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Abstract

Class imbalance is an active research area in the machine learning community.

However, existing and recent literature showed that class overlap had a higher

negative impact on the performance of learning algorithms. This paper provides

detailed critical discussion and objective evaluation of class overlap in the context

of imbalanced data and its impact on classification accuracy. First, we present a

thorough experimental comparison of class overlap and class imbalance. Unlike

previous work, our experiment was carried out on the full scale of class overlap

and an extreme range of class imbalance degrees. Second, we provide an in-depth

critical technical review of existing approaches to handle imbalanced datasets.

Existing solutions from selective literature are critically reviewed and categorised

as class distribution-based and class overlap-based methods. Emerging techniques

and the latest development in this area are also discussed in detail. Experimental

results in this paper are consistent with existing literature and show clearly that

the performance of the learning algorithm deteriorates across varying degrees

of class overlap whereas class imbalance does not always have an effect. The

review emphasises the need for further research towards handling class overlap

in imbalanced datasets to effectively improve learning algorithms’ performance.
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1. Introduction

Learning from datasets with skewed class distributions remains a challenge

in machine learning. such datasets are realised as imbalanced datasets and

widely seen in many applications, for example, anomaly detection [1], medical

prediction [2, 3], object recognition [4, 5] and business management [6]. In these5

domains, the minority class is usually the class of interest and has a higher

misclassification cost than the majority class. Standard learning algorithms

generally build classification models based upon the maximum accuracy, which

often leads to biased classification towards the majority class and misclassification

of minority class instances [7, 8]. However, such failure in classification of10

imbalanced datasets is not always caused by class imbalance solely. In fact, a

linearly separable dataset can be perfectly classified by a typical classification

algorithm no matter how skewed the class distribution is [9]. On the contrary,

when class overlap is present, even a balanced dataset can be difficult for a

learning task.15

When dealing with classification of imbalanced data, rebalancing class distri-

bution is among the most common approaches that researchers consider. Many

traditional and recent resampling methods only aim at getting a more balanced

version of the training data and do not factor in the problem of class overlap

[10, 11, 12]. Some methods deal with instances in the overlapping region, es-20

pecially those near the borderline areas; however, their resampling rates are

controlled by the degree of class imbalance [13, 14]. Thus, in some scenarios,

results can be highly influenced by class imbalance rather than class overlap.

For instance, when a dataset suffers from high class overlap but its classes are

slightly imbalanced, insufficient resampling may result in class overlap not being25

properly addressed. On the other hand, with low class overlap and high class

imbalance, excessive resampling may occur.

The impacts of class imbalance, class overlap and other characteristics such

as small disjunct and dataset size have been investigated [15, 16, 17, 18]. Class
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overlap frequently shows the highest negative influence among potential factors30

including class imbalance [17, 8]. This raises some important questions in

handling classification of imbalanced datasets: 1) Are the solutions that mainly

aim to rebalance the class distribution sufficiently effective? 2) Should the

problem of class overlap be the main concern in developing new algorithms?

Although several reviews on the problem of imbalanced data in classification35

exist [8, 19, 20], the problem of class overlap in imbalanced data was not

emphasised as the main issue and the discussions often lacked a support of

sufficient experimental evidence. Das et al. [8] proposed that the two key

challenges for standard learning algorithms are class imbalance and class overlap.

Possible nature of learning outcomes in different scenarios of class imbalance and40

class overlap based on the dataset size were suggested; however, no experimental

evidence was given. The authors also investigated other data irregularities such

as small disjunct and missing features; thus, the discussion on the class overlap

problem was limited. In [19], merely a brief description of other studies on the

effect of class overlap in relation to class imbalance was given. The authors paid45

particular attention to the discussion of different techniques used in existing

methods for handling imbalanced classification. Stefanowski [20] motivated the

research community to develop new algorithms for imbalanced data that realise

data factors, which included overlapping between classes. The author presented

the analyses on characteristics of the minority class, which was divided into sub50

regions of safe, borderline, rare and outlier samples. This was studied along

with the behaviours of different learning algorithms; however, this cannot yet

be mathematically verified on real world datasets. Like in many other reviews

[21, 22], Kaur et al. [23] conducted a comparative analysis of methods, which

was mainly organised as data preprocessing and algorithmic approaches, and the55

problem of class overlap was barely discussed. Some other reviews focused on

the issue of imbalanced data classification in specific contexts such as big data

[24, 25], multi-class problem [24, 26] and neural networks [27, 28]. These clearly

show that there is still a gap in the study of class overlap in the context of class

imbalance.60
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In this paper, the importance of handling class overlap in imbalanced data

classification is investigated. This was carried out through an extensive experi-

ment and a critical review of solutions to imbalanced learning. The experiment

provides an objective measurement of the impact of class overlap versus the

impact of class imbalance. Unlike in previous studies [15, 16, 17, 18], which were65

based on limited ranges of class imbalance and class overlap degrees, we carried

out a full-scale experiment using over 1,000 synthetic datasets. The in-depth

review of existing solutions to classification of imbalanced datasets is presented

in an alternative perspective rather than data and algorithm levels, which was

commonly arranged in other review papers [19, 8, 29, 30, 7]. We considered the70

main objective of the solutions and categorised them into class distribution-based

and class overlap-based approaches for better comparing and contrasting the

two approaches. Class distribution-based methods mainly concern and aim to

suppress the problem of imbalanced class distribution. Class overlap-based meth-

ods focus on improving the visibility of instances, especially positive instances,75

in the overlapping region. In addition, recent and emerging methods that do

not particularly deal with the class imbalance or class overlap problems are also

discussed. These include, for example, the use of one of the latest techniques in

machine learning, Generative Adversarial Networks (GANs)[31, 32].

The main contributions of this review are listed below.80

1. A technical discussion with advantages and disadvantages of evaluation

metrics including how some of them can be misleading in certain imbalanced

contexts

2. An extensive experiment illustrating the scales of impact of class overlap

and class imbalance on imbalanced dataset classification85

3. A critical discussion of methods and literature selected from leading peer-

reviewed publications in the perspective of class overlap-based and class

distribution-based approaches, as well as recent emerging technologies

4. An overview of benchmarking methods in the literature showing commonly-

used ones that can be considered as good standards, but at the same time90
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suggesting a need for comparing against recent and state-of-the-art methods

for more convincing and reliable evaluation

The remainder of this paper is organised as follows. In Section 2, we give the

definitions of class imbalance and class overlap. Section 3 contains an in-depth

discussion of evaluation metrics used in imbalanced learning. Section 4 provides95

the experimental results and discussion on the effects of class imbalance and

class overlap on the learner’s performance in an extensive range of scenarios. In

section 5, we critically review existing approaches for handling classification of

imbalanced datasets. Finally, the conclusion is delivered in Section 6.

2. Key Definitions100

2.1. Class imbalance

An imbalanced dataset is a dataset with an unequal distribution of classes.

This is depicted in Figure 1, where majority and minority class instances are

represented by circles and triangles, respectively. In machine learning, class

imbalance becomes an issue when the minority class is significantly smaller in105

size and is the primary class of interest with a relatively high misclassification

cost. Thus, in a binary-class problem, the minority class is also realised as the

positive class whereas the majority class is the negative class.

The degree of class imbalance can be measured as the imbalance ratio (imb)

as expressed in Eq. 1 or the percentage of the minority class (%minority) as110

shown in Eq.2, where M and m are the numbers of instances in the majority

class and minority class, respectively.

imb =
M

m
, (1)

minority(%) =
m

M
∗ 100. (2)
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Figure 1: An illustration of an imbalanced and overlapped dataset. Reprinted with permission
from ref. [33]. Copyright 2020, Elsevier

2.2. Class overlap

Class overlap occurs when instances of more than one class share a common

region in the data space. These instances have similarities in feature values115

although they belong to different classes, and such a complication is a substantial

obstacle in classification tasks. The class overlap problem becomes more serious

when class imbalance is also present in the data, and vice versa [16]. In an

imbalanced and overlapped dataset, the negative class is normally as well the

dominant class in the overlapping region. As a result, negative instances are120

more frequently and clearly present to the learner than positive instances in

such a region. This means that the decision boundary tends to shift towards

the negative class leading to misclassification of positive instances near the class

boundary, which is undesired in real-world problems.

Since class overlap has not been mathematically well characterised [34], a125

standard measurement of the overlap degree is not yet defined. Several approaches

have been formulated to estimate the overlap degree, however, with limitations.

For example, in [16], the overlap degree of a synthetic dataset was determined

from the overlapping area with respect to the the total data space. In [33],

the authors adapted such measurement so that class imbalance was also taken130
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into account seeing that the minority class is relatively more overwhelmed by

class overlap. The overlap degree was instead measured from the overlapping

area with respect to the the total area of the positive class. Another common

approach is using the classification error as the estimated overlap degree, e.g.,

the percentage of instances misclassified by the k-Nearest Neighbor rule [35]135

(kNN) with respect to the number of total instances [36, 37]. However, in [34],

the authors showed that such an approach was inaccurate and proposed a use of

the ridge curves of the probabilistic density function to quantify class overlap.

The computation was based on the ratio of the saddle point to a smaller peak of

the ridge curves of the two classes. This method is one of a few existing methods140

that measure overlap from the actual contour of data and can be extended to

handle multi-class datasets. The main drawback of this approach is that it is only

applicable to datasets with normal distributions of both data and features, which

is impracticable to real-world datasets. In [38], the overlap degree was defined

as the distance between the class centroids, which is likely to be inaccurate due145

to arbitrary shapes and non-uniformity of data in nature. Another approach

[39] was based on Support Vector Data Description (SVDD) [40]. SVDD was

used to locate approximated boundaries of each class in binary-class datasets,

and the overlapping region was estimated based on the amount of the common

instances found within both boundaries. Similar to the approach of [38], this150

method tends to introduce high errors in the overlap approximation since SVDD

is only capable of discovering a spherical-shaped boundary of a class, which is

not ideal for real-world datasets.

For our experiment discussed in Section 4, we follow the measure of class

overlap proposed in [33] (Eq. 3). Figure 1 illustrates how the regions in the155

equation are approximated.

overlap(%) =
overlapping area

minority class area
∗ 100 (3)
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3. Evaluation Metrics

Some typical evaluation metrics for classification are not affected by skewed

class distributions while others can be misleading with biases towards the majority

class. Common metrics for classification of imbalanced datasets such as sensitivity,160

specificity, balanced accuracy, G-mean, AUC and F1-score will be discussed in

detail. For other assessment measures, the reader may refer to [41, 42, 43, 44].

In imbalanced problems, accurate detection of minority class instances is

crucial. This is usually evaluated in terms of sensitivity, which is also known

as true positive rate (TPR) or recall. The metric is formulated as in Eq. 4,165

where TP and FN denote true positive and false negative, respectively. As

sensitivity only reflects the performance over one class, it is often reported in

conjunction with another metric, such as specificity (i.e. true negative rate –

Eq. 5, where TN and FP denote true negative and false positive, respectively),

balanced accuracy, G-mean and AUC, to also explore the overall performance or170

the trade-off between the classes [45, 46, 47].

sensitivity =
TP

TP + FN
(4)

specificity =
TN

TN + FP
(5)

Balanced accuracy is the arithmetic mean of the accuracy over each class

(Eq. 6) [45, 48, 49, 22]. It is also referred to as balanced mean accuracy [50],

average accuracy [51, 11, 52], macro-accuracy [53], etc. The traditional accuracy

(Eq. 7) can be significantly misleading when class imbalance is high and the175

negative class accuracies (TN and TN +FP ) are highly dominant. For instance,

a perfectly classified negative class of 1000 instances with an entirely misclassified

positive class with 10 instances result in over 99% accuracy, which could be

misleading as a good classification model. In fact, this same case yields 50%

balanced accuracy, which more reflects the actual performance of the model.180

Thus, balanced accuracy often replaces the traditional accuracy, and it is among
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the most common measures used for imbalanced problems [54].

balanced accuracy =
sensitivity + specificity

2
(6)

accuracy =
TP + TN

TP + FN + TN + FP
(7)

Another metric for evaluating the overall performance is G-mean [55]. It is

the geometric mean of sensitivity and specificity (Eq. 8). Since both G-mean

and balanced accuracy give the average values of sensitivity and specificity,185

they are often used interchangeably. Based on the literature reviewed in this

paper, G-mean was more frequently used. This could be attributed to the

fact that G-mean is also a widely-known metric for datasets with non-skewed

class distributions whereas balanced accuracy roughly reduces to the traditional

overall accuracy in such scenarios.190

G−mean =
√
specificity ∗ sensitivity (8)

AM −GM inequality :
x + y

2
≥ √xy (9)

balanced accuracy ≥ G−mean (10)

According to the Arithmetic Mean-Geometric Mean Inequality theory (AM-

GM inequality) (9), it can be said that balanced accuracy is always greater than

or equal to G-mean (10). The equality holds when sensitivity and specificity are

equal. For further analysis, consider Fig. 2, which presents values of G-mean and

balanced accuracy across varying scenarios in terms of the difference between195

sensitivity and specificity values. On the x-axis, all possible combinations of

sensitivity and specificity at a step of 10% are shown. It can be seen that the

difference between G-mean and balanced accuracy becomes greater when the

difference between sensitivity and specificity increases. This is due to the fact
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that the geometric mean is affected more by the lower value.200

Here are some examples to illustrate the differences in G-mean and bal-

anced accuracy in difference scenarios. In Fig. 2, at specificity = 90% and

sensitivity = 60%, G-mean is 73.48% and balanced accuracy is 75%. The differ-

ence between G-mean and balanced accuracy in this case is not significant. In

an extreme case where specificity = 100% and sensitivity = 10%, the resulting205

G-mean is 31.62% while balanced accuracy is 55%. It is clearly seen that G-mean

is affected more by sensitivity. For another extreme case when there is zero

accuracy of any class, G-mean= 0. This suggests that G-mean is able to reflect

these unfavourable scenarios where balanced accuracy only provides average

values. Thus, to determine a more suitable metric between G-mean and balanced210

accuracy, the user will need to carefully make a selection based on the application

domain and the main objective of the classification task.

Figure 2: Variants of the two means

Another common metric, F1-score, is the harmonic mean of sensitivity and

precision as expressed in Eq.11. It is also a widely-used metric for imbalanced

problems [37, 53, 56]. However, unlike G-mean and balanced accuracy, F1-score215
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takes into account of precision instead of specificity. As shown in Eq. 12, precision

is dependent of FP and TP. Since FP and TP are not normalised with respect to

the class size, FP can be excessively higher than TP in an extremely imbalanced

case. This high FP can be deceptive when in fact the true false positive rate

(FPR) is insignificant. In such case, precision is strongly influenced by FP and220

does not reflect the actual performance on the positive class. As a consequence,

F1-score will be misleading.

F1− score =
2

1
sensitivity + 1

precision

, (11)

precision =
TP

TP + FP
(12)

To demonstrate such an issue, consider an example of a dataset with 10:1000

positive to negative class instances and the classification result of 10 true positives

and 10 false positives. This indicates 100% sensitivity and 1% FPR, which is225

generally highly desirable. Yet, the precision turns out to be 50% leading to a

67% F1-score, which very much underestimates and deviates from the actual

performance.

It is also worth pointing out is that using F1-score alone may not be sufficient

to compare models. In other words, any two models that yield similar FP, TP230

and sensitivity, will have similar F1-score regardless of their difference in FPRs.

Consider an example of two models predicting on datasets with 10:100 and

10:10000 positive to negative class instances where the models achieve 10% and

0.1% FPR, respectively. Given the same sensitivity gained, the models have the

same value of F1-score accordingly, which is 67%. In fact, the former case with235

10% FPR is less favourable than the latter case with 0.1% FPR, but F1-score

does not convey that. Thus, the use of F1-score alone may not be sufficient to

indicate the quality of a classification model in imbalanced domains. Yet, it can

be meaningful when carefully considered along with other measures.

Another commonly-used metric is the area under the receiver operating240
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characteristic curve (AUC). A receiver operating characteristic curve (ROC)

visualises the values of TPR against FPR at varying probability thresholds.

AUC gives a summary of the ROC curve as a single value. AUC is often used

to compare the performance among classifiers; however, there have been some

arguments raised against its usage [57]. Firstly, ROC curves are useful when245

misclassification costs and class distributions are not specified [44]; so is AUC[58].

This suggests that ROC and AUC can be used for inspecting and summarising

the general performance of a classifier. However, in a real-life application, the

error costs are known and a model can be fine-tuned for the optimal results,

which eventually falls onto a single point on the RUC curve. Thus, a classifier250

with a higher AUC does not necessarily give a better result. This leads to the

second argument that visual inspection of ROC curves should be carried out

instead of considering only AUC values [57]. However, often there is no clear

winning between the two ROC curves making it difficult to compare [58]. Last

but foremost, AUC weights the positive and negative class errors equally while255

in many application domains, misclassification costs are unequal. In this case,

summarising over all possible threshold values is unconvincing [59].

In summary, it is recommended that for evaluation of imbalanced dataset

classification, individual class accuracy, especially sensitivity, is considered along

with an overall performance measure such as balanced accuracy or G-mean. F1-260

score and AUC can also be assessed; however, they should be carefully discussed

due to the constraints addressed above.

4. Impacts of Class Overlap vs Class Imbalance

When handling classification of imbalanced data, rebalancing the class distri-

bution is often an approach that researchers take. However, it should also be265

realised that class overlap is another common issue in classification tasks, which

becomes more serious when it occurs in an imbalanced context. Many traditional

and recent resampling methods for handling imbalanced datasets only aim at

making the class distribution balanced and do not factor in the problem of class
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overlap [10, 11, 12]. On the other hand, some resampling methods deal with270

instances in the overlapping region, especially those near the borderline areas,

without concerning the resulting class distribution [33, 56, 60]. There also exist

methods that address both of the class overlap and class imbalance problems

[13, 14]. In the last type of methods, problematic instances in the overlapping

region are resampled until the class distribution becomes balance. This means275

that the problem of class overlap is handled according to the class imbalance

degree and regardless of the class overlap degree. As a result, insufficient re-

sampling may occur when class imbalance is low. On the contrary, when class

imbalance is high, these methods may lead to excessive resampling. All of these

approaches have shown their potentials in improving classification results in280

different ways. Countless variations of existing methods make it impossible to

compare and find out which approach is better. Instead, we can consider the

scale of effect of class imbalance in comparison to class overlap. This will advise

which of the problems should be more concerned.

Previous literature suggested that class overlap had a higher negative effect on285

the learner’s performance than class imbalance [16, 17, 18]. In [17], the authors

showed that imbalanced datasets with no presence of class overlap could be

perfectly classified using fuzzy sets. Moreover, when the class overlap degree was

low, class imbalance had no significant effects on the classification results. It has

to be pointed out that these observations were based on the maximum overlap290

degree of 64% (see [17] for their measurement of the overlap degree) although

a wide range of class imbalance degrees was used in the experiment. Similar

findigns were reported in [18] when using decision tree (DT), rule based and k-NN

classifiers. Interestingly, the authors of [61] showed that when sufficient training

data was available, class imbalance did not degrade the performance of support295

vector machine (SVM). Unlike in the case of class overlap, SVM performance

significantly degraded. These experiments however were carried out with only a

few variations of class imbalance and class overlap. For instance, in [16], some

datasets were simulated such that the positive class became dominant in the

overlapping region. This created inconsistencies in the overall imbalance degree300
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Figure 3: An example of a synthetic dataset with 40%overlap and 30%minority

and the imbalance situation in the overlapping region, which led to inconclusive

results. To establish these results at the full scale of class overlap with a wide

range of class imbalance, including extreme cases, we have carried out a thorough

experiment detailed as follows.

4.1. Experimental Setup305

4.1.1. Datasets

To enable the study at the full spectrum of class overlap, synthetic datasets

were used. A total of 1,010 binary datasets were created to cover all possible

combinations of 101 class overlap degrees and 10 class imbalance degrees. The

overlap degrees (%overlap) ranged from 0% to 100% with a step of 1. The310

percentage of the minority class with regard to the majority class (%minority),

as defined in Eq. 2, ranged from 10% to 100% with a step of 10. In each

dataset, there were 1,000 majority class instances and the number of minority

class instances was based on the imbalance degree. Datasets were uniformly

distributed, which means that the data densities of the majority class and the315

minority class were equal. The rationale behind this was two-folded. First,

there was no class imbalance in the overlapping region to ensure that each of

the components, e.g. class imbalance and class overlap, was solely investigated

with no interfering effect of the other. Second, there would be no effects on the

learning algorithm caused by differences in the data density. An example of such320

synthetic datasets is illustrated in Figure 3.
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4.1.2. Methodology

Random Forests (RF) was chosen as the learning algorithm for the following

reasons. First, it is a representative of standard learning algorithms that aim

at maximising the overall classification accuracy such as DT, SVM, neural net,325

naive bayes, etc. Without an appropriate adjustment, these learning algorithms

tend to be influenced more by the dominating class, which will result in biased

classification. Second, RF is robust to overfitting [62], which helps minimise the

effect of different sample sizes. Lastly, though RF is one of the most widely-used

learning algorithms for classification of imbalanced datasets [22], it was not330

experimented in previous studies [16, 17, 18].

The default parameter settings of RF in caret1 package in R were used. That

is the number of trees was set to 500. The number of variables used at each split

was
√
n, and the training sample size for each tree was 0.632 ∗ n, where n is the

number of the total instances in the dataset. The datasets were partitioned into335

training and testing sets at the ratio of 80 to 20, and 10-fold cross validation

was applied for model selection. The resulting models were evaluated in terms

of sensitivity, specificity, balanced accuracy, and AUC.

4.1.3. Results and discussion

Classification results are shown in Figure 4. It can be seen that both class340

imbalance and class overlap caused degradation in sensitivity. However, changes

in the imbalance degree barely showed an effect on sensitivity when imbalance

and overlap were not very high. This is evidenced at %minority = 70 to 100,

where it is not apparent that sensitivity values were impacted by a change in

class imbalance when %overlap = 0 to 50. For example, at %overlap = 50, all the345

plots of %minority = 70, 80, 90 and 100 showed approximately 70% sensitivity.

At higher imbalance degrees, the drops in sensitivity due to class imbalance

became more clearly visible. At %overlap = 0 to 25, there were no apparent

differences in sensitivity at different imbalance degrees, except at high imbalance,

1https://CRAN.R-project.org/package=caret
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Figure 4: Classification results corresponding to various degrees of class imbalance and class
overlap. The number on the top of each plot indicates the percentage of the minority class
with respect to the majority class.

i.e %minority = 10 and 20. This can be attributed to the effect of sample size.350

That is, at lower imbalance degrees, the sample sizes were larger, which might

be sufficient to suppress the effect of class imbalance [61, 18]. Finally, the effect

of class imbalance was more obvious when the overlap degree was higher. These

results suggest that the impact of class imbalance on sensitivity highly depended

on the level of class overlap as well as the sample size.355

On the other hand, class overlap clearly degraded sensitivity at all degrees.

A higher decrease in sensitivity per change in %overlap can be seen when class

imbalance was high enough. This was the symmetrical effect that class imbalance

and class overlap had on each other. That is, the presence of one element can

strengthen the scale of impact of the other element. However, this only applied360

in some certain scenarios, e.g. when class imbalance was sufficiently high. It is

worth pointing out that even with no presence of class imbalance (%minority =
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100), the influence of class overlap on sensitivity was apparent. In contrast, when

there was no class overlap, the ideal sensitivity value was achievable regardless

of imbalance degrees. Thus, it can be said that the effect of class imbalance365

is dependent of the presence of class overlap, but not the other way around.

Finally, all of these results suggest that class overlap hurts sensitivity more than

class imbalance.

Figure 4 also shows that specificity increased as class imbalance increased.

This is expected because the increase in size of the dominating class was in favour370

of specificity. On the other hand, specificity was negatively affected by class

overlap due to the decrease in visibility of majority class instances. It can be

observed that class overlap had a higher impact on sensitivity than on specificity.

This was because class overlap was measured with respect to the data space of

the minority class. Thus, the overlapping region occupied larger data space of375

the minority class than that of the majority class, relatively to the class size. In

an extreme case, the overlapping region occupied the entire minority class but

only some part of the majority class.

Interestingly, it can be seen in Figure 4 that class imbalance had no apparent

impact on BA and AUC. In contrast, it is clear that BA and AUC decreased380

as class overlap was higher. This was due to the fact that when class overlap

increases, the number of hard-to-classify samples in both class is higher. This

is another evidence that researchers should pay more attention to the problem

class overlap.

4.2. Conclusion385

The experiment clearly shows that class overlap hurt the learning algorithm’s

performance more than class imbalance. This is evidenced by the results in

sensitivity, balanced accuracy and AUC. While class overlap always degraded

the results, class imbalance had an impact only in the presence of class overlap.

Moreover, the scale of impact of class imbalance on sensitivity highly depended390

on the degree of class overlap. That is class imbalance was more impactful

when class overlap was high and it seemed insignificant when class overlap was
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low. Lastly, class overlap showed apparent influence on the trade-off between

sensitivity and specificity, i.e. BA and AUC, whereas class imbalance did not.

5. Existing Solutions395

Existing literature often discussed solutions to imbalanced datasets as data-

level and algorithm-level methods [63, 64, 65]. Data oversampling and under-

sampling are among the most common data-level techniques. At the algorithm

level, new learning algorithms and modifications of standard learning algorithms

are developed. Algorithm-level methods have an advantage of incorporating400

user’s requirements into the model [19]. However, as opposed to data resam-

pling methods, they do not allow flexible choices of learning algorithms. The

combinations of data-level and algorithm-level methods, i.e., ensemble-based

methods, have also been used. Ensemble-based methods have advantages in

both data and algorithm levels, and are less likely to suffer from overfitting than405

data resampling [66].

To serve the purpose of this paper, we categorised existing methods into

class distribution-based and class overlap-based focuses. Class distribution-based

solutions mainly focus on reducing the effect of imbalanced class distributions.

Class overlap-based methods deal with instances in the overlapping region410

to improve classification results. Additional recent methods using emerging

techniques are also discussed. The overview of the reviewed methods is provided

in Table 1.

5.1. Class distribution-based methods

We categorised methods that are designed to reduce the bias in class dis-415

tribution as class distribution-based methods. Figure 5(b) and (c) illustrates

solutions that rebalance the data by means of oversampling and undersampling,

respectively.

Random resampling, the simplest and most common approach, is the process

of either randomly eliminating majority class instances (undersampling) or420
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synthesising new minority class instances (oversampling) to achieve the balanced

class distribution. Although it is simple to employ, random undersampling can

potentially lead to a loss of important information while random oversampling

is prone to overfitting [7]. Moreover, it was shown that randomly rebalancing

class distribution did not guarantee better results [107].425

One of the most well-established methods, Synthetic Minority Over-sampling

Technique (SMOTE), was designed to create new instances using linear interpo-

lation between minority class neighbouring points [10]. The authors suggested

that the method could expand the decision regions of the minority class and as

a results caused less overfitting than random oversampling. Due to its simplicity430

yet decent performance, SMOTE has been widely applied to real-world problems

[108, 109, 110]. However, its weaknesses has been presented. In [99], it was

shown that by applying SMOTE, their classification results were not improved.

This could have been because the method does not include any selection cri-

teria for linear interpolation; hence, synthesised instances may not be useful435

unless they are near the decision boundary. For more detailed discussion on

drawbacks of SMOTE, the reader is referred to [111]. These disadvantages

have led to many extensions of SMOTE such as DBSMOTE [47], DBMUTE

[56], Borderline-SMOTE [13], Safe-Level-SMOTE [68] (SLSMOTE) and others

[12, 80, 78].440

DBSMOTE [47] is an oversampling method relying on Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) [112] to locate instances

in different areas. SLSMOTE [68] is another oversampling method based on

neighbourhood searching. The main objective of both methods is to synthesise

more minority class instances in the non-overlapping region and minimise the445

synthesis in the overlapping and borderline areas. Although both DBSMOTE

and SLSMOTE often achieved improvement over SMOTE, other extensions of

SMOTE showed superior performance. In particular, these were DBMUTE [56]

and Borderline-SMOTE [13], which also utilize DBSCAN and neighbourhood

searching, respectively. It is worth noting that, however, these two methods450

synthesise more minority class instances near the borderline regions, which
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Figure 5: Class distribution-based resampling applied on (a) the original imbalanced and
overlapped dataset using (b) SMOTE and (c) k-means undersampling

is the opposite approach to DBSMOTE and SLSMOTE. Detailed discussion

of DBMUTE, Borderline-SMOTE and other class overlap-based extensions of

SMOTE is provided in the following subsection.

In [12], the authors proposed a method to account for possible amplification455

of noise created by SMOTE. They applied k-means clustering to discover clusters

dominated by the positive class. This was followed by oversampling in such

clusters with the oversampling amount inversely proportional to the number

of positive instances. A similar approach was presented in [70]. Both methods

however led to significant decreases in the minority class accuracy. This could460

have been attributed to the exclusion of essential positive instances that were

sparse and overlapped with dominating negative instances, especially those near

the borderline.

Although undersampling has an advantage of reducing the training set size,

which results in lower computational costs [113], this could lead to information465

loss at the same time. To address this issue, clustering is among the common

techniques employed during undersampling to ensure the diversity of the remain-

ing instances. In [64] and [11], the authors applied k-means clustering on the

majority class and selected representative instances from each cluster. Similar

approach was proposed by Di et al. [114]. The authors used a more recent470

clustering algorithm, density peak-based clustering [67], which not only considers

the distance but also the local density. These clustering-based methods resulted

in reduced training sets with diversified samples. However, since balanced class
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distribution was aimed, when applying these method on a dataset with a rela-

tively very small minority class size, they nonetheless resulted a significant loss475

of information.

Several solutions based on neural networks have also been recently proposed

[71, 72, 73, 75]. In [71], instance generation was based on self-organising map

and growing ring technique, which are neural network algorithms, aiming at

preserving the topology of the original data while rebalancing the class distri-480

bution. Unlike other typical data generation methods, this method involves

synthesising instances of both majority and minority classes. When majority

class undersampling is needed, an entirely new majority class instances are

created to replace the original minority class instances. Raghuwanshi and Shukla

have recently proposed many variants of methods based on extreme learning485

machine (ELM) [73, 75, 115, 74, 116]. ELM is a single-layer feed-forward neural

network that uses a random approach to generate the hidden layer weights. This

enables its training speed to be faster than other gradient-based algorithms [74].

The authors exploited this benefit of ELM, and since the traditional ELM was

not designed for imbalanced data, they proposed to use many techniques to490

rebalance the data such as class-specific regularization parameters computed

based on the class distribution [115], SMOTE [73] and UnderBagging [74, 75].

Another neural network-based method was introduced in [72]. The authors

used radial basis functions to locate overlapping and non-overlapping regions

and avoided synthesising new minority class instances in the overlapping region.495

However, by doing so, the density of the minority class instances in the over-

lapping region became relatively sparser. As a consequence, they had a higher

tendency to appear as noise to the learning algorithm. Results showed that

the method improved specificity but led to lower sensitivity, which is undesired

in imbalanced problems. This was consistent with the results obtained with500

DBSMOTE [47] and SLSMOTE [68] discussed earlier, and underlines the need of

improving the visibility of the minority class instances in the overlapping region.

Ensemble-based classifiers, which are known to often outperform single

classifiers [22], have been extensively adopted to handle imbalanced datasets.
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In [79], the authors proposed an approach to preserve all available information505

in building an ensemble-based classifier. This was achieved by subsetting the

majority class and combining with the minority class instances with equal class

distribution. Other than preventing information loss, another advantage of this

method is that every base classifier is trained with no bias in class distribution.

Several widely-known ensemble-based methods are the integrations of ensem-510

ble algorithms, such as Bagging (i.e. Bootstrap aggregating) [117] and Boosting

[118], and common class distribution-based methods. These are, for example,

the combinations of random undersampling and Bagging [55, 76], random un-

dersampling and Boosting (RUSBoost) [77], SMOTE and Boosting [80], and

SMOTE and Bagging [78]. These methods provided promising results, however,515

at the cost of higher computational complexity.

Unlike typical class distribution-based methods, which attempt to rebalance

the class distribution, an inversion of class imbalance was proposed in [81].

This was done by randomly undersampling the negative class until the positive

class became over-represented. As a result, higher positive class accuracy was520

obtained. At the same time, this caused lower negative class accuracy. The

authors addressed this issue by combining the approach with Bagging. Results

showed that by doing so, the trade-off between TPR and FPR was improved.

5.2. Class overlap-based methods

Class overlap-based methods mainly address the class overlap problem in525

classification of imbalanced datasets. Methods in this category deal with either

overlapped instances near the borderline or instances in the entire overlapping re-

gion. Folllowing [93], we define borderline instances as those along the borderline

region between the two classes whereas overlapped instances may reside further

from the border. Therefore, we can say that borderline instances are a subset530

of overlapped instances. The common objective of overlap-based approaches

is to emphasise the presence of the minority class in the overlapping region.

This is depicted in Figure 6, which shows the resulting datasets after applying

simple class overlap-based resampling methods. In Figure 6(b), (c) and (d),
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Figure 6: Class overlap-based resampling applied on (a) the original imbalanced and overlapped
dataset using (b) Borderline SMOTE (c) borderline-based undersampling and (d) overlap-based
undersampling

oversampling of borderline minority class instances, undersampling of borderline535

majority class instances, and removing entire majority class instances from the

overlapping region was performed, respectively. As can be seen from these

examples, it is worth pointing out that class overlap-based methods may not

necessarily produce a balanced class distribution. With the the risk of potential

information loss, most existing overlap-based methods focused specifically on540

borderline instances, whereas few dealt with the entire overlapping region [33].

Overlap-Based Undersampling (OBU) [45] is among few methods that con-

sider the entire overlapping region. The method was designed to maximise the

visibility of minority class instances by eliminating all majority class instances in

the overlapping region. A soft-clustering algorithm was employed to assign mem-545

bership degrees to instances, which enabled identification of indecisive instances.

This led to detection and removal of majority class instances that potentially

resided in the overlapping region. OBU showed significant improvement in

classification and outperformed class distribution-based k-means undersampling

[11]. Some drawbacks of OBU such as the need for parameter tuning and possible550

inaccurate identification of overlapped majority class instances were addressed

in [3]. The authors developed two new extensions of OBU, namely AdaOBU and

BoostOBU. An adaptive threshold designed to control the elimination process

based on the degree of class overlap was incorporated in the methods. The

adaptive threshold also replaced the parameter setting requirement of OBU al-555

lowing generalisation of the two extensions across different problems. BoostOBU

improved the process of identifying potential overlapped instances by emphasis-
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ing borderline minority class instances prior to data clustering. AdaOBU and

BoostOBU substantially improved classification results over the original OBU

and outperformed many state-of-the art algorithms, especially on sensitivity,560

on extensive datasets covering a wide range of scenarios. The methods also

often achieved higher sensitivity than robust ensemble-based methods namely

SMOTEBagging [78] and RUSBoost [77]. The ability of the methods to provide

outstanding results in sensitivity makes them suitable for many real-world prob-

lems that require high predication accuracy on the minority class such as in the565

medical domain and security-related issues, where the accuracy of the majority

class can be more compromised.

A neighbourhood-based (NB-based) undersampling framework was proposed

in [33] aiming at accurately removing problematic majority class instances from

the overlapping region to prevent excessive elimination while enhancing the570

presence of the minority class. Four methods based on neighbourhood searching

to locate overlapped majority class instances were used. Competitive results

with other state-of-the-art methods were achieved. Also, its superior results over

OBU [45] suggesting that under the same objective to maximise the presence

of minority class instances, this NB-based framework, which uses a more local575

technique, was more efficient. Its successful application in the medical domain

was also demonstrated [3]. One of the NB-based methods was selected to handled

public medical-related datasets and showed the highest sensitivity on average,

which is usually preferable in a medical problem, while often obtaining higher

trade-offs between sensitivity and specificity than other methods. However, these580

NB-based methods are solely based on Euclidean distance. There may be some

variations in results on real-world problems due to other data characteristics

such as density and class densities, which was not considered in the work.

DBMUTE [56] is another overlap-based undersampling method. The authors

employed DBSCAN to discover sub-clusters within the minority class, which585

was the same technique used in DBSMOTE [47]. However, DBMUTE has a

different objective that is to eliminate majority class instances near the minority

class sub-clusters. Results showed that DBMUTE significantly outperformed
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DBSMOTE, which in contrast avoids improving the visibility of the minority

class in the overlapping region.590

As an alternative to the above methods, Adaptive Synthetic sampling

(ADASYN) was introduced to enhance the presence of the minority class by

selectively oversampling in the overlapping region [83]. Instance generation was

based on the neighbouring condition. That is, the amount of new instances

generated from each minority class instance was proportional to the number595

of its majority class nearest neighbours. Consequently, more instances were

created in the overlapping region while unnecessary syntheses outside such a

region were avoided. However, a major drawback of ADASYN is that sparse

minority class instances that are highly overlapped with majority class instances

will be excluded from oversampling.600

An ensemble-based method, HardEnsemble, incorporating both oversampling

and undersampling to address overlapped instances of both classes was proposed

in [30]. Undersampling was performed based on the contribution to the classifica-

tion accuracy of instances, which potentially facilitated removal of majority class

instances in the overlapping region. Using the same criterion, oversampling was605

done particularly on minority class instances in the overlapping area. These two

resampling processes were carried out in parallel and the resulting datasets were

used to train RUSBoost [77]. HardEnsemble showed comparable performance

with other solutions. Moreover, it has a benefit over many other existing solutions

of no parameter tuning required.610

Another method based on ensemble and an Evolutionary Algorithm (EA) was

proposed in [92]. An EA was employed so that negative instances were selectively

removed from the overlapping region and relatively more minority class instances

were present. The method was applied to multi-class imbalanced problems

and outperformed other state-of-the-art ensemble-based methods. However,615

by utilising both EA and emsemble techniques, this method requires high

computation costs.

In [93], the authors proposed to use different learning algorithms for classifying

different regions of a dataset. Non-overlapping, overlapping, and borderline
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regions were identified using information based on the data characteristics such620

as the maximum Fisher’s discriminant ratio, probability distributions of the

two classes, and the distance between the centers of the two classes. This was

followed by using different learning algorithms in the different regions. DBSCAN

was selected to learn the borderline region due to its ability in discovering

arbitrary-shaped clusters. At the same time, Radial Basis Function Network625

(RBFN) was used to classified instances in the other regions. This approach

showed improvement in classification results. However, it is only applicable to

datasets with Gaussian distribution, which is not ideal for handling real-world

problems.

With a lower risk of information loss, several methods only focus on overlapped630

instances that reside near the decision boundary, which we realise as borderline

instances. An early and well-known method, Neighbourhood Cleaning Rule

(NCL) [85], was adapted from the Edited Nearest Neighbor algorithm (ENN)

[119]. NCL is based on removing negative instances that are either misclassified

or cause misclassification of positive instances using the 3-NN classifier. Since635

NCL only considers three nearest neighbours, it is likely that many negative

instances would still remain in the overlapping region, especially in a highly

imbalanced and overlapped case. Similar approach was developed by Liang et al.

[84], where negative nearest neighbours of misclassified positive samples by SVM

were all removed. Further to that, SMOTE was applied to positive instances640

near the class center to avoid enlarging the effect of noise, which is the drawback

caused by the random process of SMOTE. Both of these process contributed to

the improvement in the visibility of the positive class, and this was reflected by

higher sensitivity achieved. Moreover, since information loss of the negative class

was minimised, good trade-offs between sensitivity and specificity were obtained.645

In [51], aiming at minimising information loss, only negative instances with

high similarities and low contribution to classification were removed. However,

no thresholds were defined as a stopping criterion for undersampling, and instead

negative instances were progressively eliminated according to the similarity and

contribution factors until a balanced class distribution was obtained. Applying650
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this method on a highly imbalanced datasets could anyway result in excessive

elimination of negative instances.

SMOTE-IPF [87] was proposed in an attempt to remove noisy instances in

the original data as well as those generated by SMOTE. This was done by simply

applying a noise filter after SMOTE. The authors suggested that this approach655

had the following advantages over other methods by removing noise prior to

oversampling. Firstly, sparse positive instances near the borderline mistaken as

noise would no longer appear as noise after applying oversampling and hence

would not be filtered out. This would preserve highly important information,

e.g. rare cases, as well as expand the decision boundary of the positive class.660

Secondly, having more positive instances in the overlapping region could result

in some negative instances being filtered out, hence enhancing the visibility of

the positive class in such a region to the learning algorithm.

A modification of kNN to improve the classification of imbalanced datasets,

Positive-biased Nearest Neighbour (PNN), was presented in [86]. The classifica-665

tion decision was adjusted to be biased towards the positive class, particularly

in the regions where positive instances were found under-represented. This

benefited the positive class especially in the overlapping region. The method

showed superior performance over other neighbourhood-based algorithms with

significantly lower computational cost.670

In addition to class overlap, the problems of small sub-clusters and within-

class imbalance were also addressed in [60, 14, 82]. Majority Weighted Minority

Oversampling Technique (MWMOTE) [60] and Adaptive Semi-Unsupervised

Weighted Oversampling (A-SUWO) [14] were proposed. In both methods, bor-

derline minority class instances were discovered using kNN and assigned higher675

weights for oversampling. In addition to kNN, a semi-unsupervised hierarchical

clustering was applied to improve the identification of such instances in A-SUWO.

Subsequently, new instances were synthesised within each sub-cluster. MW-

MOTE created more new instances in sparser sub-clusters whereas A-SUWO

focused on oversampling more instances in sub-clusters with higher misclas-680

sification errors. Both methods showed improvement in classification results,
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however, with many parameters needed to be fine-tuned. Moreover, A-SUWO

uses complex techniques that may cause poor sampling when it overcomplicates

sub-clusters [82]. Wei et al [82] further improved these approaches and proposed

NI-MWMOTE, which was developed based on MWMOTE [60]. They intro-685

duced adaptive noise removal based on distance and neighbour density before

considering borderline instances for oversampling to avoid generation of new

noise.

Support Vector Machine (SVM) is one of the most frequently-used classifiers

with imbalanced problems [22]. It has also been adapted in several methods for690

handling imbalanced datasets [88, 91, 120]. This includes the use of support

vectors to identify and resample potential borderline instances [88, 91] considering

that support vectors are mostly composed of such instances [91]. In [88], an

SVM-based active learning algorithm was combined with SMOTE to adaptively

synthesise instances between positive support vectors in each active learning.695

Unlike typical data resampling, this oversampling was repeatedly performed

during the training process. Similarly, Jian et al. [91] resampled instances

based on support vectors. They made use of Biased SVM [121], which is a

learning algorithm implemented specifically to handle imbalanced datasets, to

identify support and non-support vectors in the training data. Oversampling700

and undersampling were then applied to support and non-support vectors,

respectively. By doing so, more informative instances were emphasised and

information loss was minimised. Cho et al. [120] developed IEFSVM based on

EFSVM [90] with a modified entropy for the fuzzy SVM algorithm (FSVM) [122].

IEFSVM reduced the importance of majority class instances that were detected705

close to minority ones. This was considered from the changes in the nearest

neighbours’ classes when the number of nearest neighbours (k) was increased.

However, this technique may not be sufficiently effective when the majority class

highly dominates in the overlapping region unless k is set high enough.

An algorithmic solution based on SVM, an overlap-sensitive margin classi-710

fier (OSM), was proposed in [37]. It began with instance weighting that was

proportional to the degrees of class imbalance and class overlap, and locating
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different regions, i.e. highly overlapping and low overlapping, using the FSVM.

Then, different learning algorithms were employed in different regions. In the

low overlapping region, the classification was carried out using fuzzy SVM. An715

extreme local search algorithm, 1-NN, which had shown better results than other

classifiers for highly imbalanced and overlapped data [16], was used in the highly

overlapping region. Results showed that OSM outperformed other well-known

SVM-based classifiers while consuming lower training time. In [89], FSVM was

employed with modified membership values to give lower importance to border-720

line majority class instances. Such instances as well as potential majority-class

outliers were identified using techniques based on SVDD [40] and the kernel

kNN. This allowed the classification boundary to shift toward the minority class.

The method outperformed other SVM-based techniques for imbalanced data.

However, with infeasibility of SVM on large datasets due to the huge memory725

requirement [106], these SVM-based methods face the same limitation.

5.3. Emerging methods

Rather than focusing on the class overlap and class imbalance problems,

many recent solutions use alternative approaches in handling classification of

imbalanced datasets. These include the use of emerging techniques such as730

deep neural networks-based algorithms, genetic algorithms and one of the latest

technologies, deep reinforcement learning. Unlike traditional solutions, some of

these methods have the main objective to preserve the topology of the original

data and in some methods, undersampling is not limited to majority class

instances but removal of minority class instances is also allowed.735

A hierarchical classification method that is an integration of basic methods,

e.g. clustering, outlier detection and feature selection, was proposed in [94]. The

authors pointed out that clustering of outliers and minority class instances may

provide similar results. Thus, they employed an outlier detection method to

detect minority class instances in each level of the hierarchy. The method was740

able to effectively handle highly imbalanced and highly overlapped datasets.

Data clustering was also used in [95], however for a different purpose. The

30



authors employed such a technique to allow parallel sampling in large datasets.

All discovered clusters of the majority class were simultaneously undersampled

to speed up the learning process. Undersampling was carried out in a way that745

minimum negative class instances were remained for effective training of an

SVM classifier. That is, only negative instances near the class boundary were

kept in the training set. The method proved a substantial reduction in the

computational complexity while comparable results to other existing methods

were achieved.750

As distinct from typical algorithm-level methods, PT-bagging [53] was de-

signed to calibrate the decision probability at the learner’s output aiming at

reducing the bias in classification decisions towards the majority class. A

threshold-moving technique was used to consider the best threshold for each

class instead of the commonly-used cut-off probability of 0.5. The technique755

was combined with Bagging for improved results. Without changing the natural

class distribution of data, this approach showed competitive results with other

state-of-the-art ensemble-based methods. Another ensemble-based method is

developed by Dı́ez-Pastor et al. [96]. In this work, an ensemble was simply built

upon subsets of the training data with random class distributions. To obtain760

different class distributions, random undersampling and SMOTE were applied.

The variety of the training subsets resulted in diversified weak classifiers, which

is beneficial for constructing a good ensemble-based model [123]. Despite its

simplicity, results showed that this method performed better than some other

state-of-the-art ensembles that are more complex.765

The application of Evolutionary Algorithms (EAs) has been extensively seen

in recent solutions to imbalanced problems [99, 97, 98, 100]. An undersampling

framework based on evolutionary prototype selection algorithms was introduced

in [97]. The framework aimed at maximising classification results while minimis-

ing the training set size. Many variations of methods under this framework were770

proposed. Both balanced and imbalanced training sets were obtained using the

proposed variations, and unlike most undersampling methods, removing minority

class instances was allowed. Substantial reductions in sizes of both positive and
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negative classes were reported while comparable results with well-established

methods were achieved. An ensemble-based extension of this evolutionary-based775

undersampling approach, EUSBoost, was presented in [98]. EUSBoost is the

integration of Boosting and the evolutionary-based undersampling with a modi-

fied fitness function to obtain diversified weak classifiers. The extension showed

better performance over many state-of-the-art ensembles.

EPRENNID is an integratation of ensemble, undersampling and oversampling780

based on evoluationary algorithms [100]. In particular, evolutionary prototype

selection and prototype generation were used as undersampling and oversampling

techniques, respectively. By employing evolutionary prototype selection on both

positive and negative instances, several reduced subsets were obtained. Then,

only well-performing subsets were selected for subsequently applying prototype785

generation on. To avoid overfitting, which may be introduced by prototype

generation, combinations of several resampled subsets were used for ensemble-

based classification. EPRENNID produced relatively robust results on different

densities of the minority class compared to some existing solutions while reducing

instances of both classes. The method showed better performance than many well-790

known methods; however, its training time was far higher than those methods.

This was attributed to the use of an EA together with an ensemble technique,

which are both computationally expensive.

Another evolutionary-based method was proposed in [99]. The authors ap-

plied an EA for selecting the generalised exemplars, i.e. representative instances,795

that maximised classification results, particularly in AUC. Classification deci-

sions of new instances were made based on their distances to these generalised

exemplars. Experiments showed that the method performed better than other

exemplar-based learning algorithms.

One of the most recent approaches for handling imbalanced datasets is the800

use of neural network algorithms. Like other learning algorithms, deep Neural

Networks have been used to learn imbalanced datasets, and to improve per-

formance, data resampling and cost-sensitive learning methods were applied

[52, 124, 103]. A great number of new loss functions for handling class imbalance
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have been introduced recently. In [101, 50], new loss functions were formulated805

to reduce the bias in imbalanced class distribution. The authors of [101] pro-

posed to use loss functions that considered the error rates of individual classes;

however, results showed trivial improvement over the mean square error (MSE),

a commonly-used loss function in deep learning. In [103] and [102], novel loss

functions were introduced for the purposes of both neural network training and810

feature extraction. These loss functions were shown to improve the classification

performance. A recent work of Tsung-Yi et al. [104] on Focal Loss has received a

significant amount of attention. Focal Loss was developed based on the standard

cross entropy loss function. It down-weights the loss assigned to easy-to-classified

majority class samples. This allows the focus on hard samples during the training815

process. The method was shown to outperform state-of-the-art Faster R-NN vari-

ants [125] in object detection. Due to its simplicity and effectiveness, many later

methods have been designed based on Focal Loss. This includes its adaptation

in the loss function of standard SVM to handle imbalanced data [106].

In [69], two novel adaptive kNN algorithms for imbalanced classification820

were proposed. Neural networks were applied in the first proposed algorithm

to find the minimum value of k that correctly classified each instance in the

training set. In the second algorithm, the value of k was inversely proportional

to the local density. This allowed a relatively smaller k value to be used in

the overlapping region, which was suggested to be more effective in classifying825

overlapped instances than a high value of k [37, 16].

Over the past few years, extensions of a state-of-the-art data augmenta-

tion algorithm, Generative Adversarial Net (GAN) [126], have been used as

oversampling methods for imbalanced datasets [31, 32, 127]. GAN consists of

two models – the generative model, which generates new samples as similar to830

the original data as possible, and the discriminative model, which attempts to

distinguish between the original data and the generated data. The objective

of GAN is to simultaneously optimise the two models so that the overall dis-

tance between the original and the generated distribution is minimised. This

ability of GAN was employed as an oversampling technique in [31] and [32] to835
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synthesise minority class instances. In [31], Conditional GAN (cGAN) [128] was

directly applied as an oversampling method. Since GAN is an unsupervised

learning algorithm, the authors included class labels as an additional learning

condition required in cGAN. Results showed that the method outperformed

common resampling methods such as Borderline SMOTE [13], ADASYN [83].840

However, there was inconsistency in the results, which migh have been attributed

to insufficient numbers of training data [129, 130]. In [32], Multiple Fake Class

GAN (MFC-GAN) was proposed specifically as an oversampling technique to

rebalance class distribution. Unlike common GAN extensions, MFC-GAN was

designed to created multiple fake classes to improve the classification accuracy845

of the minority class. This method was evaluated on multi-class image datasets

and results showed that it outperformed SMOTE and other GAN extensions

[131, 132]. Despite promising results achieved using these GAN-based methods,

a limitation on the size of training data when applying a deep learning model is

a concern.850

One of the latest technologies, deep reinforcement learning (DRL), has

been recently used to handle imbalanced classification tasks [105]. DRL is

a combination of deep learning and reinforcement learning. It has recently

gained significant interests by the research community due to its ability to

successfully learn complex decision-making tasks, which may not be achievable855

by other standard learning algorithms [133]. In [105], the authors formulated the

classification problem as a sequential decision-making process and solve it using

DRL, which followed the approach of Wiering et al. [134] to apply reinforcement

learning in classification tasks. This approach is considered relatively new in

this research topic and need to be further investigated. Although it is a powerful860

method, DRL has a major has a major drawback on extreme complexity and

computational performance [135]. Moreover, it is limited to only very large

dataset as DRL is known to be data-hungry. Despite these advantages, this

DRL-based method has revealed a new alternative for handling imbalanced

data classification and paved the way for researchers to develop new emerging865

approaches in this field.
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Table 2: Overview of benchmarking methods

benchmark compared methods

data level CNN(1968) [136] [51]; [97]
Tomek-link(1976) [137] [51]; [97]; [56]
NCL(2001) [85] [97]; [72]
SMOTE(2002) [10] [14]; [81]; [70]; [91]; [83]; [68]; [88]; [86]; [53]; [102];

[72]; [56]; [71]; [60]; [79]; [87]; [93]; [37]; [31]; [12]; [3];
[33]; [13]; [94]; [106]; [89]; [84]; [67]; [82]

Borderline SMOTE(2005) [13] [14]; [31]; [12]; [70]; [56]; [100]; [47]; [72]; [87]; [3]; [33];
[89]; [82]

ADASYN(2008) [83] [70]; [60]; [72]; [31]; [82]
SLSMOTE(2009) [68] [14]; [70]; [56]; [47]; [87]; [82]
MWMOTE(2014) [60] [14]; [70]; [82]
k-means undersampling(2017) [11] [45]; [3]; [33]; [67]

algorithm level 1-NN(2008) [16] [99]; [97]
PANDA(2014) [138]; FACENET(2015) [139]; Anet(2015) [140] [52]
Fast R-CNN(2015) [141]; GoogleNet(2015) [142] [50]
ResNet(2016) [143] [104]; [50]
Faster R-CNN(2016) [125] [104]

ensemble SMOTEBoost(2003) [80] [77]; [96]; [79]; [98]
BalanceCascade(2009) [113] [64] ; [75]
SMOTEBagging(2009) [78] [92]; [96]; [11]; [98]; [3]
EasyEnsemble(2009) [113] [81]; [64]; [79]; [98]; [67]; [90]; [73]; [75]
UnderBagging(2009) [78] [11]; [79]; [98]
RUSBoost(2010) [77] [96]; [11]; [30]; [79]; [98]; [95]; [3]; [90]; [73]; [75]
Random Balance(2015) [96] [53]

5.4. Benchmarking methods

An overview of common and well-known methods that were used in the

reviewed literature for evaluation and comparison purposes is presented in this

subsection. Table 2 outlines these benchmarking methods mapped with their870

compared methods and listed in the order of publishing year. Table 3, 4 and

5 provide further details based on category of the compared methods, namely

class distribution, class overlap and emerging techniques, respectively. In the

tables, data type indicates the type of datasets used in the experiments – real-

world (real) or simulated (sim). The ranges of class imbalance are shown by the875

minimum and maximum imbalance levels denoted by min imb and max imb,

respectively. We defined the levels based on the gaps in imbalance degrees of

datasets used in the reviewed literature, which are as follows: balanced = 1-1.5,

slightly imbalanced = 1.7-3.4, moderately imbalanced = 8-16.4, highly imbalanced

= 21.9-46.6, very highly imbalanced = 51-87, and extremely imbalanced = 115880

and above. Finally, the right most column of the tables contains the reviewed

methods that were shown to be competitive with the benchmarks with the

learning algorithms used.

The information provided in Table 2 - 5 suggests common and reliable
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Table 3: Benchmarks for class distribution-based methods

benchmark data type min imb max imb compared methods

data level NCL(2001) [85] real slightly very highly multi(DT,kNN,SVM,NB): Radial-based over-
sampling [72]

SMOTE(2002) [10] real balanced highly DT: Inverse undersampling [81];
multi(DT,kNN,GBM,SVM,RF): k-INOS
[70]

balanced extremely Inverse-imbalance Bagging [81]
slightly moderately DT: SLSMOTE [68]
slightly highly multi(BPN, SVM): GRSOM [71]
slightly very highly multi(DT,kNN,SVM,NB): Radial-based over-

sampling [72]
slightly extremely SVM: density peak-based undersampling[67]
moderately highly multi(NB,DT,RF): BalancedEnsemble [79]

real+sim balanced extremely multi(LR, kNN, Gradient tree boosting): k-
means SMOTE [12]

slightly moderately DT: Borderline SMOTE [13]
Borderline SMOTE(2005) [13] real balanced extremely multi(LR, kNN, Gradient tree boosting): k-

means SMOTE [12]
balanced highly multi(DT,kNN,GBM,SVM,RF): k-INOS [70]
slightly highly multi(DT,MLP,NB,kNN,SVM,LR,RF): DB-

MUTE [56]
slightly very highly multi(DT,kNN,SVM,NB): Radial-based over-

sampling [72]
ADASYN(2008) [83] real balanced highly multi(DT,kNN,GBM,SVM,RF): k-INOS [70]

slightly very highly multi(DT,kNN,SVM,NB): Radial-based over-
sampling [72]

SLSMOTE(2009) [68] real balanced highly multi(DT,kNN,GBM,SVM,RF): k-INOS [70]
slightly very highly multi: DBSMOTE [47]

MWMOTE(2014) [60] real balanced highly multi(DT,kNN,GBM,SVM,RF): k-INOS [70]

ensemble SMOTEBoost(2003) [80] real slightly very highly multi(DT,NB): RUSBoost [77]
moderately highly multi(NB,DT,RF): BalancedEnsemble [79]

BalanceCascade(2009) [113] real balanced moderately UBKELM[75]
slightly moderately RBFNN: Sensitivity-based undersampling [64]

SMOTEBagging(2009) [78] real slightly extremely multi(DT, MLP): k-means undersampling [11]
EasyEnsemble(2009) [113] real balanced highly DT: Inverse undersampling [81];

balanced extremely Inverse-imbalance Bagging [81]; SMOTE-
CSELM[73]; UBKELM[75]

slightly moderately RBFNN: Sensitivity-based undersampling [64]
slightly extremely SVM: density peak-based undersampling[67]
moderately highly multi(NB,DT,RF): BalancedEnsemble [79]

UnderBagging(2009) [78] real slightly extremely multi(DT, MLP): k-means undersampling [11]
moderately highly multi(NB,DT,RF): BalancedEnsemble [79]

RUSBoost(2010) [77] real balanced extremely SMOTE-CSELM[73]; UBKELM[75]
slightly extremely multi(DT, MLP): k-means undersampling [11]
moderately highly multi(NB,DT,RF): BalancedEnsemble [79]
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Table 4: Benchmarks for class-overlap based methods

benchmark data type min imb max imb compared methods

data level CNN (1968) [136] real balanced slightly multi(BPN,kNN,SVM,NB): Redency-driven
Tomek-link undersampling [51]

Tomek-link(1976) [137] real balanced slightly multi(BPN,kNN,SVM,NB): Redency-driven
Tomek-link undersampling [51]

SMOTE (2002) [10] real balanced moderately multi(SVM, kNN, LR, A-SUWO [14]
balanced highly multi(SVM, ANN, RF, kNN): NI-MWMOTE[82]
balanced very highly SVM: DCS [91]
slightly moderately DT: ADASYN [83]
slightly highly SVM-AL: VIRTUAL [88]; multi(DT,kNN): PNN

[86]; multi(DT,MLP,NB,kNN,SVM,LR,RF): DB-
MUTE [56]; multi(kNN, DT): MWMOTE [60]

real+sim balanced moderately DT: SMOTE-IPF [87]; multi(SVM, RBFN): Soft-
Hybrid [93]

balanced highly SVM: ACFSVM [89]
balanced very highly SVM:OSM [37]
balanced extremely multi(SVM,RF): NB-based undersampling [33];

multi(SVM,RF,DT,knn) BoostOBU [3]
slightly moderately multi(SVM,RF): LR-SMOTE[84]

Borderline SMOTE (2005) [13] real balanced moderately multi(SVM, kNN, LR, A-SUWO [14]
balanced highly SVM: ACFSVM[89]; multi(SVM, ANN, RF, kNN):

NI-MWMOTE[82]
slightly highly multi(DT,MLP,NB,kNN,SVM,LR,RF): DBMUTE

[56]
real+sim balanced moderately DT: SMOTE-IPF [87]

balanced extremely multi(SVM,RF): NB-based undersampling [33];
multi(SVM,RF,DT,knn) BoostOBU [3]

ADASYN (2008) [83] real balanced highly multi(SVM, ANN, RF, kNN): NI-MWMOTE[82]
slightly highly multi(kNN, DT): MWMOTE [60]

SLSMOTE (2009) [68] real balanced moderately multi(SVM, kNN, LR, A-SUWO [14]
balanced highly multi(SVM, ANN, RF, kNN): NI-MWMOTE[82]
slightly highly multi(DT,MLP,NB,kNN,SVM,LR,RF): DBMUTE

[56]
slightly very highly multi: DBSMOTE [47]

real+sim balanced moderately DT: SMOTE-IPF [87]
MWMOTE (2014) [60] real balanced moderately multi(SVM, kNN, LR, A-SUWO [14]

balanced highly multi(SVM, ANN, RF, kNN): NI-MWMOTE[82]
k-means undersampling (2017) [11] real slightly extremely RF: OBU [45]

real+sim balanced extremely multi(SVM,RF): NB-based undersampling [33];
multi(SVM,RF,DT,knn) BoostOBU [3]

ensemble SMOTEBagging (2009) [78] real balanced highly DT: EVINCI[92]; IEFSVM[90]
real+sim balanced extremely multi(SVM,RF,DT,knn) BoostOBU [3]

RUSBoost (2010) [77] real balanced highly IEFSVM[90]
real slightly extremely RUSBoost: HardEnsemble [30]
real+sim balanced extremely multi(SVM,RF,DT,knn) BoostOBU [3]

methods that can be considered as good standards for evaluating purposes.885

However, it is worth pointing out that some of these methods such as SMOTE

and Borderline SMOTE are long-established and have been outperformed by

a number of more recent methods. This suggests that there is a need for

benchmarking new algorithms against recent and state-of-the-art methods for

more convincing and reliable evaluation.890

6. Conclusion

In this paper, we provided a comprehensive review on the impact of class

overlap in classification of imbalanced datasets. This was presented through an

extensive experiment, an in-depth discussion on existing solutions, a technical
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Table 5: Benchmarks for other emerging methods

benchmark data type min imb max imb compared methods

data level CNN(1968) [136] real slightly extremely kNN:EA undersampling [97]
Tomek-link(1976) [137] real slightly extremely kNN:EA undersampling [97]
NCL(2001) [85] real slightly extremely kNN:EA undersampling [97]
SMOTE(2002) [10] real slightly very highly DNN: CoSen [102]

slightly highly ensembles(DT,kNN): PT-bagging [53]; SVM:
Adaptive FH-SVM[106]

real+sim balanced extremely multi(LR,SVM,kNN,DT, Gradient tree boost-
ing): cGAN oversampling [31]

slightly highly proposed(SMOTE+ kNN,SVM,DT): Hierachi-
cal decomposition [94]

Borderline SMOTE(2005) [13] real balanced extremely multi(LR,SVM,kNN,DT, Gradient tree boost-
ing): cGAN oversampling [31]

slightly highly knn: EPRENNID [100]
ADASYN(2008) [83] real+sim balanced extremely multi(LR,SVM,kNN,DT, Gradient tree boost-

ing): cGAN oversampling [31]

algorithm level 1-NN(2008) [16] real slightly extremely EGIS-CHC [99]; kNN:EA undersampling [97]
PANDA(2014) [138] real balanced highly LMLE-kNN [52]
FACENET(2015) [139] real balanced highly LMLE-kNN [52]
Anet(2015) [140] real balanced highly LMLE-kNN [52]
Fast R-CNN(2015) [141] real balanced highly Attention Aggregation [50]
GoogleNet(2015) [142] real balanced highly Attention Aggregation [50]
ResNet(2016) [143] real balanced highly Attention Aggregation [50]

extremely extremely Focal Loss [104]

ensemble SMOTEBoost(2003) [80] real slightly extremely DT: RB-Boost [96]
moderately extremely DT: EUSBoost [98]

SMOTEBagging(2009) [78] real moderately extremely DT: EUSBoost [98]
EasyEnsemble(2009) [113] real moderately extremely DT: EUSBoost [98]
UnderBagging(2009) [78] real moderately extremely DT: EUSBoost [98]
RUSBoost(2010) [77] real moderately extremely DT: EUSBoost [98]

real+sim moderately extremely SVM: PSS [95]
Random Balance(2015) [96] real slightly highly ensembles(DT,kNN): PT-bagging [53]

discussion on evaluation metrics, and an overview of benchmarking methods.895

The experiment was carried out at the full scale of class overlap and extreme

degrees of class imbalance. Results showed that classification errors increased

with the degree of class overlap regardless of imbalance degree. Moreover, the

effect of class imbalance highly depended on the presence of class overlap. We

also critically discussed related literature and methods for handling imbalanced900

dataset classification selected from leading peer-reviewed publications. The meth-

ods were categorised into class distribution-based approach, class overlap-based

approach and other emerging techniques for the discussion. Our experimental

results and literature review highlighted the importance of the class overlap

problem. In general, the choice of suitable methods will vary across problems due905

to different misclassification costs and variations in objectives or requirements

of the users. However, based on the experimental results, the problem of class

overlap should be addressed in all cases whereas handling class imbalance may

not be necessary. Suggested approaches are as follows:
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� When there is no class overlap, classification tasks can be handled using910

standard learning algorithms regardless of the imbalance degree. Thus, no

application of additional methods is needed.

� For datasets with slight to moderate imbalance degrees, overlap-based

methods are likely to be a better approach when improvement in sensitivity

is expected. Also, those methods with no concern of rebalancing the915

class distribution may be preferable since results show clearly that in

such scenarios, class imbalance barely has an impact on the learner’s

performance.

� For highly imbalanced datasets, both class imbalance and class overlap

should be addressed. Thus, overlap-based methods that also rebalance920

the class distribution or class weights are potentially more efficient in

improving the classification.

This finding emphasises that more research effort is put into improving

class overlap-based algorithms. Development of well-formulated definition and

measurement of class overlap, especially on real-world data, should as well be925

urgently put forward.

The overview of benchmarking methods show frequently-used solutions for

evaluation and comparison purposes, which can be seen as good standards for

future work. At the same time, some of these methods are long-established

and have been constantly outperformed. This suggests the need for further930

comparison against recent and state-of-the-art methods for more convincing and

reliable assessments.

Finally, our review also showed that emerging techniques such as deep learning

algorithms and evolutionary algorithms have constantly gained the community’s

attention. This is because they are self-learning and capable of providing935

optimal results. Although the use of such algorithms have been widely proposed

to address the class imbalance problem [32, 98, 100], class overlap was rarely

discussed. Also, these techniques have some well-known limitations. Besides high

39



computational complexity, neural network-based techniques generally require

large training data, which is not often available in certain imbalanced domains,940

e.g, medical-related fields. Thus, another possible future direction may include

the development of methods using emerging techniques, for example, GAN-based

methods to deal with overlapped instances of small-sized datasets.
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