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We propose a predictive sliding mode control (PSMC) scheme for attitude control of hypersonic vehicle (HV) with system
uncertainties and external disturbances based on an improved fuzzy disturbance observer (IFDO). First, for a class of uncertain
affine nonlinear systemswith systemuncertainties and external disturbances, we propose a predictive slidingmode control based on
fuzzy disturbance observer (FDO-PSMC), which is used to estimate the composite disturbances containing system uncertainties
and external disturbances. Afterward, to enhance the composite disturbances rejection performance, an improved FDO-PSMC
(IFDO-PSMC) is proposed by incorporating a hyperbolic tangent function with FDO to compensate for the approximate error of
FDO. Finally, considering the actuator dynamics, the proposed IFDO-PSMC is applied to attitude control system design for HV
to track the guidance commands with high precision and strong robustness. Simulation results demonstrate the effectiveness and
robustness of the proposed attitude control scheme.

1. Introduction

Near space is the airspace of Earth altitudes from 20 km to
100 km, which has shown strategy and spatial superiority
with the prosperous development of aerospace technology
[1]. The near space hypersonic vehicle (HV) which has many
outstanding advantages such as large flight envelope, high
maneuverability, and fast response ability compared with
the ordinary aircraft has attracted a growing worldwide
interest [2, 3]. Due to the hypersonic velocity and changeable
flight environment, the HV possesses some distinct dynamic
characters of highly coupled control channels, serious non-
linearity, and strong uncertainty, which all contribute to
the design difficulty of the attitude control system with
remarkable precision and strong robustness. Due to the
poor performance of the traditional control approaches in
addressing the nonlinear and uncertain problem, advanced
control methods should be employed in the attitude control
system design for the HV, which is still an open problem.

The sliding mode control (SMC) is insensitive to system
uncertainties and disturbances. It is one of the most impor-
tant approaches to the control of systems with modeling
imprecision, and it has been widely applied to the flight

control system design [4–11]. References [12, 13] incorporate
the sliding mode surface into the quadratic performance
index of the predictive control and then the predictive
sliding mode control law which has an explicitly analytical
form is derived by minimizing the performance index. By
using this method, the undesirable chattering phenomenon
is attenuated and the large online computational issue of
the predictive control is avoided. The predictive sliding
mode control (PSMC) takes merits of the strong robustness
of sliding model control and the outstanding optimization
performance of predictive control, which appears to be a very
promising control method in control engineering.

For the design of control system for the HV, many
advanced control methods mainly focus on the stability or
robust stability rather than considering the system uncer-
tainties and disturbances explicitly in the controller design
[14–18]. They may encounter some unexpected problems
and the flight control system may even become unstable in
the presence of strong disturbances. Thus, it is of profound
significance to adopt new strategies to eliminate the influence
of the composite disturbances and improve the precision and
robustness of the flight control system. Fuzzy disturbance
observer (FDO) is a particular type of disturbance observer,
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which combines the distinct merits of fuzzy control with
disturbance observer technology. These advantages make it
an appropriate candidate for robust control of uncertain
nonlinear systems [19–25]. Nevertheless, the robust flight
control scheme based on FDO needs to be further researched
for the HV to improve the control ability, which needs to duel
with the changeable flight environment and problems caused
by system uncertainties.

Motivated by the precise and robust attitude control
demand of the HV with uncertain model and external dis-
turbances, this paper considers the composite disturbances
in flight control system design of the HV to improve the
robust control performance. Three major contributions are
presented as follows.

(1) We propose a predictive sliding mode control based
on fuzzy disturbance observer (FDO-PSMC)method
for a class of uncertain affine nonlinear systems with
system uncertainties and external disturbances. The
composite disturbances are considered, which result
in poor performance and instability of the control
system.

(2) To address the problems which are brought by the
composite disturbances, an improved FDO (IFDO) is
proposed through utilizing the special properties of
a hyperbolic tangent function to compensate for the
approximate error of FDO. By using IFDO, the com-
posite disturbances can be approximated effectively.

(3) Considering the actuator dynamics, we apply the
improved fuzzy disturbance observer based predic-
tive sliding mode control (IFDO-PSMC) scheme to
the attitude control system design for theHV.Numer-
ical simulation verifies the surpassing performance of
the proposed control scheme.

The rest of this paper is organized as follows. In Section 2,
the control-oriented hypersonic flight model during cruise
phase is presented. In order to approximate the compos-
ite disturbances, Section 3 presents a FDO-PSMC method
and the FDO is improved for a better performance for a
class of uncertain affine nonlinear systems with external
disturbances. In Section 4, the proposed control scheme is
applied to the attitude control system design for the HV in
consideration of the actuator dynamics. Simulation results
are presented in Section 5 to validate the effectiveness of the
designed flight control system. Finally, Section 6 provides
some conclusions of this paper.

2. HV Modeling

Suppose that the fuel slosh is not considered and the products
of inertia are negligible [26]. Based on the hypothesis of
an inverse-square-law gravitational model, the centripetal

acceleration for the nonrotating Earth, the mathematical
model of HV during the cruise phase can be described as
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𝑉
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Remark 1. For the convenience of control system design,
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which is obtained by the coordinate system transformation.

3. Predictive Sliding Mode Control Based on
Fuzzy Disturbance Observer

3.1. Predictive Sliding Mode Control for Systems with Uncer-
tainties and Disturbances. To develop the predictive sliding
mode control, we consider the following MIMO uncertain
affine nonlinear system with external disturbances:

ẋ = f (x) + Δf (x) + (g (x) + Δg (x)) u + d,

y = h (x) ,
(5)

where x ∈ R𝑛 is the state vector of the uncertain nonlinear
system; u ∈ R𝑚 is the control input vector; y ∈ R𝑚 is the
output vector of the uncertain nonlinear system; f(x) ∈ R𝑛
and g(x) ∈ R𝑛×𝑚 are the given function vector and control
gain matrix, respectively; Δf(x) and Δg(x) are the internal
uncertainty and modeling error; and d is the external time-
varying disturbance.

Define

D (x, u, d) = Δf (x) +Δg (x)u + d, (6)

where D(x, u, d) denotes the system uncertainties and exter-
nal disturbances.

Without loss of generality, the equilibrium of uncertain
nonlinear system (5) is supposed to be x

0
= 0. In accordance

with the Lie derivative operation [27] in differential geometry
theory, the vector relative degree of MIMO system can be
defined as follows.
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where g
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is the jth row vector of g(x) and ℎ
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of system (5). Similarly, the disturbance relative degree at x
0

can be defined as {𝜏
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To facilitate the process of control system design, the fol-
lowing reasonable assumptions are required before develop-
ing predictive sliding mode control of the uncertain MIMO
nonlinear system (5).

Assumption 3. f(x) and h(x) are continuously differentiable,
and g(x) is continuous.

Assumption 4. All states are available; moreover, the output
and reference signals are also continuously differentiable.

Assumption 5. The zero dynamics are stable.
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Associate the 𝑚 equations; the nonlinear system (5) can
be written as

y(𝜌) = 𝛼 (x) + 𝛽 (x)u + Δ (x, u,D) , (9)
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Then the vector z can be written as
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Within themoving time frame, the sliding surface ŝ(𝑡+𝑇)
at the time 𝑇 is approximately predicted by
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For the derivation of the control law, the receding-
horizon performance index at the time 𝑇 is given by
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Remark 7. If D = 0, the control law given by (20) is the
nominal predictive sliding mode control law. If D ̸= 0,
Δ(x, u,D) cannot be directly obtained due to the immeasur-
able unknown composite disturbancesD.Theperformance of
flight control systemmay becomeworse, even unstable, when
D is big enough. To handle this problem, a fuzzy observer
would be designed to estimate the composite disturbances.

Remark 8. For the convenience of notation, Δ(x, u,D)would
be denoted by Δ(x) in the rest of this paper.
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Lemma 9 (see [28]). For any given real continuous function
g(x) on the compact set U ∈ R𝑛 and arbitrary 𝜀 > 0, there
exists a fuzzy system 𝑝(X) presented as (22) such that
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< 𝜀. (24)

According to Lemma 9, a fuzzy system can be designed
to approximate the composite disturbances Δ(x) by adjusting
the parameter vector ̂𝜃 online.The designed fuzzy system can
be written as

̂

Δ (x | ̂𝜃
T
Δ
) = [

̂

𝛿

1
,

̂

𝛿

2
⋅ ⋅ ⋅

̂

𝛿

𝑚
]

T
=

̂

𝜃

T
Δ
𝜗
Δ
(x) , (25)

where

̂

𝜃

T
Δ
= diag {̂𝜃

T
1
,

̂

𝜃

T
2
, . . . ,

̂

𝜃

T
𝑚
} ,

̂

𝜃

T
𝑖
= (𝑌

1

𝑖
, 𝑌

2

𝑖
, . . . , 𝑌

𝑙

𝑖
)

T
,

𝜗
Δ (

x) = [𝜗
1 (
x)T , 𝜗2 (x)

T
, . . . , 𝜗

𝑚 (
x)T]

T
,

𝜗 (x) = [𝜗

1

𝑖
, 𝜗

2

𝑖
, . . . , 𝜗

𝑙

𝑖
]

T
.

(26)

Let x belong to a compact set Ωx; the optimal parameter
vector 𝜃∗T

Δ
can be defined as

𝜃
∗T
Δ

= argmin
�̂�
T
Δ

{sup
x∈Ωx















Δ (x) − ̂

Δ (x | ̂𝜃
T
Δ
)















} , (27)

where the optimal parameter matrix 𝜃∗T
Δ

lies in a convex
region given by

M𝜃 = {

̂

𝜃
Δ
|











̂

𝜃
Δ











≤ 𝑚

𝜃
} , (28)

where ‖⋅‖ is the Frobenius norm and𝑚
𝜃
is a design parameter

with𝑚
𝜃
> 0.

Consequently, the composite disturbances Δ(x) can be
written as

Δ (x) = 𝜃∗T
Δ
𝜗
Δ
(x) + 𝜀, (29)

where 𝜀 is the smallest approximation error of the fuzzy
system. Apparently, the norm of 𝜃∗T

Δ
is bounded with

‖𝜀‖ ≤ 𝜀, (30)

where 𝜀 is the upper bound of the approximation error 𝜀.
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Through adjusting the parameter vector ̂

𝜃 online, the
composite disturbances Δ(x) can be approximated by the
fuzzy system; hence, the performance of the control sys-
tem with composite disturbances can be improved. As the
performance of the control system is closely related to the
selected fuzzy system, the control precision will be reduced
when the approximation ability of the selected fuzzy system is
dissatisfactory. In order to improve the approximation ability,
a hyperbolic tangent function is integrated with the fuzzy
disturbance observer to compensate for the approximate
error.

3.2.2. Fuzzy Disturbance Observer. Consider the following
dynamic system:

�̇� = −𝜒𝜇 + 𝑝 (x, u, ̂𝜃
Δ
) , (31)

where 𝑝(x, u, ̂𝜃
Δ
) = 𝜒y(𝜌−1) + 𝛼(x) + 𝛽(x)u + ̂

Δ(x | ̂𝜃
T
Δ
), 𝜒 > 0

is a design parameter, and ̂

Δ(x |

̂

𝜃

T
Δ
) =

̂

𝜃

T
Δ
𝜗
Δ
(x) is utilized to

compensate for the composite disturbances.
Define the disturbance observation error 𝜁 = y(𝜌−1) − 𝜇;

invoking (9) and (31) yields

̇

𝜁 = 𝛼 (x) + 𝛽 (x)u + Δ (x) + 𝜎𝜇 − 𝜎y(𝜌−1) − 𝛼 (x)

− 𝛽 (x) u − ̂

Δ (x | ̂𝜃
T
Δ
) = −𝜎𝜁 +

̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀,

(32)

where ̃𝜃
Δ
= 𝜃
∗

Δ
−

̂

𝜃
Δ
is the adjustable parameter error vector.

Then, the FDO-PSMC is proposed as

u = −𝑇

−1
𝛽 (𝑥)
−1

⋅ (s (𝑡) + 𝑇 (𝛼 (𝑥) +
̂

𝜃

T
Δ
𝜗
Δ
(x) − y(𝜌)c + z)) .

(33)

Invoking (16) and (33), we have

̇s = y(𝜌) − y(𝜌)c + z = 𝛼 (x) + 𝛽 (x) u + Δ (x) − y(𝜌)c + z

= −𝑇

−1s + ̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀.

(34)

Invoking (32) and (34), the augmented system is obtained
as

�̇� = A𝜍 + B (

̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀) , (35)

where = (𝜁
T
, sT)T,A = diag(−𝜒I

𝑚
, −𝑇

−1I
𝑚
), and B =

(I
𝑚
, I
𝑚
)

T.

Theorem 10. Assume that the disturbance of (9) is monitored
by the system (32), and the system (9) is controlled by (33). If
the adjustable parameter vector of FDO is tuned by (36), then
the augmented error 𝜍 is uniformly ultimately bounded within
an arbitrarily small region:

̇

̂

𝜃
Δ
= Proj [𝜆𝜗

Δ
(x) 𝜍TB]

= 𝜆𝜗
Δ
(x) 𝜍T − 𝐼

𝜃
𝜆

𝜍
TB̂𝜃

T
Δ
𝜗
Δ
(x)











̂

𝜃
Δ











2

̂

𝜃
Δ
,

(36)

where
𝐼

𝜃

=

{

{

{

0, if 




̂

𝜃
Δ











< 𝑚

𝜃
, or 









̂

𝜃
Δ











= 𝑚

𝜃
, 𝜍

TB̂𝜃
T
Δ
𝜗
Δ
(x) ≤ 0

1, if 




̂

𝜃
Δ











= 𝑚

𝜃
, 𝜍

TB̂𝜃
T
Δ
𝜗
Δ
(x) > 0.

(37)

Proof. Consider the Lyapunov function candidate:

𝑉 =

1

2

𝜍
T
𝜍 +

1

2𝜆

̃

𝜃

T
Δ
̃

𝜃
Δ
. (38)

Invoking (35) and (36), the time derivative of 𝑉 is

̇

𝑉 = 𝜍
T
�̇� +

1

𝜆

̃

𝜃

T
Δ

̇

̃

𝜃
Δ
= 𝜁

T
̇

𝜁 + sT ̇s + 1

𝜆

̃

𝜃

T
Δ

̇

̃

𝜃
Δ

= 𝜁
T
(−𝜒𝜁 +

̃

𝜃

T
Δ
𝜗
Δ (

x) + 𝜀) + sT (−𝑇−1s + ̃

𝜃

T
Δ
𝜗
Δ (

x) + 𝜀)

−

1

𝜆

̃

𝜃

T
Δ
Proj [𝜆𝜑

Δ
(x) 𝜍TB] + 1

𝜂

̃

𝜗
̇

̃

𝜗

= 𝜁
T
(−𝜒𝜁 +

̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀) + sT (−𝑇−1s + ̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀)

−

̃

𝜃

T
Δ
𝜗
Δ (

x) 𝜍T + ̃

𝜃

T
Δ
𝐼

𝜃

𝜍
TB̂𝜃

T
Δ
𝜗
Δ (

x)










̂

𝜃
Δ











2

̂

𝜃
Δ
.

(39)

Considering the fact

̃

𝜃

T
Δ
̂

𝜃
Δ
= 𝜃
∗T
Δ
̂

𝜃
Δ
−

̂

𝜃

T
Δ
̂

𝜃
Δ

≤

1

2

(









𝜃
∗

Δ









2
+











̂

𝜃
Δ











2

) −











̂

𝜃
Δ











2

≤

1

2

(









𝜃
∗

Δ









2
− 𝑚

𝜃

2
)

≤ 0 (when 









̂

𝜃
Δ











= 𝑚

𝜃
)

(40)

and invoking (37), we have

̃

𝜃

T
Δ
𝐼

𝜃

𝜍
TB̂𝜃

T
Δ
𝜗
Δ (

x)










̂

𝜃
Δ











2

̂

𝜃
Δ
= 0

or ̃

𝜃

T
Δ
𝐼

𝜃

𝜍
TB̂𝜃

T
Δ
𝜗
Δ
(x)











̂

𝜃
Δ











2

̂

𝜃
Δ
< 0.

(41)

Consequently, we obtain

̇

𝑉 ≤ 𝜁
T
(−𝜒𝜁 +

̃

𝜃

T
Δ
𝜑
Δ
(x) + 𝜀)

+ sT (−𝑇−1s + ̃

𝜃

T
Δ
𝜑
Δ
(x) + 𝜀) − ̃

𝜃

T
Δ
𝜑
Δ
(x) 𝜍T

≤ 𝜁
T
(−𝜒𝜁 +

̃

𝜃

T
Δ
𝜑
Δ
(x) + 𝜀) + sT (−𝑇−1s + ̃

𝜃

T
Δ
𝜑
Δ
(x) + 𝜀)

−

̃

𝜃

T
Δ
𝜑
Δ
(x) 𝜁 − ̃

𝜃

T
Δ
𝜑
Δ
(x) s

≤ 𝜁
T
(−𝜒𝜁 + 𝜀) + sT (−𝑇−1s + 𝜀)
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≤ −𝜒 ‖𝜁‖
2
+ 𝜁

T
𝜀 − 𝑇

−1
‖s‖2 + sT𝜀

≤ −

𝜒

2

‖𝜁‖
2
+

1

2𝜒

‖𝜀‖
2
−

1

2𝑇

‖s‖2 + 𝑇

2

‖𝜀‖
2
.

(42)

If ‖𝜁‖ > 𝜀/𝜒 or ‖s‖ > 𝑇𝜀, ̇

𝑉 < 0.Therefore, the augmented
error 𝜍 is uniformly ultimately bounded.

Remark 11. In order to make sure that the FDO ̂

Δ(x |

̂

𝜃

T
Δ
)

outputs zero signal in case of the composite disturbancesD =

0, the consequent parameters should be set to be 0:

̂

𝜃
Δ
(0) = 0.

(43)

Remark 12. A projection operator (36) is used in the tuning
method of the adjustable parameter vector; then, ‖̂𝜃

Δ
‖ can be

guaranteed to be bounded [29].

Remark 13. The adjustable parameter vector of the FDO (36)
includes the observation error 𝜁 and the sliding surface s.
In view of the fact that the sliding surface s which is the
linearization combination of the tracking error e is Hurwitz
stable, the observation error 𝜁 and tracking error e are both
uniformly ultimately bounded, which ensures stability of the
control system.

3.3. Improved Fuzzy Disturbance Observer

Lemma 14 (see [30]). For all 𝑐 > 0 and w ∈ 𝑅𝑚, the following
inequality holds:

0 < ‖w‖ − wT tanh(w
𝑐

) ≤ 𝑚𝜅𝑐, (44)

where 𝜅 is a constant such that 𝜅 = e−(𝜅+1); that is, 𝜅 = 0.2785.

The hyperbolic tangent function is incorporated to com-
pensate for the approximate error and improve the precision
of FDO. Consider the following dynamic system:

�̇� = −𝜒𝜇 + 𝑝 (x, u, ̂𝜃
Δ
) , (45)

where 𝑝(x, u, ̂𝜃
Δ
) = 𝜎y(𝜌−1) + 𝛼(x) + 𝛽(x)u +

̂

Δ(x |

̂

𝜃

T
Δ
) − 𝜐 tanh(𝜁/𝑐), 𝜒 > 0 is a design parameter, and ̂

Δ(x |

̂

𝜃

T
Δ
) =

̂

𝜃

T
Δ
𝜗
Δ
(x) is utilized to compensate for the composite

disturbances.
Define the disturbance observation error 𝜁 = y(𝜌−1) − 𝜇;

invoking (9) and (45) yields

̇

𝜁 = 𝛼 (x) + 𝛽 (x) u + Δ (x) + 𝜎𝜇 − 𝜎y(𝜌−1) − 𝛼 (x)

− 𝛽 (x) u − ̂

Δ (x | ̂𝜃
T
Δ
)

= −𝜒𝜁 +
̃

𝜃

T
Δ
𝜗
Δ (

x) + 𝜀 − 𝜐 tanh(𝜁
𝑐

) ,

(46)

where ̃𝜃
Δ
= 𝜃
∗

Δ
−

̂

𝜃
Δ
is an adjustable parameter vector.

The IFDO-PSMC is proposed as

u = −𝑇

−1
𝛽 (𝑥)
−1

⋅ (s (𝑡) + 𝑇 (𝛼 (𝑥) +
̂

𝜃

T
Δ
𝜗
Δ (

x)

− y(𝜌)c + z + 𝜐 tanh( s (𝑡)
𝑐

))) .

(47)

Invoking (16) and (47), we have

̇s = y(𝜌) − y(𝜌)c + z = 𝛼 (x) + 𝛽 (x) u + Δ (x) − y(𝜌)c + z

= −𝑇

−1s + ̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀 − 𝜐 tanh( s

𝑐

) .

(48)

Invoking (46) and (48), the augmented system is obtained
as

�̇� = A𝜍 + B(

̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀𝜐 tanh(𝜍

TB
𝑐

)) , (49)

where 𝜍 = (𝜁
T
, sT)T, A = diag(−𝜒I

𝑚
, −𝑇

−1I
𝑚
), and B =

(I
𝑚
, I
𝑚
)

T.

Theorem 15. Assume that the disturbance of the system (9) is
monitored by the system (49), and the system (9) is controlled
by (47). If the adjustable parameter vector of IFDO is tuned
by (50) and the approximate error compensation parameter is
tuned by (51), the augmented error 𝜍 is uniformly ultimately
bounded within an arbitrarily small region:

̇

̂

𝜃
Δ
= Proj [𝜆𝜗

Δ
(x) 𝜍TB]

= 𝜆𝜗
Δ
(x) 𝜍T − 𝐼

𝜃
𝜆

𝜍
TB̂𝜃

T
Δ
𝜗
Δ
(x)











̂

𝜃
Δ











2

̂

𝜃
Δ
,

(50)

̇

�̂� = 𝜂











𝜍
TB





, (51)

where

𝐼

𝜃

=

{

{

{

0, if 




̂

𝜃
Δ











< 𝑚

𝜃
, or 









̂

𝜃
Δ











= 𝑚

𝜃
, 𝜍

TB̂𝜃
T
Δ
𝜗
Δ
(x) ≤ 0

1, if 




̂

𝜃
Δ











= 𝑚

𝜃
, 𝜍

TB̂𝜃
T
Δ
𝜗
Δ
(x) > 0.

(52)

Proof. Consider the Lyapunov function candidate:

𝑉 =

1

2

𝜍
T
𝜍 +

1

2𝜆

̃

𝜃

T
Δ
̃

𝜃
Δ
+

1

2𝜂

𝜐

2
, (53)
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where 𝜐 = 𝜐 − 𝜀. Invoking (49), (50), and (51), the time
derivative of 𝑉 is

̇

𝑉 = 𝜍
T
�̇� +

1

𝜆

̃

𝜃

T
Δ

̇

̃

𝜃
Δ
+

1

𝜂

𝜐

̇

�̃� = 𝜁
T
̇

𝜁 + sT ̇s + 1

𝜆

̃

𝜃

T
Δ

̇

̃

𝜃
Δ
+

1

𝜂

𝜐

̇

�̃�

= 𝜁
T
(−𝜒𝜁 +

̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀 − 𝜐 tanh(𝜁

𝑐

))

+ sT (−𝑇−1s + ̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀)

− 𝜐 tanh( s
𝑐

) −

1

𝜆

̃

𝜃

T
Δ
Proj [𝜆𝜗

Δ
(x) 𝜍TB] + 1

𝜂

𝜐

̇

�̃�

= 𝜁
T
(−𝜒𝜁 +

̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀 − 𝜐 tanh(𝜁

𝑐

))

+ sT (−𝑇−1s + ̃

𝜃

T
Δ
𝜗
Δ (

x) + 𝜀)

− 𝜐 tanh( s
𝑐

) −

̃

𝜃

T
Δ
𝜗
Δ
(x) 𝜍T

+

̃

𝜃

T
Δ
𝐼𝜃

𝜍
TB̂𝜃

T
Δ
𝜗
Δ
(x)











̂

𝜃
Δ











2

̂

𝜃
Δ
+

1

𝜂

𝜐

̇

�̃�

≤ 𝜁
T
(−𝜒𝜁 +

̃

𝜃

T
Δ
𝜗
Δ (

x) + 𝜀 − 𝜐 tanh(𝜁
𝑐

))

+ sT (−𝑇−1s + ̃

𝜃

T
Δ
𝜗
Δ (

x) + 𝜀 − 𝜐 tanh( s
𝑐

))

−

̃

𝜃

T
Δ
𝜗
Δ
(x) 𝜍T + 1

𝜂

𝜐

̇

�̃�

≤ 𝜁
T
(−𝜒𝜁 +

̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀 − 𝜐 tanh(𝜁

𝑐

))

+ sT (−𝑇−1s + ̃

𝜃

T
Δ
𝜗
Δ
(x) + 𝜀 − 𝜐 tanh( s

𝑐

))

−

̃

𝜃

T
Δ
𝜗
Δ (

x) 𝜁 − ̃

𝜃

T
Δ
𝜗
Δ (

x) s + 1

𝜂

𝜐

̇

�̃�

≤ 𝜁
T
(−𝜒𝜁 + 𝜀) + sT (−𝑇−1s + 𝜀) − 𝜁T𝜐 tanh(𝜁

𝑐

)

− sT𝜐 tanh( s
𝑐

) + 𝜐 ‖𝜁‖ + 𝜐 ‖s‖ .

(54)

According to Lemma 14, we have

− 𝜁
T
𝜐 tanh(𝜁

𝑐

) ≤ − |𝜐| ‖𝜁‖ + 𝑚𝜅𝑐,

− sT𝜐 tanh( s
𝑐

) ≤ − |𝜐| ‖s‖ + 𝑚𝜅𝑐.

(55)

Consequently, we obtain

̇

𝑉 ≤ −𝜎 ‖𝜁‖
2
+ 𝜁

T
𝜀 − 𝑇

−1
‖s‖2 + sT𝜀 − |𝜐| ‖𝜁‖

+ 𝑚𝜅𝑐 − |𝜐| ‖s‖ + 𝑚𝜅𝑐 + 𝜐 ‖𝜁‖ + 𝜐 ‖s‖

≤ −𝜎 ‖𝜁‖
2
+ ‖𝜁‖ 𝜀 − 𝑇

−1
‖s‖2 + ‖s‖ 𝜀 − 𝜐 ‖𝜁‖

+ 𝜐 ‖𝜁‖ − 𝜐 ‖𝜁‖ + 𝜐 ‖s‖ + 2𝑚𝜅𝑐

≤ −𝜎 ‖𝜁‖
2
− 𝑇

−1
‖s‖2 + 2𝑚𝜅𝑐.

(56)

If ‖𝜁‖ > √2𝑚𝜅𝑐/𝜒 or ‖s‖ > √

2𝑚𝜅𝑐𝑇, ̇

𝑉 < 0. Therefore,
the augmented error 𝜍 is uniformly ultimately bounded.

Remark 16. Thecomposite disturbances can be approximated
effectively by adjusting the parameter law (50) and (51). If
the fuzzy system approximates the composite disturbances
accurately, the approximate error compensation will have
small effect on compensating the approximate error, and vice
versa. Based on this, the approximate precision of FDO can
be improved through overall consideration.

4. Design of Attitude Control of
Hypersonic Vehicle

4.1. Control Strategy. The structure of the IFDO-PSMC flight
control system is shown in Figure 1. Considering the strong
coupled, nonlinear, and uncertain features of the HV, predic-
tive sliding mode control approach which has distinct merits
is applied to the design of the nominal flight control system.
To further improve the performance of flight control system,
an improved fuzzy disturbance observer is proposed to esti-
mate the composite disturbances. The adjustable parameter
law of IFDO can be designed based on Lyapunov theorem to
approximate the composite disturbances online. According
to the estimated composite disturbances, the compensation
controller can be designed and integrated with the nominal
controller to track the guidance commands precisely. In order
to improve the quality of flight control system, three same
command filters are designed to smooth the changing of
the guidance commands in three channels. Their transfer
functions have the same form as

𝑥

𝑟

𝑥

𝑐

=

2

𝑥 + 2

, (57)

where 𝑥

𝑟
and 𝑥

𝑐
are the reference model states and the

external input guidance commands, respectively.

4.2. Attitude Controller Design. The states of the attitude
model (2) are pitch angle 𝜑, yaw angle𝜓, rolling angle 𝛾, pitch
rate 𝜔

𝑥
, yaw rate 𝜔

𝑦
, and roll rate 𝜔

𝑧
, and the outputs are

selected as pitch angle 𝜑, yaw angle 𝜓, and rolling angle 𝛾,
which can be written asΘ = [𝜑, 𝜓, 𝛾]

T and𝜔 = [𝜔

𝑥
, 𝜔

𝑦
, 𝜔

𝑧
]

T,
and the output states are selected as y = [𝜑, 𝜓, 𝛾]

T; then, the
attitude model (2) can be rewritten as

̇Θ = F
𝜃
𝜔

�̇� = J−1F
𝜔
+ J−1u,

(58)
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Figure 1: IFDO-PSMC based flight control system.

where

F
𝜃
=

[

[

0 sin 𝛾 cos 𝛾
0 cos 𝛾 sec𝜑 − sin 𝛾 sec𝜑
1 − tan𝜑 cos 𝛾 tan𝜑 sin 𝛾

]

]

,

u =

[

[

𝑀

𝑥

𝑀

𝑦

𝑀

𝑧

]

]

,

F
𝜔
=

[

[

[

(𝐽

𝑦
− 𝐽

𝑧
) 𝜔

𝑧
𝜔

𝑦
−

̇

𝐽

𝑥
𝜔

𝑥

(𝐽

𝑧
− 𝐽

𝑥
) 𝜔

𝑥
𝜔

𝑧
−

̇

𝐽

𝑦
𝜔

𝑦

(𝐽

𝑥
− 𝐽

𝑦
) 𝜔

𝑥
𝜔

𝑦
−

̇

𝐽

𝑧
𝜔

𝑧

]

]

]

,

J = [

[

𝐽

𝑥
0 0

0 𝐽

𝑦
0

0 0 𝐽

𝑧

]

]

.

(59)

According to the PSMC approach, (58) can be derived as

ÿ = 𝛼 (x) + 𝛽 (x) u, (60)

where

𝛼 (x)

=

[

[

0 sin 𝛾 cos 𝛾
0 cos 𝛾 sec𝜑 − sin 𝛾 sec𝜑
1 − tan𝜑 cos 𝛾 tan𝜑 sin 𝛾

]

]

⋅

[

[

[

𝐽

−1

𝑥
0 0

0 𝐽

−1

𝑦
0

0 0 𝐽

−1

𝑧

]

]

]

⋅

[

[

[

(𝐽

𝑦
− 𝐽

𝑧
) 𝜔

𝑧
𝜔

𝑦
−

̇

𝐽

𝑥
𝜔

𝑥

(𝐽

𝑧
− 𝐽

𝑥
) 𝜔

𝑥
𝜔

𝑧
−

̇

𝐽

𝑦
𝜔

𝑦

(𝐽

𝑥
− 𝐽

𝑦
) 𝜔

𝑥
𝜔

𝑦
−

̇

𝐽

𝑧
𝜔

𝑧

]

]

]

+

[

[

[

[

[

[

[

[

̇𝛾 (𝜔

𝑦
cos 𝛾 − 𝜔

𝑧
sin 𝛾)

�̇� (𝜔

𝑦
cos 𝛾 − 𝜔

𝑧
sin 𝛾) tan𝜑 sec𝜑

− ̇𝛾 (𝜔

𝑦
sin 𝛾 + 𝜔

𝑧
cos 𝛾) sec𝜑

̇𝛾 (𝜔

𝑦
sin 𝛾 + 𝜔

𝑧
cos 𝛾) tan𝜑

− �̇� (𝜔

𝑦
cos 𝛾 − 𝜔

𝑧
sin 𝛾) sec2𝜑

]

]

]

]

]

]

]

]

,

𝛽 (x) = [

[

0 sin 𝛾 cos 𝛾
0 cos 𝛾 sec𝜑 − sin 𝛾 sec𝜑
1 − tan𝜑 cos 𝛾 tan𝜑 sin 𝛾

]

]

[

[

[

𝐽

−1

𝑥
0 0

0 𝐽

−1

𝑦
0

0 0 𝐽

−1

𝑧

]

]

]

.

(61)

Then, the sliding surface can be selected as

s (𝑡) = ė + 𝐾e, (62)

where e = y − y
𝑐
is the attitude tracking error vector, y

𝑐

is attitude command vector [𝜑
𝑐
, 𝜓

𝑐
, 𝛾

𝑐
]

T transformed from
the input attitude command vector [𝛼

𝑐
, 𝛽

𝑐
, 𝛾

𝑉
𝑐

]

T, and 𝐾 is
the parameter matrix which must make the polynomial (62)
Hurwitz stable. Define z as

z = 𝐾ė. (63)

In addition,

Yc𝜌 = [�̈�

𝑐
,
̈

𝜓

𝑐
, ̈𝛾

𝑐
]

T
.

(64)

Substituting (61), (62), (63), and (64) into (20), the
nominal predictive slidingmodeflight controllerwhich omits
the composite disturbances Δ(x) is proposed as

u
0
= −𝑇

−1
𝛽 (x)−1 (s (𝑡) − 𝑇 (𝛼 (x) − Yc𝜌 + z)) . (65)

In order to improve performance of the flight control
system, the adaptive compensation controller based on IFDO
is designed as

u
1
= −𝑇

−1
𝛽 (x)−1 ̂Δ (x) , (66)

where ̂

Δ(x) is the approximate composite disturbances for
Δ(x).
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Figure 2: Actuator model.

Accordingly, a fuzzy system can be designed to approx-
imate the composite disturbances Δ(x). First, each state is
divided into five fuzzy sets, namely, 𝐴𝑖

1
(negative big), 𝐴𝑖

2

(negative small), 𝐴𝑖
3
(zero), 𝐴𝑖

4
(positive small), and 𝐴

𝑖

5

(positive big), where 𝑖 = 1, 2, 3 represent𝜑,𝜓, and 𝛾. Based on
the Gaussianmembership function, 25 if-then fuzzy rules are
used to approximate the composite disturbances ̂𝛿

1
, ̂𝛿
2
, and

̂

𝛿

3
, respectively.
Considering the adaptive parameter law (50) and (51), the

approximate composite disturbances can be expressed as

̂

Δ (x) = [

̂

𝛿

1
,

̂

𝛿

2
,

̂

𝛿

3
]

T
=

̂

𝜃

T
Δ
𝜗
Δ
(x) , (67)

where ̂

𝜃

T
Δ

= diag{̂𝜃
T
1
,

̂

𝜃

T
2
,

̂

𝜃

T
3
} is the adjustable parameter

vector and 𝜗
Δ
(x) = [𝜗

1
(x)T, 𝜗

2
(x)T, 𝜗

3
(x)T]T is a fuzzy basis

function vector related to the membership functions; hence,
the HV attitude control based on the IFDO can be written as

u = u
0
+ u
1
. (68)

Theorem 17. Assume that the HV attitude model satisfies
Assumptions 3–6 and the sliding surface is selected as (62),
which is Hurwitz stable. Moreover, assume that the composite
disturbances of the attitude model are monitored by the system
(49) and the system is controlled by (68). If the adjustable
parameter vector of IFDO is tuned by (50) and the approximate
error compensation parameter is tuned by (51), then the
attitude tracking error and the disturbance observation error
are uniformly ultimately bounded within an arbitrarily small
region.

Remark 18. Theorem 17 can be proved similarly as
Theorem 15. Herein, it is omitted.

Remark 19. By means of the designed IFDO-PSMC system
(68), the proposed HV attitude control system can not
only track the guidance commands precisely with strong
robustness but also guarantee the stability of the system.

4.3. Actuator Dynamics. The HV attitude system tracks the
guidance commands by controlling actuator to generate
deflection moments; then, the HV is driven to change the
attitude angles. However, there exist actuator dynamics to
generate the input moments𝑀

𝑥
,𝑀
𝑦
, and𝑀

𝑧
, which are not

considered inmost of the existing literature. In order tomake

the study in accordance with the actual case, consider the
actuator model expressed as

𝑥

𝑐
(𝑠)

𝑥

𝑐𝑑
(𝑠)

=

𝜔

2

𝑛

𝑠

2
+ 2𝜁

𝑛
𝜔

𝑛
+ 𝜔

2

𝑛

𝑆

𝐴
(𝑠) 𝑆V (𝑠) , (69)

where 𝜁
𝑛
and𝜔

𝑛
are the damping and bandwidth, respectively,

𝑆

𝐴
(𝑠) is the deflection angle limiter, and 𝑆V(𝑠) is the deflection

rate limiter. Figure 2 shows the actuator model, where 𝑥
𝑐0
, 𝑥
𝑐
,

and �̇�

𝑐
are the deflection angle command, virtual deflection

angle, and deflection rate, respectively.

5. Simulation Results Analysis

To validate the designed HV attitude control system, simula-
tion studies are conducted to track the guidance commands
[𝛼

𝑐
, 𝛽

𝑐
, 𝛾

𝑉
𝑐

]

T. Assume that the HV flight lies in the cruise
phase with the flight altitude 33.5 km and the flight mach
number 15. The initial attitude and attitude angular velocity
conditions are arbitrarily chosen as 𝛼

0
= 𝛽

0
= 𝛾

𝑉
0

= 0

and 𝜔

𝑥
0

= 𝜔

𝑦
0

= 𝜔

𝑧
0

= 0; the initial flight path angle and
trajectory angle are 𝜃

0
= 𝜎

0
= 0; the guidance commands are

chosen as 𝛼
𝑐
= 5

∘, 𝛽
𝑐
= 0

∘, and 𝛾
𝑉
𝑐

= 5

∘, respectively.
The damping 𝜁

𝑛
and bandwidth 𝜔

𝑛
of the actuator are

0.707 and 100 rad/s, respectively; the deflection angle limit is
[−20, 20]∘; the deflection rate limit is [−50, 50]∘/s.

To exhibit the superiority of the proposed scheme,
the variation of the aerodynamic coefficients, aerodynamic
moment coefficients, atmosphere density, thrust coefficients,
and moments of inertia is assumed to be −50%, −50%, +50%,
−30%, and −10%, which are much more rigorous than those
considered in [18]. On the other hand, unknown external
disturbance moments imposed on the HV are expressed as

𝑑

1 (
𝑡) = 10

5 sin (2𝑡) N ⋅m

𝑑

2
(𝑡) = 2 × 10

5 sin (2𝑡) N ⋅m

𝑑

3 (
𝑡) = 10

6 sin (2𝑡) N ⋅m.

(70)

The simulation time is set to be 20 s and the update
step of the controller is 0.01 s. The predictive sliding mode
controller design parameters are chosen as 𝑇 = 0.1 and
𝐾 = diag(2, 50, 4); the IFDO design parameters are chosen
as 𝜆 = 275, 𝜒 = 15, 𝜂 = 95, and 𝑐 = 0.25. In addition,
the membership functions of the fuzzy system are chosen as
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Figure 3: Comparison of tracking curves and control inputs under SMC and PSMC in nominal condition.

Gaussian functions expressed as (71). The simulation results
are shown in Figures 3, 4, and 5. Consider

𝜇

𝐴
1

𝑗

(𝑥

𝑗
) = exp[

[

−(

(𝑥

𝑗
+ 𝜋/6)

(𝜋/24)

)

2

]

]

,

𝜇

𝐴
2

𝑗

(𝑥

𝑗
) = exp[

[

−(

(𝑥

𝑗
+ 𝜋/12)

(𝜋/24)

)

2

]

]

,

𝜇

𝐴
3

𝑗

(𝑥

𝑗
) = exp[−(

𝑥

𝑗

(𝜋/24)

)

2

] ,

𝜇

𝐴
4

𝑗

(𝑥

𝑗
) = exp[

[

−(

(𝑥

𝑗
− 𝜋/12)

(𝜋/24)

)

2

]

]

,

𝜇

𝐴
5

𝑗

(𝑥

𝑗
) = exp[

[

−(

(𝑥

𝑗
− 𝜋/6)

(𝜋/24)

)

2

]

]

.

(71)

Figure 3 presents the simulation results under PSMC and
SMC without considering system uncertainties and external
disturbance. Figures 3(a)∼3(c) show the results of tracking
the guidance commands under PSMC and SMC. As shown,
the guidance commands of PSMC and SMC can be tracked
both quickly andprecisely. Figures 3(d)∼3(f) show the control
inputs under PSMC and SMC. It can be observed that
there exists distinct chattering of SMC while the results of
PSMC are smooth owing to the outstanding optimization
performance of the predictive control. The simulation results
in Figure 3 indicate that the PSMC is more effective than
SMC for system without considering system uncertainties
and external disturbances.

Figure 4 shows the simulation results under PSMC and
SMCwith considering systemuncertainties, where the results
are denoted as those in Figure 4. From Figures 4(a)∼4(c),
it can be seen that the flight control system adopted SMC
and PSMC can track the commands well in spite of system
uncertainties which proves strong robustness of SMC.Mean-
while, it is obvious that SMC takes more time to achieve
convergence and the control inputs become larger than that
in Figure 4. However, PSMC can still perform as well as that
in Figure 3 with the settling time increasing slightly and the
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Figure 4: Comparison of tracking curves and control inputs under SMC and PSMC in the presence of system uncertainties.

control inputs almost remain the same. In accordance with
Figures 4(d)∼4(f), we can observe that distinct chattering is
also caused by SMC while the results of PSMC are smooth.
It can be summarized that PSMC is more robust and more
accurate than SMC for system with uncertain model.

Figure 5 gives the simulation results under PSMC, FDO-
PSMC, and IFDO-PSMC in consideration of system uncer-
tainties and external disturbances. Figures 5(a)∼5(c) show
the results of tracking the guidance commands. It can be
observed that PSMC cannot track the guidance commands in
the presence of big external disturbances while FDO-PSMC
and IFDO-PSMC can both achieve satisfactory performance,
which verifies the effectiveness of FDO in suppressing the
influence of system uncertainties and external disturbances.
Figures 5(d)∼5(f) are the partial enlarged detail correspond-
ing to Figures 5(a)∼5(c). As shown, the IFDO-PSMC can
track the guidance commands more precisely, which declares
stronger disturbance approximate ability of IFDO when
compared with FDO. To sum up, the results of Figure 5
indicate that IFDO is effective in dealing with system uncer-
tainties and external disturbances. In addition, the proposed

IFDO-PSMC is applicative for the HV which has rigorous
system uncertainties and strong external disturbances.

It can be concluded from the above-mentioned simula-
tion analysis that the proposed IFDO-PSMC flight control
scheme is valid.

6. Conclusions

An effective control scheme based on PSMC and IFDO is
proposed for the HV with high coupling, serious nonlinear-
ity, strong uncertainty, unknown disturbance, and actuator
dynamics. PSMC takes merits of the strong robustness of
sliding model control and the outstanding optimization
performance of predictive control, which seems to be a very
promising candidate for HV control system design. PSMC
and FDO are combined to solve the system uncertainties
and external disturbance problems. Furthermore,we improve
the FDO by incorporating a hyperbolic tangent function
with FDO. Simulation results show that IFDO can better
approximate the disturbance than FDO and can assure the
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Figure 5: Comparison of tracking curves under PSMC, FDO-PSMC, and IFDO-PSMC in the presence of system uncertainties and external
disturbances.

control performance of HV attitude control system in the
presence of rigorous system uncertainties and strong external
disturbances.
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