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A continuous recursive sliding mode controller (CRSMC) with extended disturbance observer (EDO) is proposed for the
longitudinal dynamics of a generic hypersonic flight vehicle (HFV) in the presence of multiple uncertainties under control
constraints. Firstly, slidingmode tracking controller based on a set of novel recursive slidingmodemanifolds is presented, in which
the chattering problem is reduced.TheCRSMCpossesses themerits of both nonsingular terminal slidingmode controller (NTSMC)
and high-order sliding mode controller (HOSMC). Then antiwindup controller is designed according to the input constraints,
which adds a dynamic compensation factor in the CRSMC. For the external disturbance of system, an improved disturbance
observer based on extended disturbance observer (EDO) is designed. The external disturbance is estimated by the disturbance
observer and the estimated value is regarded as compensation in CRSMC for disturbance. The stability of the proposed scheme is
analyzed by Lyapunov function theory. Finally, numerical simulation is conducted for cruise flight dynamics of HFV, where altitude
is 110000 ft, velocity is 15060 ft/s, and Mach is 15. Simulation results show the validity of the proposed approach.

1. Introduction

Hypersonic flight vehicle (HFV) is a cost-effective and reli-
able space aircraft. It can realize prompt global responses for
its high speed. SoHFVhas attractedmore andmore attention
from the civil and military field. However, HFV is highly
coupling and nonlinear aircraft, and it is extremely sensitive
to changes in physical and aerodynamic parameters due to its
peculiar structure and rigorous flight environment. Hence, it
is a significantly challenging task to model and control HFV.
Since the 1960s, a large number of scholars had done research
in this field. Up to now, abundant research results have been
achieved.

The aeropropulsive and aeroelastic properties of HFV
were analyzed in detail by Chavez and Schmidt [1], which
laid the foundation for establishing HFV model. Bolender
and Doman built a nonlinear longitudinal dynamics model
for the air-breathing HFV in [2, 3], which captured the
complex interactions between the aerodynamics, propulsion
system, and structural dynamics. Then, robust flight control
systems based on Monte Carlo evaluation were synthesized

in [4], and stochastic robust nonlinear dynamics inversion
(NDI) control law was presented for longitudinal motion of
HFV in [5]. For the sake of applying linear control method,
control-oriented linearized model was derived in [6]. Obaid
proposed minimax linear quadratic regulator (LQR) optimal
controller in [7, 8] and minimax optimal linear quadratic
Gaussian controller in [9] based on feedback linearization
model of HFV by virtue of minimax linear quadratic theory,
where the optimal control minimizes the maximum value
of the quadratic cost function and gives an optimal solution
for the selected cost function. The optimal controller can
achieve good control performance; however, the construction
of Riccati equation parameter matrixes in LQR and LQG is a
difficult work.Qi et al. [10] designed an adaptive backstepping
fault-tolerant control scheme for HFV by means of back-
stepping theory. Butt et al. [11] designed adaptive controller
for HFV in terms of dynamic surface method. Xu et al.
[12] proposed adaptive sliding mode control for longitudinal
dynamics of input-output linearization model of HFV, in
which the uncertain parameters were estimated by adaptive
laws based on Lyapunov synthesis approach. Among all the
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above methods, sliding mode control is the most attractive
method, because of its robustness to uncertainty, and it is
simple and designed easily.

Terminal sliding mode control is a kind of finite time
convergence control, which appeals to many researchers
due to its controllable convergence time. Until now, there
are numerous research results about terminal sliding mode
control, such as continuous terminal sliding mode control
design [13] and fast terminal slidingmode control [14].Never-
theless, terminal sliding mode control usually has singularity
problem, which reduces its performance. According to this,
Feng et al. [15] proposed nonsingular terminal sliding mode
control and applied it to the rigid manipulators successfully.

It is worth noting that HFV is a high-order nonlinear
system. Hence, the low-order and linear sliding mode con-
trol is conservative and cannot acquire better performance.
References [16, 17] have presented high-order sliding mode
control for HFV, but their first sliding surfaces remain in
a linear form. And the chattering problem of sliding mode
control affects the engineering application. In addition, the
operation of mechanical actuators for HFV is restricted,
which is easy to reach saturation in the near space where
the execution efficiency of actuators drops. According to
the input saturation, a large number of research results
can be consulted, such as [18–20]. While the articles about
antiwindup control for HFV are few, only [21] takes into
account actuator restraints under complex flight conditions.
Aiming at all the above, a continuous recursive sliding mode
control (CRSMC) under control constraints is proposed for
HFV in this paper, in which a compensation factor is added
in CRSMC for actuator restraints.

Extended state observer (ESO) was proposed by Han in
[22]. In ESO, the disturbance is regarded as a system state
and then state observer is constructed. Through tuning the
observer gain, which is the only adjustable parameter, all
states of the system can be estimated. At the same time,
the disturbance is estimated as the extended state. ESO is
a simple and effective observer, which has been applied in
many projects successfully, such as speed control of induction
motor drive [23], attitude tracking of rigid spacecraft [24],
robotic uncalibrated hand-eye coordination control [25], and
boiler-turbine-generator control systems [26]. In addition,
Gao developed ESO by proposing scaling and bandwidth-
parameterization theory [27], which simplifies and facilitates
the parameter tuning process. Ginoya et al. [28] proposed
an extended disturbance observer (EDO) on the basis of
disturbance observer (DO), which was projected by Chen
in [29–31]. The EDO is appropriate for the system having
disturbances in all channels. In accordance with the theory of
ESO and EDO, an improved disturbance observer (IEDO) is
designed for the external disturbance of HFV in this paper.
The external disturbance is estimated by IEDO. Then, the
estimated value is regarded as compensation for the above
CRSMC. Therefore, the proposed scheme of this paper is
CRSMC under control constraints plus IEDO. The major
contributions of this paper are as follows:

(I) A novel recursive sliding mode control is applied
in the flight control of HFV, in which the recursive

sliding manifolds are nonlinear and nonsingular. In
addition, this sliding mode controller is continuous
due to its nonlinear reaching law. Compared with the
linear sliding mode control for HFV in [12, 16, 17],
the proposed scheme has faster response and is less
conservative.

(II) A compensation controller for control constraints is
proposed for HFV, for which the articles are few. The
compensation controller works after the CRSMC as
a compensation factor, which not only plays a role
in antiwindup controller but also has no effect on
the performance of the CRSMC. The simulations in
following part demonstrate its effectiveness.

(III) A novel disturbance observer is designed for the
external disturbance for HFV. The disturbance
observer is improved extended disturbance observer
(EDO) in [28], in which there are more parameters
that need to be regulated because of each channel with
multiple gain parameters. The improved EDO has
only one parameter that needs to be regulated, which
is more convenient for engineering application.

The remainder of this paper is organized as follows. Section 2
formulates theHFV longitudinalmodel and control problem.
Section 3 reveals the design process of CRSMC under control
constraints and IEDO for external disturbance in detail. The
stability of the proposed scheme is analyzed in Section 4
by Lyapunov function method. Numerical simulations are
conducted in Section 5. Section 6 provides conclusions of the
paper.

2. Model and Problem Formulation

2.1. HFVModel. The control plant of this paper is a model of
longitudinal dynamics of a generic HFV, which is developed
byNASALangley research center.Themodel consists of some
differential equations that describe velocity, altitude, flight
path angle, angle of attack, and pitch rate [12, 18], which are
expressed as follows:
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where 𝑉, ℎ, 𝛾, 𝛼, 𝑞 are velocity, altitude, flight path angle,
angle of attack, and pitch rate of HFV, respectively; 𝐼

𝑦𝑦
is

moment of inertia of the aircraft and 𝑚 is mass; 𝐿, 𝐷, 𝑇, and
𝑀

𝑦𝑦
are, respectively, lift, drag, thrust, and pitching moment

acting on the aircraft; 𝑟 is radial distance from Earth’s center.
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The detailed expressions of 𝐿, 𝐷, 𝑇, and 𝑀

𝑦𝑦
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respectively, as follows:

𝐿 =

1

2

𝜌𝑉

2
𝑆𝐶

𝐿
,

𝐷 =

1

2

𝜌𝑉

2
𝑆𝐶

𝐷
,

𝑇 =

1

2

𝜌𝑉

2
𝑆𝐶

𝑇
,

𝑀

𝑦𝑦
=

1

2

𝜌𝑉

2
𝑆𝑐 [𝐶

𝑀
(𝛼) + 𝐶

𝑀
(𝛿

𝑒
) + 𝐶

𝑀
(𝑞)] ,

𝑟 = ℎ + 𝑅

𝐸
,

(2)

where 𝜌, 𝑆, 𝑐, and 𝑅

𝐸
denote, respectively, density of air,

reference area, mean aerodynamic chord, and radius of the
Earth; 𝛿
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is the elevator deflection angle; 𝐶
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namic coefficient parameters as
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where 𝑑
2
(𝑡) means the external disturbance reflected on the

elevator.
The engine dynamics are modeled as a second-order

system as
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where 𝛽 and 𝛽

𝑐
are throttle setting and throttle setting

command, respectively; 𝜉 is damping ratio and 𝜔
𝑛
is natural

frequency of engine; 𝑑
1
(𝑡) is the external disturbance on

behalf of torques and generalized elastic forces.
Because of the peculiar structure of HFV and complex

flight conditions, some certain parameters uncertainties are
taken into consideration; namely,
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where (⋅
0
) represents the nominal value of parameter (⋅) and

(Δ⋅) denotes the parameter uncertainties.
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𝑖
(𝑡) is assumed to
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Assumption 2. The parameter uncertainties in (5) are
assumed to be bounded. And they satisfy the following
conditions:
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where Δ𝑚∗, Δ𝐼∗, Δ𝑆∗, Δ𝑐∗, Δ𝜌∗, and Δ𝑐∗
𝑒
are all positive real

constants.

Remark 3. According to nonlinear model (1), velocity 𝑉 and
altitude ℎ are regarded as output variables, while the input
variables are chosen as engine throttle setting command 𝛽

𝑐

and elevator deflection angle 𝛿
𝑒
. The control task is designing

an appropriate controller such that the output variables (𝑉, ℎ)
track the relevant command (𝑉

𝑑
, ℎ

𝑑
) in finite time in the

presence of disturbance, respectively.

2.2. Input-Output Linearization. Because the model of (1) is
highly nonlinear and strong coupling, the linearized model
is needed for the sake of designing control law. Here, the
input-output linearization method is adopted for linearizing.
In accordance with Remark 3, the linearized target is that the
input variables (𝛽

𝑐
, 𝛿

𝑒
) appear apparently in the expressions of

output variables (𝑉, ℎ). In terms of Nonlinear SystemTheory
and employingmathematical tools of Lie derivative, the input
variables (𝛽

𝑐
, 𝛿

𝑒
) can appear in the motion equations by

differentiating 𝑉 three times and ℎ four times, respectively
[12]; namely,
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ẍ + ẋ𝑇Ω

2
ẋ)
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1
ẋ,
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where x = [𝑉 𝛾 𝛼 𝛽 ℎ]

𝑇 is the system state vector
and Ω1, Ω2, Π1, and Π2 are the system equations’ first-
order and second-order partial differential to state variables,
respectively, whose detailed expressions are exhibited in the
Appendix.

The expressions of �̈� and ̈
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Assumption 4. Matrix B is assumed to be invertible.

Remark 5. Matrix B is nonsingular during the entire flight
envelope except on a vertical flight path [5] for the input-
output combination. Hence, Assumption 4 is reasonable.

3. Controller and Observer Design

In this section, a continuous recursive sliding mode track-
ing controller is firstly designed and then a compensation
controller is designed for the input saturation. In the third
subsection, an improved disturbance observer based on EDO
is presented for estimating the external disturbance.

3.1. Tracking Controller Design. Before introducing the track-
ing controller, two lemmas are presented which will assist in
analyzing and proving the theorem.

Lemma 6 (see [13]). Consider the following first-order nonlin-
ear differential equation:
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where 𝑥 ∈ 𝑅, 𝛽, 𝑎 ∈ 𝑅, 𝑛, 𝑘 ∈ 𝑁, 0 < 𝑘 < 𝑛, 𝛽 > 0, and 𝑎 > 1.
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In accordance with Lemma 6, the solution of (17) will
converge to zero in finite time
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Theorem 8. Consider nonlinear model (1) and linearized
model (12) with Assumption 4; the system output variables
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11
𝑠

12
− 𝑘

12









𝑠

12









𝜌
1 sgn (𝑠

12
) − Φ

1
)

Ψ

1

+

...
𝑉

𝑑
− 𝐹

𝑉

(−𝑘

21
𝑠

22
− 𝑘

22









𝑠

22









𝜌
2 sgn (𝑠

22
) − Φ

2
)

Ψ

2

+ ℎ

(4)

𝑑
− 𝐹

ℎ

]

]

]

]

]

,

(19)

where Ψ

1
= 𝛽

11
| ̇𝑠

11
|

1−1/𝑎
1
𝛽

10
| ̇𝑠

10
|

2−1/𝑎
1 , Ψ

2
=

𝛽

21
| ̇𝑠

21
|

1−1/𝑎
2
𝛽

20
| ̇𝑠

20
|

2−1/𝑎
2 , 𝑘
𝑖𝑗

> 0, 0 < 𝜌

𝑖
< 1, 𝛽

𝑖0
> 0,

𝛽

𝑖1
> 0, 𝑎

𝑖
> 1 for 𝑖 = 1, 2, 𝑗 = 1, 2, and 𝑠

𝑖𝑚
(𝑖 = 1, 2;

𝑚 = 0, 1, 2) are the recursive sliding mode manifolds which are
defined as

𝑠

10
= 𝑒

1
, (20a)

𝑠

11
= 𝑠

10
+ 𝛽

10

𝑎

1

3𝑎

1
− 1









̇𝑠

10









3−1/𝑎
1 sgn ( ̇𝑠

10
) , (20b)

𝑠

12
= 𝑠

11
+ 𝛽

11

𝑎

1

2𝑎

1
− 1









̇𝑠

11









2−1/𝑎
1 sgn ( ̇𝑠

11
) , (20c)

𝑠

20
= ̇𝑒

2
+ 𝜆

2
𝑒

2
, (21a)

𝑠

21
= 𝑠

20
+ 𝛽

20

𝑎

2

3𝑎

2
− 1









̇𝑠

20









3−1/𝑎
2 sgn ( ̇𝑠

20
) , (21b)

𝑠

22
= 𝑠

21
+ 𝛽

21

𝑎

2

2𝑎

2
− 1









̇𝑠

21









2−1/𝑎
2 sgn ( ̇𝑠

21
) , (21c)

where 𝑒
1
= 𝑉−𝑉

𝑑
and 𝑒
2
= ℎ−ℎ

𝑑
are tracking errors and 𝜆

2
is

strictly positive constant.

Proof. Taking into account the above recursive sliding mode
manifolds, the time differential of (20a), (20b), and (20c) is
that

̇𝑠

10
= ̇𝑒

1
,

̇𝑠

11
= ̇𝑠

10
+ 𝛽

10









̇𝑠

10









2−1/𝑎
2
̈𝑠

10
,

̈𝑠

11
= ̈𝑒

1
+ 𝛽

10
(2 −

1

𝑎

1

)









̇𝑒

1









1−1/𝑎
1

+ 𝛽

10









̇𝑒

1









2−1/𝑎
1
...
𝑒

1
,

(22)

̇𝑠

12
= ̇𝑠

11

+ 𝛽

11









̇𝑠

11









1−1/𝑎
1

[ ̈𝑒

1
+ 𝛽

10
(2 −

1

𝑎

1

)









̇𝑒

1









1−1/𝑎
1

]

+ 𝛽

11









̇𝑠

11









1−1/𝑎
1

𝛽

10









̇𝑠

10









2−1/𝑎
1
...
𝑒

1
.

(23)

In line with ...
𝑒

1
=

...
𝑉 −

...
𝑉

𝑑
, (23) changes as

̇𝑠

12
= Φ

1
+ Ψ

1
(

...
𝑉 −

...
𝑉

𝑑
) , (24)

where

Φ

1
= ̇𝑠

11

+ 𝛽

11









̇𝑠

11









1−1/𝑎
1

[ ̈𝑒

1
+ 𝛽

10
(2 −

1

𝑎

1

)









̇𝑒

1









1−1/𝑎
1

] ,

Ψ

1
= 𝛽

11









̇𝑠

11









1−1/𝑎
1

𝛽

10









̇𝑠

10









2−1/𝑎
1

.

(25)

Similarly, the time differential of (21a), (21b), and (21c) is
that

̇𝑠

20
= ̈𝑒

2
+ 𝜆

2
̇𝑒

2
,

̈𝑠

20
=

...
𝑒

2
+ 𝜆

2
̈𝑒

2
,

...
𝑠

20
= 𝑒

(4)

2
+ 𝜆

2

...
𝑒

2
,

(26)

̇𝑠

21
= ̇𝑠

20
+ 𝛽

20









̇𝑠

20









2−1/𝑎
2
̈𝑠

20
,

̈𝑠

21
= ̈𝑠

20
+ 𝛽

20
(2 −

1

𝑎

2

)









̇𝑠

20









1−1/𝑎
2
̈𝑠

2

20

+ 𝛽

20









̇𝑠

20









2−1/𝑎
2
...
𝑠

20
,

(27)

̇𝑠

22
= ̇𝑠

21
+ 𝛽

21









̇𝑠

21









1−1/𝑎
2

⋅ [ ̈𝑠

20
+ 𝛽

20
(2 −

1

𝑎

2

)









̇𝑠

20









1−1/𝑎
2
̈𝑠

2

20
]

+ 𝛽

21









̇𝑠

21









1−1/𝑎
2

𝛽

20









̇𝑠

20









2−1/𝑎
2

𝜆

2

...
𝑒

2
+ 𝛽

21









̇𝑠

21









1−1/𝑎
2

⋅ 𝛽

20









̇𝑠

20









2−1/𝑎
2

𝑒

(4)

2
.

(28)

In terms of 𝑒(4)
2

= ℎ

(4)
− ℎ

(4)

𝑑
, (28) is changed as

̇𝑠

22
= Φ

2
+ Ψ

2
(ℎ

(4)
− ℎ

(4)

𝑑
) , (29)

where

Φ

2
= ̇𝑠

21
+ 𝛽

21









̇𝑠

21









1−1/𝑎
2

⋅ [ ̈𝑠

20
+ 𝛽

20
(2 −

1

𝑎

2

)









̇𝑠

20









1−1/𝑎
2
̈𝑠

2

20
] + Ψ

2
𝜆

2

...
𝑒

2
,

Ψ

2
= 𝛽

21









̇𝑠

21









1−1/𝑎
2

𝛽

20









̇𝑠

20









2−1/𝑎
2

.

(30)

Like that, (24) and (29) are written together as

[

̇𝑠

12

̇𝑠

22

] = [

Φ

1

Φ

2

] + [

Ψ

1
0

0 Ψ

2

][

...
𝑉 −

...
𝑉

𝑑

ℎ

(4)
− ℎ

(4)

𝑑

] . (31)

Substituting (12) into (31) in the absence of external dis-
turbance yields

[

̇𝑠

12

̇𝑠

22

] = [

Φ

1

Φ

2

] + [

Ψ

1
0

0 Ψ

2

]([

𝐹

𝑉

𝐹

ℎ

] − [

...
𝑉

𝑑

ℎ

(4)

𝑑

] + Bu) . (32)



6 Mathematical Problems in Engineering

Choose a Lyapunov function candidate as

𝐿

𝑎
=

1

2

𝑠

𝑇
𝑠, (33)

where 𝑠 = [𝑠12
𝑠

22]

𝑇.
Taking first-order time derivative of Lyapunov function

in (33) yields

̇

𝐿

𝑎
= 𝑠

𝑇
̇𝑠

= 𝑠

𝑇
[[

Φ

1

Φ

2

] + [

Ψ

1
0

0 Ψ

2

]([

𝐹

𝑉

𝐹

ℎ

] − [

...
𝑉

𝑑

ℎ

(4)

𝑑

] + Bu)] .
(34)

Substituting (19) into (34), we obtain that

̇

𝐿

𝑎
= 𝑠

𝑇
[

−𝑘

11
𝑠

12
− 𝑘

12









𝑠

12









𝜌
1 sgn (𝑠

12
)

−𝑘

21
𝑠

22
− 𝑘

22









𝑠

22









𝜌
2 sgn (𝑠

22
)

]

= −𝑘

11
𝑠

2

12
− 𝑘

12









𝑠

12









𝜌
1
+1

− 𝑘

21
𝑠

2

22
− 𝑘

22









𝑠

22









𝜌
2
+1

≤ 0.

(35)

Hence, the sliding mode manifolds 𝑠
12

and 𝑠
22

will con-
verge to zero in finite time; that is, the finite convergence time
is 𝑡
𝑖1
= [ln(𝑘

𝑖1
𝑠

𝑖2
(0)

1−𝜌
𝑖
+ 𝑘

𝑖2
) − ln(𝑘

𝑖2
)]/𝑘

𝑖1
(1 − 𝜌

𝑖
) for 𝑖 = 1, 2.

This means that

𝑠

𝑖2
= 0, ∀𝑡 > 𝑡

𝑖1
, 𝑖 = 1, 2. (36)

Substituting (36) into (20c) and (21c), we obtain

𝑠

12
= 𝑠

11
+ 𝛽

11

𝑎

1

2𝑎

1
− 1









̇𝑠

11









2−1/𝑎
1 sgn ( ̇𝑠

11
) = 0,

𝑠

22
= 𝑠

21
+ 𝛽

21

𝑎

2

2𝑎

2
− 1









̇𝑠

21









2−1/𝑎
2 sgn ( ̇𝑠

21
) = 0.

(37)

By virtue of Lemma 7, the secondary sliding mode mani-
folds 𝑠

11
and 𝑠
21
will converge to zero in finite time

𝑡

𝑖2
=

2𝑎

𝑖
− 1

𝑎

𝑖
− 1

(

2𝑎

𝑖
− 1

𝛽

𝑖1
𝑎

𝑖

)

−𝑎
𝑖
/(2𝑎
𝑖
−1)









𝑠

𝑖1
(0)









(𝑎
𝑖
−1)/(2𝑎

𝑖
−1)

,

𝑖 = 1, 2.

(38)

Similar to the above process, the last level sliding mode
surfaces 𝑠

10
and 𝑠

20
in (20b) and (21b) will also converge to

zero in finite time

𝑡

𝑖3
=

3𝑎

𝑖
− 1

2𝑎

𝑖
− 1

(

3𝑎

𝑖
− 1

𝛽

𝑖0
𝑎

𝑖

)

−𝑎
𝑖
/(3𝑎
𝑖
−1)









𝑠

𝑖0
(0)









(2𝑎
𝑖
−1)/(3𝑎

𝑖
−1)

,

𝑖 = 1, 2.

(39)

Substituting 𝑠
10

= 0 and 𝑠

20
= 0 into (20a) and (21a),

respectively, it is obtained that

𝑠

10
= 𝑒

1
= 0, (40)

𝑠

20
= ̇𝑒

2
+ 𝜆

2
𝑒

2
= 0. (41)

It is seen that velocity tracking error 𝑒

1
converges to

zero. However, (41) is asymptotic convergence. Define an
arbitrary small neighborhood for 𝑒

2
; that is, 𝑍

𝑒
2

∈ [−𝛿, +𝛿],
𝛿 > 0. Once the altitude tracking error converges to the
neighborhood, it is considered that the altitude ℎ has tracked
the command ℎ

𝑑
. So the approximate convergence time is

𝑡

𝑒
2

≈

1

𝜆

2

(ln (𝑒
2
(0)) − ln 𝛿) . (42)

Summarizing the above contents, the total convergence
time for velocity channel is

𝑡

1
= 𝑡

11
+ 𝑡

12
+ 𝑡

13
. (43)

Likewise, the total approximate convergence time for
altitude channel (in fact, the altitude channel is asymptotic
convergence) is

𝑡

2
= 𝑡

21
+ 𝑡

22
+ 𝑡

23
+ 𝑡

𝑒
2

. (44)

In other words, it is obtained that

𝑒

1
= 𝑉 − 𝑉

𝑑
= 0, ∀𝑡 > 𝑡

1
,

𝑒

2
= ℎ − ℎ

𝑑
= 0, ∀𝑡 > 𝑡

2
→ ∞.

(45)

In a word, the system output variables 𝑉 and ℎ can
track the velocity command 𝑉

𝑑
and altitude command ℎ

𝑑

and afterwards keep stable under the proposed controller
in (19), respectively. Furthermore, in accordance with the
character of the sliding mode control, the controller is robust
in the presence of parameter uncertainties.The proof is com-
pleted.

Remark 9. It is worth noting the terms Ψ

1
and Ψ

2
in

the location of the denominator for controller (19). They
may cause singularity problem once the convergence speed
of sliding mode surface equals zero. Hence, the following
constraint is given:

Ψ

𝑖
=

{

{

{

Ψ

𝑖
,









Ψ

𝑖









> 𝜀

𝜀,









Ψ

𝑖









≤ 𝜀,

(46)

where 𝜀 is a small positive constant, 𝑖 = 1, 2.

Remark 10. There are three layers of sliding mode manifolds
for each channel. In each channel, these sliding surfaces are
recursive. The last layer sliding surface first arrives; in this
moment, the system states start tomove toward the secondary
sliding surface. After a period of time, the second layer sliding
surface arrives.Then, each sliding surface arrives successively.
Finally, the system tracking error converges to zero in limited
time. The flowchart of these three layers of sliding mode
manifolds is shown in Figure 1.

Remark 11. Taking into account (22)-(23) and (27)-(28), the
fractional powers are 2 − 1/𝑎

𝑖
and 1 − 1/𝑎

𝑖
. Because 1 < 2 −

1/𝑎

𝑖
< 2, 0 < 1 − 1/𝑎

𝑖
< 1 for 𝑎

𝑖
> 1, 𝑖 = 1, 2, there is no

negative fractional power in every procedure. Therefore, the
singularity problem existing in terminal sliding mode (TSM)
is avoided in the proposed controller.
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Last layer 
sliding 
surface

Arriving at sliding mode surface

2nd layer 
sliding 
surface

1st layer 
sliding 
surface

si2 = 0

t > ti1

si1 = 0

t > ti2

si0 = 0

t > ti3

si2 = si1 + 𝛽i1
ai

2ai − 1
| ̇si1|

2−(1/a𝑖)sgn( ̇si1)

si1 + 𝛽i1
ai

2ai − 1
| ̇si1|

2−(1/a𝑖)sgn( ̇si1) = 0

si0 + 𝛽i0
ai

3ai − 1
| ̇si0|

3−(1/a𝑖)sgn( ̇si0) = 0

Figure 1: The flowchart of recursive sliding manifolds.

Remark 12. Although there is sign function in controller (19),
the controller is continuous; namely, the chattering problem
that usually existed in traditional sliding mode control is
eliminated. This is due to the term 𝑘

𝑖2
|𝑠

𝑖2
|

𝜌
𝑖 sgn(𝑠

𝑖2
), 𝑖 = 1, 2,

which is time continuous and removing the discontinuity.

3.2. Antiwindup Controller. For the actuator saturation prob-
lem of HFV, an antiwindup controller is presented in this
subsection.

When the actuator saturation is taken into account and
the external disturbance is not, (12) can be rewritten as

[

...
𝑉

ℎ

(4)
] = [

𝐹

𝑉

𝐹

ℎ

] + B ⋅ sat (u) , (47)

where sat(u) = [

sat(𝛽
𝑐
)

sat(𝛿
𝑒
)
].

The saturation functions of actuators are defined as

sat (𝛽
𝑐
) =

{

{

{

sgn (𝛽
𝑐
) ,









𝛽

𝑐









> 𝛽

∗

𝛽

𝑐
,









𝛽

𝑐









≤ 𝛽

∗
,

sat (𝛿
𝑒
) =

{

{

{

sgn (𝛿
𝑒
) ,









𝛿

𝑒









> 𝛿

∗

𝑒

𝛿

𝑒
,









𝛿

𝑒









≤ 𝛿

∗

𝑒
,

(48)

where 𝛽∗ and 𝛿∗
𝑒
are saturation value of throttle setting and

elevator deflection, respectively.
Define the following saturation nonlinear functions as

𝑆

𝑎
(𝛽

𝑐
) = 𝛽

𝑐
− sat (𝛽

𝑐
) ,

𝑆

𝑎
(𝛿

𝑒
) = 𝛿

𝑒
− sat (𝛿

𝑒
) .

(49)

Then, the actuator saturation functions are described as

[

sat (𝛽
𝑐
)

sat (𝛿
𝑒
)

] = u − [
𝑆

𝑎
(𝛽

𝑐
)

𝑆

𝑎
(𝛿

𝑒
)

] . (50)

Therefore, (47) is changed for

[

...
𝑉

ℎ

(4)
] = [

𝐹

𝑉

𝐹

ℎ

] + Bu − B[
𝑆

𝑎
(𝛽

𝑐
)

𝑆

𝑎
(𝛿

𝑒
)

] . (51)

Theorem 13. Consider the linearized model (51) under the
control constraints and without external disturbance; the
system can stably converge to the reference commands 𝑉

𝑑
and

ℎ

𝑑
, if the controller is chosen as

u

= B−1
[

[

[

[

[

(−𝑘

11
𝑠

12
− 𝑘

12









𝑠

12









𝜌
1 sgn (𝑠

12
) − Φ

1
)

Ψ

1

+

...
𝑉

𝑑
− 𝐹

𝑉

(−𝑘

21
𝑠

22
− 𝑘

22









𝑠

22









𝜌
2 sgn (𝑠

22
) − Φ

2
)

Ψ

2

+ ℎ

(4)

𝑑
− 𝐹

ℎ

]

]

]

]

]

+ B−1 [
𝜅

11
(𝑏) 𝑆

𝑎
(𝛽

𝑐
) + 𝜅

12
(𝑏) 𝑆

𝑎
(𝛿

𝑒
)

𝜅

21
(𝑏) 𝑆

𝑎
(𝛽

𝑐
) + 𝜅

22
(𝑏) 𝑆

𝑎
(𝛿

𝑒
)

] ,

(52)

where

𝜅

𝑖1
(𝑏) =

{

{

{

0, 𝑆

𝑎
(𝛽

𝑐
) = 0

𝑏

𝑖1
, 𝑆

𝑎
(𝛽

𝑐
) ̸= 0,

𝜅

𝑖2
(𝑏) =

{

{

{

0, 𝑆

𝑎
(𝛿

𝑒
) = 0

𝑏

𝑖2
, 𝑆

𝑎
(𝛿

𝑒
) ̸= 0,

𝑖 = 1, 2.

(53)

Proof. Substituting (51) into (31) yields

[

̇𝑠

12

̇𝑠

22

] = [

Φ

1

Φ

2

] + [

Ψ

1
0

0 Ψ

2

]([

𝐹

𝑉

𝐹

ℎ

] + Bu

− B[
𝑆

𝑎
(𝛽

𝑐
)

𝑆

𝑎
(𝛿

𝑒
)

] − [

...
𝑉

𝑑

ℎ

(4)

𝑑

]) .

(54)
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Then, substituting the proposed controller (52) into (54),
we acquire

[

̇𝑠

12

̇𝑠

22

] = [

−𝑘

11
𝑠

12
− 𝑘

12









𝑠

12









𝜌
1 sgn (𝑠

12
)

−𝑘

21
𝑠

22
− 𝑘

22









𝑠

22









𝜌
2 sgn (𝑠

22
)

]

+ [

Ψ

1
0

0 Ψ

2

]([

𝜅

11
(𝑏) 𝑆

𝑎
(𝛽

𝑐
) + 𝜅

12
(𝑏) 𝑆

𝑎
(𝛿

𝑒
)

𝜅

21
(𝑏) 𝑆

𝑎
(𝛽

𝑐
) + 𝜅

22
(𝑏) 𝑆

𝑎
(𝛿

𝑒
)

]

− B[
𝑆

𝑎
(𝛽

𝑐
)

𝑆

𝑎
(𝛿

𝑒
)

]) .

(55)

In terms of the definition 𝜅
𝑖𝑗
(𝑏), we can obtain

[

𝜅

11
(𝑏) 𝑆

𝑎
(𝛽

𝑐
) + 𝜅

12
(𝑏) 𝑆

𝑎
(𝛿

𝑒
)

𝜅

21
(𝑏) 𝑆

𝑎
(𝛽

𝑐
) + 𝜅

22
(𝑏) 𝑆

𝑎
(𝛿

𝑒
)

] − B[
𝑆

𝑎
(𝛽

𝑐
)

𝑆

𝑎
(𝛿

𝑒
)

]

= [

(𝜅

11
(𝑏) − 𝑏

11
) 𝑆

𝑎
(𝛽

𝑐
) + (𝜅

12
(𝑏) − 𝑏

12
) 𝑆

𝑎
(𝛿

𝑒
)

(𝜅

21
(𝑏) − 𝑏

21
) 𝑆

𝑎
(𝛽

𝑐
) + (𝜅

22
(𝑏) − 𝑏

22
) 𝑆

𝑎
(𝛿

𝑒
)

]

= 0.

(56)

So, (55) is changed for

[

̇𝑠

12

̇𝑠

22

] = [

−𝑘

11
𝑠

12
− 𝑘

12









𝑠

12









𝜌
1 sgn (𝑠

12
)

−𝑘

21
𝑠

22
− 𝑘

22









𝑠

22









𝜌
2 sgn (𝑠

22
)

] . (57)

In accordance with the proof process of Theorem 8, the
system state will arrive at each layer of the sliding mode
surface in sequence, and finally the states will be stable at
equilibrium point.Then, the system can stably converge to its
reference command under control saturation.This completes
the proof.

Remark 14. The antiwindup controller in (52) consists of the
CRSMC tracking controller in (19) and the compensation
factor, which is the second part on the right of (52). The
compensation factor can compensate the lost part of the
control variable due to the actuator saturation.

3.3. Improved Extended Disturbance Observer. According to
the external disturbance of the system, a disturbance observer
based on EDO is presented.

Defining 𝑥
1
=

̈

𝑉, 𝑥
2
= ℎ

(3), then (10) is converted to

�̇�

1
= 𝐹

𝑉
+ 𝐵

1𝑢
+ 𝐷

1
,

�̇�

2
= 𝐹

ℎ
+ 𝐵

2𝑢
+ 𝐷

2
,

(58)

where

𝐵

1𝑢
= 𝑏

11
𝛽

𝑐
+ 𝑏

12
𝛿

𝑒
,

𝐵

2𝑢
= 𝑏

21
𝛽

𝑐
+ 𝑏

22
𝛿

𝑒
,

(59)

𝑏

11
𝑑

1
(𝑡) + 𝑏

12
𝑑

2
(𝑡) = 𝐷

1
,

𝑏

21
𝑑

1
(𝑡) + 𝑏

22
𝑑

2
(𝑡) = 𝐷

2
.

(60)

According to the pseudo system state equation of (58)
which has disturbance in all channels, the EDO is designed
as

̂

𝐷

(𝑗−1)

𝑖
= 𝑝

𝑖𝑗
+ 𝑙

𝑖𝑗
𝑥

𝑖
,

̇
𝑝

𝑖𝑗
= −𝑙

𝑖𝑗
(𝐹

𝑚
+ 𝐵

𝑖𝑢
+

̂

𝐷

𝑖
) + 𝜁

𝑗
̂

𝐷

(𝑗)

𝑖
,

(61)

where

𝜁

𝑗
=

{

{

{

1, 𝑗 ̸= 𝑟

0, 𝑗 = 𝑟

,

𝑖 = 1, 2, 𝑚 = 𝑉, ℎ, 𝑗 = 1, 2, . . . , 𝑟,

(62)

𝑟 is the order of EDO, 𝑝
𝑖𝑗
are the auxiliary variables, and 𝑙

𝑖𝑗

are the gain parameters chosen by designer.
In [28], every gain parameter should be regulated inde-

pendently, which is inconvenient when the number of param-
eters is giant. The improved EDO (IEDO) presented in this
paper simplifies the regulating process; afterwards, there is
only one parameter that needs to be regulated, which is
inspired by Gao in [27, 33].

For 𝑟 (𝑟 ≥ 3) order EDO, the EDO of (61) is expressed as
follows:

̂

𝐷

𝑖
= 𝑝

𝑖1
+ 𝑙

𝑖1
𝑥

𝑖
, (63)

̇
𝑝

𝑖1
= −𝑙

𝑖1
(𝐹

𝑚
+ 𝐵

𝑖𝑢
+

̂

𝐷

𝑖
) +

̂

̇

𝐷

𝑖
,

(64)

̂

̇

𝐷

𝑖
= 𝑝

𝑖2
+ 𝑙

𝑖2
𝑥

𝑖
,

(65)

̇
𝑝

𝑖2
= −𝑙

𝑖2
(𝐹

𝑚
+ 𝐵

𝑖𝑢
+

̂

𝐷

𝑖
) +

̂

̈

𝐷

𝑖
,

.

.

.

(66)

̂

𝐷

(𝑟−1)

𝑖
= 𝑝

𝑖𝑟
+ 𝑙

𝑖𝑟
𝑥

𝑖
,

(67)

̇
𝑝

𝑖𝑟
= −𝑙

𝑖𝑟
(𝐹

𝑚
+ 𝐵

𝑖𝑢
+

̂

𝐷

𝑖
) . (68)

Define the estimation error of disturbance and its deriva-
tive as

̃

𝐷

𝑖
= 𝐷

𝑖
−

̂

𝐷

𝑖
,

̃

̇

𝐷

𝑖
=

̇

𝐷

𝑖
−

̂

̇

𝐷

𝑖
,

̃

̈

𝐷

𝑖
=

̈

𝐷

𝑖
−

̂

̈

𝐷

𝑖
,

.

.

.

̃

𝐷

(𝑟−1)

𝑖
= 𝐷

(𝑟−1)

𝑖
−

̂

𝐷

(𝑟−1)

𝑖
.

(69)

Taking the first time derivative of (63) and substituting
(64) into it yield

̇

̂

𝐷

𝑖
= 𝑙

𝑖1
̃

𝐷

𝑖
+

̂

̇

𝐷

𝑖
.

(70)
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Subtracting both sides of (70) from ̇

𝐷

𝑖
, we acquire

̇

̃

𝐷

𝑖
=

̇

𝐷

𝑖
−

̂

̇

𝐷

𝑖
= −𝑙

𝑖1
̃

𝐷

𝑖
+

̃

̇

𝐷

𝑖
.

(71)

Similarly, the following equations are obtained from (65)–
(68):

̇

̃

̇

𝐷

𝑖
= −𝑙

𝑖2
̃

𝐷

𝑖
+

̃

̈

𝐷

𝑖
,

.

.

.

(72)

̇

̃

𝐷

(𝑟−1)

𝑖
= −𝑙

𝑖𝑟
̃

𝐷

𝑖
+ 𝐷

(𝑟)

𝑖
.

(73)

Then, (71)–(73) are written together as

̇

̃E
𝑖
= ÃE
𝑖
+ C𝐷(𝑟)

𝑖
,

(74)

where

̃E
𝑖
=

[

[

[

[

[

[

[

[

[

[

̇

̃

𝐷

𝑖

̇

̃

̇

𝐷

𝑖

.

.

.

̇

̃

𝐷

(𝑟−1)

𝑖

]

]

]

]

]

]

]

]

]

]

,

A =

[

[

[

[

[

[

[

−𝑙

𝑖1
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

−𝑙

𝑖2
0 1 ⋅ ⋅ ⋅ 0

.

.

. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

−𝑙

𝑖𝑟
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

,

C =

[

[

[

[

[

[

[

0

0

.

.

.

1

]

]

]

]

]

]

]

.

(75)

Then, the gain parameters are calculated as follows:

|𝜆I − A| = (𝜆 + 𝜔

0𝑖
)

𝑟

, (76)

where I is unit matrix and 𝜔
0𝑖
is the observer bandwidth.

Therefore, every gain parameter is only determined by
𝜔

0𝑖
, which simplifies the regulation process. For a second-

order EDO as an example, the gain parameters are reduced

|𝜆I − A| =




















𝜆 + 𝑙

𝑖1
−1

𝑙

𝑖2
𝜆





















= 𝜆

2
+ 𝑙

𝑖1
𝜆 + 𝑙

𝑖2
= (𝜆 + 𝜔

0𝑖
)

2

= 𝜆

2
+ 2𝜔

0𝑖
𝜆 + 𝜔

2

0𝑖
.

(77)

So the parameters are chosen to 𝑙
𝑖1
= 2𝜔

0𝑖
, 𝑙
𝑖2
= 𝜔

2

0𝑖
.

In terms of [28] and Assumption 1, the norm of the
estimation error ̃E

𝑖
is bounded after some certain time, which

also means that the external disturbances 𝐷
1
and 𝐷

2
are

estimated well after a certain time, namely, ̂𝐷
1
and ̂

𝐷

2
.

 

1st order
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3rd order

×10−5
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Figure 2: Comparison of estimation error.

By virtue of (60), the disturbances acting on the actuators
are estimated as

[

̂

𝑑

1
(𝑡)

̂

𝑑

2
(𝑡)

] = B−1 [
̂

𝐷

1

̂

𝐷

2

] . (78)

Remark 15. For IEDO, different estimation precision is
obtained from different orders, and different orders of IEDO
have different estimation time. According to three kinds
of IEDO, simulations are conducted for comparing. The
simulation results are shown in Figures 2 and 3.

Figure 2 reveals the estimation error, fromwhich it is seen
that the higher the order, the smaller the error. In Figure 3,
it is shown that if the order is higher, the estimation time is
longer. In other words, the higher estimation accuracy needs
more time as a cost. Synthesizing Figures 2 and 3, the IEDO
for HFV in this paper is chosen as second order, which is the
compromise between the estimation accuracy and estimation
time.

4. Composite Controller and Stability Analysis

In this section, the composite controller including CRSMC
under control constraints and IEDO is analyzed.The external
disturbance of system is estimated by IEDO, and the esti-
mated value is used as compensator in CRSMC. Hence, the
composite controller is designed as

u

= B−1
[

[

[

[

[

(−𝑘

11
𝑠

12
− 𝑘

12









𝑠

12









𝜌
1 sgn (𝑠

12
) − Φ

1
)

Ψ

1

+

...
𝑉

𝑑
− 𝐹

𝑉

(−𝑘

21
𝑠

22
− 𝑘

22









𝑠

22









𝜌
2 sgn (𝑠

22
) − Φ

2
)

Ψ

2

+ ℎ

(4)

𝑑
− 𝐹

ℎ

]

]

]

]

]
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Figure 3: Comparison of estimation time.

+ B−1 [
𝜅

11
(𝑏) 𝑆

𝑎
(𝛽

𝑐
) + 𝜅

12
(𝑏) 𝑆

𝑎
(𝛿

𝑒
)

𝜅

21
(𝑏) 𝑆

𝑎
(𝛽

𝑐
) + 𝜅

22
(𝑏) 𝑆

𝑎
(𝛿

𝑒
)

] − [

̂

𝑑

1
(𝑡)

̂

𝑑

2
(𝑡)

] .

(79)

Theorem 16. Taking into account the longitudinal dynamics
of HFV model (1) in the presence of multiple uncertainties
under control constraints, the system is stable and robust if the
controller is chosen as (79).

Proof. Choose the Lyapunov candidate function

𝐿

𝑎
=

1

2

𝑠

𝑇
𝑠. (80)

Considering multiple uncertainties and actuator satura-
tion, it is obtained from (12) that

[

...
𝑉

ℎ

(4)
] = [

𝐹

𝑉

𝐹

ℎ

] + B ⋅ sat (u) + B[
𝑑

1
(𝑡)

𝑑

2
(𝑡)

] . (81)

Substituting (81) into (31), we obtain

[

̇𝑠

12

̇𝑠

22

] = [

Φ

1

Φ

2

] + [

Ψ

1
0

0 Ψ

2

]([

𝐹

𝑉

𝐹

ℎ

] − [

...
𝑉

𝑑

ℎ

(4)

𝑑

] + Bu

− B[
𝑆

𝑎
(𝛽

𝑐
)

𝑆

𝑎
(𝛿

𝑒
)

] + B[
𝑑

1
(𝑡)

𝑑

2
(𝑡)

]) .

(82)

Then, taking first-order derivative of (80) along the
dynamics of (82) yields

̇

𝐿

𝑎
= 𝑠

𝑇
̇𝑠 = 𝑠

𝑇
[[

Φ

1

Φ

2

] + [

Ψ

1
0

0 Ψ

2

]([

𝐹

𝑉

𝐹

ℎ

] − [

...
𝑉

𝑑

ℎ

(4)

𝑑

]

+ Bu − B[
𝑆

𝑎
(𝛽

𝑐
)

𝑆

𝑎
(𝛿

𝑒
)

] + B[
𝑑

1
(𝑡)

𝑑

2
(𝑡)

])] .

(83)
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Figure 4: Structure diagram of composite control scheme.

Substituting controller (79) into (83), we acquire

̇

𝐿

𝑎
= 𝑠

𝑇
([

−𝑘

11
𝑠

12
− 𝑘

12









𝑠

12









𝜌
1 sgn (𝑠

12
)

−𝑘

21
𝑠

22
− 𝑘

22









𝑠

22









𝜌
2 sgn (𝑠

22
)

]

+ [

Ψ

1
0

0 Ψ

2

](ΔB[
𝑆

𝑎
(𝛽

𝑐
)

𝑆

𝑎
(𝛿

𝑒
)

] + B[
̃

𝑑

1
(𝑡)

̃

𝑑

2
(𝑡)

])) ,

(84)

where

ΔB = [

𝜅

11
(𝑏) − 𝑏

11
𝜅

12
(𝑏) − 𝑏

12

𝜅

21
(𝑏) − 𝑏

21
𝜅

22
(𝑏) − 𝑏

22

] ,

̃

𝑑

𝑖
(𝑡) = 𝑑

𝑖
(𝑡) −

̂

𝑑

𝑖
(𝑡) , 𝑖 = 1, 2,

(85)

is the disturbance evaluated error.
In accordance with IEDO, the evaluated error can be

arbitrarily small after some extent time, that is, 𝑡
𝑎
, when

the error is approximately regarded as zero. In addition,
it is known that ΔB [𝑆𝑎(𝛽𝑐) 𝑆

𝑎
(𝛿

𝑒
)]

𝑇

= 0 by means of
Theorem 13. Therefore, ∀𝑡 > 𝑡

𝑎
, (84) is changed as

̇

𝐿

𝑎
= 𝑠

𝑇
[

−𝑘

11
𝑠

12
− 𝑘

12









𝑠

12









𝜌
1 sgn (𝑠

12
)

−𝑘

21
𝑠

22
− 𝑘

22









𝑠

22









𝜌
2 sgn (𝑠

22
)

]

= −𝑘

11
𝑠

2

12
− 𝑘

12









𝑠

12









𝜌
1
+1

− 𝑘

21
𝑠

2

22
− 𝑘

22









𝑠

22









𝜌
2
+1

≤ 0.

(86)

Hence, the sliding mode manifolds 𝑠
𝑖2
, 𝑖 = 1, 2, will be

equal to zero in finite time. According to Theorem 8, the
recursive sliding mode manifolds will arrive in turn. Finally,
the tracking errors of velocity and altitude will converge to
zero; at the same time, the system is stable and robust to
disturbance. The proof is completed.

Remark 17. The estimated time of IEDO is governed by
observer gain. So the time can be tuned enough small
such that its effect on the system convergence time is little.
Hence, the estimated time can be regulated to some extent in
Theorem 16.

Table 1: Some parameters about simulation.

Parameter Notation Value Unit
Mass 𝑚 9375 Slug
Moment of inertia 𝐼

𝑦𝑦
7 × 10

6 Slug⋅ft3

Reference area 𝑆 3603 ft2

Mean aerodynamic chord 𝑐 80 ft
Elevator coefficient 𝑐

𝑒
0.0292 Dimensionless

Density of air 𝜌 2.4325 × 10

−5 Slug/ft3

Table 2: Parameter uncertainties.

Notation Δ𝑚 Δ𝐼 Δ𝑆 Δ𝑐 Δ𝜌 Δ𝑐

𝑒

Value 0.03 0.02 0.03 0.02 0.03 0.02

The structure diagram of composite control scheme for
HFV in this paper is shown in Figure 4.

5. Numerical Simulations

In this section, the numerical simulations of the proposed
scheme that consists of CRSMC and IEDO are conducted.
The simulations are built in the trimmed cruise flight con-
dition of HFV, in which the primary flight parameters are
altitude 110000 ft, velocity 15060 ft/s, Mach 15, angle of attack
0 rad, and pitch rate 0 rad/s, respectively. The damping ratio
and natural frequency of the engine dynamics are taken as
0.7 and 5 rad/s, respectively. In the simulation, the reference
command for velocity channel is step signal 100 ft/s and for
altitude channel is 500 ft. Some other parameters about the
simulation are listed in Table 1.

The parameter uncertainties in (5) are listed in Table 2.
The external disturbances in the simulation are chosen as

𝑑

1
(𝑡) = 0.1 sin (0.5𝑡) + 0.2 cos (0.3𝑡) ,

𝑑

2
(𝑡) = 0.03 sin (0.5𝑡) + 0.01 cos (0.3𝑡) .

(87)

The above disturbances are added to the system at 70th
second of simulation.

The simulation for HFV under the CRSMC tracking con-
troller is first conducted. The simulation results are shown
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Figure 5: Response of velocity step command.

in Figures 5 and 6, in which Figure 5 displays the results of
velocity channel and Figure 6 of altitude channel.

Figure 5(a) shows the velocity response for the velocity
step command 100 ft/s, from which it is seen that the
velocity variable tracks the command at 40 s and then it
keeps steady. The tracking speed of velocity variable remains
constant, which demonstrates the finite time convergence

of the proposed approach. Other parameter variables from
Figures 5(b)–5(f) also achieve stability in finite time. Figures
5(e) and 5(f) are response curves of actuators, which is no
chattering problem.

The altitude variable response for altitude step command
500 ft is shown in Figure 6(b), from which the tracking
time is about 50 s. Then, the variable keeps steady. Other
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Figure 6: Response of altitude step command.

parameter curves from Figures 6(c)–6(f) indicate that the
system achieves stable condition in finite time. It is worth
noting that there is perturbation at about 70 s. However,
the perturbation is removed rapidly, which manifests the
robustness of sliding mode control. The actuator response
curves of Figures 6(e) and 6(f) depict no chattering problem.

In terms of Figures 5(e), 5(f), 6(e), and 6(f), it is demon-
strated that the proposed scheme can eliminate chattering
problem that usually existed in sliding mode control.

For comparing, the traditional sliding mode control with
linear sliding surface is simulated for HFV, which consults
[12]. The simulation results are shown in Figure 7.
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Figure 7: Comparison between traditional SMC and CRSMC.
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Figure 8: Step response results when actuator saturation occurs.
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Figure 9: Step response under antiwindup controller.
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Figure 10: Response for velocity step command with disturbance.

By means of comparing, the proposed CRSMC achieves
steady state faster than the traditional SMC. In addition,
the altitude variable does not converge to zero in Fig-
ure 7(a) under the traditional SMC. In particular, the actuator
response curves of SMC have large chattering, while the
CRSMC do not.

When the actuator saturation occurs and controller (19) is
taken, the simulation results for velocity step command and
altitude step command are shown in Figure 8.

In Figure 8, it is obviously seen that the system is divergent
when the actuator saturation occurs, if controller (19) is
adopted. At this time, theHFVwill lose control, which should
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Figure 11: Response for altitude command with disturbance.

be avoided. When the antiwindup controller is taken up, the
simulation results are shown in Figure 9.

In Figure 9, the system becomes stable and converges
when the antiwindup controller is adopted. The simulation
results in Figure 9 prove the effectiveness of the antiwindup
controller of this paper.

When the external disturbances in (87) are considered,
the system responses under CRSMC are shown in Figures 10
and 11.

Because the external disturbances are added at 70th
second, each parameter curve starts to shake after 70 s, even
becoming unstable in Figures 10 and 11. Thus, it is seen that
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Figure 12: Response for velocity step command with IEDO.

the disturbances seriously affect the system, which must be
suppressed.

When the IEDO is applied to estimate the disturbance
and to compensate in CRSMC, the simulation results are
shown in Figures 12 and 13.

Comparing Figures 10(a)–10(d) and 12(a)–12(d) and Fig-
ures 11(a)–11(d) and 13(a)–13(d), it is obviously seen that
the responses with IEDO recover to the condition without
disturbance; namely, the disturbances are well suppressed.
In Figure 13(a), little shaking appears after the disturbance
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Figure 13: Response for altitude step command with IEDO.

is added to the system. However, it disappears soon and
the curves converge to stable condition again. The estimated
values by IEDO are regarded as compensation in controller,
which is seen in Figures 12(e), 12(f), 13(e), and 13(f).

The estimation results for external disturbances are
shown in Figure 14.

It is seen from Figure 14 that the disturbances are
evaluated accurately, which manifests the notion that the
IEDO has perfect performance.

To further illustrate the effectiveness of the method in
this paper on interference suppression, two other kinds of
disturbance are added to simulation for comparison; that is,
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Figure 14: Disturbance estimation results.

𝑑

1
(𝑡) = 0.15sin (0.3𝑡) + 0.2cos (0.4𝑡) ,

𝑑

2
(𝑡) = 0.02sin (0.4𝑡) + 0.02cos (0.4𝑡) ,

(88)

𝑑

1
(𝑡) = 0.2sin (0.4𝑡) + 0.15cos (0.5𝑡) ,

𝑑

2
(𝑡) = 0.04sin (0.5𝑡) + 0.03cos (0.2𝑡) .

(89)

Here, define the disturbance in (87) as “Situation 1,”
define the disturbance in (88) as “Situation 2,” and define the
disturbance in (89) as “Situation 3.” Then, the comparison
simulation results between the three situations are shown in
Figure 15.

In Figure 15, it can be seen that the system keeps stable
and convergent under each situation. According to every
situation, the system response is similar and the system state
curves are consistent. The disturbance estimation errors of

three situations in Figure 15(c) are less than 1 × 10−5, which
is small enough for the estimation. The comparison between
the three situations proves the practicability of the proposed
method in the paper.

By means of the above simulations, the proposed scheme
has perfect tracking and disturbance rejection performance
for longitudinal dynamics of FHV under control constraints.
In addition, the presented approach is robust for multiple
uncertainties. Meanwhile, it has no chattering phenomenon.
The scheme of CRSMC with antiwindup controller plus
IEDO possesses favorable performance.

6. Conclusions

The continuous recursive sliding mode controller (CRSMC)
with improved extended disturbance observer (IEDO) is
presented for longitudinal dynamics of generic hypersonic
flight vehicle in the presence of multiple uncertainties under
control constraints in this paper. For each channel, a sliding
mode tracking controller is designed based on a set of
recursive sliding mode manifolds, which are nonsingular.
The controller is continuous and has no chattering problem.
For the actuator saturation problem, a novel compensation
factor is designed for compensating the CRSMC. In response
to external disturbance, an improved disturbance observer
based on extended disturbance observer (EDO) is presented.
The composite approach is CRSMC plus IEDO, in which the
estimated value by IEDO is regarded as compensation value
in CRSMC. Numerical simulation for cruise flight condition
of HFV is conducted. Simulation results have confirmed
effectiveness and availability of the proposed scheme.
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are as follows:
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Figure 15: Continued.
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