lower than over-bagging ensemble in the average ranking; however, AdaBoost has consistent 

better performances over four evaluation metrics except the G-means. Astonishingly, the SMOTE meth-

od ranks at the last position, which means this ensemble strategy are not effective enough on highly 
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imbalanced data, comparing to other methods. However, all these ensemble methods have substantially 

higher rankings than the individual learning algorithms. 

 

Table 4.5: Overall Performance Lead and Ranking of 5 Ensemble Strategies over 4 Base Learners 

Ranking F-measure G-means MCC AUROC AUC-PR Average 

DECIDL 2 3 2.5 2.5 1.5 2.3 

UnderBagging 4.5 1 4.75 1.5 3.5 3.05 

OverBagging 2.5 3 2.5 4 4 3.2 

SMOTE 3 3 2.5 4 4.5 3.4 

AdaBoost 3.25 5 3 3 2 3.25 

NONE 5.75 6 5.75 6 5.5 5.8 

 

4.4.2 Influence of Size of Artificial Set to Performance 

To evaluate the influence of size of artificial example set to the performance of our DECIDL en-

semble classification, we set different size ratios for experiments. This ratio is a ratio value between the 

size of artificial set and the training set; for example, a default ratio 0.5 (50%) means that, if the size of 

training set is 100, 50 artificially synthesized instances will be generated and added back to the original 

training data set for building new ensemble members. The ratios are set with 0.1, 0.3, 0.5, 0.7 and 0.9. 

Other parameters are set with default values in our DECIDL. Table 4.10-4.11 and Figure 4.8-4.9 show the 

influence of size of artificial set with respect to the five imbalanced evaluation metrics, averaged from 4 

base learners on the Ecoli and Sick-Euthyroid data. From these results, we notice that a small size or a 

large size for artificial set are both not the best, ratios between 0.3 and 0.7 seem to be a better range for 

all the five evaluation metrics. This underlying reason might be that a small artificial set is not enough to 

re-balance the data distribution so that learner will focus more on the minority class; on the other hand, 

a large artificial set may also hamper improving the performance due to two reasons: first, learning on 

large artificial set may be hard to generalize the knowledge to the original set, thus the performance will 

not be improved in the later iterations of ensemble building; second, too large extra set may also force 



53 

the learner to be over-tuned for the extra knowledge, instead of the original data set. Therefore, a mod-

erate size of artificial set may be the best choice for our DECIDL ensemble framework. 

 

Table 4.6: Influence of Size of Artificial Set to Classification Performance on Ecoli Data 

 Ecoli Data Size Ratio 

  0.1 0.3 0.5 0.7 0.9 

F-measure 0.429 0.504 0.481 0.456 0.443 

G-Means 0.599 0.671 0.648 0.624 0.611 

MCC 0.412 0.466 0.440 0.417 0.402 

AUC-ROC 0.774 0.791 0.797 0.776 0.766 

AUC-PR 0.415 0.419 0.418 0.380 0.355 

 

 

Figure 4.8: Plot for Influence of Size of Artificial Set to Classification Performance on Ecoli Data 

 

Table 4.7: Influence of Size of Artificial Set to Performance on Sick-Euthyroid Data 

Sick_Euthyroid Size Ratio  

  0.1 0.3 0.5 0.7 0.9 

F-measure 0.430 0.462 0.468 0.493 0.451 

G-Means 0.551 0.593 0.597 0.686 0.662 

MCC 0.405 0.426 0.432 0.448 0.407 

AUC-ROC 0.810 0.801 0.853 0.845 0.845 

AUC-PR 0.475 0.470 0.516 0.497 0.485 
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Figure 4.9: Influence of Size of Artificial Set to Performance on Sick-Euthyroid Data 

 

4.4.3 Importance of Rejection Criterion to Performance 

In our DECIDL framework, a new classifier member will be rejected if its internal performance on 

the training data set is not improved. However, this rejection criterion can be ignored to simply add new 

member no matter whether the performance improves or not. The effects of the two strategies are: re-

jecting new member will bring less diversity, but stronger classifiers; without rejection can introduce 

more diversified members, but may also allow low accurate classifiers to join the committee. Therefore, 

both strategies have their own advantages and disadvantages. Here, we conduct experiments with the 

two choices in our DECIDL framework on two data sets. Table 4.12 and Figure 4.10 show their averaged 

performance on the 4 base learners. From these results, we notice the two strategies almost have rela-

tively similar performance on the two data sets. However, the AUC-ROC and AUC-PR are always higher 

for no rejection situation. This means that including more diversified classifiers do have positive influ-

ence for the probability prediction of ensemble. On the other hand, F-Measure, G-means and MCC per-

formances fluctuated from one data to another. This further suggests that building and evaluating en-

semble classifiers on imbalanced data are very complicated. 
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Table 4.8: Effect of Rejection Strategy to Performance on Ecoli and Sick-Euthyroid Data 

Data  Strategy F-Measure G-means MCC AUC-ROC AUC-PR 

Ecoli No-Reject 0.480 0.705 0.435 0.879 0.537 
Ecoli Reject 0.487 0.640 0.451 0.784 0.399 
Sick-Euthyroid No-Reject 0.476 0.608 0.439 0.831 0.491 
Sick-Euthyroid Reject 0.542 0.652 0.509 0.780 0.455 

 

 

Figure 4.10:  Effect of Rejection Strategy to Performance on Ecoli and Sick-Euthyroid Data 

 

4.4.4 Influence of Ensemble Size to Performance 

The size of ensemble committee is also believed to be well associated with performance of en-

semble learning. Therefore, we test our DECIDL method under different sizes of ensemble. Since a rejec-

tion step may change the real size of final ensemble, we use the no-reject option to make sure that the 

original setting of ensemble size is the final size of ensemble prediction. A range of ensemble size is cho-

sen between 3 and 100, which is very reasonable in most current ensemble studies. Other options are 

still kept as the default values of DECIDL framework when conducting this experiment. The 4 base learn-

ers are again used separately and their averaged evaluation performance are reported. Table 4.13 and 

Figure 4.11 show the actual average results with above settings on the Ecoli and Sick-Euthyroid data. 

Clearly, these results show that the five evaluation metrics are very stable one the ensemble size be-

comes relatively sufficient, more than 10. However, if the size is under 10, the performance could fluc-
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tuate significantly. This effect has been broadly found in existing ensemble learning methods. Moreover, 

the result means that the default setting for ensemble size (as 15) in our DECIDL method is enough. 

 

Table 4.9: Effect of Ensemble Sizes to Classification Performance on Ecoli Data 

Ecoli Data       

EM Size F-measure G-means MCC AUC-ROC AUC-PR 

3 0.544 0.770 0.518 0.890 0.558 

6 0.497 0.829 0.480 0.917 0.616 

10 0.538 0.847 0.521 0.930 0.638 

20 0.559 0.852 0.541 0.933 0.655 

30 0.563 0.853 0.546 0.935 0.658 

40 0.566 0.853 0.550 0.934 0.660 

50 0.566 0.846 0.549 0.936 0.654 

60 0.558 0.847 0.541 0.938 0.663 

70 0.558 0.844 0.542 0.936 0.653 

80 0.569 0.851 0.552 0.937 0.662 

 

 

 

Figure 4.11:  Plot for Effect of Ensemble Sizes to Classification Performance on Ecoli Data 
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Table 4.10: Effect of Ensemble Sizes to Classification Performance on Ecoli Data 

Sick-Euthyroid     

EM Size F-measure G-means MCC AUC-ROC AUC-PR 

3 0.656 0.914 0.645 0.919 0.491 

6 0.626 0.910 0.618 0.924 0.542 

10 0.623 0.912 0.617 0.922 0.510 

20 0.617 0.913 0.613 0.929 0.514 

30 0.629 0.906 0.619 0.917 0.520 

40 0.623 0.913 0.617 0.927 0.517 

50 0.625 0.909 0.616 0.925 0.527 

60 0.629 0.912 0.621 0.922 0.522 

70 0.625 0.909 0.616 0.920 0.526 

80 0.632 0.908 0.622 0.919 0.512 

 

 

Figure 4.12:  Effect of Ensemble Sizes to Classification Performance on Sick-Euthyroid Data 

 

4.5 Discussion 

In this chapter, extensive experiments have been conducted to 1) compare imbalanced classifi-

cation performance between various ensemble strategies, 2) verify the effectiveness of our proposed 

DECIDL ensemble framework under different internal conditions.  

Based on the above results and discussions, we can draw the following general conclusions and 

summaries:  
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--There is no single best ensemble imbalanced learning algorithm for variety of data domains, in 

terms of classification performance. Although the average rank of our DECIDL ensemble is on the top 

among the five ensemble frameworks, for each individual imbalanced learning data set, every algorithm 

shows very different classification performance. 

--The five imbalanced evaluation metrics, namely, F-measure, G-means, MCC, AUC-ROC, AUC-

PR, are not consistent in evaluating the performance of a classifier. Thus, it is hard to say which evalua-

tion metric is the best in real applications. Choosing a suitable metric for a particular imbalanced learn-

ing task may depend on the target of interest when deploying such prediction system. 

--The proposed DECIDL framework has shown relatively superior ability in learning on imbal-

anced data, compared with other four ensemble systems; however, several steps of parameter settings 

are still required to be investigated before applying to real-world problems, in order to fully discover the 

performance of DECIDL learning. 
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Chapter 5: MORE EFFECTIVE ARTIFICIAL EXAMPLE GENERATION FOR DATA BALANCING 

In this chapter, we focus on a particular step in our DECIDL framework—the artificial example 

generation process, as this is an interesting research topic and several practical strategies have been 

proposed. We develop another new effective data synthesizing strategy, called distribution-based ex-

ample generation (DBEG), in order to improve our DECIDL performance. To measure the effectiveness of 

the DBEG method and the DBEG embedded DECIDL method, we compare them with two popular and 

start-of-art imbalanced learning strategies—SMOTE [CHB+02] and GSVM-RU [TZC+09], and show their 

detailed learning performances on our benchmark data pool.   

5.1 Introduction 

We have reported extensive classification results from experiments performed on a large 

benchmark data pool with several popular ensemble imbalanced learning strategies in previous chapters. 

A brief conclusion on these results is that DECIDL framework is comparable to other ensemble learning 

methods on highly imbalanced data. Meanwhile, as there are several strategy-choosing and parameter-

tuning steps involved in a concrete DECIDL procedure, it provides lots of flexibility and potentials to 

learn on various kinds of imbalanced data from different domains.  

Hence, in this chapter, we want to examine the potentials of DECIDL framework by specially fo-

cusing on the artificial example generation step. The default data synthesis strategy is to create new ex-

amples among two existing data points, where one of them is from negative class and the other is from 

positive class. Detailed description can be found in Section 3.2. The idea behind this strategy is that the 

examples in the intersection of positive and negative data spaces are more interesting, as discriminating 

data objects there could help separating two classes in space.  

Here, we consider this data generation problem from a different angle. After studying several 

existing synthesis methods in literature, such as SMOTE [CHB+02], Borderline-SMOTE [HWM05], we also 
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propose a simple and more effective method to generate artificial examples—called the distribution-

based example generation (DBEG). To test this strategy in real learning tasks, we develop a new ensem-

ble learning algorithm based on this data synthesis strategy—the distribution-based example generation 

for ensemble learning (DBEG-Ensemble). We also incorporate this strategy inside our DECIDL frame-

work—the DECIDL-DBEG. We then apply these two methods on the benchmark data pool to verify their 

performance. 

More importantly, the two newly developed methods are compared with two popular and start-

of-art imbalanced learning methods, the SMOTE-Bagging, and GSVM-RU. GSVM-RU is the most effective 

classification algorithms that even proposed in literature for highly imbalanced data [TZC+09]. Compre-

hensive experimental results will be listed to compare their performance together, and conclusions will 

be drawn to describe the effectiveness of DBEG in imbalanced learning tasks.  

5.2 Related works on artificial example synthesis 

As described in section 2.3.1.3, the first and one of most popular example synthesizing strate-

gies is the SMOTE method, which inspires the creation of DECIDL framework in this dissertation. SMOTE 

creates new minority examples by interpolating new data points between an existing positive data point 

   and one of its Euclidian positive-class neighbors. A simple figure to show the result of SMTOE data 

synthesis and DECIDL synthesis is depicted in Figure 5.1. Here, we continue to introduce several other 

existing example generation strategies. One of the drawbacks of SMOTE is that it creates same number 

of synthetic examples for every original minority example, hence increasing the occurrence of overlap-

ping between classes in dense data spaces. To remove such drawbacks, some improved methods are 

proposed based on SMOTE, such as ADASYN (Adaptive Synthetic Sample) [HBG+08], Borderline-SMOTE 

[HWM05] and DataBoost-IM [GV04]. 
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Figure 5.1: New example generation based on SMOTE and DECIDL 

ADASYN [HBG+08]: the idea of ADASYN is to adaptively decide the number of synthetic exam-

ples to be generated for each minority example by using a density distribution function. The density dis-

tribution    measures the percentage of majority-class nearest neighbors for each minority example 

       , given a pre-defined neighbor number  :  

    
    

 
                 (5.1) 

where   is the number of majority-class neighbors of    within its   nearest neighbors, and   is normal-

ization term such that     is a distribution function (∑     ). Then the exact number of synthesized 

examples for each    is:  

    
        

             (5.2) 

where   is a parameter to specify the desired balance level after the synthesizing process. Obviously, 

each    will not have equal number of artificial examples    
 , as it depends on their neighbored example 

distribution. The more surrounded by majority-class data a minority example is, the more synthetic ex-

amples it needs to be generated. Oppositely, if a minority example is mixed within the same-class 

neighboring points, no synthetic examples are needed for itself.  
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 Borderline-SMOTE [HWM05]: Borderline-SMOTE selects minority examples that have more ma-

jority-class neighbors than minority-class neighbors as seed points to synthesize new examples. To be 

more specific, let    is an original example from minority class     , and first determine the set of near-

est K neighbors    
  for each   , and then choose those   has more than half neighbors in the majority 

class, which means that   satisfy: 

    |   
         |   ,      (5.3) 

to create new artificial data points with the standard SMOTE procedure, i.e., interpolating between two 

examples. And the set of these minority examples    is called “Danger” set, as they represent the bor-

derline minority examples which are highly likely to be misclassified later. Hence, Borderline-SMOTE is 

able to create new artificial minority examples in the neighboring areas of border. Notice that if the 

neighbors of a minority example    all belong to majority class, such    will not be chosen as seed, as 

Borderline-SMOTE consider it as noisy minority data.  

In summary, Borderline-SMOTE only chooses those minority examples “closer” to the border of 

two classes to generate synthetic instances. 

DataBoost-IM [GV04]: this method also introduces a simple data synthesis strategy, in combina-

tion with algorithm (AdaBoost.M1) to achieve high prediction accuracy on imbalanced data. First, Data-

Boost-IM uses the weighted distributions in boosting procedure to represent the difficulty of learning 

for each example     in the whole data set  . Rank all    in decreasing order the current classifier    and 

only top             examples (set  ) are selected as seeds for data synthesis. Set   consist of two 

subsets:       and     , representing examples in minority and majority classes, respectively. Then the 

augmenting ratio of new synthesized examples is related to the size of these two subsets. More con-

cretely, the ratio for generating new majority examples is           
  

  
        , and the ratio for 

new minority examples is               
  

  
        .Next, the numbers of  synthesized majority 
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and minority examples are               
  and |     |        

 , respectively, where 

     and       represent two synthesized example sets.  

All the above computing steps are only used to determine how many artificial examples need to 

be generated. Finally, DataBoost-IM uses the value distributions of features to actually create new ex-

amples for two classes. For nominal feature, a new synthetic value is chosen to reflect the value distri-

bution contained in the original training data set, with respect to the particular class. In other words, the 

occurrences of different feature values are used as weights to synthesize a value. For continuous feature, 

the range and standard deviation of feature value in the original training data set is collected, and then 

new synthesized feature values will have same mean values and standard deviations. Obviously, the 

Gaussian distribution is assumed for such features.  

5.3 Distribution-based artificial example generation (DBEG) 

From the summary on artificial example synthesis in previous section, we notice that the exist-

ing synthesis strategies only contain two kinds: either using interpolating between two examples or as-

suming even or normal distributions on feature values to create new data examples. Besides, most 

methods require lots of computations to focus on choosing appropriate minority examples as seeds, 

instead of designing more effective methods to create the actual values for new synthesized examples.  

Due to the drawbacks of above methods, here we propose a simple and fast distribution-based 

example generation strategy. First, we assume that each example in the original training data set is i.i.d. 

distributed, which is a standard assumption for data in many algorithm design. The occurrences of fea-

ture values are naturally representing the underlying distribution of a particular feature for a specific 

class. Obviously, such distributions are not necessarily either uniform, or Gaussian, and may be very 

complicated. Hence, making further assumptions on them are not appropriate to create synthesized 

values for new examples. In other words, the originality of the distribution of those feature values 

should be preserved, instead of assumed and simulated, within the new synthesized example set.  As 
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only minority class need extra synthesized examples, so only the feature distributions in minority class 

are investigated. 

Naturally, the distribution of feature value occurrences can be used as guidance to synthesize 

new examples. To maintain the same distribution of every feature among artificial data set, we can ran-

domly draw new feature values based on such distribution. High frequent values should have high 

chances of to be drawn, and vice versa. To make the computational process simple, we also assume that 

features are independent to each other, and hence a sequential process can be used to generate one 

feature after another. This assumption is also very standard during many machine learning algorithms.  

Obviously, collecting the occurrences of values in nominal features is easy and making more 

sense. But for continuous features, purely counting these numerical values to synthesize new examples 

could make the combined data set so specific and hence leads to poor generalization ability. We use an 

alternative way to represent the distribution of numeric values and introduce extra variances at the 

same time. This idea is to duplicate all the values of this feature in minority class for   times and add 

additional Gaussian noise on them. Then, whenever a new feature value is needed to synthesize new 

example, simply equally pick one from them. Through this way, the distributions of numeric feature val-

ues are still maintained and certain degree of variations are included.  

We propose the following steps to create the feature values    
    

      
   of a new artificial 

example    to be added to minority class: 

1) If feature    is nominal, then collect all the unique values of this feature in the minority 

training set    and their percentages of occurrences. The     feature of   
 
 is then randomly 

chosen to reflect these percentages. For example, let assume in a rare disease data set, 

there are 55 patients including 35 males and 20 females and other 769 healthy people.  Ob-

viously the gender feature is one interesting attribute and has two distinct values: “Male” or 
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“Female”. Then, a new gender value is randomly drawn with 35/55=63.6% of being male 

and 20/55=36.4% of being female.  

2) If feature    is continuous, and assume     
 

 is the feature vector of the minority training set 

  , then duplicate this vector for   times to get      (    
 
)       

 
     

 
       

 
 . Next 

add additional Gaussian distributed noise value    with standard deviation    to each fea-

ture value in     (    
 
).  In need of synthesizing this feature for a new example, just uni-

formly choose on value in this feature vector     (    
 
).  

In fact, the method of synthesizing new examples for continuous features is also applicable for 

nominal features, if ignoring the noise addition part; hence in the real implementation, we simply use 

the step 2 for all features, but do not add noises for nominal features and their values.  

One may argue that the above strategy (Step 2) is not identical to creating new values based on 

feature distribution directly, but simply an approximate method: choosing new values from a distribu-

tion-based feature value pool without replacement. However, this procedure is simple and requires 

much lower computation cost and space. Besides, this approximate method can also provide good artifi-

cial data and enhances classification performance. Figure 5.2 shows the original data distribution of a 

particular numeric feature, distribution of SMOTE-synthesized data, and distribution of DBEG-

synthesized data. Clearly, we can see that DBEG is more accurate to draw similar distributions of original 

data set. 

How to choose the duplicate factor   is an interesting problem. Obviously, the larger it is, the 

more similar this approximate procedure is to pure distribution-based creation. However, a large   also 

requires more space and computational burden. In our experiments, we use a range for T:           .  
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Figure 5.2: Distribution comparison among original data, SMOTE-synthesized data, and DBEG-

Synthesized Data 

 

Table 5.1: Distribution-based example generation (DBEG) 

Algorithm 5.1: The DBEG Algorithm 

Input: 
  – 〈   〉, training set with    is the minority class and    is the majority class; 
 , duplication factor, default 40;   
     , desired balance ratio after synthesis; 

 , standard deviation for noise level, default 0.1. 

Steps: 
1. Let        ,        , and the number of examples to be synthesized is: 

      
           

  

2. Initialize an empty matrix     
  with size     

   , where  

3. For feature       

4. Duplicate the     vector    
 

 of   for   times to get     (    
 
) 

5. If     
 

is a continuous feature:  

6.  Add additional Gaussian noises (0,  ) to     (    
 
) 

7. Uniformly pick     
  values from     (    

 
) without replacement  

8. Put the vector of selected values into     column of     
  

 

Output: 
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In order to determine the total number of synthesized examples, we again introduce a balance 

ratio      as the stopping criterion for synthesis process.      will be the targeted ratio between the 

size of minority class and majority class, hence it is same as     parameter in our DECIDL framework. 

The total number of minority examples is: 

     
           

 .      (5.4) 

In summary, the distribution-based example generation procedure is proposed in Table 5.1.  

5.4 DBEG-Ensemble and DECIDL-DBEG 

In this section, we will utilize the DBEG procedure to develop new imbalance learning algorithms. 

As a data generation step, DBEG has to be used with general learning methods together to show it effec-

tiveness. Furthermore, DBEG involves a stochastic procedure to create new values for artificial examples, 

thus the resulting synthesized minority set might be unstable. Hence, an ensemble step is needed to a 

classification committee on several data sets after several rounds of using DBEG data balancing algo-

rithm. Under the ensemble strategy, a fundamental and general machine learning algorithm, or called 

base learner, will be used to build each concrete classifier. To be more specific, we will use support vec-

tor machines (SVMs) as the base learner, instead of using several different ones as in previous chapters. 

Hence, we can specifically concentrate on the data generation steps.  

Our first DBEG based ensemble algorithm for imbalanced learning, called DBEG-Ensemble, is 

proposed as follows. Given an imbalanced data set   with binary classes and an ensemble committee 

size    , we will employ the DBEG procedure to create an synthesized data      and union it to   to 

have a balanced training data              Then a regular base learner is used to build a classifier 

   on it. Iteratively execute this procedure     times to have     classifiers as a committee. Then the 

final ensemble classifier    is achieved by using majority voting on this committee. To be more precise, 

the following pseudo code describes the DBEG-Ensemble methods. 
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Table 5.2: The DBEG-Ensemble algorithm 

Algorithm 5.2: The DBEG-Ensemble algorithm 

Inputs: 
        – Base learning algorithm (e.g., C4.5, SVM, NN) 
    –〈   〉, Training set,   examples       ,    is n-dim vector, and               
         – Maximum number of member classifiers in the targeted ensemble 
      – Desired balance ratio after synthesis 

Steps: 
Initialization: 
1.       
2. While            
3. Apply DBEG algorithm(5.1) to generate set      with    and       ; use default   and   

4. Append the synthesized data on original data to get             

5. Use         on the overall training data      to create classifier     
6.          

Outputs: 
Ensemble classifier                                

 

Similarly, we can embed the DBEG procedure into our proposed DECIDL method to have anoth-

er version of DECIDL, the DECIDL-DBEG. However, in the DECIDL framework, the data synthesis is not for 

a particular class, i.e., either for minority class or majority class. It requires creating extra data from 

overall data sets and then using classifiers to predict their labels, and then further refining them with 

performance improvement if they are included. Therefore, the DBEG for DECIDL framework will use the 

whole training data set as input data for feature distribution collection, instead of only the minority class 

examples. Meanwhile, the number of synthesizing examples is pre-determined in the parameter of DE-

CIDL,    .  Other than this, the similar procedure is applied into DECIDL. The detailed pseudo code pro-

cedure is described in Table 5.3.  

As two imbalanced learning algorithms have been properly developed to use the DBEG data 

generation step, we now proceed to introduce other two start-of-art and popular imbalanced learning 

algorithms in order to compare their performance later. 
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Table 5.3: The DECIDL-DBEG algorithm 

Algorithm 5.3: The DECIDL-DBEG algorithm 

Inputs: 
         – Base learning algorithm (e.g., C4.5, SVM, NN, cost-C4.5, SVM-weight) 
   –〈   〉, Training set,   examples       ,    is n-dim vector, and               
      – A        vector, misclassification cost for each class (default:            ) 
        – Maximum number of member classifiers in the targeted ensemble 
          – Maximum number of iterations to build an ensemble 
      – Evaluation metric for ensemble performance (e.g., Total Cost, or 1-MCC) 
     – Percentage (ratio to size of training data D) of synthetic examples to create 

Steps: 
Initialization: 
1.        ,       
2.                       
3. Initialize ensemble,          
4. Computer ensemble performance:                             

Loop:  
5. While             and              
6. Use DBEG algorithm to generate artificial data set   : 

                 , note that      is replaced with exact synthesizing number 

7. Use current ensemble    to make probability predictions on  , to get      
8. Label examples in   with probability of class labels inversely to      
9. Remove the examples in   labeled as majority class to get  S’ 
10.               
11.                          
12.                 
13. Computer new ensemble performance:                          
14. If          (i.e., performance is better) 
15.                      
16. Else: 
17.                 
18.           

Outputs: 
Ensemble classifier    

 

5.5 Other methods for comparison 

In this section, we will briefly re-introduce a start-of-art learning algorithm for highly imbalanced 

data, the GSVM-RU (Granular Support Vector Machine-Repetitive Under-sampling) [TZC+09], and an-

other most popular imbalanced learning strategy, the SMOTE, because later we will compare the classi-
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fication performance of these two methods with our DBEG-Ensemble method and the DECIDL-DBEG 

method on the benchmark data pool.  

As simply described in Section 2.3.5, GSVM-RU is a kernel-based learning strategy [TZC+09]. 

Simply speaking, GSVM-RU examines the support vectors from trained SVM models and removes these 

negative support vectors recursively from the training data sets. Hence, the classification boundary will 

be moved towards the majority class, hence leaving more feature spaces for minority class, in order to 

easily catching more minority examples in future testing datasets. This repetitive model building and SV 

removing process will continue until the classification performance on a valid data set decreases. Finally 

all the removed negative vectors in conjunction with positive examples are used to train the final classi-

fier. An alternative way is to use the model built in the final round of removing step as the best individu-

al classifier. Tang et al. [TZC+09] have shown that GSVM-RU performed very well on many highly imbal-

anced data sets from different domains. 

On the other hand, SMOTE is simply a data generating algorithm, providing over-sampling strat-

egy to balance data. It can be followed with any general machine learning algorithms to build the final 

classifier. As described in section 2.3.1.3, SMOTE tries to create interpolating points between one minor-

ity example and one of its nearest same-class neighbors, in order to enlarge the minority class. Each mi-

nority example is chosen once and its nearest K positive neighbors are identified. Then, an interpolation 

is performed between this example and one randomly-picked neighbor; the coefficient of interpolation 

is a random number that is evenly distributed in range [0,1]. Obviously, SMOTE also involves stochastic 

values in its synthesis step, and the resulting data set and classification models will not be stable. A bag-

ging ensemble procedure can be used to provide stability and remove variance. The SMOTE-Bagging 

method used in previous chapter is iteratively using SMOTE to create balanced training data sets and 

build several classifiers to form an ensemble committee for classification. As SMOTE is a very popular 
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data synthesis algorithm, we select SMOTE-Bagging as one method to compare the performance with 

our proposed method: the DBEG-Ensemble and the DECIDL-DBEG. 

All together, we will compare the following four imbalanced algorithms on the benchmark data 

pool: the DBEG-Ensemble, DECIDL-DBEG, GSVM-RU, and SMOTE-Bagging.  

5.6 Experimental setup and results 

Out of the above four methods, three of them are meta-learners, thus a base learner has to be 

provided to implement the real algorithms; the other one GSVM-RU uses SVM as classification learner. 

Therefore, we will also use SVM as base learner for other three methods, in order to produce more fair 

performance comparisons.  

The 30 imbalanced data sets in the proposed benchmark data pool are again used to test their 

binary classification performance. As to the performance evaluation metrics, we will use two informa-

tive metrics: F-measure and MCC.  

For the internal parameters used in each method, we will use the default or suggested values 

and perform certain amount of optimization to achieve high classification accuracy. For example, the 

balanced ratio after data synthesizing is about 50%; the ensemble size of classification committee is 15. 

Meanwhile, the kernel type and parameters of base SVM learner are set same for all four methods for 

each individual benchmark data set. Through this way, the resulting performances are fair enough to 

compare.  

We use a 5-fold cross-validation on each data set to the performance of four methods. Mean-

while, 5 individual runs are performed to have an averaged final classification metric value. The detailed 

classification performances of the four methods on all 30 benchmark data sets are listed in Table 5.4.  

  



72 

Table 5.4: Performance Comparison among three meta- learning algorithms (based on optimized 

SVM) and GSVM-RU on benchmark data pool (averaged on 5 runs of 5-folds cross-validation) 

  F-Measure  MCC  

Data Set 
DECIDL 
-DBEG 

DBEG SMOTE GSVM 
DECIDL 
-DBEG 

DBEG SMOTE GSVM 

Ecoli 0.609 0.596 0.608 0.606 0.576 0.581 0.593 0.585 

Optical_Digits 0.822 0.741 0.699 0.715 0.805 0.722 0.686 0.692 

SatImage 0.358 0.409 0.424 0.400 0.358 0.411 0.423 0.390 

Pen_Digits 0.775 0.819 0.816 0.769 0.763 0.807 0.805 0.764 

Abalone_7 0.310 0.356 0.346 0.323 0.239 0.320 0.311 0.313 

Sick_Euthyroid 0.751 0.647 0.667 0.543 0.727 0.634 0.651 0.538 

Spectrometer 0.750 0.803 0.770 0.819 0.738 0.793 0.760 0.809 

Balance 0.067 0.077 0.058 0.048 0.004 -0.009 -0.123 -0.027 

Car_Eval_34 0.784 0.749 0.722 0.825 0.784 0.752 0.727 0.825 

ISOLET 0.776 0.784 0.758 0.823 0.757 0.767 0.739 0.815 

US_Crime 0.449 0.453 0.455 0.481 0.448 0.457 0.458 0.478 

Yeast_ML8 0.160 0.027 0.028 0.158 0.091 0.041 0.024 0.090 

Scene 0.210 0.249 0.251 0.230 0.138 0.192 0.191 0.199 

Libras_Move 0.832 0.721 0.688 0.760 0.834 0.716 0.676 0.753 

Thyroid_Sick 0.635 0.547 0.549 0.560 0.618 0.557 0.556 0.562 

Coil_2000 0.117 0.069 0.064 0.151 0.029 0.048 0.046 0.112 

Arrhythmia 0.206 0.234 0.284 0.439 0.170 0.191 0.243 0.418 

Solar_Flare_M0 0.146 0.176 0.193 0.134 0.130 0.162 0.184 0.101 

OIL 0.301 0.315 0.356 0.435 0.333 0.286 0.329 0.415 

Car_Eval_4 0.936 0.979 0.969 0.822 0.934 0.979 0.968 0.826 

Wine_Quality_4 0.269 0.073 0.077 0.127 0.242 0.023 0.040 0.126 

Letter_Img 0.844 0.905 0.895 0.858 0.849 0.902 0.894 0.856 

Yeast_UCI_ME2 0.137 0.312 0.281 0.226 0.156 0.352 0.324 0.272 

Web_page 0.582 0.462 0.507 0.396 0.594 0.452 0.505 0.393 

Ozone_Level 0.111 0.240 0.233 0.290 0.102 0.281 0.290 0.322 

Mammography 0.530 0.368 0.392 0.303 0.554 0.420 0.437 0.395 

Reuters-21578 0.647 0.758 0.804 0.701 0.655 0.763 0.806 0.704 

Forest_Cover_5 0.285 0.165 0.252 0.284 0.278 0.193 0.249 0.277 

Protein_homo 0.675 0.410 0.384 0.696 0.679 0.444 0.433 0.713 

Abalone_19 0.082 0.039 0.053 0.036 0.151 0.087 0.118 0.054 

Average 0.472 0.449 0.453 0.465 0.458 0.444 0.445 0.459 

Win/Loss  
to GSVM-RU 

15 15 15 
 

13 14 12 
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Figure 5.3: Average Performance Comparison of the four methods on benchmark data pool 

5.7 Discussion and Conclusion  

Table 5.4 shows the detailed F-measure and MCC performance of all four learning methods over 

each of the 30 benchmark data sets, and Figure 5.3 shows their averaged performance. First, in Table 

5.4, it is noted that all four methods are relatively performing equally well on the whole benchmark data. 

On some data sets, the F-measure and MCC are quite high, e.g., Optical_Digits, Car_Eval_4, Libras_Move, 

Letter_Img, suggesting these classification problems are easy to solve and the four learning models are 

fitting the underlying class distributions. However, on some other data sets, e.g., Balance, Coil_2000, 

Yeast_ML8, Ozone_Level, the performance are quite low for all four learning methods. Such results sug-

gest that the underlying models for distinguishing two classes are difficult to learn or to generalize; and 

all the four learning methods do not fit such models very well. 

Table 5.4 also shows that our DECIDL-DBEG learning method has the highest averaged F-

measure performance across the whole data pool, surpassing the SMOTE-Bagging and GSVM-RU meth-

ods. This result proves that using DBEG synthesis procedure does help our DECIDL framework achieve 

high classification performance. For the MCC performance, our DECIDL-DBEG method ranks the second 

and is close to the top one GSVM-RU method. Meanwhile, as GSVM-RU is currently the best developed 
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method in literature, we can conclude that DECIDL framework is also one of most effective ensemble 

models for imbalanced learning in our study.  

We have also noticed that both DECIDL-DBEG and GSVM-RU are relatively better than SMOTE-

Bagging and DBEG-Ensemble, which suggests that basic ensemble strategies on balanced synthesized 

data are not superior to other refined ensemble methods.  

The most interesting founding from the above result comparisons is that the average perfor-

mance of our new developed DBEG-Ensemble is only slightly lower than that of all other sophisticated 

methods. This great discovery means that a simple effective data synthesizing strategy could also lead to 

high classification performance for imbalanced data. Using complicated learning strategies may not sig-

nificantly enhance the learning power on a particular imbalance problem.   

Hence, our conclusion on this example generation topic is that DBEG can be used as a fast and 

effective data balancing algorithm in the initial stage of solving an imbalance classification problem. To 

further study the potentials of DBEG synthesis, we propose the following directions in future study. First, 

as features are examined as independent to each other in sequentially generating feature values, we 

may consider certain interactions between two close-related attributes by calculating their correlations. 

A pair of values can be generated together if two features have high correlations. Second, as DBEG is 

able to generate new examples, we can apply the same process to output few examples by using the 

majority examples and a reversed balance ratio as input parameters (i.e., DBEG-Undersampling). In oth-

er words, under-sampling is used in each individual feature to generate new majority examples to re-

place original majority class.  Last but not least, we can combine the original DBEG and DBEG-Under-

sampling together to balance data sets, and then use regular machine learning methods to test their 

classification performance. 
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Chapter 6: ACTIVE EXAMPLE SELECTION FOR DECIDL 

In this chapter, we continue to solve the imbalance data learning problem, by investigating a 

new direction—active learning.  Active learning is one subfield of supervised machine learning in which 

the learning algorithm can dynamically select interested unlabeled data examples and query their labels 

from domain experts or users, in order to incrementally build classification models. Active learning al-

lows algorithm to choose what data it will learn from, and hence such algorithms will perform equally or 

better but with less training data. Active learning is originally trying to solve the problem that acquiring 

labeled data examples are costly or time-consuming in some contexts, such as speech recognition anno-

tation, document categorization, etc. It has attracted special focuses from many researchers and be-

come a particular research topic in recent years. Meanwhile, its related learning algorithms have also 

been developed and applied in several real-world applications, such as speech recognition, document 

classification, and mutant identification for protein functions, etc.  

As active learning is able to choose appropriate data examples to learn from, we will use this ad-

vantage to select informative data examples to form a balanced training data set, and then build effec-

tive ensemble learning committee. This chapter describes the background of active learning and related 

works, and a new Active-DECIDL method is then proposed to combine the strength of active learning 

and DECIDL to tackle the problem of highly imbalanced data learning. Extensive experiments are con-

ducted to examine the performance of this new Active-DECIDL method; comparative results are report-

ed to draw a positive conclusion on this method.  

6.1 Background and Related Works in Active Learning 

Active learning is also referred to “query learning” or “optimal experimental design” in the sta-

tistics context [Set09]. The main focus of active learning in supervised or semi-supervised learning is its 

ability to select certain interested unlabeled data points for further learning. Supposedly there exists an 
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oracle that is able to tag any data examples, such as a human annotator, or domain expert. Active learn-

ing will collect some interested unlabeled examples based on its selecting strategy and sent them to the 

oracle for querying their class labels. Once these data are labeled, the learning algorithm can build an 

improved prediction model and, at the same time, active learning will select another round of unlabeled 

data for labeling. This process is a typical pool-based earning cycle which is the main category of active 

learning [LG94]. The unlabeled example selecting and labeling step is a query process, and hence active 

learning is also called query learning.  

Labeled 

training data
Unlabeled data

Active learning 

model

Oracle 

(e.g., human judge)

Testing Data Prediction Results
Classifcation 

model

 

Figure 6.1: Pool-based Active Learning Cycle [Set09] and Classification Step 

Obviously, active learning is quite different to traditional passive supervised learning. In tradi-

tional learning models, data examples are all having pre-determined class labels and no further re-

labeling process is involved during the training step. In other words, no further additional data infor-

mation or knowledge is needed once the learning algorithm proceeds. In contrary, active learning re-

quires continuous interactions between the learning procedure and the “oracle” for data selection and 

labeling. It can start from a small size of training data, and then it dynamically seeks promising and use-

ful examples for continuously learning. Although its querying process needs interactive efforts from the 
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oracle, the initial learning cost is cheap and prompt. This advantage is significantly important in many 

contexts where data acquisition or data labeling is prohibited or expensive. For example, in speech 

recognition problem, labeling record audio files at the word level takes 10 times longer than the actual 

length of audio; hence it is not likely to prepare large size of training data for audio categorization.  

Not only does active learning have the benefits of requiring less training data in the initial stage 

of a learning process, but also it could improve the classification performance after choosing appropri-

ate training examples to learn. For example, randomly selecting a subset of data examples is a popular 

way to build classification models if acquiring more examples is costly; however, the consequence of this 

strategy is that the resulting prediction model will be very unstable. On the other hand, using active 

learning to identify critical examples residing in the margin area of different classes will be much useful 

to build predicting models. This is another important reason that many researchers trying to achieve: 

using less or at most equal number of training examples to create better classification models.  

Many researches on active learning have been done in recent years and lots of related works 

have been published in literature [Ton01] [EHB+07] [Ols08] [Set08]. To give a general overview of those 

works, we divide the process of active learning into two steps and discuss them in detail in the next two 

paragraphs.  

The first step is how to find or create the unlabeled data examples. As active learning needs to 

query unlabeled data for annotating, the first task is to generate such data points. There are mainly 

three ways of identifying unlabeled data [Set09]: membership query synthesis, stream-based selective 

sampling, and pool-based sampling. Membership query synthesis assumes the learner can query the 

labels of any unlabeled instances in the input space; these instances may be artificially generated, rather 

than coming from some underlying natural distributions. The benefit of query synthesis is obvious: it can 

query any desired point in the input space; hence, it is very flexible. However, such arbitrarily synthe-

sized examples may be not following the underlying data distribution, and are unreasonable for annota-
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tion in real applications. For example, Lang and Baum [LB92] use active learning for recognizing images 

of hand-written characters, but the queries generated by the learning algorithms are invalid symbols. 

The second way–stream-based selective sampling—considers the actual distributions of existing training 

data. This approach first performs sampling an unlabeled instance from the data distributions, and ap-

plies the learning algorithm to determine whether or not to query its label. As each unlabeled instance is 

sequentially sampled and queried or discarded, it is also called sequential active learning. This method is 

guaranteed that queries are reasonable, as they are sampled from the real underlying distribution. The 

strategy of whether or not query the chosen instance’s label will be further discussed next. Several pub-

lications have used this approach to solve real-world problems [Kir02] [Yu05]. The third way of active 

learning is the pool-based active learning, as shown in Figure 7.2. The rationale of such approach is that 

in most scenarios, the unlabeled data are abundant while only labeled data are limited. Hence, the ac-

tive learning strategy is trying to estimate the usefulness of every unlabeled instance based on the in-

formation on labeled set. The unlabeled data pool is static or non-changing (although this is not neces-

sary), and queries can be chosen from such pool based on certain evaluating metrics. This approach is 

largely studied in literature as many real-world problems match this scenario; examples can be found in 

text classification [TK00], image classification and retrieval [TC01], video classification [YYH03], cancer 

diagnosis [Liu04].  

The second step is how to judge and select the most appropriate or useful unlabeled examples 

for “oracle” labeling. In other words, what will be the ideal metrics to evaluate the usefulness of an un-

labeled example, such that the performance of predicting model will be largely improved once this un-

labeled example is annotated? Many frameworks have been proposed to develop an effective query 

selecting strategy and we will briefly name them a few here. 

Uncertainty reduction. The simplest method of choosing an unlabeled instance for querying is 

to choose the most uncertain instance determined by current learning algorithm on some labeled data. 



79 

This approach is particularly convenient for probabilistic learning models, as their predictions can be 

directly used to compute uncertainty. Assume for an unlabeled data point    and its prediction probabil-

ities by current learner   are          , where            represents total   different classes, then 

the chosen unlabeled instance is the one with least predicting confident:                  ̂    , 

where  ̂                  , and    represents the chosen unlabeled example. Obviously, this strate-

gy chooses the least confident instance with respect to its most probable class.  Hence, it ignores the 

uncertainties of unlabeled instances on other remaining classes. To correct this bias, an improved select-

ing criterion is proposed to use the uncertain margins between the two most probable classes: 

              ̂          ̂     , where  ̂  and  ̂ are the first and second most probable class la-

bels predicted by the current learner. A more general selection for uncertainty reduction is to use the 

entropy as the uncertain measure [Set09]. The most uncertain data example is the same as the most 

informative example based on information theory. The selection criterion of entropy-based approach is 

           ∑   (  |  )       (  |  )     . In summary, the uncertainty reduction method tries 

to identify the most ambiguous unlabeled instances for annotation in order to reduce the uncertainty of 

training data for future learning. 

Query by committee [SOS92]. This method involves using a committee of learning models to 

vote the labels of unlabeled data and identifies the one with most disagreement as the most useful que-

rying example. The fundamental idea is to minimize the version space, which is the set of models or hy-

pothesis that are consistent with current labeled training data [Set09]. The goal of active learning is to 

minimize the number of instances while maximize the precision of version space. Two issues need to be 

resolved to implement the QBC algorithm: a) how to build a committee of different models that repre-

sent different sub-spaces of the version space, and b) how to measure the degree of disagreement 

among committee members. This first issue can be solved with ensemble methods, such as boosting or 

bagging algorithms. Constructing learning models on subsets of training data or applying different learn-
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ing algorithms and parameters on these data are the most popular ways to create classification commit-

tees. Notice that the DECORATE [Mel05] and our DECIDL are also ensemble-based committee forming 

methods with explicitly encouraging diversity among model members. The second issue is how to meas-

ure the degree of disagreement within the committee. Several effective metrics have been proposed in 

literature to address this issue, such as the vote entropy, Kullback-Leibler (KL) divergence, and Jensen-

Shannon divergence, etc [Mel05]. The vote entropy uses information theory to evaluate the disagree-

ment: 

    
          ∑

 (     )

 
    

 (     )

           (6.1) 

where  (     ) denotes the number of members which assign unlabeled instance    to label    and   is 

the total number of classes. Hence, this metric tries to find the instance with most disagreements, e.g., if 

each member disagrees with each other on   , then the vote entropy is maximum; on the contrary, it 

reaches 0 if every member reach a consensus. KL divergence is also an information-theoretic metric 

which measures the difference between two probability distributions. On the other hand, JS divergence 

is an extension of KL divergence, working on multiple distributions. JL divergence is the averaged KL di-

vergence of each distribution with respect to the mean distribution of the whole set.  

Expected error reduction. Expected error reduction tries to find the unlabeled data which can 

be able to maximally reduce the future generalization error if its label is known. The procedure of this 

approach is like the following: first a loss function is defined to estimate the expected generalization er-

ror, e.g., 0/1-loss or log-loss; then select one instance    in the unlabeled data set and label it; next in-

clude this single labeled instance in the original labeled set   and build a new learning model  ; test the 

classification performance of   on an separate validating data sets to have an error rate    . Iteratively 

select every unlabeled instance and repeat the process to get all of the error rates. The best query is the 

unlabeled example which has the lowest error rate. Obviously, to get all the error rates, the label of eve-

ry unlabeled example needs to be known during the computational procedure, although the final output 
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of the result only requires the labels of those chosen unlabeled data. In theory, the error rate may not 

be the only metric to evaluate the improvement of classification performance; other generic measure-

ment such as precision, recall, F-measure, or AUC-ROC can also be used here for particular interest. This 

approach has been successfully used with various machine learning models, including naive Bayes 

[RM01], nearest neighbor [LMR04], logistic regression [GG07], and support vector machines [EHB+07]. 

An obvious effect of expected error reduction is that its computational cost is very expensive, as it builds 

the same number of models as the number of unlabeled examples in order to select only one optimal 

instance. For some machine learning algorithms will have already required lots of computations (e.g., 

SVM), this approach is extremely inefficient. Hence, this framework and its similar extension—expected 

model change framework [SCR08]—only consider simple and fast learning models.  

 Other frameworks such as variance reduction, density-weighted QBC methods for query selec-

tion have also been studied in literature; interested readers may refer them to [Coh94] [Set08] [Set09]. 

6.1.1 Active Learning for imbalanced data 

The earliest works on active learning to address imbalance data learning problems started only a 

few years ago, around 2007. Zhu and Hovy applied active learning for word sense disambiguation (WSD) 

with approaches to solve the class imbalance problem [ZH07]. They claimed they are the first work of 

studying active learning with data resampling (over- and under-sampling) to add imbalance issue on 

WSD. Their contributions in this paper are three-folds. The first developed an over-sampling strategy, 

called BootOS, to create extra minority examples. For a given minority instance   , a new bootstrap ex-

ample     is the averaged summation of    and its all     nearest neighbors on all dimensions, e.g., 

    
 

   
∑     
 
   . As each example’s     nearest neighbors are unchanged, so each example can only 

create a single additional new instance. They developed an active-learning-with-resampling algorithm by 

embedding the aforementioned resampling strategy into a standard active learning framework.  The 

resampling step is performed after new labeled examples are added to training data set. This algorithm 
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is their second main work of the paper. Their last contribution introduces a combined stopping criterion 

to stop active learning procedure. Two conditions are used to form this stopping criterion: a) max-

confidence, which limits the predicted uncertainty (entropy) of each selected unlabeled example to a 

very small number and b) min-error, which measures the accuracy of predicted labels comparing to the 

real labels annotated by the “oracle” on the selected unlabeled examples. Their experiments on 38 ran-

dom chosen ambiguous nouns show that their developed methods are better than random sampling, 

uncertain sampling, under- and over-sampling based on accuracy and recall comparisons.  

Another very earlier work on active learning especially for class imbalance problem is studied by 

Seyda et al. [EHB+07] in 2007. They propose an effective unlabeled example selection strategy to ad-

dress the class imbalance in text categorization. They use SVM to create learning models and use the 

separating hyper-plane as the evaluation criterion to estimate the usefulness of unlabeled examples. 

More precisely, they believe that the data points within the margin area are less imbalanced than the 

entire data distributions; hence unlabeled instances that are closer to the SVM hyper-plane are more 

informative than others. The distance of a data point between each unlabeled example to the hyper-

plane built on existing training data set is used as selection criterion. Although similar works have been 

done before this paper in [AKJ04], the main contribution here is the “59 trick” proposed by Seyda et al. 

[EHB+07].  They proved that “the active learner will pick one instance (with 95% probability) that is 

among the top 5% closest instances to the hyperplane, by randomly sampling only 59 instances regard-

less of the training set size”. In other words, their method do not need to check the entire unlabeled 

data set, but only a small pool of 59 examples, and it is guaranteed at 95% confidence that the closest 

example to the hyperplane in this pool will also be in the top 5% closet examples to that hyperplane for 

all unlabeled data set [EHB+07]. Without looking over the whole unlabeled set, their method yields to a 

very efficient learning system which can work on very large datasets, such text categorization. They use 

an online SVM and an early stopping criterion to perform experiments on several real-world data sets, 
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including data sets from Reuters-21578 text categorization data, CiteSeer, and UCI.  They show that their 

method ranked the first on the average PRBEP performance on 18 data sets, comparing to under-

sampling, SMOTE, and simple cost-sensitive learning.   

The most recent work of applying active learning for imbalanced data classification is done by 

Oh. et al. [ LOZ09] [OLZ11]. Their initial study is to develop an active example selection (AES) method by 

using the expected error reduction framework [LOZ09]. They first formulize a measure of usefulness for 

data examples with a posterior likelihood and information theory analysis, and define the usefulness of 

an example to be the sum of squared errors between desired output and actual output of the trained 

classifier. The class imbalance is resolved through selecting procedure of useful examples [LOZ09]. An 

incremental naive Bayes classifier is used as the base learner for this iteratively AES learning, and their 

initial results have proved the effectiveness. However, as AES starts to build initial classifier from a por-

tion of randomly sampled training data set, slight changes may lead to the instability of output model. 

They then propose an ensemble AES (EASE) method to improve the generalized classification perfor-

mance[LOZ09]. More precisely, the original training data set are split into equal size of sub-components. 

For each component, an AES procedure is performed to create a learning model. As each resulting mod-

el is built from different portion of the original data, Oh et al. claim that this method are better and 

more efficient than traditional bagging [OLZ11].  The final decision of these models is made by a 

weighted voting policy: the weighted summation of prediction probabilities from all models and weight 

derived from each model’s training performance. After using an incremental naive Bayes method as the 

base learner again, Oh et al. show that this new EASE method also perform very well on several less im-

balanced biomedical data sets, with less training data used [OLZ11]. 

6.2 Active-DECIDL 

In this section, we will incorporate the active learning strategy to the DECIDL framework in order 

to solve the class imbalance problem. As active learning can start with a small data set to build classifiers 
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initially and select useful examples in the later iterations, this property is naturally beneficial for tackling 

imbalanced data set. Although the data sets in our study are highly imbalanced, the useful examples 

among them may be balanced or less imbalanced. Naturally, applying active learning to identify the use-

ful examples is possible to create balanced training subsets. However, in our imbalanced classification 

problem, there are no unlabeled data instances as all the examples are labeled. One way of fixing this 

issue is to consider partial data as unlabeled, and retrieve their labels when necessary. Therefore, we 

have to slightly change the standard active learning procedure to adapt it for imbalanced data.  

The adapted active learning procedure is as follows. First, perform under-sampling the majority 

class to get a subset   
  and add it to minority class to form a balanced initial training data set  

        
 , and then build an initial classifier with a chosen base learner     

  . Next, apply an ef-

fectiveness measure    on the rest of majority examples   
       

  and identify the most useful 

examples   
 . Then add these useful examples back to    to have another round of data set       

  
  and build a new classifier     

  , and at the same time remove   
  from   

  .  These steps repeat 

several iterations until certain conditions are reached. As all data examples are labeled, no “oracle” is 

needed for annotation. That is, there is no additional cost to query all the real labels for all the unselect-

ed majority examples. Hence, we can use the difference between the predicted and its real label as the 

criteria for evaluating the effectiveness    of an instance. In other words, the majority examples that 

can be accurately predicted by current model are considered no useful, while those incorrectly predict-

ed examples are much more useful. Note that as the initial under-sampling on the majority class may 

introduce certain instability for the final output, a bagging or boosting has to be involved to generalize 

the classification performance of the described procedure, meaning an ensemble adaptive active learn-

ing procedure (EAAL).  

Clearly, this ensemble adaptive active learning procedure also encourages the diversity of classi-

fication models in two aspects. First, it incrementally includes new training examples to build different 
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learning models. Second, the new examples are those most contradicted examples to current classifier, 

and hence the new classifier built on the combined data set will produce certain variations to previous 

classifiers.  

To combine the strengths and advantages of above active learning strategy and our DECIDL 

framework, we now embed this EAAL procedure into our DECIDL framework to develop a new meta-

learning strategy: Active-DECIDL. As EAAL uses under-sampling to shrink the large majority class and DE-

CIDL creates artificial examples to enlarge the minority class, the two methods compensate each other 

to become a perfect combination for solving imbalance learning problem.  

Note that the active learning steps are embedded in our DECIDL procedure, thus the stopping 

criterion is shared with DECIDL, when the committee members reach to a maximum pre-settings. Also 

note that in the above algorithm, each time we select top               
       

   majority ex-

amples to form the active set   
  , instead of selecting one or two instances in a traditional way. The 

reason is that after adding this active set to the current training set, the total number of positive exam-

ples        
   is equal to total number of negative examples|  

 |        . Hence, in each iteration 

the total learning data set    is balanced.  
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Table 6.1: The Active-DECIDL algorithm 

Algorithm 6.1: The Active-DECIDL algorithm 

Inputs: 
         – Base learning algorithm (e.g., C4.5, SVM, NN, cost-C4.5, SVM-weight) 
   –〈   〉, Training set,   examples       ,    is n-dim vector, and               
      – A        vector, misclassification cost for each class (default:            ) 
        – Maximum number of member classifiers in the targeted ensemble 
          – Maximum number of iterations to build an ensemble 
      – Evaluation metric for ensemble performance (e.g., Total Cost, or 1-MCC) 
     – Percentage (ratio to size of training data D) of synthetic examples to create 

Steps: 
Initialization: 
1.        ,       

2. Under-sample the majority class    to create a subset   
 , and remaining set   

  

3. Build a classifier model                       , where         
  

4. Initialize ensemble,          
5. Computer ensemble performance:                             

Loop:  
6. While             and              

7. Reset current training data set:             
    

8. Artificially generate data set   with         new training examples  

9. Use current ensemble    to make predictions on    , to get     (  ) 

10. Label examples in   with probability of class labels inversely to         

11. Remove the majority-labeled examples in    get      

12. Use current ensemble    to make predictions on   
 , to get     (  

 ) 

13. Calculate effectiveness      
   |    (  

 )   (  
 )|

 
for each majority instance   

  in   
 , 

and choose top               
      

   examples to form active set   
   

14. Update current negative set   
    

    
  ; update remaining negative set   

    
    

   

15. Updated current total training data set to be:            
     

   
16.                         ,                 
17. Computer new ensemble performance:                          
18. If          (i.e., performance is better) 
19.                      
20. Else: 
21.                 
22.           

Outputs: 
Ensemble classifier    

 

6.3 Experimental Settings and Results 

To evaluate the performance of Active-DECIDL, we run the experiments on the 30 data sets in 

the benchmark pool. We compare the classification performance of Active-DECIDL with DECIDL, ran-
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domly under-bagging and randomly over- bagging; similar to previous experiments, the F-measure and 

MCC are reported for comparisons. Meanwhile, the percentages of queried majority data instances are 

also reported to show the effectiveness of active learning; we defined such percentage as the data que-

ry ratio.  SVM is used as the base learner and all three methods have equal number of committee mem-

ber. Therefore, the active learning procedure stops at the same time when the size of committee mem-

ber reaches to a predefined number.  

The parameter settings of Active-DECIDL are set to be the same as DECIDL, in order to have a 

fair comparison. More precisely, the size of artificial set, the number of committee members, and the 

evaluation metric are all same for Active-DECIDL and DECIDL. The parameters inside the base learner 

(SVM) are optimized internally by an internal training-testing step. The final reported performance of 

each method was averaged over ten runs of 5-fold cross-validation.  
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Table 6.2: Classification performance and data query ratio of Active-DECIDL on benchmark data 

Data F-mea. G-means MCC AUROC AUCPR 
Data Query  

Ratio 

Ecoli 0.633 0.858 0.605 0.942 0.610 12.3% 

Optical_Digits 0.921 0.968 0.913 0.996 0.971 8.2% 

SatImage 0.558 0.821 0.518 0.923 0.582 27.5% 

Pen_Digits 0.909 0.965 0.900 0.997 0.970 15.5% 

Abalone_7 0.381 0.741 0.342 0.850 0.319 57.4% 

Sick_Euthyroid 0.715 0.906 0.695 0.950 0.747 18.6% 

Spectrometer 0.840 0.933 0.831 0.954 0.831 25.8% 

Balance 0.063 0.222 -0.017 0.416 0.072 53.7% 

Car_Eval_34 0.927 0.987 0.923 0.999 0.964 24.2% 

ISOLET 0.838 0.955 0.829 0.990 0.923 16.5% 

US_Crime 0.540 0.804 0.510 0.922 0.566 42.4% 

Yeast_ML8 0.126 0.467 0.019 0.531 0.090 84.5% 

Scene 0.252 0.534 0.207 0.771 0.228 79.5% 

Libras_Move 0.717 0.902 0.717 0.979 0.804 29.3% 

Thyroid_Sick 0.662 0.904 0.656 0.946 0.642 38.6% 

Coil_2000 0.163 0.472 0.116 0.671 0.130 90.1% 

Arrhythmia 0.204 0.682 0.197 0.752 0.181 46.2% 

Solar_Flare_M0 0.197 0.480 0.160 0.738 0.167 80.9% 

OIL 0.354 0.773 0.360 0.917 0.385 50.8% 

Car_Eval_4 0.868 0.992 0.873 0.999 0.933 44.7% 

Wine_Quality_4 0.151 0.704 0.170 0.778 0.216 19.6% 

Letter_Img 0.777 0.825 0.781 0.992 0.866 67.8% 

Yeast_UCI_ME2 0.372 0.773 0.383 0.888 0.311 83.0% 

Web_page 0.452 0.784 0.457 0.925 0.464 55.1% 

Ozone_Level 0.192 0.487 0.188 0.772 0.180 91.3% 

Mammography 0.490 0.837 0.504 0.921 0.540 83.1% 

Reuters-21578 0.582 0.887 0.600 0.984 0.619 54.9% 

Forest_Cover_5 0.093 0.743 0.150 0.831 0.079 80.0% 

Protein_homo. 0.137 0.745 0.199 0.787 0.307 90.7% 

Abalone_19 0.035 0.484 0.041 0.666 0.022 90.4% 

Average 0.472 0.755 0.461 0.860 0.491 52.1% 
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Table 6.3: Performance Comparison among Active-DECIDL, DECIDL, under-bagging and over-

bagging  

Performance   F-measure  MCC  

Data Set 
Active-
DECIDL 

DECIDL 
Over-
bagg. 

Under- 
bagg. 

Active-
DECIDL 

DECIDL 
Over- 
bagg. 

Under- 
bagg. 

Ecoli 0.633 0.609 0.567 0.517 0.605 0.576 0.552 0.515 

Optical_Digits 0.921 0.822 0.735 0.696 0.913 0.805 0.734 0.682 

SatImage 0.558 0.358 0.000 0.276 0.518 0.358 0.272 0.256 

Pen_Digits 0.909 0.775 0.000 0.629 0.900 0.763 0.702 0.616 

Abalone_7 0.381 0.310 0.000 0.334 0.342 0.239 0.337 0.309 

Sick_Euthyroid 0.715 0.751 0.605 0.584 0.695 0.727 0.607 0.581 

Spectrometer 0.840 0.750 0.811 0.636 0.831 0.738 0.796 0.637 

Balance 0.063 0.000 0.059 0.088 -0.017 0.000 -0.184 -0.159 

Car_Eval_34 0.927 0.784 0.913 0.706 0.923 0.784 0.907 0.713 

ISOLET 0.838 0.776 0.769 0.671 0.829 0.757 0.771 0.675 

US_Crime 0.540 0.449 0.465 0.445 0.510 0.448 0.446 0.451 

Yeast_ML8 0.126 0.157 0.159 0.173 0.019 0.060 0.074 0.098 

Scene 0.252 0.210 0.236 0.241 0.207 0.138 0.180 0.208 

Libras_Move 0.717 0.832 0.678 0.674 0.717 0.834 0.685 0.676 

Thyroid_Sick 0.662 0.635 0.515 0.481 0.656 0.618 0.528 0.504 

Coil_2000 0.163 0.117 0.189 0.177 0.116 0.029 0.153 0.140 

Arrhythmia 0.204 0.206 0.261 0.154 0.197 0.170 0.214 0.125 

Solar_Flare_M0 0.197 0.146 0.170 0.190 0.160 0.130 0.158 0.199 

OIL 0.354 0.301 0.378 0.292 0.360 0.333 0.412 0.333 

Car_Eval_4 0.868 0.936 0.812 0.752 0.873 0.934 0.823 0.768 

Wine_Quality_4 0.151 0.269 0.171 0.177 0.170 0.242 0.198 0.175 

Letter_Img 0.777 0.844 0.541 0.486 0.781 0.849 0.548 0.534 

Yeast_UCI_ME2 0.372 0.137 0.284 0.294 0.383 0.156 0.334 0.341 

Web_page 0.452 0.582 0.501 0.306 0.457 0.594 0.485 0.370 

Ozone_Level 0.192 0.111 0.237 0.173 0.188 0.102 0.281 0.235 

Mammography 0.490 0.530 0.264 0.217 0.504 0.554 0.347 0.285 

Reuters-21578 0.582 0.647 0.749 0.433 0.600 0.655 0.802 0.491 

Forest_Cover_5 0.093 0.285 0.102 0.091 0.150 0.276 0.199 0.154 

Protein_homo. 0.137 0.675 0.420 0.126 0.199 0.679 0.470 0.223 

Abalone_19 0.035 0.082 0.049 0.024 0.041 0.151 0.105 0.056 

Average 0.472 0.469 0.388 0.368 0.461 0.457 0.431 0.373 

Win/Loss  
to Under-bagg. 

26 22 21   21 21 24   
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Figure 6.2: Data query ratio of majority class for the 30 benchmark data 

 

Figure 6.3: Average Performance Comparison of the four methods on benchmark data pool 

6.4 Result Discussion and Conclusion  

Table 6.2 shows the detailed F-measure, MCC, G-means, AUCROC, AUCPR and data query ratio 

of Active-DECIDL on the 30 benchmark data. In general, the Active-DECIDL works well on most of the 

data sets, although some of them are still difficult to tackle, e.g., Balance, Yeast_ML8, Coil_2000, 

Wine_Quality_4, Forest_Cover_5, Abalone_19. The possible reason is that underlying distributions of 

minority class may be very complicated, and selecting informative majority instances do not alleviate 

the difficulty of creating effective classification models.  
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However, it is worth to notice that the data query ratios on these data sets are generally low, 

ranging from less than 8% to 90%, which means in most cases, the active learning could significantly re-

duce the number of examples needed to build efficient classification models. This result successfully 

proves that active learning is very effective in reducing labeled examples in machine learning process, 

while still keeping the similar prediction performance.  

Result in Table 6.3 and Figure 6.3 compare the classification performance between Active-

DECIDL, DECIDL, under-sampling and over-sampling. Clearly, from those results, we can see that Active-

DECIDL is generally superior to other three methods in terms of performance both on F-measure and 

MCC. The phenomenon that Active-DECIDL is slightly better than DECIDL strongly suggests that active 

learning is able to help a learning algorithm to reach the same level of classification performance while 

using much less data examples for training. This effect completes our original idea of using active learn-

ing to help solving class imbalance problem. The developed Active-DECIDL method has confirmed our 

initial hypothesis: the combination of active learning and DECIDL are fitting to each other for handling 

imbalance data learning problem. 
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Chapter 7: PROTEIN METHYLATION PREDICTION 

In this chapter, we will study the problem of protein methylation prediction and apply the DE-

CIDL framework to solve it. A brief introduction will outline the methylation prediction problem and its 

current research statuses and challenges. The biological knowledge about protein methylation is pre-

sented to provide further detailed information about the target problem—a real-world imbalanced data 

learning in bioinformatics. Many researchers have already provided their own classification methods 

and servers to predict methylated positions in protein sequence. Here, we apply our DECIDL framework 

that is specially designed for imbalanced learning to solve this problem more effectively.  

7.1 Introduction 

As we all know, cell is the fundamental functional unit of all kinds of lives in our world, and pro-

tein is an essential component of all kinds of cells. Proteins are playing many critical roles in defining 

particular functions and structures of cells.  They can also help cells communicating with outside envi-

ronment and transport useful substances for cells to survive, grow and reproduce.  

Protein methylation is one important type of post-translational modifications of proteins. It was 

discovered more than 40 years ago [PK67], and offers greatly functional diversity to the protein se-

quence. It typically happens on arginine or lysine amino acid in a protein sequence [Wal05] [BR05]. The 

η-nitrogens of an arginine residue in a protein can be monomethylated or dimethylated, with either 

both methyl groups on single terminal nitrogen (asymmetric dimethylated arginine) or on either nitro-

gens (symmetric dimethylated arginine) by protein arginine methyltransferases (PRMTs) [BR05]. The ε-

amino group of lysine can be methylated in mono-, di-, and tri-methylated states by protein lysine me-

thyltransferases. Currently, protein methylation has been intensely studied in the histones—the main 

protein components of chromatin because of its important role in epigenetic regulation of gene func-

tions.  
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Although protein methylation is an important modification in biology and chemistry, the molec-

ular mechanism underlying the methylation is still poorly understood. In particular, the information of 

the substrate specificity of different PRMT members is largely incomplete. A genome-wide of searching 

of methylated substrates is highly needed to unravel many unknown functions of PRMTs in biological 

processes and cellar components. Therefore, accurately predicting these methylation sites will greatly 

help researchers setting smart experiments to find more interesting sites in unknown sequences. Cur-

rently, there exist some algorithms published in literature to handle this methylation prediction problem 

[CXH+06] [SLC+09] [SXT+09]. Many of them used the SVM method to train classifiers on known protein 

sequences and then made predictions on unknown sequences. If there are enough identified methyla-

tion sites for SVM training, then it’s easy to build reliable and robust classifiers for further prediction. 

However, in most cases, the number of methylated sites is far less than un-methylated ones, and thus 

the dataset for SVM training is highly imbalanced. Directly using SVM to build classifiers will result in 

highly skewed hyperplanes, which give the same prediction for any other sequences without truly dif-

ferentiating them. Therefore, it’s important to design algorithms to solve the problems in imbalanced 

and small datasets.  

7.2 Background 

7.2.1 Protein Structure  

Proteins are normally made of one or more polypeptides and fold to particular 3D structures 

based on the amino acid sequence in those polypeptides. A polypeptide is a linear polymer chain that is 

consisting of many amino acids and bonded by the peptide bonds between the carboxyl and amino 

groups of neighboring amino acid. The amino acid, or called residue in a sequence, is encoded by gene 

code, and there are on 20 kinds of them in total. However, a sequence of these amino acids can produce 

countless number of combinations, and thus there are more than millions of meaningful and functional 

proteins. A typical protein contains hundreds or thousands of amino acid residues. In essence, it is the 



94 

primary amino acid sequence that determines the 3D structure and functionality of a protein. Proteins 

have four levels of structures in general. The first level is its primary structure, which is the sequence of 

20 kinds of amino acids. The second level is protein secondary structure, which has 3 main forms of 

shapes called helix, strand, and coil. Each shape is formed by dozens or hundreds of amino acids. The 

third level is the tertiary structure, which is also the 3D folding structure of protein. It is mainly the spa-

tial assembly of helices (helix), sheets (strand) and the pattern of connections between them (coil). The 

fourth level is for those proteins with more than one polypeptide chain. The combinations of those ter-

tiary structures make up the quaternary structure. More detailed knowledge for protein structure can 

be found in [PR04]. 

7.2.2 Protein Methylation  

The genetic material present in the nucleus of eukaryotic cells is tightly packaged into chroma-

tin, which functions as a structural and dynamic scaffold in the regulation of various nuclear processes, 

including transcription, DNA replication and repair, mitosis and apoptosis [HM05] [Tch05]. From the past 

decade of work, epigenetics has been established as a critical topic of research in current biology dealing 

with heritable changes in a gene function that does not entail changes in the nucleotide sequence of the 

gene [Hol87][Bir02] [WM01] [CL05]. Epigenetic factors, in particular DNA methylation and histone modi-

fications, significantly contribute to chromatin remodeling and function [RJ00]. This rapidly evolving field 

offers exciting new opportunities for investigating the molecular and cellular mechanisms underlying 

various poorly understood biological phenomena such as dosage compensation [BBK+05] and genomic 

imprinting [KS05], as well as providing new approaches to the diagnosis and treatment of complex clini-

cal disorders such as cancer and cardiovascular diseases [YJ06]. 

Among different chromatin modifications, the histone arginine methylation is catalyzed by pro-

tein arginine methyltransferases (PRMTs) that transfer the methyl group from S-adenosyl-L-methionine 
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(AdoMet, SAM) to the guanidino group of arginines in histone or non-histone protein substrates, result-

ing in mono and di-methylarginine residues in substrate proteins (Figure 7.1). 

PRMT

SAM SAH

asymmetricsymmetric

SAM SAH

N
H

O

NH

H

NH2
H2N

N
H

O

NH

H

NH
H2N

CH3

N
H

O

NH

H

NH
HN

CH3

N
H

O

NH

H

N
H2N

CH3H3C

CH3

PRMT

 

Figure 7.1: Protein arginine methylation catalyzed by PRMTs 

Eleven PRMT family members have been identified at the protein and genomic levels in human 

tissues or cells and categorized into two major types, type I and type II, according to substrate and 

product specificity [BR05] [LTS+05].Type I enzymes (PRMT1, 3, 4, 6 and 8) catalyze the transfer of the 

methyl group from S-adenosyl-L-methionine (SAM, AdoMet) to the guanidino nitrogen atoms of arginine 

residue to produce ω-NG monomethylarginines (MMA, L-NMMA) and ω-NG,NG-asymmetric dime-

thylarginines (ADMA) (for a review, see a ref [BR05]). Type II enzymes (PRMT 5, 7 and 9) catalyze the 

formation of MMA and ω-NG,N’G-symmetric dimethylarginines (SDMA). Of note, the enzymatic activity 

of PRMT2, 10 and 11 remains uncharacterized. PRMT-catalyzed arginine methylation has been shown to 

be involved in many biological processes including signal transduction, gene transcriptional regulation, 

RNA transport, RNA splicing, and embryonic development [BR05]. 

Arginine methylation has a clear impact on the ability of the PRMT substrates to perform their 

biological functions. Although it does not alter the overall charge on an arginine residue, the addition of 

methyl groups increases steric hindrance and removes amino hydrogens that might be involved in hy-

drogen bonding. Therefore, methylation could serve to modulate intra- or intermolecular interactions of 

target proteins. This may be suggestive of the role of protein arginine methylation as a mark of signaling 

transduction in cells. However, a challenging problem in the study of protein arginine methylation is un-

derstanding and exploration of the substrate specificity of PRMTs. Thus far, only limited numbers of sub-
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strates of PRMTs (~50-70 confirmed reports in total for all the PRMT members) have been identified and 

experimentally verified. In particular, no apparent methylation consensus sequence has been deter-

mined. PRMT1 (like PRMT3) mediates methylation typically within the archetypal Arg–Gly- or Arg–Gly–

Gly sequences [BSA06]. This overly simplified rule cannot account for all the existing PRMT substrates. 

Recent studies have shown that the substrate specificity of PRMT1 goes far broader than the typical 

RGG paradigm and suggest that many of the cellular functions of PRMT1 may not yet have been ex-

plored [WZZ+08]. A better computer-aided analysis of the existing PRMT substrates will yield new in-

sight into the diversity of PRMT substrates, and identify new PRMT targets and related biological path-

ways. 

7.3 Related Works in Protein Methylation Prediction 

Four current protein methylation prediction servers are (1) the Memo [CXH+06], (2) the Auto-

Motif [PTW+05], the MASA [SLC+09], and the BPB-PPMS [SXT+09]. 

Memo: In [CXH+06], Chen et al. collected verified methylation sites from annotations in SWISS-

PROT database. They also searched the PubMed with keyword “Methylation Arginine” and then manual-

ly collected confirmed methylations. After combining data from two resources together, BlastClust is 

used to remove homologous proteins. Finally, 250 methylated arginines were used as the positive sam-

ples for SVM modeling, and all other non-methylated arginines from the same proteins were used as 

negative samples. RBF kernel function was used and the average cross-validation accuracy is 86.70% for 

Arginine prediction. However, the collected data in Memo didn’t differentiate protein substrates meth-

ylated by different PRMTs. Therefore, even it makes predictions on unknown protein sequences, but it 

provides little information about which PRMT family causes this methylation. Such information is critical 

for users to verify the prediction. Meanwhile, mixing methylations by different protein families together 

for training SVM will also potentially overestimate the number of methylated Arginines when predicting.  
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AutoMotif Server[PTW+05]: Positive instances which are 9-amino acid long sequence fragments 

have been confirmed with one type of post-translational modifications (PTMs) from SWISS-PROT data-

base [PTW+05]. The negative instances are constructed randomly by choosing fragments without any 

type of PTMs. They collected all type of PTMs, and each type of PTM has been trained and modeled sep-

arately. Thus, user can choose one specific modification to predict. However, similar to the Memo, this 

server doesn’t provide further information about which PRMT is responsible for the methylation. No-

ticeably, their Leave-one-out precision and recall performance for Omega-N-methylated arginine are 

both 0, due to highly imbalanced data (62 positives, and 2044 negatives). In fact, we have tried several 

known sequences, such as Histone 2 & 3, but it produces either incomplete predictions or nothing. 

MSAS Server: Most recently, Shien et al. [SLC+09] combines more structural information of the 

sequences to identify methylation sites. They first collect methylated lysine, arginine and other residues 

from Memo and newest SWISS-PROT database. Then each methylated fragment was encoded with their 

amino acid characteristics, predicted secondary structures (with PSIPRED), and predicted area accessible 

ability (with RVP-Net). They also use SVM as the learning classifiers. Since more methylated residues 

have been collected and more information has been used for representation, their method produces the 

highest prediction accuracy compared with other existing methods. The sensitivity they got is 82.1% and 

the specificity is 87.4%. Similar to previous methods, their server also only provide a general methylation 

prediction, and the related PRMTs are not identified. After balancing the positives and negatives with 

ratio 1:1 (246 samples), they report the average cross validation with 82.1% for sensitivity and 87.4% for 

specificity. However, the MSAS server only provides the general methylation prediction without identify-

ing related PRMTs. 

BPB-PPMS Server: Most recently, Shao et al. [SXT+09] also develop a new computational model 

for methylation identification. They too collect methylated residues from the SWISS-PROT database 

(version 56) by search keywords. Then they compute the posterior probability of each amino acid in pos-
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itive dataset and negative dataset, respectively, which is called position-specific bi-profile. Through 

Bayes formula, bi-profile is used to predict the methylation status given any future unknown sequences. 

The final dataset for cross validation is balanced with ratio 1:3 between positives and negatives; the final 

classification performance on arginine prediction is 74.71% for sensitivity and 94.32% for specificity. Ob-

viously, their method only uses the basic residue frequency information for learning, which underesti-

mates the importance of other features, such as evolutionary profile, structure information, etc. 

Summaries of features of the four Web servers are listed in Table 7.1. 

Table 7.1: Features of the Four Current Prediction Web Servers 

Features Memo AutoMotif MASA BPB-PPMS 

Model for Classification SVM SVM SVM SVM 

Sequence Representation Bin (Binary) 
Bin, Blosum, 
Frequency 

Bin, 2D Structure, 
Solvent Acc. 

Frequency 

Data Under-sampling / 
Ratio (negative vs. positive) 

Yes 
1:1 

No 
46:1 

Yes 
5:1 

Yes 
3:1 

Learning and Predicting on 
different PRMT families 

NO NO NO NO 

 

7.4 Our Proposed Algorithms 

7.4.1 Representation of Protein Sequence  

As described before, protein methylation is one kind of modifications after proteins are trans-

lated from gene codes to their primary amino acid sequences. Hence, the main information we can use 

to predict such methylation are their polypeptides, i.e., their amino acid sequences. Table 7.2 lists all the 

20 kinds of amino acids and their properties and Figure 7.2 shows a typical protein sequence and its 

structures [KWT+07].   

  



99 

Table 7.2: 20 Amino Acids and their Abbreviations  

Amino Acid 3-L Abbr. 1-L Abbr. Polarity Amino Acid 3-L Abbr. 1-L Abbr. Polarity 

Alanine Ala A nonpolar Leucine Leu L nonpolar 

Arginine Arg R polar Lysine Lys K polar 

Asparagine Asn N polar Methionine Met M nonpolar 

Aspartic acid Asp D polar Phenylalanine Phe F nonpolar 

Cysteine Cys C nonpolar Proline Pro P nonpolar 

Glutamic acid Glu E polar Serine Ser S polar 

Glutamine Gln Q polar Threonine Thr T polar 

Glycine Gly G nonpolar Tryptophan Trp W nonpolar 

Histidine His H polar Tyrosine Tyr Y polar 

Isoleucine Ile I nonpolar Valine Val V nonpolar 

 

 

Figure 7.2: Protein (PDB ID: 3OXC [KWT+07]) Structure and Sequence 

Clearly, the protein sequences are consisting of long string combinations of 20 kinds of amino 

acids, and they cannot be directly used as numbers for the computations in our learning algorithms. 

Therefore, the first step is to convert these sequence information into integers or float numbers in a 

reasonable manner, and then identify the independent features and dependent target class.  After this 

step, we can fit these values into learning algorithms for classification.  

Before introducing any advanced sequence representation techniques, let first describe a simple 

idea of converting these amino acids into integers. As there is limited number of amino acids, it is similar 

to a nominal feature for each position in a protein sequence. Hence, a traditional way for amino acid is 
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using a 20-bits binary value to represent each amino acid. First, we rank all amino acids based on their 1-

letter name alphabetically (as shown in Table 7.1). For example, Alanine is the first; Arginine is the se-

cond, and so on. Then, the 20-bits representation will have a 1 in its     position where   is its ranking 

number. All other positions will have zeros. Hence, the 20-bits value for each amino acid has only 1 one 

and 19 zeros. We call this representation method—orthogonal code. A more concrete example is de-

scribed in Table 7.3.  

Obviously, these binary representations can be considered as the independent features for fur-

ther classification, because the primary sequences are the fundamental information for any advanced 

protein structures and functions. The next step is to choose a predicting target property. Depending on 

the interested question, it is generally a sophisticated protein characteristic of the sequence. For exam-

ple, secondary structure, tertiary structure, surface solvent ability, and a post-translational modification 

are the most popular properties to be predicted based on amino acid sequences. It is generally assumed 

that an individual residue and its flanking amino acids are the main causes to determine the interested 

property on this residue; hence a subsequence around a center residue is used to represent the inde-

pendent features for the target prediction of this residue. Assume that there are   residues on the left 

and   on the right, then there are total        residues together in determining the property of 

the residue in the center. Normally,   is chosen based on a particular problem, ranging from 7 to 21. 

The status of the centering residue is represented with +1 or -1, in order to fit to classification algo-

rithms. By sequentially sliding the representation range to the next subsequence, we can collect more 

and more predicting examples and their features, resulting in a training data set. Such sliding technique 

is usually called sliding window.  
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Table 7.3: Orthogonal representation of 20 amino acids and a short sequence 

Amino Acid Rank 1-L Abbr. Representation Example 

Alanine 1 A                ⏟          
       

 Sequence : PQIT R  LWKR 
Converted to: 
0 0 0 0 0  0 0 0 0 0  0 0 0 0 1  0 0 0 0 0 
0 0 0 0 0  0 1 0 0 0  0 0 0 0 0  0 0 0 0 0 
0 0 0 0 0  0 0 0 0 1  0 0 0 0 0  0 0 0 0 0 
0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 1 0 0 0 
0 1 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0 
0 0 0 0 0  0 0 0 0 0  1 0 0 0 0  0 0 0 0 0 
0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 1 0 0 
0 0 0 0 0  0 0 0 0 0  0 1 0 0 0  0 0 0 0 0 
0 1 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0 

Arginine 2 R                ⏟          
       

 

Asparagine 3 N                ⏟          
       

 

… … … … 

Tyrosine 19 Y                ⏟          
       

 

Valine 20 V                ⏟          
       

 

 

7.4.2 Feature Extraction from Protein Sequences  

Similar to other methods, we also assume that methylated Arginines are largely determined by 

its neighboring residues in primary sequence structures. That is, the characteristics of residues centered 

with an Arginine will be explored as deep and diversified as possible to find the potential relations. Each 

status of an Arginine (being methylated or non-methylated) is represented by a vector of features ex-

tracted from its primary neighboring residues. These features include physicochemical properties 

(PhCh), the multiple sequence alignment profiles (the PSSM), secondary structure (SS), and solvent ac-

cessible area (SAS). Thus, our first step is to extract these features for each Arginine in the PRMTs. 

To better understand the underlying mechanism of protein Arginine methylation, enough in-

formation has to be collected for further machine learning task. So far, most studies of identifying meth-

ylation sites only use the primary structure information: the properties of amino acids and the evolu-

tionary profiles. However, it is well known that the protein secondary and tertiary structures have signif-

icant impact on many PTMs. Therefore, structure information should also be used to differentiate the 

methylation status. In this paper, the secondary structure and solvent accessible area information are 

extracted along with physicochemical properties and PSSM to represent the characteristics of neighbor-
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ing residues. We believe it’s the first time that such comprehensive information has been explored for 

protein methylation identification.  

The physicochemical (PhCh) properties of each amino acid include the status of being polar, 

charged, aromatic, small, tiny, hydrophilic/hydrophobic, and aliphatic [Tay86]. Each property is repre-

sented with a binary bit, so 8 bits are used for PhCh feature.  

 

Figure 7.3: The physico-chemical relationship of the 20 amino acids [Tay86] 

The evolutionary profiles of each protein sequence are generated by PSI-BLAST [AMS+97] 

against the NCBI non-redundant database with three iterations and a cutoff E-value 10-3. The position 

specific scoring matrix (PSSM) produced by PSI-BLAST is used as the evolutionary information; its value 

will be scaled in the range [0, 1].  

Not all PRMT sequences have been discovered with 3D structures so far, thus the predicted 

structure information is used for feature extraction. For secondary structures of each sequence, the PSI-

PRED server [BMM+05] can provide reliable three-status (helix, coil, and strand) prediction for each res-

idue of a query sequence. The real values of three kinds of secondary structures are directly incorpo-

rated in the feature list.  

For solvent accessible area, we also use the predicted information, which is obtained from RVP-

net [AGS03]. The RVP-net can output real-valued predictions of accessible surface area for each amino 
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acid; hence, it should bring more information for further classification than binary or discrete predic-

tions. 

Methylation Classification and Performance Evaluation
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Figure 7.4: Data flow of imbalanced data learning on Methylated Protein Sequences 

Hence, for each Arginine, the feature number is     , where   is the total sliding window size. 

  is set with odd number between 7 and 21 in or computational experiments.  

7.4.3 DECIDL on Methylation Data 

As arginine methylation is a rare modification among all arginine in protein sequences, the re-

sulting methylation data set is quite imbalanced. From the data sets used in the four methylation predic-

tion server, we know that such imbalance ratio can reach to as high as 10:1, i.e., 216 methylated (posi-

tive) arginines and 1980 non-methylated (negative) arginines are collected in BPB-PPMS server[SXT+09]. 

Hence, this arginine methylation prediction problem is a perfect real-application test for our DECIDL 

framework and its variations. We will directly apply our DECIDL algorithm on the methylation data set. 

The detailed data collection step for methylated protein sequences will be discussed in next section.  

Notice that, as summarized in section 7.3, most current methods used under-sampling to bal-

ance the data set and then apply SVM for model building. Meanwhile, their reported classification per-

formances are totally based on the under-sampled balanced data set, not on the original data set. 
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7.5 Methylated Protein Sequence Collection  

The methylated protein sequences for arginine in our following experiment are collected from 

MeMo server [CXH+06]. MeMo generated such data set in the following way: they first examined the 

methylation residues from the SWISS-PROT database (ver. 48) [BBA+03] and only selected those exper-

imentally verified methylated arginine sites. In other words, potential methylated residues with key-

words “By similarity”, “Potential” or “Probable” are not considered. They also manually search PubMed 

for keywords “methylation arginine” and found more than 1700 articles. The methylation information 

found by these two methods are combined together to produce 273 methylated arginine positions. To 

remove the effect of homologous proteins, they use BLASTCLUST with a 30% identity threshold to clus-

ter similar protein sequences and then remove one of the cases if two sequences have methylated ar-

ginines at same positions after alignment. They finally collected 250 positive methylated arginines from 

91 proteins. All the non-methylated arginines in these 91 proteins are considered as negative cases, re-

sulting in 2700 negative examples. Hence, the data set in our experiment has 250 positive examples, and 

2700 negative examples, meaning the imbalance ratio is about 11:1.  

7.6 Computational and Laboratorial Results 

In this section, we will show the computational and laboratorial results on this methylation data 

set with several imbalanced learning strategies. Four ensemble methods used in previous chapters are 

selected for comparisons: DECIDL, GSVM-RU, SMOTE-bagging, and DBEG-ensemble. We use two levels 

of 5-folds cross validation to report their averaged performance metrics over 10 independent runs. The 

two levels of cross validation are conducted as follows: the original methylated data set (250 positives 

and 2700 negatives) are randomly divided into 5 equal folds, then one fold is used as independent test-

ing set and the rest 4 folds are used as training set. Within these 4 folds, 3 of them are used for building 

prediction models, and the left 1 fold is set to validate the performance. After each of the 4 folds is 

treated as validation fold, their averaged performance is used to select the best modeling parameters 
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and a final prediction model is built on all 4 folds data with the best parameters. The process of cross 

validation, parameter optimization, and evaluations is described in figure 7.5.  

7.6.1 Computational Results 

Table 7.4 and Figure 7.5 to 7.10 show the F-Measure, G-means, and MCC performance of the 

four imbalanced learning methods with window size ranging from 7 to 21.  

From these results, we can see that our DECIDL method can produce high and stable perfor-

mance with different sizes of window. All the classification metrics, i.e., F-measure, G-means, MCC, and 

AUC-ROC, decrease very dramatically for all other three learning methods (GSVM-RU, SMOTE-bagging, 

DBEG-ensemble), except our DECIDL method.  

 

Figure 7.5: F-Measure Performance Comparison with Different Window Sizes 

 

Figure 7.6: G-means Performance Comparison with Different Window Sizes 
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Figure 7.7: MCC Performance Comparison with Different Window Sizes 

 

 

Figure 7.8: AUC-ROC Performance Comparison with Different Window Sizes 
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Table 7.4: Classification Performance on Arginine Methylation Data Set 

Window Size Metric   F-Mea. G-means   MCC  AUROC AUCPR Sen. Spec. 

size=07 

DECIDL 0.421 0.736 0.382 0.814 0.382 0.642 0.864 

GSVM-RU 0.359 0.715 0.310 0.776 0.319 0.631 0.819 

SMOTE-Bagging 0.495 0.723 0.446 0.822 0.401 0.563 0.933 

DBEG-Ensemble 0.487 0.740 0.440 0.808 0.390 0.598 0.920 

size=09 

DECIDL 0.464 0.727 0.420 0.819 0.407 0.595 0.903 

GSVM-RU 0.336 0.704 0.283 0.759 0.287 0.628 0.796 

SMOTE-Bagging 0.497 0.702 0.449 0.812 0.406 0.524 0.944 

DBEG-Ensemble 0.480 0.702 0.430 0.822 0.420 0.530 0.936 

size=11 

DECIDL 0.472 0.743 0.432 0.827 0.404 0.622 0.906 

GSVM-RU 0.326 0.694 0.271 0.752 0.280 0.620 0.789 

SMOTE-Bagging 0.429 0.616 0.382 0.794 0.387 0.402 0.955 

DBEG-Ensemble 0.452 0.652 0.401 0.802 0.395 0.454 0.948 

size=13 

DECIDL 0.477 0.766 0.433 0.817 0.377 0.659 0.894 

GSVM-RU 0.323 0.692 0.269 0.756 0.283 0.616 0.790 

SMOTE-Bagging 0.401 0.569 0.367 0.794 0.387 0.341 0.967 

DBEG-Ensemble 0.437 0.612 0.396 0.800 0.409 0.391 0.962 

size=15 

DECIDL 0.463 0.741 0.416 0.811 0.381 0.611 0.906 

GSVM-RU 0.332 0.682 0.274 0.759 0.283 0.578 0.818 

SMOTE-Bagging 0.363 0.520 0.341 0.790 0.400 0.285 0.975 

DBEG-Ensemble 0.343 0.518 0.309 0.789 0.370 0.282 0.968 

size=17 

DECIDL 0.488 0.741 0.439 0.820 0.418 0.603 0.916 

GSVM-RU 0.327 0.683 0.271 0.764 0.292 0.588 0.811 

SMOTE-Bagging 0.288 0.430 0.290 0.782 0.362 0.203 0.984 

DBEG-Ensemble 0.367 0.527 0.342 0.787 0.390 0.289 0.973 

size=19 

DECIDL 0.466 0.723 0.416 0.812 0.382 0.574 0.917 

GSVM-RU 0.329 0.693 0.273 0.761 0.289 0.608 0.799 

SMOTE-Bagging 0.267 0.413 0.284 0.770 0.362 0.176 0.987 

DBEG-Ensemble 0.313 0.465 0.308 0.770 0.363 0.225 0.980 

size=21 

DECIDL 0.469 0.705 0.416 0.814 0.411 0.540 0.927 

GSVM-RU 0.336 0.687 0.279 0.752 0.305 0.584 0.819 

SMOTE-Bagging 0.249 0.390 0.286 0.775 0.380 0.158 0.991 

DBEG-Ensemble 0.313 0.456 0.323 0.771 0.381 0.215 0.986 
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7.6.2 Laboratorial Results 

We have applied the under-sampling ensemble methods on three particular sub-classes of 

PRMT families and made predictions on several unknown protein sequences, and then submitted the 

predictions for a chemistry laboratory in our university for actual verification. Detailed experiments and 

results can be found in [DZZ09][DFZ+10]. Here, will briefly describe the whole process and laboratorial 

results.  

We were interested in predicting the methylated arginines catalyzed by special types of PRMTs 

(PRMT1, PRMT4, and PRMT5), due to the special interests in the chemistry lab in our university. Thus, 

we manually examine the publications on PubMed and collect different groups of substrates based on 

their PRMT types. As a result, 28 confirmed methylated arginines and 523 non-methylated ones are 

found within 18 methylated PRMT1, PRMT4 and PRMT5 substrates. Obviously, the two groups are highly 

imbalanced. Then, we encode the 28 methylated fragments into vectors as positive examples, and the 

523 fragments as negative examples. Each amino acid is represented with BLOSUM62 and PhCh proper-

ties, total in 28 bits. Thus, the total number of features for each fragment is 28 * length of the fragment 

size. Different fragment sizes are used to generate different datasets and our algorithms are executed 

on each of them, to find the best fragment size. 

We applied the granular computing ideas into the simple imbalanced learning process and de-

veloped an ensemble under-sampling algorithm to build predicting committee for the three kinds of 

PRMTs. SVM is used as the base learner. The result of this under-sampling strategies with a leave-one-

out cross-validation are shown in Table 7.5.  
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Table 7.5: Under-sampling Classification Performance on Three PRMT Data Sets 

Datasets 
(pos : neg) 

Sen. Spec. Accu. G-means AUC-ROC 

PRMT1 
(15:209) 

0.733 0.852 0.793 0.790 0.818 

PRMT4 
(8:196) 

0.625 0.842 0.733 0.725 0.735 

PRMT5 
(5:118) 

0.800 0.924 0.862 0.860 0.903 

PRMT 1, 4, 5 
(28:523) 

0.714 0.861 0.788 0.784 0.833 

 

After optimizing parameters for the SVM learner, we then trained classification models on the 

whole datasets, and make predictions on further unknown sequences, e.g. Tip60 and HIV-1 Tat, as show 

in Table 7.9.  

Table 7.6: Probability Predictions on Two Unknown Protein Substrates 

Substrate PRMT1 PRMT4 PRMT5 

tip60 379R  29.8% 
186R    5.5% 
239R    5.5% 

220R     0.9% 
186R     0.2% 

 hiv1_tat 
 78R 31.7% 

57R  11.4% 
  

49R   9.1% 
57R   1.8% 

 

We then sent these predictions for real biological experiments. Based on the prediction in Table 

II, it is quite likely that PRMT1 is able to methylate Tip60 at R379 position and HIV-1 Tat at R57 and R78 

positions. To validate the prediction and to investigate potential functions of PRMT1 in virus infection, 

we expressed the Tip60 recombinant protein using a pET15b vector and tested the methylation by 

PRMT1 using radioisotope-labeled assay. Clearly, Tip60 is methylated by PRMT1 (in Figure 2). Further, 

we synthesized two peptides derived from HIV-1 Tat protein that contain the two predicted methyl ar-

ginines. They are 41-60 (KALGISYGRKKRRQRRRAHQ) and 61-86 (NSQTH-QASLSKQPTSQPRGDPTGPKE). 

Phosphor-imaging analysis showed clearly that both of the two peptides were methylated by PRMT1. 
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These experimental results strongly substantiate the efficiency of our granular decision fusion model, 

and also uncovered a new function of PRMT1 in the pathway of HIV infection.  

 

(a) Tip60 methylated by PRMT1         (b) HIV-1 Tat methylated by PRMT1 

Figure 7.9: Enzymatic assay of potential methylation substrates of PRMT1.  

In Figure 7.9, the left graph clearly shows that Tip60 is methylated by PRMT1. Lane 1 is 

PRMT1/Tip60; lane 2 is negative control; and lane 3 is 14C-BSA standard. The right graph shows the 

methylation of Tat by PRMT1. The peptide H4-20 is used as a positive substrate control. 

7.7 Conclusion 

We have successfully applied a simple imbalanced learning strategy on the methylation dataset. 

The biological experiments have shown that our predictions do match certain methylation residues; 

hence the process and costs of identifying methylated arginines can be significantly reduced with our 

prediction algorithms. 

Out next step is to apply our DECIDL algorithms on these three PRMT families to further en-

hance the prediction accuracies and submit another round of predictions on several new proteins that 

are currently interested in the chemistry lab. At the same time, we will also plan to build a predication 

sever that provide predictions for user-input sequences for 11 kinds of PRMTs. 

  

 
1             2            3 BSA

H4-20  

(positive control)
TAT 61-86 TAT 41-60
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Chapter 8: CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

In this dissertation, we tried to solve the imbalance data learning problem by providing an effec-

tive ensemble framework and a series of related methods from different problem-solving angles.  

We started from giving a formal definition to highly imbalanced binary classification problem 

and discussing several challenging aspects on this topic. A clear threshold for imbalance ratio is given 

based on statistical analysis to separate imbalanced learning problems and general learning problems. 

We believe that the new definition will be broadly accepted by researchers in machine learning and data 

mining communities for further study of imbalanced data classification. Meanwhile, we have also pro-

vided a comprehensive literature review on imbalance learning.  

This dissertation introduced the DECIDL ensemble system, which is a robust and effective meth-

od that directly utilizes diversity to guide the construction of ensemble classification for highly imbal-

anced data learning. The fundamental idea of DECIDL is to synthesize artificial examples among the data 

spaces of different classes and reversely re-label these examples oppositely to current ensemble predic-

tions. Due to the natural characteristics of imbalance data, several detailed strategies have involved and 

over-tuned to build a diversified ensemble committee, which overall distinguish our works with current 

imbalanced learning algorithms. Our method can be considered as the ideal combination of two general 

classification methods—SMOTE and DECORATE—for imbalance learning, but more powerful and gener-

alized, due to the various tuning steps in the method procedure. As a meta learner, our DECIDL algo-

rithm can be broadly used in any imbalance learning tasks to build high accurate prediction classifiers. 

Extensive experiments have preliminary shown that DECIDL system is comparable with many ensemble 

methods, such as under-bagging, over-bagging, SMOTE-bagging, etc.  

We created a comprehensive standard imbalanced data benchmark pool to facilitate any future 

research on imbalance data learning, as well as test the performance of our DECIDL framework. Data 



112 

sets in this benchmark are from various application domains, consisting of a large range of example sizes 

and feature sizes, with diverse feature forms, and a variety of imbalance ratios. Meanwhile, we system-

atically developed extensive experiments to globally reveal the learning performance of several popular 

imbalanced classification algorithms, such as under-sampling, over-sampling, SMOTE-bagging, AdaBoost 

and our DECIDL. To the best of our knowledge, such extensive experiment comparisons with many en-

semble methods have never been conducted on highly imbalanced data sets before. Therefore, the ex-

periments and results in this dissertation can also be used as a useful reference for future research on 

highly imbalanced data classification problems.  

We further analyzed the artificial data synthesis step and developed a new strategy for data bal-

ancing, after studying the advantages and weakness of existing data synthesizing methods. The new 

method—DBEG—is able to create new minority examples based on the original data distributions in a 

very efficient way. With new minority generated by DBEG, we conducted experiments to show that 

DBEG-Ensemble and DECIDL-DBEG are both very effective, in comparison with the state-of-the-art im-

balanced learning techniques, SMOTE-Bagging and GSVM-RU. 

We have utilized active learning to help solving imbalanced learning problem. Active learning is 

able to identify useful unlabeled examples and incrementally build classification models. With active 

learning selecting only useful majority class instances, and DECIDL creating additional synthesized mi-

nority examples, the combination of the two methods produce great data manipulation power and also 

learning ability to classify highly imbalanced data. Extensive examples have proven that the joint per-

formance is very promising on benchmark data sets.  

Our final work is applying our proposed methods on a real-world application—protein arginine 

methylation prediction, which is a very hot research topic in bioinformatics. After conducting initial ex-

periments in both computational and laboratorial directions, we found that the methods developed for 

imbalance learning do have great advantages in solving real-world problems.  
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8.2 Future Work 

Although we have conducted studies on DECIDL in both experiment and application aspect, we 

still have several other directions to explore the scopes and potentials of DECIDL. Some close related 

directions, but not limited to, are listed here.  

More experiments on DECIDL-DBEG and Active-DECIDL. In Chapter 5, we compared DECIDL-

DBEG with DECIDL, SMOTE-Bagging, GSVM-RU; however, our main interest is to compare DBEG and 

other data synthesizing methods, e.g., ADASYN, Borderline-SMOTE, and DataBoost-IM. Hence, more ex-

periments need to be performed to compare their effectiveness. Similar to Active-DECIDL, we also need 

to conduct more experiments to verify the efficiency of example query, e.g., measuring the classification 

performance when fixing the data query ratio. 

Cost-sensitive base learner. In our current experiments with DECIDL learning, the four tradi-

tional base learners are Decision Stump, Decision Trees, Linear SVM, and Perceptron NN, which are not 

cost-sensitive learners. Therefore, to further evaluate effectiveness of DECIDL framework, we will use 

several cost-sensitive learners (such as the SVM-weight, cost-sensitive DTs, and cost-sensitive NNs) to 

build the ensemble committee. The following experiments will be conducted:  

1) Running DECIDL based on cost-sensitive learners under different parameters; 

2) Comparing the performance of individual cost-sensitive learners and the combination of cost-

sensitive learner based DECIDL; 

3) Showing the difference between DECIDL with cost-sensitive learners and traditional learners. 

Boosting Classifiers inside DECIDL. Inside of our DECIDL procedure, every classifier member is 

individually created and a final hard or soft strategy is used to ensemble all members. Apparently, there 

is no boosting strategy involved, and all the examples are equally weighted. However, the previous ex-

periments (Figure 4.3-4.7) showed that the AdaBoost could also produce very good performance on im-

balanced data when a weak base learner is used. Hence, an immediate new idea will be to boosting 
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methods (i.e., AdaBoost method) into our DECIDL framework. Since the boosting methods can utilize the 

pure base learners (AdaBoost) and cost-sensitive learners (AdaCost), we can have at least two alterna-

tives to boost the DECIDL procedure. Potential future works with Boosted DECIDL would be: 

1) Combining the AdaBoost strategy with our DECIDL framework and checking performance 

changes; 

2) Combining the AdaCost boosting strategy to the DECIDL framework to find potential perfor-

mance improvements; 

3) Comparing the standard DECIDL, Boosted DECIDL (with AdaBoost), Cost-sensitive Boosted DE-

CIDL (with AdaCost). 

Imperfect data. The data used in our experiments are almost complete and perfect. However, in 

many practical applications, the collected data have plenty of missing values, or significantly noises 

among features and examples, or strongly correlated examples, etc. Therefore, using imperfect data 

sets to test the DECIDL ensemble framework is very important for real data mining applications. More 

specifically, we plan to test it with the following conditions:   

1) Add extra normal distributed noises to original data values with various levels, e.g., 5%-30%; 

2) Remove some features from some data examples at different percentages; 

3) Add additional noisy features and/or noisy examples to original data sets. 

We hope after giving further investigation on these directions, our DECIDL framework can be 

survived with strong performance on both experimental data real applications. More and more effective 

significantly imbalanced data learning algorithms can be developed based on DECIDL framework.  
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APPENDICES  

Appendix A: PUBLICATIONS RELATED TO THIS RESEARCH 

JOURNALS 

• Z. J. Ding, Y. Feng, Y. G. Zheng, and Y.-Q. Zhang, Protein Methylation Prediction Using Granular 

Decision Fusion Methods, International Journal of Soft Computing and Bioinformatics, vol. 1, no. 1, pp. 

19-27, 2010. 

• Z. J. Ding, and Y.-Q. Zhang, Data Shuffling and Statistical Analysis on Microarray Data for Gene 

Selection-A Comparative Study on Filtering Methods, International Journal of Functional Informatics and 

Personalised Medicine (IJFIPM), vol. 3, no. 3, pp. 183-203, 2011. 

CONFERENCE PAPERS 

• Z. J. Ding and Y.-Q. Zhang, An Effective Filtering Gene Selection Method for Microarray Data 

via Shuffling and Statistical Analysis. ACM International Conference on Bioinformatics and Computation-

al Biology (ACM-BCB 2010), Niagara Falls, Aug. 2-4, 2010. (Travel Grant Award) 

• Z. J. Ding and Y.-Q. Zhang, Additive Noise Analysis on Microarray Data via SVM Classification. 

2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, May 

2-5, 2010 Montreal, Canada.  

• Z. J. Ding, Y.-Q. Zhang and Y. G. Zheng, Feature Selection and Granular SVM Classification for 

Protein Arginine Methylation Identification, Proc. of IEEE -SMC2009, San Antonio, Oct. 11-14, 2009.  

• Z. J. Ding, Y.-Q. Zhang, Nan Xie and Y. G. Zheng, Identifying New Methylation Arginine via 

Granular Decision Fusion with SVM Modeling, Proc. of 2009 International Joint Conference on Bioinfor-

matics, Systems Biology and Intelligent Computing, pp. 237-241, Shanghai, Aug. 3-5, 2009. 
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• Z. J. Ding, Y. Feng, Y. G. Zheng and Y.-Q. Zhang, Granular Decision Fusion Systems for Effective 

Protein Methylation Predication, Proc. of IEEE CIBCB 2008, Sept. 15-17, Sun Valley, Idaho. (Travel Grant 

Award) 

• Z. Ding, J. Yu, Y-Q. Zhang, A New Improved K-means Algorithm with Penalized Term. The 2007 

IEEE Int'l Conf. on Granular Computing: Silicon Valley, CA, Nov. 2-4, 2007. 
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