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ABSTRACT

Hypersonic vehicle research and development has grown recently in the aerospace industry due

to the powerful potential of operating a vehicle that flies at substantially higher speeds than typical

aircraft. From a guidance, navigation and control perspective, hypersonic vehicles are particularly

interesting due both to inherent vehicle complexities as well as practical concerns that only arise

at high Mach numbers. Challenges inherent to the vehicle include nonlinearities, a wide range

of operating conditions, high elasticity, high temperatures and parametric uncertainty. Although

these challenges have by no means fully been explored in the literature, in the realm of control

theory, they are somewhat common. Hypersonic vehicle control is difficult however, because in

addition to these more traditional complexities a control designer must also deal with problems

very specific to flying at high speeds such as: inlet unstart, overcoming sensing deficiencies at

high speeds and creating an implementable digital control framework for a plant with extremely

fast dynamics. This dissertation develops three novel theoretical approaches for addressing these

challenges through advances in the nonlinear dynamic inversion adaptive control technique.

Although hypersonic vehicle control is the motivation and often the application that the control

algorithms in this dissertation are tested on, several of the theoretical developments apply to a

general class of nonlinear continuous time systems. First, in order to address the problem of inlet

unstart, two state constraint mechanisms which integrate into the nonlinear dynamic inversion

adaptive control framework are presented. These state constraining control laws require full state

feedback and are capable of restricting the outputs of nonlinear systems containing parameter

uncertainty to specific regions of the state-space. The first state constraint mechanism achieves

this objective using sliding mode control and the second uses bounding functions to smoothly

adjust the control and adaptive laws and drive the states toward the origin when constraints are

approached. Stability is proven using Lyapunov analysis and these techniques are demonstrated in
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a nonlinear simulation of a hypersonic vehicle.

Second, an observer-based feedback controller is developed that allows for a nonlinear system

to track a reference trajectory with bounded errors and without measuring multiple states. Again,

the technique used is nonlinear dynamic inversion adaptive control, but because of uncertainty in

the system state, it is not assumed that the nonlinear control effectiveness matrix can be canceled

perfectly. A nonlinear observer is implemented to estimate the values of the unknown states. This

observer allows for the closed-loop stability of the system to be proven through Lyapunov anal-

ysis. It is shown that parametric uncertainty can successfully be accounted for using an adaptive

mechanism and that all tracking and estimation errors are uniformly ultimately bounded.

Finally, a sampled-data nonlinear dynamic inversion adaptive control architecture is intro-

duced. Despite the prevalence of digital controllers in practice, a nonlinear dynamic inversion

adaptive control scheme in a sampled-data setting has not previously been developed. The method

presented in this dissertation has the capability of extending the benefits of nonlinear dynamic in-

version adaptive control - robust control of nonlinear systems with respect to model uncertainty -

to more practical platforms.
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NOMENCLATURE

α angle-of-attack

β sideslip angle

γ flight path angle

δ̄i trim condition for control surface δi

c̄ mean aerodynamic chord length

q̄ dynamic pressure[
δf,l δf,r δt,l δt,r

]
deflection of left elevon, right elevon, left ruddervator, right
ruddervator[

δa δe δr
]

deflection of aileron, elevator, rudder[
φ θ ψ

]
Euler angles[

FTx FTy FTz
]

components of thrust force along the body fixed axes[
Ix Iy Iz Ixz

]
moment of inertia components about body fixed axes[

Ndis Edis h
]

vehicle displacment vector[
p q r

]
body-axis angular rates

b span

CD aerodynamic drag coefficient

CL aerodynamic lift coefficient

CY aerodynamic sideforce coefficient

C` roll moment coefficient

C`p roll damping coefficient

Cm pitch moment coefficient
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Cmq pitch damping coefficient

Cn yaw moment coefficient

Cnr yaw damping coefficient

D drag force

FT thrust force vector

g acceleration due to gravity

hE engine angular momentum

L lift force

m vehicle mass

MT moment vector due to thrust

Peng engine power

S planform area

VT total velocity

xcg x-coordinate of the center of gravity

Y side force

NDI Nonlinear Dynamic Inversion

DOF Degree-of-Freedom

GHV Generic Hypersonic Vehicle

PID Proportional-Integral-Derivative

SMSC Sliding Mode State Constraint

BFSC Bounding Function State Constraint

SISO Single-Input-Single-Output

MIMO Multi-Input-Multi-Output

UUB Uniformly Ultimately Bounded
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EnKF Ensemble Kalman Filter

EKF Extended Kalman Filter

LMM Linear Multistep Methods

ARMA Autoregressive Moving Average
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1. INTRODUCTION

1.1 Motivation

Although adaptive control became widely accepted in the early 1980’s [1, 2] it today remains

an extremely useful control technique for handling systems with varying or unknown parameters

as well as a rich field for research. Control theory in general, but specifically adaptive control, has

begun to branch off from linear representations of dynamic systems to the handling of nonlinear

representations. On the positive side, nonlinear models allow for a designer to avoid techniques

such as gain scheduling and to develop concise algorithms capable of controlling a system in any

region of the state-space. On the negative side, accurate nonlinear models can be very hard to

obtain. Therefore, the ability to handle parametric uncertainty becomes crucial. This has made

adaptive control an excellent candidate for overcoming the deficiencies of model inaccuracy in

nonlinear control systems [3, 4]. In cases where not only the open-loop dynamics but the control

effectiveness of the system is nonlinear as well, nonlinear dynamic inversion (NDI) adaptive con-

trol has proven to be a useful technique [5]. In this dissertation, the primary motivation for the

investigation of nonlinear dynamic inversion adaptive control techniques, as well as many of the

other issues presented, is the control of hypersonic vehicles.

The first complexity of hypersonic vehicle control that serves as motivation for this dissertation

is the problem of inlet unstart. Inlet unstart is a phenomenon only seen in supersonic jet inlets. It

occurs when air flow through the inlet is altered in such a way that the shock wave system is

disrupted and then expelled from the inlet. Often, it occurs suddenly and has a violent effect

on the aircraft: a nearly instantaneous large drop in thrust, an increase in drag, and the potential

induction of large undesirable moments. Inlet unstart occurs in one of two ways. In a started inlet

with a normal shock at the throat of the nozzle, any increase in back pressure will drive the shock

forward into the contraction section, where it cannot be stabilized because the shock Mach number
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is greater than the throat value. This leads to a dangerous loss of thrust. The second cause of unstart

is flow asymmetries that prevent the flow from passing through the throat of the inlet, which are

typically caused by the vehicle operating at too steep of an angle-of-attack or sideslip angle [6, 7].

In this dissertation, this second cause is addressed as the following questions are explored:

1. Can state constraint control techniques that restrict what values of angle-of-attack and sideslip

angle can be achieved be used to prevent inlet unstart?

2. In the event of an inlet unstart, what measures can be taken to maintain control effectiveness

and return the vehicle to a safe region of the state-space?

Two different methods that extend state constraint enforcement to an NDI adaptive control frame-

work will be presented, the first in Section 2 and the second in Section 3. The stability of these

techniques is rigorously proven. Furthermore, it is shown that these controllers are capable of

restricting the system to its constraint set in the presence of unacceptable command signals or

external disturbances.

The second motivational issue of this dissertation is the control of nonlinear systems in in-

stances where the full state vector cannot be measured. In the case of hypersonic vehicle control,

an issue often neglected in the literature is the difficultly that exists in attaining full state feedback.

The high operating temperature of these vehicles limits which type of sensors can be used and

in particular, external vanes used to measure aerodynamic angles are unavailable [8]. Therefore

the vehicle’s angle-of-attack and sideslip angle, crucial information for successful flight control,

cannot be measured directly and instead must be estimated. The inability to measure the complete

state vector invalidates the common assumption in dynamic inversion control techniques that the

state dependent portions of the control effectiveness matrix can be canceled perfectly. This adds

significant complexity to the control design. In order to handle this complication the following

questions are addressed:

1. How can the unmeasured states be estimated such that an NDI adaptive control law based on
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the estimated values can rigorously be proven to stabilize the system?

2. What assumptions must be made about the control effectiveness matrix to implement an NDI

adaptive control law without full state measurements?

The third motivational issue is the fact that sampled-data control laws synthesized in a con-

tinuous time framework are vulnerable to the destabilizing effect of sampling if it is not properly

accounted for. For sampled-data systems that are nonlinear, the inability to model the system

with an exact discrete time representation presents another challenge in achieving stabilization [9].

Therefore, a discussion of nonlinear discretization methods is given and a sampled-data approach

to NDI adaptive control is developed that is capable of extending this technique to more practical

systems. In reference to hypersonic vehicle control, the following two questions are examined:

1. How does the performance of the sampled-data NDI control law compare with that of a

continuous NDI control law implemented with a sampler and a zero-order hold?

2. How slow can the controller sample such that a plant with extremely fast dynamics and

parametric uncertainty can still be accurately controlled?

1.2 Literature Review

In this section a literature review on nonlinear hypersonic vehicle control with an emphasis on

adaptive control and dynamic inversion control is conducted. Additional references on state con-

straint mechanisms, output feedback adaptive controllers, and nonlinear sampled-data controllers

are reviewed in their corresponding sections of the dissertation as well.

Nonlinear dynamic inversion control is a technique commonly used when nonlinear models

of the system are available and the system is affine in control. Given an accurate model, this

method allows for stable control over a wide range of operating conditions without the need for

linearization and extensive gain scheduling. Since accurate nonlinear models can be difficult to

attain, even in continuous time, NDI control is often combined with an adaptive controller in order
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to improve robustness with respect to model and parameter uncertainties. Several studies have

been done to test the robustness properties of NDI controllers when used on air vehicles and NDI

adaptive control has been shown to be effective on highly nonlinear aircraft applications [10, 11].

It has also been extended to fault tolerant frameworks such that the controller can safely adjust to

actuator failure [12].

In the following references some variation of NDI control was utilized in the control of hyper-

sonic vehicles. Wang and Stengel [13] looked at controlling a longitudinal model of a hypersonic

vehicle using a stochastic nonlinear dynamic inversion technique. A genetic algorithm was imple-

mented to design the structure of the dynamic inversion and Monte Carlo simulation was used to

test its performance. Rollins, et al. developed an adaptive dynamic inversion control architecture

for controlling a full 6 degree-of-freedom (DOF) hypersonic vehicle model. Full state measure-

ment was assumed and the paper examined vehicle response to inlet unstart [14]. Sigthorsson,

et al. developed an output feedback controller for the flexible longitudinal hypersonic vehicle

model created in [15] that successfully controls the vehicle despite being unable to measure the

flexible modes [16]. Johnson, et. al developed a guidance and control architecture for hypersonic

ascent and entry vehicles and applied it to a six degree-of-freedom X-33 simulation. A trajec-

tory generation algorithm and neural network based dynamic inversion controller were developed.

Pseudo-control hedging was used as well [17]. Yang, et. al. presented a nonlinear dynamic in-

version controller capable of controlling a rigid-body longitudinal model of a hypersonic vehicle.

Unknown external disturbances are included in the dynamics of every state and a nonlinear ob-

server is used to handle disturbances and parameter uncertainties [18]. The majority of the NDI

controllers described above rely on full state measurement and do not prevent the system from

violating important state constraints. This dissertation offers novel approaches that resolve these

practical hypersonic vehicle control concerns.

Other adaptive control frameworks capable of handling nonlinear systems have also been used

in the control of hypersonic vehicles. Sun, et. al presented a nonlinear controller capable of
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controlling the flexible, longitudinal hypersonic vehicle model developed in [15]. Without using

dynamic inversion and by taking advantage of aeropropulsive and elevator-to-lift coupling, this

paper reduces the control problem to a set of linear algebraic equations. A nonlinear disturbance

observer is used to handle parametric uncertainty and an H-infinity controller is included in order

to suppress undesired dynamics due to the flexible modes [19]. Serrani and Bolender developed

a nonlinear adaptive controller capable of controlling a 6-DOF rigid body model of a hypersonic

vehicle. The inner loop uses dynamic inversion adaptive control to ensure that the forward veloc-

ity (u) and the angular rates (p, q, r) track their reference trajectories. The outer loop is composed

of three robust controllers that generate reference trajectories for the lateral velocity (v), altitude

and heading angle. Actuator dynamics are included in the simulation model and dynamic con-

trol allocation is used to account for discrepancy between the commanded and actual deflection

values [20]. Sun, et. al present a nonlinear back-stepping approach to controlling a rigid-body

longitudinal model of a hypersonic vehicle. A nonlinear observer is used for disturbance rejec-

tion and to handle parametric uncertainty. Simulation studies show the ability of this controller

to track altitude and velocity step commands [21]. Zong, et. al. developed an adaptive controller

for a flexible longitudinal model of a hypersonic vehicle. It focuses on the velocity and altitude

subsystems and designs a controller capable of tracking reference trajectories in these two states

in the presence of actuator dynamics and constraints. In order to account for uncertainty in the

dynamics, a neural network is used to approximate the basis functions that are used in the adap-

tive law. The rigid body modes are proven to be stable via Lyapunov analysis; the flexible body

modes are included and evaluated through simulation [22]. Xu presented an adaptive controller

capable of controlling a flexible longitudinal model of a hypersonic vehicle. Nonlinear actuator

dynamics as well as an input dead-zone are included in the model. The vehicle attitude is con-

trolled using dynamic surface control, which is similar to back-stepping. Parameter uncertainty

is handled using a neural network based adaptive controller [23]. Mu, et. al. developed a neural

network based control approach to controlling a longitudinal model of a hypersonic vehicle. A
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sliding-mode baseline controller is developed and then integrated with an artificial neural network

to account for parametric uncertainties and disturbances. The controller is designed for tracking

velocity and altitude commands [24]. Balas, et. al. presented a direct adaptive controller designed

for a linear longitudinal hypersonic vehicle model but tested in simulation on a nonlinear model.

The coupling between the elevator and fuel-equivalence ratio is examined and accounted for in

the control design [25]. By using alternative approaches to NDI, the class of systems that these

references address can often be restrictive. The general class of nonlinear systems addressed in

this dissertation is described in the next section.

1.3 Baseline Tracking NDI Adaptive Controller

The motivational issues described in Section 1.1 are addressed in this dissertation by build-

ing upon a previously developed NDI adaptive control framework capable of tracking a reference

model. This baseline tracking NDI adaptive controller will be referred to through out the disserta-

tion, often for comparative purposes. For completeness and in order to ensure proper understanding

of these comparison cases, the baseline controller is derived and its stability is proven.

In this dissertation, the class of systems of interest is made up of nonlinear, affine-in-control

systems with dynamics that can be represented by the equations

ẋ = f(x) + g(x)Λu (1.1)

y = Cx (1.2)

where x ∈ Rns is the system state, u ∈ Rm is the control, the vector f(x) ∈ Rns represents the

nonlinear open-loop dynamics of the system which are assumed to be bounded for bounded x, and

g(x)Λ ∈ Rns×m represents the control effectiveness of the system. It is assumed that f(x) and the

constant matrix Λ ∈ Rm×m are unknown but that Λ has full rank. The matrix g(x) ∈ Rns×m is

considered known. In the output equation (1.2), y ∈ Rp represents the outputs which are desired
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to be controlled such that ns ≥ m ≥ p. The matrix C ∈ Rp×ns is constant, known, and assumed to

have full rank. It is also assumed that the product Cg(x)Λ has full rank for all x and that full state

feedback is available.

The control objective is for the system outputs to track a linear reference model ym ∈ Rp with

dynamics defined by

ẏm = Amym +Bmr (1.3)

where r ∈ Rp is a reference input signal. The matrix Am ∈ Rp×p is Hurwitz, and Bm ∈ Rp×p. It is

assumed that the reference input signal r is continuous and bounded. The system tracking error is

defined as

e = ym − y (1.4)

1.3.1 Tracking Error Dynamics

In order to prove that the closed-loop system is stable, it will be useful to formulate the system’s

tracking error dynamics. The first step towards achieving this is taking a derivative of Equation

(1.4) with respect to time,

ė = ẏm − ẏ

ė = ẏm − Cf(x)− Cg(x)Λu (1.5)

It is assumed that the matrix Λ can be decomposed as

Λ = I + δΛ (1.6)

where I is the identity matrix and δΛ ∈ Rm×m is characterized by 0 < δΛ < I , that is no

eigenvalue of δΛ has a magnitude greater than 1. In order to account for the uncertainty in the

matrix Λ, the estimate Λ̂ is defined as

Λ̂ = I + δΛ̂ (1.7)
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where δΛ̂ ∈ Rm×m. The error dynamics are finalized by adding and subtracting g(x)Λ̂u to the

right hand side of equation (1.5). Defining δΛ̃ = δΛ̂− δΛ leaves

ė = ẏm − Cf(x)− Cg(x)Λ̂u+ Cg(x)δΛ̃u (1.8)

1.3.2 Control Law Development

The baseline tracking NDI adaptive control law is given by

u = [Cg(x)Λ̂]†
(
ẏm − Cf̂(x) +Ke− ν

)
(1.9)

where the notation (·)† represents the right-handed pseudo-inverse if m > p and the true inverse if

m = p. The vector ν ∈ Rp is an adaptive signal used to account for parameter uncertainty. The

vector f̂(x) : Rn 7→ Rn is an estimated model of the plant dynamics, and K ∈ Rp×p is a positive

definite error feedback gain matrices such that K = KT > 0. Substituting the control law (1.9)

into Equation (1.8) results in

ė = −Cf(x) + Cf̂(x)−Ke+ ν + Cg(x)δΛ̃u (1.10)

It is assumed that the difference Cf̂(x)− Cf(x) can be parameterized as

Cf̂(x)− Cf(x) = W T b(x) (1.11)

where, W ∈ Rnw×p is a matrix of unknown constant weights and b(x) ∈ Rnw is a vector of known,

potentially nonlinear, basis functions that is assumed to be bounded for all bounded x. In order to

account for the uncertainty in the open-loop dynamics f(x), the adaptive signal ν is defined as

ν = Ŵ T b(x) (1.12)
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where Ŵ is an estimate of the unknown weight matrix W and is updated through an adaptive law.

Defining W̃ = Ŵ −W , Equation (1.10) can be rewritten as

ė = −W̃ T b(x)−Ke+ Cg(x)δΛ̃u (1.13)

1.3.3 Adaptive Law Development

The adaptive laws of the baseline tracking NDI adaptive controller, which are used to update

the estimated matrices Ŵ and δΛ̂, are given by

˙̂
W = ΓWProjM(Ŵ , b(x)eT ) (1.14)

δ
˙̂
Λ = ΓΛProjM(δΛ̂,−g(x)TCT euT ) (1.15)

where ΓW ∈ Rnw×nw and ΓΛ ∈ Rm×m and Γi = ΓTi > 0 for i = W,Λ are adaptive gain matrices.

The operator ProjM represents the matrix projection operator and is defined as

ProjM(Θ̂, Y ) = [Proj(θ̂1, y1), ...Proj(θ̂n, yn)] (1.16)

where Θ̂ ∈ Ra×b = [θ̂1, θ̂2, ...θ̂b], Y ∈ Ra×b = [y1, y2, ...yb], and Proj represents the vector

projection operator. In adaptive systems, Θ̂ typically represents a matrix of estimates of some

unknown constant parameters Θ ∈ Ra×b. The vector projection operator is defined as,

Proj(θ̂i, yi) =


yi − ∇h(θ̂i)(∇h(θ̂i))

T

‖∇h(θ̂i)‖2
yih(θ̂i), if h(θ̂i) > 0, yTi ∇h(θ̂i) > 0

yi, otherwise

(1.17)
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where θ̂i ∈ Ra, yi ∈ Ra, h(θ̂i) : Ra → R is a convex function, and

∇h(θ̂i) =

[
∂h(θ̂i)/∂θ̂i,1 . . . ∂h(θ̂i)/∂θ̂i,a

]T

The projection operator is constructed so that a known maximum bound can be set for each of the

vectors, θ̂i [26, 27]. For the class of systems of interest in this development, this corresponds to

known bounds on the norm of the columns of the unknown parameter matrices, Ŵ and δΛ̂. The

bounds are selected based on one’s knowledge of the uncertainty in the system. If the uncertainty

is assumed to be unbounded there may not be enough actuator authority to guarantee that control

objectives are met. Therefore, it is assumed that there is some understanding of the uncertainty

in the system, and that knowledge is reflected in the controller by bounding the weights through

the projection operator. The following lemmas, given in [26], describe important properties of the

projection operator that makes it useful in the field of adaptive control.

Lemma 1.3.1. Let θ̂i ∈ Ra be the estimate of an unknown constant vector θi ∈ Ra which is

contained in the convex set Ω0 defined as Ω0 , {θ ∈ Ra|h(θ) ≤ 0} such that θ ∈ Ω0. The

following condition holds (
θ̂i − θi

)T (
Proj(θ̂i, y)− y

)
≤ 0 (1.18)

Proof. See Appendix A.

Remark 1.3.1. Let Θ ∈ Ra×b = [θ1, θ2, ...θb]. Given the definitions of Θ̂ and Y used in (1.16), it is

straightforward to show using Lemma 1.3.1 that

tr
(

(Θ̂−Θ)T (ProjM(Θ̂, Y )− Y )
)
≤ 0 (1.19)

where tr(·) is the trace operator.

Lemma 1.3.2. Given the convex function h(θ) : Ra → R, if an initial value problem, i.e. adaptive
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control algorithm with adaptive law and initial conditions, is defined by

1. ˙̂
θi = Proj(θ̂i, y)

2. θ̂i(t = 0) ∈ Ω1 , {θ ∈ Ra|h(θ) ≤ 1}

then θ̂i ∈ Ω1 for all t ≥ 0.

Proof. See Appendix A.

Additionally, it is shown in Appendix B that through the use of the projection operator in the

adaptive law for δΛ̂, the total estimate Λ̂ is guaranteed to be invertible at all times as required by

the control law (1.9).

1.3.4 Stability Analysis

Theorem 1. Consider the nonlinear dynamical system defined in (1.1), the reference model defined

in (1.3), the baseline tracking NDI adaptive control law defined in (1.9) and the adaptive laws

defined in (1.14) and (1.15). Given a continuous and bounded reference input signal, r, the tracking

error e→ 0 as t→∞.

Proof. In order to prove the stability of the baseline tracking NDI controller, the following candi-

date Lyapunov Function is chosen

V =
1

2

(
eT e+ tr(W̃ TΓ−1

W W̃ ) + tr(δΛ̃Γ−1
Λ δΛ̃T )

)
(1.20)

A derivative of (1.20) is taken with respect to time along the system trajectories

V̇ = eT ė+ tr(W̃ TΓ−1
W

˙̂
W ) + tr(δΛ̃Γ−1

Λ δ
˙̂
ΛT ) (1.21)

Substituting in the error dynamics, Equation (1.13), and applying the trace identity aT b = tr(baT ),
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results in

V̇ = −eTKe+ tr
(
W̃ T (Γ−1

W

˙̂
W − b(x)eT )

)
+ tr

(
δΛ̃(Γ−1

Λ δ
˙̂
ΛT + ueTCg(x))

)
(1.22)

Substituting the adaptive laws (1.14) and (1.15) and utilizing Lemma 1.3.1 leaves

V̇ ≤ −eTKe ≤ 0 (1.23)

which implies that e, W̃ , and δΛ̃ are bounded and that
∫∞

0
eTKedt exists and is finite. Since the

reference signal r is assumed to be continuous and bounded, this implies that ym, b(x), u, and ė

are bounded as well which implies that e is uniformly continuous in time. Therefore, Barbalat’s

Lemma [28] implies that e→ 0 as t→∞.

Remark 1.3.2. A significant limitation of the above approach is that it does not formally address the

issue of actuator saturation limits. The projection operator is useful in ensuring that the adaptive

signals remain small but the control law given in Equation (1.9) makes it clear that the magnitude

of the control signal will still be heavily dependent on the specific system dynamics. Nevertheless,

NDI adaptive control is well suited for the control of hypersonic vehicles as a very small change

in control surface deflection angle will have a significant influence on the vehicle at large Mach

numbers. Additionally, although no theoretical guarantees are made about saturation limits, such

limits are included in all simulation studies shown in this dissertation and it is demonstrated that

even when achieving complex maneuvers they are not encountered.

1.4 Introduction to the Generic Hypersonic Vehicle Model

The primary dynamical model used in this dissertation is a high fidelity, nonlinear, six degree-

of-freedom hypersonic vehicle simulation known as the generic hypersonic vehicle (GHV). The

GHV is a Simulink based model of a hypersonic aircraft, developed at the Air Force Research

Laboratory for the purpose of testing control algorithms. The aerodynamic and thrust forces and
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moments acting on the vehicle are modeled using look-up tables that were generated using shock-

expansion methods with a viscous correction. The equations of motion for the generic hypersonic

vehicle were derived using a Lagrangian approach by Billamoria and Schmidt [29]. The derivation

utilizes an Earth-centered inertial frame with a rotating, spherical Earth. The following simplifying

assumptions were made:

1. The vehicle is assumed to be inelastic

2. The vehicle is assumed to have no rotors

3. Terms involving fluid flow were dropped as they are accounted for in aerodynamic and en-

gine lookup table data

4. Wind-related terms are neglected

The state vector for the GHV, x ∈ R9, and the total control vector, ū ∈ R5, are given by

x =

[
VT Φ xa xr

]T
(1.24)

Φ =

[
φ θ ψ

]T
(1.25)

xa =

[
β α

]T
(1.26)

xr =

[
p q r

]T
(1.27)

ū =

[
δth δf,r δf,l δt,r δt,l

]T
(1.28)

In this model, the total velocity, VT , is controlled using a proportional-integral-derivative (PID)

controller with the intention of maintaining airspeed. The input to the controller is the desired total

velocity, and the output is the air-fuel equivalence ratio. This equivalence ratio is then translated

into a throttle command, δth. For the work presented in this dissertation, the PID controller is

considered separate from the NDI adaptive controller of interest. The throttle control signal will be
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manifested implicitly in the thrust force and moment terms of the equations of motion. Therefore,

the control vector definition is modified such that the control law development only applies to the

control surface deflections

u =

[
δf,r δf,l δt,r δt,l

]T
(1.29)

The dynamics of the generic hypersonic vehicle model are given by the following first-order dif-

ferential equations,

Total Velocity Dynamics:

V̇T =
FT
m

cos(α) cos(β)− D

m
+ g1 (1.30)

Kinematic Equations:

Φ̇ =


1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

xr (1.31)

Aerodynamic Angle Dynamics:

ẋa =

 1
mVT

((Y + FTy) cos β +mg2 − (FTx cosα− FTz sinα) sin β)

1
mVT cosβ

(−L+mg3 − FTx sinα + FTz cosα)


+

 sinα 0 − cosα

− tan β cosα 1 − tan β sinα

xr
(1.32)
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Moment Equations:

ẋr =


Ix 0 −Ixz
0 Iy 0

−Ixz 0 Iz


−1−


−Ixzpq + (Iz − Iy)qr

(Ix − Iz)pr + Ixz(p
2 − r2)

Ixzqr + (Iy − Ix)pq

+MT + q̄S


bC`

c̄Cm

bCn



(1.33)

where

g1 = g (− cos(α) cos(β) sin(θ) + sin(β)sin(φ) cos(θ) + sin(α) cos(β) cos(φ) cos(θ)) (1.34)

g2 = g(cos(α) sin(β) sin(θ) + cos(β) sin(φ) cos(θ)− sin(α) sin(β) cos(φ) cos(θ)) (1.35)

g3 = g(sin(α) sin(θ) + cos(α) cos(φ) cos(θ)) (1.36)

and where the following decompositions can be formed,

L = CLq̄S (1.37)

D = CDq̄S (1.38)

Y = CY q̄S (1.39)
bC`

c̄Cm

bCn

 =


b
(
C ′`(α, β) + b

2VT
(C`pp)

)
c̄
(
C ′m(α, β) + c̄

2VT
Cmqq + C̄m,δ

)
b
(
C ′n(α, β) + b

2VT
(Cnrr)

)
+Hu (1.40)

The vehicle moment’s dependence on angle-of-attack and sideslip angle is described by the poly-

nomials C ′`(α, β), C ′m(α, β) and C ′n(α, β). The constant C̄m,δ represents the effect of the control

surface deflections on the total pitch moment at the trim condition and is given by,

C̄m,δ =
∂Cm
∂δf,r

(δf,r = δ̄f,r) +
∂Cm
∂δf,l

(δf,l = δ̄f,l) +
∂Cm
∂δt,r

(δt,r = δ̄t,r) +
∂Cm
∂δt,l

(δt,l = δ̄t,l) (1.41)
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and the control effectiveness term H ∈ R3×4 is given by

H =


b ∂C`
∂δf,r

b ∂C`
∂δf,l

b ∂C`
∂δt,r

b ∂C`
∂δt,l

c̄ ∂Cm
∂δf,r

c̄∂Cm
∂δf,l

c̄∂Cm
∂δt,r

c̄∂Cm
∂δt,l

b ∂Cn
∂δf,r

b ∂Cn
∂δf,l

b ∂Cn
∂δt,r

b ∂Cn
∂δt,1

 (1.42)

For the sake of brevity, these dynamics are rewritten in vector form as

ẋ = f(x) + g(x)u (1.43)

V̇T

Φ̇

ẋa

ẋr


=



fV T (x)

fΦ(x)

fa(x)

fr(x)


+



0

0

0

gr(x)


u (1.44)

where,

gr(x) =


Ix 0 −Ixz
0 Iy 0

−Ixz 0 Iz


−1

(q̄SH) (1.45)

1.4.1 Simulation Example

A simulation example is shown to demonstrate the effectiveness of the baseline tracking NDI

adaptive control law. In this example, the control objective was to track an angle-of-attack and

sideslip angle trajectory. In order to achieve this objective, the system dynamics were broken

down into a subsystem of position-level dynamics and a subsystem of velocity-level dynamics.
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The position-level subsystem has dynamics of the form

ẋp =



φ̇

θ̇

ψ̇

α̇

β̇


= fp(x) + gp(x)Λp


pd

qd

rd

 (1.46)

yp =

[
α β

]T
(1.47)

and the velocity-level subsystem has dynamics of the form

ẋv =


ṗ

q̇

ṙ

 = fv(x) + gv(x)Λv



δf,r

δf,l

δt,r

δt,l


(1.48)

yv =

[
p q r

]T
(1.49)

where, using the notation of Equation (1.44)

fp(x) =



0

0

0

1
mVT

((Y + FTy) cos β +mg2 − (FTx cosα− FTz sinα) sin β)

1
mVT cosβ

(−L+mg3 − FTx sinα + FTz cosα)


(1.50)
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gp(x) =



1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

sinα 0 − cosα

− tan β cosα 1 − tan β sinα


(1.51)

fv(x) = fr(x) (1.52)

gv(x) = gr(x) (1.53)

Due to the fact that gp(x) is made up of known trigonometric functions, it is assumed that Λp = I3

is known perfectly. Although Λv is equal to the identity matrix, the initial estimate Λ̂v(t = t0) was

set to

Λ̂v(t = t0) =



1.1 0 0 0

0 1.1 0 0

0 0 1.1 0

0 0 0 1.1


(1.54)

The weight estimate matrices were initialized as Ŵp(t = 0) = Ŵv(t = 0) = 0.

Note that for the position-level subsystem, the control vector is made up of the desired body-

axis angular rates and for the velocity-level subsystem, the control vector is made up of the control

surface complement of the GHV, two elevons and two ruddervators. The desired angular rates are

calculated using (1.9) and the position-level subsystem dynamics and are then fed into the velocity-

level subsystem which tries to track them by once again using (1.9), as shown in Figure 1.1. To

make the simulation more realistic, second-order actuator dynamics with damping ratio ζ = 0.7

and natural frequency ωn = 25Hz were included and position and rate limits were placed on the
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Position-level  
NDI 

Velocity-level  
NDI 

Plant 
αd,βd 

pd,qd,rd 
δf,δt x 

Figure 1.1: Breakdown of the position-level and velocity-level subsystems of the GHV.

actuators of 30 deg and 100 deg /s, respectively. In addition, a time delay of 0.01s was included in

the simulation. The initial flight condition was a velocity of Mach 6 and altitude of 80, 000ft.

1.4.2 Results

Using the baseline NDI adaptive controller, the generic hypersonic vehicle was commanded to

track a 4 deg angle-of-attack doublet followed by a 2 deg sideslip angle doublet. Time histories

of the aerodynamic angles, total velocity, and control surface deflections are shown in Figure

1.2 demonstrating successful completion of the control objective. The Euler angle and body-axis

angular rate trajectories are shown in Figure 1.3 and the evolution of the adaptive parameters Ŵ

and Λ̂ are shown in Figure 1.4.
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Figure 1.2: Baseline Tracking NDI Controller. Time histories of sideslip angle, angle-of-attack,
total velocity and the control surface deflections.
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Figure 1.3: Baseline Tracking NDI Controller. Time histories of Euler angles and body-axis angu-
lar rates.
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2. NONLINEAR DYNAMIC INVERSION ADAPTIVE CONTROL WITH STATE

CONSTRAINTS USING SLIDING MODE CONTROL*

2.1 Introduction

There are many situations in control systems theory, and particularly in flight control, where

it is useful (if not imperative) to restrict which regions of the state-space the system can access.

This has led to the integration of state constraint techniques with existing control architectures.

When looking at aircraft control, this safety region is often referred to as the flight envelope. State

constraining augmentation systems have been shown to be capable of preventing pilots from com-

manding an aircraft to enter the stall region by limiting angle-of-attack [30] and have also been

used to limit the amount of g-force that can be applied to a vehicle [31]. In addition, it has been

shown that supersonic and hypersonic vehicles are susceptible to a phenomenon known as inlet

unstart if the vehicle flies at medium or large values of angle-of-attack or sideslip angle [32]. Inlet

unstart can be defined as a disruption of the airflow through the inlet which can lead to a loss of

thrust as well as the induction of large undesirable moments and departure from controlled flight.

State constraint control techniques that can restrict the values of angle-of-attack and sideslip angle

that can be achieved could potentially be used to prevent inlet unstart. Although the state con-

straint methods developed in this dissertation are motivated by the problem of inlet unstart, they

are applicable to a general class of nonlinear systems.

Enforcing state constraints has been developed in the fields of linear control theory [33], opti-

mal control [34–36], model-predictive control [37], and adaptive control [38–41]. In this section,

a sliding mode controller is presented which was motivated by the work done in [38] and [39].

*Part of this Section is reprinted with permission from "Enforcing State Constraints on a Model of a Hyper-
sonic Vehicle" by Douglas Famularo, John Valasek, Jonathan A. Muse and Michael A. Bolender in AIAA Guidance,
Navigation and Control Conference (San Diego, California), January 2016.
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In [38], an adaptive controller is developed which uses a neural approximation to handle unknown

nonlinearities. As the state exits a certain region of the state-space, these approximations become

poor and the controller uses a modulation function containing the saturation function in order to

change modes, restrict the system states, and maintain stability. In [39] a state limiting adaptive

controller that also uses a modulation function with the saturation function to change modes is

developed and shown to enforce state constraints on uncertain systems with dynamics representing

the decoupled fast responses of aircraft. The saturation-based modulation function concept allows

for such sliding mode controllers to smoothly transition between “tracking mode" and “state con-

straining mode". The method presented in this section takes advantage of this technique in order to

achieve smooth transitions, however its implementation in an NDI framework leads to significant

changes in the overall development. Unlike the two papers previously discussed, the modulation

function defined here depends primarily on the reference trajectory that the system is being com-

manded to follow. This allows for the controller to differentiate between commanded trajectories

that are safe and those which exceed some constraint. A slight modification is made in the modula-

tion function definition such that state constraints are still enforced in the presence of disturbances.

The development of this approach is an expansion of the concept first presented in [42].

The control objective is to stabilize the system tracking error while maintaining that the system

outputs remain in a predefined constraint set. Through the use of a modulation function, the control

and adaptive laws alter their behavior as an output approaches a particular region of the state-space

and it is proven through Lyapunov analysis that such alterations restrict the output from exceeding

its constraint. Furthermore, if the system is given a reference command that is well within the safe

region of the state-space, the controller presented in this section reduces to the tracking controller

described in Section 1.3. Following the derivation of the controller and the stability analysis, the

sliding mode state constraint (SMSC) controller is implemented in the GHV simulation and it is

shown that it is capable of restricting what values of angle-of-attack and sideslip angle the vehicle

can achieve.
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2.2 Problem Statement

Consider the class of systems described in Section 1 that is composed of nonlinear, affine-in-

control systems with dynamics that can be represented by the equations

ẋ = f(x) + g(x)Λu (2.1)

y = Cx (2.2)

where x ∈ Rns is the system state, u ∈ Rm is the control, the vector f(x) ∈ Rns represents the

nonlinear open-loop dynamics of the system which are assumed to be bounded for bounded x, and

g(x)Λ ∈ Rns×m represents the control effectiveness of the system. It is assumed that f(x) and the

constant matrix Λ ∈ Rm×m are unknown but that Λ has full rank. The matrix g(x) ∈ Rns×m is

considered known. In the output equation (2.2), y ∈ Rp represents the outputs which are desired

to be controlled and/or constrained such that ns ≥ m ≥ p. The matrix C ∈ Rp×ns is constant,

known, and assumed to have full rank. In order to utilize a dynamic inversion control law, the

scope is limited to systems where the product Cg(x)Λ has full rank for all x.

For the state constraint controller presented in this section it is assumed that full state feedback

is available. The control objective is to stabilize the system tracking error while maintaining that

y ∈ Y where Y is a predefined constraint set for the outputs of interest. The system tracking error

is defined as

e = ym − y (2.3)

where ym represents a reference model signal for the system outputs. It is assumed that the system

outputs are selected such that if the tracking error is bounded it can be concluded that the full state

vector x is bounded as well. The desired reference model dynamics are given by

ẏm = Amym +Bmr (2.4)
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where ym ∈ Rp and r ∈ Rp is a reference input signal. The matrix Am ∈ Rp×p is Hurwitz, and

Bm ∈ Rp×p. It is assumed that the reference input signal r is continuous and bounded such that

there exists a known constant Cm where

‖ym‖ ≤ Cm ‖ẏm‖ ≤ Cm (2.5)

Note that the constant Cm does not restrict the reference model to remain within the predefined

constraint set, i.e. ym may be in the set Y but it need not be. Given the definitions and derivation

of Section 1.3.1 the error dynamics can be expressed as

ė = ẏm − Cf(x)− Cg(x)Λ̂u+ Cg(x)δΛ̃u (2.6)

2.3 Control Law Development

In this section the SMSC controller is introduced and it is shown that either the system’s track-

ing error e or threshold error eth is uniformly ultimately bounded for all t > 0. The threshold error

is defined as

eth = yth − y (2.7)

where

yth,i =


ymax,i + δi if |ymax,i − yi| < |ymin,i − yi|

ymin,i − δi if |ymin,i − yi| < |ymax,i − yi|
(2.8)

The definition (2.8) describes how the pre-defined parameters ymax,i + δi and ymin,i − δi form the

p−dimensional hypercube Y, inside of which it is desired that the outputs remain. The variables

δi > 0 are tuning parameters that define the size of the transitional space in which the controller

slides from “tracking mode" to “state-constraining mode". Therefore, a smaller hypercube, Y−∆Y

is defined with boundaries defined by the parameters ymax,i and ymin,i. A two-dimensional generic

example of such hypercubes is shown in Figure 2.1. Note that the parameters that define Y and
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Y − ∆Y need not be symmetric. The mechanism used for sliding between the different control

y1
-4 -2 0 2 4 6 8 10 12

y 2

-5

-4

-3

-2

-1

0

1

2

3

4

5 Y

Y ��Y

Parameters
ymin,1 = �4
ymax,1 = 12
ymin,2 = �4
ymax,2 = 4
�1 = 0.5
�2 = 0.75

Figure 2.1: Two dimensional example of the hypercube that defines the output constraint set for
two generic outputs, y1 and y2.

modes is known as a modulation function and is defined as

mi(ym,i) =



1 if ym,i < ymin,i − δi or yi < ymin,i − δi

(−ym,i + ymin,i)/δi if ymin,i − δi ≤ ym,i < ymin,i and ymin,i − δi < yi < ymax,i + δi

0 if ymin,i ≤ ym,i < ymax,i and ymin,i − δi < yi < ymax,i + δi

(ym,i − ymax,i)/δi if ymax,i ≤ ym,i < ymax,i + δi and ymin,i − δi < yi < ymax,i + δi

1 if ymax,i + δi ≤ ym,i or ymax,i + δi ≤ yi

(2.9)

The modulation function’s dependency on the reference model is useful because it allows for the

controller to differentiate between commanded trajectories that are safe, and those which exceed
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some constraint. The additional dependency on the true outputs, i.e. mi = 1 if yi < ymin,i − δi or

yi > ymax,i+δi is included as a safety measure to handle disturbances. With this added precaution,

the SMSC controller is capable of enforcing state constraints both when an unacceptably large

command is given and in the presence of disturbances. Both will be demonstrated in simulation.

Equation (2.9) is but one of many possible modulation function options for achieving the control

objective. Here, the transition from 0 to 1 and from 1 to 0 occurs linearly. This transition however,

can take place in a multitude of ways as long as mi(ym,i) remains piecewise differentiable [39].

In order to ensure that the tracking error dynamics given in Equation (2.6) remain stable, the

SMSC control law is given by

u = [Cg(x)Λ̂]†
(
ẏm − Cf̂(x) + (I −M)(K1e− ν) +M(K2eth − νSC)

)
(2.10)

where the notation (·)† represents the right-handed pseudo-inverse if m > p and the true inverse if

m = p. The matrix M ∈ Rn×n in the control law is a diagonal matrix of the form

M =



m1(ym,1) 0 . . . 0

0 m2(ym,2) . . . 0

...
... . . . ...

0 0 . . . mp(ym,p)


(2.11)

The vector ν ∈ Rp is an adaptive signal used to account for parameter uncertainty and νSC ∈ Rp is

a state constraint signal. The vector f̂(x) : Rn 7→ Rn is an estimated model of the plant dynamics,

and Ki ∈ Rp×p for i = 1, 2 are diagonal error feedback gain matrices such that Ki = KT
i > 0.

Substituting the SMSC control law, Equation (2.10), into the tracking error dynamics, Equation

(2.6), results in

ė = −Cf(x) + Cf̂(x)− (I −M)(K1e− ν)−M(K2eth − νSC) + Cg(x)δΛ̃u (2.12)
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As shown in Section 1, it is assumed that the difference Cf̂(x)− Cf(x) can be parameterized as

Cf̂(x)− Cf(x) = W T b(x) (2.13)

where W ∈ Rnw×p is a matrix of unknown constant weights and b(x) ∈ Rnw is a vector of known,

potentially nonlinear, basis functions that is assumed to be bounded for all bounded x. In order to

account for the uncertainty in the open-loop dynamics f(x), the adaptive signal ν is defined as

ν = Ŵ T b(x) (2.14)

where Ŵ is an estimate of the unknown weight matrix W and is updated through an adaptive law.

This allows for Equation (2.12) to be rewritten as

ė = −W̃ T b(x)− (I −M)K1e−M(K2eth − νSC + ν) + Cg(x)δΛ̃u

where W̃ = Ŵ −W . The adaptive laws which are used to update the estimated matrices Ŵ and

δΛ̂ are given by

˙̂
W = ΓWProjM(Ŵ , b(x)[eT (I −M) + eTthM ]) (2.15)

δ
˙̂
Λ = ΓΛProjM(δΛ̂,−g(x)TCT [(I −M)e+Meth]u

T ) (2.16)

where ΓW ∈ Rnw×nw and ΓΛ ∈ Rm×m and Γi = ΓTi > 0 for i = W,Λ are adaptive gain matrices.

The state constraint signal νSC is defined as

νSC = ν +KSCsat(eth/εth) + bSC

29



where KSC ∈ Rp×p is a time-varying gain matrix defined as

KSC,ij =


−m∗i |ẏm,i + (1−mi(ym,i))K1,iiei| if i = j

0 otherwise
(2.17)

m∗i =


1

mi(ym,i)
if mi(ym,i) ≥ εm

0 otherwise

and where εm is a tuning parameter that ensures m∗i does not grow very large. The matrix KSC

acts upon a vector that utilizes the saturation function and is defined as

sat(eth/εth) =

[
sat(eth,1/εth,1) sat(eth,2/εth,2) . . . sat(eth,p/εth,p)

]T
(2.18)

sat(eth,i/εth,i) =


eth,i
εth,i

if | eth,i
εth,i
| < 1

sign(eth,i) otherwise
(2.19)

The saturation function is used to smoothen the transition from “tracking mode" to “state-constraining

mode" and helps to prevent chattering in the control signal. The variables εth,i > 0 are tuning pa-

rameters which moderate the behavior of the saturation functions and bSC ∈ Rp is a vector to be

defined. With the control law now completely defined, the tracking error dynamics can be finalized

as

ė = −W̃ T b(x)− (I −M)K1e−M(K2eth −KSCsat(eth/εth)− bSC) + Cg(x)δΛ̃u (2.20)

2.4 Stability Analysis

Theorem 2. Consider the nonlinear dynamical system defined in (2.1), the reference model defined

in (2.4), the SMSC control law defined in (2.10) and the adaptive laws defined in (2.15) and (2.16).

30



Given a continuous and bounded reference input signal, r, and assuming finite initial conditions,

either the tracking error e or the threshold error eth is bounded for all t > 0, which implies that

the control signal is bounded as well. Furthermore, if the steady-state value of the reference model

ym,ss ∈ Y−∆Y then e is asymptotically stable and if ym,ss /∈ Y then eth is asymptotically stable.

Proof. To prove the stability of the SMSC controller the following candidate Lyapunov function

is chosen

V =
1

2

(
eT (I −M)e+ eTthMeth + tr(W̃ TΓ−1

W W̃ ) + tr(δΛ̃Γ−1
Λ δΛ̃T )

)
(2.21)

A derivative of (2.21) is taken with respect to time along the system trajectories. Note that Ṁ =

M ′ẏm where M ′ ∈ Rn×n is a diagonal matrix with m′i(ym,i) = dmi/dym,i along the diagonal.

Also note that when mi 6= 0, ėth,i = −ẏi. The derivative is given by

V̇ = eT (I −M)ė− 1

2
eTM ′Ẏme− eTthMẏ +

1

2
eTthM

′Ẏmeth + tr(W̃ TΓ−1
W

˙̂
W ) + tr(δΛ̃TΓ−1

Λ δ
˙̂
ΛT )

(2.22)

where Ẏm ∈ Rp×p is a diagonal matrix with the vector ẏm along the diagonal. Substituting in the

error dynamics given by Equation (2.20) and deriving a new expression for the output dynamics

using ẏ = ẏm − ė, Equation (2.22) can be rewritten as

V̇ =eT (I −M)
(
−W̃ T b(x)− (I −M)K1e−M(K2eth −KSCsat(eth/εth)− bSC) + Cg(x)δΛ̃u

)
− eTthM

(
˙ym + W̃ T b(x) + (I −M)K1e+M(K2eth −KSCsat(eth/εth)− bSC)− Cg(x)δΛ̃u

)
− 1

2
eTM ′Ẏme+

1

2
eTthM

′Ẏmeth + tr(W̃ TΓ−1
W

˙̂
W ) + tr(δΛ̃TΓ−1

Λ δ
˙̂
ΛT )

(2.23)
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Applying the trace identity aT b = tr(baT ), results in

V̇ =eT (I −M) (−(I −M)K1e−M(K2eth −KSCsat(eth/εth)− bSC))− 1

2
eTM ′Ẏme

− eTthM ( ˙ym + (I −M)K1e+M(K2eth −KSCsat(eth/εth)− bSC)) +
1

2
eTthM

′Ẏmeth

+ tr
(
W̃ T (Γ−1

W

˙̂
W − b(x)[eT (I −M) + eTthM ])

)
+ tr

(
δΛ̃T (Γ−1

Λ δ
˙̂
ΛT + u[eT (I −M) + eTthM ]Cg(x))

)
(2.24)

Substituting the adaptive laws (2.15) and (2.16) and utilizing the properties of the projection oper-

ator leaves

V̇ ≤eT (I −M) (−(I −M)K1e−M(K2eth −KSCsat(eth/εth)− bSC))− 1

2
eTM ′Ẏme

− eTthM (ẏm + (I −M)K1e+M(K2eth −KSCsat(eth/εth)− bSC)) +
1

2
eTthM

′Ẏmeth

(2.25)

In order to complete the proof, the system is analyzed across three cases: M = 0, M = I , and

0 < M < I . These cases correspond to very specific scenarios where all of the reference states

are either inside their independent constraint sets, i.e. ym ∈ Y − ∆Y , outside their independent

constraint sets, i.e. ym /∈ Y, or transitioning between the two sets. In general, at any given time

mi(ym,i) may equal zero for some i and have a non-zero value for others. However due to the

fact that M , K1, K2, M ′ and Ẏm are diagonal, the analysis shown here can be performed almost

identically on an output-by-output basis and therefore analysis of the three cases mentioned above

is sufficient.

Case 1: M = 0

If M = 0 then M ′ = 0 as well and the Lyapunov function derivative (2.25) simplifies to

V̇ ≤ −eTK1e ≤ 0 (2.26)
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which implies that, assuming finite initial values, e, eth, W̃ and δΛ̃ are bounded whenever M = 0.

Furthermore, if M = 0 in steady-state, the inequality (2.26) implies that ess, eth,ss, W̃ss and δΛ̃ss

are bounded and that
∫∞

0
eTssKessdt exists and is finite. The subscript “ss" signifies the steady-state

value. Since the reference signal r is assumed to be continuous and bounded this implies that uss

and ėss are bounded as well, which implies that ess is uniformly continuous in time. Therefore,

Barbalat’s Lemma implies that if M = 0 as t→∞, then e→ 0 as t→∞.

Case 2: M = I

If instead M = I it once again implies that M ′ = 0 and the Lyapunov function derivative (2.25)

can be rewritten as

V̇ ≤ −eTthK2eth − eTth(ẏm −KSCsat(eth/εth)− bSC) (2.27)

It will be shown that bSC = 0 ifM = I . Consider the scenario where sat(eth,i/εth,i) = sign(eth,i/εth,i).

The inequality (2.27) can then be rearranged as

V̇ ≤ −eTthK2eth − |eTth|
(
Ẏmsign(eth) + |ẏm|

)
≤ 0 (2.28)

where for any vector v ∈ Rv, the absolute value notation |v| signifies
[
|v1| |v2| . . . |vv|

]T
and

sign(eth) =

[
sign(eth,1) sign(eth,2) . . . sign(eth,p)

]T

This implies that whenever M = I the threshold error eth is driven to a set where

|eth,i| ≤ εth,i ∀i (2.29)

at which point |sat(eth,i/εth,i)| < 1 for all i. This also implies that W̃ and δΛ̃ are bounded when-
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ever M = I . Furthermore, if M = I in steady-state then the inequality (2.28) reduces to

V̇ ≤ −eTthK2eth ≤ 0 (2.30)

which implies that ess, eth,ss, W̃ss and δΛ̃ss are bounded. Using a similar argument to the one made

above and invoking Barbalat’s Lemma, the expression (2.30) implies that if M = I as t→∞ then

eth → 0 as t→∞.

Case 3: 0 < M < I

Finally, we examine the case where 0 < M < I , that is, when the controller is transitioning be-

tween “tracking mode" and “state-constraining mode". Once again we begin by considering the

scenario where sat(eth,i/εth,i) = sign(eth,i/εth,i). The Lyapunov function derivative (2.25) can be

rewritten as

V̇ ≤eT (I −M) (−(I −M)K1e−M(K2eth −KSCsign(eth)− bSC))− 1

2
eTM ′Ẏme+

1

2
eTthM

′Ẏmeth

− |eTth|M (Sign(eth) (ẏm + (I −M)K1e+)−MKSC)− eTthM2(K2eth − bSC)

(2.31)

where Sign(eth) is a diagonal matrix with the vector sign(eth) along the diagonal. It was shown

above that when the modulation function mi(ym,i) is equal to zero, the tracking error e is tightly

bounded. Therefore, we assume that whenever 0 < mi(ym,i) ≤ εm,

|eth,i|mi(ym,i) ≤ εmδi (2.32)

In addition, we assume that when 0 < mi(ym,i) ≤ εm,

m2
i (ym,i) u mi(ym,i)(1−mi(ym,i)) u 0
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Therefore, if 0 < mi(ym,i) ≤ εm for all i, the Lyapunov function derivative reduces to

V̇ ≤ −eT (I −M)2K1e−
1

2
eTM ′Ẏme+

1

2
eTthM

′Ẏmeth − eTthMẏm (2.33)

which can be rewritten as

V̇ ≤ −eT (I −M)2K1e+
1

2
(yth − ym)TM ′Ẏm(yth − ym)− eTthMẏm (2.34)

Note that whenever 0 < M < I , the difference yth,i − ym,i is by definition bounded by

|yth,i − ym,i| ≤ δi (2.35)

Therefore, due to the inequalities (2.5) and (2.32) the following inequality holds

V̇ ≤ −eT (I −M)2K1e+ p

(
1

2
+ εm

)
δmaxCm (2.36)

where

δmax = max
i
δi

This implies that whenever 0 < M < εmI the tracking error e is driven to a set where

|ei|2 ≤
(

1
2

+ εm
)
δiCm

(1− εm)2K1,ii

(2.37)

If instead, εm < mi(ym,i) < 1 for all i, then by substituting in the definition of KSC given in
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Equation (2.17) the Lyapunov function derivative becomes

V̇ ≤− eT (I −M)2K1e+ eT (I −M) (−M(K2eth −KSCsign(eth)− bSC))− 1

2
eTM ′Ẏme

1

2
eTthM

′Ẏmeth − eTthM2(K2eth − bSC)

(2.38)

This can be rearranged as,

V̇ ≤− eT (I −M)2K1e− eTthM2K2eth +
1

2
(yth − ym)TM ′Ẏm(yth − ym) +

i=p∑
i=1

γi +

i=p∑
i=1

ηibSC,i

(2.39)

where

γi = ei(1−mi(ym,i))
(
−mi(ym,i)(K2,iieth,i −KSC,iisign(eth,i))

)
(2.40)

ηi = eth,im
2
i (ym,i) + eimi(ym,i)(1−mi(ym,i)) (2.41)

To account for the terms γi which may be greater than zero, the vector bSC is defined as

bSC,i =


−γi
ηi

if εm < mi(ym,i) < 1 and γi > 0

0 otherwise
(2.42)

which implies that if εmI < M < I ,

V̇ ≤− eT (I −M)2K1e− eTthM2K2eth +
1

2
pδmaxCm (2.43)

The inequalities (2.36) and (2.43) imply that whenever 0 < M < I , either the tracking error e is
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bounded according to (2.37) or the threshold error eth is bounded according to

|eth,i|2 ≤
1
2
δiCm

ε2mK2,ii

(2.44)

To handle the situation when |sat(eth,i/εth,i)| < 1 the tuning parameter εth,i is set to be less than

or equal to the right hand side of (2.44) for all i. This implies that W̃ and δΛ̃ are bounded as well.

It has now been shown that assuming finite initial values the tracking error or threshold error

remain bounded regardless of the value that M takes. This implies that the chosen outputs y are

bounded for all t > 0 which was assumed above to imply that the full state vector x is bounded.

The state being bounded implies that all signals in the control law (2.10) are bounded as well. It

was also shown that if M = 0 in steady-state then e is asymptotically stable and if M = I in

steady-state then eth is asymptotically stable. Finally, recall that these conclusions can be drawn

on an output-by-output basis such that if M contains both zero and non-zero entries along the

diagonal, the stability analysis still holds. This concludes the proof.

2.5 Generic Hypersonic Vehicle Simulation

The SMSC controller developed above was implemented and tested in the nonlinear Generic

Hypersonic Vehicle simulation. The motivation for this simulation study was the issue of inlet

unstart; a sudden breakdown of the shock system in an inlet which can lead to departure from

controlled flight in supersonic and hypersonic air vehicles. Although inlet unstart is still a topic

of current research, one known cause for the phenomenon is that it can occur when the vehicle

flies at medium to large values of angle-of-attack or sideslip angle. Therefore, the state constraint

mechanism developed in this section was used to restrict what values of angle-of-attack and sideslip

angle the GHV could achieve and prevent inlet unstart from occurring.

In order to achieve the control objective of restricting position-level states, the system dynamics

were broken down into a subsystem of position-level dynamics and a subsystem of velocity-level
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dynamics. The position-level subsystem has dynamics of the form

ẋp =



φ̇

θ̇

ψ̇

α̇

β̇


= fp(x) + gp(x)Λp


pd

qd

rd

 (2.45)

yp =

[
α β

]T
(2.46)

where the dynamics fp(x) and gp(x) are defined in Section 1. Note that for this subsystem the

control vector is made up of the desired body-axis angular rates. This control signal is calculated

using the SMSC controller defined in Section 2.3 and taking into account the constraints on angle-

of-attack and sideslip angle. The velocity-level subsystem has dynamics of the form

ẋv =


ṗ

q̇

ṙ

 = fv(x) + gv(x)Λv



δf,r

δf,l

δt,r

δt,l


(2.47)

yv =

[
p q r

]T
(2.48)

where again the dynamics fv(x) and gv(x) are given in Section 1. For this subsystem the control

vector is made up of the control surfaces of the GHV, two elevons (δf,i) and two ruddervators (δt,i).

Since there are no constraints on the velocity-level outputs this control signal is calculated using

the tracking NDI control law derived in Section 1.3. This is equivalent to setting mi(ym,i) = 0 for

all t ≥ 0, i = p, q, r.

Parametric uncertainty was assumed in the moments of inertia of the vehicle as well as the lift,
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drag, sideforce and various moment coefficients which are contained in the functions fp(x) and

fv(x). Except for the moment of inertia parameters, the initial estimate of the various aerodynamic

coefficients differed by at least 20% of the truth value. Given the notation used in Section 1 to

describe the parametric uncertainty in the GHV simulation, this is equivalent to |ĈX | ≤ |0.8CX |

or |ĈX | ≥ |1.2CX | ∀X . The basis functions used in the adaptive laws are denoted as bp(x) and

bv(x) for the position-level and velocity-level subsystem respectively and are given by

bp(x) =

[
q̄

VT cosβ
q̄

VT cosβ
α q̄

VT cosβ
α2 q̄

VT

q̄
VT
β

]T
(2.49)

bv(x) =

[
MT

T q̄ q̄
VT
xTv pq qr pr p2 − r2 q̄yTp q̄y

(2)T
p q̄y

(3)T
p

]T
(2.50)

y(i)
p =

[
αi βi

]T
i = 2, 3 (2.51)

In order to make the simulation more realistic, second-order actuator dynamics with damping ratio

ζ = 0.7 and natural frequency ωn = 25Hz were included and position and rate limits were placed

on the actuators of 30 deg and 100 deg /s, respectively. In addition, a time delay of 0.01s was

included in the simulation. The initial flight condition was a velocity of Mach 6 and altitude of

80, 000ft. The constraints placed on the vehicle’s angle-of-attack and sideslip angle were selected

based on wind tunnel testing of a 10.5-inch HIFiRE 6 model at the Department of Aeronautics,

U.S. Air Force Academy [32]. From their experiments, the recorded values at which an inlet

unstart will occur are 14.5 deg and −5.7 deg for angle-of-attack and ±5.4 deg for sideslip angle.

Therefore, in order to include a safety buffer the output threshold values were set as

[
αmax αmin δα βmax βmin δβ

]
=

[
13 −4 0.5 4 −4 0.5

]
deg (2.52)

Note that in general these constraint parameters may vary greatly with varying vehicle and inlet

geometries.

The following gain and controller parameters were kept constant through out all presented

39



simulation trials. For the velocity-level subsystem, the reference model was defined as

ẏm,v = −10ym,v + 10


pd

qd

rd

 (2.53)

The feedback gain K1,v using the notation used for the SMSC controller or Kv using the notation

used for in the tracking controller of Section 1 were set as

K1,v = Kv =


7.5 0 0

0 7.5 0

0 0 7.5

 (2.54)

Note that because no constraints were set for the velocity-level subsystem, there is no need to

define the matrix K2,v. The adaptive gains were set as ΓΛ,v = (1e− 5)I4 and

ΓW,v =

(1e− 5)I7 0

0 (1e− 3)I10

 (2.55)

where IN represents the N × N identity matrix. Although Λv = I4 the initial estimate Λ̂v(t = 0)

was set to 1.1I4. The weight estimate matrix was initialized as Ŵv(t = 0) = 0. For the position-

level subsystem, the reference model was defined as

ẏm,p = −ym,p +

αcmd
βcmd

 (2.56)
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The feedback gains were iteratively tuned and set to

K1,p = K2,p =

1 0

0 4

 (2.57)

Because gp(x) is made up of known trigonometric functions, it is assumed that Λp = I3 is known

perfectly. The adaptive gain matrix was set as ΓW,p = (1e − 4)I5 and the weight estimate matrix

was initialized as Ŵp(t = 0) = 0. The remaining controller parameters were set as εth,α = εth,β =

0.05 deg and εm = 0.2.

2.5.1 Results: Commanding an Unacceptable Reference Trajectory

Two test cases were examined in order to demonstrate the effectiveness of the SMSC controller

when dealing with unacceptably large reference trajectory commands. In the first test case 6 deg

doublets were commanded and in the second test case 10 deg doublets were commanded. Note

that according to (2.52), these commands violate the constraints αmin, βmin and βmax but not

αmax. The purpose of choosing such commands was to demonstrate the controllers’ ability to

handle both symmetric and asymmetric constraint sets.

Each test case was also examined using the tracking controller which had no state constraint

mechanism. No inlet unstart model was included in the simulation when generating the results

in this section and therefore adverse effects are not seen when α and β exceed their constraints in

these comparative cases. They are useful however for studying how the control signal and velocity-

level states are affected by the use of the SMSC controller.

Test Case 1: 6 degree Doublet Command

Figures 2.2 and 2.4 show the time histories for the position-level outputs α and β, as well as the

control surface deflections and total velocity. The Euler angle and velocity-level outputs are shown

in Figures 2.3 and 2.5. The results shown in Figure 2.3 indicate that the SMSC controller induced
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a larger pitch rate than the tracking controller in achieving the angle-of-attack based control objec-

tive. Otherwise, when commanding a 6 deg doublet in angle-of-attack the signals are fairly similar

across both controllers. Greater variation is seen across controllers in Figures 2.4 and 2.5 where

sideslip angle is being commanded. In successfully restricting β, the control surface deflections

vary significantly from those of the tracking control law. In addition, the SMSC control law led to a

much larger roll rate command and therefore larger roll angle (although well within the acceptable

range for hypersonic air vehicles) when compared to the tracking controller. In both examples that

were investigated in Test Case 1, the control objective was achieved.

Test Case 2: 10 degree Doublet Command

The second test case contained two more challenging examples as 10 deg doublets were com-

manded despite the constraint set given in (2.52) remaining constant. The time histories are sepa-

rated as they were for Test Case 1: Sideslip angle, angle-of-attack, the control surface deflections

and total velocity are shown in Figures 2.6 and 2.8 while Euler angle and velocity-level outputs are

shown in Figures 2.7 and 2.9. In this test case some chattering is seen in the signals generated using

SMSC control law, in particular when sideslip angle was commanded. Therefore, when command-

ing the system to enter a region of the state-space that significantly violates the constraint set extra

care must be taken if utilizing the SMSC controller. Nevertheless, in both examples shown, the

SMSC controller achieves the control objective despite the large command signal without violating

actuator limitations.

Note that in Figure 2.8, the tracking control law led to a large drop in airspeed while the vehicle

is flying at a large sideslip angle. In actuality, flying at such a sideslip angle would lead to an inlet

unstart in most hypersonic vehicles. By constraining what values of sideslip angle the vehicle can

achieve, not only can inlet unstart be prevented but the vehicle is able to maintain airspeed. Also

note that as in Case 1, Figure 2.9 indicates that the SMSC controller led to a larger roll rate and

roll angle than the tracking controller.
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2.5.2 Results: Disturbance Rejection

In order to successfully prevent inlet unstart, a state constraint mechanism must be able to

restrict the system outputs not only when a large trajectory is commanded, but also in the presence

of disturbances. The SMSC controller can successfully reject disturbances due to the modulation

function’s additional dependency on the true outputs, i.e. mi = 1 if yi < ymin,i − δi or yi >

ymax,i + δi. In order to demonstrate this capability, 5 deg doublet trajectories were commanded in

both sideslip angle and angle-of-attack. During the angle-of-attack trajectory simulation, show in

Figure 2.10, a 1250lbf disturbance force lasting one second was applied to the vehicle at t = 17sec

in the positive z (down) direction. During the sideslip angle trajectory simulation, show in Figure

2.11, a 2000lbf disturbance force lasting one second was applied to the vehicle at t = 20sec in

the negative y direction. The disturbance forces were implemented as exogenous forces acting on

the center of mass of the vehicle in the Simulink block containing the true plant dynamics. No

information about the disturbance force timing or magnitude was provided to the controller. In

both cases, the vehicle was restricted from entering a region of the state-space within which inlet

unstart would occur. When the same disturbance was applied to the vehicle using the tracking

controller, a constraint violation occurred in both examples at the moment in time indicated in the

Figures. This demonstrates the SMSC controller’s capability to enforce state constraints not only

when large command signals are applied but also in the presence of disturbances.
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Figure 2.2: Response to 6 degree doublet command in angle-of-attack. Time histories are shown
of sideslip angle, angle-of-attack, the control surface deflections and total velocity.
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Figure 2.3: Response to 6 degree doublet command in angle-of-attack. Time histories are shown
of the vehicle’s Euler angles and body-fixed angular rates.

45



0 10 20 30

β
 (

d
e
g
)

-10

-5

0

5

10

SMSC Controller

0 10 20 30
-10

-5

0

5

10

Tracking Controller
β

β
cmd

β
m

0 10 20 30

α
 (

d
e
g
)

-1.5

-1

-0.5

0

0.5

1

0 10 20 30
-1.5

-1

-0.5

0

0.5

1

0 10 20 30c
o
n
tr

o
l 
s
u
rf

a
c
e
s
 

  
  
  
 (

d
e
g
)

-20

-10

0

10

20

30

0 10 20 30
-20

-10

0

10

20

30
δ

f,r

δ
f,l

δ
t,r

δ
t,l

time (s)
0 10 20 30

V
T
 (

ft
/s

)

5860

5865

5870

5875

time (s)
0 10 20 30

5860

5865

5870

5875

Figure 2.4: Response to 6 degree doublet command in sideslip angle. Time histories are shown of
sideslip angle, angle-of-attack, the control surface deflections and total velocity.
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Figure 2.5: Response to 6 degree doublet command in sideslip angle. Time histories are shown of
the vehicle’s Euler angles and body-fixed angular rates.
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Figure 2.6: Response to 10 degree doublet command in angle-of-attack. Time histories are shown
of sideslip angle, angle-of-attack, the control surface deflections and total velocity.
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Figure 2.7: Response to 10 degree doublet command in angle-of-attack. Time histories are shown
of the vehicle’s Euler angles and body-fixed angular rates.
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Figure 2.8: Response to 10 degree doublet command in sideslip angle. Time histories are shown
of sideslip angle, angle-of-attack, the control surface deflections and total velocity.
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Figure 2.9: Response to 10 degree doublet command in sideslip angle. Time histories are shown
of the vehicle’s Euler angles and body-fixed angular rates.
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Figure 2.10: Longitudinal Disturbance Rejection Example. Time histories are shown of angle-of-
attack and the control surface deflections.
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3. NONLINEAR DYNAMIC INVERSION ADAPTIVE CONTROL WITH STATE

CONSTRAINTS USING BOUNDING FUNCTIONS

3.1 Introduction

In this section the second technique capable of enforcing state constraints in a nonlinear dy-

namic inversion adaptive control framework is presented in order to address the research issues

described in Section 2. Specifically, when developing and implementing new control algorithms

the need to restrict dynamical systems within certain regions of the state-space is an important

consideration. In the case of hypersonic vehicles, for example, state constraint enforcement can

prevent inlet unstart from occurring. In integrating such mechanisms with an NDI adaptive control

algorithm, the control techniques presented in this section and the previous one allow for suc-

cessful state constraint enforcement when dealing with nonlinear systems with models containing

significant parametric uncertainty.

The method developed in this section enforces state constraints using a bounding function tech-

nique first developed in [40] for linear systems with unknown nonlinear disturbances. The bound-

ing functions used in this technique allow for significant flexibility in designing how the controller

transitions between “tracking mode" and “state constraining mode". Such flexibility allows for this

technique to potentially lessen chattering in the control signal to an even greater extent than the

sliding mode controllers of Section 2. It also allows for the use of more complex constraint sets,

which will be discussed below. Other instances of using state-dependent functions in the control

law that become prevalent as the state approaches a constraint bound have been developed in [43]

and [44]. In these papers, Barrier Lyapunov functions are analyzed to ensure that these additional

functions in the control law will remain less than infinity. In [43], this method is used to directly

enforce state constraints in nonlinear systems in strict feedback form. In [44], a neural network

adaptive controller is introduced for a class of uncertain nonlinear systems. The Barrier Lyapunov
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function method is used to ensure that the system states remain within a constraint set, and there-

fore ensures that the neural network approximation of the unknown nonlinear dynamics remains

valid. Alternatively, the state-dependent functions used in the presented method are bounded by

definition and the control algorithm applies to a wider class of nonlinear affine-in-control systems

- no specific feedback structure is required. Because the bounding functions depend on the states

themselves, this technique is capable of enforcing state constraints both when an unacceptably

large command is given and in the presence of disturbances.

As in Section 2, the control objective is to stabilize the system tracking error while maintaining

that the system outputs remain in a predefined constraint set. Stability of the bounding function

state constraint (BFSC) controller is proven with three theorems that are based on Lyapunov anal-

ysis. The first theorem proves that, through use of the BFSC control technique, the system states

and the tracking error are bounded for a bounded input signal. Through the second theorem, it

is proven that if the steady-state value of the reference model is within the constraint set, perfect

tracking will occur. As with the SMSC controller, at times when no state constraints are in danger

of being exceeded the controller developed in this section reduces to the tracking controller de-

scribed in Section 1.3. The final theorem once again examines the system regardless of where the

steady-state value of the reference model lies and produces a conservative, analytical bound for the

system output and tracking error. Following the derivation of the controller and the stability anal-

ysis, the BFSC controller is implemented in the GHV simulation and it is shown that it is capable

of restricting the values of angle-of-attack and sideslip angle the vehicle can achieve.

Due to its ability to significantly lessen chattering in the control signal while enforcing state

constraints, the BFSC controller was also tested in an inlet unstart recovery feasibility study. A

simplified inlet unstart model, which will be described in detail in this section, was included in

the GHV simulation. This testing is referred to as a feasibility study because the included model

lacks some of the significant aerodynamic effects of inlet unstart. This is primarily due to the fact

that inlet unstart is still a current research topic and actual aerodynamic data is difficult to obtain
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for export control reasons. Nevertheless, it was demonstrated that using this simplistic model the

BFSC controller could not only be used to prevent inlet unstart but also to perform important

maneuvers necessary to recover from one as well.

3.2 Problem Statement

Consider the nonlinear, affine-in-control class of systems with dynamics that can be represented

by the equations

ẋ = f(x) + g(x)Λu (3.1)

y = Cx (3.2)

where x ∈ Rns is the system state, u ∈ Rm is the control, the vector f(x) ∈ Rns represents the

nonlinear open-loop dynamics of the system which are assumed to be bounded for bounded x, and

g(x)Λ ∈ Rns×m represents the control effectiveness of the system. It is assumed that f(x) and the

constant matrix Λ ∈ Rm×m are unknown but that Λ has full rank. The matrix g(x) ∈ Rns×m is

considered known. In the output equation (3.2), y ∈ Rp represents the outputs which are desired

to be controlled and/or constrained such that ns ≥ m ≥ p. The matrix C ∈ Rp×ns is constant,

known, and assumed to have full rank. In order to utilize a dynamic inversion control law, we limit

the scope to systems where the product Cg(x)Λ has full rank for all x.

For the state constraint controller presented in this section it is assumed that full state feedback

is available. As in Section 2, the control objective is to stabilize the system tracking error while

maintaining that y remains within a predefined constraint set. The system tracking error is defined

as

e = ym − y (3.3)

where ym represents a reference model signal for the system outputs. It is assumed that the system

outputs are selected such that if the tracking error is bounded it can be concluded that the full state
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vector x is bounded as well. The desired reference model dynamics are given by

ẏm = Amym +Bmr (3.4)

where ym ∈ Rp and r ∈ Rp is a reference input signal. The matrix Am ∈ Rp×p is Hurwitz, and

Bm ∈ Rp×p. It is assumed that the reference input signal r is continuous and bounded such that

there exists a known constant Cm where

‖ym‖ ≤ Cm ‖ẏm‖ ≤ Cm (3.5)

Note that the constant Cm does not restrict the reference model to remain within the predefined

constraint set. With the definitions and derivation of Section 1.3.1 the error dynamics can be

expressed as

ė = ẏm − Cf(x)− Cg(x)Λ̂u+ Cg(x)δΛ̃u (3.6)

3.3 Bounding Functions

The bounding function state constraint controller utilizes specifically designed functions which

activate when an output approaches a predefined constraint value, and smoothly adjust the control

and adaptive laws accordingly. The general definition for a bounding function fb(·) is given below.

Definition 3.3.1. fb : R 7→ R is a bounding function if it is continuously differentiable and satisfies

the following properties:

• fb(a) = 0, ∀a ≤ b̄

• fb(a) > 0, ∀a > b̄

• fb(a)→∞, a→∞

• f ′b(a) is locally Lipschitz and monotonically increasing.
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• f ′b(a) = 0, ∀a ≤ b̄

• f ′b(a) > 0, ∀a > b̄

where a is a scalar dependent variable, f
′

b(a) is the derivative of fb(a) with respect to a, and b̄ is a

designer chosen constraint.

For each output which is desired to be controlled and/or constrained, a bounding function is con-

structed which corresponds to that output’s predefined threshold values and is denoted as fb,i(y2
i ).

The control objective can theoretically be achieved with any bounding function that satisfies the

above definition. Although alternative methods are available, one specific process for constructing

bounding functions that produce the desired behavior is presented.

3.3.1 A Method for Constructing Bounding Functions

The proposed bounding function is given by

fb,i(y
2
i ) =


fminb,i (y2

i ) if yth,i = ymin,i − δi

fmaxb,i (y2
i ) if yth,i = ymax,i + δi

(3.7)

where yth,i is again defined by (2.8). To allow for more flexibility in the design and for asymmetric

constraint sets, a separate bounding function is used to handle the maximum output bound and the

minimum output bound. Both of these functions are constructed as

f jb,i(y
2
i ) =


0 if y2

i ≤ y2
j,i

f jt,i(y
2
i ) if y2

j,i < y2
i ≤ y2

th,i

exp(ρjiy
2
i )− φj0,i if y2

i > y2
th,i

(3.8)
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for j = {min,max}. The polynomial f jt,i(y
2
i ) is chosen to transitionally activate the bounding

function when the output is between the predetermined regions yj,i and yth,i. The parameter δi is

chosen based on how quickly one desires the bounding function to transition from 0 to an expo-

nential function, and the parameter ρji > 0 affects the growth rate of the bounding function.

The transition polynomial takes the form

f jt,i(y
2
i ) = φj1,i(y

2
i )

4 + φj2,i(y
2
i )

3 + φj3,i(y
2
i )

2 + φj4,i(y
2
i ) + φj5,i (3.9)

The constants φj0,i, φ
j
1,i...φ

j
5,i are solved for by looking at the desired boundary conditions for the

bounding function. These boundary conditions are

f jb,i(y
2
j,i) = f ′jb,i(y

2
j,i) = f ′′jb,i (y

2
j,i) = 0 (3.10)

f jb,i(y
2
th,i) = exp(ρjiy

2
i )− φj0,i (3.11)

f ′b,i(y
2
th,i) = ρji exp(ρiy

2
i ) (3.12)

f ′′b,i(y
2
th,i) = (ρji )

2 exp(ρjiy
2
i ) (3.13)

where the prime symbol in Equations (3.10)−(3.13) represents differentiation with respect to y2
i .

By taking two derivatives of the general form of the transitional function f jt,i(y
2
i ),

f ′jt,i(y
2
i ) = 4φ1,i(y

2
i )

3 + 3φ2,i(y
2
i )

2 + 2φ3,i(y
2
i ) + φ4,i (3.14)

f ′′jt,i (y
2
i ) = 12φ1,i(y

2
i )

2 + 6φ2,i(y
2
i ) + 2φ3,i (3.15)

and applying the six given boundary conditions, Equations (3.10)−(3.13), one is left with six linear

equations which can be used to solve for the six φj,i’s as long as δi 6= 0. Note that because the

bounding functions depend on the true outputs yi, this technique is capable of enforcing state con-

straints when both an unacceptably large command is given, and in the presence of disturbances.
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Unlike the SMSC controller this technique does not specifically recognize which command sig-

nals are outside of the constraint set. Instead, the controller alters its behavior if, in tracking the

reference signal, the true output gets too close to a constraint boundary.

More complicated constraint sets are easily applicable with this bounding function construction

technique. In addition to including both a maximum and minimum bound, this could include more

sophisticated structures where the desired bounds are determined based on the current operating

condition of the system. In this scenario, a bounding function with the same behavior but different

coefficients would be needed to handle the other constraint boundaries. One way to deal with

this is to calculate the bounding function value that gets implemented in the control law in real

time based on which constraint, maximum or minimum for example, is most in danger of being

exceeded such as in the definition (3.7). Because the function construction process described in

this section is nothing more than a set of six linear equations, calculating the bounding functions

in real time is computationally inexpensive.

3.4 Control Law Development

The control law for the BFSC controller is given by

u = [Cg(x)Λ̂]†
(
ẏm − Cf̂(x) +Ke+ ν − F ′∗(y)[ẏm +Kym]

)
(3.16)

where K ∈ Rp×p is a diagonal error feedback gain matrix such that K = KT > 0, the vector ν ∈

Rp is an adaptive signal used to account for parameter uncertainty, and the matrix F ′∗(y) ∈ Rp×p is

defined as

F ′∗(y) =



f ′b,1(y2
1)

1+f ′b,1(y2
1)

0 . . . 0

0
f ′b,2(y2

2)

1+f ′b,2(y2
2)

. . . 0

...
... . . . ...

0 0 . . .
f ′b,n(y2

n)

1+f ′b,n(y2
n)


(3.17)
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Once again, it is assumed that Cf̂(x)− Cf(x) can be parameterized as in (2.13) and the adaptive

signal ν is defined as in (2.14). Therefore, substituting the BFSC control law (3.16) into the system

error dynamics given in (3.6) results in

ė = −Ke+ F ′∗(y)[ẏm +Kym]− W̃ T b(x) + g(x)δΛ̃u (3.18)

The adaptive laws used to update the estimated matrices Ŵ and δΛ̂ are given by

˙̂
W = ΓWProjM

(
Ŵ , b(x)

(
eT − yTF ′(y)

))
(3.19)

δ
˙̂
Λ = ΓΛProjM

(
δΛ̂, g(x)TCT

(
−euT + F ′(y)yuT

))
(3.20)

where ΓW ∈ Rnw×nw and ΓΛ ∈ Rm×m and Γi = ΓTi > 0 for i = W,Λ are adaptive gain matrices

and the matrix F ′(y) is defined as

F ′(y) =



f ′b,1(y2
1) 0 . . . 0

0 f ′b,2(y2
2) . . . 0

...
... . . . ...

0 0 . . . f ′b,n(y2
n)


(3.21)

3.5 Stability Analysis

In this section it is shown that using the BFSC control architecture defined above, the system

outputs and the tracking error are bounded for a bounded input signal. The size of this bound will

depend on, among other things, the steady-state value of the reference model. This is a direct result

of the state constraint mechanism. If the steady-state value of the reference model is outside of a

predetermined constraint set, perfect tracking is not desired. Instead, the system should remain at

the boundary of its constraint set.

Three theorems are presented in order to prove the stability of the system. Theorem 3 states
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that the closed-loop signals will be bounded regardless of if the steady-state value of the reference

model is within or without the constraint set. Theorem 4 states that if the steady-state value of

the reference model is within the constraint set, the tracking error will be asymptotically stable.

Finally, Theorem 5 analyzes the system regardless of where the steady-state value of the refer-

ence model lies and a conservative, analytical bound for the system output and tracking error is

produced.

Theorem 3. Consider the nonlinear dynamical system given in Equation (3.1), the reference model

defined in Equation (3.4), the control law defined in Equation (3.16), and the adaptive laws defined

in Equations (3.19) and (3.20). Suppose that the reference input signal, r, is bounded, then the

tracking error, e, and the system outputs, y, are bounded.

Proof. In order to prove the stability of the BFSC controller, the following candidate Lyapunov

function is chosen

V =
1

2

(
eT e+ tr(W̃ TΓ−1

W W̃ ) + tr(δΛ̃Γ−1
Λ δΛ̃T ) +

n∑
i=1

fb,i(y
2
i )

)
(3.22)

The derivative of (3.22) is taken with respect to time along the system trajectories, resulting in

V̇ = eT ė+ tr(W̃ TΓ−1
W

˙̂
W ) + tr(δΛ̃Γ−1

Λ δ
˙̂
ΛT ) +

n∑
i=1

yif
′
b,i(y

2
i )ẏi (3.23)

Using the matrix F ′(y), defined above, the summation can be rewritten as,

V̇ = eT ė+ tr(W̃ TΓ−1
W

˙̂
W ) + tr(δΛ̃Γ−1

Λ δ
˙̂
ΛT ) + yTF ′(y)ẏ (3.24)

Substituting in the error dynamics from Equation (3.18) and calculating the output dynamics using
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ẏ = ẏm − e leads to

V̇ =eT (−Ke+ F ′∗(y)[ẏm +Kym])− eT W̃ T b(x) + eTCg(x)δΛ̃u

+ yTF ′(y) (ẏm +Ke− F ′∗(y)[ẏm +Kym]) + yTF ′(y)W̃ T b(x)

− yTF ′(y)Cg(x)δΛ̃u+ tr(W̃ TΓ−1
W

˙̂
W ) + tr(δΛ̃Γ−1

Λ δ
˙̂
ΛT )

(3.25)

Applying the trace identity aT b = tr(baT ), Equation (3.25) is rewritten

V̇ =eT (−Ke+ F ′∗(y)[ẏm +Kym]) + tr(W̃ T (Γ−1
W

˙̂
W − b(x)eT + β(x)yTF ′(y)))

+ yTF ′(y) (ẏm +Ke− F ′∗(y)[ẏm +Kym]) + tr(δΛ̃(Γ−1
Λ δ

˙̂
ΛT + ueTCg(x)− uyTF ′(y)Cg(x)))

(3.26)

The adaptive laws, given in Equations (3.19) and (3.20), ensure that the second and fourth terms in

Equation (3.26) will be less than or equal to zero. Therefore, the following inequality holds

V̇ ≤ eT (−Ke+ F ′∗(y)[ẏm +Kym]) + yTF ′(y) (ẏm +Ke− F ′∗(y)[ẏm +Kym]) (3.27)

By utilizing the definition of the tracking error, e = ym−y, the inequality (3.27) can be rearranged

as

V̇ ≤− eTKe− yTF ′(y)Ky + eT (F ′∗(y)− F ′(y) + F ′∗(y)F ′(y)) [ẏm +Kym]

+ yTm (F ′(y)− F ′(y)F ′∗(y)) [ẏm +Kym]

(3.28)

By definition of the matrices F ′(y) and F ′∗(y), it can be shown that

F ′∗(y)− F ′(y) + F ′∗(y)F ′(y) = 0

F ′(y)− F ′(y)F ′∗(y) = F ′∗(y)
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Therefore, (3.28) can be simplified to

V̇ ≤ −eTKe− yTF ′(y)Ky + yTmF
′
∗(y)[ẏm +Kym] (3.29)

Let ymss be the steady-state value of the reference model. The following is equivalent to (3.29),

V̇ ≤− eTKe− yTF ′(y)Ky + yTmssF
′
∗(y)Kymss + yTmF

′
∗(y)ẏm + yTmF

′
∗(y)Kym

− yTmssF ′∗(y)Kymss

(3.30)

Recall that since F ′(y) is a positive semi-definite diagonal matrix and K is a positive definite

diagonal matrix, their product will also be a positive semi-definite matrix. Therefore, if

yTF ′(y)Ky ≥ yTmssF
′
∗(y)Kymss + ‖yTmF ′∗(y)ẏm + yTmF

′
∗(y)Kym − yTmssF ′∗(y)Kymss‖

2
(3.31)

then V̇ ≤ 0. Since ym and ẏm are bounded given a bounded input signal and F ′∗(y) is bounded by

definition, this implies that y is bounded and therefore e is also bounded, as intended.

The following theorem demonstrates that if the steady-state value of the reference model does not

violate any state constraint, perfect tracking will occur as t → ∞. As with the SMSC control

law, a similar analysis could be performed to show that the same conclusion can be drawn on an

output-by-output basis. In other words, perfect tracking is ensured for any individual output whose

steady-state reference signal value does not violate its individual constraint.

Theorem 4. Suppose all of the conditions in Theorem 3 are met. Let rss ∈ Rm and ymss =

−A−1
m Bmrss, where rss is the steady-state value of the reference input signal and ymss is the steady-

state value of the reference model. If ∃ α∗, β∗ ∈ R+ such that

‖r(t)− rss‖
2
≤ α∗ exp(−β∗t), t ∈ [0,∞) (3.32)
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and if the condition y2
i < (λmax(K)/λmin(K)) y2

i,mss implies that f ′b,i(y
2
i ) = 0, then e → 0 as

t→∞.

Proof. Since ∃ α∗, β∗ ∈ R such that ‖r(t) − rss‖
2
≤ α∗ exp(−β∗t) at all times and the reference

dynamics in Equation (2.4) are stable, it can be shown that ∃ α0, β0 ∈ R+ such that

‖yTmF ′∗(y)ẏm + yTmF
′
∗(y)Kym − yTmssF ′∗(y)Kymss‖

2
≤ α0 exp(−β0t), t ∈ [0,∞) (3.33)

The expression for the Lyapunov function derivative given by the inequality (3.30) can now be

rewritten as

V̇ ≤ −eTKe− yTF ′(y)Ky + yTmssF
′
∗(x)Kymss + α0 exp(−β0t) (3.34)

Evaluating the second and third terms of the inequality (3.34), the following relationship can be

established

−yTF ′(x)Kx+ yTmssF
′
∗(x)Kymss ≤ −λmin(K)

n∑
i=1

f ′b,i(y
2
i )y

2
i + λmax(K)

n∑
i=1

f ′b,i(y
2
i )y

2
i,mss

(3.35)

Due to the condition given in the theorem statement that y2
i < (λmax(K)/λmin(K)) y2

i,mss implies

that f ′b,i(x
2
i ) = 0, the second and third terms in the inequality (3.34) always combine to be less

than or equal to zero. Therefore, the Lyapunov function derivative can be reduced to

V̇ ≤ −eTKe+ α0 exp(−β0t) (3.36)

It follows that,

V = V0 +

∫ t

0

V̇ dτ (3.37)
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where V0 = V (t = 0). Utilizing the inequality (3.36) leaves,

V ≤ V0 +

∫ t

0

(
−eTKe+ α0 exp(−β0t)

)
dτ (3.38)

which, upon integration, results in

V ≤ V0 −
∫ t

0

eTKedτ +
α0

β0

(1− exp(−β0t)) (3.39)

Because V ≥ 0, the following inequality holds

0 ≤ V ≤ V0 −
∫ t

0

eTKedτ +
α0

β0

(1− exp(−β0t)) (3.40)

0 ≤
∫ t

0

eTKedτ ≤ V0 +
α0

β0

(1− exp(−β0t)) (3.41)

for all t ≥ 0. This implies that
∫∞

0
eTKedt exists and is finite. Because y and e are bounded, u

and ė are bounded for all t ≥ 0 which implies that e is uniformly continuous in time. Therefore,

Barbalat’s Lemma implies that e→ 0 as t→∞ as intended.

The final theorem of the section places an analytical upper bound on the system outputs regard-

less of the steady-state value of the reference model. In this theorem, it will be shown that altering

the bounding functions, fb,i(y2
i ), can tighten the bounds on the outputs, yi. This insight can be used

to improve constraint enforcement performance.

Theorem 5. Suppose all of the conditions in Theorem 3 are met. Also, suppose that the projection

operator bounds are chosen such that the unknown ideal weights satisfy ‖W‖F ≤ ‖Ŵ‖F,max
and ‖δΛ‖F ≤ ‖δΛ̂‖F,max, where ‖(̂·)‖F,max is the maximum allowable Frobenius norm of Ŵ

and δΛ̂ respectively. If, at the initial time, e = 0 and ymin,i < yi < ymax,i, then each of the

bounding functions fb,i(y2
i ) implemented in the control and adaptive laws, Equations (3.16),(3.19),

and (3.20), are bounded for all t ≥ 0 by
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fb,i(y
2
i ) ≤

1

2

(
4

λmin(ΓW )
‖Ŵ‖2

F,max +
4

λmin(ΓΛ)
‖δΛ̂‖2

F,max + φTF ′(φ)φ+
n∑
i=1

max
y2
i≤φi

[fb,i(y
2
i )]

)
(3.42)

where φ ∈ Rp is defined such that

λmin(K)φTF ′(φ)φ = |yTmẏm + λmax(K)yTmym|max (3.43)

and where | · |max is the maximum value of the argument for all t ≥ 0. Since, by definition,

fb,i(y
2
i )→∞ as y2

i →∞, the bound (3.42) implies an upper bound on the system outputs.

Proof. Consider the inequality (3.29) which describes a relationship regarding the derivative of the

Lyapunov Function used in Theorems 3 and 4,

V̇ ≤ −eTKe− yTF ′(y)Ky + yTmF
′
∗(y)[ẏm +Kym] (3.44)

Because K is a diagonal positive definite matrix, the following inequality also holds:

V̇ ≤ −λmin(K)(eT e+ yTF ′(y)y) + yTmF
′
∗(x)ẏm + λmax(K)yTmF

′
∗(y)ym (3.45)

Next, conditions are derived that ensure V̇ is less than or equal to zero. First, if

λmin(K)yTF ′(y)y ≥ |yTmF ′∗(y)ẏm + λmax(K)yTmF
′
∗(y)ym|max (3.46)

then V̇ ≤ 0. Considering the definition of φ given in Equation (3.43), yi ≥ φi for all i implies that

V̇ ≤ 0. Using this definition, it can also be seen that if

eT e ≥ φTF ′(φ)φ (3.47)
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then also, V̇ ≤ 0. The projection operator ensures that the adaptive weights are bounded by

‖W̃‖F ≤ ‖W̃‖F,max and ‖δ̃Λ‖F ≤ ‖δ̃Λ‖F,max (3.48)

which implies that V̇ ≤ 0 outside of the compact set Ω, where

Ω(e, y, W̃ , δΛ̃) =
{

(e, y, W̃ , δΛ̃) : ‖e‖2 ≤
√
φTF ′(φ)φ

}
⋂
{(e, y, W̃ , δΛ̃) : yi ≤ φi, for all i}⋂
{(e, y, W̃ , δΛ̃) : ‖W̃‖F ≤ ‖W̃‖F,max}⋂
{(e, y, W̃ , δΛ̃) : ‖δΛ̃‖F ≤ ‖δΛ̃‖F,max}

Because V̇ ≤ 0 outside of the compact set Ω, V cannot grow outside of this set. Therefore, V has

the following upper bound

V ≤ max
(e,x,W̃ ,δΛ̃)∈Ω

V

for all t ≥ 0 which, given the definition of the Lyapunov function in Equation (3.22), can be

rewritten as

V ≤ max
(e,x,W̃ ,δΛ̃)∈Ω

(
1

2

(
eT e+ tr(W̃ TΓ−1

W W̃ ) + tr(δΛ̃TΓ−1
Λ δΛ̃) +

n∑
i=1

fb,i(y
2
i )

))
(3.49)

This implies that

V ≤ 1

2

(
‖W̃‖2

F,max

λmin(ΓW )
+
‖δΛ̃‖2

F,max

λmin(ΓΛ)
+ φTF ′(φ)φ+

n∑
i=1

max
y2
i≤φi

[fb,i(y
2
i )]

)
(3.50)

Note that for both W̃ and δΛ̃, the triangle inequality can be invoked such that

‖(̃·)‖F = ‖(̂·)− (·)‖F ≤ ‖(̂·)‖F + ‖(·)‖F ≤ 2‖(̂·)‖F,max
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Therefore,

V ≤ 1

2

(
4

λmin(ΓW )
‖Ŵ‖2

F,max +
4

λmin(ΓΛ)
‖δΛ̂‖2

F,max + φTF ′(φ)φ+
n∑
i=1

max
y2
i≤φi

[fb,i(y
2
i )]

)
(3.51)

Since the Lyapunov function, Equation (3.22), implies that fb,i(y2
i ) ≤ V , it can be stated that

fb,i(y
2
i ) ≤

1

2

(
4

λmin(ΓW )
‖Ŵ‖2

F,max +
4

λmin(ΓΛ)
‖δΛ̂‖2

F,max + φTF ′(φ)φ+
n∑
i=1

max
y2
i≤φi

[fb,i(y
2
i )]

)
(3.52)

for all i, as intended.

Remark 3.5.1. Because a finite bound for the bounding functions has been established, a bound for

the outputs, yi, is also established in the form of the vector φ. It can be seen from Equation (3.43)

that the size of this bound depends on the derivative of the respective bounding function, fb,i(y2
i ).

The faster the bounding function grows after y2
i ≥ y2

j,i for j = {min,max}, the tighter the state

will be bound to its constraint. The parameters ρji > 0, defined in Equation (3.8), directly affect

the growth rate of the bounding function and therefore can be used to tighten the constraint. As ρji

increases, the bound on the state yi tightens.

3.6 Generic Hypersonic Vehicle Simulation

The BFSC controller developed above was implemented and tested in the nonlinear Generic

Hypersonic Vehicle simulation. The results presented in this section were developed by putting

the BFSC controller through the same litany of tests that the SMSC controller was put through in

Section 2. In Section 3.7, results will be presented which were developed after augmenting the

GHV simulation with a simplified inlet unstart model and testing the BFSC controller’s ability to

both prevent and help with the recovery from an inlet unstart.

As was done in Section 2, the system dynamics were broken down into a subsystem of position-
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level dynamics and a subsystem of velocity-level dynamics as follows

ẋp =



φ̇

θ̇

ψ̇

α̇

β̇


= fp(x) + gp(x)Λp


pd

qd

rd

 (3.53)

yp =

[
α β

]T
(3.54)

ẋv =


ṗ

q̇

ṙ

 = fv(x) + gv(x)Λv



δf,r

δf,l

δt,r

δt,l


(3.55)

yv =

[
p q r

]T
(3.56)

In all of the results presented in this section the following simulation parameters were kept

identical to those presented in Section 2:

• Reference model dynamics

• Parametric uncertainty in the dynamical model

• Basis functions used in the adaptive laws

• Adaptive gain matrices

• Initial values for the adaptive parameters

• Actuator dynamics and saturation limits

• Time delay
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The initial flight condition was a velocity of Mach 6 and altitude of 80, 000ft. The predefined

constraint set on angle-of-attack and sideslip angle in order to prevent inlet unstart was again

chosen according to [32]. To reiterate, this corresponds to an inlet unstart occurring at 14.5 deg

and−5.7 deg for angle-of-attack and±5.4 deg for sideslip angle. The output threshold limits used

in the construction of the bounding functions are given by

[
αmax αmin δα βmax βmin δβ

]
=

[
13 −4 0.5 4 −4 0.5

]
deg (3.57)

The following gain and controller parameters were kept constant through out all presented

simulation trials. For the velocity-level subsystem, the feedback gain Kv was set as

Kv =


7.5 0 0

0 7.5 0

0 0 7.5


For the position-level subsystem, the feedback gain Kp was set as

Kp =

1 0

0 2


The parameters required for the BFSC controller were set as ρminα = ρmaxα = 2 and ρminβ = ρmaxβ =

3.

3.6.1 Results: Commanding an Unacceptable Reference Trajectory

The same two test cases used for the SMSC controller in Section 2 were examined in order

to demonstrate the effectiveness of the BFSC controller when dealing with unacceptably large

reference trajectory commands. In the first test case 6 deg doublets were commanded and in the

second test case 10 deg doublets were commanded.
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Each test case presented was also examined using the tracking controller which had no state

constraint mechanism. While producing the results presented in this section, no inlet unstart model

was included in the simulation and therefore, adverse effects are not seen when α and β exceed

their constraints in these comparative cases.

Test Case 1: 6 degree Doublet Command

In the first test case, 6 deg doublets were commanded in both angle-of-attack and sideslip angle.

Figures 3.1 and 3.3 show the time histories for the position-level outputs α and β, as well as the

control surface deflections and total velocity. The Euler angle and velocity-level outputs are shown

in Figures 3.2 and 3.4. As with the SMSC controller, the BFSC controller had little trouble when

restricting angle-of-attack in response to a 6 deg doublet command. In commanding sideslip angle,

as shown in Figures 3.3 and 3.4, the BFSC controller showed improvement in performance when

compared with the SMSC controller. There is less chattering in the control surface deflections and

the large induced roll rate is not seen. In fact a larger roll rate and roll angle were required by the

tracking controller than by the state constraining controller. In both examples that were explored

in Test Case 1, the control objective was achieved.

Test Case 2: 10 degree Doublet Command

The second test case contained two more challenging examples as 10 deg doublets were com-

manded despite the constraint set given in (3.57) remaining constant. The time histories are sepa-

rated as they were for Test Case 1: Sideslip angle, angle-of-attack, the control surface deflections

and total velocity are shown in Figures 3.5 and 3.7 while Euler angle and velocity-level outputs

are shown in Figures 3.6 and 3.8. In this test case the BFSC controller’s ability to lessen chattering

in the control signal when compared with sliding mode techniques is clear. By constructing the

bounding functions according to the method given in Section 3.3.1, and by tuning the transition

polynomials ft,i(y2
i ), the change from “tracking mode" to “state constraint" mode occurs smoothly.
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In Figure 3.8 it can be seen that the large roll rate is again avoided by restricting the outputs through

the BFSC control technique. In both examples shown, the control objective is achieved despite the

10 deg command signal.

3.6.2 Results: Disturbance Rejection

As with the SMSC control law, in order to validate the BFSC controller as a successful state

constraint technique it must be shown that it can reject disturbances in addition to handling unac-

ceptable input commands. In order to demonstrate this capability, 5 deg doublet trajectories were

commanded in both sideslip angle and angle-of-attack. During the angle-of-attack trajectory sim-

ulation, show in Figure 3.9, a 1250lbf disturbance force lasting one second was applied to the

vehicle at t = 17sec in the positive z (down) direction. During the sideslip angle trajectory sim-

ulation, show in Figure 3.10, a 2000lbf disturbance force lasting one second was applied to the

vehicle at t = 20sec in the negative y direction. In both cases, the vehicle was restricted from

entering a region of the state-space within which inlet unstart would occur. When the same dis-

turbance was applied to the vehicle using the tracking controller, a constraint violation occurred

in both examples at the moment in time indicated in the Figures. Again, an improvement is seen

in the results generated using the BFSC control law when compared with the SMSC controller.

Although both controllers successfully rejected the disturbance without inducing an inlet unstart,

the BFSC control law is able to maintain more separation with the constraint boundary than the

SMSC controller while also producing less chatter in the control signal. This demonstrates the

BFSC controller’s capability to enforce state constraints not only when large command signals are

applied but also in the presence of disturbances.

72



0 10 20 30

β
 (

d
e

g
)

-0.01

-0.005

0

0.005

0.01

BFSC Controller

0 10 20 30
-0.01

-0.005

0

0.005

0.01

Tracking Controller

0 10 20 30

α
 (

d
e

g
)

-10

-5

0

5

10

0 10 20 30
-10

-5

0

5

10 α

α
cmd

α
m

0 10 20 30c
o

n
tr

o
l 
s
u

rf
a

c
e

s
 

  
  

  
 (

d
e

g
)

-20

-10

0

10

20

0 10 20 30
-20

-10

0

10

20 δ
f,r

δ
f,l

δ
t,r

δ
t,l

time (s)
0 10 20 30

V
T
 (

ft
/s

)

5650

5700

5750

5800

5850

5900

time (s)
0 10 20 30

5650

5700

5750

5800

5850

5900

Figure 3.1: Response to 6 degree doublet command in angle-of-attack. Time histories are shown
of sideslip angle, angle-of-attack, the control surface deflections and total velocity.
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Figure 3.2: Response to 6 degree doublet command in angle-of-attack. Time histories are shown
of the vehicle’s Euler angles and body-fixed angular rates.
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Figure 3.3: Response to 6 degree doublet command in sideslip angle. Time histories are shown of
sideslip angle, angle-of-attack, the control surface deflections and total velocity.

75



0 10 20 30

φ
 (

d
e

g
)

-20

0

20

BFSC Controller

0 10 20 30

-20

0

20

Tracking Controller

0 10 20 30

θ
 (

d
e

g
)

-1

0

1

2

0 10 20 30
-1

0

1

2

0 10 20 30

ψ
 (

d
e

g
)

-10

0

10

0 10 20 30
-10

0

10

0 10 20 30

p
 (

d
e

g
/s

)

-50

0

50

0 10 20 30

-50

0

50
p

p
d

0 10 20 30

q
 (

d
e

g
/s

)

-5

0

5

0 10 20 30
-5

0

5 q

q
d

time (s)
0 10 20 30

r 
(d

e
g

/s
)

-20

0

20

time (s)
0 10 20 30

-20

0

20
r

r
d

Figure 3.4: Response to 6 degree doublet command in sideslip angle. Time histories are shown of
the vehicle’s Euler angles and body-fixed angular rates.
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Figure 3.5: Response to 10 degree doublet command in angle-of-attack. Time histories are shown
of sideslip angle, angle-of-attack, the control surface deflections and total velocity.
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Figure 3.6: Response to 10 degree doublet command in angle-of-attack. Time histories are shown
of the vehicle’s Euler angles and body-fixed angular rates.
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Figure 3.7: Response to 10 degree doublet command in sideslip angle. Time histories are shown
of sideslip angle, angle-of-attack, the control surface deflections and total velocity.
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Figure 3.8: Response to 10 degree doublet command in sideslip angle. Time histories are shown
of the vehicle’s Euler angles and body-fixed angular rates.
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Figure 3.9: Longitudinal Disturbance Rejection Example. Time histories are shown of angle-of-
attack and the control surface deflections.
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3.7 Prevention and Recovery from Inlet Unstart: A Simulation Study

A simulation study was designed in order to demonstrate how enforcing state constraints can

potentially be used for both prevention of and recovery from an inlet unstart. A complete solution

to the inlet unstart problem would, in addition to the vehicle states, focus on the aerodynamic

effects on the inlet itself and would likely include some type of throttle constraints or actuation

in the inlet. The objective is to prevent the vehicle from leaving the region of the state-space that

would trigger an unstart and, in the extreme conditions where the prevention technique fails, to

maintain control effectiveness and quickly drive the vehicle into a safer flight envelope so that the

engine restarts. The BFSC technique described above can be utilized in both situations. To explain

how the BFSC controller can also be used to recover from an inlet unstart, the unstart model used

in the simulation is now introduced.

3.7.1 Modeling Inlet Unstart

A simplified inlet unstart model was included in the GHV simulation to test the performance

of the BFSC technique in the event of an inlet unstart. The model is hysteresis-based and depends

solely on angle-of-attack, sideslip angle and freestream Mach number. Starting in a nominal flight

condition, the inlet will unstart if the vehicle leaves the region of the αβ-space marked by the

blue outer ellipsoid in Figure 3.11. To regain normal engine function the vehicle must re-enter the

region marked by the inner ellipsoid outlined in red. Once restarted, the vehicle is again free to

traverse the inter-ellipsoid region with full thrust and nominal performance.
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Figure 3.11: Inlet unstart model

In this model, the boundary of the outer ellipsoid is defined based on the constraint set given

in [32] and used in Section 3.6. Note that the size parameters of this ellipsoid, and even perhaps

its shape, are highly dependent upon specific vehicle geometries. As a result, the susceptibility of

any given vehicle to inlet unstart may vary significantly.

Due to the comparative lack of aerodynamic research on modeling inlet restart, the size of

the inner ellipsoid is chosen arbitrarily but conservatively. More aerodynamic research on how

freestream Mach number affects these unstart parameters is required for a higher fidelity model.

Since the inlet can reasonably be expected to perform as intended when the vehicle is straight

and level, the inner ellipsoid is chosen to be 70% smaller than the outer ellipsoid. This ellipsoid is

limited to 4.35◦ and−1.71◦ in angle-of-attack and±1.62◦ in sideslip angle. It should also be noted

that the values above correspond to Mach 6 flight. The model is set up such that the size of the
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ellipsoids vary linearly with Mach number, but all simulation cases presented below use an initial

flight condition of Mach 6 and the ellipsoid sizes described above. The shape of these ellipsoids

is an attempt to capture the unstart characteristics when the reference dynamics are not only a

non-zero command in one specific state, but time-varying trajectories in multiple states. That is,

although the limits experimentally determined from the HIFiRE experiment were produced by

an uncoupled, independent study on the effects of angle-of-attack and sideslip angle, this model

allows for the triggering of an inlet unstart as a function of both angles, the values of which may not

exceed their respective, individual experimental limits. Although the specific implementation used

here is concerned directly with two particular states, similar concepts could easily be extended for

higher dimensional models.

The aerodynamic and propulsive consequences of the inlet unstart model should be addressed.

First, when an unstart is triggered, the vehicle experiences a complete and instantaneous loss

of thrust and an increase in the magnitude of aerodynamic drag. Conversely, when the inlet is

restarted, the vehicle experiences a restoration of thrust according to the equivalence ratio (throt-

tle) commanded by the controller. Since the apparent lack of thrust prompts an increase in the

commanded equivalence ratio, this command is typically saturated at maximum throttle by the

time the vehicle is posed for restart. Due again to insufficient information on the geometry-specific

flow characteristics and resulting changes in aerodynamic force and moment coefficients and sta-

bility derivatives, significant post-unstart changes in the plant dynamics are not modeled. These

changes are difficult to predict and, as a result, are not addressed in the simulation studies presented

below. Although a more thorough testing of the state constraint mechanism’s performance in the

event of an inlet unstart would include these effects, quantifiably substantiated by experiment or

computational fluid dynamics, the cases presented below still act as a feasibility study towards

solving the recovery problem.
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3.7.2 Prevention and Recovery Strategy

Given the inlet unstart model described above, the use of state constraints for the prevention

of inlet unstart is very intuitive. If the control law and bounding functions are designed such that

the angle-of-attack and sideslip angle of the GHV can never exit the outer ellipsoid of Figure

3.11, then theoretically, inlet unstart will not occur. This prevention approach is based on two

assumptions. The first assumption is that there is a known bound on any external disturbances that

can affect the system, a common assumption in control theory. This known bound on disturbances

can be reflected in the norm-bounds used by the projection operator. The second assumption is

perfect knowledge of the inlet unstart model, i.e. perfect knowledge of the sizes and shapes of the

ellipsoids of Figure 3.11. This requires extensive wind tunnel testing and modeling of each specific

vehicle and inlet. Other aerodynamic causes of inlet unstart add another layer of uncertainty. In

this study, it is assumed that the ellipsoids given above are correct and known perfectly, and, as

mentioned above, only exiting the outer ellipsoid, i.e. flying at large aerodynamic angles, can cause

inlet unstart.

The use of state constraints for recovery from inlet unstart is developed based on an analysis

of the BFSC control technique presented in this section when the system is initialized at a point

in the state-space that violates a constraint. It is straightforward to show both mathematically and

computationally that in these situations the system is very quickly driven within the constraint

bounds before any attempt to track the reference model is carried out. If, at the moment an inlet

unstart occurs, the bounding functions used in the control law are switched to reflect the inner

ellipsoid of Figure 3.11 instead of the outer ellipsoid, this is analogous to initializing the system

in violation of a constraint. If the vehicle maintains control effectiveness, the behavior described

above, i.e. quickly driving the system inside of the constraint set, will occur and the engine will

restart. This concept is demonstrated in Figure 3.12 representing a fictitious one-dimensional

system with state x. This figure is not based on actual dynamic simulation but can be looked at as a
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diagram demonstrating how this technique is supposed to affect the system. For a one-dimensional

system, the outer and inner ellipsoids of Figure 3.11 are analogous to the scalars, shown by the blue

and red lines in Figure 3.12 and arbitrarily set to 2 and 1, respectively. In Figure 3.12, when the

ellipsoid values are represented by a solid line, it indicates that the bounding function is being

calculated based on that constraint value. Therefore, until t = 1 s, the upper ellipsoid is used to

calculate the bounding function as a preventative measure, and the state tracks its reference model.

At t = 0.95 s, a disturbance is introduced, driving the state above its upper limit which corresponds

to an unstart at t = 1 s. The bounding function then switches to correspond to the lower ellipsoid

value, the state is quickly driven below this new constraint, the inlet restarts, and the state can once

again track its reference model.
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Figure 3.12: One-dimensional example of the inlet unstart recovery technique. The bounding
function corresponds to whichever ellipsoid value is represented by a solid line at the current time.

One cause for concern with this recovery technique is if the stability analysis will still hold

given the instantaneous change in the bounding functions and, therefore, infinite derivative values.
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In general, switching the bounding functions should be done at times when the constraints are not

in danger of being exceeded and the bounding function is inactive, i.e. fb(y2
i ) = 0. This will ensure

that the bounding function and its derivative are continuous and differentiable at all times. In the

presence of an unstart, this approach is implausible, as corrective action must be taken extremely

quickly. However, any real-life digital flight controller (even with an extremely fast sampling time

as would be expected on a hypersonic vehicle) would calculate the bounding function derivative

based on its analytical polynomial or exponential form given in Section 3.3.1 and therefore never

produce an unbounded derivative; no actual differentiation would be done on-line. For this reason,

it is assumed that switching the bounding functions in this way is valid and does not affect the

results of the stability analysis of Section 3.5.

3.7.3 Results: Inlet Unstart Prevention

In this section, results are shown which again display the BFSC controller’s capability to re-

ject disturbances, now with an inlet unstart model included in the simulation. A trajectory that

commands both angle-of-attack and sideslip angle was generated to purposefully drive the vehicle

to a region of the αβ-space that nearly triggers an inlet unstart as seen in Figure 3.13. During

the simulation trial, a 500lbf disturbance force lasting one second was applied in the positive z

(down) direction at t = 10.8s. The vehicle response is shown in Figure 3.14. This disturbance

was selected with the intention of making angle-of-attack more negative and even closer to the

region of state-space in which an unstart will occur. As was demonstrated in the example given in

Section 3.6.2, the BFSC controller is again able to take the proper corrective action to reject the

disturbance and prevent an unstart from occurring. The control surface deflection, total velocity,

and body-axis angular rate trajectories are also given in Figure 3.14.
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Figure 3.13: αβ-Space plot of inlet unstart prevention example.
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Inlet Unstart Prevention Example
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Figure 3.14: Vehicle states during inlet unstart prevention example.

3.7.4 Results: Inlet Unstart Recovery

In this section, results are shown from a simulation example in which the same reference trajec-

tory was commanded, again intentionally driving the vehicle to a region of the state-space where

inlet unstart will very nearly be triggered. An excessively large disturbance force is applied to

the vehicle for which the preventative bounding functions were not tuned in order to purposefully

trigger an unstart and to test out the recovery technique. A 2500lbf disturbance force lasting one

second was applied in the positive z (down) direction at t = 10.8s, triggering an unstart, as seen in
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Figure 3.15. The controller was augmented with a second set of bounding functions which were

set to activate in the event of an unstart and which corresponds to the inner red ellipse in the inlet

unstart model. This second set of recovery bounding functions were constructed using the method

presented in Section 3.3.1 with parameters,

[
α∗max α∗min δ∗α β∗max β∗min δ∗β

]
=

[
3.4 −1 0.5 1 −1 0.5

]
deg (3.58)[

ρ∗,minα ρ∗,maxα ρ∗,minβ ρ∗,maxβ

]
=

[
2 2 2.35 2.35

]
(3.59)

where the notation (·)∗ is used to differentiate the parameters of the recovery bounding functions

from those of the nominal preventative bounding functions.

Following the activation of the new bounding functions, the constrained states are rapidly

driven to the inner ellipse of the inlet unstart model as seen in Figure 3.16. The controller is

able to drive the vehicle back into a restarted state in 0.83s, leading to a restoration of thrust and

the bounding function parameters to their nominal values. In addition, following the engine restart,

both angle-of-attack and sideslip angle successfully track the desired trajectory until the end of the

simulation. As might be expected, large fluctuations are seen in the control surface deflections

during the unstart event, however saturation limits are not reached. Given the successful recovery

demonstration, these results substantiate the need for further testing on higher fidelity inlet unstart

models.
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Figure 3.15: αβ-Space plot of inlet unstart recovery example.
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Figure 3.16: Vehicle states during inlet unstart recovery example.
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4. OBSERVER-BASED NONLINEAR DYNAMIC INVERSION ADAPTIVE CONTROL:

LONGITUDINAL HYPERSONIC VEHICLE MODEL*

4.1 Introduction

This section introduces an observer-based feedback controller that is capable of controlling a

nonlinear longitudinal model of a hypersonic air vehicle without measuring angle-of-attack. The

control objective is to command and track a desired pitch attitude angle trajectory. Due to the

high speed and high operating temperature of these vehicles, external angle-of-attack vanes cannot

be used and an estimated value must be used in the control law. This practical concern is often

neglected in the literature and full state feedback is assumed.

As was shown in Sections 1-3, NDI controllers are effective because they can cancel out unde-

sirable nonlinear dynamics and replace them, driving the plant to track a stable reference model.

Due to the inability to directly measure angle-of-attack however, in this section it is not assumed

that the nonlinear control effectiveness matrix can be canceled perfectly by the control law a priori.

This section also presents the development of a nonlinear observer, used to produce an esti-

mated angle-of-attack signal. In practice, estimation of the vehicle’s aerodynamic angles would

likely be done using a nonlinear Kalman filtering technique. Unfortunately, proving stability of the

closed-loop system with this type of estimation can be exceedingly difficult. Additionally, angle-

of-attack could be directly calculated using know geometric relationships and sensor readings as

in [45]. This approach however is heavily dependent on accurate knowledge of the vehicle’s control

and stability derivatives and so cannot be used in cases with large parametric uncertainty or unfil-

tered measurement signals. The nonlinear observer developed in this section allows for a rigorous

*Part of this Section is reprinted with permission from "ObserverBased Feedback Adaptive Control for Nonlinear
Hypersonic Vehicles" by Douglas Famularo, John Valasek, Jonathan A. Muse and Michael A. Bolender in AIAA
Guidance, Navigation and Control Conference (Grapevine, Texas), January 2017.
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proof, ensuring that all closed-loop signals are uniformly ultimately bounded through Lyapunov

analysis. The estimated angle-of-attack produced by the observer is fed into the inversion based

control law and the adaptive laws. This approach was first developed in [46].

Observer-based or output feedback adaptive controllers have been developed for a handful

aerospace applications. In [47] an adaptive output feedback controller is developed to control a

linear model of a hypersonic vehicle. A procedure was developed for designing gain matrices such

that the transfer function of the system is guaranteed to be strictly positive real. A sliding mode

adaptive controller and sliding mode observer are developed in [8] for the purpose of controlling

the response of a longitudinal model of a hypersonic vehicle, with parametric uncertainty and with-

out full state feedback, to velocity and altitude step changes. In [48] an adaptive output feedback

control strategy for linear systems with nonlinear uncertainties is derived. It takes advantage of

the asymptotic properties of the algebraic Riccati Equation and proves ultimate boundedness of

the system states, observer states, and a designer developed reference model. A linear dynamic

inversion adaptive controller is developed in [49] for the application of a linear model of an un-

manned air vehicle that is robust with respect to nonlinear uncertainties. Additionally, in [50], a

neural network based adaptive control law using output feedback was developed in order to control

a class of nonlinear single-input-single-output (SISO) systems.

A variety of nonlinear observers have been studied in the literature as well. Often a technique

that can successfully estimate the states for one nonlinear system without complications arising

will not work nearly as well for a different system. In [51] the concept a of sliding mode observer

was developed for nonlinear systems and was shown to perform well in the presence of modeling

errors and measurement noise. An output feedback controller utilizing a high gain observer was de-

veloped in [52] in order to control multi-input-multi-output (MIMO) nonlinear uncertain systems.

A feedforward neural network compensator was used to account for system uncertainty. In [53] a

high gain observer with the gains chosen through an adaptive law to control uniformly observable,

nonlinear, SISO systems was developed. The ability to lessen the impact of noise sensitivity in
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high gain observers for nonlinear systems was examined through the use of adaptive gains and an

extended Kalman Filter in [54].

While they work very well in simulation, nonlinear observers often require high gains which

can lead to the practical drawbacks of either high noise amplification or the peaking phenomenon

[55], causing a high amplitude peak in the control signal. The choice to use an observer of this type

was made with the knowledge that due to the small magnitude of the system nonlinearities, and

assuming there are high quality sensors available to be used on hypersonic vehicles, gains would

not need to be enormously high and noise amplification would be avoidable. Despite this fact,

noisy state measurements were included in the GHV simulation studies and were shown to have

minimal effect on the capabilities of the observer to accurately estimate the aerodynamic angles or

of the vehicle to track its command signal.

4.2 Longitudinal Generic Hypersonic Vehicle Model

In Section 1, the full six degree-of-freedom model of the Generic Hypersonic vehicle was intro-

duced. For clarity, the simplified longitudinal model that is the focus of this section is now given

separately. This model is derived from the model in Section 1 and simplified by assuming,

β = φ = ψ = p = r = 0

The state vector for the longitudinal axis of the GHV, x ∈ R4, and the control vector, u ∈ R4,

are defined as,

x =

[
VT θ α q

]T
(4.1)

u =

[
δf,r δf,l δt,r δt,l

]T
(4.2)
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The dynamics of the longitudinal model are given by the following first-order differential equa-

tions:

V̇T =
FT
m

cos(α)− D

m
− g sin(γ) (4.3)

θ̇ = q (4.4)

α̇ =
1

mVT
(−L+mg cos(γ)− FTx sin(α) + FTz cos(α)) + q (4.5)

q̇ =
1

Iy
(MT + q̄Sc̄Cm) (4.6)

where the following decompositions can be formed,

L = CLq̄S (4.7)

D = CDq̄S (4.8)

Cm = C ′m(α) +
c̄

2VT
Cmqq + C̄m,δ +Hu (4.9)

The total pitch moment’s dependence on angle-of-attack is described by the polynomial C ′m(α).

The constant C̄m,δ represents the effect of the control surface deflections on the total pitch moment

at the trim condition and is given by,

C̄m,δ =
∂Cm
∂δf,r

(δf,r = δ̄f,r) +
∂Cm
∂δf,l

(δf,l = δ̄f,l) +
∂Cm
∂δt,r

(δt,r = δ̄t,r) +
∂Cm
∂δt,l

(δt,l = δ̄t,l) (4.10)

and the control effectiveness term H ∈ R1×4 is given by

H =

[
∂Cm
∂δf,r

∂Cm
∂δf,l

∂Cm
∂δt,r

∂Cm
∂δt,l

]
(4.11)
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For the sake of brevity, these longitudinal dynamics are rewritten in vector form as

ẋ = f(x) + g(x)u (4.12)

V̇T

θ̇

α̇

q̇


=



fV T (x)

q

fα(x) + q

fq(x)


+



0

0

0

gq(x)


u (4.13)

where,

gq(x) =
1

Iy
(q̄Sc̄H) (4.14)

Consider the scenario, common to hypersonic flight control, where only VT , q, and θ are available

for measurement while α is not. Before proceeding to the control law development, the following

assumptions are made about the vehicle operating conditions and the structure of the parametric

uncertainty in the system:

Assumption 4.2.1. The vehicle is operating within a known thrust profile such that

VT ∈ [VT,min, VT,max] (4.15)

‖FT‖ ≤ FT,max (4.16)

‖MT‖ ≤MT,max (4.17)

for known VT,min, VT,max, FT,max,MT,max and where the lift, drag, and pitching moment coefficient
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term C ′m can be approximated by

CL = CL0 + CL1α (4.18)

CD = CD0 + CD1α + CD2α
2 (4.19)

C ′m = Cm0 + Cm1α + Cm2α
2 + Cm3α

3 (4.20)

where CLi,CDj , and Cmk are constant ∀ i, j, k and CL1 > 0.

Assumption 4.2.2. There is bounded uncertainty in the system such that for the following param-

eters

|CLi − ĈLi| ≤ ∆C̄Li for i = 0, 1 (4.21)

|CDj − ĈDj| ≤ ∆C̄Dj for j = 0, 1, 2 (4.22)

|Cmk − Ĉmk| ≤ ∆C̄mk for k = 0, 1, 2, 3 (4.23)

|C̄m,δ − ˆ̄Cm,δ| ≤ ∆C̄m,δ (4.24)

|Cmq − Ĉmq| ≤ ∆C̄mq (4.25)

|Iy − Îy| ≤ ∆Īy (4.26)

where the (̂·) notation represents the estimated value of each respective vehicle parameter and

where ∆C̄Li, ∆C̄Dj , ∆C̄mk, ∆C̄mq and ∆Īy are known constants ∀ i, j, k. All other vehicle pa-

rameters contained in f(x) of Equation (4.12) are assumed to be known or measured perfectly.

Assumption 4.2.3. The control effectiveness term gq(x) is known well enough such that an estimate

of this term based on an estimated angle-of-attack and containing parameter uncertainty, ĝq(xc),

can be formed which obeys the following conditions
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0 < ∆ḡqL12 ≤

 1 1− gq(x)ĝ−1
q (xc)

1− (gq(x)ĝ−1
q (xc))

T gq(x)ĝ−1
q (xc)

 ≤ ∆ḡqU12 (4.27)

0 < ∆ḡqL ≤ gq(x)ĝ−1
q (xc) ≤ ∆ḡqU (4.28)

where, in order to avoid confusion with the moment of inertia matrix, 1M is the M ×M identity

matrix and ĝ−1
q (xc) is the pseudo-inverse of ĝq(xc). The vector xc is given by

xc =

[
VT θ α̂ q

]T
(4.29)

and represents a combination of the measured states and α̂, the estimation of α. The parameters

0 ≤ ∆ḡqL and 0 ≤ ∆ḡqU are known constants. For simplicity, define

∆ḡq = max(|1−∆ḡqL|, |1−∆ḡqU |) (4.30)

Assumption 4.2.4. The initial angle-of-attack estimation error is bounded such that

|α(t = 0)− α̂(t = 0)| ≤ α̃0,max (4.31)

where α̃0,max > 0 is a known constant.

4.3 Control Law Development

4.3.1 Selecting the Command Signal

Because the control vector u directly influences the velocity level dynamics, achieving the con-

trol objective of tracking a pitch attitude angle trajectory must be done indirectly by commanding
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pitch rate. In other words, the desired pitch rate trajectory, qd, should be chosen such that if it is

successfully tracked, the vehicle will also successfully track the desired pitch attitude angle trajec-

tory, θ∗d, which is assumed to be continuous and bounded. It is desired that the vehicle’s pitch rate

dynamics track a stable linear reference model with dynamics described by

q̇m = aqqm + bqqd (4.32)

where aq and bq are designer chosen scalars and aq < 0. In order to prevent the vehicle from

exceeding a predefined pitch rate limit q̄d > 0, we differentiate between the designer chosen ideal

desired pitch angle trajectory θ∗d and the actual desired pitch angle trajectory θd. In a nominal flight

condition where the vehicle pitch rate has a magnitude smaller than q̄d, the two trajectories will be

equivalent, i.e. θd = θ∗d. If the pitch rate limit is in danger of being exceeded, θd will be modified

accordingly. This allows for the definition of two tracking error terms

eq , qm − q (4.33)

eΘ , θd − θ (4.34)

Since the goal is to design qd such that θ follows a desired command, the pitch attitude angle error

dynamics should be analyzed. Desired pitch rate should be chosen such that these dynamics are

stabilizing and drive eΘ to zero if eq = 0. These dynamics are given by

ėθ = θ̇d − θ̇ = θ̇d − q (4.35)

Adding and subtracting the pitch rate reference signal leaves,

ėθ = θ̇d + (qm − q)− qm (4.36)

ėθ = θ̇d + eq − qm (4.37)
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Therefore, if the reference model chosen for q is stable and can perfectly track a reference com-

mand signal, qd, then choosing a desired pitch angle and pitch rate of

θ̇d = θ̇∗d (4.38)

qd = θ̇∗d +Kθeθ (4.39)

where Kθ is a positive scalar gain leaves,

ėθ = −Kθeθ + eq (4.40)

which implies that eθ → 0 as long as eq → 0. In order to handle the predetermined pitch rate limit

q̄d, the desired pitch angle and pitch rate are modified slightly to include saturation limits such that

θ̇d =


−Kθeθ if θ̇∗d +Kθeθ < −q̄d

θ̇∗d if − q̄d ≤ θ̇∗d +Kθeθ ≤ q̄d

−Kθeθ if θ̇∗d +Kθeθ > q̄d

(4.41)

qd =


−q̄d if θ̇∗d +Kθeθ < −q̄d

θ̇∗d +Kθeθ if − q̄d ≤ θ̇∗d +Kθeθ ≤ q̄d

q̄d if θ̇∗d +Kθeθ > q̄d

(4.42)

These saturation limits restrict the magnitude of the desired pitch rate and allow one to claim a

priori that qm is both stable and bounded. In practice, q̄d can be set such that the saturation limits

on qd are never encountered in nominal flight. However, the pitch angle error dynamics still must
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be analyzed in the presence of these saturation limits. This leaves,

ėθ =


−Kθeθ + eq + q̄d if θ̇∗d +Kθeθ < −q̄d

−Kθeθ + eq if − q̄d ≤ θ̇∗d +Kθeθ ≤ q̄d

−Kθeθ + eq − q̄d if θ̇∗d +Kθeθ > q̄d.

(4.43)

With the appropriate desired pitch rate chosen as in (4.42), the control law can be developed with

the new objective of stabilizing the pitch rate tracking error. In doing so, bounded tracking of both

pitch rate and pitch angle will be achieved and the control objective will be met.

4.3.2 Control and Adaptive Laws

In order to achieve the modified control objective of tracking a desired pitch rate command, the

control law is derived by expanding the pitch rate dynamics

q̇ = fq(x) + gq(x)u (4.44)

q̇ = Cq0 +
q̄Sc̄

Iy

(
Cm1α +

c̄

2VT
Cmqq

)
+
q̄Sc̄

Iy

3∑
k=2

Cmkα
k + gq(x)u (4.45)

where

Cq0 =
1

Iy

(
MT + q̄Sc̄Cm0 + q̄Sc̄C̄m,δ

)
(4.46)

If angle-of-attack was measured perfectly and if the model contained no parametric uncertainty,a

nonlinear dynamic inversion control law of the form,

uideal = g−1
q (x) [−fq(x) + q̇m +Kqeq + eθ] (4.47)

where Kq is a constant positive scalar gain, would drive both eq and eθ to zero and achieve the

control objective. Because perfect information is not available, the actual control law is based on
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(4.47) given the system unknowns

u = ĝ−1
q (xc)

[
−f̂q(xc) + q̇m + (Kq +Kq1(xc))eq + eθ + ν1 + ν2

]
(4.48)

where f̂q(xc) is an estimate of the pitch rate open-loop dynamics given by

f̂q(xc) = Ĉq0 +
q̄Sc̄

Îy

(
Ĉm1α̂ +

c̄

2VT
Ĉmqq

)
+
q̄Sc̄

Îy

3∑
k=2

Ĉmkα̂
k (4.49)

The adaptive signals, ν1 and ν2 are time-varying signals, updated using an adaptive law, that ac-

count for parameter uncertainty andKq1(xc) is a time-varying positive gain term, specified in more

detail below.

In order to analyze system stability, the effect of the control law on the pitch rate tracking error

dynamics must be examined. A full stability analysis will be completed in Section 4.5 but some

initial steps are done here in order to introduce the notation required for defining the adaptive law:

ėq = q̇m − q̇ (4.50)

ėq = q̇m − fq(x)− gq(x)u (4.51)

Substituting the control law (4.48) into (4.51) leaves,

ėq = q̇m − fq(x)− gq(x)ĝ−1
q (xc)

[
−f̂q(xc) + q̇m + (Kq +Kq1(xc))eq + eθ + ν1 + ν2

]
(4.52)

Equation (4.52) can be rearranged as

ėq =− fq(x) + f̂q(xc)− eθ − ν1 − ν2 − gq(x)ĝ−1
q (xc)(Kq +Kq1(xc))eq

− (gq(x)ĝ−1
q (xc)− 1)

[
−f̂q(xc) + q̇m + eθ + ν1 + ν2

] (4.53)

It will be useful to expand and examine the difference f̂q(xc)− fq(x). Given the definition of Cq0
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in (4.46) and its estimate Ĉq0, this difference can be represented as

f̂q(xc)−fq(x) =
(
Ĉq0 − Cq0

)
+

(
Ĉmq

Îy
− Cmq

Iy

)
q̄Sc̄2

2VT
q+ q̄Sc̄

(
3∑

k=1

Ĉmk

Îy
α̂k − Cmk

Iy
αk

)
(4.54)

The following summation,
q̄Sc̄

Iy

3∑
k=1

Cmkα̂
k

is added to and subtracted from the right hand side of Equation (4.54). Note that this summation

is a combination of true, unknown parameters and the estimated aerodynamic angles. Its inclusion

is useful for analysis however it can not be calculated on-line. This allows for the difference

f̂q(xc)− fq(x) to be simplified further as

f̂q(xc)− fq(x) = W T b(xc) +
q̄Sc̄

Iy

3∑
k=1

Cmk
(
α̂k − αk

)
(4.55)

where W is a constant vector made up of unknown weights given by

W =

[
W1 W2 W3 W41 W42 W43

]T
(4.56)

W1 =
1

Îy
− 1

Iy
W2 =

Ĉm0 + ˆ̄Cm,δ

Îy
− Cmo + C̄m,δ

Iy
W3 =

Ĉmq

Îy
− Cmq

Iy
W4i =

Ĉmi

Îy
− Cmi

Iy

and b(xc) is a vector of known basis functions given by

b(xc) =

[
MT q̄Sc̄ q̄Sc̄2

2VT
q q̄Sc̄α̂ q̄Sc̄α̂2 q̄Sc̄α̂3

]T
(4.57)
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With this simplified form, the tracking error dynamics, Equation (4.53), can be rewritten as

ėq =W T b(xc) +
q̄Sc̄

Iy

3∑
k=1

Cmk
(
α̂k − αk

)
− eθ − ν1 − ν2 − gq(x)ĝ−1

q (xc)(Kq +Kq1(xc))eq

− (gq(x)ĝ−1
q (xc)− 1)

[
−f̂q(xc) + q̇m + eθ + ν1 + ν2

]
(4.58)

The adaptive signals ν1 and ν2 can be defined as

ν1 + ν2 = Ŵ T b(xc) (4.59)

ν1 = Ŵ T
1 b1(xc) (4.60)

ν2 = Ŵ T
2 b2(xc) (4.61)

b1(xc) =

[
MT q̄Sc̄ q̄Sc̄2

2VT
q

]T
(4.62)

b2(xc) =

[
q̄Sc̄α̂ q̄Sc̄α̂2 q̄Sc̄α̂3

]T
(4.63)

where Ŵ is an estimate of the unknown weights W and is updated through an adaptive law. The

vector Ŵ1 is made up of the first three entries of Ŵ and Ŵ2 is made up of the final three entries

of Ŵ . They are separated for the purpose of analysis and can be implemented as a single signal,

ν = ν1 + ν2. The estimated weights are updated through the adaptive law

˙̂
W = ΓWProjM

(
Ŵ , b(xc) (eq + 2(q̂ − q))

)
(4.64)

where q̂ is the observer state for pitch rate which will be defined in more detail below and ΓW is a

positive definite gain matrix.

With the control and adaptive laws defined, a final expression for the pitch rate tracking error

dynamics can be established. Substituting (4.59) into (4.58) and defining W̃ = Ŵ −W leaves
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ėq =− W̃ T b(xc)−
q̄Sc̄

Îy
Cm1(α− α̂) + ηq − eθ − gq(x)ĝ−1

q (xc)(Kq +Kq1(xc))eq

− (gq(x)ĝ−1
q (xc)− 1)

[
−Ĉq0 −

q̄Sc̄

2ÎyVT
Ĉmqq + q̇m + eθ + ν1

] (4.65)

where

ηq =
q̄Sc̄

Iy

3∑
k=2

Cmk(α̂
k − αk)− (gq(x)ĝ−1

q (xc)− 1)

(
− q̄Sc̄
Îy

3∑
k=1

Ĉmkα̂
k + ν2

)
(4.66)

It will be shown that implementing the adaptive law above, Equation (4.64), allows for the closed-

loop system to compensate for uncertainty due to modeling errors in the parameters contained in

W . Uncertainty due to the inability to measure angle-of-attack will be handled through the use of

a nonlinear observer.

4.4 Nonlinear Observer Design

The observer design process requires the definition of two vectors, the output vector, y, and the

observer state vector x̂:

y , Cx =

[
VT θ q

]T
(4.67)

x̂ ,

[
V̂T θ̂ α̂ q̂

]T
(4.68)

where the matrix C is given by

C =


1 0 0 0

0 1 0 0

0 0 0 1

 (4.69)
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Note that the vector xc is used in the control law, Equation (4.48), and not the observer state vector

x̂. Therefore, the sole purpose of the observer states V̂T , q̂, and θ̂ is to generate an accurate estimate

α̂ which can be fed to the control and adaptive laws. These other observer states will not influence

the system otherwise. The estimation error vector is defined as

x̃ , x̂− x =

[
ṼT θ̃ α̃ q̃

]T
(4.70)

The design process will proceed as follows: the dynamics will be developed for each observer state

( ˙̂
VT , ˙̂

θ, etc.) by approximating the unknown dynamics and then adding an estimation correction

term. An expression for the estimation error dynamics of each state ( ˙̃VT , ˙̃θ, etc.) will then be

derived. Finally, the entire estimation error dynamics, ˙̃x, will be constructed as a vector differential

equation.

4.4.1 Total Velocity Observer Design

Recall that the dynamics for total velocity

V̇T =
FT
m

cos(α)− D

m
− g sin(γ)

The observer state V̂T is therefore defined by

˙̂
VT =

FT
m

cos(α̂)− D̂(α̂)

m
− g sin(γ̂) +HVT (y − Cx̂) +HVT1

ṼT (4.71)

where HVT is a row vector of constant observer-gains, HVT1
(xc) is a scalar time-varying observer-

gain, and because only the longitudinal dynamics are being addressed it is assumed that

γ̂ = θ̂ − α̂

107



The estimation error for total velocity, ṼT , has dynamics described by

˙̃VT =
˙̂
VT − V̇T = − q̄S

m
ĈD1α̃ + ηV T + δV +HVT (y − Cx̂) +HVT1

ṼT (4.72)

where,

δV =

(
FT
m

cos(α̂)− FT
m

cos(α)

)
+
q̄S

m

(
CD0 − ĈD0

)
− g (sin(γ̂)− sin(γ)) (4.73)

ηV T =
q̄S

m

(
CD1 − ĈD1

)
α +

q̄S

m
CD2α

2 − q̄S

m
ĈD2α̂

2 (4.74)

Note that given Assumption 4.2.1, made above, the magnitude of the term δV can be bounded by

|δV | ≤ K00 (4.75)

where K00 > 0 is a known constant.

4.4.2 Pitch Attitude Angle Observer State

For the pitch attitude angle θ, the observer state dynamics and estimation error dynamics can be

derived using the same process as above,

θ̇ = q (4.76)

˙̂
θ = q̂ +Hθ(y − Cx̂) (4.77)

˙̃θ =
˙̂
θ − θ̇ = q̃ +Hθ(y − Cx̂) (4.78)

where Hθ is a row vector containing constant observer-gains.
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4.4.3 Angle-of-Attack Observer Design

Recall the angle-of-attack dynamics

α̇ =
1

mVT
(−L+mg cos(γ)− FTx sin(α) + FTz cos(α)) + q

which can be rewritten as

α̇ = −CL1q̄S

mVT
α + f ′α(x) + q (4.79)

where

f ′α(x) =
1

mVT
(−CL0q̄S +mg cos(γ)− FTx sin(α) + FTz cos(α)) (4.80)

The dynamics for the angle-of-attack observer state are therefore defined as ,

˙̂α = −ĈL1q̄S

mVT
α̂ + f̂ ′α(xc) + q̂ +Hα(y − Cx̂) (4.81)

where Hα is a row vector containing constant observer-gains. The estimation error for angle-of-

attack, α̃, has dynamics described by

˙̃α = ˙̂α− α̇ = −ĈL1q̄S

mVT
α̃ + q̃ + δα +Hα(y − Cx̂) (4.82)

where

δα =
(
CL1 − ĈL1

) q̄S

mVT
α + f̂ ′α(xc)− f ′α(x) (4.83)

Note that given Assumptions 4.2.1 and 4.2.2, the magnitude of δα can be bounded by

|δα| ≤
q̄S

mVT
∆C̄L1|α|+K10 (4.84)

where K10 > 0 is a known constant.
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4.4.4 Pitch Rate Observer Design

By taking a derivative with a respect to time of the expression q = qm − eq and substituting in the

error dynamics (4.65), the dynamics for pitch rate can be expressed as

q̇ =q̇m + W̃ T b(xc) +
q̄Sc̄

Îy
Cm1(α− α̂)− ηq + eθ + gq(x)ĝ−1

q (xc)(Kq +Kq1(xc))eq

+ (gq(x)ĝ−1
q (xc)− 1)

[
−Ĉq0 −

q̄Sc̄

2ÎyVT
Ĉmqq + q̇m + eθ + ν1

] (4.85)

For the observer state, the dynamics are approximated by assuming

α̃ = 0 gq(x)ĝ−1
q (xc) = 1 W̃ = 0

and again an estimation correction term is added:

˙̂q = q̇m + (Kq +Kq1(xc))eq + eθ +Hq(y − Cx̂) +Hq1(xc)q̃ (4.86)

where Hq is a row vector of constant observer-gains and Hq1(xc) is a scalar time-varying observer-

gain. The estimation error for pitch rate, q̃, has dynamics described by

˙̃q = ˙̂q−q̇ = −W̃ T b(xc)+
q̄Sc̄

Îy
Cm1α̃+ηq+(1−gq(x)ĝ−1

q (xc))Kq1(xc)eq+δq+Hq(y−Cx̂)+Hq1(xc)q̃

(4.87)

where

δq = (1− gq(x)ĝ−1
q (xc))

(
Kqeq − Ĉq0 −

q̄Sc̄2

2ÎyVT
Ĉmqq + q̇m + eθ + ν1

)
(4.88)

Note that given Assumptions 4.2.2 and 4.2.3, the magnitude of δq can be bounded by

|δq| ≤ K20 +K21|eq|+K22|eΘ| (4.89)
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where K20, K21, and K22 are known constants.

4.4.5 Final Estimation Error Dynamics

Let each of the constant observer-gain vectors, Hi, be written as Hi =

[
h1i h2i h3i

]
for i =

VT , α, q, θ such that

Hi(y − Cx) = h1iṼT + h2iθ̃ + h3iq̃

Combining Equations (4.72), (4.82), (4.87) and (4.78) allows for the full observer error dynamics

to be expressed in vector matrix form,



˙̃VT

˙̃θ

˙̃α

˙̃q


=



−h1VT −h2VT − q̄S
m
ĈD1 −h3VT

−h1θ −h2θ 0 1− h3θ

−h1α −h2α − q̄S
mVT

ĈL1 1− h3α

−h1q −h2q
q̄Sc̄

Îy
Cm1 −h3q





ṼT

θ̃

α̃

q̃


+



0

0

0

−W̃ T b(xc) + (1− gq(x)ĝ−1
q (xc))Kq1(xc)eq



+



δV

0

δα

δq


+



ηV T +HV T1(xc)ṼT

0

0

ηq +Hq1(xc)q̃


(4.90)

or written more compactly as,

˙̃x = HOx̃+

[
−W̃ Tβ + (1− gq(x)ĝ−1

q (xc))Kq1(xc)eq

]
4

+ δ + η (4.91)

By checking the principal minors of the matrix HO, it can be shown that given Assumption 4.2.1

which assumed ĈL1 > 0, the observer-gains h1V T , h2θ and h3q can always be chosen such that

HO +HT
O < −Q (4.92)

111



for a constant matrix Q = QT > 0. In addition, note that the norm of the vector δ can be bounded

by

‖δ‖ ≤ ‖K0‖+ |K21eq|+ |K22eθ|+ |K3α| (4.93)

where

K0 =

[
K00 K10 K20

]T
(4.94)

K3 =
q̄S

mVT
∆C̄L1 (4.95)

4.5 Stability Analysis

In this section a Lyapunov stability analysis of the closed-loop system, based on the control algo-

rithm and nonlinear observer discussed above, will be presented. The following lemma is intro-

duced, which establishes a conservative bound on the magnitude of the true angle-of-attack as a

function of time.

Lemma 4.5.1. Consider the angle-of-attack dynamics given in Equation (4.5). Using only known

parameters and measured signals, the time-varying signal a(t) can be calculated such that

|α(t)| ≤ a(t) ∀t > 0 (4.96)

where a(t) evolves according to the differential equation

ȧ = −|ĈL1 −∆C̄L1|q̄(VT,min)S

mVT,min
a+

(
f̄ ′α(x) + |q|

)
(4.97)

a(0) = |α̂(0)|+ α̃0,max (4.98)
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and where,

f̄ ′α(x) =
1

mVT

(
|ĈL0 + ∆C̄L0sign(ĈL0)|q̄S +mg + ‖FT‖

)
(4.99)

Proof. Recall the expression derived for the angle-of-attack dynamics in (4.79),

α̇ = −CL1q̄S

mVT
α + f ′α(x) + q

Given that this expression is a first-order linear differential equation, an expression for α(t) can be

solved for explicitly as

α(t) = e
∫ t
0 −

CL1q̄S

mVT
dτ
α(0) +

∫ t

0

e
∫ t
τ −

CL1q̄S

mVT
dτ ′

(f ′α(x(τ)) + q(τ)) dτ (4.100)

Equation (4.100) implies that the following inequalities hold,

−e−
|ĈL1−∆C̄L1|q̄(VT,min)S

mVT,min
t
a(0)−

∫ t

0

e
−
|ĈL1−∆C̄L1|q̄(VT,min)S

mVT,min
(t−τ) (

f̄ ′α(x) + |q|
)
dτ ≤ α(t) (4.101)

α(t) ≤ e
−
|ĈL1−∆C̄L1|q̄(VT,min)S

mVT,min
t
a(0) +

∫ t

0

e
−
|ĈL1−∆C̄L1|q̄(VT,min)S

mVT,min
(t−τ) (

f̄ ′α(x) + |q|
)
dτ (4.102)

The inequalities (4.101) and (4.102) are equivalent to

−a(t) ≤ α(t) ≤ a(t) (4.103)

which is equivalent to (4.96).

Remark 4.5.1. Recall Assumption 4.2.1 where it was stated that CL1 > 0. This implies that the

signal a(t) is bounded if and only if (f̄ ′α(x) + |q|) is bounded. Since each term in the definition of

f̄ ′α(x) is bounded, this implies that a(t) is bounded if and only if the pitch rate q is bounded.

Remark 4.5.2. If it can be shown that the signal a(t) is uniformly ultimately bounded (UUB), as

will be claimed in Theorem 6, then any signal designed using this set to stabilize the system will
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be UUB as well.

Theorem 6. Consider the nonlinear dynamical GHV system described by (4.13), the desired pitch

rate command calculated by (4.42), the control law defined by (4.48), the adaptive law defined by

(4.64) and the nonlinear observer designed in Section 4.4. Suppose that the desired pitch attitude

angle input signal, θ∗d, is bounded and continuous. If the following inequality,

∆C̄L1 <
1

2

√
mVT
q̄S

CL1λmin(Q) (4.104)

is satisfied for all t > 0, then the tracking errors, eq and eθ, the estimation error x̃, the weight

estimation error W̃ and the system states, x, are uniformly ultimately bounded.

Proof. In order to analyze the stability of the system and to show that all of the closed-loop signals

are UUB the following candidate Lyapunov function is chosen,

V = x̃T x̃+
1

2

(
e2
q + e2

θ + α2 + W̃ TΓ−1
W W̃

)
(4.105)

The derivative of (4.105) is taken with respect to time along system trajectories, resulting in

V̇ = x̃T ˙̃x+ ˙̃x
T
x̃+ eqėq + eθėθ + αα̇ + W̃ TΓ−1

W

˙̂
W (4.106)

Substituting the pitch rate tracking error dynamics (4.65) and the estimation error dynamics (4.91)

into (4.106) and rearranging results in

V̇ =x̃THOx̃+ x̃THT
O x̃+ 2x̃T δ + 2q̃(1− gq(x)ĝ−1

q (xc))Kq1(xc)eq + 2x̃Tη + eθėθ

+ αα̇ + eq

(
− q̄Sc̄

Îy
Cm1(α− α̂) + ηq − eθ − gq(x)ĝ−1

q (xc)(Kq +Kq1(xc))eq

− (gq(x)ĝ−1
q (xc)− 1)

[
−Ĉq0 −

q̄Sc̄

2ÎyVT
Ĉmqq + q̇m + eθ + ν1

])
+ W̃ T

(
Γ−1
W

˙̂
W − b(xc)(eq + 2q̃)

)
(4.107)
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Application of the adaptive law given in (4.64) and the Lyapunov condition given in (4.92) leaves

V̇ ≤− x̃TQx̃+ 2x̃T δ + 2q̃(1− gq(x)ĝ−1
q (xc))Kq1(xc)eq + 2x̃Tη + eθėθ

+ αα̇ + eq

(
− q̄Sc̄

Îy
Cm1(α− α̂) + ηq − eθ − gq(x)ĝ−1

q (xc)(Kq +Kq1(xc))eq

− (gq(x)ĝ−1
q (xc)− 1)

[
−Ĉq0 −

q̄Sc̄

2ÎyVT
Ĉmqq + q̇m + eθ + ν1

]) (4.108)

In order to define the time-varying feedback and observer-gains (Kq1(xc), Hq1(xc), and HV T1(xc))

the following terms from (4.108) are examined,

2x̃Tη + 2q̃(1− gq(x)ĝ−1
q (xc))Kq1(xc)eq − gq(x)ĝ−1

q (xc)Kq1(xc)e
2
q + eqηq

= 2ṼT

(
ηV T +HV T1(xc)ṼT

)
+ 2q̃ (ηq +Hq1(xc)q̃) + 2q̃(1− gq(x)ĝ−1

q (xc))Kq1(xc)eq

− gq(x)ĝ−1
q (xc)Kq1(xc)e

2
q + eqηq

(4.109)

where ηq and ηV T are defined in Equations (4.66) and (4.74) respectively. Using these definitions,

the following bounds can be set,

ηV T (t) ≤ η̄V T (t) ,
q̄S

m

(
∆C̄D1a(t) + (ĈD2 + ∆C̄D2)a2(t)− ĈD2α̂

2
)

(4.110)

ηq(t) ≤ η̄q(t) ,
q̄Sc̄

Îy −∆Īy

3∑
k=2

(
|Ĉmk + ∆C̄mksign(Ĉmk)|)(|α̂k + ak(t)|)

)
+∆q̄q

q̄Sc̄

Îy

3∑
k=1

|Ĉmkα̂k+ν2|

(4.111)

where a(t) is the signal defined in Lemma 4.5.1. Note that all of the terms that make up η̄V T (t)
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and η̄q(t) are known. Equation (4.109) can be rearranged as

2x̃Tη + 2q̃(1− gq(x)ĝ−1
q (xc))Kq1(xc)eq − gq(x)ĝ−1

q (xc)Kq1(xc)e
2
q + eqηq

= 2ṼT

(
ηV T +HV T1(xc)ṼT

)
+

[
2ηq ηq

] q̃
eq


+

[
q̃ eq

] 2Hq1(xc) (1− gq(x)ĝ−1
q (xc))Kq1(xc)

((1− gq(x)ĝ−1
q (xc))Kq1(xc)) −gq(x)ĝ−1

q (xc))Kq1(xc)


 q̃
eq


(4.112)

Therefore, if the time-varying gains are defined as

HV T1(xc) = −γη̄2
V T (t) (4.113)

Hq1(xc) = −5

2
γη̄2

q (t) (4.114)

Kq1(xc) = 5γη̄2
q (t) (4.115)

where γ > 0 is a designer chosen constant scalar, then, according to Assumption 4.2.3, the follow-

ing bound holds

2x̃Tη + 2q̃(1− gq(x)ĝ−1
q (xc))Kq1(xc)eq − gq(x)ĝ−1

q (xc)Kq1(xc)e
2
q + eqηq ≤

2
(
η̄V T (t)|ṼT | − γη̄2

V T (t)|ṼT |2
)

+
√

5η̄q

∥∥∥∥∥∥∥
q̃

eq

∥∥∥∥∥∥∥− 5γ∆ḡqLη̄
2
q

∥∥∥∥∥∥∥
q̃

eq

∥∥∥∥∥∥∥
2

(4.116)

Noting that for any scalar c and any positive scalar d > 0, the inequality c − dc2 ≤ 1/4d holds, it

can be concluded that

2x̃Tη + 2q̃(1− gq(x)ĝ−1
q (xc))Kq1(xc)eq − gq(x)ĝ−1

q (xc)Kq1(xc)e
2
q + eqηq ≤

1

γ

(
1

2
+

1

4∆ḡ3L

)
(4.117)

Incorporating the inequality (4.117) in the expression for the derivative of the Lyapunov function
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and defining γ∗ as

γ∗ ,
1

γ

(
1

2
+

1

4∆ḡ3L

)
results in

V̇ ≤− x̃TQx̃+ 2x̃T δ + γ∗ + eθėθ + αα̇ + eq

(
− q̄Sc̄

Îy
Cm1(α− α̂)− eθ − gq(x)ĝ−1

q (xc)Kqeq

− (gq(x)ĝ−1
q (xc)− 1)

[
−Ĉq0 −

q̄Sc̄

2ÎyVT
Ĉmqq + q̇m + eθ + ν1

])
(4.118)

Using the bound established in (4.93), a bound can be placed on the term 2x̃T δ in the following

manner,

2x̃T δ ≤ 2 (‖K0‖+ |K21eq|+ |K22eθ|+ |K3α|) ‖x̃‖ (4.119)

The product (αα̇) can similarly be bounded in terms of |α| and the error signals of interest:

αα̇ = α

(
−CL1q̄S

mVT
α + f ′α(x) + q

)
(4.120)

αα̇ ≤ −CL1q̄S

mVT
α2 + |α| (|f ′α(x)|max + |eq|+ |qm|) (4.121)

where according to Assumptions 4.2.1 and 4.2.2 the constant |f ′α(x)|max is known. Finally a bound

in the form of (4.119) and (4.121) can be found for the following terms, which for the sake of

brevity will be referred to as eqξ,

eqξ =eq

(
− q̄Sc̄

Îy
Cm1(α− α̂)− eθ − gq(x)ĝ−1

q (xc)Kqeq

− (gq(x)ĝ−1
q (xc)− 1)

[
−Ĉq0 −

q̄Sc̄

2ÎyVT
Ĉmqq + q̇m + eθ + ν1

]) (4.122)
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eqξ ≤−∆ḡqLKqe
2
q + |eq|

∣∣∣∣ q̄(VT,max)Sc̄Iy
Cm1

∣∣∣∣ ‖x̃‖+ |eq||eθ|

+ |eq|∆ḡq
(
|Ĉq0|max +

∣∣∣∣∣ q̄(VT,max)Sc̄2

2ÎyVT,max
Ĉmq

∣∣∣∣∣ (|eq|+ |qm|) + |q̇m|+ |eθ|

+ Ŵmax

(
MT,max + q̄(VT,max)Sc̄+

q̄(VT,max)Sc̄
2

2VT,max
(|eq|+ |qm|)

)) (4.123)

where Ŵmax is a positive bound set by the projection operator and where, according to Assumption

4.2.1, |Ĉq0|max is a known constant. With the above bounds in place, (4.118) can be written

compactly as

V̇ ≤ −1

2
λmin(Q)‖x̃‖2 + γ∗− 1

2
Kθe

2
θ −

1

2
∆ḡqLKqe

2
q −

CL1q̄S

2mVT
α2 + ζ(‖x̃‖, |α|, |eq|, |eθ|) (4.124)

where ζ(‖x̃‖, |α|, |eq|, |eθ|) is defined by,

ζ(‖x̃‖, |α|, |eq|, |eθ|) =



‖x̃‖

|α|

|eq|

|eθ|



T 

m11 m12 m13 m14

m12 m22 m23 0

m13 m23 m33 m34

m14 0 m34 m44





‖x̃‖

|α|

|eq|

|eθ|


+ 2



‖x̃‖

|α|

|eq|

|eθ|



T 

b1

b2

b3

b4


(4.125)

ζ(‖x̃‖, |α|, |eq|, |eθ|) = vTMζv + 2vT bζ (4.126)

and where Mζ = MT
ζ . The matrix entries mij and vector entries bk are given in Appendix C.

Since the vector bζ is bounded, the function ζ(‖x̃‖, |α|, |eq|, |eθ|) has a unique global maximum

if and only if the matrix Mζ is strictly negative definite, which can be tested for by checking if its

four principal minors alternate sign. The first principal minor must be negative. This is equivalent

to

Mζ,1 = m11 = −1

2
λmin(Q) < 0 (4.127)

which by definition of Q is always satisfied.
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The second principal minor must be positive. This is equivalent to

Mζ,2 = m11m22 −m2
12 > 0 (4.128)(

−1

2
λmin(Q)

)(
−CL1q̄S

2mVT

)
− |K3|2 =

(
−1

2
λmin(Q)

)(
−CL1q̄S

2mVT

)
− q̄2S2

m2V 2
T

∆C̄2
L1 > 0

(4.129)

If the condition given by (4.104) holds, the second principal minor will always be positive. From

here, it is straightforward to show that the designer chosen gains Kq and Kθ can always be chosen

such that the third and fourth principal minors have the appropriate sign as long as (4.104) holds.

Therefore, (4.124) can be rewritten as

V̇ ≤ −1

2
λmin(Q)‖x̃‖2 + γ∗ − 1

2
Kθe

2
θ −

1

2
∆ḡqLKqe

2
q −

CL1q̄S

2mVT
α2 + |ζ|max (4.130)

where |ζ|max is the unique global maximum of the function ζ . This implies that V̇ < 0 outside of

the compact set SGHV where

SGHV (x̃, α, eq, eθ, W̃ ) =
{

(x̃, α, eq, eθ, W̃ ) : ‖x̃‖2 ≤ 2 (|ζ|max + γ∗)

λmin(Q)

}
⋂{

(x̃, α, eq, eθ, W̃ ) : |α|2 ≤ 2mVT (|ζ|max + γ∗)

CL1q̄S

}
⋂{

(x̃, α, eq, eθ, W̃ ) : |eq|2 ≤
2 (|ζ|max + γ∗)

∆ḡqKq

}
⋂{

(x̃, α, eq, eθ, W̃ ) : |eθ|2 ≤
2 (|ζ|max + γ∗)

Kθ

}
⋂{

(x̃, α, eq, eθ, W̃ ) : ‖W̃‖ ≤ ‖W̃‖max
}

where ‖W̃‖max depends on the bound set by the projection operator. The Lyapnuov function V

cannot grow outside of this set. This implies that x̃, α, eq, eθ, W̃ are UUB and therefore so is the

state vector x. The fact that x̃ and α are bounded implies that α̂ is bounded as well. This implies
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that the filter signal a(t) and therefore, the time-varying observer and controller gains Kq1(xc),

Hq1(xc), and HV T1(xc) are also bounded. Thus, all closed-loop signals are proven to be UUB.

4.6 Simulation Setup and Results

The NDI adaptive control architecture and nonlinear observer were implemented in the GHV

simulation framework and a numerical example was explored. There were several objectives to

the simulation testing. The first goal was to accurately track a desired pitch angle command. The

second goal was to accurately estimate angle-of-attack using the nonlinear observer designed in

Section 4.4. The third and final goal was to avoid the common problems associated with high gain

nonlinear observers: the peaking phenomenon and large noise amplification.

There are two reasons why the nonlinear observer presented here can be effective with rela-

tively low gains and therefore will not lead to peaking or noise amplification. The first reason is

due to the specific aerodynamics associated with flying at hypersonic speeds. The nonlinear dis-

turbances represented in this paper by the vector δ, and the scalars ηV T and ηq typically have very

small magnitudes. It is the “role" of the Hurwitz matrix HO and the time-varying gains to stabilize

the estimation error dynamics in the presence of these disturbances. If the nonlinearities are small,

it can play this role effectively without excessively high gains. The second reason is a practical

one and only addresses the issue of noise amplification: hypersonic vehicles are extremely expen-

sive to build and operate and because of this, they will be equipped with high quality sensors that

are unlikely to produce very noisy measurement signals. Despite this fact, significant measure-

ment noise was included in the presented simulation with the belief that performance should only

improve with better sensing capabilities.

Two different desired pitch rate trajectories were examined. The first trajectory commanded

called for the vehicle to ramp up to a pitch angle of 8.5 deg, hold that pitch angle for approxi-

mately 20s and then ramp back down to zero deg. The second trajectory commanded called for

the vehicle to track a pitch angle sinusoid with an amplitude of 8.5 deg and a frequency of approx-
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imately 11.5 deg /s. The two velocity level measurement signals needed to drive the nonlinear

observer, pitch rate and total velocity, were corrupted by noise. For both trajectories tested a low

measurement noise case and a high measurement noise case were examined. The low noise case

was associated with zero mean white noise and a standard deviation of 7.07ft/s and 0.1 deg /s,

for total velocity and pitch rate respectively while the high noise case was associated with zero

mean white noise and a standard deviation of 10ft/s and 0.5deg/s, for total velocity and pitch

rate respectively. The observer-gains were selected such that the matrix HO remains Hurwitz for

the entire simulation as required. These gain values can be found in Appendix D.

The bounded uncertainties described in Assumption 4.2.2 are given in Table 4.1 and the

Table 4.1: Longitudinal Aerodynamic Parameter Uncertainty Bounds

∆C̄L0 = 0.005 ∆C̄m0 = 2e− 4
∆C̄L1 = 0.22 ∆C̄m1 = .005
∆C̄D0 = .002 ∆C̄m2 = .005
∆C̄D1 = 0.006 ∆C̄m3 = .05
∆C̄D2 = 0.015 ∆C̄mq = .018

∆Īy = 10 lbm ft2 ∆C̄m,δ = .018

bounded uncertainties described in Assumption 4.2.3 and Assumption 4.2.4 are given by ∆ḡq =

0.1 and α̃0,max = 1 deg. Except for the moment of inertia bound, each uncertainty value listed is

at least 20% of the magnitude of the assumed value of the parameters it is associated with, that

is |∆C̄X | ≥ 0.2|ĈX | ∀X . The pitch rate reference model parameters were set to aq = −15 and

bq = 15. The other relevant control parameters were set as follows: the tracking gains were set

such that Kq = 20 and Kθ = 2 and the adaptive gain ΓW was set as a diagonal matrix with the

vector [
1e− 5 1e− 5 1 1 1e− 3

]T
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along the diagonal. In order to make the simulation more realistic, second-order actuator dynamics

with damping ratio ζ = 0.7 and natural frequency ωn = 25Hz were included and position and rate

limits were placed on the actuators of 30 deg and 100 deg /s, respectively. In addition, a time

delay of 0.01s was included in the simulation. The initial flight condition was a velocity of Mach

6 and altitude of 80, 000ft. The initial true angle-of-attack was 0 deg however the observer was

initialized such that α̂(0) = 0.5 deg.

For comparison purposes, the same litany of simulation tests were run using an ensemble

Kalman filter (EnKF) to estimate angle-of-attack instead of the nonlinear observer derived in this

paper. This filtering technique is a popular alternative to the extended Kalman filter (EKF) used for

the estimation of nonlinear systems. The EnKF has been referred to as a sequential Monte Carlo

method and has two major benefits when compared to the EKF: it does not require the propagation

of a state covariance matrix which can be computationally expensive for high order systems and it

also does not require a linearized model of the system [56]. For the results shown in this section,

the ensemble size was set to N = 100 members and the process noise covariance matrix used,

defined by Qf = E[wkw
T
k ] where wk represents a vector of zero-mean white process noise is given

by

Qf =



E[w2
V T,k] 0 0 0

0 E[w2
θ,k] 0 0

0 0 E[w2
α,k] 0

0 0 0 E[w2
q,k]


=



50 0 0 0

0 1e− 5 0 0

0 0 0.01 0

0 0 0 4


(4.131)

The measurement noise covariance matrix is defined as Rf = E[vkv
T
k ] where vk represents a

vector of zero-mean white measurement noise. The EnKF update procedure requires that Rf be

non-singular. Therefore, despite assuming perfect measurement of the vehicle’s pitch angle, the
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measurement noise covariance matrix was set as

Rf =


E[v2

V T,k] 0 0

0 E[v2
θ,k] 0

0 0 E[v2
q,k]

 =


E[v2

V T,k] 0 0

0 1e− 6 0

0 0 E[v2
q,k]

 (4.132)

where E[v2
V T,k] and E[v2

q,k] varied based on whether a low noise case or high noise case was being

examined. For completeness, a brief mathematical description of the comparative EnKF used in

this study is now given.

Consider a general nonlinear systems with dynamics described by the differential equation

(4.12). The EnKF is initialized by randomly sampling the state many times. This is the initial

“ensemble" of members. Letting the ith member of the ensemble at the (k − 1)th time step be

defined as x̂ik−1, then at any time step the estimated mean and covariance can be approximated by

x̂k−1 =
1

N

N∑
i=1

x̂ik−1 (4.133)

Pk−1 =
1

N − 1

N∑
i=1

(x̂ik−1 − x̂k−1)(x̂ik−1 − x̂k−1)T (4.134)

Each of the ensemble members is predicted forward in time according to

x̂i−k = f(x̂ik−1) + g(x̂ik−1)(uk−1 + wk−1) (4.135)

wherewk represents a vector of zero-mean white process noise with covariance defined byE[wkw
T
k ] =

Qf . Note that the EnKF requires no covariance prediction step.

After a measurement is taken, noise is added to the measurement vector such that an ensemble

of measurements is created of the same size as the ensemble of state estimates, that is

yi = y + vk (4.136)
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where vk represents a vector of zero-mean white measurement noise with covariance defined by

E[vkv
T
k ] = Rf . Following the creation of the measurement ensemble, each state ensemble member

is updated according to

x̂ik = x̂i−k + P−k−1C
T (CP−k−1C

T +Rf )
−1(yi − Cx̂i−k−1) (4.137)

and a single state estimate vector is calculated according to (4.133).

Test Case 1: The first case tested was based on the ramp pitch angle trajectory described above.

Figure 4.1 shows the time histories of the state vector and the control surface deflections for the

low noise case and Figure 4.2 shows the results pertaining to the high noise case. The top plots in

these figures show the estimation performance of both the nonlinear observer and the EnKF. Both

estimation techniques are able to produce accurate estimates of angle-of-attack, leading to success-

ful tracking of the pitch rate reference model and therefore the pitch angle desired trajectory. In the

high noise case, the control surface deflections that were generated using the nonlinear observer

were affected slightly more by measurement noise than those generated using the EnKF, however

the difference is minimal and no peaking phenomenon is seen.
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Figure 4.1: Test Case 1. Low Noise Case. True and estimated angle-of-attack trajectories are
shown followed by the tracking performance of pitch angle and pitch rate, the vehicle total velocity,
and the control surface deflections.
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Figure 4.2: Test Case 1. High Noise Case. True and estimated angle-of-attack trajectories are
shown followed by the tracking performance of pitch angle and pitch rate, the vehicle total velocity,
and the control surface deflections.

Test Case 2: The second case tested was based on the sinusoidal pitch angle trajectory described

above. Figure 4.3 shows the time histories of the state vector and the control surface deflections

for the low noise case and Figure 4.4 shows the results pertaining to the high noise case. Again

it is seen that both nonlinear estimation techniques are able to accurately estimate angle-of-attack

and that the control objective is achieved despite parametric uncertainty in the model. The suc-

cessful implementation of these test cases demonstrates the nonlinear observer’s ability to perform

comparably to nonlinear Kalman filtering techniques while also being provably stable in the NDI
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adaptive control framework.
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Figure 4.3: Test Case 2. Low Noise Case. True and estimated angle-of-attack trajectories are
shown followed by the tracking performance of pitch angle and pitch rate, the vehicle total velocity,
and the control surface deflections.
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Figure 4.4: Test Case 2. High Noise Case. True and estimated angle-of-attack trajectories are
shown followed by the tracking performance of pitch angle and pitch rate, the vehicle total velocity,
and the control surface deflections.

4.7 Robustness Analysis

A simulation-based analysis was performed in order to test the robustness of the observer-

based NDI adaptive controller with respect to parameter uncertainty. Most nonlinear control tech-

niques lack neat analytical robustness measures. Instead, Monte Carlo approaches, such as the

one presented here, must be performed. In this analysis, the assumed values of the aerodynamic

coefficients CL1 and Cmq were systematically varied and the effect on estimation and tracking

performance was studied. In each episode of the study, the vehicle was commanded to track a

128



pitch angle doublet maneuver with a magnitude that was randomly selected between 1 and 6 deg.

Each doublet command lasted for a total of 20s as seen in Figure 4.5. Similarly, the measurement

noise covariances were also varied randomly through out each episode. All measurement noise

had zero mean and the covariances were randomly selected values between 50 and 100(ft/s)2 for

total velocity measurements and between 0.01 and 0.25(deg /s)2 for pitch rate measurements.

For each assumed parameter value set (ĈL1, Ĉmq) the integrated square error of the angle-of-

attack estimation error and the pitch angle and pitch rate tracking errors were averaged across all

episodes and charted in Tables 4.2-4.4. Given an arbitrary error signal eX the integrated square

error is defined as

ISEeX =

∫ tf

0

e2
Xdt (4.138)

The full process used to conduct the robustness analysis is summarized below.

Let Nep be the number of episodes performed for a given assumed parameter set (ĈL1, Ĉmq) and

define (Ĉ0
L1, Ĉ

0
mq) as the best initial estimate of the aerodynamic parameters CL1 and Cmq.

1. Select ∆L1 and ∆mq and define the assumed aerodynamic parameter set as

ĈL1 = (1 + ∆L1)Ĉ0
L1

Ĉmq = (1 + ∆mq)Ĉ
0
mq

2. for i = 1, 2, . . . Nep

(a) Randomly select the pitch angle desired doublet maneuver magnitude between 1−6 deg

(b) Randomly select the total velocity measurement noise covariance between 50−100(ft/s)2

(c) Randomly select the pitch rate measurement noise covariance between 0.01−0.25(deg /s)2

(d) Run the simulation
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(e) Calculate ISEα̃(i), ISEeθ(i) and ISEeq(i) according to (4.138)

3. Calculate the average integrated square error values ISEα̃, ISEeθ and ISEeq according to

ISEeX =
1

Nep

Nep∑
i=1

ISEeX (i) (4.139)

For the results given in Tables 4.2-4.4,Nep was set to 30 and tf was 40s. Due to the fact that the

size of the robustness metric ISEeX is heavily dependent on the simulation run time tf , these tables

are best interpreted by comparing the relative values of the entries rather than the absolute values.

Tables 4.3 and 4.4 indicate that the tracking performance is robust with respect to the parameter

variation included in the study. The difference between the best and worst case scenario of ISEeθ

was just 2.2 deg2 over the 40s simulation time. The absolute value of the average integrate square

error is large for the pitch rate tracking error compared with that of the pitch angle tracking error

due to the higher impact of noisy measurent signals on velocity-level states. However, once again

the difference between the best and worst case scenario is small: 5.3 deg2 over the 40s simulation

time. The ability of the controller to compensate for such parameter uncertainty is due to the

adaptive control mechanism.
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Figure 4.5: Sample pitch angle trajectory used in robustness analysis. The varying doublet magni-
tudes were selected randomly.

Table 4.2: Longitudinal Controller Robustness Analysis. Average integrated square error of
the angle-of-attack estimation error over 40 seconds, ISEα̃ [deg2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆mq = −0.25 15.98 7.29 4.70 3.16 4.71
∆mq = −0.125 15.92 7.3076 3.68 5.28 3.62
∆mq = 0 15.80 6.95 4.10 4.49 4.49
∆mq = 0.125 15.74 7.14 3.45 4.36 4.83
∆mq = 0.25 16.30 7.31 3.89 3.19 6.91
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Table 4.3: Longitudinal Controller Robustness Analysis. Average integrated square error of
the pitch angle tracking error over 40 seconds, ISEeθ [deg2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆mq = −0.25 1.46 1.53 2.69 1.47 1.53
∆mq = −0.125 1.49 1.51 1.56 3.35 1.13
∆mq = 0 1.25 1.21 2.03 2.89 1.41
∆mq = 0.125 1.22 1.35 1.34 2.48 1.40
∆mq = 0.25 2.46 1.57 1.67 1.49 2.39

Table 4.4: Longitudinal Controller Robustness Analysis. Average integrated square error of
the pitch rate tracking error over 40 seconds, ISEeq [(deg /s)2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆mq = −0.25 13.18 11.51 14.42 11.76 10.55
∆mq = −0.125 10.46 9.56 13.77 12.29 9.57
∆mq = 0 12.09 12.60 13.27 10.93 11.07
∆mq = 0.125 10.02 10.52 13.14 12.87 12.52
∆mq = 0.25 14.36 12.23 12.44 12.30 14.86
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5. OBSERVER-BASED NONLINEAR DYNAMIC INVERSION ADAPTIVE CONTROL:

SIX DEGREE-OF-FREEDOM HYPERSONIC VEHICLE MODEL

5.1 Introduction

In this section, the observer-based NDI adaptive control framework, developed in Section 4, is

extended to the full six degree-of-freedom GHV model defined in Section 1. The vehicle’s Euler

angles, body-axis rates and total velocity are assumed to be measured while both the angle-of-

attack and sideslip angle are not. The problem statement is briefly re-summarized: Due to the

high speed and high operating temperature of hypersonic vehicles, typical external sensors such as

angle-of-attack and sideslip angle vanes cannot be used. As in Section 4, it is not assumed that the

nonlinear control effectiveness matrix can be canceled perfectly due to imperfect state knowledge.

Additionally, a full-order nonlinear observer is developed similarly to the longitudinal analog. It

is shown that using the angle-of-attack and sideslip angle estimates produced by this observer,

all closed-loop signals are stable and bounded. This framework is tested in the GHV simulation

by commanding a trajectory that excites both the longitudinal and lateral/directional modes of the

vehicle and a robustness analysis is performed.
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5.2 Operating Condition and Uncertainty Assumptions

The state and control vector for the six degree-of-freedom GHV model are given by

x =

[
VT Φ xa xr

]T
Φ =

[
φ θ ψ

]T
xa =

[
β α

]T
xr =

[
p q r

]T
u =

[
δf,r δf,l δt,r δt,l

]T

and the dynamics are described in Equations (1.30)-(1.45). The following assumptions are made

about the vehicle operating conditions and the total uncertainty in the system:

Assumption 5.2.1. The vehicle is operating within a known thrust profile such that

VT ∈ [VT,min, VT,max] (5.1)

‖FT‖ ≤ FT,max (5.2)

‖MT‖ ≤MT,max (5.3)

for known VT,min, VT,max, FT,max, MT,max and where the lift, drag, sideforce and aerodynamic
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moment coefficients terms (C ′`, C
′
m and C ′n) can be approximated by

CL = CL0 + CL1α + εL(β) (5.4)

CD = CD0 + CD1α + CD2α
2 + εD(β) (5.5)

CY = CY 0 + CY 1β + εY (α) (5.6)

C ′` =
3∑

k=0

C`kβ
k + ε`(α) (5.7)

C ′m =
3∑

k=0

Cmkα
k + εm(β) (5.8)

C ′n =
3∑

k=0

Cnkβ
k + εn(α) (5.9)

where

εi(·) < ε̄i (5.10)

for all i and ε̄i represent known constants. The coefficients CLi,CDi, CY i, C`i, Cmi, and Cni are

constant ∀ i and CL1 > 0 > CY 1.

Assumption 5.2.2. There is bounded uncertainty in the system such that for the following param-

eters

|Cij − Ĉij| ≤ ∆C̄ij for i = L, Y j = 0, 1 (5.11)

|CDj − ĈDj| ≤ ∆C̄Dj for j = 0, 1, 2 (5.12)

|Cij − Ĉij| ≤ ∆C̄ij for i = `,m, n j = 0, 1, 2, 3 (5.13)

|C̄m,δ − ˆ̄Cm,δ| ≤ ∆C̄m,δ (5.14)

|Ci − Ĉi| ≤ ∆C̄i for i = `p,mq, nr (5.15)

|Ii − Îi| ≤ ∆Īi for i = x, y, z, xz (5.16)
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where the (̂·) notation represents the estimated value of each respective vehicle parameter and

where ∆C̄X and ∆ĪX are known constants ∀ X . All other vehicle parameters contained in f(x)

of Equation (1.43) are assumed to be known or measured perfectly.

Assumption 5.2.3. The control effectiveness term gr(x) has full row rank and is known well

enough such that an estimate of this term based on estimated aerodynamic angles (α̂, β̂) and

containing parameter uncertainty, ĝr(xc), can be formed which obeys the following conditions

0 < ∆ḡrL16 ≤

 13 13 − gr(x)ĝ−1
r (xc)

13 − (gr(x)ĝ−1
r (xc))

T gr(x)ĝ−1
r (xc)

 ≤ ∆ḡrU16 (5.17)

0 < ∆ḡrL13 ≤ gr(x)ĝ−1
r (xc) ≤ ∆ḡrU13 (5.18)

where, in order to avoid confusion with the moment of inertia matrix, 1M is the M ×M identity

matrix and ĝ−1
r (xc) is the pseudo-inverse of ĝr(xc). The vector xc is given by

xc =

[
VT Φ x̂a xr

]T
(5.19)

and represents a combination of the measured states and x̂a, the estimate of xa. The parameters

0 ≤ ∆ḡrL and 0 ≤ ∆ḡrU are known constants. For simplicity, define

∆ḡr = max(|1−∆ḡrL|, |1−∆ḡrU |) (5.20)

Assumption 5.2.4. The vehicle does not pass through any kinematic or dynamic singularities, i.e.

|θ(t)|, |β(t)| < π

2
∀t > 0 (5.21)
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Furthermore, there exist known constants di such that

1 ≤ 1

cos(i)
< di for i = θ, β (5.22)

Assumption 5.2.5. The initial aerodynamic angle estimation error is bounded such that

|xa(0)− x̂a(0)| ≤ x̃a,max (5.23)

where for any vector v ∈ Rp, the absolute value |v| signifies
[
|v1| |v2| . . . |vp|

]T
and x̃a,max is

a known constant vector with entries greater than or equal to zero.

5.3 Control Law Development

5.3.1 Selecting the Command Signal

Because the control vector directly influences the velocity level dynamics, achieving the control

objective of commanding an attitude angle trajectory must be done indirectly by commanding the

body-axis angular rates. In other words, an expression must be found for the desired rate trajectory,

xr,d, which forces the vehicle to achieve the desired attitude angle trajectory, Φ∗d, which is assumed

to be continuous and bounded. It is desired that the vehicle’s angular rate dynamics follow a stable

linear reference model described by

ẋr,m = Amxr,m +Bmxr,d (5.24)

where (Am, Bm) are a controllable pair, Am ∈ R3×3 is Hurwitz, and Bm ∈ R3×3. Next, two

tracking error terms are defined

er , xr,m − xr (5.25)

eΦ , Φd − Φ (5.26)
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Since the goal is to design xr,d such that Φ follows a desired command, the attitude angle error

dynamics should be analyzed. The desired rates should be chosen such that the attitude angle

dynamics are stabilizing and drive eΦ to zero if er = 0. These dynamics are given by

ėΦ = Φ̇d − Φ̇ = Φ̇d − fΦ(x) (5.27)

Let fΦ(x) = AΦxr. Adding and subtracting AΦxr,m leaves,

ėΦ = Φ̇d + AΦ(xr,m − xr)− AΦxr,m (5.28)

ėΦ = Φ̇d + AΦer − AΦxr,m (5.29)

Therefore, if the reference model chosen for xr is stable and can perfectly track a reference com-

mand signal, choosing desired attitude angle and angular rate trajectories of

Φ̇d = Φ̇∗d (5.30)

xr,d = A−1
Φ

(
Φ̇∗d +KΦeΦ

)
(5.31)

where KΦ > 0 is a diagonal matrix, leaves

ėΦ = −KΦeΦ + AΦer (5.32)

which implies that eΦ → 0 as long as er → 0 as desired. Due to Assumption 5.2.4, the matrix AΦ

is always invertible. The desired trajectories are modified slightly to include saturation limits such
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that

Φ̇d(i) =


−KΦ(i, i)eΦ(i) if

(
A−1

Φ (Φ̇∗d +KΦeΦ)
)

(i) < −x̄r,d(i)

Φ̇∗d(i) if − x̄r,d(i) ≤
(
A−1

Φ (Φ̇∗d +KΦeΦ)
)

(i) ≤ x̄r,d(i)

−KΦ(i, i)eΦ(i) if
(
A−1

Φ (Φ̇∗d +KΦeΦ)
)

(i) > x̄r,d(i)

(5.33)

xr,d(i) =


−x̄r,d(i) if

(
A−1

Φ (Φ̇∗d +KΦeΦ)
)

(i) < −x̄r,d(i)(
A−1

Φ (Φ̇∗d +KΦeΦ)
)

(i) if − x̄r,d(i) ≤
(
A−1

Φ (Φ̇∗d +KΦeΦ)
)

(i) ≤ x̄r,d(i)

x̄r,d(i) if
(
A−1

Φ (Φ̇∗d +KΦeΦ)
)

(i) > x̄r,d(i)

(5.34)

where v(i) is the ith element of an arbitrary vector v and x̄r,d(i) > 0 ∀i are predetermined saturation

limits for p, q and r. These saturation limits restrict the magnitude of the desired angular rates and

allow one to claim a priori that xr,m is both stable and bounded. In practice, x̄r,d can be set such

that the saturation limits on xr,d are never encountered in nominal flight. Nevertheless, the attitude

angle error dynamics still must be analyzed in the presence of these saturation limits,

ėΦ(i) =


−KΦ(i, i)eΦ(i) + AiΦer + AiΦx̄r,d if

(
A−1

Φ (Φ̇∗d +KΦeΦ)
)

(i) < −x̄r,d(i)

−KΦ(i, i)eΦ(i) + AiΦer if − x̄r,d(i) ≤
(
A−1

Φ (Φ̇∗d +KΦeΦ)
)

(i) ≤ x̄r,d(i)

−KΦ(i, i)eΦ(i) + AiΦer − AiΦx̄r,d if
(
A−1

Φ (Φ̇∗d +KΦeΦ)
)

(i) > x̄r,d(i)

(5.35)

where AiΦ represents the ith row of AΦ. With the appropriate desired angular rates given by (5.34),

the control law can be developed with the new goal in mind of bounding the angular rate tracking

error. In doing so, bounded tracking of both the angular rates and the Euler angles will be realized

and the control objective will be met.

5.3.2 Control and Adaptive Laws

The control law development begins by examining the angular rate dynamics
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ẋr = fr(x) + gr(x)u (5.36)

ẋr = I−1 (IMfrr(xr) +MT + q̄SG) + gr(x)u (5.37)

where I is the moment of inertia matrix, defined in full in (1.33), and

IM =


−Ixz(Ix−Iy+Iz)

I2
xz−IxIz

I2
xz+I2

z−IyIz
I2
xz−IxIz

0 0

0 0 Iz−Iy
Iy

−Ixz
Iy

−(I2
x−IxIy+I2

xz)

I2
xz−IxIz

Ixz(Ix−Iy+Iz)

I2
xz−IxIz

0 0

 (5.38)

frr(xr) =



pq

qr

pr

p2 − r2


(5.39)

If the aerodynamic angles were measured perfectly and all of the vehicle parameters were known

perfectly as well, a dynamic inversion control law of the form,

uideal = g−1
r (x) [−fr(x) + ẋr,m +Krer + eΦ] (5.40)

where Kr > 0 is a constant feedback gain matrix, would drive both er and eΦ to zero and achieve

the desired control objective. Because perfect information is not available, the actual control law

will be based on (5.40) given the system unknowns

u = ĝ−1
r (xc)

[
−f̂r(xc) + ẋr,m + (Kr +Kr1(xc))er + eΦ + ν1 + ν2

]
(5.41)
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where f̂r(xc) is given by

f̂r(xc) = Î−1
(
ÎMfrr(xr) +MT + q̄SĜ

)
(5.42)

Ĝ =


b(
∑3

i=0 Ĉ`iβ̂
i + b

2VT
Ĉ`pp)

c̄(
∑3

i=0 Ĉmiα̂
i + c̄

2VT
Ĉmqq)

b(
∑3

i=0 Ĉniβ̂
i + b

2VT
Ĉnrr)

 (5.43)

The adaptive signals ν1 and ν2 are time-varying signals, updated using an adaptive law, that account

for parameter uncertainty andKr1(xc) is a time-varying positive gain term, specified in more detail

below.

In order to analyze system stability, the effect of the control law on the angular rate tracking

error dynamics must be examined. This analysis will be completed in Section 5.5 but some initial

steps can be done here in order to introduce the notation required for defining the adaptive law:

ėr = ẋr,m − ẋr (5.44)

ėr = ẋr,m − fr(x)− gr(x)u (5.45)

Substituting the control law (5.41) into (5.45) leaves,

ėr = ẋr,m− fr(x)− gr(x)ĝ−1
r (xc)

[
−f̂r(xc) + ẋr,m + (Kr +Kr1(xc))er + eΦ + ν1 + ν2

]
(5.46)

Adding and subtracting everything contained in the bracket of (5.46) except for (Kr +Kr1(xc))er

results in

ėr = −fr(x) + f̂r(xc)− eΦ − ν1 − ν2 − gr(x)ĝ−1
r (xc)(Kr +Kr1(xc))er

− (gr(x)ĝ−1
r (xc)− 13)

[
−f̂r(xc) + ẋr,m + eΦ + ν1 + ν2

] (5.47)
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It will be useful to expand and examine the difference f̂r(xc)− fr(x). By defining the term fr0 as,

fr0 = I−1

MT + q̄S


bC`0

c̄(Cm0 + C̄mδ)

bCn0


 (5.48)

and its estimate f̂r0, the difference can be written as

f̂r(xc)− fr(x) =(f̂r0 − fr0) + (Î−1ÎM − I−1IM)frr(xr) +
q̄S

2VT


(
Î−1Ĉ`p − I−1C`p

)
b2p(

Î−1Ĉmq − I−1Cmq

)
c̄2q(

Î−1Ĉnr − I−1Cnr

)
b2r



+ Î−1q̄S


b
∑3

i=1 Ĉ`iβ̂
i

c̄
∑3

i=1 Ĉmiα̂
i

b
∑3

i=1 Ĉniβ̂
i

− I−1q̄S


b
(∑3

i=1C`iβ
i + ε`(α)

)
c̄
(∑3

i=1Cmiα
i + εm(β)

)
b
(∑3

i=1Cniβ
i + εn(α)

)


(5.49)

The following vector

I−1q̄S


b
∑3

i=1 C`iβ̂
i

c̄
∑3

i=1Cmiα̂
i

b
∑3

i=1Cniβ̂
i


is added to and subtracted from the right hand side of equation (5.49). Note that this vector is

a combination of true, unknown parameters and the estimated aerodynamic angles. Its inclusion

is useful for analysis however it can not be calculated on-line. This allows for the difference
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f̂r(xc)− fr(x) to be simplified further as

f̂r(xc)− fr(x) = W T b(xc) + I−1q̄S


b
(∑3

i=1C`i(β̂
i − βi)− ε`(β)

)
c̄
(∑3

i=1 Cmi(α̂
i − αi)− εm(β)

)
b
(∑3

i=1 Cni(β̂
i − βi)− εn(α)

)
 (5.50)

where W is a constant matrix made up of unknown weights given by

W =

[
W1 W2 W3 W4 W51 W52 W53

]
(5.51)

W1 = Î−1 − I−1 (5.52)

W2 = Î−1


bĈ`0

c̄(Ĉm0 + ˆ̄Cmδ)

bĈn0

− I−1


bC`0

c̄(Cm0 + C̄mδ)

bCn0

 (5.53)

W3 = Î−1


b2Ĉ`p 0 0

0 c̄2Ĉmq 0

0 0 b2Ĉnr

− I−1


b2C`p 0 0

0 c̄2Cmq 0

0 0 b2Cnr

 (5.54)

W4 = Î−1ÎM − I−1IM (5.55)

W5i = Î−1


bĈ`i 0

0 c̄Ĉmi

bĈni 0

− I−1


bC`i 0

0 c̄Cmi

bCni 0

 (5.56)

and b(xc) is a vector of known basis functions given by

b(xc) =

[
MT

T q̄S q̄S
2VT

xTr fTrr(xr) q̄Sx̂
(1)T
a q̄Sx̂

(2)T
a q̄Sx̂

(3)T
a

]T
(5.57)
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where

x̂(i)
a =

β̂i
α̂i

 (5.58)

With this simplified form, the tracking error dynamics, Equation (5.47), can be rewritten as

ėr =W T b(xc) + I−1q̄S


b
(∑3

i=1C`i(β̂
i − βi)− ε`(α)

)
c̄
(∑3

i=1Cmi(α̂
i − αi)− εm(β)

)
b
(∑3

i=1Cni(β̂
i − βi)− εn(α)

)
− eΦ − ν1 − ν2

− gr(x)ĝ−1
r (xc)(Kr +Kr1(xc))er − (gr(x)ĝ−1

r (xc)− 13)
[
−f̂r(xc) + ẋr,m + eΦ + ν1 + ν2

]
(5.59)

The adaptive signals ν1 and ν2 can be defined as

ν1 + ν2 = Ŵ T b(xc) (5.60)

ν1 = Ŵ T
1 b1(xc) (5.61)

ν2 = Ŵ T
2 b2(xc) (5.62)

b1(xc) =

[
MT

T q̄S q̄S
2VT

xTr

]T
(5.63)

b2(xc) =

[
fTrr(xr) q̄x̂

(1)T
a q̄x̂

(2)T
a q̄x̂

(3)T
a

]T
(5.64)

where Ŵ is the best estimate of the unknown weights W . The estimated weights are updated

through the adaptive law

˙̂
W = ΓWProjM

(
Ŵ , b(xc) (er + 2(x̂r − xr))T

)
(5.65)

where x̂r is the observer state vector for the angular rates and ΓW is a positive definite gain matrix.

Substituting (5.60) into (5.59) and defining W̃ = Ŵ −W leaves
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ėr =− W̃ T b(xc) + I−1q̄S


b
(
C`1(β̂ − β)− ε`(α)

)
c̄ (Cm1(α̂− α)− εm(β))

b
(
Cn1(β̂ − β)− εn(α)

)
+ ηr − eΦ − gr(x)ĝ−1

r (xc)(Kr +Kr1(xc))er

−
(
gr(x)ĝ−1

r (xc)− 13

)
−f̂r0 − Î−1q̄S


b2

2VT
Ĉ`pp

c̄2

2VT
Ĉmqq

b2

2VT
Ĉnrr

+ ẋr,m + eΦ + ν1


(5.66)

where

ηr = I−1q̄S


b
∑3

i=2C`i(β̂
i − βi)

c̄
∑3

i=2Cmi(α̂
i − αi)

b
∑3

i=2Cni(β̂
i − βi)



−
(
gr(x)ĝ−1

r (xc)− 13

)
−Î−1ÎMfrr(xr)− Î−1q̄S


∑3

i=1 bĈ`iβ̂
i∑3

i=1 c̄Ĉmiα̂
i∑3

i=1 bĈniβ̂
i

+ ν2


(5.67)

It will be shown that implementing the adaptive law (5.65), allows for the closed-loop system to

compensate for uncertainty due to modeling errors in the parameters contained in W . Uncertainty

due to the inability to directly measure the aerodynamic angles will be handled through the use of

a nonlinear observer.

5.4 Nonlinear Observer Design

The observer design process requires the definition of two vectors: the output vector, y, and the

observer state vector x̂:
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y , Cx =

[
VT ΦT xTr

]T
(5.68)

x̂ ,

[
V̂T Φ̂ x̂a x̂r

]T
(5.69)

where the matrix C is given by

C =


1 0 0 0

0 13 0 0

0 0 0 13

 (5.70)

The estimation error vector is defined as

x̃ , x̂− x =

[
ṼT Φ̃ x̃a x̃r

]T
(5.71)

The design process will proceed as follows: the dynamics will be developed for each observer state

( ˙̂
VT , ˙̂

Φ, etc.) by approximating the unknown dynamics and then adding an estimation correction

term. An expression for the estimation error dynamics of each state ( ˙̃VT , ˙̃Φ, etc.) will then be

derived. Finally, the entire estimation error dynamics, ˙̃x, will be constructed as a vector differential

equation.

5.4.1 Total Velocity Observer Design

Recall that the dynamics for total velocity were given by

V̇T =
FT
m

cos(α) cos(β)− D

m
+ g1

The observer state V̂T is therefore defined by

˙̂
VT =

FT
m

cos(α̂) cos(β̂)− D̂(α̂, β̂)

m
+ ĝ1(α̂, β̂) +HVT (y − Cx̂) +HVT1

(xc)ṼT (5.72)
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where HVT is a matrix of constant observer-gains for this state, HVT1
is a scalar time-varying

observer-gain and

ĝ1(α̂, β̂) = g
(
− cos(α̂) cos(β̂) sin(θ̂) + sin(β̂)sin(φ̂) cos(θ̂) + sin(α̂) cos(β̂) cos(φ̂) cos(θ̂)

)
(5.73)

The estimation error for total velocity, ṼT , has dynamics described by

˙̃VT =
˙̂
VT − V̇T = − q̄S

m
ĈD1α̃ + ηV T + δV +HVT (y − Cx̂) +HVT1

(xc)ṼT (5.74)

where,

δV =

(
FT
m

cos(α̂) cos(β̂)− FT
m

cos(α) cos(β)

)
+
q̄S

m

(
CD0 − ĈD0 + εD(β)

)
+ (ĝ1 − g1)

(5.75)

ηV T =
q̄S

m

(
CD1 − ĈD1

)
α +

q̄S

m
CD2α

2 − q̄S

m
ĈD2α̂

2 (5.76)

Note that given Assumption 5.2.1, made above, the magnitude of the term δV can be bounded by

|δV | ≤ K00 (5.77)

where K00 is a known constant.

5.4.2 Euler Angle Observer Design

For the Euler angle vector Φ, derivation of the observer dynamics is straightforward,

Φ̇ = AΦxr

˙̂
Φ = AΦx̂r +HΦ(y − Cx̂) (5.78)

˙̃Φ =
˙̂
Φ− Φ̇ = AΦx̃r +HΦ(y − Cx̂) (5.79)
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where HΦ is a constant observer-gain matrix.

5.4.3 Aerodynamic Angle Observer Design

Recall the aerodynamic angle dynamics

ẋa =

 1
mVT

((Y + FTy) cos β +mg2 − (FTx cosα− FTz sinα) sin β)

1
mVT cosβ

(−L+mg3 − FTx sinα + FTz cosα)


+

 sinα 0 − cosα

− tan β cosα 1 − tan β sinα

xr
which can be rewritten as

ẋa = q̄S

CY 1 cosβ
mVT

0

0 −CL1

mVT cosβ

xa + f ′a(x) +

 sinα 0 − cosα

− tan β cosα 1 − tan β sinα

xr (5.80)

where

f ′a(x) =

 1
mVT

(((CY 0 + εY (α))q̄S + FTy) cos β +mg2 − (FTx cosα− FTz sinα) sin β)

1
mVT cosβ

(−(CL0 + εL(β))q̄S +mg3 − FTx sinα + FTz cosα)


(5.81)

The dynamics of the aerodynamic angle observer are given by

˙̂xa = q̄S

 ĈY 1 cos β̂
mVT

0

0 −ĈL1

mVT cos β̂

 x̂a+f̂ ′a(xc)+
 sin α̂ 0 − cos α̂

− tan β̂ cos α̂ 1 − tan β̂ sin α̂

 x̂r+Ha(y−Cx̂)

(5.82)
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where Ha is a constant observer-gain matrix. The estimation error for the aerodynamic angles, x̃a,

has dynamics described by

˙̃xa = ˙̂xa−ẋa = q̄S

 ĈY 1 cos β̂
mVT

0

0 −ĈL1

mVT cos β̂

 x̃a+
 sin α̂ 0 − cos α̂

− tan β̂ cos α̂ 1 − tan β̂ sin α̂

 x̃r+δa+Ha(y−Cx̂)

(5.83)

where

δa = f̂ ′a(xc)− f ′a(x) +

 ĈY 1 cos β̂−CY 1 cosβ
mVT

q̄S 0

0 1
mVT

(
−ĈL1

cos β̂
+ CL1

cosβ

)
q̄S

xa
+

 sin α̂− sinα 0 − cos α̂ + cosα

− tan β̂ cos α̂ + tan β cosα 0 − tan β̂ sin α̂ + tan β sinα

xr (5.84)

Note that given Assumptions 5.2.1, 5.2.2 and 5.2.4, the magnitude of the vector δa can be bounded

by

‖δa‖ ≤ K20+
q̄S

mVT

√(
|(dβ − 1)CL1|+ ∆C̄L1

)2
+

(
|(1− 1

dβ
)CY 1|+

1

dβ
∆C̄Y 1

)2

‖xa‖+K23‖er‖

(5.85)

where K20 and K23 are known constants.
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5.4.4 Angular Rate Observer Design

By taking a derivative with a respect to time of the expression xr = xr,m − er and substituting in

the error dynamics (5.66), the dynamics for the vehicle’s angular rates can be expressed as

ẋr =ẋr,m + W̃ T b(xc)− I−1q̄S


b
(
C`1(β̂ − β)− ε`(α)

)
c̄ (Cm1(α̂− α)− εm(β))

b
(
Cn1(β̂ − β)− εn(α)

)
− ηr + eΦ + gr(x)ĝ−1

r (xc)(Kr +Kr1(xc))er

+
(
gr(x)ĝ−1

r (xc)− 13

)
−f̂r0 − Î−1q̄S


b2

2VT
Ĉ`pp

c̄2

2VT
Ĉmqq

b2

2VT
Ĉnrr

+ ẋr,m + eΦ + ν1


(5.86)

For the observer, the dynamics are approximated by assuming

x̃a = 0 gr(x)ĝ−1
r (xc) = 13 W̃ = 0

and again an estimation correction term is added:

˙̂xr = ẋr,m + (Kr +Kr1(xc))er + eΦ +Hr(y − Cx̂) +Hr1(xc)x̃r (5.87)

where Hr is a constant observer-gain matrix and Hr1(xc) is a time-varying observer-gain matrix.

The estimation error for angular rates, x̃r, has dynamics described by

˙̃xr = ˙̂xr − ẋr =− W̃ T b(xc) + I−1q̄S


bC`1 0

0 c̄Cm1

bCn1 0

 x̃a + ηr

+ (13 − gr(x)ĝ−1
r (xc))Kr1(xc)er + δr +Hr(y − Cx̂) +Hr1(xc)x̃r

(5.88)
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where

δr = I−1q̄S


bε`(α)

c̄εm(β)

bεn(α)

− (gr(x)ĝ−1
r (xc)− 13

)
Krer − f̂r0 − Î−1q̄S


b2

2VT
Ĉ`pp

c̄2

2VT
Ĉmqq

b2

2VT
Ĉnrr

+ ẋr,m + eΦ + ν1


(5.89)

Note that given the Assumptions 5.2.2 and 5.2.3, the norm of the vector δr can be bounded by

‖δr‖ ≤ K30 +K31‖eΦ|+K33‖er‖ (5.90)

where K30, K31, and K33 are known constants.

5.4.5 Final Estimation Error Dynamics

Let each of the constant observer-gain matrices, Hi, be written as Hi =

[
h1i h2i h3i

]
for i =

VT ,Φ, a, r such that

Hi(y − Cx) = h1iṼT + h2iΦ̃ + h3ix̃r (5.91)
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Combining Equations (5.74), (5.79),(5.83), and (5.88) allows for the full observer error dynamics

to be expressed in vector matrix form,



˙̃VT

˙̃Φ

˙̃xa

˙̃xr


=



−h1VT −h2VT HO(1, 3) −h3VT

−h1Φ −h2Φ 0 AΦ − h3Φ

−h1a −h2a HO(3, 3) HO(3, 4)− h3a

−h1r −h2r HO(4, 3) −h3r





ṼT

Φ̃

x̃a

x̃r



+



0

0

0

−W̃ T b(xc) + (13 − gr(x)ĝ−1
r (xc))Kr1(xc)er


+



δV

0

δa

δr


+



ηV T +HVT1
(xc)ṼT

0

0

ηr +Hr1(xc)x̃r


(5.92)

where

HO(1, 3) =
q̄S

m

[
0 −ĈD1

]
HO(3, 3) =

q̄S

mVT

ĈY 1 cos β̂ 0

0 −ĈL1

cos β̂



HO(3, 4) =

 sin α̂ 0 − cos α̂

− tan β̂ cos α̂ 1 − tan β̂ sin α̂

 HO(4, 3) = I−1q̄S


bC`1 0

0 c̄Cm1

bCn1 0


Equation (5.92) can be written more compactly as,

˙̃x = HOx̃+

[
−W̃ T b(xc) + (13 − gr(x)ĝ−1

r (xc))Kr1(xc)er

]
4

+ δ + η (5.93)

By checking the principal minors of the matrix HO, it can be shown that given Assumption 5.2.1

the constant observer-gain matrices can always be chosen such that

HO +HT
O < −Q (5.94)
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for some constant matrix Q = QT > 0. In addition, note that the norm of the vector δ can be

bounded by

‖δ‖ ≤ ‖K0‖+K31‖eΦ‖+K2‖xa‖+ ‖K3‖‖er‖ (5.95)

where

K0 =

[
K00 K01 K02

]T
(5.96)

K2 =
q̄S

mVT

√(
|(dβ − 1)CL1|+ ∆C̄L1

)2
+

(
|(1− 1

dβ
)CY 1|+

1

dβ
∆C̄Y 1

)2

(5.97)

K3 =

[
K23 K33

]T
(5.98)

5.5 Stability Analysis

In this section a stability analysis of the closed-loop system, using the control algorithm and

observer discussed in the previous sections, will be presented.

Lemma 5.5.1. Consider the aerodynamic angle dynamics given in Equation (1.32). Using only

known parameters and measured signals, the time-varying set Ωa(t) can be calculated such that

xa(t) ∈ Ωa(t) ∀t > 0 (5.99)

where

Ωa(t) , [−Xa(t),Xa(t)] (5.100)

and where Xa evolves according to

Ẋa = Aa,maxXa(t) + va,max(t) (5.101)

Xa(0) = |x̂a(0)|+ x̃a,max (5.102)
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The constant matrix Aa,max and the time-varying vector va,max(t) are defined as

Aa,max =
q̄(VT,min)S

mVT,min

− 1
dβ
|ĈY 1 + ∆C̄Y 1| 0

0 −|ĈL1 −∆C̄L1|

 (5.103)

va,max(t) = f̄ ′a(x) +

 1 0 1√
d2
β − 1 1

√
d2
β − 1

 |xr| (5.104)

f̄ ′a(x) =

 1
mVT

(
q̄S|ĈY 0 + ∆C̄Y 0sign(ĈY 0) + ε̄Y |+mg + ‖FT‖

)
dβ
mVT

(
q̄S|ĈL0 + ∆C̄L0sign(ĈL0) + ε̄L|+mg + ‖FT‖

)
 (5.105)

Proof. Recall Equation (5.80) which can be rewritten as

ẋa = Aa(t)xa(t) + va(t) (5.106)

where

Aa(t) =
q̄S

mVT

CY 1 cos β 0

0 − CL1

cosβ

 (5.107)

va(t) = f ′a(x) +

 sinα 0 − cosα

− tan β cosα 1 − tan β sinα

xr (5.108)

Given that Equation (5.106) is a first-order linear differential equation, an expression for xa(t) can

be solved for explicitly as

xa(t) = e
∫ t
t0
Aa(τ)dτ

xa(0) +

∫ t

0

e
∫ t
τ Aa(τ ′)dτ ′va(τ)dτ (5.109)
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Equation (5.109) implies that the following inequality holds,

− eAa,maxtXa(0)−
∫ t

0

eAa,max(t−τ)va,max(τ)dτ ≤ xa(t) ≤

eAa,maxtXa(0) +

∫ t

0

eAa,max(t−τ)va,max(τ)dτ (5.110)

where for two vectors a, b ∈ Rp, the expression a ≤ b signifies a1 < b1, a2 < b2...ap < bp. The

previous inequality is equivalent to

−Xa ≤ xa(t) ≤ Xa (5.111)

Remark 5.5.1. If Assumption 5.2.1 holds, the constant matrix Aa,max is Hurwitz. Therefore, Equa-

tion (5.101) implies that Xa is bounded if and only if va,max is bounded. Since each element of

f ′a(x) is bounded, the definition of va,max, Equation (5.104), implies that va,max is bounded if and

only if xr is bounded.

Remark 5.5.2. If it can be shown that the set Ωa(t) is uniformly ultimately bounded, as will be

done in Theorem 7, then any signal designed using this set to stabilize the system will be UUB as

well.

Theorem 7. Consider the nonlinear dynamical GHV system described by (1.43), the desired angu-

lar rate command calculated by (5.34), the control law defined by (5.41), the adaptive law defined

by (5.65) and the nonlinear observer designed in Section 5.4. Suppose that the desired attitude

angle trajectory, Φ∗d, is bounded and continuous. If the following inequalities,

∆C̄L1 < C∗

√(
λmin(Q)

8

)(
mVT
q̄S

)
− |(dβ − 1)CL1| (5.112)
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∆C̄Y 1 < dβC∗

√(
λmin(Q)

8

)(
mVT
q̄S

)
− |(dβ − 1)CY 1| (5.113)

C∗ =

√
min(|CY 1

dβ
|, |CL1|) (5.114)

are satisfied for all t > 0, then the tracking errors, er and eΦ, the estimation error x̃, the weight

estimation error W̃ and the system states, x, are UUB.

Proof. In order to analyze the stability of the system and to show that all of the closed-loop signals

are UUB the following candidate Lyapunov function is chosen,

V = x̃T x̃+
1

2

(
eTr er + eTΦeΦ + xTa xa + tr(W̃ TΓ−1

W W̃ )
)

(5.115)

Taking the derivative with respect to time along system trajectories leaves,

V̇ = x̃T ˙̃x+ ˙̃x
T
x̃+ eTr ėr + eTΦėΦ + xTa ẋa + tr(W̃ TΓ−1

W

˙̂
W ) (5.116)

Substituting (5.66) and (5.93) into (5.116) and applying the trace identity aT b = tr(baT ) results in

V̇ =x̃THOx̃+ x̃THT
O x̃+ 2x̃T δ + 2x̃Tr

(
(13 − gr(x)ĝ−1

r (xc))Kr1(xc)er
)

+ 2x̃Tη + eTΦėΦ

+ xTa ẋa + eTr

(
I−1q̄S


bC`1(β̂ − β)

c̄Cm1(α̂− α)

bCn1(β̂ − β)

+ ηr − eΦ − gr(x)ĝ−1
r (xc)(Kr +Kr1(xc))er

−
(
gr(x)ĝ−1

r (xc)− 13

)
(−f̂r0 − Î−1q̄S


b2

2VT
Ĉ`pp

c̄2

2VT
Ĉmqq

b2

2VT
Ĉnrr

+ ẋr,m + eΦ + ν1)
)

+ tr
(
W̃ T

(
Γ−1
W

˙̂
W − b(xc)(eTr + 2x̃Tr )

))
(5.117)
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Next, application of the adaptive law given in (5.65) and the Lyapunov condition given in (5.94)

leaves

V̇ ≤− x̃TQx̃+ 2x̃T δ + 2x̃Tr
(
(13 − gr(x)ĝ−1

r (xc))Kr1(xc)er
)

+ 2x̃Tη + eTΦėΦ

+ xTa ẋa + eTr

(
I−1q̄S


bC`1(β̂ − β)

c̄Cm1(α̂− α)

bCn1(β̂ − β)

+ ηr − eΦ − gr(x)ĝ−1
r (xc)(Kr +Kr1(xc))er

−
(
gr(x)ĝ−1

r (xc)− 13

)
(−f̂r0 − Î−1q̄S


b2

2VT
Ĉ`pp

c̄2

2VT
Ĉmqq

b2

2VT
Ĉnrr

+ ẋr,m + eΦ + ν1)
)

(5.118)

In order to define the time-varying observer and feedback gains, the following terms are examined,

2x̃Tη + 2x̃Tr (13 − gr(x)ĝ−1
r (xc))Kr1(xc)er − eTr gr(x)ĝ−1

r (xc)Kr1(xc)er + eTr ηr =

2ṼT

(
ηV T +HV T1(xc)ṼT

)
+ 2x̃Tr (ηr +Hr1(xc)x̃r) + 2x̃Tr (13 − gr(x)ĝ−1

r (xc))Kr1(xc)er

− eTr gr(x)ĝ−1
r (xc)Kr1(xc)er + eTr ηr

(5.119)

where ηr and ηV T are defined in Equations (5.67) and (5.76) respectively. Using these definitions,

the following inequalities can be set,

ηV T (t) ≤ η̄V T (t) ,
q̄S

m

(
∆C̄D1Xa(2) + (ĈD2 + ∆C̄D2)X2

a(2)− ĈD2α̂
2
)

(5.120)
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ηr(t) ≤ η̄r(t) , (Î −∆Ī)−1q̄S


∑3

i=2 b(|Ĉ`i + ∆C̄`isign(Ĉ`i)|)(|β̂i + Xa(1)i|)∑3
i=2 c̄(|Ĉmi + ∆C̄misign(Ĉmi)|)(|α̂i + Xa(2)i|)∑3
i=2 b(|Ĉni + ∆C̄nisign(Ĉni)|)(|β̂i + Xa(1)i|)



+ ∆ḡr

∣∣∣∣∣∣∣∣∣∣
−Î ÎMfrr(xr)− Î−1q̄S


∑3

i=1 bĈ`iβ̂
i∑3

i=1 c̄Ĉmiα̂
i∑3

i=1 bĈniβ̂
i

+ ν2

∣∣∣∣∣∣∣∣∣∣
(5.121)

where Xa(j) is the jth element of Xa and where ∆Ī is given by

∆Ī =


∆Īx 0 ∆Īxz

0 ∆Īy 0

∆Īxz 0 ∆Īz


Note that all of the terms that make up η̄V T (t) and η̄r(t) are known. Equation (5.119) can be

rearranged as

2x̃Tη + 2x̃Tr (13 − gr(x)ĝ−1
r (xc))Kr1(xc)er − eTr gr(x)ĝ−1

r (xc)Kr1(xc)er + eTr ηr =

2ṼT

(
ηV T +HV T1(xc)ṼT

)
+

[
2ηTr ηTr

]x̃r
er


+

[
x̃Tr eTr

] 2Hr1(xc) (13 − gr(x)ĝ−1
r (xc))Kr1(xc)

((13 − gr(x)ĝ−1
r (xc))Kr1(xc))

T −gr(x)ĝ−1
r (xc))Kr1(xc)


x̃r
er


(5.122)
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If the time-varying gains are defined as

HV T1(xc) = −γη̄2
V T (t) (5.123)

Hr1(xc) = −5

2
γη̄Tr (t)η̄r(t)13 (5.124)

Kr1(xc) = 5γη̄Tr (t)η̄r(t)13 (5.125)

where γ > 0 is a designer chosen constant scalar, then, according to Assumption 5.2.3, the follow-

ing bound holds,

2x̃Tη + 2x̃Tr (13−gr(x)ĝ−1
r (xc))Kr1(xc)er − eTr gr(x)ĝ−1

r (xc)Kr1(xc)er + eTr ηr ≤

2
(
η̄V T (t)|ṼT | − γη̄2

V T (t)|ṼT |2
)

+
√

5‖η̄r‖

∥∥∥∥∥∥∥
x̃r

er

∥∥∥∥∥∥∥− 5γ∆ḡrL‖η̄r‖2

∥∥∥∥∥∥∥
x̃r

er

∥∥∥∥∥∥∥
2

(5.126)

Noting that for any scalar c and any positive scalar d > 0, the inequality c − dc2 ≤ 1/4d holds, it

can be concluded that

2x̃Tη+2x̃Tr (13−gr(x)ĝ−1
r (xc))Kr1(xc)er−eTr gr(x)ĝ−1

r (xc)Kr1(xc)er+e
T
r ηr ≤

1

γ

(
1

2
+

1

4∆ḡrL

)
(5.127)

Incorporating the inequality (5.127) and defining γ∗ as

γ∗ ,
1

γ

(
1

2
+

1

4∆ḡrL

)

159



results in

V̇ ≤− x̃TQx̃+ 2x̃T δ + γ∗ + eTΦėΦ + xTa ẋa + eTr

(
I−1q̄S


bC`1(β̂ − β)

c̄Cm1(α̂− α)

bCn1(β̂ − β)

− eΦ − gr(x)ĝ−1
r (xc)Krer

−
(
gr(x)ĝ−1

r (xc)− 13

)
(−f̂r0 − Î−1q̄S


b2

2VT
Ĉ`pp

c̄2

2VT
Ĉmqq

b2

2VT
Ĉnrr

+ ẋr,m + eΦ + ν1)
)

(5.128)

Using the bound established in (5.95), a bound can be placed on the term 2x̃T δ in the following

manner,

2x̃T δ ≤ 2 (‖K0‖+K31‖eΦ‖+K2‖xa‖+ ‖K3‖‖er‖) ‖x̃‖ (5.129)

The term xTa ẋa can similarly be bounded in terms of ‖xa‖ and the error signals of interest,

xTa ẋa = xTaAaxa + xTa f
′
a(x) + xTa

 sinα 0 − cosα

− tan β cosα 1 − tan β sinα

xr (5.130)

xTa ẋa ≤ λmax(Aa)‖xa‖2 + ‖xa‖
(
‖f ′a(x)‖max +

√
2 + 2d2

β‖er‖+
√

2 + 2d2
β‖xr,m‖

)
(5.131)

where according to Assumptions 5.2.1, 5.2.2, and 5.2.4 the constant ‖f ′a(x)‖max is known. Finally

a bound in the form of (5.129) and (5.131) can be found for the following terms, which for the sake
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of brevity will be referred to as eTr ξ,

eTr ξ =eTr

(
I−1q̄S


bC`1(β̂ − β)

c̄Cm1(α̂− α)

bCn1(β̂ − β)

− eΦ − gr(x)ĝ−1
r (xc)Krer

−
(
gr(x)ĝ−1

r (xc)− 13

)
(−f̂r0 − Î−1q̄S


b2

2VT
Ĉ`pp

c̄2

2VT
Ĉmqq

b2

2VT
Ĉnrr

+ ẋr,m + eΦ + ν1)
)

(5.132)

If Kr is structured in the form Kr = kr13 where kr > 0 is a scalar, then the following bound holds

eTr ξ ≤− kr∆ḡrL‖er‖2 + ‖er‖

I−1q̄(VT,max)S

∥∥∥∥∥∥∥∥∥∥
bC`1

c̄Cm1

bCn1

∥∥∥∥∥∥∥∥∥∥
‖x̃‖

+ ‖er‖‖eΦ‖

+
√

3∆ḡr‖er‖
(
‖f̂r0‖max +

q̄(VT,max)S

2VT,max
Î−1

∥∥∥∥∥∥∥∥∥∥
b2Ĉ`p

c̄2Ĉmq

b2Ĉnr

∥∥∥∥∥∥∥∥∥∥
(‖er‖+ ‖xr,m‖)

+ ‖ẋr,m‖+ ‖eΦ‖+ Ŵmax

(
MT,max + q̄(VT,max)S +

q̄(VT,max)S

2VT,max
(‖er‖+ ‖xr,m‖

))
(5.133)

where Ŵmax is a positive bound determined by the projection operator and where, according to

Assumption 5.2.1, ‖f̂r0‖max is a known constant. With the above bounds in place, (5.128) can be
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rewritten compactly as

V̇ ≤ −1

2
λmin(Q)‖x̃‖2 + γ∗ − 1

2
λmin(KΦ)‖eΦ‖2 − 1

2
kr∆ḡrL‖er‖2

+
1

2
λmax(Aa)‖xa‖2 + ζ(‖x̃‖, ‖xa‖, ‖er‖, ‖eΦ‖)

(5.134)

where ζ(‖x̃‖, ‖xa‖, ‖er‖, ‖eΦ‖) is defined by,

ζ(‖x̃‖, ‖xa‖, ‖er‖, ‖eΦ‖) =



‖x̃‖

‖xa‖

‖er‖

‖eΦ‖



T 

m11 m12 m13 m14

m12 m22 m23 0

m13 m23 m33 m34

m14 0 m34 m44





‖x̃‖

‖xa‖

‖er‖

‖eΦ‖


+ 2



‖x̃‖

‖xa‖

‖er‖

‖eΦ‖



T 

b1

b2

b3

b4


(5.135)

ζ(‖x̃‖, ‖xa‖, ‖er‖, ‖eΦ‖) = vTMζv + 2vT bζ (5.136)

and where Mζ = MT
ζ . The matrix entries mij and vector entries bk are given in Appendix C.

Since the vector bζ is bounded, the function ζ(‖x̃‖, ‖xa‖, ‖er‖, ‖eΦ‖) has a unique global max-

imum if and only if the matrix Mζ is strictly negative definite, which can be tested for by checking

if its four principal minors alternate sign. The first principal minor must be negative. This is

equivalent to

Mζ,1 = m11 = −1

2
λmin(Q) < 0 (5.137)

which by definition of Q is always satisfied.

The second principal minor must be positive. This is equivalent to

Mζ,2 = m11m22 −m2
12 > 0 (5.138)(

−1

2
λmin(Q)

)(
1

2
λmax(Aa)

)
−K2

2 > 0 (5.139)
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If the conditions given by (5.112) and (5.113) hold, the second principal minor will always be

positive. Note that these conditions are conservative, i.e. there exist larger values of ∆C̄L1 and

∆C̄Y 1 (which lack a neat analytical form) for which (5.112) and (5.113) will be satisfied. From

here, it is straightforward to show that the designer chosen gains kr and KΦ can always be chosen

such that the third and fourth principal minors have the appropriate sign as long as (5.112) and

(5.113) hold. Therefore, (5.134) can be rewritten as

V̇ ≤ −1

2
λmin(Q)‖x̃‖2 + γ∗ − 1

2
λmin(KΦ)‖eΦ‖2 − 1

2
kr∆ḡrL‖er‖2

+
1

2
λmax(Aa)‖xa‖2 + |ζ|max

(5.140)

where |ζ|max is the unique global maximum of the function ζ . This implies that V̇ < 0 outside of

the compact set SGHV where

SGHV (x̃, xa, er, eΦ, W̃ ) =
{

(x̃, xa, er, eΦ, W̃ ) : ‖x̃‖2 ≤ 2 (|ζ|max + γ∗)

λmin(Q)

}
⋂{

(x̃, xa, er, eΦ, W̃ ) : ‖xa‖2 ≤ 2 (|ζ|max + γ∗)

λmax(Aa)

}
⋂{

(x̃, xa, er, eΦ, W̃ ) : ‖er‖2 ≤ 2 (|ζ|max + γ∗)

∆ḡrkr

}
⋂{

(x̃, xa, er, eΦ, W̃ ) : ‖eΦ‖2 ≤ 2 (|ζ|max + γ∗)

λmin(KΦ)

}
⋂{

(x̃, xa, er, eΦ, W̃ ) : ‖W̃‖ ≤ ‖W̃‖max
}

where ‖W̃‖max depends on the bound set by the projection operator. The Lyapnuov function V

cannot grow outside of this set. This implies that x̃, xa, er, eΦ, W̃ are UUB and therefore so is the

state vector x. The fact that x̃ and xa are bounded implies that x̂a is bounded as well. This implies

that the set Ωa(t) and therefore, the time-varying observer and controller gains HV T1, Hr1, and

Kr1 are also bounded. Thus, all closed-loop signals are proven to be UUB.
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5.6 Simulation Setup and Results

The NDI adaptive control architecture and nonlinear observer were implemented in the GHV

simulation and two example trajectories were explored. There were several objectives to the simu-

lation testing. The first goal was to track a commanded Euler angle trajectory, Φ∗d. The second goal

was to accurately estimate angle-of-attack and sideslip angle using the nonlinear observer designed

in Section 5.4. The third and final goal was to avoid the common problems associated with high

gain observers: the peaking phenomenon and large noise amplification.

The first trajectory tested was a 15 deg roll angle ramp command and hold, followed by a

return to level flight, followed by a 5 deg pitch angle ramp command and hold, followed finally by

a return to level flight. The second trajectory tested was a more aggressive roll angle command:

a 60 deg ramp command and hold followed by a return to level flight. All of the velocity level

measurement signals needed to drive the nonlinear observer (the body-axis angular rate and total

velocity measurements) were corrupted by noise. For both trajectories tested a low measurement

noise case and a high measurement noise case were examined. The low noise case was associated

with zero mean white noise and a standard deviation of 7.07ft/s and 0.1 deg /s, for total velocity

and the body-axis angular rates respectively while the high noise case was associated with zero

mean white noise and a standard deviation of 10ft/s and 0.5 deg /s, for total velocity and the

body-axis angular rates respectively.

The observer-gains were selected such that the matrix HO remains Hurwitz for the entire sim-

ulation as required. These gain values can be found in Appendix D. The bounded uncertainties

described in Assumption 5.2.2 are given in Table 5.1. Except for the moment of inertia bounds,

each uncertainty value listed is at least 20% of the magnitude of the assumed value of the param-

eters it is associated with, that is |∆C̄X | ≥ 0.2|ĈX | ∀X . The bounded uncertainties defined in
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Table 5.1: Aerodynamic Parameter Uncertainty Bounds

[
∆C̄L0 ∆C̄L1

]
=
[
0.005 0.22

]
[
∆C̄Y 0 ∆C̄Y 1

]
=
[
0.0001 0.06

]
[
∆C̄D0 ∆C̄D1 ∆C̄D2

]
=
[
0.002 0.006 0.02

]
[
∆C̄`0 ∆C̄m0 ∆C̄n0

]
=
[
1e− 6 2e− 4 1e− 6

]
[
∆C̄`1 ∆C̄`2 ∆C̄`3

]
=
[
0.004 1e− 6 1e− 6

]
[
∆C̄m1 ∆C̄m2 ∆C̄m3

]
=
[
0.005 0.005 0.05

]
[
∆C̄n1 ∆C̄n2 ∆C̄n3

]
=
[
0.01 1e− 6 1e− 6

]
[
∆C̄`p ∆C̄mq ∆C̄nr

]
=
[
0.018 0.018 0.096

]
[
∆Īx ∆Īy ∆Īz ∆Īxz

]
=
[
5 20 20 10

]
lbm ft2

∆C̄m,δ = .018

Assumption 5.2.3 and Assumption 5.2.4 are

∆̄gr = 0.2 (5.141)

dΘ = 1.4 (5.142)

dβ = 1.2 (5.143)

The body-axis angular rate reference model parameters were set to Am = −1513 and Bm = 1513.

The other relevant control parameters were set as follows: the tracking gains were set such that

Kr = 1513 and KΦ = 513. The adaptive gain matrix ΓW was set as a diagonal matrix with the

165



following vector along the diagonal

[
1e− 5(4) 1(7) 1e− 3(6)

]T
(5.144)

where each entry A(B) signifies the row vector

A(B) =

[
A A . . . A

]
∈ R1×B

In order to make the simulation more realistic, second-order actuator dynamics with damping ratio

ζ = 0.7 and natural frequency ωn = 25Hz were included and position and rate limits were placed

on the actuators of 30 deg and 100 deg /s, respectively. In addition, a time delay of 0.01s was

included in the simulation. The initial flight condition was a velocity of Mach 6 and altitude of

80, 000ft. The initial true angle-of-attack and sideslip angle were both 0 deg however the nonlinear

observer was initialized such that β̂(0) = 0.1 deg and α̂(0) = 0.5 deg. The maximum assumed

estimation error, defined in Assumption 5.2.5, was set to

x̃a(t0)max =

[
β̃(t0)max α̃(t0)max

]T
=

[
0.5 1

]T
deg

For comparison purposes, the set of simulation tests were also run using an ensemble Kalman

filter to estimate the vehicle’s aerodynamic angles instead of the nonlinear observer derived in this

paper. For the results shown in this section, the ensemble size was set to N = 100 members and

the process noise covariance matrix used, defined by Qf = E[wkw
T
k ] where wk represents a vector
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of zero-mean white process noise is given by

Qf =



E[w2
V T,k] 0 0 0

0 E[w2
Φ,k] 0 0

0 0 E[w2
a,k] 0

0 0 0 E[w2
r,k]


(5.145)

E[w2
V T,k] = 1 E[w2

Φ,k] =


0.01 0 0

0 0.1 0

0 0 0.01


E[w2

a,k] =

1e− 4 0

0 1e− 3

 E[w2
r,k] = 413

The measurement noise covariance matrix is defined as Rf = E[vkv
T
k ] where vk represents a

vector of zero-mean white measurement noise. The EnKF update procedure requires that Rf be

non-singular. Therefore, despite assuming perfect measurement of the vehicle’s Euler angles, the

measurement noise covariance matrix was set as

R =


E[v2

V T,k] 0 0

0 E[v2
Φ,k] 0

0 0 E[v2
r,k]

 =


E[v2

V T,k] 0 0

0 1e− 613 0

0 0 E[v2
r,k]

 (5.146)

where E[v2
V T,k] and E[v2

r,k] varied based on whether a low noise case or high noise case was being

examined. A brief mathematical description of the comparative EnKF used in this study was given

in Section 4.

Test Case 1: The first test case corresponds to the roll angle ramp followed by pitch angle ramp

maneuver described above. Figures 5.1 and 5.2 show the time histories of the state and control vec-

167



tors for the low noise case while Figures 5.3 and 5.4 show the results pertaining to the high noise

case. The upper two plots in Figures 5.1 and 5.3 show the estimation performance of both the non-

linear observer and the EnKF. Both estimation techniques are able to produce accurate estimates of

the aerodynamic angles, leading to successful tracking of the desired Euler angle trajectory shown

in Figures 5.2 and 5.4. Both estimation techniques led to very similar control surface responses

and no peaking phenomenon is seen. In the high noise case, the sideslip angle estimate generated

using the nonlinear observer was affected slightly more by measurement noise than the estimate

generated using the EnKF, however there is no noticeable effect on tracking performance.
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Figure 5.1: Test Case 1. Low Noise Case. True and estimated aerodynamic angle trajectories are
shown followed by the vehicle total velocity, and the control surface deflections.
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Figure 5.2: Test Case 1. Low Noise Case. Tracking performance of Euler angles and angular rates.

0 20 40 60 80

β
 (

d
e
g
)

-2

0

2
Nonlinear Observer

0 20 40 60 80
-2

0

2
Ensemble Kalman Filter

β

β̂

0 20 40 60 80

α
 (

d
e
g
)

-4

0

4

0 20 40 60 80
-4

0

4 α

α̂

0 20 40 60 80

V
T
 (

ft
/s

)

5864

5866

5868

0 20 40 60 80
5864

5866

5868

time (s)
0 20 40 60 80c

o
n
tr

o
l 
s
u
rf

a
c
e
s
 

  
  
  
 (

d
e
g
)

-20

0

20

time (s)
0 20 40 60 80

-20

0

20
δ

f,r

δ
f,l

δ
t,r

δ
t,l

Figure 5.3: Test Case 1. High Noise Case. True and estimated aerodynamic angle trajectories are
shown followed by the vehicle total velocity, and the control surface deflections.
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Figure 5.4: Test Case 1. High Noise Case. Tracking performance of Euler angles and angular
rates.

Test Case 2: The second test case corresponds to the more aggressive roll maneuver described

above. Figures 5.5 and 5.6 show the time histories of the state and control vectors for the low noise

case while Figures 5.7 and 5.8 show the results pertaining to the high noise case. Once again,

both estimation techniques produce accurate state estimates and the control objective is achieved

despite parametric uncertainty in the model and noisy measurement signals. The successful im-

plementation of this control framework in simulation demonstrates the nonlinear observer’s ability

to perform comparably to well established nonlinear Kalman filtering techniques while also being

provably stable in an NDI adaptive control setting.
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Figure 5.5: Test Case 2. Low Noise Case. True and estimated aerodynamic angle trajectories are
shown followed by the vehicle total velocity, and the control surface deflections.

Figure 5.6: Test Case 2. Low Noise Case. Tracking performance of Euler angles and angular rates.
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Figure 5.7: Test Case 2. High Noise Case. True and estimated aerodynamic angle trajectories are
shown followed by the vehicle total velocity, and the control surface deflections.
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Figure 5.8: Test Case 2. High Noise Case. Tracking performance of Euler angles and angular
rates.

5.7 Robustness Analysis

As in Section 4.7, a simulation-based analysis was performed in order to test the robustness of

the observer-based NDI adaptive controller with respect to parameter uncertainty. In analyzing the

six degree-of-freedom system, the assumed values of the aerodynamic coefficients CL1 and CY 1

were systematically varied and the effect on estimation and tracking performance was studied. As

in Section 4.7, the assumed parameter set was selected according to

ĈL1 = (1 + ∆L1)Ĉ0
L1

ĈY 1 = (1 + ∆Y 1)Ĉ0
Y 1
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Using the process described here, analyses varying more than two parameters at a time could also

be achieved. These two specific parameters were chosen due to their importance in generating

accurate aerodynamic angle estimates.

In each episode of the study, the vehicle was commanded to track a roll angle, pitch angle

or yaw angle doublet maneuver command of a randomly chosen magnitude. The Euler angle

doublet magnitudes varied between 1 and 6 deg for bank and pitch angle and between 1 and 3 deg

for heading angle. Each doublet command lasted for a total of 20 seconds as shown in the three

sample trajectories of Figure 5.9. As in the analysis of Section 4.7, all measurement noise had

zero mean and the covariances were randomly selected values between 50 and 100(ft/s)2 for total

velocity measurements and between 0.01 and 0.25(deg /s)2 for all angular rate measurements.

For this analysis, the number of episodes Nep was set to 60 (an even distribution of 20 each for

pitch angle, roll angle, and yaw angle commands) and tf was 40s. The average integrated square

error values of the aerodynamic angle estimation errors, Euler angle tracking errors, and angular

rate tracking errors were calculated according to (4.138) and (4.139) and the results are given in

Tables 5.2-5.9. As in Section 4.7, it is seen that the adaptive control mechanism leads to robustness

with respect to tracking performance in both the position-level and velocity-level states.
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Figure 5.9: Sample Euler angle trajectory used in robustness analysis. The varying doublet mag-
nitudes were selected randomly.
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Table 5.2: 6-DOF Controller Robustness Analysis. Average integrated square error of the
angle-of-attack estimation error over 40 seconds, ISEα̃ [deg2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆Y 1 = −0.25 16.11 7.08 2.64 1.03 1.28
∆Y 1 = −0.125 15.99 6.89 3.06 1.55 0.91
∆Y 1 = 0 15.63 6.76 2.61 0.80 1.42
∆Y 1 = 0.125 15.79 6.83 2.55 1.03 0.97
∆Y 1 = 0.25 15.64 6.67 2.43 0.84 0.91

Table 5.3: 6-DOF Controller Robustness Analysis. Average integrated square error of the
sideslip angle estimation error over 40 seconds, ISEβ̃ [deg2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆Y 1 = −0.25 1.06 0.88 0.83 0.98 1.03
∆Y 1 = −0.125 0.66 0.77 0.71 0.76 0.81
∆Y 1 = 0 0.59 0.70 0.65 0.65 0.81
∆Y 1 = 0.125 0.48 0.59 0.65 0.67 0.60
∆Y 1 = 0.25 0.55 0.61 0.60 0.76 0.71

Table 5.4: 6-DOF Controller Robustness Analysis. Average integrated square error of the
roll angle tracking error over 40 seconds, ISEeφ [deg2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆Y 1 = −0.25 0.41 0.34 0.32 0.38 0.39
∆Y 1 = −0.125 0.33 0.34 0.32 0.36 0.38
∆Y 1 = 0 0.33 0.36 0.32 0.34 0.41
∆Y 1 = 0.125 0.28 0.30 0.33 0.35 0.35
∆Y 1 = 0.25 0.27 0.31 0.31 0.36 0.38
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Table 5.5: 6-DOF Controller Robustness Analysis. Average integrated square error of the
pitch angle tracking error over 40 seconds, ISEeθ [deg2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆Y 1 = −0.25 0.62 0.63 0.45 0.44 0.44
∆Y 1 = −0.125 0.49 0.56 0.94 0.90 0.36
∆Y 1 = 0 0.35 0.44 0.56 0.33 0.56
∆Y 1 = 0.125 0.41 0.56 0.53 0.48 0.40
∆Y 1 = 0.25 0.47 0.41 0.38 0.37 0.35

Table 5.6: 6-DOF Controller Robustness Analysis. Average integrated square error of the
yaw angle tracking error over 40 seconds, ISEeψ [deg2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆Y 1 = −0.25 0.15 0.12 0.11 0.13 0.14
∆Y 1 = −0.125 0.12 0.12 0.11 0.12 0.14
∆Y 1 = 0 0.11 0.13 0.11 0.12 0.15
∆Y 1 = 0.125 0.10 0.11 0.12 0.12 0.12
∆Y 1 = 0.25 0.10 0.11 0.10 0.13 0.13

Table 5.7: 6-DOF Controller Robustness Analysis. Average integrated square error of the
roll rate tracking error over 40 seconds, ISEep [deg2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆Y 1 = −0.25 20.62 16.57 15.49 17.86 17.38
∆Y 1 = −0.125 16.87 17.37 16 16.55 18.13
∆Y 1 = 0 17.32 18.66 16.30 16.85 19.47
∆Y 1 = 0.125 14.64 15.43 16.81 16.89 16.79
∆Y 1 = 0.25 13.85 16.17 15.15 17.52 17.66

Table 5.8: 6-DOF Controller Robustness Analysis. Average integrated square error of the
pitch rate tracking error over 40 seconds, ISEeq [deg2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆Y 1 = −0.25 6.01 4.93 4.61 4.70 5.03
∆Y 1 = −0.125 5.12 5.44 4.66 4.88 4.27
∆Y 1 = 0 4.10 5.15 5.14 4.01 5.05
∆Y 1 = 0.125 4.70 4.65 4.94 4.38 3.98
∆Y 1 = 0.25 4.51 4.79 4.30 4.54 4.20
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Table 5.9: 6-DOF Controller Robustness Analysis. Average integrated square error of the
yaw rate tracking error over 40 seconds, ISEer [deg2]

∆L1 = −0.25 ∆L1 = −0.125 ∆L1 = 0 ∆L1 = 0.125 ∆L1 = 0.25

∆Y 1 = −0.25 0.55 0.47 0.45 0.52 0.50
∆Y 1 = −0.125 0.48 0.48 0.49 0.47 0.52
∆Y 1 = 0 0.49 0.53 0.48 0.49 0.57
∆Y 1 = 0.125 0.43 0.45 0.49 0.50 0.50
∆Y 1 = 0.25 0.40 0.48 0.44 0.51 0.51
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6. OBSERVER-BASED NONLINEAR DYNAMIC INVERSION ADAPTIVE CONTROL

WITH STATE CONSTRAINTS

6.1 Introduction

Based on the discussion of previous sections and the motivational issues presented in Section

1.1, it is evident that in order to successfully prevent inlet unstart, a hypersonic flight control system

would need to be able to enforce state constraints without direct measurements of the vehicle’s

aerodynamic angles. Therefore, in this section a simulation study is presented, within which a

state constraining controller is combined with the nonlinear observer developed in Sections 4 and

5. For this study, the BFSC controller developed in Section 3 was chosen as the state constraint

mechanism. The nonlinear observer is used to produce estimated aerodynamic angle values and

those values are then treated as truth and fed into the state constraining control law. As in Sections

4 and 5 the performance of the nonlinear observer is directly compared with that of an ensemble

Kalman filter.

When controlling nonlinear systems, it is exceedingly difficult to prove tracking error stability

when attempting to drive an unmeasured state to track a reference trajectory. Nonlinear controllers

that attempt to do this will be susceptible to steady-state errors as the controller will be based

on the estimated tracking error, ê = ym − ŷ, rather than the true tracking error, e = ym − y.

Therefore, if ê = 0 but e 6= 0 and the system is in steady-state, the controller will have no reason to

take corrective action. This is why in Sections 4 and 5 for example, Euler angle trajectories were

commanded once it was assumed that the aerodynamic angles were unavailable for measurement.

Nevertheless in practice it is not uncommon for systems to be developed that combine well-tested

estimation techniques with full state feedback control laws, treating the estimated values as truth.

In this section, a similar approach is taken and demonstrated on the GHV simulation.

This section will proceed as follows: First, the combined observer-based state constraining
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control laws will be presented. Then, the simulation study results will be given, demonstrating this

control framework’s ability to track and/or constrain the vehicle’s aerodynamic angles despite not

measuring them directly.

6.2 Control Law Development

In this section the combined observer-based state constraining controller is introduced. This

control law is based on the bounding function state constraint technique derived in Section 3. It is

developed in terms of the position-level and velocity-level subsystem breakdown of the GHV used

previously,

ẋp =



φ̇

θ̇

ψ̇

α̇

β̇


= fp(x) + gp(x)Λp


pd

qd

rd

 (6.1)

yp = Cpxp =

[
α β

]T
(6.2)

Cp =

0 0 0 1 0

0 0 0 0 1

 (6.3)
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ẋv =


ṗ

q̇

ṙ

 = fv(x) + gv(x)



δf,r

δf,l

δt,r

δt,l


(6.4)

yv =

[
p q r

]T
(6.5)

where it is assumed that Λp = 13 is known. In this section, the identity matrix will be signified

using the notation of Sections 4 and 5, i.e. 1M represents the M ×M identity matrix.

Let yp,m ∈ R2 be the aerodynamic angle reference model and yv,m ∈ R3 be the angular rate

reference model such that

ẏp,m = Ap,myv,m +Bp,m

αd
βd

 (6.6)

ẏv,m = Av,myv,m +Bv,m


pd

qd

rd

 (6.7)

The observer-based BFSC control laws are given by


pd

qd

rd

 = [Cpgp(xc)]
†
(
ẏp,m − Cf̂p(xc) +Kpêp + νp − F ′∗(ŷp)[ẏp,m +Kpyp,m]

)
(6.8)

u = ĝ−1
v (xc)

(
ẏv,m − f̂v(xc) + (Kv +Kv1(xc))ev + ν1 + ν2

)
(6.9)

Note that because the aerodynamic angles are not available for measurement, these control

laws depend on the vector xc, defined in Equation (5.19). The position-level tracking error term in
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(6.8) is also dependent on the estimated aerodynamic angles,

êp = yp,m −

α̂
β̂


The adaptive signal νp is defined as

νp = Ŵ T
p bp(xc) (6.10)

bp(xc) =

[
q̄

VT cos β̂

q̄

VT cos β̂
α̂ q̄

VT cos β̂
α̂2 q̄

VT

q̄
VT
β̂

]T
(6.11)

where the estimated weight matrix Ŵp is updated according to the adaptive law

˙̂
W p = ΓWpProjM

(
Ŵp, bp(xc)

(
êTp − ŷTp F ′(ŷp)

))
(6.12)

The bounding functions are constructed according to equations (3.7) and (3.8) but now depend on

the estimated aerodynamic angles. Therefore, the matrices F ′∗(ŷp) and F ′(ŷp) are given by

F ′∗(ŷp) =

 f ′b,1(α̂2)

1+f ′b,1(α̂2)
0

0
f ′b,2(β̂2)

1+f ′b,2(β̂2)

 (6.13)

F ′(ŷp) =

f ′b,1(α̂2) 0

0 f ′b,2(β̂2)

 (6.14)

All other parameters in equations (6.8)-(6.12) retain their meaning from Sections 3 and 5. The

feedback gain term K is defined in equation (3.16). The feedback gain Kv is equivalent to the gain

Kr defined in (5.41) and the time-varying feedback gain Kv1(xc) is equivalent to the gain Kr1(xc)

defined in (5.125). The adaptive parameters ν1 and ν2 retain they’re definitions from (5.61) and

(5.62) respectively.
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6.3 Simulation Setup and Results

The combined observer-based, state constraining NDI adaptive control architecture was im-

plemented in the GHV simulation and several example trajectories were explored. The first two

trajectories tested were 3 deg doublet commands, one in angle-of-attack and one in sideslip. These

examples do not test the state constraint mechanism but instead demonstrate the controllers ability

to track angle-of-attack and sideslip angle commands with bounded error despite not measuring

these angles directly. The second set of trajectories tested were 6 deg doublet commands, again one

in angle-of-attack and one in sideslip angle. These commands violate the state constraint values

defined in Sections 2 and 3. Therefore, these examples not only test the controllers ability to track

unmeasured states but to constrain them as well.

For all trajectories tested, the velocity level measurement signals needed to drive the nonlinear

observer (the body-axis angular rate and total velocity measurements) were corrupted by zero mean

white noise with a standard deviation of 3.16 ft/s and 0.1 deg/s, for total velocity and the body-axis

angular rates respectively. The observer-gains used for the results presented in this section were

the same as those used in Section 5 and can be found in Appendix D. Additionally, the bounded

uncertainties included in the simulation were identical to those found in Table 5.1 and Equations

(5.141)-(5.143).

The aerodynamic angle reference model parameters were set to Ap,m = −12 and Bp,m = 12

and the body-axis angular rate reference model parameters were set to Av,m = −1013 and Bv,m =

1013. The other relevant control parameters were set as follows: the tracking gains were set such
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that

Kp =

1 0

0 2

 (6.15)

Kv =


5 0 0

0 10 0

0 0 5

 (6.16)

The adaptive gain matrix ΓW,p was set as 1e− 315 and the adaptive gain matrix ΓW,v was set to the

diagonal matrix with the vector given in (5.144) along the diagonal. The process and measurement

noise covariance matrices, used in the comparative EnKF, were in the form of Equations (5.145)

and (5.146) where,

E[w2
V T,k] = 30 E[w2

Φ,k] =


1e− 5 0 0

0 0.1 0

0 0 1e− 5


E[w2

a,k] =

1e− 4 0

0 1e− 2

 E[w2
r,k] = 413

E[v2
Φ,k] = 1e− 613

As in previous sections, the simulation included second-order actuator dynamics with damping

ratio ζ = 0.7 and natural frequency ωn = 25Hz and actuator position and rate limits of 30 deg and

100 deg /s, respectively. In addition, a time delay of 0.01s was included in the simulation. The

initial flight condition was a velocity of Mach 6 and altitude of 80, 000ft.

Figures 6.1 and 6.3 show the time histories of the aerodynamic angles, using estimated values

in the control law, when 3 deg doublets were commanded. Total velocity and the control surface

deflections are shown as well. Results are given comparing the performance when the estimated
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values were generated using the nonlinear observer and when they were generated using the en-

semble Kalman filter. Successful tracking is achieved for both the angle-of-attack and sideslip

angle command cases. In Figure 6.3 it is seen that a small steady-state error occurs in the estimate

of angle-of-attack regardless of which estimation technique was used. As was mentioned above,

this control framework is susceptible to such steady-state errors. The corresponding Euler angle

and angular rate trajectories are shown in Figures 6.2 and 6.4.

Figures 6.5 and 6.7 show the time histories of the aerodynamic angles, using estimated values

in the control law, when 6 deg doublets were commanded. Since these commands exceed the

predetermined limits, the state constraint mechanism activates in both of these cases and successful

state constraint enforcement is seen. Once again, when sideslip angle was commanded, as seen in

Figure 6.7 a steady-state error in angle-of-attack occurred. Nevertheless, no state constraints are

exceeded and the control signals remain relatively smooth despite the activation of the bounding

functions. The corresponding Euler angle and angular rate trajectories are shown in Figures 6.6

and 6.8.
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Figure 6.1: Tracking of unmeasured states example. A 3 deg angle-of-attack doublet trajectory
was commanded.
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Figure 6.2: Tracking of unmeasured states example. Euler angle and angular rate trajectories are
shown for 3 deg angle-of-attack doublet command.
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Figure 6.3: Tracking of unmeasured states example. A 3 deg sideslip angle doublet trajectory was
commanded.
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Figure 6.4: Tracking of unmeasured states example. Euler angle and angular rate trajectories are
shown for 3 deg sideslip doublet command.
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Figure 6.5: Constraining of unmeasured states example. A 6 deg angle-of-attack doublet trajectory
was commanded.
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Figure 6.6: Constraining of unmeasured states example. Euler angle and angular rate trajectories
are shown for 6 deg angle-of-attack doublet command.
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Figure 6.7: Constraining of unmeasured states example. A 6 deg sideslip angle doublet trajectory
was commanded.
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Figure 6.8: Constraining of unmeasured states example. Euler angle and angular rate trajectories
are shown for 6 deg sideslip doublet command.
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7. SAMPLED-DATA NONLINEAR DYNAMIC INVERSION ADAPTIVE CONTROL

7.1 Introduction

Control of continuous time nonlinear systems with discrete controls, i.e. sampled-data sys-

tems, is a difficult task due in part to the inability to represent a nonlinear system with an exact

discrete time representation. Since for linear systems such exact representations can be achieved,

sampled-data controllers can be designed that not only stabilize the plant but also take into account

the inter-sample motion of the system and guarantee stability bounds between samples. In the lit-

erature, there are typically two options for handling nonlinear sampled-data systems: (Approach 1)

Develop a continuous time control law that stabilizes the continuous time system and then imple-

ment it discretely (Approach 2) Use an approximate discrete time model to represent the nonlinear

system and develop a controller based on the approximation. Through Approach 2, important

stability results that explain the relationship between an approximate discrete time model and an

exact model have been developed for a wide class of nonlinear systems [57, 58] however both

approaches have lead to successful results in the past [59]. The study of nonlinear sampled-data

control systems has been extended to examining backstepping approaches [60], model predictive

control [61], and output feedback control [62].

This section develops a nonlinear sampled-data controller along the lines of Approach 2, de-

scribed above. A class of nonlinear discretization schemes is utilized which allows for a discrete

time NDI control law to be implemented. Analysis of such discretization schemes, commonly

found in literature pertaining to numerical analysis or computational fluid dynamics, has be shown

to be useful in nonlinear control settings as well [9]. The presented NDI control law transforms

the problem of stabilizing the nonlinear discrete time system into a linear, discrete time adaptive

control problem for which many solutions have been developed. For stability purposes, this paper

focuses on a projection adaptive algorithm based on the methods presented in [63], however other
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algorithms such as recursive least squares, multiple models [64], or artificial neural networks [65]

could potentially be used as well. Conditions are given such that if the controller sampling time, T ,

is small enough, the proposed controller is guaranteed to stabilize the true continuous time system.

An important concern when developing sampled-data controllers is the establishment of an

explicit bound on the controller sampling time T such that the stability guarantees hold. For non-

linear systems, such a bound is difficult to obtain, once again due to the approximations associated

with the discrete time model, and has only been done for a few specific cases [66,67]. Although an

explicit bound is not provided for the control framework in this section, considerations for estab-

lishing such a bound are discussed and future research directions required for achieving that goal

are considered.

In this section, a class of nonlinear discretization schemes that allows for the use of NDI con-

trol is presented and application of these schemes to the uncertain nonlinear systems of interest

is explained. Next, the NDI control law is presented and it is shown that the nonlinear sampled-

data control problem can be transformed into a linear discrete time adaptive control problem. The

projection based adaptive algorithm is developed and stability of the algorithm in the context of

sampled-data systems is established. Finally, the effectiveness of this control framework is demon-

strated on a nonlinear simulation of an F-16 aircraft as well as the GHV. The F-16 simulation is

included in order to test out the sampled-data controller on a nonlinear system with slower dynam-

ics than a hypersonic vehicle.

7.2 Nonlinear Discretization Using Linear Multistep Methods

7.2.1 Introduction to Linear Multistep Methods

Many useful techniques have been developed in the fields of numerical methods and com-

putational fluid dynamics for approximating nonlinear differential equations with a discrete time

representation. These include well known numerical methods: Runge Kutta, Euler time marching

methods, and linear multistep methods (LMMs). Given a nonlinear ordinary differential equation
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of the form
dz

dt
= f(z, t) (7.1)

a general form for all linear multistep methods is given by

1∑
k=1−K

αkzn+k = hs

1∑
k=1−K

βkfn+k (7.2)

where hs is the integration step-size, fk = f(zk, khs), and αk, βk are constant coefficients. These

numerical methods are referred to as multistep or K-step methods because in order to progress the

method forward one time step, K instances of previous data must be used. When β1 = 0, these

methods are referred to as explicit LMMs and when β1 6= 0 they are referred to as implicit. For

many explicit LMMs, α1 = 1, and this section will focus specifically on this class of methods.

It was pointed out in [68] that if the nonlinear differential equation given in (7.1) represents a

dynamical system with state x and control input u such that

dx

dt
= f(x, u, t) (7.3)

then explicit LMMs can be used for control design because they allow one to represent a future

state based on current and past states and control inputs in a discrete time manner.

The numerical stability and convergence properties of explicit LMMs have been analyzed in

great detail [69,70]. For linear ordinary differential equations, analytical tools have been developed

which allow for one to calculate an explicit bound on hs for which a particular method will be nu-

merically stable and convergent. Unfortunately, for nonlinear systems, such analytical tools have

not been developed and more approximate methods must be used. One such option is to linearize

the nonlinear system of interest and use the linear analytical tools to find an approximate bound

on hs. Nevertheless, LMMs have been shown to accurately approximate the solution of nonlin-

ear ordinary differential equations in practice and with proper analysis given a specific nonlinear
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equation, they can be used reliably.

7.2.2 Discretization of a Nonlinear Control System with Parameter Uncertainty

Consider the following nonlinear affine-in-control system with discrete controls

ẋ = f(x) + Λg(x)u (7.4)

y = Cx (7.5)

where x ∈ Rns is the state vector, u ∈ Rm is the control vector with control sampling time

T , the vector f(x) ∈ Rns represents the nonlinear open-loop dynamics of the system which are

assumed to be bounded for bounded x, and Λg(x) ∈ Rns×m represents the control effectiveness

of the system. It is assumed that f(x) and the constant matrix Λ ∈ Rns×ns are unknown but

that the matrix g(x) ∈ Rns×m is known. It is also assumed that Λ has full rank. The vector

y ∈ Rp represents the outputs which are desired to be controlled where ns ≥ m ≥ p. The matrix

C ∈ Rp×ns is constant and assumed to have full rank. In order to simplify the development, the

scope of this section is limited to systems with no pure time delays. Past literature on discrete

time adaptive control often includes pure time delays (which are assumed to be known exactly)

in the systems of interest. However, these papers are typically examining exact discretizations of

linear systems if not a truly discrete system. Handling pure time delays in a sampled-data system

with an approximate discrete model is a more complicated problem that will be the focus of future

research.

The system (7.4) can be approximated by an explicit LMM in the following way,

xn+1 = −
0∑

k=−K

αkxn+k + T
0∑

k=−K

βk (fn+k + Λgn+kun+k) (7.6)

It is assumed that full state measurements are available and that the system is equipped with sensors

with sampling time Ts such that γTs = T where γ ≥ 1 is an integer.
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Common applications of LMMs such as computational fluid dynamics typically have the fol-

lowing two properties: (P1) Assumed perfect knowledge of the equations of motion and (P2) the

inability to take frequent accurate measurements of the system state in real time. Note that in order

to initialize the discrete sequence given in (7.6), K previous data points are required. Since often,

these data points can’t be directly measured, they are usually approximated by a 1-step approxi-

mation method or by some other means.

In a controls setting however, the opposite of properties (P1) and (P2) is true. As mentioned

above, uncertainty is assumed in f(x) and Λ, and we assume that consistent and accurate sensor

readings are available. Therefore the sequence (7.6) can be initialized using actual measurements

of the system, and moreover the entire discretization scheme can be redefined to utilize the real-

time measurement updates as

xn+1 = −
0∑

k=−K

αkx((n+ k)T ) + T
0∑

k=−K

βk (f(x((n+ k)T )) + Λg(x((n+ k)T ))un+k) (7.7)

The following lemma shows that if T is small enough such that the sequence given in (7.6) is

numerically stable and convergent, the sequence given in (7.7) is numerically stable and convergent

as well.

Lemma 7.2.1. Consider a continuous time system described by (7.4) whereK equally spaced, ex-

act measurements of the system state over the lastKT seconds have been collected. For notational

clarity, let one discrete time model of the system {x̄n} be defined as

x̄n+1 = −
0∑

k=−K

αkx̄n+k + T
0∑

k=−K

βk (fn+k + Λgn+kun+k)

where fk = f(x̄k) and gk = g(x̄k), and let another discrete time model {xn} be defined by (7.7).

If the sequence {x̄n} is numerically stable and convergent, {xn} is also numerically stable and

convergent.
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Proof. The definition of every element in the sequence {xn} is equivalent to initializing the se-

quence {x̄n} with K previous exact measurements of the state and progressing forward one time

step using the explicit LMM form. In other words, if at any point in time n, initialization of {x̄n} is

done by exact measurements of the state, then x̄n+1 = xn+1. By definition, if {x̄n} is numerically

stable and convergent then there exists a constant ε(T ) for which

|x̄n − x(nT )| < ε(T ) ∀n (7.8)

By the above argument the following also holds,

|xn+1 − x((n+ 1)T )| < ε(T ) (7.9)

Since this line of reasoning can be made regardless of the specific value of n, the condition (7.9)

holds for all n, which implies that the sequence {xn} is numerically stable and convergent as

intended.

Since it has been proven that for small enough T , the discrete model given by (7.7) will be nu-

merically stable and convergent, that sequence will be used as the discretization method of choice.

Furthermore, the output equation can now be represented discretely as,

yn+1 = Cxn+1 = −C
0∑

k=−K

αkx((n+k)T )+CT
0∑

k=−K

βk (f(x((n+ k)T )) + Λg(x((n+ k)T ))un+k)

(7.10)

The scope is restricted to systems where the product Cg(x) has full rank for all x. This allows for

the development of a discrete time nonlinear dynamic inversion control law.
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7.3 Control Law Development

Given the discussion of the previous section, the control objective is to drive the discretized

output sequence {yn}, defined in (7.10), to track a bounded desired reference trajectory, {y∗n}. In

other words, it is desired that

lim
n→∞

|yn − y∗n| = 0 (7.11)

Due to the numerical stability and convergence conditions of LMMs, discussed in Section 7.2,

achieving this control objective will guarantee that

lim
n→∞

|y(nT )− y∗n| < ε(T ) (7.12)

that is, the continuous time system will track the desired trajectory with bounded error. The non-

linear dynamic inversion control law is given by

un = [Cg(x(nT ))]−1

(
−Cf̂(x(nT )) +

1

Tβ0

(Ge(nT ) + vn)

)
(7.13)

where f̂(x) is an assumed model for the open-loop dynamics, e(nT ) is the tracking error defined

as e(nT ) = y(nT ) − y∗n, the matrix G ∈ Rp×p is a constant feedback gain and vn ∈ Rp is a

pseudo-control signal which will be made up of adaptive signals which can account for parameter

uncertainty. Because C and Λ are assumed to have full rank and ns ≥ p, there exists a full

rank, unknown constant matrix Λ̄ = CΛC† ∈ Rp×p where C† is a pseudoinverse of C, such that

Λ̄C = CΛ. Therefore, substitution of the control law (7.13) into (7.10) results in

yn+1 =−
0∑

k=−K

αkCx((n+ k)T ) + T
0∑

k=−K

βk

(
Cf(x((n+ k)T ))− Λ̄Cf̂(x((n+ k)T ))

)
+

0∑
k=−K

βk
β0

Λ̄ (Ge((n+ k)T ) + vn+k)

(7.14)
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It is assumed that the following parameterization can be accurately formed,

T
(
Cf(x(nT ))− Λ̄Cf̂(x(nT ))

)
= W T b(x(nT )) (7.15)

whereW ∈ R`×p is a matrix of unknown constant weights and b(x(nT )) ∈ R` is a vector of known

nonlinear basis functions that depend on the system state. Substitution into (7.14) results in

yn+1 = −
0∑

k=−K

αkCx((n+ k)T ) +
0∑

k=−K

βkW
T b(x((n+ k)T )) +

βk
β0

Λ̄ (Ge((n+ k)T ) + vn+k)

(7.16)

Each element of the output vector yn+1,i can be rewritten as

yn+1,i = φTn,iΘi (7.17)

where

φn,i =[
vTn ...v

T
n−K yi(nT )...yi((n−K)T ) (Ge(nT ))T ...(Ge((n−K)T ))T bT (x(nT ))...bT (x((n−K)T ))

]T
(7.18)

Θi =

[
β0

β0
Λ̄i...

β−K
β0

Λ̄i α0...α−K
β0

β0
Λ̄i...

β−K
β0

Λ̄i β0W
T
i ...β−KW

T
i

]T
(7.19)

The entries Λ̄i and W T
i represents the ith row of Λ̄ and W T respectively. The expression (7.17),

where φn,i is made up of known entries and Θi is made up of unknown entries is a common form

used for solving discrete time linear adaptive control problems. Thus the nonlinear problem has

successfully been transformed into a linear one for which several algorithms have been developed

in the past [63, 64, 71]. In the following section one such adaptive algorithm is shown in order to

solve for the pseudo-control, vn, that will achieve the control objective. The presented algorithm
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uses a projection adaptive law, which guarantees that the estimate of the unknown parameters,

defined as Θ̂n,i remains bounded for all n.

7.4 Discrete Time Adaptive Control Algorithm

The system described by the discrete time model given by (7.7),(7.10) can be represented in

the autoregressive moving average (ARMA) form by


A1(q−1

d ) . . . 0

... . . . ...

0 . . . Ap(q
−1
d )

 yn =


B1,1(q−1

d ) . . . B1,(2p+`)(q
−1
d )

... . . . ...

Bp,1(q−1
d ) . . . Bp,(2p+`)(q

−1
d )




vn

Ge(nT )

b(x(nT ))

 (7.20)

where Ai(q−1
d ) and Bij(q

−1
d ) are scalar polynomials in the unit delay operator, q−1

d . In order to

guarantee stability of the closed-loop system, the following assumption must be satisfied

Assumption 7.4.1. The system given by (7.20) must satisfy the condition that the matrix


z−TB1,1(z) . . . z−TB1,p(z)

... . . . ...

z−TBp,1(z) . . . z−TBp,p(z)

 (7.21)

has full rank for |z| < 1.

Note that for each output yn,i, at least one polynomialBij(q
−1
d ), with 1 < j < p, will have a leading

coefficient associated with the unit delay operator q−1
d raised to the power T . These are leading

coefficients in the sense that for all i, j there are no terms in any of the polynomials Bij(q
−1
d )

of the form, m0(q−1
d )m1 where m0 is a constant coefficient and m1 < T . Assumption (7.4.1) is

equivalent to requiring that the matrix of these leading coefficients has full rank. This assumption

is also equivalent to requiring that the transfer function between the output vector and the pseudo-

control vector, vn, be minimum-phase. The assumption is required in order to guarantee that if the
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system parameters were known perfectly, any bounded desired output sequence could be achieved

by a bounded pseudo-input sequence, {vn}.

7.4.1 Mathematical Preliminaries

In order to proceed with the stability analysis, two technical lemmas must be introduced. The

first lemma is common in discrete time adaptive control literature.

Lemma 7.4.1. Given the real scalar sequences {sn}, {b1,n}, {b2,n} and the vector sequence {σn}

where

lim
n→∞

s2
n

b1,n + b2,nσTnσn
= 0 (7.22)

If the following conditions hold,

0 < b1,n < C0 <∞, 0 < b2,n < C0 <∞ ∀n > 0 (7.23)

‖σn‖ < C1 + C2 max
0≤τ≤n

|sτ | (7.24)

where C0, C1, and C2 are bounded constants, then

lim
n→∞

sn = 0 (7.25)

and {‖σn‖} is bounded. Condition (7.23) is known as the uniform boundedness condition and

condition (7.24) is known as the linear boundedness condition.

For a detailed proof of lemma 7.4.1, readers are directed to [63]. The second technical lemma

is also common in the discrete adaptive control literature but is modified from its usual form to

account for the nonlinear dynamic inversion controller.
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Lemma 7.4.2. Given the system (7.20) subject to Assumption 7.4.1, if

max
1≤i≤p

0≤τ≤n+1

|yτ,i| = C3 (7.26)

then there exist constants C4 and C5, such that

∥∥∥∥∥∥∥∥∥∥
vn′

Ge(n′T )

b((x(n′T )))

∥∥∥∥∥∥∥∥∥∥
≤ C4 + C3C5 ∀ 0 ≤ n′ ≤ n (7.27)

Proof. By requiring that the matrix (7.21) has full rank, Assumption 7.4.1 also implies that the

matrix 
z−TB1,1(z) . . . z−TB1,(2p+`)(z)

... . . . ...

z−TBp,1(z) . . . z−TBp,(2p+`)(z)

 (7.28)

has full rank for |z| < 1. This implies that (7.28) has a stable pseudoinverse which is all that is

required to ensure that the inequality (7.27) holds.

7.4.2 Adaptive Control Law

Let the discrete model tracking error, ẽn, be defined as

ẽn = yn − y∗n (7.29)

As was shown in equations (7.11), (7.12) if the control objective of driving {ẽn} → 0 as n → ∞

is achieved it will imply that e(nT ) is bounded as n→∞. Referencing (7.17) it is clear that if the

pseudo-control law could be calculated such that

y∗n+1,i = φTn,iΘi (7.30)
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for all i, the control objective would be met. Note that in the output equation given by (7.16), the

coefficient of vn is the full rank matrix Λ̄. This implies that in the known parameter case, i.e. if Θi

were known perfectly for all i, a unique solution would always exist for vn. Since the real Θi are

not known, the pseudo-control law is instead calculated using the equation

y∗n+1,i = φTn,iΘ̂n,i (7.31)

where {Θ̂n,i} is a sequence of estimates of the true parameters Θi which is updated through the

adaptive law,

Θ̂n,i = Θ̂n−1,i +
anφn−1,i

ΓΘ,i + φTn−1,iφn−1,i

(
yn,i − φTn−1,iΘ̂n−1,i

)
(7.32)

where 0 < ΓΘ,i <∞ is a designer chosen bounded gain term. The term an is specifically designed

to guarantee that the coefficient of vn in the pseudo-control law (7.31) is nonsingular and therefore

a unique solution for vn will always exist. Given some ε̄ such that 0 < ε̄ < 1, the term an must

satisfy the following two conditions

ε̄ < an < 2− ε̄ (7.33)

an is not an eigenvalue of−R−1
n−1Qn (7.34)
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where

S =

[
Ip×p 0p×(3K+2)p+(K+1)`

]
Rn−1 =

[
r1 . . . rp

]
ri = SΘ̂n−1,i

Qn =

[
q1 . . . qp

]
qi = S

φn−1,i

ΓΘ,i + φTn−1,iφn−1,i

(
yn,i − φTn−1,iΘ̂n−1,i

)

Each ri is a vector of the coefficients of vn in Θ̂n−1,i and each qi is a vector of the changes to

those coefficients each time the adaptive law (7.32) is applied. Setting an = 1 will almost always

allow for a unique solution for vn and therefore, the proof that (7.33) and (7.34) guarantee a unique

solution is omitted. Readers are once again directed to [63]. The adaptive law (7.32) is considered

a projection algorithm because through its use, {Θ̂n,i} will never become unbounded. This will

be proven in the following section. It will also be shown that through the use of this adaptive

law, along with the pseudo-control law (7.31) and the actual NDI control law (7.13) the control

objective will be achieved.

7.4.3 Stability Proof

Lemma 7.4.3. Given the system (7.17), application of the pseudo-control law (7.31) and the adap-

tive law (7.32) results in

‖Θ̃n,i‖2 − ‖Θ̃n−1,i‖2 ≤ 0 (7.35)

lim
n→∞

ẽn,i(
ΓΘ,i + φTn,iφn,i

)1/2
= 0 (7.36)

for all i where Θ̃n,i = Θ̂n,i −Θi.
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Proof. Using the adaptive law (7.32), the vector Θ̃n,i can be written as

Θ̃n,i = Θ̃n−1,i −
anφn−1,i

ΓΘ,i + φTn−1,iφn−1,i

(
φTn−1,iΘ̃n−1,i

)
(7.37)

This implies that

‖Θ̃n,i‖2 − ‖Θ̃n−1,i‖2 = an

(
−2 + an

‖φn−1,i‖2

ΓΘ,i + ‖φn−1,i‖2

)(
(φTn−1,iΘ̃n−1,i)

2

ΓΘ,i + ‖φn−1,i‖2

)
(7.38)

which is less than or equal to zero as long as an < 2, a condition that is guaranteed by its definition

in (7.33). Thus, (7.35) is proven. Moreover, this implies that Θ̃n,i is a bounded, non-increasing

function and therefore it converges.

Note that the third term on the right hand side of (7.38) can be rewritten as

(φTn−1,iΘ̃n−1,i)
2

ΓΘ,i + ‖φn−1,i‖2
=

(φTn−1,iΘ̂n−1,i − φTn−1,iΘi)
2

ΓΘ,i + φTn−1,iφn−1,i

=
(yn−1,i − y∗n−1,i)

2

ΓΘ,i + φTn−1,iφn−1,i

=
ẽ2
n−1,i

ΓΘ,i + φTn−1,iφn−1,i

(7.39)

Therefore, since 0 < an < 2, condition (7.35), which has now been proven, implies that

lim
n→∞

ẽ2
n−1,i

ΓΘ,i + φTn−1,iφn−1,i

= 0 (7.40)

which also implies,

lim
n→∞

ẽn−1,i(
ΓΘ,i + φTn−1,iφn−1,i

)1/2
= 0 (7.41)

Through a unit time shift (7.41) is equivalent to (7.36).

Theorem 8. Consider the nonlinear continuous time system with discrete controls described by

(7.4) where T is small enough such that the linear multistep method approximation given by (7.6)

is numerically stable and convergent. If the nonlinear dynamic inversion control law (7.13) is

implemented with the pseudo-control signal vn being calculated using (7.31) and (7.32) and if
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Assumption 7.4.1 is satisfied, then {yn}, {un} are bounded and

lim
n→∞

ẽn = 0 (7.42)

which ensures that e(nT ), the tracking error for the continuous time system is bounded.

Proof. Examining (7.36), the second result of Lemma 7.4.3, it can be seen that the uniform bound-

edness condition is satisfied as

0 < b1,n = ΓΘ,i < C0 <∞ 0 < b2,n = 1 < C0 <∞ ∀n > 0 (7.43)

Assumption 7.4.1 and Lemma 7.4.2 imply that

∥∥∥∥∥∥∥∥∥∥
vn′

Ge(n′T )

b((x(n′T )))

∥∥∥∥∥∥∥∥∥∥
≤ C4 + C5 max

1≤i≤p
0≤τ≤n+1

|yτ,i| ∀ 0 ≤ n′ ≤ n (7.44)

Therefore, using (7.18), the definition of φn,i, it can be shown that

‖φn,i‖ ≤ K

C4 + max(C5, 1) max
1≤i≤p

0≤τ≤n+1

|yτ,i|

 (7.45)

Since it is assumed that the desired trajectory sequence {y∗n,i} is bounded, there exists a constant

C6 such that

y∗n,i ≤ C6 ∀ n (7.46)

Therefore,

|ẽn,i| ≥ |yn,i| − |y∗n,i| ≥ |yn,i| − C6 (7.47)
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Furthermore, there exists a constant C7 ≥ 1 such that

max
1≤i≤p

0≤τ≤n+1

|yτ,i| ≤ C7 max
0≤τ≤n+1

|yτ,j| ∀ 1 ≤ j ≤ p. (7.48)

The inequalities (7.47) and (7.48) imply that

‖φn,i‖ ≤ K

(
C4 + max(C5, 1)C7 max

0≤τ≤n+1
(|ẽτ,i|+ C6)

)
∀ 0 ≤ n′ ≤ n (7.49)

which, after collecting terms and redefining constants, allows one to write

‖φn,i‖ ≤ C∗1 + C∗2 max
0≤τ≤n+1

|ẽτ,i| (7.50)

where C∗1 and C∗2 are bounded constants. Therefore, the linear boundedness condition is satisfied

as well and Lemma 7.4.1 can be invoked. This implies

lim
n→∞

ẽn,i = 0 (7.51)

and {φn,i} is bounded. The boundedness of {φn,i} ensures the boundedness of {vn} and {yn,i}.

Furthermore, since the line of reasoning used in this proof can be made for all i,

lim
n→∞

ẽn = 0 (7.52)

and {φn,i}, {yn,i} are bounded for all i. This implies that e(nT ) is bounded. Since it was assumed

that f(x) (and therefore f̂(x)) is bounded for bounded x and that Cg(x) is invertible for all x, the

above implies that {un} is bounded as well.

Remark 7.4.1. Commentary on Bounding the Control Sample Time, T :
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Several conditions must be considered in order to produce and estimate of how large T can get

such that the above stability analysis will hold. First and foremost, the region of convergence for

the chosen explicit LMM must be analyzed. Linearizing the nonlinear system to establish an ap-

proximate bound or Monte Carlo analysis could be used to achieve this. Secondly, Assumption

7.4.1 must hold, which may or may not depend on T .

Another thing to consider that could be affected by the sample time is the violation of actuator

position or rate constraints. Assumption 7.4.1 guarantees that a bounded desired output can be

achieved by a bounded input, but surely there is some relationship between T and how large of an

input is required.

7.5 F-16 Simulation Example

7.5.1 Simulation Setup

The sampled-data nonlinear dynamic inversion adaptive controller was implemented on a non-

linear simulation of an F-16 aircraft developed by Ying Huo at the University of Southern Cali-

fornia, based off of the equations of motion and data given in [72, 73]. In order to accurately test

the above theory, the simulation was modified such that the aircraft was equipped with discrete

controls with a fixed sample time, T . The vehicle’s state vector x ∈ R13 is given by

x =

[
VT α β φ θ ψ p q r Ndis Edis h Peng

]T

and the output desired to be controlled was the vehicle’s body-fixed angular rates,

y =

[
p q r

]T
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The output dynamics used in the simulation are given by the following differential equations,

ṗ =
Iy − Iz
Ix

qr +
Ixz
Ix

(ṙ + pq) +
q̄Sb

Ix
C`

q̇ =
Iz − Ix
Iy

pr +
Ixz
Iy

(r2 − p2) +
q̄Sc̄

Ix
Cm − (hE)r

ṙ =
Ix − Iy
Iz

pq +
Ixz
Iz

(ṗ− qr) +
q̄Sb

Iz
Cn + (hE)q

where the aerodynamic coefficients C`, Cm, Cn are modeled in lookup tables based on wind tunnel

test data found in [73]. In order to formulate an estimate of the output dynamics (Cf̂(x)) these

coefficients were approximated as constant coefficient polynomials of the form

Ĉ` = Θ̂L1β + Θ̂L2
b

2VT
p+ Θ̂L3

b
2VT

+ Θ̂L4δa + Θ̂L5δr

Ĉm = Θ̂M1 + Θ̂M2α+ Θ̂M3
c̄

2VT
q + Θ̂M4

c̄
2VT

αq + Θ̂M5
c̄

2VT
α2q + Θ̂M6

c̄
2VT

α3q + Θ̂M7α
4 + Θ̂M8δe

+Θ̂M9α
2δe + Θ̂M10α

3δe

Ĉn = Θ̂N1β + Θ̂N2
b

2VT
p+ Θ̂N3

b
2VT

r + Θ̂N4β
2 + Θ̂N5β

3 + Θ̂N6δa + Θ̂N7δr

The methodology for forming these polynomials along with the values used for the constant coef-

ficients, Θ̂i, can be found in [74]. The nonlinear coefficients associated with the control effectors

δa, δe, δr made up the matrix CΛ̂g(x) while the remaining terms were included in Cf̂(x). Additive

uncertainty was also included in the estimated moment of inertia values as

Îx = Ix + 10 slug-ft2

Îy = Iy + 20 slug-ft2

Îz = Iz + 20 slug-ft2

Îxz = Ixz + 5 slug-ft2

For this simulation study, the explicit linear multistep method selected to approximate the nonlinear

system with a discrete time model was the second-order Adams-Bashforth method. This method
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is characterized by the coefficient set

α1 = 1 α0 = −1 αk = 0 ∀k < 0

β0 =
3

2
β−1 = −1

2
βk = 0 ∀k < −1

such that the discrete time output, Equation (7.10), can be written as

yn+1 = y(nT )+
3T

2
C

f(x(nT )) + Λg(x(nT ))


δa,n

δe,n

δr,n




− T

2
C

f(x((n− 1)T )) + Λg(x((n− 1)T ))


δa,n−1

δe,n−1

δr,n−1

)


The vehicle is equipped with throttle control which was kept at the trim value throughout the du-

ration of the simulation. Therefore, the control law (7.13) is only applied to vehicle’s control

surfaces: aileron, elevon and rudder. The basis functions used, which were defined in (7.15) and

help to account for the uncertainty in the moment coefficients and the moment of inertia values,

were given by the vector

b(x(nT )) =[
β b

2VT
p b

2VT
r 1 α c̄

2VT
q c̄

2VT
αq c̄

2VT
α2q c̄

2VT
α3q α4 β2 β3 pr pq qr r2 − p2

]T

The adaptive gain terms ΓΘ,i were set as
ΓΘ,p

ΓΘ,q

ΓΘ,r

 =


0.01

1

1

 (7.53)
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and the feedback gain G was set as 1013. Having specified the Adams-Bashforth second-order

method and defining the basis functions, the known vectors φn,i given in (7.18) can be defined

more specifically as

φn,i =

[
vTn vTn−1 yi(nT ) (Ge(nT ))T (Ge((n− 1)T ))T bT (x(nT )) bT (x(n− 1)T )

]T

such that

yn+1,i = φTn,iΘi

as required by the theory. With Cf̂(x), g(x), b(x(nT )), and φn,i defined, the control law (7.13)

can be implemented.

7.5.2 Results

Two test cases were used to evaluate the effectiveness of the presented control framework and to

analyze the effect of varying controller sample times. In the first case a sample time of T = 0.1sec

(10Hz) was used and in the second case a sample time of T = 0.4sec (2.5Hz) was used. The

same desired trajectory, {y∗n}, was used for both cases and was designed specifically to excite both

the longitudinal and lateral/directional axes of the aircraft.

For comparison purposes, the baseline tracking controller presented in Section 1 was also im-

plemented in the F-16 simulation using a sampler and a zero-order hold. The purpose of this

comparison was to demonstrate the fact that provably stable continuous time control laws can lead

to instability once sampling is introduced to the system. The values of the control deflections were

calculated according to the continuous time control law at each sample time T and kept constant

for the remainder of the sampling period.

For each simulation that was analyzed, the vehicle was initialized at a trim condition of VT =

750ft/s, h = 20, 000ft and xcg = 0.25c̄.

Test Case 1: T = 0.1s
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The chosen desired trajectory consists of a doublet command for the body-axis roll rate p and a

step command and hold for the body-axis pitch rate q followed by a return to commanding q = 0.

In order to excite both axes of the aircraft the pitch rate step command is given before the roll

rate maneuver has been completed. Figure 7.1 shows the trajectory of the system outputs for the

first case. The sampled-data control law allows the vehicle to closely track the reference trajectory

despite the dynamic coupling and parametric uncertainty. When the continuous time control law is

implemented with the sampling time T = 0.1s, the vehicle roughly follows the reference trajectory

however it is clear that the tracking performance is not as good as the performance generated using

the sampled-data law. In Figure 7.2 the control signals, aerodynamic angles (α and β), and Euler

angle trajectories are presented. Once again the sampled-data control law is compared with the

sampled, continuous time control law.

Test Case 2: T = 0.4s

During the second test case, the reference trajectory remained the same but the sampling rate was

slowed to 2.5Hz. Figure 7.3 shows the trajectories for the system outputs for this case. The

sampled-data control law was once again able to track the reference trajectory although a clear

degradation in performance is seen with the longer sampling period. In particular, the vehicle’s

roll and yaw rates become slightly oscillatory. On the other hand, the continuous time control law

quickly destabilizes the system. Despite extensive tuning, no set of gains was found for which the

system did not diverge when the continuous time controller was implemented with a sampling rate

of 2.5Hz. The performance benefits of utilizing a control law specifically designed for a system

with discrete controls are clear. Figure 7.4 once again shows the control signal, aerodynamic angle,

and Euler angle trajectories.
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Figure 7.1: Output trajectories for Test Case 1. Results using the sampled-data control law are
shown on the left, results using the continuous time control law are shown on the right.

7.6 GHV Simulation Example

The sampled-data NDI adaptive controller was also implemented on the generic hypersonic

vehicle simulation. Although hypersonic vehicles are typically equipped with very fast actuators,

this simulation study was done in order to test out how the sampled-data control law performs on

a system with very fast dynamics. Therefore, the GHV was modified such that a digital control

signal with a designer chosen controller sample time could be implemented.

The control objective was to track a desired body-axis angular rate trajectory. In all examples

shown the GHV was commanded to track the same trajectory as the F-16 in Section 7.5, once

again exciting both the longitudinal and lateral/directional modes simultaneously. The parameter
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Figure 7.2: Controls, aerodynamic angles, and Euler angles for Test Case 1. Results using the
sampled-data control law are shown on the left, results using the continuous time control law are
shown on the right.

uncertainty included in the dynamical model had the same bounds as those used in the simulation

studies of Sections 2 and 3. The basis functions used in the adaptive law, b(x(nT )), are given by
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Figure 7.3: Output trajectories for Test Case 2. Results using the sampled-data control law are
shown on the left, results using the continuous time control law are shown on the right.

Equation (2.50). The adaptive gain terms ΓΘ,i were set as
ΓΘ,p

ΓΘ,q

ΓΘ,r

 =


1

1

1

 (7.54)

and the feedback gain G was set as 13. Once again, the explicit LMM used was the second-order

Adams-Bashforth method. No time delay was included in the simulation and the initial flight con-

dition was a velocity of Mach 6 and an altitude of 80, 000ft.

Test Case 1: Comparision with Continuous Time Control Law with Zero-Order Hold
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Figure 7.4: Controls, aerodynamic angles, and Euler angles for Test Case 2. Results using the
sampled-data control law are shown on the left, results using the continuous time control law are
shown on the right.

The sampled-date control law was compared with the baseline tracking NDI controller of Section

1. The continuous time control law was implemented using a sampler and zero-order hold. The

controller sample time used in the simulation was T = 0.01s. Any sample time larger than this led

to an extremely oscillatory response when using the continuous time control law. The sampled-data
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control law was able to handle larger control sample times, as will be shown in Test Case 2. Figure

7.5 shows the tracking performance comparison between the two control laws. The response using

the continuous time control law is much more oscillatory than the sampled-data controller. Ad-

ditionally, the sampled-data controller has no problem achieving the control objective despite the

extremely fast dynamics. The aerodynamic angles, total velocity, and control surface deflections

are shown in Figure 7.6 and the Euler angles are shown in Figure 7.7.

Test Case 2: Controller Sample Time Comparison

In this test case, the controller sample time was varied in order to see how large of a sample time

the controller could handle while still producing an acceptable vehicle response. Figure 7.8 shows

the response of three different samples times: T = 0.05s, T = 0.1s and T = 0.15s. As the sample

time increases, more oscillation is seen in the response. Nevertheless, this test case demonstrates

the ability of the sampled-data NDI control law to successfully track a reference trajectory on a

hypersonic vehicle with a controller sampling frequency of 10Hz or slower. The aerodynamic

angles, total velocity, and control surface deflections are shown in Figure 7.9 and the Euler angles

are shown in Figure 7.10.
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Figure 7.5: GHV comparison of sampled-data control law and continuous time control law with
sampler. T = 0.01s
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Figure 7.6: GHV comparison of sampled-data control law and continuous time control law with
sampler. Aerodynamic angles, total velocity and control surface deflections are shown.
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Figure 7.9: GHV comparison of different controller sample times. Aerodynamic angles, total
velocity and control surface deflections are shown.
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8. CONCLUSIONS

This dissertation extended the technique of nonlinear dynamic inversion adaptive control to ad-

dress several practical problems in control theory: specifically in hypersonic flight control. Novel

approaches were developed for each of the research issues presented in Section 1.1. Except when

specifically noted and justified, all of the algorithms presented in this dissertation were rigorously

proven to produce stable system responses. Furthermore, the controllers developed herein were

demonstrated in nonlinear simulation and shown to be potentially useful algorithms for controlling

hypersonic vehicles. The following conclusions are drawn:

1. Two state constraining nonlinear dynamic inversion adaptive controllers were developed and

rigorously proven to stabilize a nonlinear system containing parametric uncertainty. It was

shown that the desired system outputs are bounded to their designer chosen constraint sets.

If nothing is forcing the outputs outside of the constraint set, the two developed control laws

drive the system to asymptotically track a reference command. It was shown in simulation

that both the Sliding Mode State Constraint controller and the Bounding Function State

Constraint controller were able to successfully achieve the control objective in the presence

of unacceptable trajectory commands or external disturbances.

2. Although both the Sliding Mode State Constraint and Bounding Function State Constraint

techniques avoided excessive chattering by the actuators, the Bounding Function State Con-

straint controller in general produced a smoother control signal. Overall, the Bounding

Function State Constraint controller was easier to implement than the Sliding Mode State

Constraint controller, primarily due to the flexibility that this technique allows for in defin-

ing the constraint set. For this reason, the Bounding Function State Constraint technique was

chosen to be combined with the nonlinear observer in Section 6.

3. A nonlinear observer was introduced that allowed for accurate estimation of an air vehi-
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cle’s angle-of-attack and sideslip angle despite noisy measurement signals. This estimation

technique avoided common problems associated with nonlinear observers - the peaking phe-

nomenon and noise amplification. The definition of a time-varying set in which the true

angle-of-attack and sideslip angle are contained allowed for the definition of time-varying

gains that help to stabilize the closed-loop system. This time-varying set could be replaced

by intermittent aerodynamic angle measurements if they became available.

4. Given a class of uncertain nonlinear dynamical systems, an NDI adaptive control algorithm

that utilizes estimates of unmeasured system states was presented and rigorously proven to

stabilize the system. This control algorithm was demonstrated in simulation, where an Euler

angle trajectory was successfully tracked despite no direct measurements of the vehicle’s

angle-of-attack or sideslip angle.

5. Both state constraint mechanisms were demonstrated on a nonlinear hypersonic vehicle sim-

ulation and particular attention was paid to the problem of inlet unstart. The ability to limit

the vehicle’s angle-of-attack and sideslip angle demonstrated the potential for these con-

trollers to prevent inlet unstart. Furthermore, using a simplified aerodynamic model, a fea-

sibility study was performed, demonstrating the potential for state constraint mechanisms to

be used in recovering from unstarts as well.

6. The ability to combine a state constraint technique with the observer-based feedback NDI

adaptive control law was demonstrated in simulation. Such a control law would be required

to simultaneously address the practical issues of partial state measurement and inlet unstart.

Although such a combined control law is susceptible to steady-state error, it was shown that

successful tracking and state constraint enforcement can be achieved using this algorithm.

7. Given an accurate nonlinear discretization scheme in the class of explicit linear multistep

methods, a sampled-data approach to nonlinear dynamic inversion adaptive control was rig-
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orously proven to stabilize uncertain, nonlinear sampled-data systems. The control law al-

lowed for the closed-loop system to be parameterized such that linear, discrete time, adaptive

control algorithms could be leveraged. This sampled-data approach was demonstrated on a

simulation of an F-16 as well as the Generic Hypersonic Vehicle and in both cases was

shown to perform better than a continuous time control law implemented with a sampler and

a zero-order hold. Limitations on the controller sample time were discussed and explored in

simulation. Despite the extremely fast dynamics of hypersonic flight, bounded tracking was

achieved.
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9. RECOMMENDATIONS

Based on the results derived in this dissertation, the following reccomendations for future re-

search are made

1. To confidently extend the algorithms developed in this dissertation to systems other than

hypersonic vehicles, a comprehensive analysis on the impact of control saturation limits

could be performed. Through assumptions regarding the system dynamics, analytical bounds

on the size of achievable control magnitudes could be established. Otherwise, Monte Carlo

analysis could be performed for the same purpose.

2. Both of the state constraint mechanisms developed in this dissertation allow for a designer

to restrict the system outputs. A nonlinear dynamic inversion adaptive controller that can

rigorously be proven to enforce constraints on unmeasured or potentially unobservable states

would be a powerful technique in hypersonic flight control. Such a technique may allow

for the development of a control law that can rigorously be proven to stabilize the closed-

loop system while achieving the control objective of Section 6: the ability to constrain a

hypersonic vehicle’s aerodynamic angles despite not measuring them directly.

3. The presented observer-based NDI adaptive controller relies on assumptions that are valid

due to aerospace engineering concepts. A more general assumption set is required to extend

this technique to a wider class of nonlinear systems.

4. The sampled-data approach to NDI adaptive control could be formalized such that an explicit

bound on the controller sample time is established. This would require extensive develop-

ment in numerical analysis and the nonlinear discretization scheme selected to represent the

true sampled-data system. The effect of actuator saturation limits on acceptable controller

sample times could also be explored.
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5. Improvements to the hypersonic vehicle simulation model could be made to make the system

more realistic. This includes the modeling of elastic vehicle dynamics and the introduction

of a higher fidelity inlet unstart model.
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APPENDIX A

PROOF OF LEMMAS 1.3.1 AND 1.3.2

In order to prove Lemma 1.3.1 the following Corollary must be introduced.

Corollary A.0.1. Consider the convex function h(θ) : Ra → R. Let θi ∈ Ra and θ̂i ∈ Ra be

vectors where

h(θi) < δ

h(θ̂i) = δ

for some constant δ > 0. The following inequality holds,

(θi − θ̂i)T∇h(θ̂i) ≤ 0 (A.1)

Proof. Since h(θ) is convex, the following inequality holds for any 0 ≤ λ ≤ 1,

h(λθi + (1− λ)θ̂i) ≤ λh(θi) + (1− λ)h(θ̂i) (A.2)

By the same property, the following holds

h(θ̂i + λ(θi − θ̂i)) ≤ h(θ̂i) + λh(θi − θ̂i) ≤ h(θ̂i) + λ
(
h(θi)− h(θ̂i)

)
(A.3)

This implies that
h(θ̂i + λ(θi − θ̂i))− h(θ̂i)

λ
≤ h(θi)− h(θ̂i) ≤ δ − δ = 0 (A.4)

which in the limit as λ→ 0 implies (A.1).

238



Lemma 1.3.1

Proof. Note that (
θ̂i − θi

)T (
Proj(θ̂i, y)− y

)
=
(
θi − θ̂i

)T (
y − Proj(θ̂i, y)

)
(A.5)

If Proj(θ̂i, y) = y, then (1.18) clearly holds. If instead, h(θ̂i) > 0 and yT∇h(θ̂i) > 0 then

(
θi − θ̂i

)T (
y − Proj(θ̂i, y)

)
=
(
θi − θ̂i

)T (∇h(θ̂i)(∇h(θ̂i))
T

‖∇h(θ̂i)‖2
yh(θ̂i)

)
(A.6)

Since h(θ̂i) > 0,∇h(θ̂i)
Ty > 0, and Corollary A.0.1 holds, this implies(

θi − θ̂i
)T (

y − Proj(θ̂i, y)
)
≤ 0 (A.7)

which is equivalent to (1.18).

Lemma 1.3.2

Proof. The derivative of the convex function with respect to time can be written as

ḣ(θ̂i) = (∇h(θ̂i))
T ˙̂
θi = (∇h(θ̂i))

TProj(θ̂i, y) (A.8)

The definition of the vector projection operator (1.17) implies that

ḣ(θ̂i) =


h(θ̂i))

Ty(1− h(θ̂i)) if h(θ̂i) > 0 and yT∇h(θ̂i) > 0

h(θ̂i))
Ty otherwise

(A.9)

Therefore,

ḣ(θ̂i)


> 0 if 0 < h(θ̂i) < 1 and yT∇h(θ̂i) > 0

= 0 if h(θ̂i) = 1 and yT∇h(θ̂i) > 0

< 0 otherwise

(A.10)
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This implies that if h(θ̂i(t = 0)) ≤ 1 then h(θ̂i) ≤ 1 for all t ≥ 0 which implies that θ̂i ∈ Ω1 for

all t ≥ 0 as intended.
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APPENDIX B

PROOF OF THE INVERTIBILITY OF Λ̂

In this Appendix, a lemma is presented which shows that through the use of the projection

operator in the adaptive law for the uncertainty in the system control effectiveness, δΛ̂, the total

estimate Λ̂ = Im + δΛ̂ is guaranteed to be invertible at all times.

Lemma B.0.1. For all δΛ̂ ∈ Rm×m, if the 2-norm of each column is less than 1/m at all times,

which, according to Lemma 1.3.2, can be guaranteed by the projection operator, then Λ̂ will always

be invertible.

Proof. It can be shown that if λ is an eigenvalue of δΛ̂ then λ + 1 is an eigenvalue of Λ̂. Let each

element of the matrix δΛ̂ have a magnitude smaller than 1/m. Suppose that Λ̂ is not invertible.

This implies that Λ̂ has a zero eigenvalue which implies that δΛ̂ has an eigenvalue equal to −1 and

that there exists at least one eigenvector, v, that satisfies

δΛ̂v = −v (B.1)

Let vi correspond to the element of the eigenvector v with the largest magnitude. The ith row of

Equation (B.1) can be written as

δΛ̂i1v1 + δΛ̂i2v2 + ...+ δΛ̂imvm = −vi

This implies that

|vi| = |δΛ̂i1v1 + δΛ̂i2v2 + ...+ δΛ̂imvm|

|vi| ≤ |δΛ̂i1v1|+ |δΛ̂i2v2|+ ...+ |δΛ̂imvm|

|vi| ≤ |δΛ̂i1||v1|+ |δΛ̂i2||v2|+ ...+ |δΛ̂im||vm|

|vi| < (|δΛ̂i1|+ |δΛ̂i2|+ ...+ |δΛ̂im|)|vi|.
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Since each element of δΛ̂ has magnitude less than 1/m, (|δΛ̂i1|+ |δΛ̂i2|+ ...+ |δΛ̂im|) < 1. This

implies that

|vi| < |vi|

which is a contradiction. Therefore, Λ̂ must be invertible whenever each element of δΛ̂ is less than

1/m. If the projection operator is utilized to bound the 2-norm of each column of δΛ̂ to be less than

1/m this will ensure that each element is less than 1/m as well and guarantees that Λ̂ is invertible

at all times.
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APPENDIX C

COMPONENTS OF Mζ AND bζ

C.1 Longitudinal Hypersonic Vehicle Model

m11 = −1

2
λmin(Q)

m12 = |K3|

m13 = |K21|+
q̄(VT,max)Sc̄

2Iy
|Cm1|

m14 = |K22|

m22 = −CL1q̄S

2mVT

m23 =
1

2

m34 = 1 +
∆ḡq

2

m44 = −1

2
KΘ

b1 = ‖K0‖

b2 =
1

2
(|f ′α(x)|max + |qm|)

b4 =
q̄d
2

m33 = −1

2
∆ḡqLKq + ∆ḡ2

(
q̄(VT,max)Sc̄

2

2ÎyVT,max

∣∣∣Ĉmq∣∣∣+
q̄(VT,max)Sc̄

2

2VT,max
Ŵmax

)

b3 =
∆ḡq

2

(
|Ĉq0|max +

q̄(VT,max)Sc̄
2

2ÎyVt,max

∣∣∣Ĉmqqm∣∣∣+ |q̇m|

+ Ŵmax

(
MT,max + q̄(VT,max)Sc̄+

q̄(VT,max)Sc̄
2

2VT,max
|qm|

))
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C.2 Six Degree-of-Freedom Hypersonic Vehicle Model

m11 = −1

2
λmin(Q)

m12 = K2

m13 = ‖K3‖+
1

2
I−1q̄(VT,max)S

∥∥∥∥∥∥∥∥∥∥
bC`1

c̄Cm1

bCn1

∥∥∥∥∥∥∥∥∥∥
m14 = K31

m22 =
1

2
λmax(Aa)

m23 =

√
1 + d2

β

2

m34 =
1

2

(
1 +
√

3∆ḡr +
√

3 + 4d2
Θ

)
m44 = −1

2
λmin(KΦ)

b1 = ‖K0‖

b2 =
1

2
‖f ′a‖max +

√
1 + d2

β

2
‖xr,m‖

b4 =
1

2

√
3 + 4d2

Θx̄r,d

m33 = −1

2
kr∆ḡrL +

√
3∆ḡr

 q̄(VT,max)S2VT,max
Î−1

∥∥∥∥∥∥∥∥∥∥
b2Ĉ`p

c̄2Ĉmq

b2Ĉnr

∥∥∥∥∥∥∥∥∥∥
+
q̄(VT,max)S

2VT,max
Ŵmax



b3 =

√
3

2
∆ḡr

(
‖f̂r0‖max +

q̄(VT,max)S

2VT,max
Î−1

∥∥∥∥∥∥∥∥∥∥
b2Ĉ`p

c̄2Ĉmq

b2Ĉnr

∥∥∥∥∥∥∥∥∥∥
‖xr,m‖+ ‖ẋr,m‖

+ Ŵmax

(
MT,max + q̄(VT,max)S +

q̄(VT,max)S

2VT,max
‖xr,m‖

))
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APPENDIX D

CONSTANT OBSERVER-GAINS USED IN GHV SIMULATION

D.1 Longitudinal Hypersonic Vehicle Model

Recall the matrix HO defined in equation (4.91)

HO =



−h1VT −h2VT − q̄S
m
ĈD1 −h3VT

−h1Θ −h2Θ 0 1− h3Θ

−h1α −h2α − q̄S
mVT

ĈL1 1− h3α

−h1q −h2q
q̄Sc̄

Îy
Cm1 −h3q


and used in the simulation study of Chapter 4. These constant gain terms were defined as

HO =



−15 −0.01 − q̄S
m
ĈD1 0

−1e− 4 −20 0 0

−0.001 −0.5 − q̄S
mVT

ĈL1 0.25

−5e− 5 −0.1 q̄Sc̄

Îy
Cm1 −10


D.2 Six Degree-of-Freedom Hypersonic Vehicle Model

Recall the matrix HO defined in equation (5.93)

HO =



−h1VT −h2VT HO(1, 3) −h3VT

−h1Φ −h2Φ 0 AΦ − h3Φ

−h1a −h2a HO(3, 3) HO(3, 4)

−h1r −h2r HO(4, 3) −h3r


and used in the simulation studies of Chapters 5 and 6. These constant gain terms were defined as
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h1V T = 15 h2V T =

[
1e− 4 1e− 2 1e− 4

]
h3V T =

[
0 0 0

]

h1Φ =

[
0 1e− 4 0

]T
h2Φ =


10 0 0

0 20 0

0 0 10

 h3Φ =


0 0 0

0 1 0

0 0 0



h1a =

[
0 1e− 3

]T
h2a =

0 0 0.01

0 0.5 0

 h3a =

0 0 0.01

0 0.75 0



h1r =

[
0 5e− 5 0

]T
h2r =


0 0 0

0 0.1 0

0 0 0

 h3r =


20 0 0

0 10 0

0 0 20
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