285 research outputs found

    Comparison of linear and nonlinear active disturbance rejection control method for hypersonic vehicle

    Get PDF
    Near space hypersonic vehicles have features of strong coupling, nonlinearity and acute changes in aerodynamic parameters, which are challenging for the controller design. Active disturbance rejection control (ADRC) method does not depend on the accurate system model and has strong robustness against disturbances. This paper discusses the differences between the fractional-order PID (FOPIλDμ) ADRC method and the FOPIλDμ LADRC method for hypersonic vehicles. The FOPIλDμ ADRC controller in this paper consists of a tracking-differentiator (TD), a FOPIλDμ controller and an extended state observer (ESO).The FOPIλDμ LADRC controller consists of the same TD and FOPIλDμ controller with the FOPIλDμ ADRC controller and a linear extended state observer (LESO) instead of ESO. The stability of LESO and the FOPIλDμ LADRC method is detailed analyzed. Simulation results show that the FOPIλDμ ADRC method can make the hypersonic vehicle nonlinear model track desired nominal signals faster and has stronger robustness against external environmental disturbances than the FOPIλDμ LADRC method

    Direct Adaptive Control for Stability and Command Augmentation System of an Air-Breathing Hypersonic Vehicle

    Get PDF
    In this paper we explore a Direct Adaptive Control scheme for stabilizing a non-linear, physics based model of the longitudinal dynamics for an air breathing hypersonic vehicle. The model, derived from first principles, captures the complex interactions between the propulsion system, aerodynamics, and structural dynamics. The linearized aircraft dynamics show unstable and non-minimum phase behavior. It also shows a strong short period coupling with the fuselage-bending mode. The value added by direct adaptive control and the theoretical requirements for stable convergent operation is displayed. One of the main benefits of the Directive Adaptive Control is that it can be implemented knowing very little detail about the plant. The implementation uses only measured output feedback to accomplish the adaptation. A stability analysis is conducted on the linearized plant to understand the complex aero-propulsion and structural interactions. The multivariable system possesses certain characteristics beneficial to the adaptive control scheme; we discuss these advantages and ideas for future work

    Can trained monkeys design flight controllers for hypersonic vehicles?

    Get PDF
    The supersonic combustion ramjet is an as yet unproven propulsion system for hypersonic flight. Provided it can be developed into a practical vehicle, the ultimate success of sustained hypersonic flight will depend on configuring a robust and stable airframe-propulsion-control combination. To design the longitudinal flight controller for this inherently unstable vehicle we have applied a genetic algorithm, hence the trained monkeys metaphor in the title. Being a nondeterministic search method, there is no guarantee of generating a useful solution, yet given a little direction and enough time it is able to solve hard problems. The controller is built using fuzzy logic rules, directed at manipulating the vehicle's angle of attack through the actuation of symmetric elevators. A preset structure for the rules is used whereby the design task is to configure the control surface through selection of the rule consequents. To direct the search for a controller design, the genetic algorithm uses simulated flight responses to a range of initial conditions, without linearization of the vehicle model and dynamics. Results for the genetic algorithm designed controller show longitudinal stability and disturbance rejection

    Design and application of advanced disturbance rejection control for small fixed-wing UAVs

    Get PDF
    Small Unmanned Aerial Vehicles (UAVs) have seen continual growth in both research and commercial applications. Attractive features such as their small size, light weight and low cost are a strong driver of this growth. However, these factors also bring about some drawbacks. The light weight and small size means that small UAVs are far more susceptible to performance degradation from factors such as wind gusts. Due to the generally low cost, available sensors are somewhat limited in both quality and available measurements. For example, it is very unlikely that angle of attack is sensed by a small UAV. These aircraft are usually constructed by the end user, so a tangible amount of variation will exist between different aircraft of the same type. Depending on application, additional variation between flights from factors such as battery placement or additional sensors may exist. This makes the application of optimal model based control methods difficult. Research literature on the topic of small UAV control is very rich in regard to high level control, such as path planning in wind. A common assumption in such literature is the existence of a low level control method which is able to track demanded aircraft attitudes to complete a task. Design of such controllers in the presence of significant wind or modelling errors (factors collectively addressed as lumped disturbances herein) is rarely considered. Disturbance Observer Based Control (DOBC) is a means of improving the robustness of a baseline feedback control scheme in the presence of lumped disturbances. The method allows for the rejection of the influence of unmeasurable disturbances much more quickly than traditional integral control, while also enabling recovery of nominal feedback con- trol performance. The separation principle of DOBC allows for the design of a nominal feedback controller, which does not need to be robust against disturbances. A DOBC augmentation can then be applied to ensure this nominal performance is maintained even in the presence of disturbances. This method offers highly attractive properties for control design, and has seen a large rise in popularity in recent years. Current literature on this subject is very often conducted purely in simulation. Ad- ditionally, very advanced versions of DOBC control are now being researched. To make the method attractive to small UAV operators, it would be beneficial if a simple DOBC design could be used to realise the benefits of this method, as it would be more accessible and applicable by many. This thesis investigates the application of a linear state space disturbance observer to low level flight control of a small UAV, along with developments of the method needed to achieve good performance in flight testing. Had this work been conducted purely in simulation, it is likely many of the difficulties encountered would not have been addressed or discovered. This thesis presents four main contributions. An anti-windup method has been devel- oped which is able to alleviate the effect of control saturation on the disturbance observer dynamics. An observer is designed which explicitly considers actuator dynamics. This development was shown to enable faster observer estimation dynamics, yielding better disturbance rejection performance. During initial flight testing, a significant aeroelastic oscillation mode was discovered. This issue was studied in detail theoretically, with a pro- posed solution developed and applied. The solution was able to fully alleviate the effect in flight. Finally, design and development of an over-actuated DOBC method is presented. A method for design of DOBC for over actuated systems was developed and studied. The majority of results in this thesis are demonstrated with flight test data

    Six-DOF spacecraft optimal trajectory planning and real-time attitude control: a deep neural network-based approach

    Get PDF
    This brief presents an integrated trajectory planning and attitude control framework for six-degree-of-freedom (6-DOF) hypersonic vehicle (HV) reentry flight. The proposed framework utilizes a bilevel structure incorporating desensitized trajectory optimization and deep neural network (DNN)-based control. In the upper level, a trajectory data set containing optimal system control and state trajectories is generated, while in the lower level control system, DNNs are constructed and trained using the pregenerated trajectory ensemble in order to represent the functional relationship between the optimized system states and controls. These well-trained networks are then used to produce optimal feedback actions online. A detailed simulation analysis was performed to validate the real-time applicability and the optimality of the designed bilevel framework. Moreover, a comparative analysis was also carried out between the proposed DNN-driven controller and other optimization-based techniques existing in related works. Our results verify the reliability of using the proposed bilevel design for the control of HV reentry flight in real time

    Variable structure attitude control for a rolling aerial vehicle via extended state observer

    Get PDF
    A novel attitude control scheme is proposed for a rolling aerial vehicle (RAV) with large uncertainties. Firstly, the RAV highly coupled nonlinear system is separated into attitude loop and angular loop via backstepping technique. The nominal states are calculated based on the procedure of trajectory linearization control (TLC). Then, extended state observers (ESO) are applied to estimate the uncertainties in the RAV system. Meanwhile, a feedback linearization-based controller is synthesized for the attitude loop using the estimated uncertainties, and an ESO-based sliding mode controller is synthesized for the angular rate loop. The stability of the closed-loop system is studied. Simulation results with comparisons are presented to demonstrate the feasibility of the proposed control scheme

    Predictive Sliding Mode Control for Attitude Tracking of Hypersonic Vehicles Using Fuzzy Disturbance Observer

    Get PDF
    We propose a predictive sliding mode control (PSMC) scheme for attitude control of hypersonic vehicle (HV) with system uncertainties and external disturbances based on an improved fuzzy disturbance observer (IFDO). First, for a class of uncertain affine nonlinear systems with system uncertainties and external disturbances, we propose a predictive sliding mode control based on fuzzy disturbance observer (FDO-PSMC), which is used to estimate the composite disturbances containing system uncertainties and external disturbances. Afterward, to enhance the composite disturbances rejection performance, an improved FDO-PSMC (IFDO-PSMC) is proposed by incorporating a hyperbolic tangent function with FDO to compensate for the approximate error of FDO. Finally, considering the actuator dynamics, the proposed IFDO-PSMC is applied to attitude control system design for HV to track the guidance commands with high precision and strong robustness. Simulation results demonstrate the effectiveness and robustness of the proposed attitude control scheme

    Observer-Based Nonlinear Dynamic Inversion Adaptive Control with State Constraints

    Get PDF
    Hypersonic vehicle research and development has grown recently in the aerospace industry due to the powerful potential of operating a vehicle that flies at substantially higher speeds than typical aircraft. From a guidance, navigation and control perspective, hypersonic vehicles are particularly interesting due both to inherent vehicle complexities as well as practical concerns that only arise at high Mach numbers. Challenges inherent to the vehicle include nonlinearities, a wide range of operating conditions, high elasticity, high temperatures and parametric uncertainty. Although these challenges have by no means fully been explored in the literature, in the realm of control theory, they are somewhat common. Hypersonic vehicle control is difficult however, because in addition to these more traditional complexities a control designer must also deal with problems very specific to flying at high speeds such as: inlet unstart, overcoming sensing deficiencies at high speeds and creating an implementable digital control framework for a plant with extremely fast dynamics. This dissertation develops three novel theoretical approaches for addressing these challenges through advances in the nonlinear dynamic inversion adaptive control technique. Although hypersonic vehicle control is the motivation and often the application that the control algorithms in this dissertation are tested on, several of the theoretical developments apply to a general class of nonlinear continuous time systems. First, in order to address the problem of inlet unstart, two state constraint mechanisms which integrate into the nonlinear dynamic inversion adaptive control framework are presented. These state constraining control laws require full state feedback and are capable of restricting the outputs of nonlinear systems containing parameter uncertainty to specific regions of the state-space. The first state constraint mechanism achieves this objective using sliding mode control and the second uses bounding functions to smoothly adjust the control and adaptive laws and drive the states toward the origin when constraints are approached. Stability is proven using Lyapunov analysis and these techniques are demonstrated in a nonlinear simulation of a hypersonic vehicle. Second, an observer-based feedback controller is developed that allows for a nonlinear system to track a reference trajectory with bounded errors and without measuring multiple states. Again, the technique used is nonlinear dynamic inversion adaptive control, but because of uncertainty in the system state, it is not assumed that the nonlinear control effectiveness matrix can be canceled perfectly. A nonlinear observer is implemented to estimate the values of the unknown states. This observer allows for the closed-loop stability of the system to be proven through Lyapunov analysis. It is shown that parametric uncertainty can successfully be accounted for using an adaptive mechanism and that all tracking and estimation errors are uniformly ultimately bounded. Finally, a sampled-data nonlinear dynamic inversion adaptive control architecture is introduced. Despite the prevalence of digital controllers in practice, a nonlinear dynamic inversion adaptive control scheme in a sampled-data setting has not previously been developed. The method presented in this dissertation has the capability of extending the benefits of nonlinear dynamic inversion adaptive control - robust control of nonlinear systems with respect to model uncertainty - to more practical platforms

    Continuous Recursive Sliding Mode Control for Hypersonic Flight Vehicle with Extended Disturbance Observer

    Get PDF
    A continuous recursive sliding mode controller (CRSMC) with extended disturbance observer (EDO) is proposed for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV) in the presence of multiple uncertainties under control constraints. Firstly, sliding mode tracking controller based on a set of novel recursive sliding mode manifolds is presented, in which the chattering problem is reduced. The CRSMC possesses the merits of both nonsingular terminal sliding mode controller (NTSMC) and high-order sliding mode controller (HOSMC). Then antiwindup controller is designed according to the input constraints, which adds a dynamic compensation factor in the CRSMC. For the external disturbance of system, an improved disturbance observer based on extended disturbance observer (EDO) is designed. The external disturbance is estimated by the disturbance observer and the estimated value is regarded as compensation in CRSMC for disturbance. The stability of the proposed scheme is analyzed by Lyapunov function theory. Finally, numerical simulation is conducted for cruise flight dynamics of HFV, where altitude is 110000 ft, velocity is 15060 ft/s, and Mach is 15. Simulation results show the validity of the proposed approach

    Disturbance observer based control with anti-windup applied to a small fixed wing UAV for disturbance rejection

    Get PDF
    Small Unmanned Aerial Vehicles (UAVs) are attracting increasing interest due to their favourable features; small size, low weight and cost. These features also present different challenges in control design and aircraft operation. An accurate mathematical model is unlikely to be available meaning optimal control methods become difficult to apply. Furthermore, their reduced weight and inertia mean they are significantly more vulnerable to environmental disturbances such as wind gusts. Larger disturbances require more control actuation, meaning small UAVs are far more susceptible to actuator saturation. Failure to account for this can lead to controller windup and subsequent performance degradation. In this work, numerical simulations are conducted comparing a baseline Linear Quadratic Regulator (LQR) controller to integral augmentation and Disturbance Observer Based Control (DOBC). An anti-windup scheme is added to the DOBC to attenuate windup effects due to actuator saturation. A range of external disturbances are applied to demonstrate performance. The simulations conduct manoeuvres which would occur during landing, statistically the most dangerous flight phase, where fast disturbance rejection is critical. Validation simulations are then conducted using commercial X-Plane simulation software. This demonstrates that DOBC with anti-windup provides faster disturbance rejection of both modelling errors and external disturbances
    corecore